1 /* $NetBSD: mpii.c,v 1.24 2019/11/28 17:09:10 maxv Exp $ */ 2 /* $OpenBSD: mpii.c,v 1.115 2018/08/14 05:22:21 jmatthew Exp $ */ 3 /* 4 * Copyright (c) 2010, 2012 Mike Belopuhov 5 * Copyright (c) 2009 James Giannoules 6 * Copyright (c) 2005 - 2010 David Gwynne <dlg@openbsd.org> 7 * Copyright (c) 2005 - 2010 Marco Peereboom <marco@openbsd.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __KERNEL_RCSID(0, "$NetBSD: mpii.c,v 1.24 2019/11/28 17:09:10 maxv Exp $"); 24 25 #include "bio.h" 26 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/buf.h> 30 #include <sys/device.h> 31 #include <sys/ioctl.h> 32 #include <sys/malloc.h> 33 #include <sys/kernel.h> 34 #include <sys/mutex.h> 35 #include <sys/condvar.h> 36 #include <sys/dkio.h> 37 #include <sys/tree.h> 38 39 #include <dev/pci/pcireg.h> 40 #include <dev/pci/pcivar.h> 41 #include <dev/pci/pcidevs.h> 42 43 #include <dev/scsipi/scsipi_all.h> 44 #include <dev/scsipi/scsi_all.h> 45 #include <dev/scsipi/scsiconf.h> 46 47 #if NBIO > 0 48 #include <dev/biovar.h> 49 #include <dev/sysmon/sysmonvar.h> 50 #include <sys/envsys.h> 51 #endif 52 53 #include <dev/pci/mpiireg.h> 54 55 // #define MPII_DEBUG 56 #ifdef MPII_DEBUG 57 #define DPRINTF(x...) do { if (mpii_debug) printf(x); } while(0) 58 #define DNPRINTF(n,x...) do { if (mpii_debug & (n)) printf(x); } while(0) 59 #define MPII_D_CMD (0x0001) 60 #define MPII_D_INTR (0x0002) 61 #define MPII_D_MISC (0x0004) 62 #define MPII_D_DMA (0x0008) 63 #define MPII_D_IOCTL (0x0010) 64 #define MPII_D_RW (0x0020) 65 #define MPII_D_MEM (0x0040) 66 #define MPII_D_CCB (0x0080) 67 #define MPII_D_PPR (0x0100) 68 #define MPII_D_RAID (0x0200) 69 #define MPII_D_EVT (0x0400) 70 #define MPII_D_CFG (0x0800) 71 #define MPII_D_MAP (0x1000) 72 73 u_int32_t mpii_debug = 0 74 // | MPII_D_CMD 75 // | MPII_D_INTR 76 // | MPII_D_MISC 77 // | MPII_D_DMA 78 // | MPII_D_IOCTL 79 // | MPII_D_RW 80 // | MPII_D_MEM 81 // | MPII_D_CCB 82 // | MPII_D_PPR 83 // | MPII_D_RAID 84 // | MPII_D_EVT 85 // | MPII_D_CFG 86 // | MPII_D_MAP 87 ; 88 #else 89 #define DPRINTF(x...) 90 #define DNPRINTF(n,x...) 91 #endif 92 93 #define MPII_REQUEST_SIZE (512) 94 #define MPII_REQUEST_CREDIT (128) 95 96 struct mpii_dmamem { 97 bus_dmamap_t mdm_map; 98 bus_dma_segment_t mdm_seg; 99 size_t mdm_size; 100 void *mdm_kva; 101 }; 102 #define MPII_DMA_MAP(_mdm) ((_mdm)->mdm_map) 103 #define MPII_DMA_DVA(_mdm) ((uint64_t)(_mdm)->mdm_map->dm_segs[0].ds_addr) 104 #define MPII_DMA_KVA(_mdm) ((_mdm)->mdm_kva) 105 106 struct mpii_softc; 107 108 struct mpii_rcb { 109 SIMPLEQ_ENTRY(mpii_rcb) rcb_link; 110 void *rcb_reply; 111 u_int32_t rcb_reply_dva; 112 }; 113 114 SIMPLEQ_HEAD(mpii_rcb_list, mpii_rcb); 115 116 struct mpii_device { 117 int flags; 118 #define MPII_DF_ATTACH (0x0001) 119 #define MPII_DF_DETACH (0x0002) 120 #define MPII_DF_HIDDEN (0x0004) 121 #define MPII_DF_UNUSED (0x0008) 122 #define MPII_DF_VOLUME (0x0010) 123 #define MPII_DF_VOLUME_DISK (0x0020) 124 #define MPII_DF_HOT_SPARE (0x0040) 125 short slot; 126 short percent; 127 u_int16_t dev_handle; 128 u_int16_t enclosure; 129 u_int16_t expander; 130 u_int8_t phy_num; 131 u_int8_t physical_port; 132 }; 133 134 struct mpii_ccb { 135 struct mpii_softc *ccb_sc; 136 137 void * ccb_cookie; 138 kmutex_t ccb_mtx; 139 kcondvar_t ccb_cv; 140 141 bus_dmamap_t ccb_dmamap; 142 143 bus_addr_t ccb_offset; 144 void *ccb_cmd; 145 bus_addr_t ccb_cmd_dva; 146 u_int16_t ccb_dev_handle; 147 u_int16_t ccb_smid; 148 149 volatile enum { 150 MPII_CCB_FREE, 151 MPII_CCB_READY, 152 MPII_CCB_QUEUED, 153 MPII_CCB_TIMEOUT 154 } ccb_state; 155 156 void (*ccb_done)(struct mpii_ccb *); 157 struct mpii_rcb *ccb_rcb; 158 159 SIMPLEQ_ENTRY(mpii_ccb) ccb_link; 160 }; 161 162 SIMPLEQ_HEAD(mpii_ccb_list, mpii_ccb); 163 164 struct mpii_softc { 165 device_t sc_dev; 166 167 pci_chipset_tag_t sc_pc; 168 pcitag_t sc_tag; 169 170 void *sc_ih; 171 pci_intr_handle_t *sc_pihp; 172 173 struct scsipi_adapter sc_adapt; 174 struct scsipi_channel sc_chan; 175 device_t sc_child; /* our scsibus */ 176 177 int sc_flags; 178 #define MPII_F_RAID (1<<1) 179 #define MPII_F_SAS3 (1<<2) 180 181 struct mpii_device **sc_devs; 182 kmutex_t sc_devs_mtx; 183 184 bus_space_tag_t sc_iot; 185 bus_space_handle_t sc_ioh; 186 bus_size_t sc_ios; 187 bus_dma_tag_t sc_dmat; 188 189 kmutex_t sc_req_mtx; 190 kmutex_t sc_rep_mtx; 191 192 ushort sc_reply_size; 193 ushort sc_request_size; 194 195 ushort sc_max_cmds; 196 ushort sc_num_reply_frames; 197 u_int sc_reply_free_qdepth; 198 u_int sc_reply_post_qdepth; 199 200 ushort sc_chain_sge; 201 ushort sc_max_sgl; 202 203 u_int8_t sc_ioc_event_replay; 204 205 u_int8_t sc_porttype; 206 u_int8_t sc_max_volumes; 207 u_int16_t sc_max_devices; 208 u_int16_t sc_vd_count; 209 u_int16_t sc_vd_id_low; 210 u_int16_t sc_pd_id_start; 211 int sc_ioc_number; 212 u_int8_t sc_vf_id; 213 214 struct mpii_ccb *sc_ccbs; 215 struct mpii_ccb_list sc_ccb_free; 216 kmutex_t sc_ccb_free_mtx; 217 kcondvar_t sc_ccb_free_cv; 218 219 struct mpii_ccb_list sc_ccb_tmos; 220 kmutex_t sc_ssb_tmomtx; 221 struct workqueue *sc_ssb_tmowk; 222 struct work sc_ssb_tmowork; 223 224 struct mpii_dmamem *sc_requests; 225 226 struct mpii_dmamem *sc_replies; 227 struct mpii_rcb *sc_rcbs; 228 229 struct mpii_dmamem *sc_reply_postq; 230 struct mpii_reply_descr *sc_reply_postq_kva; 231 u_int sc_reply_post_host_index; 232 233 struct mpii_dmamem *sc_reply_freeq; 234 u_int sc_reply_free_host_index; 235 kmutex_t sc_reply_free_mtx; 236 237 struct mpii_rcb_list sc_evt_sas_queue; 238 kmutex_t sc_evt_sas_mtx; 239 struct workqueue *sc_evt_sas_wq; 240 struct work sc_evt_sas_work; 241 242 struct mpii_rcb_list sc_evt_ack_queue; 243 kmutex_t sc_evt_ack_mtx; 244 struct workqueue *sc_evt_ack_wq; 245 struct work sc_evt_ack_work; 246 247 struct sysmon_envsys *sc_sme; 248 envsys_data_t *sc_sensors; 249 }; 250 251 static int mpii_match(device_t, cfdata_t, void *); 252 static void mpii_attach(device_t, device_t, void *); 253 static int mpii_detach(device_t, int); 254 static void mpii_childdetached(device_t, device_t); 255 static int mpii_rescan(device_t, const char *, const int *); 256 257 static int mpii_intr(void *); 258 259 CFATTACH_DECL3_NEW(mpii, sizeof(struct mpii_softc), 260 mpii_match, mpii_attach, mpii_detach, NULL, mpii_rescan, 261 mpii_childdetached, DVF_DETACH_SHUTDOWN); 262 263 static void mpii_scsipi_request(struct scsipi_channel *, 264 scsipi_adapter_req_t, void *); 265 static void mpii_scsi_cmd_done(struct mpii_ccb *); 266 267 static struct mpii_dmamem * 268 mpii_dmamem_alloc(struct mpii_softc *, size_t); 269 static void mpii_dmamem_free(struct mpii_softc *, 270 struct mpii_dmamem *); 271 static int mpii_alloc_ccbs(struct mpii_softc *); 272 static struct mpii_ccb *mpii_get_ccb(struct mpii_softc *); 273 static void mpii_put_ccb(struct mpii_softc *, struct mpii_ccb *); 274 static int mpii_alloc_replies(struct mpii_softc *); 275 static int mpii_alloc_queues(struct mpii_softc *); 276 static void mpii_push_reply(struct mpii_softc *, struct mpii_rcb *); 277 static void mpii_push_replies(struct mpii_softc *); 278 279 static void mpii_scsi_cmd_tmo(void *); 280 static void mpii_scsi_cmd_tmo_handler(struct work *, void *); 281 static void mpii_scsi_cmd_tmo_done(struct mpii_ccb *); 282 283 static int mpii_insert_dev(struct mpii_softc *, struct mpii_device *); 284 static int mpii_remove_dev(struct mpii_softc *, struct mpii_device *); 285 static struct mpii_device * 286 mpii_find_dev(struct mpii_softc *, u_int16_t); 287 288 static void mpii_start(struct mpii_softc *, struct mpii_ccb *); 289 static int mpii_poll(struct mpii_softc *, struct mpii_ccb *); 290 static void mpii_poll_done(struct mpii_ccb *); 291 static struct mpii_rcb * 292 mpii_reply(struct mpii_softc *, struct mpii_reply_descr *); 293 294 static void mpii_wait(struct mpii_softc *, struct mpii_ccb *); 295 static void mpii_wait_done(struct mpii_ccb *); 296 297 static void mpii_init_queues(struct mpii_softc *); 298 299 static int mpii_load_xs(struct mpii_ccb *); 300 static int mpii_load_xs_sas3(struct mpii_ccb *); 301 302 static u_int32_t mpii_read(struct mpii_softc *, bus_size_t); 303 static void mpii_write(struct mpii_softc *, bus_size_t, u_int32_t); 304 static int mpii_wait_eq(struct mpii_softc *, bus_size_t, u_int32_t, 305 u_int32_t); 306 static int mpii_wait_ne(struct mpii_softc *, bus_size_t, u_int32_t, 307 u_int32_t); 308 309 static int mpii_init(struct mpii_softc *); 310 static int mpii_reset_soft(struct mpii_softc *); 311 static int mpii_reset_hard(struct mpii_softc *); 312 313 static int mpii_handshake_send(struct mpii_softc *, void *, size_t); 314 static int mpii_handshake_recv_dword(struct mpii_softc *, 315 u_int32_t *); 316 static int mpii_handshake_recv(struct mpii_softc *, void *, size_t); 317 318 static void mpii_empty_done(struct mpii_ccb *); 319 320 static int mpii_iocinit(struct mpii_softc *); 321 static int mpii_iocfacts(struct mpii_softc *); 322 static int mpii_portfacts(struct mpii_softc *); 323 static int mpii_portenable(struct mpii_softc *); 324 static int mpii_cfg_coalescing(struct mpii_softc *); 325 static int mpii_board_info(struct mpii_softc *); 326 static int mpii_target_map(struct mpii_softc *); 327 328 static int mpii_eventnotify(struct mpii_softc *); 329 static void mpii_eventnotify_done(struct mpii_ccb *); 330 static void mpii_eventack(struct work *, void *); 331 static void mpii_eventack_done(struct mpii_ccb *); 332 static void mpii_event_process(struct mpii_softc *, struct mpii_rcb *); 333 static void mpii_event_done(struct mpii_softc *, struct mpii_rcb *); 334 static void mpii_event_sas(struct mpii_softc *, struct mpii_rcb *); 335 static void mpii_event_sas_work(struct work *, void *); 336 static void mpii_event_raid(struct mpii_softc *, 337 struct mpii_msg_event_reply *); 338 static void mpii_event_discovery(struct mpii_softc *, 339 struct mpii_msg_event_reply *); 340 341 static void mpii_sas_remove_device(struct mpii_softc *, u_int16_t); 342 343 static int mpii_req_cfg_header(struct mpii_softc *, u_int8_t, 344 u_int8_t, u_int32_t, int, void *); 345 static int mpii_req_cfg_page(struct mpii_softc *, u_int32_t, int, 346 void *, int, void *, size_t); 347 348 #if 0 349 int mpii_ioctl_cache(struct scsi_link *, u_long, struct dk_cache *); 350 #endif 351 352 #if NBIO > 0 353 static int mpii_ioctl(device_t, u_long, void *); 354 static int mpii_ioctl_inq(struct mpii_softc *, struct bioc_inq *); 355 static int mpii_ioctl_vol(struct mpii_softc *, struct bioc_vol *); 356 static int mpii_ioctl_disk(struct mpii_softc *, struct bioc_disk *); 357 static int mpii_bio_hs(struct mpii_softc *, struct bioc_disk *, int, 358 int, int *); 359 static int mpii_bio_disk(struct mpii_softc *, struct bioc_disk *, 360 u_int8_t); 361 static struct mpii_device * 362 mpii_find_vol(struct mpii_softc *, int); 363 #ifndef SMALL_KERNEL 364 static int mpii_bio_volstate(struct mpii_softc *, struct bioc_vol *); 365 static int mpii_create_sensors(struct mpii_softc *); 366 static void mpii_refresh_sensors(struct sysmon_envsys *, envsys_data_t *); 367 static int mpii_destroy_sensors(struct mpii_softc *); 368 #endif /* SMALL_KERNEL */ 369 #endif /* NBIO > 0 */ 370 371 #define DEVNAME(s) (device_xname((s)->sc_dev)) 372 373 #define dwordsof(s) (sizeof(s) / sizeof(u_int32_t)) 374 375 #define mpii_read_db(s) mpii_read((s), MPII_DOORBELL) 376 #define mpii_write_db(s, v) mpii_write((s), MPII_DOORBELL, (v)) 377 #define mpii_read_intr(s) mpii_read((s), MPII_INTR_STATUS) 378 #define mpii_write_intr(s, v) mpii_write((s), MPII_INTR_STATUS, (v)) 379 #define mpii_reply_waiting(s) ((mpii_read_intr((s)) & MPII_INTR_STATUS_REPLY)\ 380 == MPII_INTR_STATUS_REPLY) 381 382 #define mpii_write_reply_free(s, v) \ 383 bus_space_write_4((s)->sc_iot, (s)->sc_ioh, \ 384 MPII_REPLY_FREE_HOST_INDEX, (v)) 385 #define mpii_write_reply_post(s, v) \ 386 bus_space_write_4((s)->sc_iot, (s)->sc_ioh, \ 387 MPII_REPLY_POST_HOST_INDEX, (v)) 388 389 #define mpii_wait_db_int(s) mpii_wait_ne((s), MPII_INTR_STATUS, \ 390 MPII_INTR_STATUS_IOC2SYSDB, 0) 391 #define mpii_wait_db_ack(s) mpii_wait_eq((s), MPII_INTR_STATUS, \ 392 MPII_INTR_STATUS_SYS2IOCDB, 0) 393 394 static inline void 395 mpii_dvatosge(struct mpii_sge *sge, u_int64_t dva) 396 { 397 sge->sg_addr_lo = htole32(dva); 398 sge->sg_addr_hi = htole32(dva >> 32); 399 } 400 401 #define MPII_PG_EXTENDED (1<<0) 402 #define MPII_PG_POLL (1<<1) 403 #define MPII_PG_FMT "\020" "\002POLL" "\001EXTENDED" 404 405 static const struct mpii_pci_product { 406 pci_vendor_id_t mpii_vendor; 407 pci_product_id_t mpii_product; 408 } mpii_devices[] = { 409 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2004 }, 410 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2008 }, 411 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_3 }, 412 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_4 }, 413 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_5 }, 414 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_1 }, 415 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_2 }, 416 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_1 }, 417 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_2 }, 418 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_3 }, 419 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_4 }, 420 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_5 }, 421 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_6 }, 422 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_1 }, 423 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_2 }, 424 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_3 }, 425 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3004 }, 426 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3008 }, 427 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_1 }, 428 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_2 }, 429 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_3 }, 430 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_4 }, 431 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3408 }, 432 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3416 }, 433 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3508 }, 434 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3508_1 }, 435 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3516 }, 436 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3516_1 }, 437 { 0, 0} 438 }; 439 440 static int 441 mpii_match(device_t parent, cfdata_t match, void *aux) 442 { 443 struct pci_attach_args *pa = aux; 444 const struct mpii_pci_product *mpii; 445 446 for (mpii = mpii_devices; mpii->mpii_vendor != 0; mpii++) { 447 if (PCI_VENDOR(pa->pa_id) == mpii->mpii_vendor && 448 PCI_PRODUCT(pa->pa_id) == mpii->mpii_product) 449 return (1); 450 } 451 return (0); 452 } 453 454 static void 455 mpii_attach(device_t parent, device_t self, void *aux) 456 { 457 struct mpii_softc *sc = device_private(self); 458 struct pci_attach_args *pa = aux; 459 pcireg_t memtype; 460 int r; 461 struct mpii_ccb *ccb; 462 struct scsipi_adapter *adapt = &sc->sc_adapt; 463 struct scsipi_channel *chan = &sc->sc_chan; 464 char intrbuf[PCI_INTRSTR_LEN]; 465 const char *intrstr; 466 467 pci_aprint_devinfo(pa, NULL); 468 469 sc->sc_pc = pa->pa_pc; 470 sc->sc_tag = pa->pa_tag; 471 sc->sc_dmat = pa->pa_dmat; 472 sc->sc_dev = self; 473 474 mutex_init(&sc->sc_req_mtx, MUTEX_DEFAULT, IPL_BIO); 475 mutex_init(&sc->sc_rep_mtx, MUTEX_DEFAULT, IPL_BIO); 476 477 /* find the appropriate memory base */ 478 for (r = PCI_MAPREG_START; r < PCI_MAPREG_END; r += sizeof(memtype)) { 479 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, r); 480 if ((memtype & PCI_MAPREG_TYPE_MASK) == PCI_MAPREG_TYPE_MEM) 481 break; 482 } 483 if (r >= PCI_MAPREG_END) { 484 aprint_error_dev(self, 485 "unable to locate system interface registers\n"); 486 return; 487 } 488 489 if (pci_mapreg_map(pa, r, memtype, 0, &sc->sc_iot, &sc->sc_ioh, 490 NULL, &sc->sc_ios) != 0) { 491 aprint_error_dev(self, 492 "unable to map system interface registers\n"); 493 return; 494 } 495 496 /* disable the expansion rom */ 497 pci_conf_write(sc->sc_pc, sc->sc_tag, PCI_MAPREG_ROM, 498 pci_conf_read(sc->sc_pc, sc->sc_tag, PCI_MAPREG_ROM) & 499 ~PCI_MAPREG_ROM_ENABLE); 500 501 /* disable interrupts */ 502 mpii_write(sc, MPII_INTR_MASK, 503 MPII_INTR_MASK_RESET | MPII_INTR_MASK_REPLY | 504 MPII_INTR_MASK_DOORBELL); 505 506 /* hook up the interrupt */ 507 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) { 508 aprint_error_dev(self, "unable to map interrupt\n"); 509 goto unmap; 510 } 511 intrstr = pci_intr_string(pa->pa_pc, sc->sc_pihp[0], 512 intrbuf, sizeof(intrbuf)); 513 pci_intr_setattr(pa->pa_pc, &sc->sc_pihp[0], PCI_INTR_MPSAFE, true); 514 sc->sc_ih = pci_intr_establish_xname(pa->pa_pc, sc->sc_pihp[0], IPL_BIO, 515 mpii_intr, sc, device_xname(self)); 516 if (sc->sc_ih == NULL) { 517 aprint_error_dev(self, "couldn't establish interrupt"); 518 if (intrstr != NULL) 519 aprint_error(" at %s", intrstr); 520 aprint_error("\n"); 521 return; 522 } 523 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 524 aprint_naive("\n"); 525 526 if (mpii_iocfacts(sc) != 0) { 527 aprint_error_dev(self, "unable to get iocfacts\n"); 528 goto unmap; 529 } 530 531 if (mpii_init(sc) != 0) { 532 aprint_error_dev(self, "unable to initialize ioc\n"); 533 goto unmap; 534 } 535 536 if (mpii_alloc_ccbs(sc) != 0) { 537 /* error already printed */ 538 goto unmap; 539 } 540 541 if (mpii_alloc_replies(sc) != 0) { 542 aprint_error_dev(self, "unable to allocated reply space\n"); 543 goto free_ccbs; 544 } 545 546 if (mpii_alloc_queues(sc) != 0) { 547 aprint_error_dev(self, "unable to allocate reply queues\n"); 548 goto free_replies; 549 } 550 551 if (mpii_iocinit(sc) != 0) { 552 aprint_error_dev(self, "unable to send iocinit\n"); 553 goto free_queues; 554 } 555 556 if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, 557 MPII_DOORBELL_STATE_OPER) != 0) { 558 aprint_error_dev(self, "state: 0x%08x\n", 559 mpii_read_db(sc) & MPII_DOORBELL_STATE); 560 aprint_error_dev(self, "operational state timeout\n"); 561 goto free_queues; 562 } 563 564 mpii_push_replies(sc); 565 mpii_init_queues(sc); 566 567 if (mpii_board_info(sc) != 0) { 568 aprint_error_dev(self, "unable to get manufacturing page 0\n"); 569 goto free_queues; 570 } 571 572 if (mpii_portfacts(sc) != 0) { 573 aprint_error_dev(self, "unable to get portfacts\n"); 574 goto free_queues; 575 } 576 577 if (mpii_target_map(sc) != 0) { 578 aprint_error_dev(self, "unable to setup target mappings\n"); 579 goto free_queues; 580 } 581 582 if (mpii_cfg_coalescing(sc) != 0) { 583 aprint_error_dev(self, "unable to configure coalescing\n"); 584 goto free_queues; 585 } 586 587 /* XXX bail on unsupported porttype? */ 588 if ((sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_PHYSICAL) || 589 (sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_VIRTUAL) || 590 (sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_TRI_MODE)) { 591 if (mpii_eventnotify(sc) != 0) { 592 aprint_error_dev(self, "unable to enable events\n"); 593 goto free_queues; 594 } 595 } 596 597 mutex_init(&sc->sc_devs_mtx, MUTEX_DEFAULT, IPL_BIO); 598 sc->sc_devs = malloc(sc->sc_max_devices * sizeof(struct mpii_device *), 599 M_DEVBUF, M_WAITOK | M_ZERO); 600 601 if (mpii_portenable(sc) != 0) { 602 aprint_error_dev(self, "unable to enable port\n"); 603 goto free_devs; 604 } 605 606 /* we should be good to go now, attach scsibus */ 607 memset(adapt, 0, sizeof(*adapt)); 608 adapt->adapt_dev = sc->sc_dev; 609 adapt->adapt_nchannels = 1; 610 adapt->adapt_openings = sc->sc_max_cmds - 4; 611 adapt->adapt_max_periph = adapt->adapt_openings; 612 adapt->adapt_request = mpii_scsipi_request; 613 adapt->adapt_minphys = minphys; 614 adapt->adapt_flags = SCSIPI_ADAPT_MPSAFE; 615 616 memset(chan, 0, sizeof(*chan)); 617 chan->chan_adapter = adapt; 618 chan->chan_bustype = &scsi_sas_bustype; 619 chan->chan_channel = 0; 620 chan->chan_flags = 0; 621 chan->chan_nluns = 8; 622 chan->chan_ntargets = sc->sc_max_devices; 623 chan->chan_id = -1; 624 625 mpii_rescan(self, "scsi", NULL); 626 627 /* enable interrupts */ 628 mpii_write(sc, MPII_INTR_MASK, MPII_INTR_MASK_DOORBELL 629 | MPII_INTR_MASK_RESET); 630 631 #if NBIO > 0 632 if (ISSET(sc->sc_flags, MPII_F_RAID)) { 633 if (bio_register(sc->sc_dev, mpii_ioctl) != 0) 634 panic("%s: controller registration failed", 635 DEVNAME(sc)); 636 if (mpii_create_sensors(sc) != 0) 637 aprint_error_dev(self, "unable to create sensors\n"); 638 } 639 #endif 640 641 return; 642 643 free_devs: 644 free(sc->sc_devs, M_DEVBUF); 645 sc->sc_devs = NULL; 646 647 free_queues: 648 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq), 649 0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD); 650 mpii_dmamem_free(sc, sc->sc_reply_freeq); 651 652 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 653 0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD); 654 mpii_dmamem_free(sc, sc->sc_reply_postq); 655 656 free_replies: 657 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 658 0, PAGE_SIZE, BUS_DMASYNC_POSTREAD); 659 mpii_dmamem_free(sc, sc->sc_replies); 660 661 free_ccbs: 662 while ((ccb = mpii_get_ccb(sc)) != NULL) 663 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); 664 mpii_dmamem_free(sc, sc->sc_requests); 665 free(sc->sc_ccbs, M_DEVBUF); 666 667 unmap: 668 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); 669 sc->sc_ios = 0; 670 } 671 672 static int 673 mpii_detach(device_t self, int flags) 674 { 675 struct mpii_softc *sc = device_private(self); 676 int error; 677 struct mpii_ccb *ccb; 678 679 if ((error = config_detach_children(sc->sc_dev, flags)) != 0) 680 return error; 681 682 #if NBIO > 0 683 mpii_destroy_sensors(sc); 684 bio_unregister(sc->sc_dev); 685 #endif /* NBIO > 0 */ 686 687 if (sc->sc_ih != NULL) { 688 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 689 sc->sc_ih = NULL; 690 } 691 if (sc->sc_ios != 0) { 692 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); 693 free(sc->sc_devs, M_DEVBUF); 694 sc->sc_devs = NULL; 695 696 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq), 697 0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD); 698 mpii_dmamem_free(sc, sc->sc_reply_freeq); 699 700 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 701 0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD); 702 mpii_dmamem_free(sc, sc->sc_reply_postq); 703 704 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 705 0, PAGE_SIZE, BUS_DMASYNC_POSTREAD); 706 mpii_dmamem_free(sc, sc->sc_replies); 707 708 while ((ccb = mpii_get_ccb(sc)) != NULL) 709 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); 710 mpii_dmamem_free(sc, sc->sc_requests); 711 free(sc->sc_ccbs, M_DEVBUF); 712 713 sc->sc_ios = 0; 714 } 715 716 return (0); 717 } 718 719 static int 720 mpii_rescan(device_t self, const char *ifattr, const int *locators) 721 { 722 struct mpii_softc *sc = device_private(self); 723 724 if (sc->sc_child != NULL) 725 return 0; 726 727 sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan, 728 scsiprint, NULL); 729 730 return 0; 731 } 732 733 static void 734 mpii_childdetached(device_t self, device_t child) 735 { 736 struct mpii_softc *sc = device_private(self); 737 738 KASSERT(self == sc->sc_dev); 739 KASSERT(child == sc->sc_child); 740 741 if (child == sc->sc_child) 742 sc->sc_child = NULL; 743 } 744 745 746 static int 747 mpii_intr(void *arg) 748 { 749 struct mpii_rcb_list evts = SIMPLEQ_HEAD_INITIALIZER(evts); 750 struct mpii_ccb_list ccbs = SIMPLEQ_HEAD_INITIALIZER(ccbs); 751 struct mpii_softc *sc = arg; 752 struct mpii_reply_descr *postq = sc->sc_reply_postq_kva, *rdp; 753 struct mpii_ccb *ccb; 754 struct mpii_rcb *rcb; 755 int smid; 756 u_int idx; 757 int rv = 0; 758 759 mutex_enter(&sc->sc_rep_mtx); 760 bus_dmamap_sync(sc->sc_dmat, 761 MPII_DMA_MAP(sc->sc_reply_postq), 762 0, sc->sc_reply_post_qdepth * sizeof(*rdp), 763 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 764 765 idx = sc->sc_reply_post_host_index; 766 for (;;) { 767 rdp = &postq[idx]; 768 if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) == 769 MPII_REPLY_DESCR_UNUSED) 770 break; 771 if (rdp->data == 0xffffffff) { 772 /* 773 * ioc is still writing to the reply post queue 774 * race condition - bail! 775 */ 776 break; 777 } 778 779 smid = le16toh(rdp->smid); 780 rcb = mpii_reply(sc, rdp); 781 782 if (smid) { 783 ccb = &sc->sc_ccbs[smid - 1]; 784 ccb->ccb_state = MPII_CCB_READY; 785 ccb->ccb_rcb = rcb; 786 SIMPLEQ_INSERT_TAIL(&ccbs, ccb, ccb_link); 787 } else 788 SIMPLEQ_INSERT_TAIL(&evts, rcb, rcb_link); 789 790 if (++idx >= sc->sc_reply_post_qdepth) 791 idx = 0; 792 793 rv = 1; 794 } 795 796 bus_dmamap_sync(sc->sc_dmat, 797 MPII_DMA_MAP(sc->sc_reply_postq), 798 0, sc->sc_reply_post_qdepth * sizeof(*rdp), 799 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 800 801 if (rv) 802 mpii_write_reply_post(sc, sc->sc_reply_post_host_index = idx); 803 804 mutex_exit(&sc->sc_rep_mtx); 805 806 if (rv == 0) 807 return (0); 808 809 while ((ccb = SIMPLEQ_FIRST(&ccbs)) != NULL) { 810 SIMPLEQ_REMOVE_HEAD(&ccbs, ccb_link); 811 ccb->ccb_done(ccb); 812 } 813 while ((rcb = SIMPLEQ_FIRST(&evts)) != NULL) { 814 SIMPLEQ_REMOVE_HEAD(&evts, rcb_link); 815 mpii_event_process(sc, rcb); 816 } 817 818 return (1); 819 } 820 821 static int 822 mpii_load_xs_sas3(struct mpii_ccb *ccb) 823 { 824 struct mpii_softc *sc = ccb->ccb_sc; 825 struct scsipi_xfer *xs = ccb->ccb_cookie; 826 struct mpii_msg_scsi_io *io = ccb->ccb_cmd; 827 struct mpii_ieee_sge *csge, *nsge, *sge; 828 bus_dmamap_t dmap = ccb->ccb_dmamap; 829 int i, error; 830 831 /* Request frame structure is described in the mpii_iocfacts */ 832 nsge = (struct mpii_ieee_sge *)(io + 1); 833 csge = nsge + sc->sc_chain_sge; 834 835 /* zero length transfer still requires an SGE */ 836 if (xs->datalen == 0) { 837 nsge->sg_flags = MPII_IEEE_SGE_END_OF_LIST; 838 return (0); 839 } 840 841 error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL, 842 (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); 843 if (error) { 844 printf("%s: error %d loading dmamap\n", DEVNAME(sc), error); 845 return (1); 846 } 847 848 sge = nsge; 849 for (i = 0; i < dmap->dm_nsegs; i++, nsge++) { 850 if (nsge == csge) { 851 nsge++; 852 /* offset to the chain sge from the beginning */ 853 io->chain_offset = ((uintptr_t)csge - (uintptr_t)io) / 4; 854 csge->sg_flags = MPII_IEEE_SGE_CHAIN_ELEMENT | 855 MPII_IEEE_SGE_ADDR_SYSTEM; 856 /* address of the next sge */ 857 csge->sg_addr = htole64(ccb->ccb_cmd_dva + 858 ((uintptr_t)nsge - (uintptr_t)io)); 859 csge->sg_len = htole32((dmap->dm_nsegs - i) * 860 sizeof(*sge)); 861 } 862 863 sge = nsge; 864 sge->sg_flags = MPII_IEEE_SGE_ADDR_SYSTEM; 865 sge->sg_len = htole32(dmap->dm_segs[i].ds_len); 866 sge->sg_addr = htole64(dmap->dm_segs[i].ds_addr); 867 } 868 869 /* terminate list */ 870 sge->sg_flags |= MPII_IEEE_SGE_END_OF_LIST; 871 872 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, 873 (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD : 874 BUS_DMASYNC_PREWRITE); 875 876 return (0); 877 } 878 879 static int 880 mpii_load_xs(struct mpii_ccb *ccb) 881 { 882 struct mpii_softc *sc = ccb->ccb_sc; 883 struct scsipi_xfer *xs = ccb->ccb_cookie; 884 struct mpii_msg_scsi_io *io = ccb->ccb_cmd; 885 struct mpii_sge *csge, *nsge, *sge; 886 bus_dmamap_t dmap = ccb->ccb_dmamap; 887 u_int32_t flags; 888 u_int16_t len; 889 int i, error; 890 891 /* Request frame structure is described in the mpii_iocfacts */ 892 nsge = (struct mpii_sge *)(io + 1); 893 csge = nsge + sc->sc_chain_sge; 894 895 /* zero length transfer still requires an SGE */ 896 if (xs->datalen == 0) { 897 nsge->sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | 898 MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); 899 return (0); 900 } 901 902 error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL, 903 (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); 904 if (error) { 905 printf("%s: error %d loading dmamap\n", DEVNAME(sc), error); 906 return (1); 907 } 908 909 /* safe default starting flags */ 910 flags = MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_SIZE_64; 911 if (xs->xs_control & XS_CTL_DATA_OUT) 912 flags |= MPII_SGE_FL_DIR_OUT; 913 914 sge = nsge; 915 for (i = 0; i < dmap->dm_nsegs; i++, nsge++) { 916 if (nsge == csge) { 917 nsge++; 918 /* offset to the chain sge from the beginning */ 919 io->chain_offset = ((uintptr_t)csge - (uintptr_t)io) / 4; 920 /* length of the sgl segment we're pointing to */ 921 len = (dmap->dm_nsegs - i) * sizeof(*sge); 922 csge->sg_hdr = htole32(MPII_SGE_FL_TYPE_CHAIN | 923 MPII_SGE_FL_SIZE_64 | len); 924 /* address of the next sge */ 925 mpii_dvatosge(csge, ccb->ccb_cmd_dva + 926 ((uintptr_t)nsge - (uintptr_t)io)); 927 } 928 929 sge = nsge; 930 sge->sg_hdr = htole32(flags | dmap->dm_segs[i].ds_len); 931 mpii_dvatosge(sge, dmap->dm_segs[i].ds_addr); 932 } 933 934 /* terminate list */ 935 sge->sg_hdr |= htole32(MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | 936 MPII_SGE_FL_EOL); 937 938 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, 939 (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD : 940 BUS_DMASYNC_PREWRITE); 941 942 return (0); 943 } 944 945 static u_int32_t 946 mpii_read(struct mpii_softc *sc, bus_size_t r) 947 { 948 u_int32_t rv; 949 950 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, 951 BUS_SPACE_BARRIER_READ); 952 rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r); 953 954 DNPRINTF(MPII_D_RW, "%s: mpii_read %#lx %#x\n", DEVNAME(sc), r, rv); 955 956 return (rv); 957 } 958 959 static void 960 mpii_write(struct mpii_softc *sc, bus_size_t r, u_int32_t v) 961 { 962 DNPRINTF(MPII_D_RW, "%s: mpii_write %#lx %#x\n", DEVNAME(sc), r, v); 963 964 bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v); 965 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, 966 BUS_SPACE_BARRIER_WRITE); 967 } 968 969 970 static int 971 mpii_wait_eq(struct mpii_softc *sc, bus_size_t r, u_int32_t mask, 972 u_int32_t target) 973 { 974 int i; 975 976 DNPRINTF(MPII_D_RW, "%s: mpii_wait_eq %#lx %#x %#x\n", DEVNAME(sc), r, 977 mask, target); 978 979 for (i = 0; i < 15000; i++) { 980 if ((mpii_read(sc, r) & mask) == target) 981 return (0); 982 delay(1000); 983 } 984 985 return (1); 986 } 987 988 static int 989 mpii_wait_ne(struct mpii_softc *sc, bus_size_t r, u_int32_t mask, 990 u_int32_t target) 991 { 992 int i; 993 994 DNPRINTF(MPII_D_RW, "%s: mpii_wait_ne %#lx %#x %#x\n", DEVNAME(sc), r, 995 mask, target); 996 997 for (i = 0; i < 15000; i++) { 998 if ((mpii_read(sc, r) & mask) != target) 999 return (0); 1000 delay(1000); 1001 } 1002 1003 return (1); 1004 } 1005 1006 static int 1007 mpii_init(struct mpii_softc *sc) 1008 { 1009 u_int32_t db; 1010 int i; 1011 1012 /* spin until the ioc leaves the reset state */ 1013 if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, 1014 MPII_DOORBELL_STATE_RESET) != 0) { 1015 DNPRINTF(MPII_D_MISC, "%s: mpii_init timeout waiting to leave " 1016 "reset state\n", DEVNAME(sc)); 1017 return (1); 1018 } 1019 1020 /* check current ownership */ 1021 db = mpii_read_db(sc); 1022 if ((db & MPII_DOORBELL_WHOINIT) == MPII_DOORBELL_WHOINIT_PCIPEER) { 1023 DNPRINTF(MPII_D_MISC, "%s: mpii_init initialised by pci peer\n", 1024 DEVNAME(sc)); 1025 return (0); 1026 } 1027 1028 for (i = 0; i < 5; i++) { 1029 switch (db & MPII_DOORBELL_STATE) { 1030 case MPII_DOORBELL_STATE_READY: 1031 DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is ready\n", 1032 DEVNAME(sc)); 1033 return (0); 1034 1035 case MPII_DOORBELL_STATE_OPER: 1036 DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is oper\n", 1037 DEVNAME(sc)); 1038 if (sc->sc_ioc_event_replay) 1039 mpii_reset_soft(sc); 1040 else 1041 mpii_reset_hard(sc); 1042 break; 1043 1044 case MPII_DOORBELL_STATE_FAULT: 1045 DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is being " 1046 "reset hard\n" , DEVNAME(sc)); 1047 mpii_reset_hard(sc); 1048 break; 1049 1050 case MPII_DOORBELL_STATE_RESET: 1051 DNPRINTF(MPII_D_MISC, "%s: mpii_init waiting to come " 1052 "out of reset\n", DEVNAME(sc)); 1053 if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, 1054 MPII_DOORBELL_STATE_RESET) != 0) 1055 return (1); 1056 break; 1057 } 1058 db = mpii_read_db(sc); 1059 } 1060 1061 return (1); 1062 } 1063 1064 static int 1065 mpii_reset_soft(struct mpii_softc *sc) 1066 { 1067 DNPRINTF(MPII_D_MISC, "%s: mpii_reset_soft\n", DEVNAME(sc)); 1068 1069 if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) { 1070 return (1); 1071 } 1072 1073 mpii_write_db(sc, 1074 MPII_DOORBELL_FUNCTION(MPII_FUNCTION_IOC_MESSAGE_UNIT_RESET)); 1075 1076 /* XXX LSI waits 15 sec */ 1077 if (mpii_wait_db_ack(sc) != 0) 1078 return (1); 1079 1080 /* XXX LSI waits 15 sec */ 1081 if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, 1082 MPII_DOORBELL_STATE_READY) != 0) 1083 return (1); 1084 1085 /* XXX wait for Sys2IOCDB bit to clear in HIS?? */ 1086 1087 return (0); 1088 } 1089 1090 static int 1091 mpii_reset_hard(struct mpii_softc *sc) 1092 { 1093 u_int16_t i; 1094 1095 DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard\n", DEVNAME(sc)); 1096 1097 mpii_write_intr(sc, 0); 1098 1099 /* enable diagnostic register */ 1100 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_FLUSH); 1101 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_1); 1102 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_2); 1103 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_3); 1104 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_4); 1105 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_5); 1106 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_6); 1107 1108 delay(100); 1109 1110 if ((mpii_read(sc, MPII_HOSTDIAG) & MPII_HOSTDIAG_DWRE) == 0) { 1111 DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard failure to enable " 1112 "diagnostic read/write\n", DEVNAME(sc)); 1113 return(1); 1114 } 1115 1116 /* reset ioc */ 1117 mpii_write(sc, MPII_HOSTDIAG, MPII_HOSTDIAG_RESET_ADAPTER); 1118 1119 /* 240 milliseconds */ 1120 delay(240000); 1121 1122 1123 /* XXX this whole function should be more robust */ 1124 1125 /* XXX read the host diagnostic reg until reset adapter bit clears ? */ 1126 for (i = 0; i < 30000; i++) { 1127 if ((mpii_read(sc, MPII_HOSTDIAG) & 1128 MPII_HOSTDIAG_RESET_ADAPTER) == 0) 1129 break; 1130 delay(10000); 1131 } 1132 1133 /* disable diagnostic register */ 1134 mpii_write(sc, MPII_WRITESEQ, 0xff); 1135 1136 /* XXX what else? */ 1137 1138 DNPRINTF(MPII_D_MISC, "%s: done with mpii_reset_hard\n", DEVNAME(sc)); 1139 1140 return(0); 1141 } 1142 1143 static int 1144 mpii_handshake_send(struct mpii_softc *sc, void *buf, size_t dwords) 1145 { 1146 u_int32_t *query = buf; 1147 int i; 1148 1149 /* make sure the doorbell is not in use. */ 1150 if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) 1151 return (1); 1152 1153 /* clear pending doorbell interrupts */ 1154 if (mpii_read_intr(sc) & MPII_INTR_STATUS_IOC2SYSDB) 1155 mpii_write_intr(sc, 0); 1156 1157 /* 1158 * first write the doorbell with the handshake function and the 1159 * dword count. 1160 */ 1161 mpii_write_db(sc, MPII_DOORBELL_FUNCTION(MPII_FUNCTION_HANDSHAKE) | 1162 MPII_DOORBELL_DWORDS(dwords)); 1163 1164 /* 1165 * the doorbell used bit will be set because a doorbell function has 1166 * started. wait for the interrupt and then ack it. 1167 */ 1168 if (mpii_wait_db_int(sc) != 0) 1169 return (1); 1170 mpii_write_intr(sc, 0); 1171 1172 /* poll for the acknowledgement. */ 1173 if (mpii_wait_db_ack(sc) != 0) 1174 return (1); 1175 1176 /* write the query through the doorbell. */ 1177 for (i = 0; i < dwords; i++) { 1178 mpii_write_db(sc, htole32(query[i])); 1179 if (mpii_wait_db_ack(sc) != 0) 1180 return (1); 1181 } 1182 1183 return (0); 1184 } 1185 1186 static int 1187 mpii_handshake_recv_dword(struct mpii_softc *sc, u_int32_t *dword) 1188 { 1189 u_int16_t *words = (u_int16_t *)dword; 1190 int i; 1191 1192 for (i = 0; i < 2; i++) { 1193 if (mpii_wait_db_int(sc) != 0) 1194 return (1); 1195 words[i] = le16toh(mpii_read_db(sc) & MPII_DOORBELL_DATA_MASK); 1196 mpii_write_intr(sc, 0); 1197 } 1198 1199 return (0); 1200 } 1201 1202 static int 1203 mpii_handshake_recv(struct mpii_softc *sc, void *buf, size_t dwords) 1204 { 1205 struct mpii_msg_reply *reply = buf; 1206 u_int32_t *dbuf = buf, dummy; 1207 int i; 1208 1209 /* get the first dword so we can read the length out of the header. */ 1210 if (mpii_handshake_recv_dword(sc, &dbuf[0]) != 0) 1211 return (1); 1212 1213 DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dwords: %lu reply: %d\n", 1214 DEVNAME(sc), dwords, reply->msg_length); 1215 1216 /* 1217 * the total length, in dwords, is in the message length field of the 1218 * reply header. 1219 */ 1220 for (i = 1; i < MIN(dwords, reply->msg_length); i++) { 1221 if (mpii_handshake_recv_dword(sc, &dbuf[i]) != 0) 1222 return (1); 1223 } 1224 1225 /* if there's extra stuff to come off the ioc, discard it */ 1226 while (i++ < reply->msg_length) { 1227 if (mpii_handshake_recv_dword(sc, &dummy) != 0) 1228 return (1); 1229 DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dummy read: " 1230 "0x%08x\n", DEVNAME(sc), dummy); 1231 } 1232 1233 /* wait for the doorbell used bit to be reset and clear the intr */ 1234 if (mpii_wait_db_int(sc) != 0) 1235 return (1); 1236 1237 if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_INUSE, 0) != 0) 1238 return (1); 1239 1240 mpii_write_intr(sc, 0); 1241 1242 return (0); 1243 } 1244 1245 static void 1246 mpii_empty_done(struct mpii_ccb *ccb) 1247 { 1248 /* nothing to do */ 1249 } 1250 1251 static int 1252 mpii_iocfacts(struct mpii_softc *sc) 1253 { 1254 struct mpii_msg_iocfacts_request ifq; 1255 struct mpii_msg_iocfacts_reply ifp; 1256 int irs; 1257 int sge_size; 1258 u_int qdepth; 1259 1260 DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts\n", DEVNAME(sc)); 1261 1262 memset(&ifq, 0, sizeof(ifq)); 1263 memset(&ifp, 0, sizeof(ifp)); 1264 1265 ifq.function = MPII_FUNCTION_IOC_FACTS; 1266 1267 if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) { 1268 DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts send failed\n", 1269 DEVNAME(sc)); 1270 return (1); 1271 } 1272 1273 if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) { 1274 DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts recv failed\n", 1275 DEVNAME(sc)); 1276 return (1); 1277 } 1278 1279 sc->sc_ioc_number = ifp.ioc_number; 1280 sc->sc_vf_id = ifp.vf_id; 1281 1282 sc->sc_max_volumes = ifp.max_volumes; 1283 sc->sc_max_devices = ifp.max_volumes + le16toh(ifp.max_targets); 1284 1285 if (ISSET(le32toh(ifp.ioc_capabilities), 1286 MPII_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 1287 SET(sc->sc_flags, MPII_F_RAID); 1288 if (ISSET(le32toh(ifp.ioc_capabilities), 1289 MPII_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 1290 sc->sc_ioc_event_replay = 1; 1291 1292 sc->sc_max_cmds = MIN(le16toh(ifp.request_credit), 1293 MPII_REQUEST_CREDIT); 1294 1295 /* SAS3 and 3.5 controllers have different sgl layouts */ 1296 if (ifp.msg_version_maj == 2 && ((ifp.msg_version_min == 5) 1297 || (ifp.msg_version_min == 6))) 1298 SET(sc->sc_flags, MPII_F_SAS3); 1299 1300 /* 1301 * The host driver must ensure that there is at least one 1302 * unused entry in the Reply Free Queue. One way to ensure 1303 * that this requirement is met is to never allocate a number 1304 * of reply frames that is a multiple of 16. 1305 */ 1306 sc->sc_num_reply_frames = sc->sc_max_cmds + 32; 1307 if (!(sc->sc_num_reply_frames % 16)) 1308 sc->sc_num_reply_frames--; 1309 1310 /* must be multiple of 16 */ 1311 sc->sc_reply_post_qdepth = sc->sc_max_cmds + 1312 sc->sc_num_reply_frames; 1313 sc->sc_reply_post_qdepth += 16 - (sc->sc_reply_post_qdepth % 16); 1314 1315 qdepth = le16toh(ifp.max_reply_descriptor_post_queue_depth); 1316 if (sc->sc_reply_post_qdepth > qdepth) { 1317 sc->sc_reply_post_qdepth = qdepth; 1318 if (sc->sc_reply_post_qdepth < 16) { 1319 printf("%s: RDPQ is too shallow\n", DEVNAME(sc)); 1320 return (1); 1321 } 1322 sc->sc_max_cmds = sc->sc_reply_post_qdepth / 2 - 4; 1323 sc->sc_num_reply_frames = sc->sc_max_cmds + 4; 1324 } 1325 1326 sc->sc_reply_free_qdepth = sc->sc_num_reply_frames + 1327 16 - (sc->sc_num_reply_frames % 16); 1328 1329 /* 1330 * Our request frame for an I/O operation looks like this: 1331 * 1332 * +-------------------+ -. 1333 * | mpii_msg_scsi_io | | 1334 * +-------------------| | 1335 * | mpii_sge | | 1336 * + - - - - - - - - - + | 1337 * | ... | > ioc_request_frame_size 1338 * + - - - - - - - - - + | 1339 * | mpii_sge (tail) | | 1340 * + - - - - - - - - - + | 1341 * | mpii_sge (csge) | | --. 1342 * + - - - - - - - - - + -' | chain sge points to the next sge 1343 * | mpii_sge |<-----' 1344 * + - - - - - - - - - + 1345 * | ... | 1346 * + - - - - - - - - - + 1347 * | mpii_sge (tail) | 1348 * +-------------------+ 1349 * | | 1350 * ~~~~~~~~~~~~~~~~~~~~~ 1351 * | | 1352 * +-------------------+ <- sc_request_size - sizeof(scsi_sense_data) 1353 * | scsi_sense_data | 1354 * +-------------------+ 1355 */ 1356 1357 /* both sizes are in 32-bit words */ 1358 sc->sc_reply_size = ifp.reply_frame_size * 4; 1359 irs = le16toh(ifp.ioc_request_frame_size) * 4; 1360 sc->sc_request_size = MPII_REQUEST_SIZE; 1361 /* make sure we have enough space for scsi sense data */ 1362 if (irs > sc->sc_request_size) { 1363 sc->sc_request_size = irs + sizeof(struct scsi_sense_data); 1364 sc->sc_request_size += 16 - (sc->sc_request_size % 16); 1365 } 1366 1367 if (ISSET(sc->sc_flags, MPII_F_SAS3)) { 1368 sge_size = sizeof(struct mpii_ieee_sge); 1369 } else { 1370 sge_size = sizeof(struct mpii_sge); 1371 } 1372 1373 /* offset to the chain sge */ 1374 sc->sc_chain_sge = (irs - sizeof(struct mpii_msg_scsi_io)) / 1375 sge_size - 1; 1376 1377 /* 1378 * A number of simple scatter-gather elements we can fit into the 1379 * request buffer after the I/O command minus the chain element. 1380 */ 1381 sc->sc_max_sgl = (sc->sc_request_size - 1382 sizeof(struct mpii_msg_scsi_io) - sizeof(struct scsi_sense_data)) / 1383 sge_size - 1; 1384 1385 return (0); 1386 } 1387 1388 static int 1389 mpii_iocinit(struct mpii_softc *sc) 1390 { 1391 struct mpii_msg_iocinit_request iiq; 1392 struct mpii_msg_iocinit_reply iip; 1393 1394 DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit\n", DEVNAME(sc)); 1395 1396 memset(&iiq, 0, sizeof(iiq)); 1397 memset(&iip, 0, sizeof(iip)); 1398 1399 iiq.function = MPII_FUNCTION_IOC_INIT; 1400 iiq.whoinit = MPII_WHOINIT_HOST_DRIVER; 1401 1402 /* XXX JPG do something about vf_id */ 1403 iiq.vf_id = 0; 1404 1405 iiq.msg_version_maj = 0x02; 1406 iiq.msg_version_min = 0x00; 1407 1408 /* XXX JPG ensure compliance with some level and hard-code? */ 1409 iiq.hdr_version_unit = 0x00; 1410 iiq.hdr_version_dev = 0x00; 1411 1412 iiq.system_request_frame_size = htole16(sc->sc_request_size / 4); 1413 1414 iiq.reply_descriptor_post_queue_depth = 1415 htole16(sc->sc_reply_post_qdepth); 1416 1417 iiq.reply_free_queue_depth = htole16(sc->sc_reply_free_qdepth); 1418 1419 iiq.sense_buffer_address_high = 1420 htole32(MPII_DMA_DVA(sc->sc_requests) >> 32); 1421 1422 iiq.system_reply_address_high = 1423 htole32(MPII_DMA_DVA(sc->sc_replies) >> 32); 1424 1425 iiq.system_request_frame_base_address_lo = 1426 htole32(MPII_DMA_DVA(sc->sc_requests)); 1427 iiq.system_request_frame_base_address_hi = 1428 htole32(MPII_DMA_DVA(sc->sc_requests) >> 32); 1429 1430 iiq.reply_descriptor_post_queue_address_lo = 1431 htole32(MPII_DMA_DVA(sc->sc_reply_postq)); 1432 iiq.reply_descriptor_post_queue_address_hi = 1433 htole32(MPII_DMA_DVA(sc->sc_reply_postq) >> 32); 1434 1435 iiq.reply_free_queue_address_lo = 1436 htole32(MPII_DMA_DVA(sc->sc_reply_freeq)); 1437 iiq.reply_free_queue_address_hi = 1438 htole32(MPII_DMA_DVA(sc->sc_reply_freeq) >> 32); 1439 1440 if (mpii_handshake_send(sc, &iiq, dwordsof(iiq)) != 0) { 1441 DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit send failed\n", 1442 DEVNAME(sc)); 1443 return (1); 1444 } 1445 1446 if (mpii_handshake_recv(sc, &iip, dwordsof(iip)) != 0) { 1447 DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit recv failed\n", 1448 DEVNAME(sc)); 1449 return (1); 1450 } 1451 1452 DNPRINTF(MPII_D_MISC, "%s: function: 0x%02x msg_length: %d " 1453 "whoinit: 0x%02x\n", DEVNAME(sc), iip.function, 1454 iip.msg_length, iip.whoinit); 1455 DNPRINTF(MPII_D_MISC, "%s: msg_flags: 0x%02x\n", DEVNAME(sc), 1456 iip.msg_flags); 1457 DNPRINTF(MPII_D_MISC, "%s: vf_id: 0x%02x vp_id: 0x%02x\n", DEVNAME(sc), 1458 iip.vf_id, iip.vp_id); 1459 DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), 1460 le16toh(iip.ioc_status)); 1461 DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), 1462 le32toh(iip.ioc_loginfo)); 1463 1464 if (le16toh(iip.ioc_status) != MPII_IOCSTATUS_SUCCESS || 1465 le32toh(iip.ioc_loginfo)) 1466 return (1); 1467 1468 return (0); 1469 } 1470 1471 static void 1472 mpii_push_reply(struct mpii_softc *sc, struct mpii_rcb *rcb) 1473 { 1474 u_int32_t *rfp; 1475 u_int idx; 1476 1477 if (rcb == NULL) 1478 return; 1479 1480 mutex_enter(&sc->sc_reply_free_mtx); 1481 idx = sc->sc_reply_free_host_index; 1482 1483 rfp = MPII_DMA_KVA(sc->sc_reply_freeq); 1484 rfp[idx] = htole32(rcb->rcb_reply_dva); 1485 1486 if (++idx >= sc->sc_reply_free_qdepth) 1487 idx = 0; 1488 1489 mpii_write_reply_free(sc, sc->sc_reply_free_host_index = idx); 1490 mutex_exit(&sc->sc_reply_free_mtx); 1491 } 1492 1493 static int 1494 mpii_portfacts(struct mpii_softc *sc) 1495 { 1496 struct mpii_msg_portfacts_request *pfq; 1497 struct mpii_msg_portfacts_reply *pfp; 1498 struct mpii_ccb *ccb; 1499 int rv = 1; 1500 1501 DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts\n", DEVNAME(sc)); 1502 1503 ccb = mpii_get_ccb(sc); 1504 if (ccb == NULL) { 1505 DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts mpii_get_ccb fail\n", 1506 DEVNAME(sc)); 1507 return (rv); 1508 } 1509 1510 ccb->ccb_done = mpii_empty_done; 1511 pfq = ccb->ccb_cmd; 1512 1513 memset(pfq, 0, sizeof(*pfq)); 1514 1515 pfq->function = MPII_FUNCTION_PORT_FACTS; 1516 pfq->chain_offset = 0; 1517 pfq->msg_flags = 0; 1518 pfq->port_number = 0; 1519 pfq->vp_id = 0; 1520 pfq->vf_id = 0; 1521 1522 if (mpii_poll(sc, ccb) != 0) { 1523 DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts poll\n", 1524 DEVNAME(sc)); 1525 goto err; 1526 } 1527 1528 if (ccb->ccb_rcb == NULL) { 1529 DNPRINTF(MPII_D_MISC, "%s: empty portfacts reply\n", 1530 DEVNAME(sc)); 1531 goto err; 1532 } 1533 1534 pfp = ccb->ccb_rcb->rcb_reply; 1535 sc->sc_porttype = pfp->port_type; 1536 1537 mpii_push_reply(sc, ccb->ccb_rcb); 1538 rv = 0; 1539 err: 1540 mpii_put_ccb(sc, ccb); 1541 1542 return (rv); 1543 } 1544 1545 static void 1546 mpii_eventack(struct work *wk, void * cookie) 1547 { 1548 struct mpii_softc *sc = cookie; 1549 struct mpii_ccb *ccb; 1550 struct mpii_rcb *rcb, *next; 1551 struct mpii_msg_event_reply *enp; 1552 struct mpii_msg_eventack_request *eaq; 1553 1554 mutex_enter(&sc->sc_evt_ack_mtx); 1555 next = SIMPLEQ_FIRST(&sc->sc_evt_ack_queue); 1556 SIMPLEQ_INIT(&sc->sc_evt_ack_queue); 1557 mutex_exit(&sc->sc_evt_ack_mtx); 1558 1559 while (next != NULL) { 1560 rcb = next; 1561 next = SIMPLEQ_NEXT(rcb, rcb_link); 1562 1563 enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; 1564 1565 ccb = mpii_get_ccb(sc); 1566 ccb->ccb_done = mpii_eventack_done; 1567 eaq = ccb->ccb_cmd; 1568 1569 eaq->function = MPII_FUNCTION_EVENT_ACK; 1570 1571 eaq->event = enp->event; 1572 eaq->event_context = enp->event_context; 1573 1574 mpii_push_reply(sc, rcb); 1575 1576 mpii_start(sc, ccb); 1577 } 1578 } 1579 1580 static void 1581 mpii_eventack_done(struct mpii_ccb *ccb) 1582 { 1583 struct mpii_softc *sc = ccb->ccb_sc; 1584 1585 DNPRINTF(MPII_D_EVT, "%s: event ack done\n", DEVNAME(sc)); 1586 1587 mpii_push_reply(sc, ccb->ccb_rcb); 1588 mpii_put_ccb(sc, ccb); 1589 } 1590 1591 static int 1592 mpii_portenable(struct mpii_softc *sc) 1593 { 1594 struct mpii_msg_portenable_request *peq; 1595 struct mpii_ccb *ccb; 1596 1597 DNPRINTF(MPII_D_MISC, "%s: mpii_portenable\n", DEVNAME(sc)); 1598 1599 ccb = mpii_get_ccb(sc); 1600 if (ccb == NULL) { 1601 DNPRINTF(MPII_D_MISC, "%s: mpii_portenable ccb_get\n", 1602 DEVNAME(sc)); 1603 return (1); 1604 } 1605 1606 ccb->ccb_done = mpii_empty_done; 1607 peq = ccb->ccb_cmd; 1608 1609 peq->function = MPII_FUNCTION_PORT_ENABLE; 1610 peq->vf_id = sc->sc_vf_id; 1611 1612 if (mpii_poll(sc, ccb) != 0) { 1613 DNPRINTF(MPII_D_MISC, "%s: mpii_portenable poll\n", 1614 DEVNAME(sc)); 1615 return (1); 1616 } 1617 1618 if (ccb->ccb_rcb == NULL) { 1619 DNPRINTF(MPII_D_MISC, "%s: empty portenable reply\n", 1620 DEVNAME(sc)); 1621 return (1); 1622 } 1623 1624 mpii_push_reply(sc, ccb->ccb_rcb); 1625 mpii_put_ccb(sc, ccb); 1626 1627 return (0); 1628 } 1629 1630 static int 1631 mpii_cfg_coalescing(struct mpii_softc *sc) 1632 { 1633 struct mpii_cfg_hdr hdr; 1634 struct mpii_cfg_ioc_pg1 ipg; 1635 1636 hdr.page_version = 0; 1637 hdr.page_length = sizeof(ipg) / 4; 1638 hdr.page_number = 1; 1639 hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_IOC; 1640 memset(&ipg, 0, sizeof(ipg)); 1641 if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &ipg, 1642 sizeof(ipg)) != 0) { 1643 DNPRINTF(MPII_D_MISC, "%s: unable to fetch IOC page 1\n" 1644 "page 1\n", DEVNAME(sc)); 1645 return (1); 1646 } 1647 1648 if (!ISSET(le32toh(ipg.flags), MPII_CFG_IOC_1_REPLY_COALESCING)) 1649 return (0); 1650 1651 /* Disable coalescing */ 1652 CLR(ipg.flags, htole32(MPII_CFG_IOC_1_REPLY_COALESCING)); 1653 if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 0, &ipg, 1654 sizeof(ipg)) != 0) { 1655 DNPRINTF(MPII_D_MISC, "%s: unable to clear coalescing\n", 1656 DEVNAME(sc)); 1657 return (1); 1658 } 1659 1660 return (0); 1661 } 1662 1663 #define MPII_EVENT_MASKALL(enq) do { \ 1664 enq->event_masks[0] = 0xffffffff; \ 1665 enq->event_masks[1] = 0xffffffff; \ 1666 enq->event_masks[2] = 0xffffffff; \ 1667 enq->event_masks[3] = 0xffffffff; \ 1668 } while (0) 1669 1670 #define MPII_EVENT_UNMASK(enq, evt) do { \ 1671 enq->event_masks[evt / 32] &= \ 1672 htole32(~(1 << (evt % 32))); \ 1673 } while (0) 1674 1675 static int 1676 mpii_eventnotify(struct mpii_softc *sc) 1677 { 1678 struct mpii_msg_event_request *enq; 1679 struct mpii_ccb *ccb; 1680 char wkname[15]; 1681 1682 ccb = mpii_get_ccb(sc); 1683 if (ccb == NULL) { 1684 DNPRINTF(MPII_D_MISC, "%s: mpii_eventnotify ccb_get\n", 1685 DEVNAME(sc)); 1686 return (1); 1687 } 1688 1689 SIMPLEQ_INIT(&sc->sc_evt_sas_queue); 1690 mutex_init(&sc->sc_evt_sas_mtx, MUTEX_DEFAULT, IPL_BIO); 1691 snprintf(wkname, sizeof(wkname), "%ssas", DEVNAME(sc)); 1692 if (workqueue_create(&sc->sc_evt_sas_wq, wkname, 1693 mpii_event_sas_work, sc, PRI_NONE, IPL_BIO, WQ_MPSAFE) != 0) { 1694 mpii_put_ccb(sc, ccb); 1695 aprint_error_dev(sc->sc_dev, 1696 "can't create %s workqueue\n", wkname); 1697 return 1; 1698 } 1699 1700 SIMPLEQ_INIT(&sc->sc_evt_ack_queue); 1701 mutex_init(&sc->sc_evt_ack_mtx, MUTEX_DEFAULT, IPL_BIO); 1702 snprintf(wkname, sizeof(wkname), "%sevt", DEVNAME(sc)); 1703 if (workqueue_create(&sc->sc_evt_ack_wq, wkname, 1704 mpii_eventack, sc, PRI_NONE, IPL_BIO, WQ_MPSAFE) != 0) { 1705 mpii_put_ccb(sc, ccb); 1706 aprint_error_dev(sc->sc_dev, 1707 "can't create %s workqueue\n", wkname); 1708 return 1; 1709 } 1710 1711 ccb->ccb_done = mpii_eventnotify_done; 1712 enq = ccb->ccb_cmd; 1713 1714 enq->function = MPII_FUNCTION_EVENT_NOTIFICATION; 1715 1716 /* 1717 * Enable reporting of the following events: 1718 * 1719 * MPII_EVENT_SAS_DISCOVERY 1720 * MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST 1721 * MPII_EVENT_SAS_DEVICE_STATUS_CHANGE 1722 * MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE 1723 * MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST 1724 * MPII_EVENT_IR_VOLUME 1725 * MPII_EVENT_IR_PHYSICAL_DISK 1726 * MPII_EVENT_IR_OPERATION_STATUS 1727 */ 1728 1729 MPII_EVENT_MASKALL(enq); 1730 MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DISCOVERY); 1731 MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 1732 MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DEVICE_STATUS_CHANGE); 1733 MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 1734 MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST); 1735 MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_VOLUME); 1736 MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_PHYSICAL_DISK); 1737 MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_OPERATION_STATUS); 1738 1739 mpii_start(sc, ccb); 1740 1741 return (0); 1742 } 1743 1744 static void 1745 mpii_eventnotify_done(struct mpii_ccb *ccb) 1746 { 1747 struct mpii_softc *sc = ccb->ccb_sc; 1748 struct mpii_rcb *rcb = ccb->ccb_rcb; 1749 1750 DNPRINTF(MPII_D_EVT, "%s: mpii_eventnotify_done\n", DEVNAME(sc)); 1751 1752 mpii_put_ccb(sc, ccb); 1753 mpii_event_process(sc, rcb); 1754 } 1755 1756 static void 1757 mpii_event_raid(struct mpii_softc *sc, struct mpii_msg_event_reply *enp) 1758 { 1759 struct mpii_evt_ir_cfg_change_list *ccl; 1760 struct mpii_evt_ir_cfg_element *ce; 1761 struct mpii_device *dev; 1762 u_int16_t type; 1763 int i; 1764 1765 ccl = (struct mpii_evt_ir_cfg_change_list *)(enp + 1); 1766 if (ccl->num_elements == 0) 1767 return; 1768 1769 if (ISSET(le32toh(ccl->flags), MPII_EVT_IR_CFG_CHANGE_LIST_FOREIGN)) { 1770 /* bail on foreign configurations */ 1771 return; 1772 } 1773 1774 ce = (struct mpii_evt_ir_cfg_element *)(ccl + 1); 1775 1776 for (i = 0; i < ccl->num_elements; i++, ce++) { 1777 type = (le16toh(ce->element_flags) & 1778 MPII_EVT_IR_CFG_ELEMENT_TYPE_MASK); 1779 1780 switch (type) { 1781 case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME: 1782 switch (ce->reason_code) { 1783 case MPII_EVT_IR_CFG_ELEMENT_RC_ADDED: 1784 case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_CREATED: 1785 dev = malloc(sizeof(*dev), M_DEVBUF, 1786 M_WAITOK | M_ZERO); 1787 mutex_enter(&sc->sc_devs_mtx); 1788 if (mpii_find_dev(sc, 1789 le16toh(ce->vol_dev_handle))) { 1790 mutex_exit(&sc->sc_devs_mtx); 1791 free(dev, M_DEVBUF); 1792 printf("%s: device %#x is already " 1793 "configured\n", DEVNAME(sc), 1794 le16toh(ce->vol_dev_handle)); 1795 break; 1796 } 1797 SET(dev->flags, MPII_DF_VOLUME); 1798 dev->slot = sc->sc_vd_id_low; 1799 dev->dev_handle = le16toh(ce->vol_dev_handle); 1800 if (mpii_insert_dev(sc, dev)) { 1801 mutex_exit(&sc->sc_devs_mtx); 1802 free(dev, M_DEVBUF); 1803 break; 1804 } 1805 sc->sc_vd_count++; 1806 mutex_exit(&sc->sc_devs_mtx); 1807 break; 1808 case MPII_EVT_IR_CFG_ELEMENT_RC_REMOVED: 1809 case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_DELETED: 1810 mutex_enter(&sc->sc_devs_mtx); 1811 if (!(dev = mpii_find_dev(sc, 1812 le16toh(ce->vol_dev_handle)))) { 1813 mutex_exit(&sc->sc_devs_mtx); 1814 break; 1815 } 1816 mpii_remove_dev(sc, dev); 1817 sc->sc_vd_count--; 1818 mutex_exit(&sc->sc_devs_mtx); 1819 break; 1820 } 1821 break; 1822 case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME_DISK: 1823 if (ce->reason_code == 1824 MPII_EVT_IR_CFG_ELEMENT_RC_PD_CREATED || 1825 ce->reason_code == 1826 MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) { 1827 /* there should be an underlying sas drive */ 1828 mutex_enter(&sc->sc_devs_mtx); 1829 if (!(dev = mpii_find_dev(sc, 1830 le16toh(ce->phys_disk_dev_handle)))) { 1831 mutex_exit(&sc->sc_devs_mtx); 1832 break; 1833 } 1834 /* promoted from a hot spare? */ 1835 CLR(dev->flags, MPII_DF_HOT_SPARE); 1836 SET(dev->flags, MPII_DF_VOLUME_DISK | 1837 MPII_DF_HIDDEN); 1838 mutex_exit(&sc->sc_devs_mtx); 1839 } 1840 break; 1841 case MPII_EVT_IR_CFG_ELEMENT_TYPE_HOT_SPARE: 1842 if (ce->reason_code == 1843 MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) { 1844 /* there should be an underlying sas drive */ 1845 mutex_enter(&sc->sc_devs_mtx); 1846 if (!(dev = mpii_find_dev(sc, 1847 le16toh(ce->phys_disk_dev_handle)))) { 1848 mutex_exit(&sc->sc_devs_mtx); 1849 break; 1850 } 1851 SET(dev->flags, MPII_DF_HOT_SPARE | 1852 MPII_DF_HIDDEN); 1853 mutex_exit(&sc->sc_devs_mtx); 1854 } 1855 break; 1856 } 1857 } 1858 } 1859 1860 static void 1861 mpii_event_sas(struct mpii_softc *sc, struct mpii_rcb *rcb) 1862 { 1863 struct mpii_msg_event_reply *enp; 1864 struct mpii_evt_sas_tcl *tcl; 1865 struct mpii_evt_phy_entry *pe; 1866 struct mpii_device *dev; 1867 int i; 1868 u_int16_t handle; 1869 int need_queue = 0; 1870 1871 enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; 1872 DNPRINTF(MPII_D_EVT, "%s: mpii_event_sas 0x%x\n", 1873 DEVNAME(sc), le16toh(enp->event)); 1874 KASSERT(le16toh(enp->event) == MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 1875 1876 tcl = (struct mpii_evt_sas_tcl *)(enp + 1); 1877 pe = (struct mpii_evt_phy_entry *)(tcl + 1); 1878 1879 for (i = 0; i < tcl->num_entries; i++, pe++) { 1880 DNPRINTF(MPII_D_EVT, "%s: sas change %d stat %d h %d slot %d phy %d enc %d expand %d\n", 1881 DEVNAME(sc), i, pe->phy_status, 1882 le16toh(pe->dev_handle), 1883 sc->sc_pd_id_start + tcl->start_phy_num + i, 1884 tcl->start_phy_num + i, le16toh(tcl->enclosure_handle), le16toh(tcl->expander_handle)); 1885 1886 switch (pe->phy_status & MPII_EVENT_SAS_TOPO_PS_RC_MASK) { 1887 case MPII_EVENT_SAS_TOPO_PS_RC_ADDED: 1888 handle = le16toh(pe->dev_handle); 1889 DNPRINTF(MPII_D_EVT, "%s: sas add handle %d\n", 1890 DEVNAME(sc), handle); 1891 dev = malloc(sizeof(*dev), M_DEVBUF, M_WAITOK | M_ZERO); 1892 mutex_enter(&sc->sc_devs_mtx); 1893 if (mpii_find_dev(sc, handle)) { 1894 mutex_exit(&sc->sc_devs_mtx); 1895 free(dev, M_DEVBUF); 1896 printf("%s: device %#x is already " 1897 "configured\n", DEVNAME(sc), handle); 1898 break; 1899 } 1900 1901 dev->slot = sc->sc_pd_id_start + tcl->start_phy_num + i; 1902 dev->dev_handle = handle; 1903 dev->phy_num = tcl->start_phy_num + i; 1904 if (tcl->enclosure_handle) 1905 dev->physical_port = tcl->physical_port; 1906 dev->enclosure = le16toh(tcl->enclosure_handle); 1907 dev->expander = le16toh(tcl->expander_handle); 1908 1909 if (mpii_insert_dev(sc, dev)) { 1910 mutex_exit(&sc->sc_devs_mtx); 1911 free(dev, M_DEVBUF); 1912 break; 1913 } 1914 printf("%s: physical device inserted in slot %d\n", 1915 DEVNAME(sc), dev->slot); 1916 mutex_exit(&sc->sc_devs_mtx); 1917 break; 1918 1919 case MPII_EVENT_SAS_TOPO_PS_RC_MISSING: 1920 /* defer to workqueue thread */ 1921 need_queue++; 1922 break; 1923 } 1924 } 1925 1926 if (need_queue) { 1927 bool start_wk; 1928 mutex_enter(&sc->sc_evt_sas_mtx); 1929 start_wk = (SIMPLEQ_FIRST(&sc->sc_evt_sas_queue) == 0); 1930 SIMPLEQ_INSERT_TAIL(&sc->sc_evt_sas_queue, rcb, rcb_link); 1931 if (start_wk) { 1932 workqueue_enqueue(sc->sc_evt_sas_wq, 1933 &sc->sc_evt_sas_work, NULL); 1934 } 1935 mutex_exit(&sc->sc_evt_sas_mtx); 1936 } else 1937 mpii_event_done(sc, rcb); 1938 } 1939 1940 static void 1941 mpii_event_sas_work(struct work *wq, void *xsc) 1942 { 1943 struct mpii_softc *sc = xsc; 1944 struct mpii_rcb *rcb, *next; 1945 struct mpii_msg_event_reply *enp; 1946 struct mpii_evt_sas_tcl *tcl; 1947 struct mpii_evt_phy_entry *pe; 1948 struct mpii_device *dev; 1949 int i; 1950 1951 mutex_enter(&sc->sc_evt_sas_mtx); 1952 next = SIMPLEQ_FIRST(&sc->sc_evt_sas_queue); 1953 SIMPLEQ_INIT(&sc->sc_evt_sas_queue); 1954 mutex_exit(&sc->sc_evt_sas_mtx); 1955 1956 while (next != NULL) { 1957 rcb = next; 1958 next = SIMPLEQ_NEXT(rcb, rcb_link); 1959 1960 enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; 1961 DNPRINTF(MPII_D_EVT, "%s: mpii_event_sas_work 0x%x\n", 1962 DEVNAME(sc), le16toh(enp->event)); 1963 KASSERT(le16toh(enp->event) == MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 1964 tcl = (struct mpii_evt_sas_tcl *)(enp + 1); 1965 pe = (struct mpii_evt_phy_entry *)(tcl + 1); 1966 1967 for (i = 0; i < tcl->num_entries; i++, pe++) { 1968 DNPRINTF(MPII_D_EVT, "%s: sas change %d stat %d h %d slot %d phy %d enc %d expand %d\n", 1969 DEVNAME(sc), i, pe->phy_status, 1970 le16toh(pe->dev_handle), 1971 sc->sc_pd_id_start + tcl->start_phy_num + i, 1972 tcl->start_phy_num + i, le16toh(tcl->enclosure_handle), le16toh(tcl->expander_handle)); 1973 1974 switch (pe->phy_status & MPII_EVENT_SAS_TOPO_PS_RC_MASK) { 1975 case MPII_EVENT_SAS_TOPO_PS_RC_ADDED: 1976 /* already handled */ 1977 break; 1978 1979 case MPII_EVENT_SAS_TOPO_PS_RC_MISSING: 1980 mutex_enter(&sc->sc_devs_mtx); 1981 dev = mpii_find_dev(sc, le16toh(pe->dev_handle)); 1982 if (dev == NULL) { 1983 mutex_exit(&sc->sc_devs_mtx); 1984 break; 1985 } 1986 1987 printf( 1988 "%s: physical device removed from slot %d\n", 1989 DEVNAME(sc), dev->slot); 1990 mpii_remove_dev(sc, dev); 1991 mutex_exit(&sc->sc_devs_mtx); 1992 mpii_sas_remove_device(sc, dev->dev_handle); 1993 if (!ISSET(dev->flags, MPII_DF_HIDDEN)) { 1994 scsipi_target_detach(&sc->sc_chan, 1995 dev->slot, 0, DETACH_FORCE); 1996 } 1997 1998 free(dev, M_DEVBUF); 1999 break; 2000 } 2001 } 2002 mpii_event_done(sc, rcb); 2003 } 2004 } 2005 2006 static void 2007 mpii_event_discovery(struct mpii_softc *sc, struct mpii_msg_event_reply *enp) 2008 { 2009 struct mpii_evt_sas_discovery *esd = 2010 (struct mpii_evt_sas_discovery *)(enp + 1); 2011 2012 if (esd->reason_code == MPII_EVENT_SAS_DISC_REASON_CODE_COMPLETED) { 2013 if (esd->discovery_status != 0) { 2014 printf("%s: sas discovery completed with status %#x\n", 2015 DEVNAME(sc), esd->discovery_status); 2016 } 2017 2018 } 2019 } 2020 2021 static void 2022 mpii_event_process(struct mpii_softc *sc, struct mpii_rcb *rcb) 2023 { 2024 struct mpii_msg_event_reply *enp; 2025 2026 enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; 2027 2028 DNPRINTF(MPII_D_EVT, "%s: mpii_event_process: %#x\n", DEVNAME(sc), 2029 le16toh(enp->event)); 2030 2031 switch (le16toh(enp->event)) { 2032 case MPII_EVENT_EVENT_CHANGE: 2033 /* should be properly ignored */ 2034 break; 2035 case MPII_EVENT_SAS_DISCOVERY: 2036 mpii_event_discovery(sc, enp); 2037 break; 2038 case MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 2039 mpii_event_sas(sc, rcb); 2040 return; 2041 case MPII_EVENT_SAS_DEVICE_STATUS_CHANGE: 2042 break; 2043 case MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 2044 break; 2045 case MPII_EVENT_IR_VOLUME: { 2046 struct mpii_evt_ir_volume *evd = 2047 (struct mpii_evt_ir_volume *)(enp + 1); 2048 struct mpii_device *dev; 2049 #if NBIO > 0 2050 const char *vol_states[] = { 2051 BIOC_SVINVALID_S, 2052 BIOC_SVOFFLINE_S, 2053 BIOC_SVBUILDING_S, 2054 BIOC_SVONLINE_S, 2055 BIOC_SVDEGRADED_S, 2056 BIOC_SVONLINE_S, 2057 }; 2058 #endif 2059 2060 if (cold) 2061 break; 2062 mutex_enter(&sc->sc_devs_mtx); 2063 dev = mpii_find_dev(sc, le16toh(evd->vol_dev_handle)); 2064 if (dev == NULL) { 2065 mutex_exit(&sc->sc_devs_mtx); 2066 break; 2067 } 2068 #if NBIO > 0 2069 if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATE_CHANGED) 2070 printf("%s: volume %d state changed from %s to %s\n", 2071 DEVNAME(sc), dev->slot - sc->sc_vd_id_low, 2072 vol_states[evd->prev_value], 2073 vol_states[evd->new_value]); 2074 #endif 2075 if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATUS_CHANGED && 2076 ISSET(evd->new_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC) && 2077 !ISSET(evd->prev_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) 2078 printf("%s: started resync on a volume %d\n", 2079 DEVNAME(sc), dev->slot - sc->sc_vd_id_low); 2080 } 2081 mutex_exit(&sc->sc_devs_mtx); 2082 break; 2083 case MPII_EVENT_IR_PHYSICAL_DISK: 2084 break; 2085 case MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST: 2086 mpii_event_raid(sc, enp); 2087 break; 2088 case MPII_EVENT_IR_OPERATION_STATUS: { 2089 struct mpii_evt_ir_status *evs = 2090 (struct mpii_evt_ir_status *)(enp + 1); 2091 struct mpii_device *dev; 2092 2093 mutex_enter(&sc->sc_devs_mtx); 2094 dev = mpii_find_dev(sc, le16toh(evs->vol_dev_handle)); 2095 if (dev != NULL && 2096 evs->operation == MPII_EVENT_IR_RAIDOP_RESYNC) 2097 dev->percent = evs->percent; 2098 mutex_exit(&sc->sc_devs_mtx); 2099 break; 2100 } 2101 default: 2102 DNPRINTF(MPII_D_EVT, "%s: unhandled event 0x%02x\n", 2103 DEVNAME(sc), le16toh(enp->event)); 2104 } 2105 2106 mpii_event_done(sc, rcb); 2107 } 2108 2109 static void 2110 mpii_event_done(struct mpii_softc *sc, struct mpii_rcb *rcb) 2111 { 2112 struct mpii_msg_event_reply *enp = rcb->rcb_reply; 2113 bool need_start; 2114 2115 if (enp->ack_required) { 2116 mutex_enter(&sc->sc_evt_ack_mtx); 2117 need_start = (SIMPLEQ_FIRST(&sc->sc_evt_ack_queue) == 0); 2118 SIMPLEQ_INSERT_TAIL(&sc->sc_evt_ack_queue, rcb, rcb_link); 2119 if (need_start) 2120 workqueue_enqueue(sc->sc_evt_ack_wq, 2121 &sc->sc_evt_ack_work, NULL); 2122 mutex_exit(&sc->sc_evt_ack_mtx); 2123 } else 2124 mpii_push_reply(sc, rcb); 2125 } 2126 2127 static void 2128 mpii_sas_remove_device(struct mpii_softc *sc, u_int16_t handle) 2129 { 2130 struct mpii_msg_scsi_task_request *stq; 2131 struct mpii_msg_sas_oper_request *soq; 2132 struct mpii_ccb *ccb; 2133 2134 ccb = mpii_get_ccb(sc); 2135 if (ccb == NULL) 2136 return; 2137 2138 stq = ccb->ccb_cmd; 2139 stq->function = MPII_FUNCTION_SCSI_TASK_MGMT; 2140 stq->task_type = MPII_SCSI_TASK_TARGET_RESET; 2141 stq->dev_handle = htole16(handle); 2142 2143 ccb->ccb_done = mpii_empty_done; 2144 mpii_wait(sc, ccb); 2145 2146 if (ccb->ccb_rcb != NULL) 2147 mpii_push_reply(sc, ccb->ccb_rcb); 2148 2149 /* reuse a ccb */ 2150 ccb->ccb_state = MPII_CCB_READY; 2151 ccb->ccb_rcb = NULL; 2152 2153 soq = ccb->ccb_cmd; 2154 memset(soq, 0, sizeof(*soq)); 2155 soq->function = MPII_FUNCTION_SAS_IO_UNIT_CONTROL; 2156 soq->operation = MPII_SAS_OP_REMOVE_DEVICE; 2157 soq->dev_handle = htole16(handle); 2158 2159 ccb->ccb_done = mpii_empty_done; 2160 mpii_wait(sc, ccb); 2161 if (ccb->ccb_rcb != NULL) 2162 mpii_push_reply(sc, ccb->ccb_rcb); 2163 2164 mpii_put_ccb(sc, ccb); 2165 } 2166 2167 static int 2168 mpii_board_info(struct mpii_softc *sc) 2169 { 2170 struct mpii_msg_iocfacts_request ifq; 2171 struct mpii_msg_iocfacts_reply ifp; 2172 struct mpii_cfg_manufacturing_pg0 mpg; 2173 struct mpii_cfg_hdr hdr; 2174 2175 memset(&ifq, 0, sizeof(ifq)); 2176 memset(&ifp, 0, sizeof(ifp)); 2177 2178 ifq.function = MPII_FUNCTION_IOC_FACTS; 2179 2180 if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) { 2181 DNPRINTF(MPII_D_MISC, "%s: failed to request ioc facts\n", 2182 DEVNAME(sc)); 2183 return (1); 2184 } 2185 2186 if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) { 2187 DNPRINTF(MPII_D_MISC, "%s: failed to receive ioc facts\n", 2188 DEVNAME(sc)); 2189 return (1); 2190 } 2191 2192 hdr.page_version = 0; 2193 hdr.page_length = sizeof(mpg) / 4; 2194 hdr.page_number = 0; 2195 hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_MANUFACTURING; 2196 memset(&mpg, 0, sizeof(mpg)); 2197 if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &mpg, 2198 sizeof(mpg)) != 0) { 2199 printf("%s: unable to fetch manufacturing page 0\n", 2200 DEVNAME(sc)); 2201 return (EINVAL); 2202 } 2203 2204 printf("%s: %s, firmware %u.%u.%u.%u%s, MPI %u.%u\n", DEVNAME(sc), 2205 mpg.board_name, ifp.fw_version_maj, ifp.fw_version_min, 2206 ifp.fw_version_unit, ifp.fw_version_dev, 2207 ISSET(sc->sc_flags, MPII_F_RAID) ? " IR" : "", 2208 ifp.msg_version_maj, ifp.msg_version_min); 2209 2210 return (0); 2211 } 2212 2213 static int 2214 mpii_target_map(struct mpii_softc *sc) 2215 { 2216 struct mpii_cfg_hdr hdr; 2217 struct mpii_cfg_ioc_pg8 ipg; 2218 int flags, pad = 0; 2219 2220 hdr.page_version = 0; 2221 hdr.page_length = sizeof(ipg) / 4; 2222 hdr.page_number = 8; 2223 hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_IOC; 2224 memset(&ipg, 0, sizeof(ipg)); 2225 if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &ipg, 2226 sizeof(ipg)) != 0) { 2227 printf("%s: unable to fetch ioc page 8\n", 2228 DEVNAME(sc)); 2229 return (EINVAL); 2230 } 2231 2232 if (le16toh(ipg.flags) & MPII_IOC_PG8_FLAGS_RESERVED_TARGETID_0) 2233 pad = 1; 2234 2235 flags = le16toh(ipg.ir_volume_mapping_flags) & 2236 MPII_IOC_PG8_IRFLAGS_VOLUME_MAPPING_MODE_MASK; 2237 if (ISSET(sc->sc_flags, MPII_F_RAID)) { 2238 if (flags == MPII_IOC_PG8_IRFLAGS_LOW_VOLUME_MAPPING) { 2239 sc->sc_vd_id_low += pad; 2240 pad = sc->sc_max_volumes; /* for sc_pd_id_start */ 2241 } else 2242 sc->sc_vd_id_low = sc->sc_max_devices - 2243 sc->sc_max_volumes; 2244 } 2245 2246 sc->sc_pd_id_start += pad; 2247 2248 return (0); 2249 } 2250 2251 static int 2252 mpii_req_cfg_header(struct mpii_softc *sc, u_int8_t type, u_int8_t number, 2253 u_int32_t address, int flags, void *p) 2254 { 2255 struct mpii_msg_config_request *cq; 2256 struct mpii_msg_config_reply *cp; 2257 struct mpii_ccb *ccb; 2258 struct mpii_cfg_hdr *hdr = p; 2259 struct mpii_ecfg_hdr *ehdr = p; 2260 int etype = 0; 2261 int rv = 0; 2262 2263 DNPRINTF(MPII_D_MISC, "%s: mpii_req_cfg_header type: %#x number: %x " 2264 "address: 0x%08x flags: 0x%x\n", DEVNAME(sc), type, number, 2265 address, flags); 2266 2267 ccb = mpii_get_ccb(sc); 2268 if (ccb == NULL) { 2269 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header ccb_get\n", 2270 DEVNAME(sc)); 2271 return (1); 2272 } 2273 2274 if (ISSET(flags, MPII_PG_EXTENDED)) { 2275 etype = type; 2276 type = MPII_CONFIG_REQ_PAGE_TYPE_EXTENDED; 2277 } 2278 2279 cq = ccb->ccb_cmd; 2280 2281 cq->function = MPII_FUNCTION_CONFIG; 2282 2283 cq->action = MPII_CONFIG_REQ_ACTION_PAGE_HEADER; 2284 2285 cq->config_header.page_number = number; 2286 cq->config_header.page_type = type; 2287 cq->ext_page_type = etype; 2288 cq->page_address = htole32(address); 2289 cq->page_buffer.sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | 2290 MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); 2291 2292 ccb->ccb_done = mpii_empty_done; 2293 if (ISSET(flags, MPII_PG_POLL)) { 2294 if (mpii_poll(sc, ccb) != 0) { 2295 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n", 2296 DEVNAME(sc)); 2297 return (1); 2298 } 2299 } else 2300 mpii_wait(sc, ccb); 2301 2302 if (ccb->ccb_rcb == NULL) { 2303 mpii_put_ccb(sc, ccb); 2304 return (1); 2305 } 2306 cp = ccb->ccb_rcb->rcb_reply; 2307 2308 DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x sgl_flags: 0x%02x " 2309 "msg_length: %d function: 0x%02x\n", DEVNAME(sc), cp->action, 2310 cp->sgl_flags, cp->msg_length, cp->function); 2311 DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x " 2312 "msg_flags: 0x%02x\n", DEVNAME(sc), 2313 le16toh(cp->ext_page_length), cp->ext_page_type, 2314 cp->msg_flags); 2315 DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), 2316 cp->vp_id, cp->vf_id); 2317 DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), 2318 le16toh(cp->ioc_status)); 2319 DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), 2320 le32toh(cp->ioc_loginfo)); 2321 DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d " 2322 "page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc), 2323 cp->config_header.page_version, 2324 cp->config_header.page_length, 2325 cp->config_header.page_number, 2326 cp->config_header.page_type); 2327 2328 if (le16toh(cp->ioc_status) != MPII_IOCSTATUS_SUCCESS) 2329 rv = 1; 2330 else if (ISSET(flags, MPII_PG_EXTENDED)) { 2331 memset(ehdr, 0, sizeof(*ehdr)); 2332 ehdr->page_version = cp->config_header.page_version; 2333 ehdr->page_number = cp->config_header.page_number; 2334 ehdr->page_type = cp->config_header.page_type; 2335 ehdr->ext_page_length = cp->ext_page_length; 2336 ehdr->ext_page_type = cp->ext_page_type; 2337 } else 2338 *hdr = cp->config_header; 2339 2340 mpii_push_reply(sc, ccb->ccb_rcb); 2341 mpii_put_ccb(sc, ccb); 2342 2343 return (rv); 2344 } 2345 2346 static int 2347 mpii_req_cfg_page(struct mpii_softc *sc, u_int32_t address, int flags, 2348 void *p, int read, void *page, size_t len) 2349 { 2350 struct mpii_msg_config_request *cq; 2351 struct mpii_msg_config_reply *cp; 2352 struct mpii_ccb *ccb; 2353 struct mpii_cfg_hdr *hdr = p; 2354 struct mpii_ecfg_hdr *ehdr = p; 2355 uintptr_t kva; 2356 int page_length; 2357 int rv = 0; 2358 2359 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page address: %d read: %d " 2360 "type: %x\n", DEVNAME(sc), address, read, hdr->page_type); 2361 2362 page_length = ISSET(flags, MPII_PG_EXTENDED) ? 2363 le16toh(ehdr->ext_page_length) : hdr->page_length; 2364 2365 if (len > sc->sc_request_size - sizeof(*cq) || len < page_length * 4) 2366 return (1); 2367 2368 ccb = mpii_get_ccb(sc); 2369 if (ccb == NULL) { 2370 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page ccb_get\n", 2371 DEVNAME(sc)); 2372 return (1); 2373 } 2374 2375 cq = ccb->ccb_cmd; 2376 2377 cq->function = MPII_FUNCTION_CONFIG; 2378 2379 cq->action = (read ? MPII_CONFIG_REQ_ACTION_PAGE_READ_CURRENT : 2380 MPII_CONFIG_REQ_ACTION_PAGE_WRITE_CURRENT); 2381 2382 if (ISSET(flags, MPII_PG_EXTENDED)) { 2383 cq->config_header.page_version = ehdr->page_version; 2384 cq->config_header.page_number = ehdr->page_number; 2385 cq->config_header.page_type = ehdr->page_type; 2386 cq->ext_page_len = ehdr->ext_page_length; 2387 cq->ext_page_type = ehdr->ext_page_type; 2388 } else 2389 cq->config_header = *hdr; 2390 cq->config_header.page_type &= MPII_CONFIG_REQ_PAGE_TYPE_MASK; 2391 cq->page_address = htole32(address); 2392 cq->page_buffer.sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | 2393 MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL | 2394 MPII_SGE_FL_SIZE_64 | (page_length * 4) | 2395 (read ? MPII_SGE_FL_DIR_IN : MPII_SGE_FL_DIR_OUT)); 2396 2397 /* bounce the page via the request space to avoid more bus_dma games */ 2398 mpii_dvatosge(&cq->page_buffer, ccb->ccb_cmd_dva + 2399 sizeof(struct mpii_msg_config_request)); 2400 2401 kva = (uintptr_t)ccb->ccb_cmd; 2402 kva += sizeof(struct mpii_msg_config_request); 2403 2404 if (!read) 2405 memcpy((void *)kva, page, len); 2406 2407 ccb->ccb_done = mpii_empty_done; 2408 if (ISSET(flags, MPII_PG_POLL)) { 2409 if (mpii_poll(sc, ccb) != 0) { 2410 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n", 2411 DEVNAME(sc)); 2412 return (1); 2413 } 2414 } else 2415 mpii_wait(sc, ccb); 2416 2417 if (ccb->ccb_rcb == NULL) { 2418 mpii_put_ccb(sc, ccb); 2419 return (1); 2420 } 2421 cp = ccb->ccb_rcb->rcb_reply; 2422 2423 DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x msg_length: %d " 2424 "function: 0x%02x\n", DEVNAME(sc), cp->action, cp->msg_length, 2425 cp->function); 2426 DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x " 2427 "msg_flags: 0x%02x\n", DEVNAME(sc), 2428 le16toh(cp->ext_page_length), cp->ext_page_type, 2429 cp->msg_flags); 2430 DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), 2431 cp->vp_id, cp->vf_id); 2432 DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), 2433 le16toh(cp->ioc_status)); 2434 DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), 2435 le32toh(cp->ioc_loginfo)); 2436 DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d " 2437 "page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc), 2438 cp->config_header.page_version, 2439 cp->config_header.page_length, 2440 cp->config_header.page_number, 2441 cp->config_header.page_type); 2442 2443 if (le16toh(cp->ioc_status) != MPII_IOCSTATUS_SUCCESS) 2444 rv = 1; 2445 else if (read) 2446 memcpy(page, (void *)kva, len); 2447 2448 mpii_push_reply(sc, ccb->ccb_rcb); 2449 mpii_put_ccb(sc, ccb); 2450 2451 return (rv); 2452 } 2453 2454 static struct mpii_rcb * 2455 mpii_reply(struct mpii_softc *sc, struct mpii_reply_descr *rdp) 2456 { 2457 struct mpii_rcb *rcb = NULL; 2458 u_int32_t rfid; 2459 2460 KASSERT(mutex_owned(&sc->sc_rep_mtx)); 2461 DNPRINTF(MPII_D_INTR, "%s: mpii_reply\n", DEVNAME(sc)); 2462 2463 if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) == 2464 MPII_REPLY_DESCR_ADDRESS_REPLY) { 2465 rfid = (le32toh(rdp->frame_addr) - 2466 (u_int32_t)MPII_DMA_DVA(sc->sc_replies)) / 2467 sc->sc_reply_size; 2468 2469 bus_dmamap_sync(sc->sc_dmat, 2470 MPII_DMA_MAP(sc->sc_replies), sc->sc_reply_size * rfid, 2471 sc->sc_reply_size, BUS_DMASYNC_POSTREAD); 2472 2473 rcb = &sc->sc_rcbs[rfid]; 2474 } 2475 2476 memset(rdp, 0xff, sizeof(*rdp)); 2477 2478 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 2479 8 * sc->sc_reply_post_host_index, 8, 2480 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2481 2482 return (rcb); 2483 } 2484 2485 static struct mpii_dmamem * 2486 mpii_dmamem_alloc(struct mpii_softc *sc, size_t size) 2487 { 2488 struct mpii_dmamem *mdm; 2489 int nsegs; 2490 2491 mdm = malloc(sizeof(*mdm), M_DEVBUF, M_WAITOK | M_ZERO); 2492 mdm->mdm_size = size; 2493 2494 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 2495 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mdm->mdm_map) != 0) 2496 goto mdmfree; 2497 2498 if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mdm->mdm_seg, 2499 1, &nsegs, BUS_DMA_NOWAIT) != 0) 2500 goto destroy; 2501 2502 if (bus_dmamem_map(sc->sc_dmat, &mdm->mdm_seg, nsegs, size, 2503 &mdm->mdm_kva, BUS_DMA_NOWAIT) != 0) 2504 goto free; 2505 2506 if (bus_dmamap_load(sc->sc_dmat, mdm->mdm_map, mdm->mdm_kva, size, 2507 NULL, BUS_DMA_NOWAIT) != 0) 2508 goto unmap; 2509 2510 memset(mdm->mdm_kva, 0, size); 2511 2512 return (mdm); 2513 2514 unmap: 2515 bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, size); 2516 free: 2517 bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1); 2518 destroy: 2519 bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map); 2520 mdmfree: 2521 free(mdm, M_DEVBUF); 2522 2523 return (NULL); 2524 } 2525 2526 static void 2527 mpii_dmamem_free(struct mpii_softc *sc, struct mpii_dmamem *mdm) 2528 { 2529 DNPRINTF(MPII_D_MEM, "%s: mpii_dmamem_free %p\n", DEVNAME(sc), mdm); 2530 2531 bus_dmamap_unload(sc->sc_dmat, mdm->mdm_map); 2532 bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, mdm->mdm_size); 2533 bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1); 2534 bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map); 2535 free(mdm, M_DEVBUF); 2536 } 2537 2538 static int 2539 mpii_insert_dev(struct mpii_softc *sc, struct mpii_device *dev) 2540 { 2541 int slot; /* initial hint */ 2542 2543 KASSERT(mutex_owned(&sc->sc_devs_mtx)); 2544 DNPRINTF(MPII_D_EVT, "%s: mpii_insert_dev wants slot %d\n", 2545 DEVNAME(sc), dev->slot); 2546 if (dev == NULL || dev->slot < 0) 2547 return (1); 2548 slot = dev->slot; 2549 2550 while (slot < sc->sc_max_devices && sc->sc_devs[slot] != NULL) 2551 slot++; 2552 2553 if (slot >= sc->sc_max_devices) 2554 return (1); 2555 2556 DNPRINTF(MPII_D_EVT, "%s: mpii_insert_dev alloc slot %d\n", 2557 DEVNAME(sc), slot); 2558 2559 dev->slot = slot; 2560 sc->sc_devs[slot] = dev; 2561 2562 return (0); 2563 } 2564 2565 static int 2566 mpii_remove_dev(struct mpii_softc *sc, struct mpii_device *dev) 2567 { 2568 int i; 2569 2570 KASSERT(mutex_owned(&sc->sc_devs_mtx)); 2571 if (dev == NULL) 2572 return (1); 2573 2574 for (i = 0; i < sc->sc_max_devices; i++) { 2575 if (sc->sc_devs[i] == NULL) 2576 continue; 2577 2578 if (sc->sc_devs[i]->dev_handle == dev->dev_handle) { 2579 sc->sc_devs[i] = NULL; 2580 return (0); 2581 } 2582 } 2583 2584 return (1); 2585 } 2586 2587 static struct mpii_device * 2588 mpii_find_dev(struct mpii_softc *sc, u_int16_t handle) 2589 { 2590 int i; 2591 KASSERT(mutex_owned(&sc->sc_devs_mtx)); 2592 2593 for (i = 0; i < sc->sc_max_devices; i++) { 2594 if (sc->sc_devs[i] == NULL) 2595 continue; 2596 2597 if (sc->sc_devs[i]->dev_handle == handle) 2598 return (sc->sc_devs[i]); 2599 } 2600 2601 return (NULL); 2602 } 2603 2604 static int 2605 mpii_alloc_ccbs(struct mpii_softc *sc) 2606 { 2607 struct mpii_ccb *ccb; 2608 u_int8_t *cmd; 2609 int i; 2610 char wqname[16]; 2611 2612 SIMPLEQ_INIT(&sc->sc_ccb_free); 2613 SIMPLEQ_INIT(&sc->sc_ccb_tmos); 2614 mutex_init(&sc->sc_ccb_free_mtx, MUTEX_DEFAULT, IPL_BIO); 2615 cv_init(&sc->sc_ccb_free_cv, "mpii_ccbs"); 2616 mutex_init(&sc->sc_ssb_tmomtx, MUTEX_DEFAULT, IPL_BIO); 2617 snprintf(wqname, sizeof(wqname) - 1, "%sabrt", DEVNAME(sc)); 2618 workqueue_create(&sc->sc_ssb_tmowk, wqname, mpii_scsi_cmd_tmo_handler, 2619 sc, PRI_BIO, IPL_BIO, WQ_MPSAFE); 2620 if (sc->sc_ssb_tmowk == NULL) 2621 return 1; 2622 2623 sc->sc_ccbs = malloc((sc->sc_max_cmds-1) * sizeof(*ccb), 2624 M_DEVBUF, M_WAITOK | M_ZERO); 2625 sc->sc_requests = mpii_dmamem_alloc(sc, 2626 sc->sc_request_size * sc->sc_max_cmds); 2627 if (sc->sc_requests == NULL) { 2628 printf("%s: unable to allocate ccb dmamem\n", DEVNAME(sc)); 2629 goto free_ccbs; 2630 } 2631 cmd = MPII_DMA_KVA(sc->sc_requests); 2632 2633 /* 2634 * we have sc->sc_max_cmds system request message 2635 * frames, but smid zero cannot be used. so we then 2636 * have (sc->sc_max_cmds - 1) number of ccbs 2637 */ 2638 for (i = 1; i < sc->sc_max_cmds; i++) { 2639 ccb = &sc->sc_ccbs[i - 1]; 2640 2641 if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, sc->sc_max_sgl, 2642 MAXPHYS, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 2643 &ccb->ccb_dmamap) != 0) { 2644 printf("%s: unable to create dma map\n", DEVNAME(sc)); 2645 goto free_maps; 2646 } 2647 2648 ccb->ccb_sc = sc; 2649 mutex_init(&ccb->ccb_mtx, MUTEX_DEFAULT, IPL_BIO); 2650 cv_init(&ccb->ccb_cv, "mpiiexec"); 2651 2652 ccb->ccb_smid = htole16(i); 2653 ccb->ccb_offset = sc->sc_request_size * i; 2654 2655 ccb->ccb_cmd = &cmd[ccb->ccb_offset]; 2656 ccb->ccb_cmd_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_requests) + 2657 ccb->ccb_offset; 2658 2659 DNPRINTF(MPII_D_CCB, "%s: mpii_alloc_ccbs(%d) ccb: %p map: %p " 2660 "sc: %p smid: %#x offs: %#lx cmd: %p dva: %#lx\n", 2661 DEVNAME(sc), i, ccb, ccb->ccb_dmamap, ccb->ccb_sc, 2662 ccb->ccb_smid, ccb->ccb_offset, ccb->ccb_cmd, 2663 ccb->ccb_cmd_dva); 2664 2665 mpii_put_ccb(sc, ccb); 2666 } 2667 2668 return (0); 2669 2670 free_maps: 2671 while ((ccb = mpii_get_ccb(sc)) != NULL) 2672 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); 2673 2674 mpii_dmamem_free(sc, sc->sc_requests); 2675 free_ccbs: 2676 free(sc->sc_ccbs, M_DEVBUF); 2677 2678 return (1); 2679 } 2680 2681 static void 2682 mpii_put_ccb(struct mpii_softc *sc, struct mpii_ccb *ccb) 2683 { 2684 DNPRINTF(MPII_D_CCB, "%s: mpii_put_ccb %p\n", DEVNAME(sc), ccb); 2685 2686 ccb->ccb_state = MPII_CCB_FREE; 2687 ccb->ccb_cookie = NULL; 2688 ccb->ccb_done = NULL; 2689 ccb->ccb_rcb = NULL; 2690 memset(ccb->ccb_cmd, 0, sc->sc_request_size); 2691 2692 mutex_enter(&sc->sc_ccb_free_mtx); 2693 SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ccb, ccb_link); 2694 mutex_exit(&sc->sc_ccb_free_mtx); 2695 } 2696 2697 static struct mpii_ccb * 2698 mpii_get_ccb(struct mpii_softc *sc) 2699 { 2700 struct mpii_ccb *ccb; 2701 2702 mutex_enter(&sc->sc_ccb_free_mtx); 2703 ccb = SIMPLEQ_FIRST(&sc->sc_ccb_free); 2704 if (ccb != NULL) { 2705 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ccb_link); 2706 ccb->ccb_state = MPII_CCB_READY; 2707 KASSERT(ccb->ccb_sc == sc); 2708 } 2709 mutex_exit(&sc->sc_ccb_free_mtx); 2710 2711 DNPRINTF(MPII_D_CCB, "%s: mpii_get_ccb %p\n", DEVNAME(sc), ccb); 2712 2713 return (ccb); 2714 } 2715 2716 static int 2717 mpii_alloc_replies(struct mpii_softc *sc) 2718 { 2719 DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_replies\n", DEVNAME(sc)); 2720 2721 sc->sc_rcbs = malloc(sc->sc_num_reply_frames * sizeof(struct mpii_rcb), 2722 M_DEVBUF, M_WAITOK); 2723 2724 sc->sc_replies = mpii_dmamem_alloc(sc, sc->sc_reply_size * 2725 sc->sc_num_reply_frames); 2726 if (sc->sc_replies == NULL) { 2727 free(sc->sc_rcbs, M_DEVBUF); 2728 return (1); 2729 } 2730 2731 return (0); 2732 } 2733 2734 static void 2735 mpii_push_replies(struct mpii_softc *sc) 2736 { 2737 struct mpii_rcb *rcb; 2738 uintptr_t kva = (uintptr_t)MPII_DMA_KVA(sc->sc_replies); 2739 int i; 2740 2741 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 2742 0, sc->sc_reply_size * sc->sc_num_reply_frames, 2743 BUS_DMASYNC_PREREAD); 2744 2745 for (i = 0; i < sc->sc_num_reply_frames; i++) { 2746 rcb = &sc->sc_rcbs[i]; 2747 2748 rcb->rcb_reply = (void *)(kva + sc->sc_reply_size * i); 2749 rcb->rcb_reply_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) + 2750 sc->sc_reply_size * i; 2751 mpii_push_reply(sc, rcb); 2752 } 2753 } 2754 2755 static void 2756 mpii_start(struct mpii_softc *sc, struct mpii_ccb *ccb) 2757 { 2758 struct mpii_request_header *rhp; 2759 struct mpii_request_descr descr; 2760 #if defined(__LP64__) && 0 2761 u_long *rdp = (u_long *)&descr; 2762 #else 2763 u_int32_t *rdp = (u_int32_t *)&descr; 2764 #endif 2765 2766 DNPRINTF(MPII_D_RW, "%s: mpii_start %#lx\n", DEVNAME(sc), 2767 ccb->ccb_cmd_dva); 2768 2769 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_requests), 2770 ccb->ccb_offset, sc->sc_request_size, 2771 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2772 2773 ccb->ccb_state = MPII_CCB_QUEUED; 2774 2775 rhp = ccb->ccb_cmd; 2776 2777 memset(&descr, 0, sizeof(descr)); 2778 2779 switch (rhp->function) { 2780 case MPII_FUNCTION_SCSI_IO_REQUEST: 2781 descr.request_flags = MPII_REQ_DESCR_SCSI_IO; 2782 descr.dev_handle = htole16(ccb->ccb_dev_handle); 2783 break; 2784 case MPII_FUNCTION_SCSI_TASK_MGMT: 2785 descr.request_flags = MPII_REQ_DESCR_HIGH_PRIORITY; 2786 break; 2787 default: 2788 descr.request_flags = MPII_REQ_DESCR_DEFAULT; 2789 } 2790 2791 descr.vf_id = sc->sc_vf_id; 2792 descr.smid = ccb->ccb_smid; 2793 2794 #if defined(__LP64__) && 0 2795 DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_LOW (0x%08x) write " 2796 "0x%08lx\n", DEVNAME(sc), MPII_REQ_DESCR_POST_LOW, *rdp); 2797 bus_space_write_raw_8(sc->sc_iot, sc->sc_ioh, 2798 MPII_REQ_DESCR_POST_LOW, *rdp); 2799 #else 2800 DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_LOW (0x%08x) write " 2801 "0x%04x\n", DEVNAME(sc), MPII_REQ_DESCR_POST_LOW, *rdp); 2802 2803 DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_HIGH (0x%08x) write " 2804 "0x%04x\n", DEVNAME(sc), MPII_REQ_DESCR_POST_HIGH, *(rdp+1)); 2805 2806 mutex_enter(&sc->sc_req_mtx); 2807 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 2808 MPII_REQ_DESCR_POST_LOW, rdp[0]); 2809 bus_space_barrier(sc->sc_iot, sc->sc_ioh, 2810 MPII_REQ_DESCR_POST_LOW, 8, BUS_SPACE_BARRIER_WRITE); 2811 2812 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 2813 MPII_REQ_DESCR_POST_HIGH, rdp[1]); 2814 bus_space_barrier(sc->sc_iot, sc->sc_ioh, 2815 MPII_REQ_DESCR_POST_LOW, 8, BUS_SPACE_BARRIER_WRITE); 2816 mutex_exit(&sc->sc_req_mtx); 2817 #endif 2818 } 2819 2820 static int 2821 mpii_poll(struct mpii_softc *sc, struct mpii_ccb *ccb) 2822 { 2823 void (*done)(struct mpii_ccb *); 2824 void *cookie; 2825 int rv = 1; 2826 2827 DNPRINTF(MPII_D_INTR, "%s: mpii_poll\n", DEVNAME(sc)); 2828 2829 done = ccb->ccb_done; 2830 cookie = ccb->ccb_cookie; 2831 2832 ccb->ccb_done = mpii_poll_done; 2833 ccb->ccb_cookie = &rv; 2834 2835 mpii_start(sc, ccb); 2836 2837 while (rv == 1) { 2838 /* avoid excessive polling */ 2839 if (mpii_reply_waiting(sc)) 2840 mpii_intr(sc); 2841 else 2842 delay(10); 2843 } 2844 2845 ccb->ccb_cookie = cookie; 2846 done(ccb); 2847 2848 return (0); 2849 } 2850 2851 static void 2852 mpii_poll_done(struct mpii_ccb *ccb) 2853 { 2854 int *rv = ccb->ccb_cookie; 2855 2856 *rv = 0; 2857 } 2858 2859 static int 2860 mpii_alloc_queues(struct mpii_softc *sc) 2861 { 2862 u_int32_t *rfp; 2863 int i; 2864 2865 DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_queues\n", DEVNAME(sc)); 2866 2867 mutex_init(&sc->sc_reply_free_mtx, MUTEX_DEFAULT, IPL_BIO); 2868 sc->sc_reply_freeq = mpii_dmamem_alloc(sc, 2869 sc->sc_reply_free_qdepth * sizeof(*rfp)); 2870 if (sc->sc_reply_freeq == NULL) 2871 return (1); 2872 rfp = MPII_DMA_KVA(sc->sc_reply_freeq); 2873 for (i = 0; i < sc->sc_num_reply_frames; i++) { 2874 rfp[i] = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) + 2875 sc->sc_reply_size * i; 2876 } 2877 2878 sc->sc_reply_postq = mpii_dmamem_alloc(sc, 2879 sc->sc_reply_post_qdepth * sizeof(struct mpii_reply_descr)); 2880 if (sc->sc_reply_postq == NULL) 2881 goto free_reply_freeq; 2882 sc->sc_reply_postq_kva = MPII_DMA_KVA(sc->sc_reply_postq); 2883 memset(sc->sc_reply_postq_kva, 0xff, sc->sc_reply_post_qdepth * 2884 sizeof(struct mpii_reply_descr)); 2885 2886 return (0); 2887 2888 free_reply_freeq: 2889 mpii_dmamem_free(sc, sc->sc_reply_freeq); 2890 return (1); 2891 } 2892 2893 static void 2894 mpii_init_queues(struct mpii_softc *sc) 2895 { 2896 DNPRINTF(MPII_D_MISC, "%s: mpii_init_queues\n", DEVNAME(sc)); 2897 2898 sc->sc_reply_free_host_index = sc->sc_reply_free_qdepth - 1; 2899 sc->sc_reply_post_host_index = 0; 2900 mpii_write_reply_free(sc, sc->sc_reply_free_host_index); 2901 mpii_write_reply_post(sc, sc->sc_reply_post_host_index); 2902 } 2903 2904 static void 2905 mpii_wait(struct mpii_softc *sc, struct mpii_ccb *ccb) 2906 { 2907 void (*done)(struct mpii_ccb *); 2908 void *cookie; 2909 2910 done = ccb->ccb_done; 2911 cookie = ccb->ccb_cookie; 2912 2913 ccb->ccb_done = mpii_wait_done; 2914 ccb->ccb_cookie = ccb; 2915 2916 /* XXX this will wait forever for the ccb to complete */ 2917 2918 mpii_start(sc, ccb); 2919 2920 mutex_enter(&ccb->ccb_mtx); 2921 while (ccb->ccb_cookie != NULL) 2922 cv_wait(&ccb->ccb_cv, &ccb->ccb_mtx); 2923 mutex_exit(&ccb->ccb_mtx); 2924 2925 ccb->ccb_cookie = cookie; 2926 done(ccb); 2927 } 2928 2929 static void 2930 mpii_wait_done(struct mpii_ccb *ccb) 2931 { 2932 mutex_enter(&ccb->ccb_mtx); 2933 ccb->ccb_cookie = NULL; 2934 cv_signal(&ccb->ccb_cv); 2935 mutex_exit(&ccb->ccb_mtx); 2936 } 2937 2938 static void 2939 mpii_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req, 2940 void *arg) 2941 { 2942 struct scsipi_periph *periph; 2943 struct scsipi_xfer *xs; 2944 struct scsipi_adapter *adapt = chan->chan_adapter; 2945 struct mpii_softc *sc = device_private(adapt->adapt_dev); 2946 struct mpii_ccb *ccb; 2947 struct mpii_msg_scsi_io *io; 2948 struct mpii_device *dev; 2949 int target, timeout, ret; 2950 u_int16_t dev_handle; 2951 2952 DNPRINTF(MPII_D_CMD, "%s: mpii_scsipi_request\n", DEVNAME(sc)); 2953 2954 switch (req) { 2955 case ADAPTER_REQ_GROW_RESOURCES: 2956 /* Not supported. */ 2957 return; 2958 case ADAPTER_REQ_SET_XFER_MODE: 2959 { 2960 struct scsipi_xfer_mode *xm = arg; 2961 xm->xm_mode = PERIPH_CAP_TQING; 2962 xm->xm_period = 0; 2963 xm->xm_offset = 0; 2964 scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm); 2965 return; 2966 } 2967 case ADAPTER_REQ_RUN_XFER: 2968 break; 2969 } 2970 2971 xs = arg; 2972 periph = xs->xs_periph; 2973 target = periph->periph_target; 2974 2975 if (xs->cmdlen > MPII_CDB_LEN) { 2976 DNPRINTF(MPII_D_CMD, "%s: CDB too big %d\n", 2977 DEVNAME(sc), xs->cmdlen); 2978 memset(&xs->sense, 0, sizeof(xs->sense)); 2979 xs->sense.scsi_sense.response_code = 2980 SSD_RCODE_VALID | SSD_RCODE_CURRENT; 2981 xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST; 2982 xs->sense.scsi_sense.asc = 0x20; 2983 xs->error = XS_SENSE; 2984 scsipi_done(xs); 2985 return; 2986 } 2987 2988 mutex_enter(&sc->sc_devs_mtx); 2989 if ((dev = sc->sc_devs[target]) == NULL) { 2990 mutex_exit(&sc->sc_devs_mtx); 2991 /* device no longer exists */ 2992 xs->error = XS_SELTIMEOUT; 2993 scsipi_done(xs); 2994 return; 2995 } 2996 dev_handle = dev->dev_handle; 2997 mutex_exit(&sc->sc_devs_mtx); 2998 2999 ccb = mpii_get_ccb(sc); 3000 if (ccb == NULL) { 3001 xs->error = XS_RESOURCE_SHORTAGE; 3002 scsipi_done(xs); 3003 return; 3004 } 3005 DNPRINTF(MPII_D_CMD, "%s: ccb_smid: %d xs->cmd->opcode: 0x%02x xs->xs_control: 0x%x\n", 3006 DEVNAME(sc), ccb->ccb_smid, xs->cmd->opcode, xs->xs_control); 3007 3008 ccb->ccb_cookie = xs; 3009 ccb->ccb_done = mpii_scsi_cmd_done; 3010 ccb->ccb_dev_handle = dev_handle; 3011 3012 io = ccb->ccb_cmd; 3013 memset(io, 0, sizeof(*io)); 3014 io->function = MPII_FUNCTION_SCSI_IO_REQUEST; 3015 io->sense_buffer_length = sizeof(xs->sense); 3016 io->sgl_offset0 = sizeof(struct mpii_msg_scsi_io) / 4; 3017 io->io_flags = htole16(xs->cmdlen); 3018 io->dev_handle = htole16(ccb->ccb_dev_handle); 3019 io->lun[0] = htobe16(periph->periph_lun); 3020 3021 switch (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT)) { 3022 case XS_CTL_DATA_IN: 3023 io->direction = MPII_SCSIIO_DIR_READ; 3024 break; 3025 case XS_CTL_DATA_OUT: 3026 io->direction = MPII_SCSIIO_DIR_WRITE; 3027 break; 3028 default: 3029 io->direction = MPII_SCSIIO_DIR_NONE; 3030 break; 3031 } 3032 3033 io->tagging = MPII_SCSIIO_ATTR_SIMPLE_Q; 3034 3035 memcpy(io->cdb, xs->cmd, xs->cmdlen); 3036 3037 io->data_length = htole32(xs->datalen); 3038 3039 /* sense data is at the end of a request */ 3040 io->sense_buffer_low_address = htole32(ccb->ccb_cmd_dva + 3041 sc->sc_request_size - sizeof(struct scsi_sense_data)); 3042 3043 if (ISSET(sc->sc_flags, MPII_F_SAS3)) 3044 ret = mpii_load_xs_sas3(ccb); 3045 else 3046 ret = mpii_load_xs(ccb); 3047 3048 if (ret != 0) { 3049 xs->error = XS_DRIVER_STUFFUP; 3050 goto done; 3051 } 3052 3053 if (xs->xs_control & XS_CTL_POLL) { 3054 if (mpii_poll(sc, ccb) != 0) { 3055 xs->error = XS_DRIVER_STUFFUP; 3056 goto done; 3057 } 3058 return; 3059 } 3060 timeout = mstohz(xs->timeout); 3061 if (timeout == 0) 3062 timeout = 1; 3063 callout_reset(&xs->xs_callout, timeout, mpii_scsi_cmd_tmo, ccb); 3064 mpii_start(sc, ccb); 3065 return; 3066 done: 3067 mpii_put_ccb(sc, ccb); 3068 scsipi_done(xs); 3069 } 3070 3071 static void 3072 mpii_scsi_cmd_tmo(void *xccb) 3073 { 3074 struct mpii_ccb *ccb = xccb; 3075 struct mpii_softc *sc = ccb->ccb_sc; 3076 bool start_work; 3077 3078 printf("%s: mpii_scsi_cmd_tmo\n", DEVNAME(sc)); 3079 3080 if (ccb->ccb_state == MPII_CCB_QUEUED) { 3081 mutex_enter(&sc->sc_ssb_tmomtx); 3082 start_work = (SIMPLEQ_FIRST(&sc->sc_ccb_tmos) == 0); 3083 ccb->ccb_state = MPII_CCB_TIMEOUT; 3084 SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_tmos, ccb, ccb_link); 3085 if (start_work) { 3086 workqueue_enqueue(sc->sc_ssb_tmowk, 3087 &sc->sc_ssb_tmowork, NULL); 3088 } 3089 mutex_exit(&sc->sc_ssb_tmomtx); 3090 } 3091 } 3092 3093 static void 3094 mpii_scsi_cmd_tmo_handler(struct work *wk, void *cookie) 3095 { 3096 struct mpii_softc *sc = cookie; 3097 struct mpii_ccb *next; 3098 struct mpii_ccb *ccb; 3099 struct mpii_ccb *tccb; 3100 struct mpii_msg_scsi_task_request *stq; 3101 3102 mutex_enter(&sc->sc_ssb_tmomtx); 3103 next = SIMPLEQ_FIRST(&sc->sc_ccb_tmos); 3104 SIMPLEQ_INIT(&sc->sc_ccb_tmos); 3105 mutex_exit(&sc->sc_ssb_tmomtx); 3106 3107 while (next != NULL) { 3108 ccb = next; 3109 next = SIMPLEQ_NEXT(ccb, ccb_link); 3110 if (ccb->ccb_state != MPII_CCB_TIMEOUT) 3111 continue; 3112 tccb = mpii_get_ccb(sc); 3113 stq = tccb->ccb_cmd; 3114 stq->function = MPII_FUNCTION_SCSI_TASK_MGMT; 3115 stq->task_type = MPII_SCSI_TASK_TARGET_RESET; 3116 stq->dev_handle = htole16(ccb->ccb_dev_handle); 3117 3118 tccb->ccb_done = mpii_scsi_cmd_tmo_done; 3119 mpii_wait(sc, tccb); 3120 } 3121 } 3122 3123 static void 3124 mpii_scsi_cmd_tmo_done(struct mpii_ccb *tccb) 3125 { 3126 mpii_put_ccb(tccb->ccb_sc, tccb); 3127 } 3128 3129 static u_int8_t 3130 map_scsi_status(u_int8_t mpii_scsi_status) 3131 { 3132 u_int8_t scsi_status; 3133 3134 switch (mpii_scsi_status) 3135 { 3136 case MPII_SCSIIO_STATUS_GOOD: 3137 scsi_status = SCSI_OK; 3138 break; 3139 3140 case MPII_SCSIIO_STATUS_CHECK_COND: 3141 scsi_status = SCSI_CHECK; 3142 break; 3143 3144 case MPII_SCSIIO_STATUS_BUSY: 3145 scsi_status = SCSI_BUSY; 3146 break; 3147 3148 case MPII_SCSIIO_STATUS_INTERMEDIATE: 3149 scsi_status = SCSI_INTERM; 3150 break; 3151 3152 case MPII_SCSIIO_STATUS_INTERMEDIATE_CONDMET: 3153 scsi_status = SCSI_INTERM; 3154 break; 3155 3156 case MPII_SCSIIO_STATUS_RESERVATION_CONFLICT: 3157 scsi_status = SCSI_RESV_CONFLICT; 3158 break; 3159 3160 case MPII_SCSIIO_STATUS_CMD_TERM: 3161 case MPII_SCSIIO_STATUS_TASK_ABORTED: 3162 scsi_status = SCSI_TERMINATED; 3163 break; 3164 3165 case MPII_SCSIIO_STATUS_TASK_SET_FULL: 3166 scsi_status = SCSI_QUEUE_FULL; 3167 break; 3168 3169 case MPII_SCSIIO_STATUS_ACA_ACTIVE: 3170 scsi_status = SCSI_ACA_ACTIVE; 3171 break; 3172 3173 default: 3174 /* XXX: for the lack of anything better and other than OK */ 3175 scsi_status = 0xFF; 3176 break; 3177 } 3178 3179 return scsi_status; 3180 } 3181 3182 static void 3183 mpii_scsi_cmd_done(struct mpii_ccb *ccb) 3184 { 3185 struct mpii_msg_scsi_io_error *sie; 3186 struct mpii_softc *sc = ccb->ccb_sc; 3187 struct scsipi_xfer *xs = ccb->ccb_cookie; 3188 struct scsi_sense_data *sense; 3189 bus_dmamap_t dmap = ccb->ccb_dmamap; 3190 bool timeout = 1; 3191 3192 callout_stop(&xs->xs_callout); 3193 if (ccb->ccb_state == MPII_CCB_TIMEOUT) 3194 timeout = 1; 3195 ccb->ccb_state = MPII_CCB_READY; 3196 3197 if (xs->datalen != 0) { 3198 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, 3199 (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD : 3200 BUS_DMASYNC_POSTWRITE); 3201 3202 bus_dmamap_unload(sc->sc_dmat, dmap); 3203 } 3204 3205 KASSERT(xs->error == XS_NOERROR); 3206 KASSERT(xs->resid == xs->datalen); 3207 KASSERT(xs->status == SCSI_OK); 3208 3209 if (ccb->ccb_rcb == NULL) { 3210 /* no scsi error, we're ok so drop out early */ 3211 xs->resid = 0; 3212 goto done; 3213 } 3214 3215 sie = ccb->ccb_rcb->rcb_reply; 3216 3217 DNPRINTF(MPII_D_CMD, "%s: mpii_scsi_cmd_done xs cmd: 0x%02x len: %d " 3218 "flags 0x%x\n", DEVNAME(sc), xs->cmd->opcode, xs->datalen, 3219 xs->xs_control); 3220 DNPRINTF(MPII_D_CMD, "%s: dev_handle: %d msg_length: %d " 3221 "function: 0x%02x\n", DEVNAME(sc), le16toh(sie->dev_handle), 3222 sie->msg_length, sie->function); 3223 DNPRINTF(MPII_D_CMD, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), 3224 sie->vp_id, sie->vf_id); 3225 DNPRINTF(MPII_D_CMD, "%s: scsi_status: 0x%02x scsi_state: 0x%02x " 3226 "ioc_status: 0x%04x\n", DEVNAME(sc), sie->scsi_status, 3227 sie->scsi_state, le16toh(sie->ioc_status)); 3228 DNPRINTF(MPII_D_CMD, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), 3229 le32toh(sie->ioc_loginfo)); 3230 DNPRINTF(MPII_D_CMD, "%s: transfer_count: %d\n", DEVNAME(sc), 3231 le32toh(sie->transfer_count)); 3232 DNPRINTF(MPII_D_CMD, "%s: sense_count: %d\n", DEVNAME(sc), 3233 le32toh(sie->sense_count)); 3234 DNPRINTF(MPII_D_CMD, "%s: response_info: 0x%08x\n", DEVNAME(sc), 3235 le32toh(sie->response_info)); 3236 DNPRINTF(MPII_D_CMD, "%s: task_tag: 0x%04x\n", DEVNAME(sc), 3237 le16toh(sie->task_tag)); 3238 DNPRINTF(MPII_D_CMD, "%s: bidirectional_transfer_count: 0x%08x\n", 3239 DEVNAME(sc), le32toh(sie->bidirectional_transfer_count)); 3240 3241 xs->status = map_scsi_status(sie->scsi_status); 3242 3243 switch (le16toh(sie->ioc_status) & MPII_IOCSTATUS_MASK) { 3244 case MPII_IOCSTATUS_SCSI_DATA_UNDERRUN: 3245 switch(sie->scsi_status) { 3246 case MPII_SCSIIO_STATUS_CHECK_COND: 3247 xs->error = XS_SENSE; 3248 /* FALLTHROUGH */ 3249 case MPII_SCSIIO_STATUS_GOOD: 3250 xs->resid = xs->datalen - le32toh(sie->transfer_count); 3251 break; 3252 default: 3253 xs->error = XS_DRIVER_STUFFUP; 3254 break; 3255 } 3256 break; 3257 3258 case MPII_IOCSTATUS_SUCCESS: 3259 case MPII_IOCSTATUS_SCSI_RECOVERED_ERROR: 3260 switch (sie->scsi_status) { 3261 case MPII_SCSIIO_STATUS_GOOD: 3262 xs->resid = 0; 3263 break; 3264 3265 case MPII_SCSIIO_STATUS_CHECK_COND: 3266 xs->resid = 0; 3267 xs->error = XS_SENSE; 3268 break; 3269 3270 case MPII_SCSIIO_STATUS_BUSY: 3271 case MPII_SCSIIO_STATUS_TASK_SET_FULL: 3272 xs->error = XS_BUSY; 3273 break; 3274 3275 default: 3276 xs->error = XS_DRIVER_STUFFUP; 3277 } 3278 break; 3279 3280 case MPII_IOCSTATUS_BUSY: 3281 case MPII_IOCSTATUS_INSUFFICIENT_RESOURCES: 3282 xs->error = XS_BUSY; 3283 break; 3284 3285 case MPII_IOCSTATUS_SCSI_IOC_TERMINATED: 3286 case MPII_IOCSTATUS_SCSI_TASK_TERMINATED: 3287 xs->error = timeout ? XS_TIMEOUT : XS_RESET; 3288 break; 3289 3290 case MPII_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 3291 case MPII_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 3292 xs->error = XS_SELTIMEOUT; 3293 break; 3294 3295 default: 3296 xs->error = XS_DRIVER_STUFFUP; 3297 break; 3298 } 3299 3300 sense = (struct scsi_sense_data *)((uintptr_t)ccb->ccb_cmd + 3301 sc->sc_request_size - sizeof(*sense)); 3302 if (sie->scsi_state & MPII_SCSIIO_STATE_AUTOSENSE_VALID) 3303 memcpy(&xs->sense, sense, sizeof(xs->sense)); 3304 3305 mpii_push_reply(sc, ccb->ccb_rcb); 3306 3307 done: 3308 mpii_put_ccb(sc, ccb); 3309 3310 DNPRINTF(MPII_D_CMD, "%s: xs err: %d status: %#x len: %d resid: %d\n", 3311 DEVNAME(sc), xs->error, xs->status, xs->datalen, xs->resid); 3312 3313 scsipi_done(xs); 3314 } 3315 3316 #if 0 3317 int 3318 mpii_scsi_ioctl(struct scsi_link *link, u_long cmd, void *addr, int flag) 3319 { 3320 struct mpii_softc *sc = (struct mpii_softc *)link->adapter_softc; 3321 struct mpii_device *dev = sc->sc_devs[link->target]; 3322 3323 DNPRINTF(MPII_D_IOCTL, "%s: mpii_scsi_ioctl\n", DEVNAME(sc)); 3324 3325 switch (cmd) { 3326 case DIOCGCACHE: 3327 case DIOCSCACHE: 3328 if (dev != NULL && ISSET(dev->flags, MPII_DF_VOLUME)) { 3329 return (mpii_ioctl_cache(link, cmd, 3330 (struct dk_cache *)addr)); 3331 } 3332 break; 3333 3334 default: 3335 if (sc->sc_ioctl) 3336 return (sc->sc_ioctl(link->adapter_softc, cmd, addr)); 3337 3338 break; 3339 } 3340 3341 return (ENOTTY); 3342 } 3343 3344 int 3345 mpii_ioctl_cache(struct scsi_link *link, u_long cmd, struct dk_cache *dc) 3346 { 3347 struct mpii_softc *sc = (struct mpii_softc *)link->adapter_softc; 3348 struct mpii_device *dev = sc->sc_devs[link->target]; 3349 struct mpii_cfg_raid_vol_pg0 *vpg; 3350 struct mpii_msg_raid_action_request *req; 3351 struct mpii_msg_raid_action_reply *rep; 3352 struct mpii_cfg_hdr hdr; 3353 struct mpii_ccb *ccb; 3354 u_int32_t addr = MPII_CFG_RAID_VOL_ADDR_HANDLE | dev->dev_handle; 3355 size_t pagelen; 3356 int rv = 0; 3357 int enabled; 3358 3359 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, 3360 addr, MPII_PG_POLL, &hdr) != 0) 3361 return (EINVAL); 3362 3363 pagelen = hdr.page_length * 4; 3364 vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3365 if (vpg == NULL) 3366 return (ENOMEM); 3367 3368 if (mpii_req_cfg_page(sc, addr, MPII_PG_POLL, &hdr, 1, 3369 vpg, pagelen) != 0) { 3370 rv = EINVAL; 3371 goto done; 3372 } 3373 3374 enabled = ((le16toh(vpg->volume_settings) & 3375 MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_MASK) == 3376 MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_ENABLED) ? 1 : 0; 3377 3378 if (cmd == DIOCGCACHE) { 3379 dc->wrcache = enabled; 3380 dc->rdcache = 0; 3381 goto done; 3382 } /* else DIOCSCACHE */ 3383 3384 if (dc->rdcache) { 3385 rv = EOPNOTSUPP; 3386 goto done; 3387 } 3388 3389 if (((dc->wrcache) ? 1 : 0) == enabled) 3390 goto done; 3391 3392 ccb = scsi_io_get(&sc->sc_iopool, SCSI_POLL); 3393 if (ccb == NULL) { 3394 rv = ENOMEM; 3395 goto done; 3396 } 3397 3398 ccb->ccb_done = mpii_empty_done; 3399 3400 req = ccb->ccb_cmd; 3401 memset(req, 0, sizeof(*req)); 3402 req->function = MPII_FUNCTION_RAID_ACTION; 3403 req->action = MPII_RAID_ACTION_CHANGE_VOL_WRITE_CACHE; 3404 req->vol_dev_handle = htole16(dev->dev_handle); 3405 req->action_data = htole32(dc->wrcache ? 3406 MPII_RAID_VOL_WRITE_CACHE_ENABLE : 3407 MPII_RAID_VOL_WRITE_CACHE_DISABLE); 3408 3409 if (mpii_poll(sc, ccb) != 0) { 3410 rv = EIO; 3411 goto done; 3412 } 3413 3414 if (ccb->ccb_rcb != NULL) { 3415 rep = ccb->ccb_rcb->rcb_reply; 3416 if ((rep->ioc_status != MPII_IOCSTATUS_SUCCESS) || 3417 ((rep->action_data[0] & 3418 MPII_RAID_VOL_WRITE_CACHE_MASK) != 3419 (dc->wrcache ? MPII_RAID_VOL_WRITE_CACHE_ENABLE : 3420 MPII_RAID_VOL_WRITE_CACHE_DISABLE))) 3421 rv = EINVAL; 3422 mpii_push_reply(sc, ccb->ccb_rcb); 3423 } 3424 3425 scsi_io_put(&sc->sc_iopool, ccb); 3426 3427 done: 3428 free(vpg, M_TEMP); 3429 return (rv); 3430 } 3431 #endif /* 0 */ 3432 3433 #if NBIO > 0 3434 static int 3435 mpii_ioctl(device_t dev, u_long cmd, void *addr) 3436 { 3437 struct mpii_softc *sc = device_private(dev); 3438 int error = 0; 3439 3440 DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl ", DEVNAME(sc)); 3441 3442 switch (cmd) { 3443 case BIOCINQ: 3444 DNPRINTF(MPII_D_IOCTL, "inq\n"); 3445 error = mpii_ioctl_inq(sc, (struct bioc_inq *)addr); 3446 break; 3447 case BIOCVOL: 3448 DNPRINTF(MPII_D_IOCTL, "vol\n"); 3449 error = mpii_ioctl_vol(sc, (struct bioc_vol *)addr); 3450 break; 3451 case BIOCDISK: 3452 DNPRINTF(MPII_D_IOCTL, "disk\n"); 3453 error = mpii_ioctl_disk(sc, (struct bioc_disk *)addr); 3454 break; 3455 default: 3456 DNPRINTF(MPII_D_IOCTL, " invalid ioctl\n"); 3457 error = ENOTTY; 3458 } 3459 3460 return (error); 3461 } 3462 3463 static int 3464 mpii_ioctl_inq(struct mpii_softc *sc, struct bioc_inq *bi) 3465 { 3466 int i; 3467 3468 DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_inq\n", DEVNAME(sc)); 3469 3470 strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev)); 3471 mutex_enter(&sc->sc_devs_mtx); 3472 for (i = 0; i < sc->sc_max_devices; i++) 3473 if (sc->sc_devs[i] && 3474 ISSET(sc->sc_devs[i]->flags, MPII_DF_VOLUME)) 3475 bi->bi_novol++; 3476 mutex_exit(&sc->sc_devs_mtx); 3477 return (0); 3478 } 3479 3480 static int 3481 mpii_ioctl_vol(struct mpii_softc *sc, struct bioc_vol *bv) 3482 { 3483 struct mpii_cfg_raid_vol_pg0 *vpg; 3484 struct mpii_cfg_hdr hdr; 3485 struct mpii_device *dev; 3486 size_t pagelen; 3487 u_int16_t volh; 3488 int rv, hcnt = 0; 3489 int percent; 3490 3491 DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_vol %d\n", 3492 DEVNAME(sc), bv->bv_volid); 3493 3494 mutex_enter(&sc->sc_devs_mtx); 3495 if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) { 3496 mutex_exit(&sc->sc_devs_mtx); 3497 return (ENODEV); 3498 } 3499 volh = dev->dev_handle; 3500 percent = dev->percent; 3501 mutex_exit(&sc->sc_devs_mtx); 3502 3503 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, 3504 MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) { 3505 printf("%s: unable to fetch header for raid volume page 0\n", 3506 DEVNAME(sc)); 3507 return (EINVAL); 3508 } 3509 3510 pagelen = hdr.page_length * 4; 3511 vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3512 if (vpg == NULL) { 3513 printf("%s: unable to allocate space for raid " 3514 "volume page 0\n", DEVNAME(sc)); 3515 return (ENOMEM); 3516 } 3517 3518 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, 3519 &hdr, 1, vpg, pagelen) != 0) { 3520 printf("%s: unable to fetch raid volume page 0\n", 3521 DEVNAME(sc)); 3522 free(vpg, M_TEMP); 3523 return (EINVAL); 3524 } 3525 3526 switch (vpg->volume_state) { 3527 case MPII_CFG_RAID_VOL_0_STATE_ONLINE: 3528 case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL: 3529 bv->bv_status = BIOC_SVONLINE; 3530 break; 3531 case MPII_CFG_RAID_VOL_0_STATE_DEGRADED: 3532 if (ISSET(le32toh(vpg->volume_status), 3533 MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) { 3534 bv->bv_status = BIOC_SVREBUILD; 3535 bv->bv_percent = percent; 3536 } else 3537 bv->bv_status = BIOC_SVDEGRADED; 3538 break; 3539 case MPII_CFG_RAID_VOL_0_STATE_FAILED: 3540 bv->bv_status = BIOC_SVOFFLINE; 3541 break; 3542 case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING: 3543 bv->bv_status = BIOC_SVBUILDING; 3544 break; 3545 case MPII_CFG_RAID_VOL_0_STATE_MISSING: 3546 default: 3547 bv->bv_status = BIOC_SVINVALID; 3548 break; 3549 } 3550 3551 switch (vpg->volume_type) { 3552 case MPII_CFG_RAID_VOL_0_TYPE_RAID0: 3553 bv->bv_level = 0; 3554 break; 3555 case MPII_CFG_RAID_VOL_0_TYPE_RAID1: 3556 bv->bv_level = 1; 3557 break; 3558 case MPII_CFG_RAID_VOL_0_TYPE_RAID1E: 3559 case MPII_CFG_RAID_VOL_0_TYPE_RAID10: 3560 bv->bv_level = 10; 3561 break; 3562 default: 3563 bv->bv_level = -1; 3564 } 3565 3566 if ((rv = mpii_bio_hs(sc, NULL, 0, vpg->hot_spare_pool, &hcnt)) != 0) { 3567 free(vpg, M_TEMP); 3568 return (rv); 3569 } 3570 3571 bv->bv_nodisk = vpg->num_phys_disks + hcnt; 3572 3573 bv->bv_size = le64toh(vpg->max_lba) * le16toh(vpg->block_size); 3574 3575 free(vpg, M_TEMP); 3576 return (0); 3577 } 3578 3579 static int 3580 mpii_ioctl_disk(struct mpii_softc *sc, struct bioc_disk *bd) 3581 { 3582 struct mpii_cfg_raid_vol_pg0 *vpg; 3583 struct mpii_cfg_raid_vol_pg0_physdisk *pd; 3584 struct mpii_cfg_hdr hdr; 3585 struct mpii_device *dev; 3586 size_t pagelen; 3587 u_int16_t volh; 3588 u_int8_t dn; 3589 3590 DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_disk %d/%d\n", 3591 DEVNAME(sc), bd->bd_volid, bd->bd_diskid); 3592 3593 mutex_enter(&sc->sc_devs_mtx); 3594 if ((dev = mpii_find_vol(sc, bd->bd_volid)) == NULL) { 3595 mutex_exit(&sc->sc_devs_mtx); 3596 return (ENODEV); 3597 } 3598 volh = dev->dev_handle; 3599 mutex_exit(&sc->sc_devs_mtx); 3600 3601 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, 3602 MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) { 3603 printf("%s: unable to fetch header for raid volume page 0\n", 3604 DEVNAME(sc)); 3605 return (EINVAL); 3606 } 3607 3608 pagelen = hdr.page_length * 4; 3609 vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3610 if (vpg == NULL) { 3611 printf("%s: unable to allocate space for raid " 3612 "volume page 0\n", DEVNAME(sc)); 3613 return (ENOMEM); 3614 } 3615 3616 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, 3617 &hdr, 1, vpg, pagelen) != 0) { 3618 printf("%s: unable to fetch raid volume page 0\n", 3619 DEVNAME(sc)); 3620 free(vpg, M_TEMP); 3621 return (EINVAL); 3622 } 3623 3624 if (bd->bd_diskid >= vpg->num_phys_disks) { 3625 int nvdsk = vpg->num_phys_disks; 3626 int hsmap = vpg->hot_spare_pool; 3627 3628 free(vpg, M_TEMP); 3629 return (mpii_bio_hs(sc, bd, nvdsk, hsmap, NULL)); 3630 } 3631 3632 pd = (struct mpii_cfg_raid_vol_pg0_physdisk *)(vpg + 1) + 3633 bd->bd_diskid; 3634 dn = pd->phys_disk_num; 3635 3636 free(vpg, M_TEMP); 3637 return (mpii_bio_disk(sc, bd, dn)); 3638 } 3639 3640 static int 3641 mpii_bio_hs(struct mpii_softc *sc, struct bioc_disk *bd, int nvdsk, 3642 int hsmap, int *hscnt) 3643 { 3644 struct mpii_cfg_raid_config_pg0 *cpg; 3645 struct mpii_raid_config_element *el; 3646 struct mpii_ecfg_hdr ehdr; 3647 size_t pagelen; 3648 int i, nhs = 0; 3649 3650 if (bd) { 3651 DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs %d\n", DEVNAME(sc), 3652 bd->bd_diskid - nvdsk); 3653 } else { 3654 DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs\n", DEVNAME(sc)); 3655 } 3656 3657 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_CONFIG, 3658 0, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, MPII_PG_EXTENDED, 3659 &ehdr) != 0) { 3660 printf("%s: unable to fetch header for raid config page 0\n", 3661 DEVNAME(sc)); 3662 return (EINVAL); 3663 } 3664 3665 pagelen = le16toh(ehdr.ext_page_length) * 4; 3666 cpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3667 if (cpg == NULL) { 3668 printf("%s: unable to allocate space for raid config page 0\n", 3669 DEVNAME(sc)); 3670 return (ENOMEM); 3671 } 3672 3673 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, 3674 MPII_PG_EXTENDED, &ehdr, 1, cpg, pagelen) != 0) { 3675 printf("%s: unable to fetch raid config page 0\n", 3676 DEVNAME(sc)); 3677 free(cpg, M_TEMP); 3678 return (EINVAL); 3679 } 3680 3681 el = (struct mpii_raid_config_element *)(cpg + 1); 3682 for (i = 0; i < cpg->num_elements; i++, el++) { 3683 if (ISSET(le16toh(el->element_flags), 3684 MPII_RAID_CONFIG_ELEMENT_FLAG_HSP_PHYS_DISK) && 3685 el->hot_spare_pool == hsmap) { 3686 /* 3687 * diskid comparison is based on the idea that all 3688 * disks are counted by the bio(4) in sequence, thus 3689 * substracting the number of disks in the volume 3690 * from the diskid yields us a "relative" hotspare 3691 * number, which is good enough for us. 3692 */ 3693 if (bd != NULL && bd->bd_diskid == nhs + nvdsk) { 3694 u_int8_t dn = el->phys_disk_num; 3695 3696 free(cpg, M_TEMP); 3697 return (mpii_bio_disk(sc, bd, dn)); 3698 } 3699 nhs++; 3700 } 3701 } 3702 3703 if (hscnt) 3704 *hscnt = nhs; 3705 3706 free(cpg, M_TEMP); 3707 return (0); 3708 } 3709 3710 static int 3711 mpii_bio_disk(struct mpii_softc *sc, struct bioc_disk *bd, u_int8_t dn) 3712 { 3713 struct mpii_cfg_raid_physdisk_pg0 *ppg; 3714 struct mpii_cfg_hdr hdr; 3715 struct mpii_device *dev; 3716 int len; 3717 3718 DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_disk %d\n", DEVNAME(sc), 3719 bd->bd_diskid); 3720 3721 ppg = malloc(sizeof(*ppg), M_TEMP, M_WAITOK | M_ZERO); 3722 if (ppg == NULL) { 3723 printf("%s: unable to allocate space for raid physical disk " 3724 "page 0\n", DEVNAME(sc)); 3725 return (ENOMEM); 3726 } 3727 3728 hdr.page_version = 0; 3729 hdr.page_length = sizeof(*ppg) / 4; 3730 hdr.page_number = 0; 3731 hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_RAID_PD; 3732 3733 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_PHYS_DISK_ADDR_NUMBER | dn, 0, 3734 &hdr, 1, ppg, sizeof(*ppg)) != 0) { 3735 printf("%s: unable to fetch raid drive page 0\n", 3736 DEVNAME(sc)); 3737 free(ppg, M_TEMP); 3738 return (EINVAL); 3739 } 3740 3741 bd->bd_target = ppg->phys_disk_num; 3742 3743 mutex_enter(&sc->sc_devs_mtx); 3744 if ((dev = mpii_find_dev(sc, le16toh(ppg->dev_handle))) == NULL) { 3745 mutex_exit(&sc->sc_devs_mtx); 3746 bd->bd_status = BIOC_SDINVALID; 3747 free(ppg, M_TEMP); 3748 return (0); 3749 } 3750 mutex_exit(&sc->sc_devs_mtx); 3751 3752 switch (ppg->phys_disk_state) { 3753 case MPII_CFG_RAID_PHYDISK_0_STATE_ONLINE: 3754 case MPII_CFG_RAID_PHYDISK_0_STATE_OPTIMAL: 3755 bd->bd_status = BIOC_SDONLINE; 3756 break; 3757 case MPII_CFG_RAID_PHYDISK_0_STATE_OFFLINE: 3758 if (ppg->offline_reason == 3759 MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILED || 3760 ppg->offline_reason == 3761 MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILEDREQ) 3762 bd->bd_status = BIOC_SDFAILED; 3763 else 3764 bd->bd_status = BIOC_SDOFFLINE; 3765 break; 3766 case MPII_CFG_RAID_PHYDISK_0_STATE_DEGRADED: 3767 bd->bd_status = BIOC_SDFAILED; 3768 break; 3769 case MPII_CFG_RAID_PHYDISK_0_STATE_REBUILDING: 3770 bd->bd_status = BIOC_SDREBUILD; 3771 break; 3772 case MPII_CFG_RAID_PHYDISK_0_STATE_HOTSPARE: 3773 bd->bd_status = BIOC_SDHOTSPARE; 3774 break; 3775 case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCONFIGURED: 3776 bd->bd_status = BIOC_SDUNUSED; 3777 break; 3778 case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCOMPATIBLE: 3779 default: 3780 bd->bd_status = BIOC_SDINVALID; 3781 break; 3782 } 3783 3784 bd->bd_size = le64toh(ppg->dev_max_lba) * le16toh(ppg->block_size); 3785 3786 strnvisx(bd->bd_vendor, sizeof(bd->bd_vendor), 3787 ppg->vendor_id, sizeof(ppg->vendor_id), 3788 VIS_TRIM|VIS_SAFE|VIS_OCTAL); 3789 len = strlen(bd->bd_vendor); 3790 bd->bd_vendor[len] = ' '; 3791 strnvisx(&bd->bd_vendor[len + 1], sizeof(ppg->vendor_id) - len - 1, 3792 ppg->product_id, sizeof(ppg->product_id), 3793 VIS_TRIM|VIS_SAFE|VIS_OCTAL); 3794 strnvisx(bd->bd_serial, sizeof(bd->bd_serial), 3795 ppg->serial, sizeof(ppg->serial), VIS_TRIM|VIS_SAFE|VIS_OCTAL); 3796 3797 free(ppg, M_TEMP); 3798 return (0); 3799 } 3800 3801 static struct mpii_device * 3802 mpii_find_vol(struct mpii_softc *sc, int volid) 3803 { 3804 struct mpii_device *dev = NULL; 3805 3806 KASSERT(mutex_owned(&sc->sc_devs_mtx)); 3807 if (sc->sc_vd_id_low + volid >= sc->sc_max_devices) 3808 return (NULL); 3809 dev = sc->sc_devs[sc->sc_vd_id_low + volid]; 3810 if (dev && ISSET(dev->flags, MPII_DF_VOLUME)) 3811 return (dev); 3812 return (NULL); 3813 } 3814 3815 /* 3816 * Non-sleeping lightweight version of the mpii_ioctl_vol 3817 */ 3818 static int 3819 mpii_bio_volstate(struct mpii_softc *sc, struct bioc_vol *bv) 3820 { 3821 struct mpii_cfg_raid_vol_pg0 *vpg; 3822 struct mpii_cfg_hdr hdr; 3823 struct mpii_device *dev = NULL; 3824 size_t pagelen; 3825 u_int16_t volh; 3826 3827 mutex_enter(&sc->sc_devs_mtx); 3828 if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) { 3829 mutex_exit(&sc->sc_devs_mtx); 3830 return (ENODEV); 3831 } 3832 volh = dev->dev_handle; 3833 mutex_exit(&sc->sc_devs_mtx); 3834 3835 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, 3836 MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, MPII_PG_POLL, &hdr) != 0) { 3837 DNPRINTF(MPII_D_MISC, "%s: unable to fetch header for raid " 3838 "volume page 0\n", DEVNAME(sc)); 3839 return (EINVAL); 3840 } 3841 3842 pagelen = hdr.page_length * 4; 3843 vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3844 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 3845 MPII_PG_POLL, &hdr, 1, vpg, pagelen) != 0) { 3846 DNPRINTF(MPII_D_MISC, "%s: unable to fetch raid volume " 3847 "page 0\n", DEVNAME(sc)); 3848 free(vpg, M_TEMP); 3849 return (EINVAL); 3850 } 3851 3852 switch (vpg->volume_state) { 3853 case MPII_CFG_RAID_VOL_0_STATE_ONLINE: 3854 case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL: 3855 bv->bv_status = BIOC_SVONLINE; 3856 break; 3857 case MPII_CFG_RAID_VOL_0_STATE_DEGRADED: 3858 if (ISSET(le32toh(vpg->volume_status), 3859 MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) 3860 bv->bv_status = BIOC_SVREBUILD; 3861 else 3862 bv->bv_status = BIOC_SVDEGRADED; 3863 break; 3864 case MPII_CFG_RAID_VOL_0_STATE_FAILED: 3865 bv->bv_status = BIOC_SVOFFLINE; 3866 break; 3867 case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING: 3868 bv->bv_status = BIOC_SVBUILDING; 3869 break; 3870 case MPII_CFG_RAID_VOL_0_STATE_MISSING: 3871 default: 3872 bv->bv_status = BIOC_SVINVALID; 3873 break; 3874 } 3875 3876 free(vpg, M_TEMP); 3877 return (0); 3878 } 3879 3880 static int 3881 mpii_create_sensors(struct mpii_softc *sc) 3882 { 3883 int i, rv; 3884 3885 DNPRINTF(MPII_D_MISC, "%s: mpii_create_sensors(%d)\n", 3886 DEVNAME(sc), sc->sc_max_volumes); 3887 sc->sc_sme = sysmon_envsys_create(); 3888 sc->sc_sensors = malloc(sizeof(envsys_data_t) * sc->sc_max_volumes, 3889 M_DEVBUF, M_WAITOK | M_ZERO); 3890 3891 for (i = 0; i < sc->sc_max_volumes; i++) { 3892 sc->sc_sensors[i].units = ENVSYS_DRIVE; 3893 sc->sc_sensors[i].state = ENVSYS_SINVALID; 3894 sc->sc_sensors[i].value_cur = ENVSYS_DRIVE_EMPTY; 3895 sc->sc_sensors[i].flags |= ENVSYS_FMONSTCHANGED; 3896 3897 /* logical drives */ 3898 snprintf(sc->sc_sensors[i].desc, 3899 sizeof(sc->sc_sensors[i].desc), "%s:%d", 3900 DEVNAME(sc), i); 3901 if ((rv = sysmon_envsys_sensor_attach(sc->sc_sme, 3902 &sc->sc_sensors[i])) != 0) { 3903 aprint_error_dev(sc->sc_dev, 3904 "unable to attach sensor (rv = %d)\n", rv); 3905 goto out; 3906 } 3907 } 3908 sc->sc_sme->sme_name = DEVNAME(sc); 3909 sc->sc_sme->sme_cookie = sc; 3910 sc->sc_sme->sme_refresh = mpii_refresh_sensors; 3911 3912 rv = sysmon_envsys_register(sc->sc_sme); 3913 if (rv != 0) { 3914 aprint_error_dev(sc->sc_dev, 3915 "unable to register with sysmon (rv = %d)\n", rv); 3916 goto out; 3917 } 3918 return 0; 3919 3920 out: 3921 free(sc->sc_sensors, M_DEVBUF); 3922 sysmon_envsys_destroy(sc->sc_sme); 3923 sc->sc_sme = NULL; 3924 return 1; 3925 } 3926 3927 static int 3928 mpii_destroy_sensors(struct mpii_softc *sc) 3929 { 3930 if (sc->sc_sme == NULL) 3931 return 0; 3932 sysmon_envsys_unregister(sc->sc_sme); 3933 sc->sc_sme = NULL; 3934 free(sc->sc_sensors, M_DEVBUF); 3935 return 0; 3936 3937 } 3938 3939 static void 3940 mpii_refresh_sensors(struct sysmon_envsys *sme, envsys_data_t *edata) 3941 { 3942 struct mpii_softc *sc = sme->sme_cookie; 3943 struct bioc_vol bv; 3944 3945 memset(&bv, 0, sizeof(bv)); 3946 bv.bv_volid = edata->sensor; 3947 if (mpii_bio_volstate(sc, &bv)) 3948 bv.bv_status = BIOC_SVINVALID; 3949 bio_vol_to_envsys(edata, &bv); 3950 } 3951 #endif /* NBIO > 0 */ 3952