1 /* $NetBSD: mpii.c,v 1.29 2021/08/07 16:19:14 thorpej Exp $ */ 2 /* $OpenBSD: mpii.c,v 1.115 2018/08/14 05:22:21 jmatthew Exp $ */ 3 /* 4 * Copyright (c) 2010, 2012 Mike Belopuhov 5 * Copyright (c) 2009 James Giannoules 6 * Copyright (c) 2005 - 2010 David Gwynne <dlg@openbsd.org> 7 * Copyright (c) 2005 - 2010 Marco Peereboom <marco@openbsd.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __KERNEL_RCSID(0, "$NetBSD: mpii.c,v 1.29 2021/08/07 16:19:14 thorpej Exp $"); 24 25 #include "bio.h" 26 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/buf.h> 30 #include <sys/device.h> 31 #include <sys/ioctl.h> 32 #include <sys/malloc.h> 33 #include <sys/kernel.h> 34 #include <sys/mutex.h> 35 #include <sys/condvar.h> 36 #include <sys/dkio.h> 37 #include <sys/tree.h> 38 39 #include <dev/pci/pcireg.h> 40 #include <dev/pci/pcivar.h> 41 #include <dev/pci/pcidevs.h> 42 43 #include <dev/scsipi/scsipi_all.h> 44 #include <dev/scsipi/scsi_all.h> 45 #include <dev/scsipi/scsiconf.h> 46 47 #if NBIO > 0 48 #include <dev/biovar.h> 49 #include <dev/sysmon/sysmonvar.h> 50 #include <sys/envsys.h> 51 #endif 52 53 #include <dev/pci/mpiireg.h> 54 55 // #define MPII_DEBUG 56 #ifdef MPII_DEBUG 57 #define DPRINTF(x...) do { if (mpii_debug) printf(x); } while(0) 58 #define DNPRINTF(n,x...) do { if (mpii_debug & (n)) printf(x); } while(0) 59 #define MPII_D_CMD (0x0001) 60 #define MPII_D_INTR (0x0002) 61 #define MPII_D_MISC (0x0004) 62 #define MPII_D_DMA (0x0008) 63 #define MPII_D_IOCTL (0x0010) 64 #define MPII_D_RW (0x0020) 65 #define MPII_D_MEM (0x0040) 66 #define MPII_D_CCB (0x0080) 67 #define MPII_D_PPR (0x0100) 68 #define MPII_D_RAID (0x0200) 69 #define MPII_D_EVT (0x0400) 70 #define MPII_D_CFG (0x0800) 71 #define MPII_D_MAP (0x1000) 72 73 u_int32_t mpii_debug = 0 74 // | MPII_D_CMD 75 // | MPII_D_INTR 76 // | MPII_D_MISC 77 // | MPII_D_DMA 78 // | MPII_D_IOCTL 79 // | MPII_D_RW 80 // | MPII_D_MEM 81 // | MPII_D_CCB 82 // | MPII_D_PPR 83 // | MPII_D_RAID 84 // | MPII_D_EVT 85 // | MPII_D_CFG 86 // | MPII_D_MAP 87 ; 88 #else 89 #define DPRINTF(x...) 90 #define DNPRINTF(n,x...) 91 #endif 92 93 #define MPII_REQUEST_SIZE (512) 94 #define MPII_REQUEST_CREDIT (128) 95 96 struct mpii_dmamem { 97 bus_dmamap_t mdm_map; 98 bus_dma_segment_t mdm_seg; 99 size_t mdm_size; 100 void *mdm_kva; 101 }; 102 #define MPII_DMA_MAP(_mdm) ((_mdm)->mdm_map) 103 #define MPII_DMA_DVA(_mdm) ((uint64_t)(_mdm)->mdm_map->dm_segs[0].ds_addr) 104 #define MPII_DMA_KVA(_mdm) ((_mdm)->mdm_kva) 105 106 struct mpii_softc; 107 108 struct mpii_rcb { 109 SIMPLEQ_ENTRY(mpii_rcb) rcb_link; 110 void *rcb_reply; 111 u_int32_t rcb_reply_dva; 112 }; 113 114 SIMPLEQ_HEAD(mpii_rcb_list, mpii_rcb); 115 116 struct mpii_device { 117 int flags; 118 #define MPII_DF_ATTACH (0x0001) 119 #define MPII_DF_DETACH (0x0002) 120 #define MPII_DF_HIDDEN (0x0004) 121 #define MPII_DF_UNUSED (0x0008) 122 #define MPII_DF_VOLUME (0x0010) 123 #define MPII_DF_VOLUME_DISK (0x0020) 124 #define MPII_DF_HOT_SPARE (0x0040) 125 short slot; 126 short percent; 127 u_int16_t dev_handle; 128 u_int16_t enclosure; 129 u_int16_t expander; 130 u_int8_t phy_num; 131 u_int8_t physical_port; 132 }; 133 134 struct mpii_ccb { 135 struct mpii_softc *ccb_sc; 136 137 void * ccb_cookie; 138 kmutex_t ccb_mtx; 139 kcondvar_t ccb_cv; 140 141 bus_dmamap_t ccb_dmamap; 142 143 bus_addr_t ccb_offset; 144 void *ccb_cmd; 145 bus_addr_t ccb_cmd_dva; 146 u_int16_t ccb_dev_handle; 147 u_int16_t ccb_smid; 148 149 volatile enum { 150 MPII_CCB_FREE, 151 MPII_CCB_READY, 152 MPII_CCB_QUEUED, 153 MPII_CCB_TIMEOUT 154 } ccb_state; 155 156 void (*ccb_done)(struct mpii_ccb *); 157 struct mpii_rcb *ccb_rcb; 158 159 SIMPLEQ_ENTRY(mpii_ccb) ccb_link; 160 }; 161 162 SIMPLEQ_HEAD(mpii_ccb_list, mpii_ccb); 163 164 struct mpii_softc { 165 device_t sc_dev; 166 167 pci_chipset_tag_t sc_pc; 168 pcitag_t sc_tag; 169 170 void *sc_ih; 171 pci_intr_handle_t *sc_pihp; 172 173 struct scsipi_adapter sc_adapt; 174 struct scsipi_channel sc_chan; 175 device_t sc_child; /* our scsibus */ 176 177 int sc_flags; 178 #define MPII_F_RAID (1<<1) 179 #define MPII_F_SAS3 (1<<2) 180 181 struct mpii_device **sc_devs; 182 kmutex_t sc_devs_mtx; 183 184 bus_space_tag_t sc_iot; 185 bus_space_handle_t sc_ioh; 186 bus_size_t sc_ios; 187 bus_dma_tag_t sc_dmat; 188 189 kmutex_t sc_req_mtx; 190 kmutex_t sc_rep_mtx; 191 192 ushort sc_reply_size; 193 ushort sc_request_size; 194 195 ushort sc_max_cmds; 196 ushort sc_num_reply_frames; 197 u_int sc_reply_free_qdepth; 198 u_int sc_reply_post_qdepth; 199 200 ushort sc_chain_sge; 201 ushort sc_max_sgl; 202 203 u_int8_t sc_ioc_event_replay; 204 205 u_int8_t sc_porttype; 206 u_int8_t sc_max_volumes; 207 u_int16_t sc_max_devices; 208 u_int16_t sc_vd_count; 209 u_int16_t sc_vd_id_low; 210 u_int16_t sc_pd_id_start; 211 int sc_ioc_number; 212 u_int8_t sc_vf_id; 213 214 struct mpii_ccb *sc_ccbs; 215 struct mpii_ccb_list sc_ccb_free; 216 kmutex_t sc_ccb_free_mtx; 217 kcondvar_t sc_ccb_free_cv; 218 219 struct mpii_ccb_list sc_ccb_tmos; 220 kmutex_t sc_ssb_tmomtx; 221 struct workqueue *sc_ssb_tmowk; 222 struct work sc_ssb_tmowork; 223 224 struct mpii_dmamem *sc_requests; 225 226 struct mpii_dmamem *sc_replies; 227 struct mpii_rcb *sc_rcbs; 228 229 struct mpii_dmamem *sc_reply_postq; 230 struct mpii_reply_descr *sc_reply_postq_kva; 231 u_int sc_reply_post_host_index; 232 233 struct mpii_dmamem *sc_reply_freeq; 234 u_int sc_reply_free_host_index; 235 kmutex_t sc_reply_free_mtx; 236 237 struct mpii_rcb_list sc_evt_sas_queue; 238 kmutex_t sc_evt_sas_mtx; 239 struct workqueue *sc_evt_sas_wq; 240 struct work sc_evt_sas_work; 241 242 struct mpii_rcb_list sc_evt_ack_queue; 243 kmutex_t sc_evt_ack_mtx; 244 struct workqueue *sc_evt_ack_wq; 245 struct work sc_evt_ack_work; 246 247 #if NBIO > 0 248 struct sysmon_envsys *sc_sme; 249 envsys_data_t *sc_sensors; 250 #endif 251 }; 252 253 static int mpii_match(device_t, cfdata_t, void *); 254 static void mpii_attach(device_t, device_t, void *); 255 static int mpii_detach(device_t, int); 256 static void mpii_childdetached(device_t, device_t); 257 static int mpii_rescan(device_t, const char *, const int *); 258 259 static int mpii_intr(void *); 260 261 CFATTACH_DECL3_NEW(mpii, sizeof(struct mpii_softc), 262 mpii_match, mpii_attach, mpii_detach, NULL, mpii_rescan, 263 mpii_childdetached, DVF_DETACH_SHUTDOWN); 264 265 static void mpii_scsipi_request(struct scsipi_channel *, 266 scsipi_adapter_req_t, void *); 267 static void mpii_scsi_cmd_done(struct mpii_ccb *); 268 269 static struct mpii_dmamem * 270 mpii_dmamem_alloc(struct mpii_softc *, size_t); 271 static void mpii_dmamem_free(struct mpii_softc *, 272 struct mpii_dmamem *); 273 static int mpii_alloc_ccbs(struct mpii_softc *); 274 static struct mpii_ccb *mpii_get_ccb(struct mpii_softc *); 275 static void mpii_put_ccb(struct mpii_softc *, struct mpii_ccb *); 276 static int mpii_alloc_replies(struct mpii_softc *); 277 static int mpii_alloc_queues(struct mpii_softc *); 278 static void mpii_push_reply(struct mpii_softc *, struct mpii_rcb *); 279 static void mpii_push_replies(struct mpii_softc *); 280 281 static void mpii_scsi_cmd_tmo(void *); 282 static void mpii_scsi_cmd_tmo_handler(struct work *, void *); 283 static void mpii_scsi_cmd_tmo_done(struct mpii_ccb *); 284 285 static int mpii_insert_dev(struct mpii_softc *, struct mpii_device *); 286 static int mpii_remove_dev(struct mpii_softc *, struct mpii_device *); 287 static struct mpii_device * 288 mpii_find_dev(struct mpii_softc *, u_int16_t); 289 290 static void mpii_start(struct mpii_softc *, struct mpii_ccb *); 291 static int mpii_poll(struct mpii_softc *, struct mpii_ccb *); 292 static void mpii_poll_done(struct mpii_ccb *); 293 static struct mpii_rcb * 294 mpii_reply(struct mpii_softc *, struct mpii_reply_descr *); 295 296 static void mpii_wait(struct mpii_softc *, struct mpii_ccb *); 297 static void mpii_wait_done(struct mpii_ccb *); 298 299 static void mpii_init_queues(struct mpii_softc *); 300 301 static int mpii_load_xs(struct mpii_ccb *); 302 static int mpii_load_xs_sas3(struct mpii_ccb *); 303 304 static u_int32_t mpii_read(struct mpii_softc *, bus_size_t); 305 static void mpii_write(struct mpii_softc *, bus_size_t, u_int32_t); 306 static int mpii_wait_eq(struct mpii_softc *, bus_size_t, u_int32_t, 307 u_int32_t); 308 static int mpii_wait_ne(struct mpii_softc *, bus_size_t, u_int32_t, 309 u_int32_t); 310 311 static int mpii_init(struct mpii_softc *); 312 static int mpii_reset_soft(struct mpii_softc *); 313 static int mpii_reset_hard(struct mpii_softc *); 314 315 static int mpii_handshake_send(struct mpii_softc *, void *, size_t); 316 static int mpii_handshake_recv_dword(struct mpii_softc *, 317 u_int32_t *); 318 static int mpii_handshake_recv(struct mpii_softc *, void *, size_t); 319 320 static void mpii_empty_done(struct mpii_ccb *); 321 322 static int mpii_iocinit(struct mpii_softc *); 323 static int mpii_iocfacts(struct mpii_softc *); 324 static int mpii_portfacts(struct mpii_softc *); 325 static int mpii_portenable(struct mpii_softc *); 326 static int mpii_cfg_coalescing(struct mpii_softc *); 327 static int mpii_board_info(struct mpii_softc *); 328 static int mpii_target_map(struct mpii_softc *); 329 330 static int mpii_eventnotify(struct mpii_softc *); 331 static void mpii_eventnotify_done(struct mpii_ccb *); 332 static void mpii_eventack(struct work *, void *); 333 static void mpii_eventack_done(struct mpii_ccb *); 334 static void mpii_event_process(struct mpii_softc *, struct mpii_rcb *); 335 static void mpii_event_done(struct mpii_softc *, struct mpii_rcb *); 336 static void mpii_event_sas(struct mpii_softc *, struct mpii_rcb *); 337 static void mpii_event_sas_work(struct work *, void *); 338 static void mpii_event_raid(struct mpii_softc *, 339 struct mpii_msg_event_reply *); 340 static void mpii_event_discovery(struct mpii_softc *, 341 struct mpii_msg_event_reply *); 342 343 static void mpii_sas_remove_device(struct mpii_softc *, u_int16_t); 344 345 static int mpii_req_cfg_header(struct mpii_softc *, u_int8_t, 346 u_int8_t, u_int32_t, int, void *); 347 static int mpii_req_cfg_page(struct mpii_softc *, u_int32_t, int, 348 void *, int, void *, size_t); 349 350 #if 0 351 int mpii_ioctl_cache(struct scsi_link *, u_long, struct dk_cache *); 352 #endif 353 354 #if NBIO > 0 355 static int mpii_ioctl(device_t, u_long, void *); 356 static int mpii_ioctl_inq(struct mpii_softc *, struct bioc_inq *); 357 static int mpii_ioctl_vol(struct mpii_softc *, struct bioc_vol *); 358 static int mpii_ioctl_disk(struct mpii_softc *, struct bioc_disk *); 359 static int mpii_bio_hs(struct mpii_softc *, struct bioc_disk *, int, 360 int, int *); 361 static int mpii_bio_disk(struct mpii_softc *, struct bioc_disk *, 362 u_int8_t); 363 static struct mpii_device * 364 mpii_find_vol(struct mpii_softc *, int); 365 #ifndef SMALL_KERNEL 366 static int mpii_bio_volstate(struct mpii_softc *, struct bioc_vol *); 367 static int mpii_create_sensors(struct mpii_softc *); 368 static void mpii_refresh_sensors(struct sysmon_envsys *, envsys_data_t *); 369 static int mpii_destroy_sensors(struct mpii_softc *); 370 #endif /* SMALL_KERNEL */ 371 #endif /* NBIO > 0 */ 372 373 #define DEVNAME(s) (device_xname((s)->sc_dev)) 374 375 #define dwordsof(s) (sizeof(s) / sizeof(u_int32_t)) 376 377 #define mpii_read_db(s) mpii_read((s), MPII_DOORBELL) 378 #define mpii_write_db(s, v) mpii_write((s), MPII_DOORBELL, (v)) 379 #define mpii_read_intr(s) mpii_read((s), MPII_INTR_STATUS) 380 #define mpii_write_intr(s, v) mpii_write((s), MPII_INTR_STATUS, (v)) 381 #define mpii_reply_waiting(s) ((mpii_read_intr((s)) & MPII_INTR_STATUS_REPLY)\ 382 == MPII_INTR_STATUS_REPLY) 383 384 #define mpii_write_reply_free(s, v) \ 385 bus_space_write_4((s)->sc_iot, (s)->sc_ioh, \ 386 MPII_REPLY_FREE_HOST_INDEX, (v)) 387 #define mpii_write_reply_post(s, v) \ 388 bus_space_write_4((s)->sc_iot, (s)->sc_ioh, \ 389 MPII_REPLY_POST_HOST_INDEX, (v)) 390 391 #define mpii_wait_db_int(s) mpii_wait_ne((s), MPII_INTR_STATUS, \ 392 MPII_INTR_STATUS_IOC2SYSDB, 0) 393 #define mpii_wait_db_ack(s) mpii_wait_eq((s), MPII_INTR_STATUS, \ 394 MPII_INTR_STATUS_SYS2IOCDB, 0) 395 396 static inline void 397 mpii_dvatosge(struct mpii_sge *sge, u_int64_t dva) 398 { 399 sge->sg_addr_lo = htole32(dva); 400 sge->sg_addr_hi = htole32(dva >> 32); 401 } 402 403 #define MPII_PG_EXTENDED (1<<0) 404 #define MPII_PG_POLL (1<<1) 405 #define MPII_PG_FMT "\020" "\002POLL" "\001EXTENDED" 406 407 static const struct mpii_pci_product { 408 pci_vendor_id_t mpii_vendor; 409 pci_product_id_t mpii_product; 410 } mpii_devices[] = { 411 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2004 }, 412 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2008 }, 413 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_3 }, 414 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_4 }, 415 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_5 }, 416 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_1 }, 417 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_2 }, 418 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_1 }, 419 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_2 }, 420 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_3 }, 421 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_4 }, 422 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_5 }, 423 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_6 }, 424 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_1 }, 425 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_2 }, 426 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_3 }, 427 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3004 }, 428 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3008 }, 429 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_1 }, 430 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_2 }, 431 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_3 }, 432 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_4 }, 433 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3408 }, 434 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3416 }, 435 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3508 }, 436 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3508_1 }, 437 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3516 }, 438 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3516_1 }, 439 { 0, 0} 440 }; 441 442 static int 443 mpii_match(device_t parent, cfdata_t match, void *aux) 444 { 445 struct pci_attach_args *pa = aux; 446 const struct mpii_pci_product *mpii; 447 448 for (mpii = mpii_devices; mpii->mpii_vendor != 0; mpii++) { 449 if (PCI_VENDOR(pa->pa_id) == mpii->mpii_vendor && 450 PCI_PRODUCT(pa->pa_id) == mpii->mpii_product) 451 return (1); 452 } 453 return (0); 454 } 455 456 static void 457 mpii_attach(device_t parent, device_t self, void *aux) 458 { 459 struct mpii_softc *sc = device_private(self); 460 struct pci_attach_args *pa = aux; 461 pcireg_t memtype; 462 int r; 463 struct mpii_ccb *ccb; 464 struct scsipi_adapter *adapt = &sc->sc_adapt; 465 struct scsipi_channel *chan = &sc->sc_chan; 466 char intrbuf[PCI_INTRSTR_LEN]; 467 const char *intrstr; 468 469 pci_aprint_devinfo(pa, NULL); 470 471 sc->sc_pc = pa->pa_pc; 472 sc->sc_tag = pa->pa_tag; 473 sc->sc_dmat = pa->pa_dmat; 474 sc->sc_dev = self; 475 476 mutex_init(&sc->sc_req_mtx, MUTEX_DEFAULT, IPL_BIO); 477 mutex_init(&sc->sc_rep_mtx, MUTEX_DEFAULT, IPL_BIO); 478 479 /* find the appropriate memory base */ 480 for (r = PCI_MAPREG_START; r < PCI_MAPREG_END; r += sizeof(memtype)) { 481 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, r); 482 if (PCI_MAPREG_TYPE(memtype) == PCI_MAPREG_TYPE_MEM) 483 break; 484 } 485 if (r >= PCI_MAPREG_END) { 486 aprint_error_dev(self, 487 "unable to locate system interface registers\n"); 488 return; 489 } 490 491 if (pci_mapreg_map(pa, r, memtype, 0, &sc->sc_iot, &sc->sc_ioh, 492 NULL, &sc->sc_ios) != 0) { 493 aprint_error_dev(self, 494 "unable to map system interface registers\n"); 495 return; 496 } 497 498 /* disable the expansion rom */ 499 pci_conf_write(sc->sc_pc, sc->sc_tag, PCI_MAPREG_ROM, 500 pci_conf_read(sc->sc_pc, sc->sc_tag, PCI_MAPREG_ROM) & 501 ~PCI_MAPREG_ROM_ENABLE); 502 503 /* disable interrupts */ 504 mpii_write(sc, MPII_INTR_MASK, 505 MPII_INTR_MASK_RESET | MPII_INTR_MASK_REPLY | 506 MPII_INTR_MASK_DOORBELL); 507 508 /* hook up the interrupt */ 509 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) { 510 aprint_error_dev(self, "unable to map interrupt\n"); 511 goto unmap; 512 } 513 intrstr = pci_intr_string(pa->pa_pc, sc->sc_pihp[0], 514 intrbuf, sizeof(intrbuf)); 515 pci_intr_setattr(pa->pa_pc, &sc->sc_pihp[0], PCI_INTR_MPSAFE, true); 516 sc->sc_ih = pci_intr_establish_xname(pa->pa_pc, sc->sc_pihp[0], IPL_BIO, 517 mpii_intr, sc, device_xname(self)); 518 if (sc->sc_ih == NULL) { 519 aprint_error_dev(self, "couldn't establish interrupt"); 520 if (intrstr != NULL) 521 aprint_error(" at %s", intrstr); 522 aprint_error("\n"); 523 return; 524 } 525 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 526 aprint_naive("\n"); 527 528 if (mpii_iocfacts(sc) != 0) { 529 aprint_error_dev(self, "unable to get iocfacts\n"); 530 goto unmap; 531 } 532 533 if (mpii_init(sc) != 0) { 534 aprint_error_dev(self, "unable to initialize ioc\n"); 535 goto unmap; 536 } 537 538 if (mpii_alloc_ccbs(sc) != 0) { 539 /* error already printed */ 540 goto unmap; 541 } 542 543 if (mpii_alloc_replies(sc) != 0) { 544 aprint_error_dev(self, "unable to allocated reply space\n"); 545 goto free_ccbs; 546 } 547 548 if (mpii_alloc_queues(sc) != 0) { 549 aprint_error_dev(self, "unable to allocate reply queues\n"); 550 goto free_replies; 551 } 552 553 if (mpii_iocinit(sc) != 0) { 554 aprint_error_dev(self, "unable to send iocinit\n"); 555 goto free_queues; 556 } 557 558 if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, 559 MPII_DOORBELL_STATE_OPER) != 0) { 560 aprint_error_dev(self, "state: 0x%08x\n", 561 mpii_read_db(sc) & MPII_DOORBELL_STATE); 562 aprint_error_dev(self, "operational state timeout\n"); 563 goto free_queues; 564 } 565 566 mpii_push_replies(sc); 567 mpii_init_queues(sc); 568 569 if (mpii_board_info(sc) != 0) { 570 aprint_error_dev(self, "unable to get manufacturing page 0\n"); 571 goto free_queues; 572 } 573 574 if (mpii_portfacts(sc) != 0) { 575 aprint_error_dev(self, "unable to get portfacts\n"); 576 goto free_queues; 577 } 578 579 if (mpii_target_map(sc) != 0) { 580 aprint_error_dev(self, "unable to setup target mappings\n"); 581 goto free_queues; 582 } 583 584 if (mpii_cfg_coalescing(sc) != 0) { 585 aprint_error_dev(self, "unable to configure coalescing\n"); 586 goto free_queues; 587 } 588 589 /* XXX bail on unsupported porttype? */ 590 if ((sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_PHYSICAL) || 591 (sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_VIRTUAL) || 592 (sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_TRI_MODE)) { 593 if (mpii_eventnotify(sc) != 0) { 594 aprint_error_dev(self, "unable to enable events\n"); 595 goto free_queues; 596 } 597 } 598 599 mutex_init(&sc->sc_devs_mtx, MUTEX_DEFAULT, IPL_BIO); 600 sc->sc_devs = malloc(sc->sc_max_devices * sizeof(struct mpii_device *), 601 M_DEVBUF, M_WAITOK | M_ZERO); 602 603 if (mpii_portenable(sc) != 0) { 604 aprint_error_dev(self, "unable to enable port\n"); 605 goto free_devs; 606 } 607 608 /* we should be good to go now, attach scsibus */ 609 memset(adapt, 0, sizeof(*adapt)); 610 adapt->adapt_dev = sc->sc_dev; 611 adapt->adapt_nchannels = 1; 612 adapt->adapt_openings = sc->sc_max_cmds - 4; 613 adapt->adapt_max_periph = adapt->adapt_openings; 614 adapt->adapt_request = mpii_scsipi_request; 615 adapt->adapt_minphys = minphys; 616 adapt->adapt_flags = SCSIPI_ADAPT_MPSAFE; 617 618 memset(chan, 0, sizeof(*chan)); 619 chan->chan_adapter = adapt; 620 chan->chan_bustype = &scsi_sas_bustype; 621 chan->chan_channel = 0; 622 chan->chan_flags = 0; 623 chan->chan_nluns = 8; 624 chan->chan_ntargets = sc->sc_max_devices; 625 chan->chan_id = -1; 626 627 mpii_rescan(self, NULL, NULL); 628 629 /* enable interrupts */ 630 mpii_write(sc, MPII_INTR_MASK, MPII_INTR_MASK_DOORBELL 631 | MPII_INTR_MASK_RESET); 632 633 #if NBIO > 0 634 if (ISSET(sc->sc_flags, MPII_F_RAID)) { 635 if (bio_register(sc->sc_dev, mpii_ioctl) != 0) 636 panic("%s: controller registration failed", 637 DEVNAME(sc)); 638 if (mpii_create_sensors(sc) != 0) 639 aprint_error_dev(self, "unable to create sensors\n"); 640 } 641 #endif 642 643 return; 644 645 free_devs: 646 free(sc->sc_devs, M_DEVBUF); 647 sc->sc_devs = NULL; 648 649 free_queues: 650 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq), 651 0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD); 652 mpii_dmamem_free(sc, sc->sc_reply_freeq); 653 654 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 655 0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD); 656 mpii_dmamem_free(sc, sc->sc_reply_postq); 657 658 free_replies: 659 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 660 0, PAGE_SIZE, BUS_DMASYNC_POSTREAD); 661 mpii_dmamem_free(sc, sc->sc_replies); 662 663 free_ccbs: 664 while ((ccb = mpii_get_ccb(sc)) != NULL) 665 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); 666 mpii_dmamem_free(sc, sc->sc_requests); 667 free(sc->sc_ccbs, M_DEVBUF); 668 669 unmap: 670 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); 671 sc->sc_ios = 0; 672 } 673 674 static int 675 mpii_detach(device_t self, int flags) 676 { 677 struct mpii_softc *sc = device_private(self); 678 int error; 679 struct mpii_ccb *ccb; 680 681 if ((error = config_detach_children(sc->sc_dev, flags)) != 0) 682 return error; 683 684 #if NBIO > 0 685 mpii_destroy_sensors(sc); 686 bio_unregister(sc->sc_dev); 687 #endif /* NBIO > 0 */ 688 689 if (sc->sc_ih != NULL) { 690 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 691 sc->sc_ih = NULL; 692 } 693 if (sc->sc_ios != 0) { 694 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); 695 free(sc->sc_devs, M_DEVBUF); 696 sc->sc_devs = NULL; 697 698 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq), 699 0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD); 700 mpii_dmamem_free(sc, sc->sc_reply_freeq); 701 702 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 703 0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD); 704 mpii_dmamem_free(sc, sc->sc_reply_postq); 705 706 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 707 0, PAGE_SIZE, BUS_DMASYNC_POSTREAD); 708 mpii_dmamem_free(sc, sc->sc_replies); 709 710 while ((ccb = mpii_get_ccb(sc)) != NULL) 711 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); 712 mpii_dmamem_free(sc, sc->sc_requests); 713 free(sc->sc_ccbs, M_DEVBUF); 714 715 sc->sc_ios = 0; 716 } 717 718 return (0); 719 } 720 721 static int 722 mpii_rescan(device_t self, const char *ifattr, const int *locators) 723 { 724 struct mpii_softc *sc = device_private(self); 725 726 if (sc->sc_child != NULL) 727 return 0; 728 729 sc->sc_child = config_found(self, &sc->sc_chan, scsiprint, CFARGS_NONE); 730 731 return 0; 732 } 733 734 static void 735 mpii_childdetached(device_t self, device_t child) 736 { 737 struct mpii_softc *sc = device_private(self); 738 739 KASSERT(self == sc->sc_dev); 740 KASSERT(child == sc->sc_child); 741 742 if (child == sc->sc_child) 743 sc->sc_child = NULL; 744 } 745 746 747 static int 748 mpii_intr(void *arg) 749 { 750 struct mpii_rcb_list evts = SIMPLEQ_HEAD_INITIALIZER(evts); 751 struct mpii_ccb_list ccbs = SIMPLEQ_HEAD_INITIALIZER(ccbs); 752 struct mpii_softc *sc = arg; 753 struct mpii_reply_descr *postq = sc->sc_reply_postq_kva, *rdp; 754 struct mpii_ccb *ccb; 755 struct mpii_rcb *rcb; 756 int smid; 757 u_int idx; 758 int rv = 0; 759 760 mutex_enter(&sc->sc_rep_mtx); 761 bus_dmamap_sync(sc->sc_dmat, 762 MPII_DMA_MAP(sc->sc_reply_postq), 763 0, sc->sc_reply_post_qdepth * sizeof(*rdp), 764 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 765 766 idx = sc->sc_reply_post_host_index; 767 for (;;) { 768 rdp = &postq[idx]; 769 if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) == 770 MPII_REPLY_DESCR_UNUSED) 771 break; 772 if (rdp->data == 0xffffffff) { 773 /* 774 * ioc is still writing to the reply post queue 775 * race condition - bail! 776 */ 777 break; 778 } 779 780 smid = le16toh(rdp->smid); 781 rcb = mpii_reply(sc, rdp); 782 783 if (smid) { 784 ccb = &sc->sc_ccbs[smid - 1]; 785 ccb->ccb_state = MPII_CCB_READY; 786 ccb->ccb_rcb = rcb; 787 SIMPLEQ_INSERT_TAIL(&ccbs, ccb, ccb_link); 788 } else 789 SIMPLEQ_INSERT_TAIL(&evts, rcb, rcb_link); 790 791 if (++idx >= sc->sc_reply_post_qdepth) 792 idx = 0; 793 794 rv = 1; 795 } 796 797 bus_dmamap_sync(sc->sc_dmat, 798 MPII_DMA_MAP(sc->sc_reply_postq), 799 0, sc->sc_reply_post_qdepth * sizeof(*rdp), 800 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 801 802 if (rv) 803 mpii_write_reply_post(sc, sc->sc_reply_post_host_index = idx); 804 805 mutex_exit(&sc->sc_rep_mtx); 806 807 if (rv == 0) 808 return (0); 809 810 while ((ccb = SIMPLEQ_FIRST(&ccbs)) != NULL) { 811 SIMPLEQ_REMOVE_HEAD(&ccbs, ccb_link); 812 ccb->ccb_done(ccb); 813 } 814 while ((rcb = SIMPLEQ_FIRST(&evts)) != NULL) { 815 SIMPLEQ_REMOVE_HEAD(&evts, rcb_link); 816 mpii_event_process(sc, rcb); 817 } 818 819 return (1); 820 } 821 822 static int 823 mpii_load_xs_sas3(struct mpii_ccb *ccb) 824 { 825 struct mpii_softc *sc = ccb->ccb_sc; 826 struct scsipi_xfer *xs = ccb->ccb_cookie; 827 struct mpii_msg_scsi_io *io = ccb->ccb_cmd; 828 struct mpii_ieee_sge *csge, *nsge, *sge; 829 bus_dmamap_t dmap = ccb->ccb_dmamap; 830 int i, error; 831 832 /* Request frame structure is described in the mpii_iocfacts */ 833 nsge = (struct mpii_ieee_sge *)(io + 1); 834 csge = nsge + sc->sc_chain_sge; 835 836 /* zero length transfer still requires an SGE */ 837 if (xs->datalen == 0) { 838 nsge->sg_flags = MPII_IEEE_SGE_END_OF_LIST; 839 return (0); 840 } 841 842 error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL, 843 (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); 844 if (error) { 845 printf("%s: error %d loading dmamap\n", DEVNAME(sc), error); 846 return (1); 847 } 848 849 sge = nsge; 850 for (i = 0; i < dmap->dm_nsegs; i++, nsge++) { 851 if (nsge == csge) { 852 nsge++; 853 /* offset to the chain sge from the beginning */ 854 io->chain_offset = ((uintptr_t)csge - (uintptr_t)io) / 4; 855 csge->sg_flags = MPII_IEEE_SGE_CHAIN_ELEMENT | 856 MPII_IEEE_SGE_ADDR_SYSTEM; 857 /* address of the next sge */ 858 csge->sg_addr = htole64(ccb->ccb_cmd_dva + 859 ((uintptr_t)nsge - (uintptr_t)io)); 860 csge->sg_len = htole32((dmap->dm_nsegs - i) * 861 sizeof(*sge)); 862 } 863 864 sge = nsge; 865 sge->sg_flags = MPII_IEEE_SGE_ADDR_SYSTEM; 866 sge->sg_len = htole32(dmap->dm_segs[i].ds_len); 867 sge->sg_addr = htole64(dmap->dm_segs[i].ds_addr); 868 } 869 870 /* terminate list */ 871 sge->sg_flags |= MPII_IEEE_SGE_END_OF_LIST; 872 873 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, 874 (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD : 875 BUS_DMASYNC_PREWRITE); 876 877 return (0); 878 } 879 880 static int 881 mpii_load_xs(struct mpii_ccb *ccb) 882 { 883 struct mpii_softc *sc = ccb->ccb_sc; 884 struct scsipi_xfer *xs = ccb->ccb_cookie; 885 struct mpii_msg_scsi_io *io = ccb->ccb_cmd; 886 struct mpii_sge *csge, *nsge, *sge; 887 bus_dmamap_t dmap = ccb->ccb_dmamap; 888 u_int32_t flags; 889 u_int16_t len; 890 int i, error; 891 892 /* Request frame structure is described in the mpii_iocfacts */ 893 nsge = (struct mpii_sge *)(io + 1); 894 csge = nsge + sc->sc_chain_sge; 895 896 /* zero length transfer still requires an SGE */ 897 if (xs->datalen == 0) { 898 nsge->sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | 899 MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); 900 return (0); 901 } 902 903 error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL, 904 (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); 905 if (error) { 906 printf("%s: error %d loading dmamap\n", DEVNAME(sc), error); 907 return (1); 908 } 909 910 /* safe default starting flags */ 911 flags = MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_SIZE_64; 912 if (xs->xs_control & XS_CTL_DATA_OUT) 913 flags |= MPII_SGE_FL_DIR_OUT; 914 915 sge = nsge; 916 for (i = 0; i < dmap->dm_nsegs; i++, nsge++) { 917 if (nsge == csge) { 918 nsge++; 919 /* offset to the chain sge from the beginning */ 920 io->chain_offset = ((uintptr_t)csge - (uintptr_t)io) / 4; 921 /* length of the sgl segment we're pointing to */ 922 len = (dmap->dm_nsegs - i) * sizeof(*sge); 923 csge->sg_hdr = htole32(MPII_SGE_FL_TYPE_CHAIN | 924 MPII_SGE_FL_SIZE_64 | len); 925 /* address of the next sge */ 926 mpii_dvatosge(csge, ccb->ccb_cmd_dva + 927 ((uintptr_t)nsge - (uintptr_t)io)); 928 } 929 930 sge = nsge; 931 sge->sg_hdr = htole32(flags | dmap->dm_segs[i].ds_len); 932 mpii_dvatosge(sge, dmap->dm_segs[i].ds_addr); 933 } 934 935 /* terminate list */ 936 sge->sg_hdr |= htole32(MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | 937 MPII_SGE_FL_EOL); 938 939 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, 940 (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD : 941 BUS_DMASYNC_PREWRITE); 942 943 return (0); 944 } 945 946 static u_int32_t 947 mpii_read(struct mpii_softc *sc, bus_size_t r) 948 { 949 u_int32_t rv; 950 951 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, 952 BUS_SPACE_BARRIER_READ); 953 rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r); 954 955 DNPRINTF(MPII_D_RW, "%s: mpii_read %#lx %#x\n", DEVNAME(sc), r, rv); 956 957 return (rv); 958 } 959 960 static void 961 mpii_write(struct mpii_softc *sc, bus_size_t r, u_int32_t v) 962 { 963 DNPRINTF(MPII_D_RW, "%s: mpii_write %#lx %#x\n", DEVNAME(sc), r, v); 964 965 bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v); 966 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, 967 BUS_SPACE_BARRIER_WRITE); 968 } 969 970 971 static int 972 mpii_wait_eq(struct mpii_softc *sc, bus_size_t r, u_int32_t mask, 973 u_int32_t target) 974 { 975 int i; 976 977 DNPRINTF(MPII_D_RW, "%s: mpii_wait_eq %#lx %#x %#x\n", DEVNAME(sc), r, 978 mask, target); 979 980 for (i = 0; i < 15000; i++) { 981 if ((mpii_read(sc, r) & mask) == target) 982 return (0); 983 delay(1000); 984 } 985 986 return (1); 987 } 988 989 static int 990 mpii_wait_ne(struct mpii_softc *sc, bus_size_t r, u_int32_t mask, 991 u_int32_t target) 992 { 993 int i; 994 995 DNPRINTF(MPII_D_RW, "%s: mpii_wait_ne %#lx %#x %#x\n", DEVNAME(sc), r, 996 mask, target); 997 998 for (i = 0; i < 15000; i++) { 999 if ((mpii_read(sc, r) & mask) != target) 1000 return (0); 1001 delay(1000); 1002 } 1003 1004 return (1); 1005 } 1006 1007 static int 1008 mpii_init(struct mpii_softc *sc) 1009 { 1010 u_int32_t db; 1011 int i; 1012 1013 /* spin until the ioc leaves the reset state */ 1014 if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, 1015 MPII_DOORBELL_STATE_RESET) != 0) { 1016 DNPRINTF(MPII_D_MISC, "%s: mpii_init timeout waiting to leave " 1017 "reset state\n", DEVNAME(sc)); 1018 return (1); 1019 } 1020 1021 /* check current ownership */ 1022 db = mpii_read_db(sc); 1023 if ((db & MPII_DOORBELL_WHOINIT) == MPII_DOORBELL_WHOINIT_PCIPEER) { 1024 DNPRINTF(MPII_D_MISC, "%s: mpii_init initialised by pci peer\n", 1025 DEVNAME(sc)); 1026 return (0); 1027 } 1028 1029 for (i = 0; i < 5; i++) { 1030 switch (db & MPII_DOORBELL_STATE) { 1031 case MPII_DOORBELL_STATE_READY: 1032 DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is ready\n", 1033 DEVNAME(sc)); 1034 return (0); 1035 1036 case MPII_DOORBELL_STATE_OPER: 1037 DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is oper\n", 1038 DEVNAME(sc)); 1039 if (sc->sc_ioc_event_replay) 1040 mpii_reset_soft(sc); 1041 else 1042 mpii_reset_hard(sc); 1043 break; 1044 1045 case MPII_DOORBELL_STATE_FAULT: 1046 DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is being " 1047 "reset hard\n" , DEVNAME(sc)); 1048 mpii_reset_hard(sc); 1049 break; 1050 1051 case MPII_DOORBELL_STATE_RESET: 1052 DNPRINTF(MPII_D_MISC, "%s: mpii_init waiting to come " 1053 "out of reset\n", DEVNAME(sc)); 1054 if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, 1055 MPII_DOORBELL_STATE_RESET) != 0) 1056 return (1); 1057 break; 1058 } 1059 db = mpii_read_db(sc); 1060 } 1061 1062 return (1); 1063 } 1064 1065 static int 1066 mpii_reset_soft(struct mpii_softc *sc) 1067 { 1068 DNPRINTF(MPII_D_MISC, "%s: mpii_reset_soft\n", DEVNAME(sc)); 1069 1070 if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) { 1071 return (1); 1072 } 1073 1074 mpii_write_db(sc, 1075 MPII_DOORBELL_FUNCTION(MPII_FUNCTION_IOC_MESSAGE_UNIT_RESET)); 1076 1077 /* XXX LSI waits 15 sec */ 1078 if (mpii_wait_db_ack(sc) != 0) 1079 return (1); 1080 1081 /* XXX LSI waits 15 sec */ 1082 if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, 1083 MPII_DOORBELL_STATE_READY) != 0) 1084 return (1); 1085 1086 /* XXX wait for Sys2IOCDB bit to clear in HIS?? */ 1087 1088 return (0); 1089 } 1090 1091 static int 1092 mpii_reset_hard(struct mpii_softc *sc) 1093 { 1094 u_int16_t i; 1095 1096 DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard\n", DEVNAME(sc)); 1097 1098 mpii_write_intr(sc, 0); 1099 1100 /* enable diagnostic register */ 1101 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_FLUSH); 1102 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_1); 1103 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_2); 1104 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_3); 1105 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_4); 1106 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_5); 1107 mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_6); 1108 1109 delay(100); 1110 1111 if ((mpii_read(sc, MPII_HOSTDIAG) & MPII_HOSTDIAG_DWRE) == 0) { 1112 DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard failure to enable " 1113 "diagnostic read/write\n", DEVNAME(sc)); 1114 return(1); 1115 } 1116 1117 /* reset ioc */ 1118 mpii_write(sc, MPII_HOSTDIAG, MPII_HOSTDIAG_RESET_ADAPTER); 1119 1120 /* 240 milliseconds */ 1121 delay(240000); 1122 1123 1124 /* XXX this whole function should be more robust */ 1125 1126 /* XXX read the host diagnostic reg until reset adapter bit clears ? */ 1127 for (i = 0; i < 30000; i++) { 1128 if ((mpii_read(sc, MPII_HOSTDIAG) & 1129 MPII_HOSTDIAG_RESET_ADAPTER) == 0) 1130 break; 1131 delay(10000); 1132 } 1133 1134 /* disable diagnostic register */ 1135 mpii_write(sc, MPII_WRITESEQ, 0xff); 1136 1137 /* XXX what else? */ 1138 1139 DNPRINTF(MPII_D_MISC, "%s: done with mpii_reset_hard\n", DEVNAME(sc)); 1140 1141 return(0); 1142 } 1143 1144 static int 1145 mpii_handshake_send(struct mpii_softc *sc, void *buf, size_t dwords) 1146 { 1147 u_int32_t *query = buf; 1148 int i; 1149 1150 /* make sure the doorbell is not in use. */ 1151 if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) 1152 return (1); 1153 1154 /* clear pending doorbell interrupts */ 1155 if (mpii_read_intr(sc) & MPII_INTR_STATUS_IOC2SYSDB) 1156 mpii_write_intr(sc, 0); 1157 1158 /* 1159 * first write the doorbell with the handshake function and the 1160 * dword count. 1161 */ 1162 mpii_write_db(sc, MPII_DOORBELL_FUNCTION(MPII_FUNCTION_HANDSHAKE) | 1163 MPII_DOORBELL_DWORDS(dwords)); 1164 1165 /* 1166 * the doorbell used bit will be set because a doorbell function has 1167 * started. wait for the interrupt and then ack it. 1168 */ 1169 if (mpii_wait_db_int(sc) != 0) 1170 return (1); 1171 mpii_write_intr(sc, 0); 1172 1173 /* poll for the acknowledgement. */ 1174 if (mpii_wait_db_ack(sc) != 0) 1175 return (1); 1176 1177 /* write the query through the doorbell. */ 1178 for (i = 0; i < dwords; i++) { 1179 mpii_write_db(sc, htole32(query[i])); 1180 if (mpii_wait_db_ack(sc) != 0) 1181 return (1); 1182 } 1183 1184 return (0); 1185 } 1186 1187 static int 1188 mpii_handshake_recv_dword(struct mpii_softc *sc, u_int32_t *dword) 1189 { 1190 u_int16_t *words = (u_int16_t *)dword; 1191 int i; 1192 1193 for (i = 0; i < 2; i++) { 1194 if (mpii_wait_db_int(sc) != 0) 1195 return (1); 1196 words[i] = le16toh(mpii_read_db(sc) & MPII_DOORBELL_DATA_MASK); 1197 mpii_write_intr(sc, 0); 1198 } 1199 1200 return (0); 1201 } 1202 1203 static int 1204 mpii_handshake_recv(struct mpii_softc *sc, void *buf, size_t dwords) 1205 { 1206 struct mpii_msg_reply *reply = buf; 1207 u_int32_t *dbuf = buf, dummy; 1208 int i; 1209 1210 /* get the first dword so we can read the length out of the header. */ 1211 if (mpii_handshake_recv_dword(sc, &dbuf[0]) != 0) 1212 return (1); 1213 1214 DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dwords: %lu reply: %d\n", 1215 DEVNAME(sc), dwords, reply->msg_length); 1216 1217 /* 1218 * the total length, in dwords, is in the message length field of the 1219 * reply header. 1220 */ 1221 for (i = 1; i < MIN(dwords, reply->msg_length); i++) { 1222 if (mpii_handshake_recv_dword(sc, &dbuf[i]) != 0) 1223 return (1); 1224 } 1225 1226 /* if there's extra stuff to come off the ioc, discard it */ 1227 while (i++ < reply->msg_length) { 1228 if (mpii_handshake_recv_dword(sc, &dummy) != 0) 1229 return (1); 1230 DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dummy read: " 1231 "0x%08x\n", DEVNAME(sc), dummy); 1232 } 1233 1234 /* wait for the doorbell used bit to be reset and clear the intr */ 1235 if (mpii_wait_db_int(sc) != 0) 1236 return (1); 1237 1238 if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_INUSE, 0) != 0) 1239 return (1); 1240 1241 mpii_write_intr(sc, 0); 1242 1243 return (0); 1244 } 1245 1246 static void 1247 mpii_empty_done(struct mpii_ccb *ccb) 1248 { 1249 /* nothing to do */ 1250 } 1251 1252 static int 1253 mpii_iocfacts(struct mpii_softc *sc) 1254 { 1255 struct mpii_msg_iocfacts_request ifq; 1256 struct mpii_msg_iocfacts_reply ifp; 1257 int irs; 1258 int sge_size; 1259 u_int qdepth; 1260 1261 DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts\n", DEVNAME(sc)); 1262 1263 memset(&ifq, 0, sizeof(ifq)); 1264 memset(&ifp, 0, sizeof(ifp)); 1265 1266 ifq.function = MPII_FUNCTION_IOC_FACTS; 1267 1268 if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) { 1269 DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts send failed\n", 1270 DEVNAME(sc)); 1271 return (1); 1272 } 1273 1274 if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) { 1275 DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts recv failed\n", 1276 DEVNAME(sc)); 1277 return (1); 1278 } 1279 1280 sc->sc_ioc_number = ifp.ioc_number; 1281 sc->sc_vf_id = ifp.vf_id; 1282 1283 sc->sc_max_volumes = ifp.max_volumes; 1284 sc->sc_max_devices = ifp.max_volumes + le16toh(ifp.max_targets); 1285 1286 if (ISSET(le32toh(ifp.ioc_capabilities), 1287 MPII_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 1288 SET(sc->sc_flags, MPII_F_RAID); 1289 if (ISSET(le32toh(ifp.ioc_capabilities), 1290 MPII_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 1291 sc->sc_ioc_event_replay = 1; 1292 1293 sc->sc_max_cmds = MIN(le16toh(ifp.request_credit), 1294 MPII_REQUEST_CREDIT); 1295 1296 /* SAS3 and 3.5 controllers have different sgl layouts */ 1297 if (ifp.msg_version_maj == 2 && ((ifp.msg_version_min == 5) 1298 || (ifp.msg_version_min == 6))) 1299 SET(sc->sc_flags, MPII_F_SAS3); 1300 1301 /* 1302 * The host driver must ensure that there is at least one 1303 * unused entry in the Reply Free Queue. One way to ensure 1304 * that this requirement is met is to never allocate a number 1305 * of reply frames that is a multiple of 16. 1306 */ 1307 sc->sc_num_reply_frames = sc->sc_max_cmds + 32; 1308 if (!(sc->sc_num_reply_frames % 16)) 1309 sc->sc_num_reply_frames--; 1310 1311 /* must be multiple of 16 */ 1312 sc->sc_reply_post_qdepth = sc->sc_max_cmds + 1313 sc->sc_num_reply_frames; 1314 sc->sc_reply_post_qdepth += 16 - (sc->sc_reply_post_qdepth % 16); 1315 1316 qdepth = le16toh(ifp.max_reply_descriptor_post_queue_depth); 1317 if (sc->sc_reply_post_qdepth > qdepth) { 1318 sc->sc_reply_post_qdepth = qdepth; 1319 if (sc->sc_reply_post_qdepth < 16) { 1320 printf("%s: RDPQ is too shallow\n", DEVNAME(sc)); 1321 return (1); 1322 } 1323 sc->sc_max_cmds = sc->sc_reply_post_qdepth / 2 - 4; 1324 sc->sc_num_reply_frames = sc->sc_max_cmds + 4; 1325 } 1326 1327 sc->sc_reply_free_qdepth = sc->sc_num_reply_frames + 1328 16 - (sc->sc_num_reply_frames % 16); 1329 1330 /* 1331 * Our request frame for an I/O operation looks like this: 1332 * 1333 * +-------------------+ -. 1334 * | mpii_msg_scsi_io | | 1335 * +-------------------| | 1336 * | mpii_sge | | 1337 * + - - - - - - - - - + | 1338 * | ... | > ioc_request_frame_size 1339 * + - - - - - - - - - + | 1340 * | mpii_sge (tail) | | 1341 * + - - - - - - - - - + | 1342 * | mpii_sge (csge) | | --. 1343 * + - - - - - - - - - + -' | chain sge points to the next sge 1344 * | mpii_sge |<-----' 1345 * + - - - - - - - - - + 1346 * | ... | 1347 * + - - - - - - - - - + 1348 * | mpii_sge (tail) | 1349 * +-------------------+ 1350 * | | 1351 * ~~~~~~~~~~~~~~~~~~~~~ 1352 * | | 1353 * +-------------------+ <- sc_request_size - sizeof(scsi_sense_data) 1354 * | scsi_sense_data | 1355 * +-------------------+ 1356 */ 1357 1358 /* both sizes are in 32-bit words */ 1359 sc->sc_reply_size = ifp.reply_frame_size * 4; 1360 irs = le16toh(ifp.ioc_request_frame_size) * 4; 1361 sc->sc_request_size = MPII_REQUEST_SIZE; 1362 /* make sure we have enough space for scsi sense data */ 1363 if (irs > sc->sc_request_size) { 1364 sc->sc_request_size = irs + sizeof(struct scsi_sense_data); 1365 sc->sc_request_size += 16 - (sc->sc_request_size % 16); 1366 } 1367 1368 if (ISSET(sc->sc_flags, MPII_F_SAS3)) { 1369 sge_size = sizeof(struct mpii_ieee_sge); 1370 } else { 1371 sge_size = sizeof(struct mpii_sge); 1372 } 1373 1374 /* offset to the chain sge */ 1375 sc->sc_chain_sge = (irs - sizeof(struct mpii_msg_scsi_io)) / 1376 sge_size - 1; 1377 1378 /* 1379 * A number of simple scatter-gather elements we can fit into the 1380 * request buffer after the I/O command minus the chain element. 1381 */ 1382 sc->sc_max_sgl = (sc->sc_request_size - 1383 sizeof(struct mpii_msg_scsi_io) - sizeof(struct scsi_sense_data)) / 1384 sge_size - 1; 1385 1386 return (0); 1387 } 1388 1389 static int 1390 mpii_iocinit(struct mpii_softc *sc) 1391 { 1392 struct mpii_msg_iocinit_request iiq; 1393 struct mpii_msg_iocinit_reply iip; 1394 1395 DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit\n", DEVNAME(sc)); 1396 1397 memset(&iiq, 0, sizeof(iiq)); 1398 memset(&iip, 0, sizeof(iip)); 1399 1400 iiq.function = MPII_FUNCTION_IOC_INIT; 1401 iiq.whoinit = MPII_WHOINIT_HOST_DRIVER; 1402 1403 /* XXX JPG do something about vf_id */ 1404 iiq.vf_id = 0; 1405 1406 iiq.msg_version_maj = 0x02; 1407 iiq.msg_version_min = 0x00; 1408 1409 /* XXX JPG ensure compliance with some level and hard-code? */ 1410 iiq.hdr_version_unit = 0x00; 1411 iiq.hdr_version_dev = 0x00; 1412 1413 iiq.system_request_frame_size = htole16(sc->sc_request_size / 4); 1414 1415 iiq.reply_descriptor_post_queue_depth = 1416 htole16(sc->sc_reply_post_qdepth); 1417 1418 iiq.reply_free_queue_depth = htole16(sc->sc_reply_free_qdepth); 1419 1420 iiq.sense_buffer_address_high = 1421 htole32(MPII_DMA_DVA(sc->sc_requests) >> 32); 1422 1423 iiq.system_reply_address_high = 1424 htole32(MPII_DMA_DVA(sc->sc_replies) >> 32); 1425 1426 iiq.system_request_frame_base_address_lo = 1427 htole32(MPII_DMA_DVA(sc->sc_requests)); 1428 iiq.system_request_frame_base_address_hi = 1429 htole32(MPII_DMA_DVA(sc->sc_requests) >> 32); 1430 1431 iiq.reply_descriptor_post_queue_address_lo = 1432 htole32(MPII_DMA_DVA(sc->sc_reply_postq)); 1433 iiq.reply_descriptor_post_queue_address_hi = 1434 htole32(MPII_DMA_DVA(sc->sc_reply_postq) >> 32); 1435 1436 iiq.reply_free_queue_address_lo = 1437 htole32(MPII_DMA_DVA(sc->sc_reply_freeq)); 1438 iiq.reply_free_queue_address_hi = 1439 htole32(MPII_DMA_DVA(sc->sc_reply_freeq) >> 32); 1440 1441 if (mpii_handshake_send(sc, &iiq, dwordsof(iiq)) != 0) { 1442 DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit send failed\n", 1443 DEVNAME(sc)); 1444 return (1); 1445 } 1446 1447 if (mpii_handshake_recv(sc, &iip, dwordsof(iip)) != 0) { 1448 DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit recv failed\n", 1449 DEVNAME(sc)); 1450 return (1); 1451 } 1452 1453 DNPRINTF(MPII_D_MISC, "%s: function: 0x%02x msg_length: %d " 1454 "whoinit: 0x%02x\n", DEVNAME(sc), iip.function, 1455 iip.msg_length, iip.whoinit); 1456 DNPRINTF(MPII_D_MISC, "%s: msg_flags: 0x%02x\n", DEVNAME(sc), 1457 iip.msg_flags); 1458 DNPRINTF(MPII_D_MISC, "%s: vf_id: 0x%02x vp_id: 0x%02x\n", DEVNAME(sc), 1459 iip.vf_id, iip.vp_id); 1460 DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), 1461 le16toh(iip.ioc_status)); 1462 DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), 1463 le32toh(iip.ioc_loginfo)); 1464 1465 if (le16toh(iip.ioc_status) != MPII_IOCSTATUS_SUCCESS || 1466 le32toh(iip.ioc_loginfo)) 1467 return (1); 1468 1469 return (0); 1470 } 1471 1472 static void 1473 mpii_push_reply(struct mpii_softc *sc, struct mpii_rcb *rcb) 1474 { 1475 u_int32_t *rfp; 1476 u_int idx; 1477 1478 if (rcb == NULL) 1479 return; 1480 1481 mutex_enter(&sc->sc_reply_free_mtx); 1482 idx = sc->sc_reply_free_host_index; 1483 1484 rfp = MPII_DMA_KVA(sc->sc_reply_freeq); 1485 rfp[idx] = htole32(rcb->rcb_reply_dva); 1486 1487 if (++idx >= sc->sc_reply_free_qdepth) 1488 idx = 0; 1489 1490 mpii_write_reply_free(sc, sc->sc_reply_free_host_index = idx); 1491 mutex_exit(&sc->sc_reply_free_mtx); 1492 } 1493 1494 static int 1495 mpii_portfacts(struct mpii_softc *sc) 1496 { 1497 struct mpii_msg_portfacts_request *pfq; 1498 struct mpii_msg_portfacts_reply *pfp; 1499 struct mpii_ccb *ccb; 1500 int rv = 1; 1501 1502 DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts\n", DEVNAME(sc)); 1503 1504 ccb = mpii_get_ccb(sc); 1505 if (ccb == NULL) { 1506 DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts mpii_get_ccb fail\n", 1507 DEVNAME(sc)); 1508 return (rv); 1509 } 1510 1511 ccb->ccb_done = mpii_empty_done; 1512 pfq = ccb->ccb_cmd; 1513 1514 memset(pfq, 0, sizeof(*pfq)); 1515 1516 pfq->function = MPII_FUNCTION_PORT_FACTS; 1517 pfq->chain_offset = 0; 1518 pfq->msg_flags = 0; 1519 pfq->port_number = 0; 1520 pfq->vp_id = 0; 1521 pfq->vf_id = 0; 1522 1523 if (mpii_poll(sc, ccb) != 0) { 1524 DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts poll\n", 1525 DEVNAME(sc)); 1526 goto err; 1527 } 1528 1529 if (ccb->ccb_rcb == NULL) { 1530 DNPRINTF(MPII_D_MISC, "%s: empty portfacts reply\n", 1531 DEVNAME(sc)); 1532 goto err; 1533 } 1534 1535 pfp = ccb->ccb_rcb->rcb_reply; 1536 sc->sc_porttype = pfp->port_type; 1537 1538 mpii_push_reply(sc, ccb->ccb_rcb); 1539 rv = 0; 1540 err: 1541 mpii_put_ccb(sc, ccb); 1542 1543 return (rv); 1544 } 1545 1546 static void 1547 mpii_eventack(struct work *wk, void * cookie) 1548 { 1549 struct mpii_softc *sc = cookie; 1550 struct mpii_ccb *ccb; 1551 struct mpii_rcb *rcb, *next; 1552 struct mpii_msg_event_reply *enp; 1553 struct mpii_msg_eventack_request *eaq; 1554 1555 mutex_enter(&sc->sc_evt_ack_mtx); 1556 next = SIMPLEQ_FIRST(&sc->sc_evt_ack_queue); 1557 SIMPLEQ_INIT(&sc->sc_evt_ack_queue); 1558 mutex_exit(&sc->sc_evt_ack_mtx); 1559 1560 while (next != NULL) { 1561 rcb = next; 1562 next = SIMPLEQ_NEXT(rcb, rcb_link); 1563 1564 enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; 1565 1566 ccb = mpii_get_ccb(sc); 1567 ccb->ccb_done = mpii_eventack_done; 1568 eaq = ccb->ccb_cmd; 1569 1570 eaq->function = MPII_FUNCTION_EVENT_ACK; 1571 1572 eaq->event = enp->event; 1573 eaq->event_context = enp->event_context; 1574 1575 mpii_push_reply(sc, rcb); 1576 1577 mpii_start(sc, ccb); 1578 } 1579 } 1580 1581 static void 1582 mpii_eventack_done(struct mpii_ccb *ccb) 1583 { 1584 struct mpii_softc *sc = ccb->ccb_sc; 1585 1586 DNPRINTF(MPII_D_EVT, "%s: event ack done\n", DEVNAME(sc)); 1587 1588 mpii_push_reply(sc, ccb->ccb_rcb); 1589 mpii_put_ccb(sc, ccb); 1590 } 1591 1592 static int 1593 mpii_portenable(struct mpii_softc *sc) 1594 { 1595 struct mpii_msg_portenable_request *peq; 1596 struct mpii_ccb *ccb; 1597 1598 DNPRINTF(MPII_D_MISC, "%s: mpii_portenable\n", DEVNAME(sc)); 1599 1600 ccb = mpii_get_ccb(sc); 1601 if (ccb == NULL) { 1602 DNPRINTF(MPII_D_MISC, "%s: mpii_portenable ccb_get\n", 1603 DEVNAME(sc)); 1604 return (1); 1605 } 1606 1607 ccb->ccb_done = mpii_empty_done; 1608 peq = ccb->ccb_cmd; 1609 1610 peq->function = MPII_FUNCTION_PORT_ENABLE; 1611 peq->vf_id = sc->sc_vf_id; 1612 1613 if (mpii_poll(sc, ccb) != 0) { 1614 DNPRINTF(MPII_D_MISC, "%s: mpii_portenable poll\n", 1615 DEVNAME(sc)); 1616 return (1); 1617 } 1618 1619 if (ccb->ccb_rcb == NULL) { 1620 DNPRINTF(MPII_D_MISC, "%s: empty portenable reply\n", 1621 DEVNAME(sc)); 1622 return (1); 1623 } 1624 1625 mpii_push_reply(sc, ccb->ccb_rcb); 1626 mpii_put_ccb(sc, ccb); 1627 1628 return (0); 1629 } 1630 1631 static int 1632 mpii_cfg_coalescing(struct mpii_softc *sc) 1633 { 1634 struct mpii_cfg_hdr hdr; 1635 struct mpii_cfg_ioc_pg1 ipg; 1636 1637 hdr.page_version = 0; 1638 hdr.page_length = sizeof(ipg) / 4; 1639 hdr.page_number = 1; 1640 hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_IOC; 1641 memset(&ipg, 0, sizeof(ipg)); 1642 if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &ipg, 1643 sizeof(ipg)) != 0) { 1644 DNPRINTF(MPII_D_MISC, "%s: unable to fetch IOC page 1\n" 1645 "page 1\n", DEVNAME(sc)); 1646 return (1); 1647 } 1648 1649 if (!ISSET(le32toh(ipg.flags), MPII_CFG_IOC_1_REPLY_COALESCING)) 1650 return (0); 1651 1652 /* Disable coalescing */ 1653 CLR(ipg.flags, htole32(MPII_CFG_IOC_1_REPLY_COALESCING)); 1654 if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 0, &ipg, 1655 sizeof(ipg)) != 0) { 1656 DNPRINTF(MPII_D_MISC, "%s: unable to clear coalescing\n", 1657 DEVNAME(sc)); 1658 return (1); 1659 } 1660 1661 return (0); 1662 } 1663 1664 #define MPII_EVENT_MASKALL(enq) do { \ 1665 enq->event_masks[0] = 0xffffffff; \ 1666 enq->event_masks[1] = 0xffffffff; \ 1667 enq->event_masks[2] = 0xffffffff; \ 1668 enq->event_masks[3] = 0xffffffff; \ 1669 } while (0) 1670 1671 #define MPII_EVENT_UNMASK(enq, evt) do { \ 1672 enq->event_masks[evt / 32] &= \ 1673 htole32(~(1 << (evt % 32))); \ 1674 } while (0) 1675 1676 static int 1677 mpii_eventnotify(struct mpii_softc *sc) 1678 { 1679 struct mpii_msg_event_request *enq; 1680 struct mpii_ccb *ccb; 1681 char wkname[15]; 1682 1683 ccb = mpii_get_ccb(sc); 1684 if (ccb == NULL) { 1685 DNPRINTF(MPII_D_MISC, "%s: mpii_eventnotify ccb_get\n", 1686 DEVNAME(sc)); 1687 return (1); 1688 } 1689 1690 SIMPLEQ_INIT(&sc->sc_evt_sas_queue); 1691 mutex_init(&sc->sc_evt_sas_mtx, MUTEX_DEFAULT, IPL_BIO); 1692 snprintf(wkname, sizeof(wkname), "%ssas", DEVNAME(sc)); 1693 if (workqueue_create(&sc->sc_evt_sas_wq, wkname, 1694 mpii_event_sas_work, sc, PRI_NONE, IPL_BIO, WQ_MPSAFE) != 0) { 1695 mpii_put_ccb(sc, ccb); 1696 aprint_error_dev(sc->sc_dev, 1697 "can't create %s workqueue\n", wkname); 1698 return 1; 1699 } 1700 1701 SIMPLEQ_INIT(&sc->sc_evt_ack_queue); 1702 mutex_init(&sc->sc_evt_ack_mtx, MUTEX_DEFAULT, IPL_BIO); 1703 snprintf(wkname, sizeof(wkname), "%sevt", DEVNAME(sc)); 1704 if (workqueue_create(&sc->sc_evt_ack_wq, wkname, 1705 mpii_eventack, sc, PRI_NONE, IPL_BIO, WQ_MPSAFE) != 0) { 1706 mpii_put_ccb(sc, ccb); 1707 aprint_error_dev(sc->sc_dev, 1708 "can't create %s workqueue\n", wkname); 1709 return 1; 1710 } 1711 1712 ccb->ccb_done = mpii_eventnotify_done; 1713 enq = ccb->ccb_cmd; 1714 1715 enq->function = MPII_FUNCTION_EVENT_NOTIFICATION; 1716 1717 /* 1718 * Enable reporting of the following events: 1719 * 1720 * MPII_EVENT_SAS_DISCOVERY 1721 * MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST 1722 * MPII_EVENT_SAS_DEVICE_STATUS_CHANGE 1723 * MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE 1724 * MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST 1725 * MPII_EVENT_IR_VOLUME 1726 * MPII_EVENT_IR_PHYSICAL_DISK 1727 * MPII_EVENT_IR_OPERATION_STATUS 1728 */ 1729 1730 MPII_EVENT_MASKALL(enq); 1731 MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DISCOVERY); 1732 MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 1733 MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DEVICE_STATUS_CHANGE); 1734 MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 1735 MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST); 1736 MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_VOLUME); 1737 MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_PHYSICAL_DISK); 1738 MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_OPERATION_STATUS); 1739 1740 mpii_start(sc, ccb); 1741 1742 return (0); 1743 } 1744 1745 static void 1746 mpii_eventnotify_done(struct mpii_ccb *ccb) 1747 { 1748 struct mpii_softc *sc = ccb->ccb_sc; 1749 struct mpii_rcb *rcb = ccb->ccb_rcb; 1750 1751 DNPRINTF(MPII_D_EVT, "%s: mpii_eventnotify_done\n", DEVNAME(sc)); 1752 1753 mpii_put_ccb(sc, ccb); 1754 mpii_event_process(sc, rcb); 1755 } 1756 1757 static void 1758 mpii_event_raid(struct mpii_softc *sc, struct mpii_msg_event_reply *enp) 1759 { 1760 struct mpii_evt_ir_cfg_change_list *ccl; 1761 struct mpii_evt_ir_cfg_element *ce; 1762 struct mpii_device *dev; 1763 u_int16_t type; 1764 int i; 1765 1766 ccl = (struct mpii_evt_ir_cfg_change_list *)(enp + 1); 1767 if (ccl->num_elements == 0) 1768 return; 1769 1770 if (ISSET(le32toh(ccl->flags), MPII_EVT_IR_CFG_CHANGE_LIST_FOREIGN)) { 1771 /* bail on foreign configurations */ 1772 return; 1773 } 1774 1775 ce = (struct mpii_evt_ir_cfg_element *)(ccl + 1); 1776 1777 for (i = 0; i < ccl->num_elements; i++, ce++) { 1778 type = (le16toh(ce->element_flags) & 1779 MPII_EVT_IR_CFG_ELEMENT_TYPE_MASK); 1780 1781 switch (type) { 1782 case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME: 1783 switch (ce->reason_code) { 1784 case MPII_EVT_IR_CFG_ELEMENT_RC_ADDED: 1785 case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_CREATED: 1786 dev = malloc(sizeof(*dev), M_DEVBUF, 1787 M_WAITOK | M_ZERO); 1788 mutex_enter(&sc->sc_devs_mtx); 1789 if (mpii_find_dev(sc, 1790 le16toh(ce->vol_dev_handle))) { 1791 mutex_exit(&sc->sc_devs_mtx); 1792 free(dev, M_DEVBUF); 1793 printf("%s: device %#x is already " 1794 "configured\n", DEVNAME(sc), 1795 le16toh(ce->vol_dev_handle)); 1796 break; 1797 } 1798 SET(dev->flags, MPII_DF_VOLUME); 1799 dev->slot = sc->sc_vd_id_low; 1800 dev->dev_handle = le16toh(ce->vol_dev_handle); 1801 if (mpii_insert_dev(sc, dev)) { 1802 mutex_exit(&sc->sc_devs_mtx); 1803 free(dev, M_DEVBUF); 1804 break; 1805 } 1806 sc->sc_vd_count++; 1807 mutex_exit(&sc->sc_devs_mtx); 1808 break; 1809 case MPII_EVT_IR_CFG_ELEMENT_RC_REMOVED: 1810 case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_DELETED: 1811 mutex_enter(&sc->sc_devs_mtx); 1812 if (!(dev = mpii_find_dev(sc, 1813 le16toh(ce->vol_dev_handle)))) { 1814 mutex_exit(&sc->sc_devs_mtx); 1815 break; 1816 } 1817 mpii_remove_dev(sc, dev); 1818 sc->sc_vd_count--; 1819 mutex_exit(&sc->sc_devs_mtx); 1820 break; 1821 } 1822 break; 1823 case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME_DISK: 1824 if (ce->reason_code == 1825 MPII_EVT_IR_CFG_ELEMENT_RC_PD_CREATED || 1826 ce->reason_code == 1827 MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) { 1828 /* there should be an underlying sas drive */ 1829 mutex_enter(&sc->sc_devs_mtx); 1830 if (!(dev = mpii_find_dev(sc, 1831 le16toh(ce->phys_disk_dev_handle)))) { 1832 mutex_exit(&sc->sc_devs_mtx); 1833 break; 1834 } 1835 /* promoted from a hot spare? */ 1836 CLR(dev->flags, MPII_DF_HOT_SPARE); 1837 SET(dev->flags, MPII_DF_VOLUME_DISK | 1838 MPII_DF_HIDDEN); 1839 mutex_exit(&sc->sc_devs_mtx); 1840 } 1841 break; 1842 case MPII_EVT_IR_CFG_ELEMENT_TYPE_HOT_SPARE: 1843 if (ce->reason_code == 1844 MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) { 1845 /* there should be an underlying sas drive */ 1846 mutex_enter(&sc->sc_devs_mtx); 1847 if (!(dev = mpii_find_dev(sc, 1848 le16toh(ce->phys_disk_dev_handle)))) { 1849 mutex_exit(&sc->sc_devs_mtx); 1850 break; 1851 } 1852 SET(dev->flags, MPII_DF_HOT_SPARE | 1853 MPII_DF_HIDDEN); 1854 mutex_exit(&sc->sc_devs_mtx); 1855 } 1856 break; 1857 } 1858 } 1859 } 1860 1861 static void 1862 mpii_event_sas(struct mpii_softc *sc, struct mpii_rcb *rcb) 1863 { 1864 struct mpii_msg_event_reply *enp; 1865 struct mpii_evt_sas_tcl *tcl; 1866 struct mpii_evt_phy_entry *pe; 1867 struct mpii_device *dev; 1868 int i; 1869 u_int16_t handle; 1870 int need_queue = 0; 1871 1872 enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; 1873 DNPRINTF(MPII_D_EVT, "%s: mpii_event_sas 0x%x\n", 1874 DEVNAME(sc), le16toh(enp->event)); 1875 KASSERT(le16toh(enp->event) == MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 1876 1877 tcl = (struct mpii_evt_sas_tcl *)(enp + 1); 1878 pe = (struct mpii_evt_phy_entry *)(tcl + 1); 1879 1880 for (i = 0; i < tcl->num_entries; i++, pe++) { 1881 DNPRINTF(MPII_D_EVT, "%s: sas change %d stat %d h %d slot %d phy %d enc %d expand %d\n", 1882 DEVNAME(sc), i, pe->phy_status, 1883 le16toh(pe->dev_handle), 1884 sc->sc_pd_id_start + tcl->start_phy_num + i, 1885 tcl->start_phy_num + i, le16toh(tcl->enclosure_handle), le16toh(tcl->expander_handle)); 1886 1887 switch (pe->phy_status & MPII_EVENT_SAS_TOPO_PS_RC_MASK) { 1888 case MPII_EVENT_SAS_TOPO_PS_RC_ADDED: 1889 handle = le16toh(pe->dev_handle); 1890 DNPRINTF(MPII_D_EVT, "%s: sas add handle %d\n", 1891 DEVNAME(sc), handle); 1892 dev = malloc(sizeof(*dev), M_DEVBUF, M_WAITOK | M_ZERO); 1893 mutex_enter(&sc->sc_devs_mtx); 1894 if (mpii_find_dev(sc, handle)) { 1895 mutex_exit(&sc->sc_devs_mtx); 1896 free(dev, M_DEVBUF); 1897 printf("%s: device %#x is already " 1898 "configured\n", DEVNAME(sc), handle); 1899 break; 1900 } 1901 1902 dev->slot = sc->sc_pd_id_start + tcl->start_phy_num + i; 1903 dev->dev_handle = handle; 1904 dev->phy_num = tcl->start_phy_num + i; 1905 if (tcl->enclosure_handle) 1906 dev->physical_port = tcl->physical_port; 1907 dev->enclosure = le16toh(tcl->enclosure_handle); 1908 dev->expander = le16toh(tcl->expander_handle); 1909 1910 if (mpii_insert_dev(sc, dev)) { 1911 mutex_exit(&sc->sc_devs_mtx); 1912 free(dev, M_DEVBUF); 1913 break; 1914 } 1915 printf("%s: physical device inserted in slot %d\n", 1916 DEVNAME(sc), dev->slot); 1917 mutex_exit(&sc->sc_devs_mtx); 1918 break; 1919 1920 case MPII_EVENT_SAS_TOPO_PS_RC_MISSING: 1921 /* defer to workqueue thread */ 1922 need_queue++; 1923 break; 1924 } 1925 } 1926 1927 if (need_queue) { 1928 bool start_wk; 1929 mutex_enter(&sc->sc_evt_sas_mtx); 1930 start_wk = (SIMPLEQ_FIRST(&sc->sc_evt_sas_queue) == 0); 1931 SIMPLEQ_INSERT_TAIL(&sc->sc_evt_sas_queue, rcb, rcb_link); 1932 if (start_wk) { 1933 workqueue_enqueue(sc->sc_evt_sas_wq, 1934 &sc->sc_evt_sas_work, NULL); 1935 } 1936 mutex_exit(&sc->sc_evt_sas_mtx); 1937 } else 1938 mpii_event_done(sc, rcb); 1939 } 1940 1941 static void 1942 mpii_event_sas_work(struct work *wq, void *xsc) 1943 { 1944 struct mpii_softc *sc = xsc; 1945 struct mpii_rcb *rcb, *next; 1946 struct mpii_msg_event_reply *enp; 1947 struct mpii_evt_sas_tcl *tcl; 1948 struct mpii_evt_phy_entry *pe; 1949 struct mpii_device *dev; 1950 int i; 1951 1952 mutex_enter(&sc->sc_evt_sas_mtx); 1953 next = SIMPLEQ_FIRST(&sc->sc_evt_sas_queue); 1954 SIMPLEQ_INIT(&sc->sc_evt_sas_queue); 1955 mutex_exit(&sc->sc_evt_sas_mtx); 1956 1957 while (next != NULL) { 1958 rcb = next; 1959 next = SIMPLEQ_NEXT(rcb, rcb_link); 1960 1961 enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; 1962 DNPRINTF(MPII_D_EVT, "%s: mpii_event_sas_work 0x%x\n", 1963 DEVNAME(sc), le16toh(enp->event)); 1964 KASSERT(le16toh(enp->event) == MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 1965 tcl = (struct mpii_evt_sas_tcl *)(enp + 1); 1966 pe = (struct mpii_evt_phy_entry *)(tcl + 1); 1967 1968 for (i = 0; i < tcl->num_entries; i++, pe++) { 1969 DNPRINTF(MPII_D_EVT, "%s: sas change %d stat %d h %d slot %d phy %d enc %d expand %d\n", 1970 DEVNAME(sc), i, pe->phy_status, 1971 le16toh(pe->dev_handle), 1972 sc->sc_pd_id_start + tcl->start_phy_num + i, 1973 tcl->start_phy_num + i, le16toh(tcl->enclosure_handle), le16toh(tcl->expander_handle)); 1974 1975 switch (pe->phy_status & MPII_EVENT_SAS_TOPO_PS_RC_MASK) { 1976 case MPII_EVENT_SAS_TOPO_PS_RC_ADDED: 1977 /* already handled */ 1978 break; 1979 1980 case MPII_EVENT_SAS_TOPO_PS_RC_MISSING: 1981 mutex_enter(&sc->sc_devs_mtx); 1982 dev = mpii_find_dev(sc, le16toh(pe->dev_handle)); 1983 if (dev == NULL) { 1984 mutex_exit(&sc->sc_devs_mtx); 1985 break; 1986 } 1987 1988 printf( 1989 "%s: physical device removed from slot %d\n", 1990 DEVNAME(sc), dev->slot); 1991 mpii_remove_dev(sc, dev); 1992 mutex_exit(&sc->sc_devs_mtx); 1993 mpii_sas_remove_device(sc, dev->dev_handle); 1994 if (!ISSET(dev->flags, MPII_DF_HIDDEN)) { 1995 scsipi_target_detach(&sc->sc_chan, 1996 dev->slot, 0, DETACH_FORCE); 1997 } 1998 1999 free(dev, M_DEVBUF); 2000 break; 2001 } 2002 } 2003 mpii_event_done(sc, rcb); 2004 } 2005 } 2006 2007 static void 2008 mpii_event_discovery(struct mpii_softc *sc, struct mpii_msg_event_reply *enp) 2009 { 2010 struct mpii_evt_sas_discovery *esd = 2011 (struct mpii_evt_sas_discovery *)(enp + 1); 2012 2013 if (esd->reason_code == MPII_EVENT_SAS_DISC_REASON_CODE_COMPLETED) { 2014 if (esd->discovery_status != 0) { 2015 printf("%s: sas discovery completed with status %#x\n", 2016 DEVNAME(sc), esd->discovery_status); 2017 } 2018 2019 } 2020 } 2021 2022 static void 2023 mpii_event_process(struct mpii_softc *sc, struct mpii_rcb *rcb) 2024 { 2025 struct mpii_msg_event_reply *enp; 2026 2027 enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; 2028 2029 DNPRINTF(MPII_D_EVT, "%s: mpii_event_process: %#x\n", DEVNAME(sc), 2030 le16toh(enp->event)); 2031 2032 switch (le16toh(enp->event)) { 2033 case MPII_EVENT_EVENT_CHANGE: 2034 /* should be properly ignored */ 2035 break; 2036 case MPII_EVENT_SAS_DISCOVERY: 2037 mpii_event_discovery(sc, enp); 2038 break; 2039 case MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 2040 mpii_event_sas(sc, rcb); 2041 return; 2042 case MPII_EVENT_SAS_DEVICE_STATUS_CHANGE: 2043 break; 2044 case MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 2045 break; 2046 case MPII_EVENT_IR_VOLUME: { 2047 struct mpii_evt_ir_volume *evd = 2048 (struct mpii_evt_ir_volume *)(enp + 1); 2049 struct mpii_device *dev; 2050 #if NBIO > 0 2051 const char *vol_states[] = { 2052 BIOC_SVINVALID_S, 2053 BIOC_SVOFFLINE_S, 2054 BIOC_SVBUILDING_S, 2055 BIOC_SVONLINE_S, 2056 BIOC_SVDEGRADED_S, 2057 BIOC_SVONLINE_S, 2058 }; 2059 #endif 2060 2061 if (cold) 2062 break; 2063 mutex_enter(&sc->sc_devs_mtx); 2064 dev = mpii_find_dev(sc, le16toh(evd->vol_dev_handle)); 2065 if (dev == NULL) { 2066 mutex_exit(&sc->sc_devs_mtx); 2067 break; 2068 } 2069 #if NBIO > 0 2070 if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATE_CHANGED) 2071 printf("%s: volume %d state changed from %s to %s\n", 2072 DEVNAME(sc), dev->slot - sc->sc_vd_id_low, 2073 vol_states[evd->prev_value], 2074 vol_states[evd->new_value]); 2075 #endif 2076 if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATUS_CHANGED && 2077 ISSET(evd->new_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC) && 2078 !ISSET(evd->prev_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) 2079 printf("%s: started resync on a volume %d\n", 2080 DEVNAME(sc), dev->slot - sc->sc_vd_id_low); 2081 } 2082 mutex_exit(&sc->sc_devs_mtx); 2083 break; 2084 case MPII_EVENT_IR_PHYSICAL_DISK: 2085 break; 2086 case MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST: 2087 mpii_event_raid(sc, enp); 2088 break; 2089 case MPII_EVENT_IR_OPERATION_STATUS: { 2090 struct mpii_evt_ir_status *evs = 2091 (struct mpii_evt_ir_status *)(enp + 1); 2092 struct mpii_device *dev; 2093 2094 mutex_enter(&sc->sc_devs_mtx); 2095 dev = mpii_find_dev(sc, le16toh(evs->vol_dev_handle)); 2096 if (dev != NULL && 2097 evs->operation == MPII_EVENT_IR_RAIDOP_RESYNC) 2098 dev->percent = evs->percent; 2099 mutex_exit(&sc->sc_devs_mtx); 2100 break; 2101 } 2102 default: 2103 DNPRINTF(MPII_D_EVT, "%s: unhandled event 0x%02x\n", 2104 DEVNAME(sc), le16toh(enp->event)); 2105 } 2106 2107 mpii_event_done(sc, rcb); 2108 } 2109 2110 static void 2111 mpii_event_done(struct mpii_softc *sc, struct mpii_rcb *rcb) 2112 { 2113 struct mpii_msg_event_reply *enp = rcb->rcb_reply; 2114 bool need_start; 2115 2116 if (enp->ack_required) { 2117 mutex_enter(&sc->sc_evt_ack_mtx); 2118 need_start = (SIMPLEQ_FIRST(&sc->sc_evt_ack_queue) == 0); 2119 SIMPLEQ_INSERT_TAIL(&sc->sc_evt_ack_queue, rcb, rcb_link); 2120 if (need_start) 2121 workqueue_enqueue(sc->sc_evt_ack_wq, 2122 &sc->sc_evt_ack_work, NULL); 2123 mutex_exit(&sc->sc_evt_ack_mtx); 2124 } else 2125 mpii_push_reply(sc, rcb); 2126 } 2127 2128 static void 2129 mpii_sas_remove_device(struct mpii_softc *sc, u_int16_t handle) 2130 { 2131 struct mpii_msg_scsi_task_request *stq; 2132 struct mpii_msg_sas_oper_request *soq; 2133 struct mpii_ccb *ccb; 2134 2135 ccb = mpii_get_ccb(sc); 2136 if (ccb == NULL) 2137 return; 2138 2139 stq = ccb->ccb_cmd; 2140 stq->function = MPII_FUNCTION_SCSI_TASK_MGMT; 2141 stq->task_type = MPII_SCSI_TASK_TARGET_RESET; 2142 stq->dev_handle = htole16(handle); 2143 2144 ccb->ccb_done = mpii_empty_done; 2145 mpii_wait(sc, ccb); 2146 2147 if (ccb->ccb_rcb != NULL) 2148 mpii_push_reply(sc, ccb->ccb_rcb); 2149 2150 /* reuse a ccb */ 2151 ccb->ccb_state = MPII_CCB_READY; 2152 ccb->ccb_rcb = NULL; 2153 2154 soq = ccb->ccb_cmd; 2155 memset(soq, 0, sizeof(*soq)); 2156 soq->function = MPII_FUNCTION_SAS_IO_UNIT_CONTROL; 2157 soq->operation = MPII_SAS_OP_REMOVE_DEVICE; 2158 soq->dev_handle = htole16(handle); 2159 2160 ccb->ccb_done = mpii_empty_done; 2161 mpii_wait(sc, ccb); 2162 if (ccb->ccb_rcb != NULL) 2163 mpii_push_reply(sc, ccb->ccb_rcb); 2164 2165 mpii_put_ccb(sc, ccb); 2166 } 2167 2168 static int 2169 mpii_board_info(struct mpii_softc *sc) 2170 { 2171 struct mpii_msg_iocfacts_request ifq; 2172 struct mpii_msg_iocfacts_reply ifp; 2173 struct mpii_cfg_manufacturing_pg0 mpg; 2174 struct mpii_cfg_hdr hdr; 2175 2176 memset(&ifq, 0, sizeof(ifq)); 2177 memset(&ifp, 0, sizeof(ifp)); 2178 2179 ifq.function = MPII_FUNCTION_IOC_FACTS; 2180 2181 if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) { 2182 DNPRINTF(MPII_D_MISC, "%s: failed to request ioc facts\n", 2183 DEVNAME(sc)); 2184 return (1); 2185 } 2186 2187 if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) { 2188 DNPRINTF(MPII_D_MISC, "%s: failed to receive ioc facts\n", 2189 DEVNAME(sc)); 2190 return (1); 2191 } 2192 2193 hdr.page_version = 0; 2194 hdr.page_length = sizeof(mpg) / 4; 2195 hdr.page_number = 0; 2196 hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_MANUFACTURING; 2197 memset(&mpg, 0, sizeof(mpg)); 2198 if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &mpg, 2199 sizeof(mpg)) != 0) { 2200 printf("%s: unable to fetch manufacturing page 0\n", 2201 DEVNAME(sc)); 2202 return (EINVAL); 2203 } 2204 2205 printf("%s: %s, firmware %u.%u.%u.%u%s, MPI %u.%u\n", DEVNAME(sc), 2206 mpg.board_name, ifp.fw_version_maj, ifp.fw_version_min, 2207 ifp.fw_version_unit, ifp.fw_version_dev, 2208 ISSET(sc->sc_flags, MPII_F_RAID) ? " IR" : "", 2209 ifp.msg_version_maj, ifp.msg_version_min); 2210 2211 return (0); 2212 } 2213 2214 static int 2215 mpii_target_map(struct mpii_softc *sc) 2216 { 2217 struct mpii_cfg_hdr hdr; 2218 struct mpii_cfg_ioc_pg8 ipg; 2219 int flags, pad = 0; 2220 2221 hdr.page_version = 0; 2222 hdr.page_length = sizeof(ipg) / 4; 2223 hdr.page_number = 8; 2224 hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_IOC; 2225 memset(&ipg, 0, sizeof(ipg)); 2226 if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &ipg, 2227 sizeof(ipg)) != 0) { 2228 printf("%s: unable to fetch ioc page 8\n", 2229 DEVNAME(sc)); 2230 return (EINVAL); 2231 } 2232 2233 if (le16toh(ipg.flags) & MPII_IOC_PG8_FLAGS_RESERVED_TARGETID_0) 2234 pad = 1; 2235 2236 flags = le16toh(ipg.ir_volume_mapping_flags) & 2237 MPII_IOC_PG8_IRFLAGS_VOLUME_MAPPING_MODE_MASK; 2238 if (ISSET(sc->sc_flags, MPII_F_RAID)) { 2239 if (flags == MPII_IOC_PG8_IRFLAGS_LOW_VOLUME_MAPPING) { 2240 sc->sc_vd_id_low += pad; 2241 pad = sc->sc_max_volumes; /* for sc_pd_id_start */ 2242 } else 2243 sc->sc_vd_id_low = sc->sc_max_devices - 2244 sc->sc_max_volumes; 2245 } 2246 2247 sc->sc_pd_id_start += pad; 2248 2249 return (0); 2250 } 2251 2252 static int 2253 mpii_req_cfg_header(struct mpii_softc *sc, u_int8_t type, u_int8_t number, 2254 u_int32_t address, int flags, void *p) 2255 { 2256 struct mpii_msg_config_request *cq; 2257 struct mpii_msg_config_reply *cp; 2258 struct mpii_ccb *ccb; 2259 struct mpii_cfg_hdr *hdr = p; 2260 struct mpii_ecfg_hdr *ehdr = p; 2261 int etype = 0; 2262 int rv = 0; 2263 2264 DNPRINTF(MPII_D_MISC, "%s: mpii_req_cfg_header type: %#x number: %x " 2265 "address: 0x%08x flags: 0x%x\n", DEVNAME(sc), type, number, 2266 address, flags); 2267 2268 ccb = mpii_get_ccb(sc); 2269 if (ccb == NULL) { 2270 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header ccb_get\n", 2271 DEVNAME(sc)); 2272 return (1); 2273 } 2274 2275 if (ISSET(flags, MPII_PG_EXTENDED)) { 2276 etype = type; 2277 type = MPII_CONFIG_REQ_PAGE_TYPE_EXTENDED; 2278 } 2279 2280 cq = ccb->ccb_cmd; 2281 2282 cq->function = MPII_FUNCTION_CONFIG; 2283 2284 cq->action = MPII_CONFIG_REQ_ACTION_PAGE_HEADER; 2285 2286 cq->config_header.page_number = number; 2287 cq->config_header.page_type = type; 2288 cq->ext_page_type = etype; 2289 cq->page_address = htole32(address); 2290 cq->page_buffer.sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | 2291 MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); 2292 2293 ccb->ccb_done = mpii_empty_done; 2294 if (ISSET(flags, MPII_PG_POLL)) { 2295 if (mpii_poll(sc, ccb) != 0) { 2296 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n", 2297 DEVNAME(sc)); 2298 return (1); 2299 } 2300 } else 2301 mpii_wait(sc, ccb); 2302 2303 if (ccb->ccb_rcb == NULL) { 2304 mpii_put_ccb(sc, ccb); 2305 return (1); 2306 } 2307 cp = ccb->ccb_rcb->rcb_reply; 2308 2309 DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x sgl_flags: 0x%02x " 2310 "msg_length: %d function: 0x%02x\n", DEVNAME(sc), cp->action, 2311 cp->sgl_flags, cp->msg_length, cp->function); 2312 DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x " 2313 "msg_flags: 0x%02x\n", DEVNAME(sc), 2314 le16toh(cp->ext_page_length), cp->ext_page_type, 2315 cp->msg_flags); 2316 DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), 2317 cp->vp_id, cp->vf_id); 2318 DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), 2319 le16toh(cp->ioc_status)); 2320 DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), 2321 le32toh(cp->ioc_loginfo)); 2322 DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d " 2323 "page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc), 2324 cp->config_header.page_version, 2325 cp->config_header.page_length, 2326 cp->config_header.page_number, 2327 cp->config_header.page_type); 2328 2329 if (le16toh(cp->ioc_status) != MPII_IOCSTATUS_SUCCESS) 2330 rv = 1; 2331 else if (ISSET(flags, MPII_PG_EXTENDED)) { 2332 memset(ehdr, 0, sizeof(*ehdr)); 2333 ehdr->page_version = cp->config_header.page_version; 2334 ehdr->page_number = cp->config_header.page_number; 2335 ehdr->page_type = cp->config_header.page_type; 2336 ehdr->ext_page_length = cp->ext_page_length; 2337 ehdr->ext_page_type = cp->ext_page_type; 2338 } else 2339 *hdr = cp->config_header; 2340 2341 mpii_push_reply(sc, ccb->ccb_rcb); 2342 mpii_put_ccb(sc, ccb); 2343 2344 return (rv); 2345 } 2346 2347 static int 2348 mpii_req_cfg_page(struct mpii_softc *sc, u_int32_t address, int flags, 2349 void *p, int read, void *page, size_t len) 2350 { 2351 struct mpii_msg_config_request *cq; 2352 struct mpii_msg_config_reply *cp; 2353 struct mpii_ccb *ccb; 2354 struct mpii_cfg_hdr *hdr = p; 2355 struct mpii_ecfg_hdr *ehdr = p; 2356 uintptr_t kva; 2357 int page_length; 2358 int rv = 0; 2359 2360 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page address: %d read: %d " 2361 "type: %x\n", DEVNAME(sc), address, read, hdr->page_type); 2362 2363 page_length = ISSET(flags, MPII_PG_EXTENDED) ? 2364 le16toh(ehdr->ext_page_length) : hdr->page_length; 2365 2366 if (len > sc->sc_request_size - sizeof(*cq) || len < page_length * 4) 2367 return (1); 2368 2369 ccb = mpii_get_ccb(sc); 2370 if (ccb == NULL) { 2371 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page ccb_get\n", 2372 DEVNAME(sc)); 2373 return (1); 2374 } 2375 2376 cq = ccb->ccb_cmd; 2377 2378 cq->function = MPII_FUNCTION_CONFIG; 2379 2380 cq->action = (read ? MPII_CONFIG_REQ_ACTION_PAGE_READ_CURRENT : 2381 MPII_CONFIG_REQ_ACTION_PAGE_WRITE_CURRENT); 2382 2383 if (ISSET(flags, MPII_PG_EXTENDED)) { 2384 cq->config_header.page_version = ehdr->page_version; 2385 cq->config_header.page_number = ehdr->page_number; 2386 cq->config_header.page_type = ehdr->page_type; 2387 cq->ext_page_len = ehdr->ext_page_length; 2388 cq->ext_page_type = ehdr->ext_page_type; 2389 } else 2390 cq->config_header = *hdr; 2391 cq->config_header.page_type &= MPII_CONFIG_REQ_PAGE_TYPE_MASK; 2392 cq->page_address = htole32(address); 2393 cq->page_buffer.sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | 2394 MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL | 2395 MPII_SGE_FL_SIZE_64 | (page_length * 4) | 2396 (read ? MPII_SGE_FL_DIR_IN : MPII_SGE_FL_DIR_OUT)); 2397 2398 /* bounce the page via the request space to avoid more bus_dma games */ 2399 mpii_dvatosge(&cq->page_buffer, ccb->ccb_cmd_dva + 2400 sizeof(struct mpii_msg_config_request)); 2401 2402 kva = (uintptr_t)ccb->ccb_cmd; 2403 kva += sizeof(struct mpii_msg_config_request); 2404 2405 if (!read) 2406 memcpy((void *)kva, page, len); 2407 2408 ccb->ccb_done = mpii_empty_done; 2409 if (ISSET(flags, MPII_PG_POLL)) { 2410 if (mpii_poll(sc, ccb) != 0) { 2411 DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n", 2412 DEVNAME(sc)); 2413 return (1); 2414 } 2415 } else 2416 mpii_wait(sc, ccb); 2417 2418 if (ccb->ccb_rcb == NULL) { 2419 mpii_put_ccb(sc, ccb); 2420 return (1); 2421 } 2422 cp = ccb->ccb_rcb->rcb_reply; 2423 2424 DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x msg_length: %d " 2425 "function: 0x%02x\n", DEVNAME(sc), cp->action, cp->msg_length, 2426 cp->function); 2427 DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x " 2428 "msg_flags: 0x%02x\n", DEVNAME(sc), 2429 le16toh(cp->ext_page_length), cp->ext_page_type, 2430 cp->msg_flags); 2431 DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), 2432 cp->vp_id, cp->vf_id); 2433 DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), 2434 le16toh(cp->ioc_status)); 2435 DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), 2436 le32toh(cp->ioc_loginfo)); 2437 DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d " 2438 "page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc), 2439 cp->config_header.page_version, 2440 cp->config_header.page_length, 2441 cp->config_header.page_number, 2442 cp->config_header.page_type); 2443 2444 if (le16toh(cp->ioc_status) != MPII_IOCSTATUS_SUCCESS) 2445 rv = 1; 2446 else if (read) 2447 memcpy(page, (void *)kva, len); 2448 2449 mpii_push_reply(sc, ccb->ccb_rcb); 2450 mpii_put_ccb(sc, ccb); 2451 2452 return (rv); 2453 } 2454 2455 static struct mpii_rcb * 2456 mpii_reply(struct mpii_softc *sc, struct mpii_reply_descr *rdp) 2457 { 2458 struct mpii_rcb *rcb = NULL; 2459 u_int32_t rfid; 2460 2461 KASSERT(mutex_owned(&sc->sc_rep_mtx)); 2462 DNPRINTF(MPII_D_INTR, "%s: mpii_reply\n", DEVNAME(sc)); 2463 2464 if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) == 2465 MPII_REPLY_DESCR_ADDRESS_REPLY) { 2466 rfid = (le32toh(rdp->frame_addr) - 2467 (u_int32_t)MPII_DMA_DVA(sc->sc_replies)) / 2468 sc->sc_reply_size; 2469 2470 bus_dmamap_sync(sc->sc_dmat, 2471 MPII_DMA_MAP(sc->sc_replies), sc->sc_reply_size * rfid, 2472 sc->sc_reply_size, BUS_DMASYNC_POSTREAD); 2473 2474 rcb = &sc->sc_rcbs[rfid]; 2475 } 2476 2477 memset(rdp, 0xff, sizeof(*rdp)); 2478 2479 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 2480 8 * sc->sc_reply_post_host_index, 8, 2481 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2482 2483 return (rcb); 2484 } 2485 2486 static struct mpii_dmamem * 2487 mpii_dmamem_alloc(struct mpii_softc *sc, size_t size) 2488 { 2489 struct mpii_dmamem *mdm; 2490 int nsegs; 2491 2492 mdm = malloc(sizeof(*mdm), M_DEVBUF, M_WAITOK | M_ZERO); 2493 mdm->mdm_size = size; 2494 2495 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 2496 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mdm->mdm_map) != 0) 2497 goto mdmfree; 2498 2499 if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mdm->mdm_seg, 2500 1, &nsegs, BUS_DMA_NOWAIT) != 0) 2501 goto destroy; 2502 2503 if (bus_dmamem_map(sc->sc_dmat, &mdm->mdm_seg, nsegs, size, 2504 &mdm->mdm_kva, BUS_DMA_NOWAIT) != 0) 2505 goto free; 2506 2507 if (bus_dmamap_load(sc->sc_dmat, mdm->mdm_map, mdm->mdm_kva, size, 2508 NULL, BUS_DMA_NOWAIT) != 0) 2509 goto unmap; 2510 2511 memset(mdm->mdm_kva, 0, size); 2512 2513 return (mdm); 2514 2515 unmap: 2516 bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, size); 2517 free: 2518 bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1); 2519 destroy: 2520 bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map); 2521 mdmfree: 2522 free(mdm, M_DEVBUF); 2523 2524 return (NULL); 2525 } 2526 2527 static void 2528 mpii_dmamem_free(struct mpii_softc *sc, struct mpii_dmamem *mdm) 2529 { 2530 DNPRINTF(MPII_D_MEM, "%s: mpii_dmamem_free %p\n", DEVNAME(sc), mdm); 2531 2532 bus_dmamap_unload(sc->sc_dmat, mdm->mdm_map); 2533 bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, mdm->mdm_size); 2534 bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1); 2535 bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map); 2536 free(mdm, M_DEVBUF); 2537 } 2538 2539 static int 2540 mpii_insert_dev(struct mpii_softc *sc, struct mpii_device *dev) 2541 { 2542 int slot; /* initial hint */ 2543 2544 KASSERT(mutex_owned(&sc->sc_devs_mtx)); 2545 DNPRINTF(MPII_D_EVT, "%s: mpii_insert_dev wants slot %d\n", 2546 DEVNAME(sc), dev->slot); 2547 if (dev == NULL || dev->slot < 0) 2548 return (1); 2549 slot = dev->slot; 2550 2551 while (slot < sc->sc_max_devices && sc->sc_devs[slot] != NULL) 2552 slot++; 2553 2554 if (slot >= sc->sc_max_devices) 2555 return (1); 2556 2557 DNPRINTF(MPII_D_EVT, "%s: mpii_insert_dev alloc slot %d\n", 2558 DEVNAME(sc), slot); 2559 2560 dev->slot = slot; 2561 sc->sc_devs[slot] = dev; 2562 2563 return (0); 2564 } 2565 2566 static int 2567 mpii_remove_dev(struct mpii_softc *sc, struct mpii_device *dev) 2568 { 2569 int i; 2570 2571 KASSERT(mutex_owned(&sc->sc_devs_mtx)); 2572 if (dev == NULL) 2573 return (1); 2574 2575 for (i = 0; i < sc->sc_max_devices; i++) { 2576 if (sc->sc_devs[i] == NULL) 2577 continue; 2578 2579 if (sc->sc_devs[i]->dev_handle == dev->dev_handle) { 2580 sc->sc_devs[i] = NULL; 2581 return (0); 2582 } 2583 } 2584 2585 return (1); 2586 } 2587 2588 static struct mpii_device * 2589 mpii_find_dev(struct mpii_softc *sc, u_int16_t handle) 2590 { 2591 int i; 2592 KASSERT(mutex_owned(&sc->sc_devs_mtx)); 2593 2594 for (i = 0; i < sc->sc_max_devices; i++) { 2595 if (sc->sc_devs[i] == NULL) 2596 continue; 2597 2598 if (sc->sc_devs[i]->dev_handle == handle) 2599 return (sc->sc_devs[i]); 2600 } 2601 2602 return (NULL); 2603 } 2604 2605 static int 2606 mpii_alloc_ccbs(struct mpii_softc *sc) 2607 { 2608 struct mpii_ccb *ccb; 2609 u_int8_t *cmd; 2610 int i; 2611 char wqname[16]; 2612 2613 SIMPLEQ_INIT(&sc->sc_ccb_free); 2614 SIMPLEQ_INIT(&sc->sc_ccb_tmos); 2615 mutex_init(&sc->sc_ccb_free_mtx, MUTEX_DEFAULT, IPL_BIO); 2616 cv_init(&sc->sc_ccb_free_cv, "mpii_ccbs"); 2617 mutex_init(&sc->sc_ssb_tmomtx, MUTEX_DEFAULT, IPL_BIO); 2618 snprintf(wqname, sizeof(wqname) - 1, "%sabrt", DEVNAME(sc)); 2619 workqueue_create(&sc->sc_ssb_tmowk, wqname, mpii_scsi_cmd_tmo_handler, 2620 sc, PRI_BIO, IPL_BIO, WQ_MPSAFE); 2621 if (sc->sc_ssb_tmowk == NULL) 2622 return 1; 2623 2624 sc->sc_ccbs = malloc((sc->sc_max_cmds-1) * sizeof(*ccb), 2625 M_DEVBUF, M_WAITOK | M_ZERO); 2626 sc->sc_requests = mpii_dmamem_alloc(sc, 2627 sc->sc_request_size * sc->sc_max_cmds); 2628 if (sc->sc_requests == NULL) { 2629 printf("%s: unable to allocate ccb dmamem\n", DEVNAME(sc)); 2630 goto free_ccbs; 2631 } 2632 cmd = MPII_DMA_KVA(sc->sc_requests); 2633 2634 /* 2635 * we have sc->sc_max_cmds system request message 2636 * frames, but smid zero cannot be used. so we then 2637 * have (sc->sc_max_cmds - 1) number of ccbs 2638 */ 2639 for (i = 1; i < sc->sc_max_cmds; i++) { 2640 ccb = &sc->sc_ccbs[i - 1]; 2641 2642 if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, sc->sc_max_sgl, 2643 MAXPHYS, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 2644 &ccb->ccb_dmamap) != 0) { 2645 printf("%s: unable to create dma map\n", DEVNAME(sc)); 2646 goto free_maps; 2647 } 2648 2649 ccb->ccb_sc = sc; 2650 mutex_init(&ccb->ccb_mtx, MUTEX_DEFAULT, IPL_BIO); 2651 cv_init(&ccb->ccb_cv, "mpiiexec"); 2652 2653 ccb->ccb_smid = htole16(i); 2654 ccb->ccb_offset = sc->sc_request_size * i; 2655 2656 ccb->ccb_cmd = &cmd[ccb->ccb_offset]; 2657 ccb->ccb_cmd_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_requests) + 2658 ccb->ccb_offset; 2659 2660 DNPRINTF(MPII_D_CCB, "%s: mpii_alloc_ccbs(%d) ccb: %p map: %p " 2661 "sc: %p smid: %#x offs: %#lx cmd: %p dva: %#lx\n", 2662 DEVNAME(sc), i, ccb, ccb->ccb_dmamap, ccb->ccb_sc, 2663 ccb->ccb_smid, ccb->ccb_offset, ccb->ccb_cmd, 2664 ccb->ccb_cmd_dva); 2665 2666 mpii_put_ccb(sc, ccb); 2667 } 2668 2669 return (0); 2670 2671 free_maps: 2672 while ((ccb = mpii_get_ccb(sc)) != NULL) 2673 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); 2674 2675 mpii_dmamem_free(sc, sc->sc_requests); 2676 free_ccbs: 2677 free(sc->sc_ccbs, M_DEVBUF); 2678 2679 return (1); 2680 } 2681 2682 static void 2683 mpii_put_ccb(struct mpii_softc *sc, struct mpii_ccb *ccb) 2684 { 2685 DNPRINTF(MPII_D_CCB, "%s: mpii_put_ccb %p\n", DEVNAME(sc), ccb); 2686 2687 ccb->ccb_state = MPII_CCB_FREE; 2688 ccb->ccb_cookie = NULL; 2689 ccb->ccb_done = NULL; 2690 ccb->ccb_rcb = NULL; 2691 memset(ccb->ccb_cmd, 0, sc->sc_request_size); 2692 2693 mutex_enter(&sc->sc_ccb_free_mtx); 2694 SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ccb, ccb_link); 2695 mutex_exit(&sc->sc_ccb_free_mtx); 2696 } 2697 2698 static struct mpii_ccb * 2699 mpii_get_ccb(struct mpii_softc *sc) 2700 { 2701 struct mpii_ccb *ccb; 2702 2703 mutex_enter(&sc->sc_ccb_free_mtx); 2704 ccb = SIMPLEQ_FIRST(&sc->sc_ccb_free); 2705 if (ccb != NULL) { 2706 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ccb_link); 2707 ccb->ccb_state = MPII_CCB_READY; 2708 KASSERT(ccb->ccb_sc == sc); 2709 } 2710 mutex_exit(&sc->sc_ccb_free_mtx); 2711 2712 DNPRINTF(MPII_D_CCB, "%s: mpii_get_ccb %p\n", DEVNAME(sc), ccb); 2713 2714 return (ccb); 2715 } 2716 2717 static int 2718 mpii_alloc_replies(struct mpii_softc *sc) 2719 { 2720 DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_replies\n", DEVNAME(sc)); 2721 2722 sc->sc_rcbs = malloc(sc->sc_num_reply_frames * sizeof(struct mpii_rcb), 2723 M_DEVBUF, M_WAITOK); 2724 2725 sc->sc_replies = mpii_dmamem_alloc(sc, sc->sc_reply_size * 2726 sc->sc_num_reply_frames); 2727 if (sc->sc_replies == NULL) { 2728 free(sc->sc_rcbs, M_DEVBUF); 2729 return (1); 2730 } 2731 2732 return (0); 2733 } 2734 2735 static void 2736 mpii_push_replies(struct mpii_softc *sc) 2737 { 2738 struct mpii_rcb *rcb; 2739 uintptr_t kva = (uintptr_t)MPII_DMA_KVA(sc->sc_replies); 2740 int i; 2741 2742 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 2743 0, sc->sc_reply_size * sc->sc_num_reply_frames, 2744 BUS_DMASYNC_PREREAD); 2745 2746 for (i = 0; i < sc->sc_num_reply_frames; i++) { 2747 rcb = &sc->sc_rcbs[i]; 2748 2749 rcb->rcb_reply = (void *)(kva + sc->sc_reply_size * i); 2750 rcb->rcb_reply_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) + 2751 sc->sc_reply_size * i; 2752 mpii_push_reply(sc, rcb); 2753 } 2754 } 2755 2756 static void 2757 mpii_start(struct mpii_softc *sc, struct mpii_ccb *ccb) 2758 { 2759 struct mpii_request_header *rhp; 2760 struct mpii_request_descr descr; 2761 #if defined(__LP64__) && 0 2762 u_long *rdp = (u_long *)&descr; 2763 #else 2764 u_int32_t *rdp = (u_int32_t *)&descr; 2765 #endif 2766 2767 DNPRINTF(MPII_D_RW, "%s: mpii_start %#lx\n", DEVNAME(sc), 2768 ccb->ccb_cmd_dva); 2769 2770 bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_requests), 2771 ccb->ccb_offset, sc->sc_request_size, 2772 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2773 2774 ccb->ccb_state = MPII_CCB_QUEUED; 2775 2776 rhp = ccb->ccb_cmd; 2777 2778 memset(&descr, 0, sizeof(descr)); 2779 2780 switch (rhp->function) { 2781 case MPII_FUNCTION_SCSI_IO_REQUEST: 2782 descr.request_flags = MPII_REQ_DESCR_SCSI_IO; 2783 descr.dev_handle = htole16(ccb->ccb_dev_handle); 2784 break; 2785 case MPII_FUNCTION_SCSI_TASK_MGMT: 2786 descr.request_flags = MPII_REQ_DESCR_HIGH_PRIORITY; 2787 break; 2788 default: 2789 descr.request_flags = MPII_REQ_DESCR_DEFAULT; 2790 } 2791 2792 descr.vf_id = sc->sc_vf_id; 2793 descr.smid = ccb->ccb_smid; 2794 2795 #if defined(__LP64__) && 0 2796 DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_LOW (0x%08x) write " 2797 "0x%08lx\n", DEVNAME(sc), MPII_REQ_DESCR_POST_LOW, *rdp); 2798 bus_space_write_raw_8(sc->sc_iot, sc->sc_ioh, 2799 MPII_REQ_DESCR_POST_LOW, *rdp); 2800 #else 2801 DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_LOW (0x%08x) write " 2802 "0x%04x\n", DEVNAME(sc), MPII_REQ_DESCR_POST_LOW, *rdp); 2803 2804 DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_HIGH (0x%08x) write " 2805 "0x%04x\n", DEVNAME(sc), MPII_REQ_DESCR_POST_HIGH, *(rdp+1)); 2806 2807 mutex_enter(&sc->sc_req_mtx); 2808 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 2809 MPII_REQ_DESCR_POST_LOW, rdp[0]); 2810 bus_space_barrier(sc->sc_iot, sc->sc_ioh, 2811 MPII_REQ_DESCR_POST_LOW, 8, BUS_SPACE_BARRIER_WRITE); 2812 2813 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 2814 MPII_REQ_DESCR_POST_HIGH, rdp[1]); 2815 bus_space_barrier(sc->sc_iot, sc->sc_ioh, 2816 MPII_REQ_DESCR_POST_LOW, 8, BUS_SPACE_BARRIER_WRITE); 2817 mutex_exit(&sc->sc_req_mtx); 2818 #endif 2819 } 2820 2821 static int 2822 mpii_poll(struct mpii_softc *sc, struct mpii_ccb *ccb) 2823 { 2824 void (*done)(struct mpii_ccb *); 2825 void *cookie; 2826 int rv = 1; 2827 2828 DNPRINTF(MPII_D_INTR, "%s: mpii_poll\n", DEVNAME(sc)); 2829 2830 done = ccb->ccb_done; 2831 cookie = ccb->ccb_cookie; 2832 2833 ccb->ccb_done = mpii_poll_done; 2834 ccb->ccb_cookie = &rv; 2835 2836 mpii_start(sc, ccb); 2837 2838 while (rv == 1) { 2839 /* avoid excessive polling */ 2840 if (mpii_reply_waiting(sc)) 2841 mpii_intr(sc); 2842 else 2843 delay(10); 2844 } 2845 2846 ccb->ccb_cookie = cookie; 2847 done(ccb); 2848 2849 return (0); 2850 } 2851 2852 static void 2853 mpii_poll_done(struct mpii_ccb *ccb) 2854 { 2855 int *rv = ccb->ccb_cookie; 2856 2857 *rv = 0; 2858 } 2859 2860 static int 2861 mpii_alloc_queues(struct mpii_softc *sc) 2862 { 2863 u_int32_t *rfp; 2864 int i; 2865 2866 DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_queues\n", DEVNAME(sc)); 2867 2868 mutex_init(&sc->sc_reply_free_mtx, MUTEX_DEFAULT, IPL_BIO); 2869 sc->sc_reply_freeq = mpii_dmamem_alloc(sc, 2870 sc->sc_reply_free_qdepth * sizeof(*rfp)); 2871 if (sc->sc_reply_freeq == NULL) 2872 return (1); 2873 rfp = MPII_DMA_KVA(sc->sc_reply_freeq); 2874 for (i = 0; i < sc->sc_num_reply_frames; i++) { 2875 rfp[i] = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) + 2876 sc->sc_reply_size * i; 2877 } 2878 2879 sc->sc_reply_postq = mpii_dmamem_alloc(sc, 2880 sc->sc_reply_post_qdepth * sizeof(struct mpii_reply_descr)); 2881 if (sc->sc_reply_postq == NULL) 2882 goto free_reply_freeq; 2883 sc->sc_reply_postq_kva = MPII_DMA_KVA(sc->sc_reply_postq); 2884 memset(sc->sc_reply_postq_kva, 0xff, sc->sc_reply_post_qdepth * 2885 sizeof(struct mpii_reply_descr)); 2886 2887 return (0); 2888 2889 free_reply_freeq: 2890 mpii_dmamem_free(sc, sc->sc_reply_freeq); 2891 return (1); 2892 } 2893 2894 static void 2895 mpii_init_queues(struct mpii_softc *sc) 2896 { 2897 DNPRINTF(MPII_D_MISC, "%s: mpii_init_queues\n", DEVNAME(sc)); 2898 2899 sc->sc_reply_free_host_index = sc->sc_reply_free_qdepth - 1; 2900 sc->sc_reply_post_host_index = 0; 2901 mpii_write_reply_free(sc, sc->sc_reply_free_host_index); 2902 mpii_write_reply_post(sc, sc->sc_reply_post_host_index); 2903 } 2904 2905 static void 2906 mpii_wait(struct mpii_softc *sc, struct mpii_ccb *ccb) 2907 { 2908 void (*done)(struct mpii_ccb *); 2909 void *cookie; 2910 2911 done = ccb->ccb_done; 2912 cookie = ccb->ccb_cookie; 2913 2914 ccb->ccb_done = mpii_wait_done; 2915 ccb->ccb_cookie = ccb; 2916 2917 /* XXX this will wait forever for the ccb to complete */ 2918 2919 mpii_start(sc, ccb); 2920 2921 mutex_enter(&ccb->ccb_mtx); 2922 while (ccb->ccb_cookie != NULL) 2923 cv_wait(&ccb->ccb_cv, &ccb->ccb_mtx); 2924 mutex_exit(&ccb->ccb_mtx); 2925 2926 ccb->ccb_cookie = cookie; 2927 done(ccb); 2928 } 2929 2930 static void 2931 mpii_wait_done(struct mpii_ccb *ccb) 2932 { 2933 mutex_enter(&ccb->ccb_mtx); 2934 ccb->ccb_cookie = NULL; 2935 cv_signal(&ccb->ccb_cv); 2936 mutex_exit(&ccb->ccb_mtx); 2937 } 2938 2939 static void 2940 mpii_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req, 2941 void *arg) 2942 { 2943 struct scsipi_periph *periph; 2944 struct scsipi_xfer *xs; 2945 struct scsipi_adapter *adapt = chan->chan_adapter; 2946 struct mpii_softc *sc = device_private(adapt->adapt_dev); 2947 struct mpii_ccb *ccb; 2948 struct mpii_msg_scsi_io *io; 2949 struct mpii_device *dev; 2950 int target, timeout, ret; 2951 u_int16_t dev_handle; 2952 2953 DNPRINTF(MPII_D_CMD, "%s: mpii_scsipi_request\n", DEVNAME(sc)); 2954 2955 switch (req) { 2956 case ADAPTER_REQ_GROW_RESOURCES: 2957 /* Not supported. */ 2958 return; 2959 case ADAPTER_REQ_SET_XFER_MODE: 2960 { 2961 struct scsipi_xfer_mode *xm = arg; 2962 xm->xm_mode = PERIPH_CAP_TQING; 2963 xm->xm_period = 0; 2964 xm->xm_offset = 0; 2965 scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm); 2966 return; 2967 } 2968 case ADAPTER_REQ_RUN_XFER: 2969 break; 2970 } 2971 2972 xs = arg; 2973 periph = xs->xs_periph; 2974 target = periph->periph_target; 2975 2976 if (xs->cmdlen > MPII_CDB_LEN) { 2977 DNPRINTF(MPII_D_CMD, "%s: CDB too big %d\n", 2978 DEVNAME(sc), xs->cmdlen); 2979 memset(&xs->sense, 0, sizeof(xs->sense)); 2980 xs->sense.scsi_sense.response_code = 2981 SSD_RCODE_VALID | SSD_RCODE_CURRENT; 2982 xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST; 2983 xs->sense.scsi_sense.asc = 0x20; 2984 xs->error = XS_SENSE; 2985 scsipi_done(xs); 2986 return; 2987 } 2988 2989 mutex_enter(&sc->sc_devs_mtx); 2990 if ((dev = sc->sc_devs[target]) == NULL) { 2991 mutex_exit(&sc->sc_devs_mtx); 2992 /* device no longer exists */ 2993 xs->error = XS_SELTIMEOUT; 2994 scsipi_done(xs); 2995 return; 2996 } 2997 dev_handle = dev->dev_handle; 2998 mutex_exit(&sc->sc_devs_mtx); 2999 3000 ccb = mpii_get_ccb(sc); 3001 if (ccb == NULL) { 3002 xs->error = XS_RESOURCE_SHORTAGE; 3003 scsipi_done(xs); 3004 return; 3005 } 3006 DNPRINTF(MPII_D_CMD, "%s: ccb_smid: %d xs->cmd->opcode: 0x%02x xs->xs_control: 0x%x\n", 3007 DEVNAME(sc), ccb->ccb_smid, xs->cmd->opcode, xs->xs_control); 3008 3009 ccb->ccb_cookie = xs; 3010 ccb->ccb_done = mpii_scsi_cmd_done; 3011 ccb->ccb_dev_handle = dev_handle; 3012 3013 io = ccb->ccb_cmd; 3014 memset(io, 0, sizeof(*io)); 3015 io->function = MPII_FUNCTION_SCSI_IO_REQUEST; 3016 io->sense_buffer_length = sizeof(xs->sense); 3017 io->sgl_offset0 = sizeof(struct mpii_msg_scsi_io) / 4; 3018 io->io_flags = htole16(xs->cmdlen); 3019 io->dev_handle = htole16(ccb->ccb_dev_handle); 3020 io->lun[0] = htobe16(periph->periph_lun); 3021 3022 switch (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT)) { 3023 case XS_CTL_DATA_IN: 3024 io->direction = MPII_SCSIIO_DIR_READ; 3025 break; 3026 case XS_CTL_DATA_OUT: 3027 io->direction = MPII_SCSIIO_DIR_WRITE; 3028 break; 3029 default: 3030 io->direction = MPII_SCSIIO_DIR_NONE; 3031 break; 3032 } 3033 3034 io->tagging = MPII_SCSIIO_ATTR_SIMPLE_Q; 3035 3036 memcpy(io->cdb, xs->cmd, xs->cmdlen); 3037 3038 io->data_length = htole32(xs->datalen); 3039 3040 /* sense data is at the end of a request */ 3041 io->sense_buffer_low_address = htole32(ccb->ccb_cmd_dva + 3042 sc->sc_request_size - sizeof(struct scsi_sense_data)); 3043 3044 if (ISSET(sc->sc_flags, MPII_F_SAS3)) 3045 ret = mpii_load_xs_sas3(ccb); 3046 else 3047 ret = mpii_load_xs(ccb); 3048 3049 if (ret != 0) { 3050 xs->error = XS_DRIVER_STUFFUP; 3051 goto done; 3052 } 3053 3054 if (xs->xs_control & XS_CTL_POLL) { 3055 if (mpii_poll(sc, ccb) != 0) { 3056 xs->error = XS_DRIVER_STUFFUP; 3057 goto done; 3058 } 3059 return; 3060 } 3061 timeout = mstohz(xs->timeout); 3062 if (timeout == 0) 3063 timeout = 1; 3064 callout_reset(&xs->xs_callout, timeout, mpii_scsi_cmd_tmo, ccb); 3065 mpii_start(sc, ccb); 3066 return; 3067 done: 3068 mpii_put_ccb(sc, ccb); 3069 scsipi_done(xs); 3070 } 3071 3072 static void 3073 mpii_scsi_cmd_tmo(void *xccb) 3074 { 3075 struct mpii_ccb *ccb = xccb; 3076 struct mpii_softc *sc = ccb->ccb_sc; 3077 bool start_work; 3078 3079 printf("%s: mpii_scsi_cmd_tmo\n", DEVNAME(sc)); 3080 3081 if (ccb->ccb_state == MPII_CCB_QUEUED) { 3082 mutex_enter(&sc->sc_ssb_tmomtx); 3083 start_work = (SIMPLEQ_FIRST(&sc->sc_ccb_tmos) == 0); 3084 ccb->ccb_state = MPII_CCB_TIMEOUT; 3085 SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_tmos, ccb, ccb_link); 3086 if (start_work) { 3087 workqueue_enqueue(sc->sc_ssb_tmowk, 3088 &sc->sc_ssb_tmowork, NULL); 3089 } 3090 mutex_exit(&sc->sc_ssb_tmomtx); 3091 } 3092 } 3093 3094 static void 3095 mpii_scsi_cmd_tmo_handler(struct work *wk, void *cookie) 3096 { 3097 struct mpii_softc *sc = cookie; 3098 struct mpii_ccb *next; 3099 struct mpii_ccb *ccb; 3100 struct mpii_ccb *tccb; 3101 struct mpii_msg_scsi_task_request *stq; 3102 3103 mutex_enter(&sc->sc_ssb_tmomtx); 3104 next = SIMPLEQ_FIRST(&sc->sc_ccb_tmos); 3105 SIMPLEQ_INIT(&sc->sc_ccb_tmos); 3106 mutex_exit(&sc->sc_ssb_tmomtx); 3107 3108 while (next != NULL) { 3109 ccb = next; 3110 next = SIMPLEQ_NEXT(ccb, ccb_link); 3111 if (ccb->ccb_state != MPII_CCB_TIMEOUT) 3112 continue; 3113 tccb = mpii_get_ccb(sc); 3114 stq = tccb->ccb_cmd; 3115 stq->function = MPII_FUNCTION_SCSI_TASK_MGMT; 3116 stq->task_type = MPII_SCSI_TASK_TARGET_RESET; 3117 stq->dev_handle = htole16(ccb->ccb_dev_handle); 3118 3119 tccb->ccb_done = mpii_scsi_cmd_tmo_done; 3120 mpii_wait(sc, tccb); 3121 } 3122 } 3123 3124 static void 3125 mpii_scsi_cmd_tmo_done(struct mpii_ccb *tccb) 3126 { 3127 mpii_put_ccb(tccb->ccb_sc, tccb); 3128 } 3129 3130 static u_int8_t 3131 map_scsi_status(u_int8_t mpii_scsi_status) 3132 { 3133 u_int8_t scsi_status; 3134 3135 switch (mpii_scsi_status) 3136 { 3137 case MPII_SCSIIO_STATUS_GOOD: 3138 scsi_status = SCSI_OK; 3139 break; 3140 3141 case MPII_SCSIIO_STATUS_CHECK_COND: 3142 scsi_status = SCSI_CHECK; 3143 break; 3144 3145 case MPII_SCSIIO_STATUS_BUSY: 3146 scsi_status = SCSI_BUSY; 3147 break; 3148 3149 case MPII_SCSIIO_STATUS_INTERMEDIATE: 3150 scsi_status = SCSI_INTERM; 3151 break; 3152 3153 case MPII_SCSIIO_STATUS_INTERMEDIATE_CONDMET: 3154 scsi_status = SCSI_INTERM; 3155 break; 3156 3157 case MPII_SCSIIO_STATUS_RESERVATION_CONFLICT: 3158 scsi_status = SCSI_RESV_CONFLICT; 3159 break; 3160 3161 case MPII_SCSIIO_STATUS_CMD_TERM: 3162 case MPII_SCSIIO_STATUS_TASK_ABORTED: 3163 scsi_status = SCSI_TERMINATED; 3164 break; 3165 3166 case MPII_SCSIIO_STATUS_TASK_SET_FULL: 3167 scsi_status = SCSI_QUEUE_FULL; 3168 break; 3169 3170 case MPII_SCSIIO_STATUS_ACA_ACTIVE: 3171 scsi_status = SCSI_ACA_ACTIVE; 3172 break; 3173 3174 default: 3175 /* XXX: for the lack of anything better and other than OK */ 3176 scsi_status = 0xFF; 3177 break; 3178 } 3179 3180 return scsi_status; 3181 } 3182 3183 static void 3184 mpii_scsi_cmd_done(struct mpii_ccb *ccb) 3185 { 3186 struct mpii_msg_scsi_io_error *sie; 3187 struct mpii_softc *sc = ccb->ccb_sc; 3188 struct scsipi_xfer *xs = ccb->ccb_cookie; 3189 struct scsi_sense_data *sense; 3190 bus_dmamap_t dmap = ccb->ccb_dmamap; 3191 bool timeout = 1; 3192 3193 callout_stop(&xs->xs_callout); 3194 if (ccb->ccb_state == MPII_CCB_TIMEOUT) 3195 timeout = 1; 3196 ccb->ccb_state = MPII_CCB_READY; 3197 3198 if (xs->datalen != 0) { 3199 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, 3200 (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD : 3201 BUS_DMASYNC_POSTWRITE); 3202 3203 bus_dmamap_unload(sc->sc_dmat, dmap); 3204 } 3205 3206 KASSERT(xs->error == XS_NOERROR); 3207 KASSERT(xs->resid == xs->datalen); 3208 KASSERT(xs->status == SCSI_OK); 3209 3210 if (ccb->ccb_rcb == NULL) { 3211 /* no scsi error, we're ok so drop out early */ 3212 xs->resid = 0; 3213 goto done; 3214 } 3215 3216 sie = ccb->ccb_rcb->rcb_reply; 3217 3218 DNPRINTF(MPII_D_CMD, "%s: mpii_scsi_cmd_done xs cmd: 0x%02x len: %d " 3219 "flags 0x%x\n", DEVNAME(sc), xs->cmd->opcode, xs->datalen, 3220 xs->xs_control); 3221 DNPRINTF(MPII_D_CMD, "%s: dev_handle: %d msg_length: %d " 3222 "function: 0x%02x\n", DEVNAME(sc), le16toh(sie->dev_handle), 3223 sie->msg_length, sie->function); 3224 DNPRINTF(MPII_D_CMD, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), 3225 sie->vp_id, sie->vf_id); 3226 DNPRINTF(MPII_D_CMD, "%s: scsi_status: 0x%02x scsi_state: 0x%02x " 3227 "ioc_status: 0x%04x\n", DEVNAME(sc), sie->scsi_status, 3228 sie->scsi_state, le16toh(sie->ioc_status)); 3229 DNPRINTF(MPII_D_CMD, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), 3230 le32toh(sie->ioc_loginfo)); 3231 DNPRINTF(MPII_D_CMD, "%s: transfer_count: %d\n", DEVNAME(sc), 3232 le32toh(sie->transfer_count)); 3233 DNPRINTF(MPII_D_CMD, "%s: sense_count: %d\n", DEVNAME(sc), 3234 le32toh(sie->sense_count)); 3235 DNPRINTF(MPII_D_CMD, "%s: response_info: 0x%08x\n", DEVNAME(sc), 3236 le32toh(sie->response_info)); 3237 DNPRINTF(MPII_D_CMD, "%s: task_tag: 0x%04x\n", DEVNAME(sc), 3238 le16toh(sie->task_tag)); 3239 DNPRINTF(MPII_D_CMD, "%s: bidirectional_transfer_count: 0x%08x\n", 3240 DEVNAME(sc), le32toh(sie->bidirectional_transfer_count)); 3241 3242 xs->status = map_scsi_status(sie->scsi_status); 3243 3244 switch (le16toh(sie->ioc_status) & MPII_IOCSTATUS_MASK) { 3245 case MPII_IOCSTATUS_SCSI_DATA_UNDERRUN: 3246 switch(sie->scsi_status) { 3247 case MPII_SCSIIO_STATUS_CHECK_COND: 3248 xs->error = XS_SENSE; 3249 /* FALLTHROUGH */ 3250 case MPII_SCSIIO_STATUS_GOOD: 3251 xs->resid = xs->datalen - le32toh(sie->transfer_count); 3252 break; 3253 default: 3254 xs->error = XS_DRIVER_STUFFUP; 3255 break; 3256 } 3257 break; 3258 3259 case MPII_IOCSTATUS_SUCCESS: 3260 case MPII_IOCSTATUS_SCSI_RECOVERED_ERROR: 3261 switch (sie->scsi_status) { 3262 case MPII_SCSIIO_STATUS_GOOD: 3263 xs->resid = 0; 3264 break; 3265 3266 case MPII_SCSIIO_STATUS_CHECK_COND: 3267 xs->resid = 0; 3268 xs->error = XS_SENSE; 3269 break; 3270 3271 case MPII_SCSIIO_STATUS_BUSY: 3272 case MPII_SCSIIO_STATUS_TASK_SET_FULL: 3273 xs->error = XS_BUSY; 3274 break; 3275 3276 default: 3277 xs->error = XS_DRIVER_STUFFUP; 3278 } 3279 break; 3280 3281 case MPII_IOCSTATUS_BUSY: 3282 case MPII_IOCSTATUS_INSUFFICIENT_RESOURCES: 3283 xs->error = XS_BUSY; 3284 break; 3285 3286 case MPII_IOCSTATUS_SCSI_IOC_TERMINATED: 3287 case MPII_IOCSTATUS_SCSI_TASK_TERMINATED: 3288 xs->error = timeout ? XS_TIMEOUT : XS_RESET; 3289 break; 3290 3291 case MPII_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 3292 case MPII_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 3293 xs->error = XS_SELTIMEOUT; 3294 break; 3295 3296 default: 3297 xs->error = XS_DRIVER_STUFFUP; 3298 break; 3299 } 3300 3301 sense = (struct scsi_sense_data *)((uintptr_t)ccb->ccb_cmd + 3302 sc->sc_request_size - sizeof(*sense)); 3303 if (sie->scsi_state & MPII_SCSIIO_STATE_AUTOSENSE_VALID) 3304 memcpy(&xs->sense, sense, sizeof(xs->sense)); 3305 3306 mpii_push_reply(sc, ccb->ccb_rcb); 3307 3308 done: 3309 mpii_put_ccb(sc, ccb); 3310 3311 DNPRINTF(MPII_D_CMD, "%s: xs err: %d status: %#x len: %d resid: %d\n", 3312 DEVNAME(sc), xs->error, xs->status, xs->datalen, xs->resid); 3313 3314 scsipi_done(xs); 3315 } 3316 3317 #if 0 3318 int 3319 mpii_scsi_ioctl(struct scsi_link *link, u_long cmd, void *addr, int flag) 3320 { 3321 struct mpii_softc *sc = (struct mpii_softc *)link->adapter_softc; 3322 struct mpii_device *dev = sc->sc_devs[link->target]; 3323 3324 DNPRINTF(MPII_D_IOCTL, "%s: mpii_scsi_ioctl\n", DEVNAME(sc)); 3325 3326 switch (cmd) { 3327 case DIOCGCACHE: 3328 case DIOCSCACHE: 3329 if (dev != NULL && ISSET(dev->flags, MPII_DF_VOLUME)) { 3330 return (mpii_ioctl_cache(link, cmd, 3331 (struct dk_cache *)addr)); 3332 } 3333 break; 3334 3335 default: 3336 if (sc->sc_ioctl) 3337 return (sc->sc_ioctl(link->adapter_softc, cmd, addr)); 3338 3339 break; 3340 } 3341 3342 return (ENOTTY); 3343 } 3344 3345 int 3346 mpii_ioctl_cache(struct scsi_link *link, u_long cmd, struct dk_cache *dc) 3347 { 3348 struct mpii_softc *sc = (struct mpii_softc *)link->adapter_softc; 3349 struct mpii_device *dev = sc->sc_devs[link->target]; 3350 struct mpii_cfg_raid_vol_pg0 *vpg; 3351 struct mpii_msg_raid_action_request *req; 3352 struct mpii_msg_raid_action_reply *rep; 3353 struct mpii_cfg_hdr hdr; 3354 struct mpii_ccb *ccb; 3355 u_int32_t addr = MPII_CFG_RAID_VOL_ADDR_HANDLE | dev->dev_handle; 3356 size_t pagelen; 3357 int rv = 0; 3358 int enabled; 3359 3360 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, 3361 addr, MPII_PG_POLL, &hdr) != 0) 3362 return (EINVAL); 3363 3364 pagelen = hdr.page_length * 4; 3365 vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3366 if (vpg == NULL) 3367 return (ENOMEM); 3368 3369 if (mpii_req_cfg_page(sc, addr, MPII_PG_POLL, &hdr, 1, 3370 vpg, pagelen) != 0) { 3371 rv = EINVAL; 3372 goto done; 3373 } 3374 3375 enabled = ((le16toh(vpg->volume_settings) & 3376 MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_MASK) == 3377 MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_ENABLED) ? 1 : 0; 3378 3379 if (cmd == DIOCGCACHE) { 3380 dc->wrcache = enabled; 3381 dc->rdcache = 0; 3382 goto done; 3383 } /* else DIOCSCACHE */ 3384 3385 if (dc->rdcache) { 3386 rv = EOPNOTSUPP; 3387 goto done; 3388 } 3389 3390 if (((dc->wrcache) ? 1 : 0) == enabled) 3391 goto done; 3392 3393 ccb = scsi_io_get(&sc->sc_iopool, SCSI_POLL); 3394 if (ccb == NULL) { 3395 rv = ENOMEM; 3396 goto done; 3397 } 3398 3399 ccb->ccb_done = mpii_empty_done; 3400 3401 req = ccb->ccb_cmd; 3402 memset(req, 0, sizeof(*req)); 3403 req->function = MPII_FUNCTION_RAID_ACTION; 3404 req->action = MPII_RAID_ACTION_CHANGE_VOL_WRITE_CACHE; 3405 req->vol_dev_handle = htole16(dev->dev_handle); 3406 req->action_data = htole32(dc->wrcache ? 3407 MPII_RAID_VOL_WRITE_CACHE_ENABLE : 3408 MPII_RAID_VOL_WRITE_CACHE_DISABLE); 3409 3410 if (mpii_poll(sc, ccb) != 0) { 3411 rv = EIO; 3412 goto done; 3413 } 3414 3415 if (ccb->ccb_rcb != NULL) { 3416 rep = ccb->ccb_rcb->rcb_reply; 3417 if ((rep->ioc_status != MPII_IOCSTATUS_SUCCESS) || 3418 ((rep->action_data[0] & 3419 MPII_RAID_VOL_WRITE_CACHE_MASK) != 3420 (dc->wrcache ? MPII_RAID_VOL_WRITE_CACHE_ENABLE : 3421 MPII_RAID_VOL_WRITE_CACHE_DISABLE))) 3422 rv = EINVAL; 3423 mpii_push_reply(sc, ccb->ccb_rcb); 3424 } 3425 3426 scsi_io_put(&sc->sc_iopool, ccb); 3427 3428 done: 3429 free(vpg, M_TEMP); 3430 return (rv); 3431 } 3432 #endif /* 0 */ 3433 3434 #if NBIO > 0 3435 static int 3436 mpii_ioctl(device_t dev, u_long cmd, void *addr) 3437 { 3438 struct mpii_softc *sc = device_private(dev); 3439 int error = 0; 3440 3441 DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl ", DEVNAME(sc)); 3442 3443 switch (cmd) { 3444 case BIOCINQ: 3445 DNPRINTF(MPII_D_IOCTL, "inq\n"); 3446 error = mpii_ioctl_inq(sc, (struct bioc_inq *)addr); 3447 break; 3448 case BIOCVOL: 3449 DNPRINTF(MPII_D_IOCTL, "vol\n"); 3450 error = mpii_ioctl_vol(sc, (struct bioc_vol *)addr); 3451 break; 3452 case BIOCDISK: 3453 DNPRINTF(MPII_D_IOCTL, "disk\n"); 3454 error = mpii_ioctl_disk(sc, (struct bioc_disk *)addr); 3455 break; 3456 default: 3457 DNPRINTF(MPII_D_IOCTL, " invalid ioctl\n"); 3458 error = ENOTTY; 3459 } 3460 3461 return (error); 3462 } 3463 3464 static int 3465 mpii_ioctl_inq(struct mpii_softc *sc, struct bioc_inq *bi) 3466 { 3467 int i; 3468 3469 DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_inq\n", DEVNAME(sc)); 3470 3471 strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev)); 3472 mutex_enter(&sc->sc_devs_mtx); 3473 for (i = 0; i < sc->sc_max_devices; i++) 3474 if (sc->sc_devs[i] && 3475 ISSET(sc->sc_devs[i]->flags, MPII_DF_VOLUME)) 3476 bi->bi_novol++; 3477 mutex_exit(&sc->sc_devs_mtx); 3478 return (0); 3479 } 3480 3481 static int 3482 mpii_ioctl_vol(struct mpii_softc *sc, struct bioc_vol *bv) 3483 { 3484 struct mpii_cfg_raid_vol_pg0 *vpg; 3485 struct mpii_cfg_hdr hdr; 3486 struct mpii_device *dev; 3487 size_t pagelen; 3488 u_int16_t volh; 3489 int rv, hcnt = 0; 3490 int percent; 3491 3492 DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_vol %d\n", 3493 DEVNAME(sc), bv->bv_volid); 3494 3495 mutex_enter(&sc->sc_devs_mtx); 3496 if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) { 3497 mutex_exit(&sc->sc_devs_mtx); 3498 return (ENODEV); 3499 } 3500 volh = dev->dev_handle; 3501 percent = dev->percent; 3502 mutex_exit(&sc->sc_devs_mtx); 3503 3504 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, 3505 MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) { 3506 printf("%s: unable to fetch header for raid volume page 0\n", 3507 DEVNAME(sc)); 3508 return (EINVAL); 3509 } 3510 3511 pagelen = hdr.page_length * 4; 3512 vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3513 if (vpg == NULL) { 3514 printf("%s: unable to allocate space for raid " 3515 "volume page 0\n", DEVNAME(sc)); 3516 return (ENOMEM); 3517 } 3518 3519 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, 3520 &hdr, 1, vpg, pagelen) != 0) { 3521 printf("%s: unable to fetch raid volume page 0\n", 3522 DEVNAME(sc)); 3523 free(vpg, M_TEMP); 3524 return (EINVAL); 3525 } 3526 3527 switch (vpg->volume_state) { 3528 case MPII_CFG_RAID_VOL_0_STATE_ONLINE: 3529 case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL: 3530 bv->bv_status = BIOC_SVONLINE; 3531 break; 3532 case MPII_CFG_RAID_VOL_0_STATE_DEGRADED: 3533 if (ISSET(le32toh(vpg->volume_status), 3534 MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) { 3535 bv->bv_status = BIOC_SVREBUILD; 3536 bv->bv_percent = percent; 3537 } else 3538 bv->bv_status = BIOC_SVDEGRADED; 3539 break; 3540 case MPII_CFG_RAID_VOL_0_STATE_FAILED: 3541 bv->bv_status = BIOC_SVOFFLINE; 3542 break; 3543 case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING: 3544 bv->bv_status = BIOC_SVBUILDING; 3545 break; 3546 case MPII_CFG_RAID_VOL_0_STATE_MISSING: 3547 default: 3548 bv->bv_status = BIOC_SVINVALID; 3549 break; 3550 } 3551 3552 switch (vpg->volume_type) { 3553 case MPII_CFG_RAID_VOL_0_TYPE_RAID0: 3554 bv->bv_level = 0; 3555 break; 3556 case MPII_CFG_RAID_VOL_0_TYPE_RAID1: 3557 bv->bv_level = 1; 3558 break; 3559 case MPII_CFG_RAID_VOL_0_TYPE_RAID1E: 3560 case MPII_CFG_RAID_VOL_0_TYPE_RAID10: 3561 bv->bv_level = 10; 3562 break; 3563 default: 3564 bv->bv_level = -1; 3565 } 3566 3567 if ((rv = mpii_bio_hs(sc, NULL, 0, vpg->hot_spare_pool, &hcnt)) != 0) { 3568 free(vpg, M_TEMP); 3569 return (rv); 3570 } 3571 3572 bv->bv_nodisk = vpg->num_phys_disks + hcnt; 3573 3574 bv->bv_size = le64toh(vpg->max_lba) * le16toh(vpg->block_size); 3575 3576 free(vpg, M_TEMP); 3577 return (0); 3578 } 3579 3580 static int 3581 mpii_ioctl_disk(struct mpii_softc *sc, struct bioc_disk *bd) 3582 { 3583 struct mpii_cfg_raid_vol_pg0 *vpg; 3584 struct mpii_cfg_raid_vol_pg0_physdisk *pd; 3585 struct mpii_cfg_hdr hdr; 3586 struct mpii_device *dev; 3587 size_t pagelen; 3588 u_int16_t volh; 3589 u_int8_t dn; 3590 3591 DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_disk %d/%d\n", 3592 DEVNAME(sc), bd->bd_volid, bd->bd_diskid); 3593 3594 mutex_enter(&sc->sc_devs_mtx); 3595 if ((dev = mpii_find_vol(sc, bd->bd_volid)) == NULL) { 3596 mutex_exit(&sc->sc_devs_mtx); 3597 return (ENODEV); 3598 } 3599 volh = dev->dev_handle; 3600 mutex_exit(&sc->sc_devs_mtx); 3601 3602 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, 3603 MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) { 3604 printf("%s: unable to fetch header for raid volume page 0\n", 3605 DEVNAME(sc)); 3606 return (EINVAL); 3607 } 3608 3609 pagelen = hdr.page_length * 4; 3610 vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3611 if (vpg == NULL) { 3612 printf("%s: unable to allocate space for raid " 3613 "volume page 0\n", DEVNAME(sc)); 3614 return (ENOMEM); 3615 } 3616 3617 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, 3618 &hdr, 1, vpg, pagelen) != 0) { 3619 printf("%s: unable to fetch raid volume page 0\n", 3620 DEVNAME(sc)); 3621 free(vpg, M_TEMP); 3622 return (EINVAL); 3623 } 3624 3625 if (bd->bd_diskid >= vpg->num_phys_disks) { 3626 int nvdsk = vpg->num_phys_disks; 3627 int hsmap = vpg->hot_spare_pool; 3628 3629 free(vpg, M_TEMP); 3630 return (mpii_bio_hs(sc, bd, nvdsk, hsmap, NULL)); 3631 } 3632 3633 pd = (struct mpii_cfg_raid_vol_pg0_physdisk *)(vpg + 1) + 3634 bd->bd_diskid; 3635 dn = pd->phys_disk_num; 3636 3637 free(vpg, M_TEMP); 3638 return (mpii_bio_disk(sc, bd, dn)); 3639 } 3640 3641 static int 3642 mpii_bio_hs(struct mpii_softc *sc, struct bioc_disk *bd, int nvdsk, 3643 int hsmap, int *hscnt) 3644 { 3645 struct mpii_cfg_raid_config_pg0 *cpg; 3646 struct mpii_raid_config_element *el; 3647 struct mpii_ecfg_hdr ehdr; 3648 size_t pagelen; 3649 int i, nhs = 0; 3650 3651 if (bd) { 3652 DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs %d\n", DEVNAME(sc), 3653 bd->bd_diskid - nvdsk); 3654 } else { 3655 DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs\n", DEVNAME(sc)); 3656 } 3657 3658 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_CONFIG, 3659 0, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, MPII_PG_EXTENDED, 3660 &ehdr) != 0) { 3661 printf("%s: unable to fetch header for raid config page 0\n", 3662 DEVNAME(sc)); 3663 return (EINVAL); 3664 } 3665 3666 pagelen = le16toh(ehdr.ext_page_length) * 4; 3667 cpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3668 if (cpg == NULL) { 3669 printf("%s: unable to allocate space for raid config page 0\n", 3670 DEVNAME(sc)); 3671 return (ENOMEM); 3672 } 3673 3674 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, 3675 MPII_PG_EXTENDED, &ehdr, 1, cpg, pagelen) != 0) { 3676 printf("%s: unable to fetch raid config page 0\n", 3677 DEVNAME(sc)); 3678 free(cpg, M_TEMP); 3679 return (EINVAL); 3680 } 3681 3682 el = (struct mpii_raid_config_element *)(cpg + 1); 3683 for (i = 0; i < cpg->num_elements; i++, el++) { 3684 if (ISSET(le16toh(el->element_flags), 3685 MPII_RAID_CONFIG_ELEMENT_FLAG_HSP_PHYS_DISK) && 3686 el->hot_spare_pool == hsmap) { 3687 /* 3688 * diskid comparison is based on the idea that all 3689 * disks are counted by the bio(4) in sequence, thus 3690 * substracting the number of disks in the volume 3691 * from the diskid yields us a "relative" hotspare 3692 * number, which is good enough for us. 3693 */ 3694 if (bd != NULL && bd->bd_diskid == nhs + nvdsk) { 3695 u_int8_t dn = el->phys_disk_num; 3696 3697 free(cpg, M_TEMP); 3698 return (mpii_bio_disk(sc, bd, dn)); 3699 } 3700 nhs++; 3701 } 3702 } 3703 3704 if (hscnt) 3705 *hscnt = nhs; 3706 3707 free(cpg, M_TEMP); 3708 return (0); 3709 } 3710 3711 static int 3712 mpii_bio_disk(struct mpii_softc *sc, struct bioc_disk *bd, u_int8_t dn) 3713 { 3714 struct mpii_cfg_raid_physdisk_pg0 *ppg; 3715 struct mpii_cfg_hdr hdr; 3716 struct mpii_device *dev; 3717 int len; 3718 3719 DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_disk %d\n", DEVNAME(sc), 3720 bd->bd_diskid); 3721 3722 ppg = malloc(sizeof(*ppg), M_TEMP, M_WAITOK | M_ZERO); 3723 if (ppg == NULL) { 3724 printf("%s: unable to allocate space for raid physical disk " 3725 "page 0\n", DEVNAME(sc)); 3726 return (ENOMEM); 3727 } 3728 3729 hdr.page_version = 0; 3730 hdr.page_length = sizeof(*ppg) / 4; 3731 hdr.page_number = 0; 3732 hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_RAID_PD; 3733 3734 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_PHYS_DISK_ADDR_NUMBER | dn, 0, 3735 &hdr, 1, ppg, sizeof(*ppg)) != 0) { 3736 printf("%s: unable to fetch raid drive page 0\n", 3737 DEVNAME(sc)); 3738 free(ppg, M_TEMP); 3739 return (EINVAL); 3740 } 3741 3742 bd->bd_target = ppg->phys_disk_num; 3743 3744 mutex_enter(&sc->sc_devs_mtx); 3745 if ((dev = mpii_find_dev(sc, le16toh(ppg->dev_handle))) == NULL) { 3746 mutex_exit(&sc->sc_devs_mtx); 3747 bd->bd_status = BIOC_SDINVALID; 3748 free(ppg, M_TEMP); 3749 return (0); 3750 } 3751 mutex_exit(&sc->sc_devs_mtx); 3752 3753 switch (ppg->phys_disk_state) { 3754 case MPII_CFG_RAID_PHYDISK_0_STATE_ONLINE: 3755 case MPII_CFG_RAID_PHYDISK_0_STATE_OPTIMAL: 3756 bd->bd_status = BIOC_SDONLINE; 3757 break; 3758 case MPII_CFG_RAID_PHYDISK_0_STATE_OFFLINE: 3759 if (ppg->offline_reason == 3760 MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILED || 3761 ppg->offline_reason == 3762 MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILEDREQ) 3763 bd->bd_status = BIOC_SDFAILED; 3764 else 3765 bd->bd_status = BIOC_SDOFFLINE; 3766 break; 3767 case MPII_CFG_RAID_PHYDISK_0_STATE_DEGRADED: 3768 bd->bd_status = BIOC_SDFAILED; 3769 break; 3770 case MPII_CFG_RAID_PHYDISK_0_STATE_REBUILDING: 3771 bd->bd_status = BIOC_SDREBUILD; 3772 break; 3773 case MPII_CFG_RAID_PHYDISK_0_STATE_HOTSPARE: 3774 bd->bd_status = BIOC_SDHOTSPARE; 3775 break; 3776 case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCONFIGURED: 3777 bd->bd_status = BIOC_SDUNUSED; 3778 break; 3779 case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCOMPATIBLE: 3780 default: 3781 bd->bd_status = BIOC_SDINVALID; 3782 break; 3783 } 3784 3785 bd->bd_size = le64toh(ppg->dev_max_lba) * le16toh(ppg->block_size); 3786 3787 strnvisx(bd->bd_vendor, sizeof(bd->bd_vendor), 3788 ppg->vendor_id, sizeof(ppg->vendor_id), 3789 VIS_TRIM|VIS_SAFE|VIS_OCTAL); 3790 len = strlen(bd->bd_vendor); 3791 bd->bd_vendor[len] = ' '; 3792 strnvisx(&bd->bd_vendor[len + 1], sizeof(ppg->vendor_id) - len - 1, 3793 ppg->product_id, sizeof(ppg->product_id), 3794 VIS_TRIM|VIS_SAFE|VIS_OCTAL); 3795 strnvisx(bd->bd_serial, sizeof(bd->bd_serial), 3796 ppg->serial, sizeof(ppg->serial), VIS_TRIM|VIS_SAFE|VIS_OCTAL); 3797 3798 free(ppg, M_TEMP); 3799 return (0); 3800 } 3801 3802 static struct mpii_device * 3803 mpii_find_vol(struct mpii_softc *sc, int volid) 3804 { 3805 struct mpii_device *dev = NULL; 3806 3807 KASSERT(mutex_owned(&sc->sc_devs_mtx)); 3808 if (sc->sc_vd_id_low + volid >= sc->sc_max_devices) 3809 return (NULL); 3810 dev = sc->sc_devs[sc->sc_vd_id_low + volid]; 3811 if (dev && ISSET(dev->flags, MPII_DF_VOLUME)) 3812 return (dev); 3813 return (NULL); 3814 } 3815 3816 /* 3817 * Non-sleeping lightweight version of the mpii_ioctl_vol 3818 */ 3819 static int 3820 mpii_bio_volstate(struct mpii_softc *sc, struct bioc_vol *bv) 3821 { 3822 struct mpii_cfg_raid_vol_pg0 *vpg; 3823 struct mpii_cfg_hdr hdr; 3824 struct mpii_device *dev = NULL; 3825 size_t pagelen; 3826 u_int16_t volh; 3827 3828 mutex_enter(&sc->sc_devs_mtx); 3829 if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) { 3830 mutex_exit(&sc->sc_devs_mtx); 3831 return (ENODEV); 3832 } 3833 volh = dev->dev_handle; 3834 mutex_exit(&sc->sc_devs_mtx); 3835 3836 if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, 3837 MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, MPII_PG_POLL, &hdr) != 0) { 3838 DNPRINTF(MPII_D_MISC, "%s: unable to fetch header for raid " 3839 "volume page 0\n", DEVNAME(sc)); 3840 return (EINVAL); 3841 } 3842 3843 pagelen = hdr.page_length * 4; 3844 vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO); 3845 if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 3846 MPII_PG_POLL, &hdr, 1, vpg, pagelen) != 0) { 3847 DNPRINTF(MPII_D_MISC, "%s: unable to fetch raid volume " 3848 "page 0\n", DEVNAME(sc)); 3849 free(vpg, M_TEMP); 3850 return (EINVAL); 3851 } 3852 3853 switch (vpg->volume_state) { 3854 case MPII_CFG_RAID_VOL_0_STATE_ONLINE: 3855 case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL: 3856 bv->bv_status = BIOC_SVONLINE; 3857 break; 3858 case MPII_CFG_RAID_VOL_0_STATE_DEGRADED: 3859 if (ISSET(le32toh(vpg->volume_status), 3860 MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) 3861 bv->bv_status = BIOC_SVREBUILD; 3862 else 3863 bv->bv_status = BIOC_SVDEGRADED; 3864 break; 3865 case MPII_CFG_RAID_VOL_0_STATE_FAILED: 3866 bv->bv_status = BIOC_SVOFFLINE; 3867 break; 3868 case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING: 3869 bv->bv_status = BIOC_SVBUILDING; 3870 break; 3871 case MPII_CFG_RAID_VOL_0_STATE_MISSING: 3872 default: 3873 bv->bv_status = BIOC_SVINVALID; 3874 break; 3875 } 3876 3877 free(vpg, M_TEMP); 3878 return (0); 3879 } 3880 3881 static int 3882 mpii_create_sensors(struct mpii_softc *sc) 3883 { 3884 int i, rv; 3885 3886 DNPRINTF(MPII_D_MISC, "%s: mpii_create_sensors(%d)\n", 3887 DEVNAME(sc), sc->sc_max_volumes); 3888 sc->sc_sme = sysmon_envsys_create(); 3889 sc->sc_sensors = malloc(sizeof(envsys_data_t) * sc->sc_max_volumes, 3890 M_DEVBUF, M_WAITOK | M_ZERO); 3891 3892 for (i = 0; i < sc->sc_max_volumes; i++) { 3893 sc->sc_sensors[i].units = ENVSYS_DRIVE; 3894 sc->sc_sensors[i].state = ENVSYS_SINVALID; 3895 sc->sc_sensors[i].value_cur = ENVSYS_DRIVE_EMPTY; 3896 sc->sc_sensors[i].flags |= ENVSYS_FMONSTCHANGED; 3897 3898 /* logical drives */ 3899 snprintf(sc->sc_sensors[i].desc, 3900 sizeof(sc->sc_sensors[i].desc), "%s:%d", 3901 DEVNAME(sc), i); 3902 if ((rv = sysmon_envsys_sensor_attach(sc->sc_sme, 3903 &sc->sc_sensors[i])) != 0) { 3904 aprint_error_dev(sc->sc_dev, 3905 "unable to attach sensor (rv = %d)\n", rv); 3906 goto out; 3907 } 3908 } 3909 sc->sc_sme->sme_name = DEVNAME(sc); 3910 sc->sc_sme->sme_cookie = sc; 3911 sc->sc_sme->sme_refresh = mpii_refresh_sensors; 3912 3913 rv = sysmon_envsys_register(sc->sc_sme); 3914 if (rv != 0) { 3915 aprint_error_dev(sc->sc_dev, 3916 "unable to register with sysmon (rv = %d)\n", rv); 3917 goto out; 3918 } 3919 return 0; 3920 3921 out: 3922 free(sc->sc_sensors, M_DEVBUF); 3923 sysmon_envsys_destroy(sc->sc_sme); 3924 sc->sc_sme = NULL; 3925 return 1; 3926 } 3927 3928 static int 3929 mpii_destroy_sensors(struct mpii_softc *sc) 3930 { 3931 if (sc->sc_sme == NULL) 3932 return 0; 3933 sysmon_envsys_unregister(sc->sc_sme); 3934 sc->sc_sme = NULL; 3935 free(sc->sc_sensors, M_DEVBUF); 3936 return 0; 3937 3938 } 3939 3940 static void 3941 mpii_refresh_sensors(struct sysmon_envsys *sme, envsys_data_t *edata) 3942 { 3943 struct mpii_softc *sc = sme->sme_cookie; 3944 struct bioc_vol bv; 3945 3946 memset(&bv, 0, sizeof(bv)); 3947 bv.bv_volid = edata->sensor; 3948 if (mpii_bio_volstate(sc, &bv)) 3949 bv.bv_status = BIOC_SVINVALID; 3950 bio_vol_to_envsys(edata, &bv); 3951 } 3952 #endif /* NBIO > 0 */ 3953