xref: /netbsd-src/sys/dev/pci/mly.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: mly.c,v 1.30 2006/10/12 01:31:32 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 2000, 2001 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
66  */
67 
68 /*
69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
70  *
71  * TODO:
72  *
73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
74  * o Handle FC and multiple LUNs.
75  * o Fix mmbox usage.
76  * o Fix transfer speed fudge.
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.30 2006/10/12 01:31:32 christos Exp $");
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/queue.h>
87 #include <sys/buf.h>
88 #include <sys/endian.h>
89 #include <sys/conf.h>
90 #include <sys/malloc.h>
91 #include <sys/ioctl.h>
92 #include <sys/scsiio.h>
93 #include <sys/kthread.h>
94 
95 #include <uvm/uvm_extern.h>
96 
97 #include <machine/bus.h>
98 
99 #include <dev/scsipi/scsi_all.h>
100 #include <dev/scsipi/scsipi_all.h>
101 #include <dev/scsipi/scsiconf.h>
102 
103 #include <dev/pci/pcireg.h>
104 #include <dev/pci/pcivar.h>
105 #include <dev/pci/pcidevs.h>
106 
107 #include <dev/pci/mlyreg.h>
108 #include <dev/pci/mlyio.h>
109 #include <dev/pci/mlyvar.h>
110 #include <dev/pci/mly_tables.h>
111 
112 static void	mly_attach(struct device *, struct device *, void *);
113 static int	mly_match(struct device *, struct cfdata *, void *);
114 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
115 static int	mly_fwhandshake(struct mly_softc *);
116 static int	mly_flush(struct mly_softc *);
117 static int	mly_intr(void *);
118 static void	mly_shutdown(void *);
119 
120 static int	mly_alloc_ccbs(struct mly_softc *);
121 static void	mly_check_event(struct mly_softc *);
122 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
123 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
124 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
125 				 caddr_t *, bus_addr_t *, bus_dma_segment_t *);
126 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
127 				caddr_t, bus_dma_segment_t *);
128 static int	mly_enable_mmbox(struct mly_softc *);
129 static void	mly_fetch_event(struct mly_softc *);
130 static int	mly_get_controllerinfo(struct mly_softc *);
131 static int	mly_get_eventstatus(struct mly_softc *);
132 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
133 			  void **, size_t, void *, size_t *);
134 static void	mly_padstr(char *, const char *, int);
135 static void	mly_process_event(struct mly_softc *, struct mly_event *);
136 static void	mly_release_ccbs(struct mly_softc *);
137 static int	mly_scan_btl(struct mly_softc *, int, int);
138 static void	mly_scan_channel(struct mly_softc *, int);
139 static void	mly_thread(void *);
140 static void	mly_thread_create(void *);
141 
142 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
143 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
144 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
145 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
146 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
147 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
148 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
149 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
150 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
151 
152 static void	mly_get_xfer_mode(struct mly_softc *, int,
153 				  struct scsipi_xfer_mode *);
154 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
155 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, caddr_t,
156 				 int, struct proc *);
157 static void	mly_scsipi_minphys(struct buf *);
158 static void	mly_scsipi_request(struct scsipi_channel *,
159 				   scsipi_adapter_req_t, void *);
160 
161 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
162 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
163 
164 extern struct	cfdriver mly_cd;
165 
166 CFATTACH_DECL(mly, sizeof(struct mly_softc),
167     mly_match, mly_attach, NULL, NULL);
168 
169 dev_type_open(mlyopen);
170 dev_type_close(mlyclose);
171 dev_type_ioctl(mlyioctl);
172 
173 const struct cdevsw mly_cdevsw = {
174 	mlyopen, mlyclose, noread, nowrite, mlyioctl,
175 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
176 };
177 
178 static struct mly_ident {
179 	u_short	vendor;
180 	u_short	product;
181 	u_short	subvendor;
182 	u_short	subproduct;
183 	int	hwif;
184 	const char	*desc;
185 } const mly_ident[] = {
186 	{
187 		PCI_VENDOR_MYLEX,
188 		PCI_PRODUCT_MYLEX_EXTREMERAID,
189 		PCI_VENDOR_MYLEX,
190 		0x0040,
191 		MLY_HWIF_STRONGARM,
192 		"eXtremeRAID 2000"
193 	},
194 	{
195 		PCI_VENDOR_MYLEX,
196 		PCI_PRODUCT_MYLEX_EXTREMERAID,
197 		PCI_VENDOR_MYLEX,
198 		0x0030,
199 		MLY_HWIF_STRONGARM,
200 		"eXtremeRAID 3000"
201 	},
202 	{
203 		PCI_VENDOR_MYLEX,
204 		PCI_PRODUCT_MYLEX_ACCELERAID,
205 		PCI_VENDOR_MYLEX,
206 		0x0050,
207 		MLY_HWIF_I960RX,
208 		"AcceleRAID 352"
209 	},
210 	{
211 		PCI_VENDOR_MYLEX,
212 		PCI_PRODUCT_MYLEX_ACCELERAID,
213 		PCI_VENDOR_MYLEX,
214 		0x0052,
215 		MLY_HWIF_I960RX,
216 		"AcceleRAID 170"
217 	},
218 	{
219 		PCI_VENDOR_MYLEX,
220 		PCI_PRODUCT_MYLEX_ACCELERAID,
221 		PCI_VENDOR_MYLEX,
222 		0x0054,
223 		MLY_HWIF_I960RX,
224 		"AcceleRAID 160"
225 	},
226 };
227 
228 static void	*mly_sdh;
229 
230 /*
231  * Try to find a `mly_ident' entry corresponding to this board.
232  */
233 static const struct mly_ident *
234 mly_find_ident(struct pci_attach_args *pa)
235 {
236 	const struct mly_ident *mpi, *maxmpi;
237 	pcireg_t reg;
238 
239 	mpi = mly_ident;
240 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
241 
242 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
243 		return (NULL);
244 
245 	for (; mpi < maxmpi; mpi++) {
246 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
247 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
248 			continue;
249 
250 		if (mpi->subvendor == 0x0000)
251 			return (mpi);
252 
253 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
254 
255 		if (PCI_VENDOR(reg) == mpi->subvendor &&
256 		    PCI_PRODUCT(reg) == mpi->subproduct)
257 			return (mpi);
258 	}
259 
260 	return (NULL);
261 }
262 
263 /*
264  * Match a supported board.
265  */
266 static int
267 mly_match(struct device *parent __unused, struct cfdata *cfdata __unused,
268     void *aux)
269 {
270 
271 	return (mly_find_ident(aux) != NULL);
272 }
273 
274 /*
275  * Attach a supported board.
276  */
277 static void
278 mly_attach(struct device *parent __unused, struct device *self, void *aux)
279 {
280 	struct pci_attach_args *pa;
281 	struct mly_softc *mly;
282 	struct mly_ioctl_getcontrollerinfo *mi;
283 	const struct mly_ident *ident;
284 	pci_chipset_tag_t pc;
285 	pci_intr_handle_t ih;
286 	bus_space_handle_t memh, ioh;
287 	bus_space_tag_t memt, iot;
288 	pcireg_t reg;
289 	const char *intrstr;
290 	int ior, memr, i, rv, state;
291 	struct scsipi_adapter *adapt;
292 	struct scsipi_channel *chan;
293 
294 	mly = (struct mly_softc *)self;
295 	pa = aux;
296 	pc = pa->pa_pc;
297 	ident = mly_find_ident(pa);
298 	state = 0;
299 
300 	mly->mly_dmat = pa->pa_dmat;
301 	mly->mly_hwif = ident->hwif;
302 
303 	printf(": Mylex %s\n", ident->desc);
304 
305 	/*
306 	 * Map the PCI register window.
307 	 */
308 	memr = -1;
309 	ior = -1;
310 
311 	for (i = 0x10; i <= 0x14; i += 4) {
312 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
313 
314 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
315 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
316 				ior = i;
317 		} else {
318 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
319 				memr = i;
320 		}
321 	}
322 
323 	if (memr != -1)
324 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
325 		    &memt, &memh, NULL, NULL))
326 			memr = -1;
327 	if (ior != -1)
328 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
329 		    &iot, &ioh, NULL, NULL))
330 		    	ior = -1;
331 
332 	if (memr != -1) {
333 		mly->mly_iot = memt;
334 		mly->mly_ioh = memh;
335 	} else if (ior != -1) {
336 		mly->mly_iot = iot;
337 		mly->mly_ioh = ioh;
338 	} else {
339 		printf("%s: can't map i/o or memory space\n", self->dv_xname);
340 		return;
341 	}
342 
343 	/*
344 	 * Enable the device.
345 	 */
346 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
347 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
348 	    reg | PCI_COMMAND_MASTER_ENABLE);
349 
350 	/*
351 	 * Map and establish the interrupt.
352 	 */
353 	if (pci_intr_map(pa, &ih)) {
354 		printf("%s: can't map interrupt\n", self->dv_xname);
355 		return;
356 	}
357 	intrstr = pci_intr_string(pc, ih);
358 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
359 	if (mly->mly_ih == NULL) {
360 		printf("%s: can't establish interrupt", self->dv_xname);
361 		if (intrstr != NULL)
362 			printf(" at %s", intrstr);
363 		printf("\n");
364 		return;
365 	}
366 
367 	if (intrstr != NULL)
368 		printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
369 		    intrstr);
370 
371 	/*
372 	 * Take care of interface-specific tasks.
373 	 */
374 	switch (mly->mly_hwif) {
375 	case MLY_HWIF_I960RX:
376 		mly->mly_doorbell_true = 0x00;
377 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
378 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
379 		mly->mly_idbr = MLY_I960RX_IDBR;
380 		mly->mly_odbr = MLY_I960RX_ODBR;
381 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
382 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
383 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
384 		break;
385 
386 	case MLY_HWIF_STRONGARM:
387 		mly->mly_doorbell_true = 0xff;
388 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
389 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
390 		mly->mly_idbr = MLY_STRONGARM_IDBR;
391 		mly->mly_odbr = MLY_STRONGARM_ODBR;
392 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
393 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
394 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
395 		break;
396 	}
397 
398 	/*
399 	 * Allocate and map the scatter/gather lists.
400 	 */
401 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
402 	    &mly->mly_sg_dmamap, (caddr_t *)&mly->mly_sg,
403 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
404 	if (rv) {
405 		printf("%s: unable to allocate S/G maps\n",
406 		    mly->mly_dv.dv_xname);
407 		goto bad;
408 	}
409 	state++;
410 
411 	/*
412 	 * Allocate and map the memory mailbox.
413 	 */
414 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
415 	    &mly->mly_mmbox_dmamap, (caddr_t *)&mly->mly_mmbox,
416 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
417 	if (rv) {
418 		printf("%s: unable to allocate mailboxes\n",
419 		    mly->mly_dv.dv_xname);
420 		goto bad;
421 	}
422 	state++;
423 
424 	/*
425 	 * Initialise per-controller queues.
426 	 */
427 	SLIST_INIT(&mly->mly_ccb_free);
428 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
429 
430 	/*
431 	 * Disable interrupts before we start talking to the controller.
432 	 */
433 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
434 
435 	/*
436 	 * Wait for the controller to come ready, handshaking with the
437 	 * firmware if required.  This is typically only necessary on
438 	 * platforms where the controller BIOS does not run.
439 	 */
440 	if (mly_fwhandshake(mly)) {
441 		printf("%s: unable to bring controller online\n",
442 		    mly->mly_dv.dv_xname);
443 		goto bad;
444 	}
445 
446 	/*
447 	 * Allocate initial command buffers, obtain controller feature
448 	 * information, and then reallocate command buffers, since we'll
449 	 * know how many we want.
450 	 */
451 	if (mly_alloc_ccbs(mly)) {
452 		printf("%s: unable to allocate CCBs\n",
453 		    mly->mly_dv.dv_xname);
454 		goto bad;
455 	}
456 	state++;
457 	if (mly_get_controllerinfo(mly)) {
458 		printf("%s: unable to retrieve controller info\n",
459 		    mly->mly_dv.dv_xname);
460 		goto bad;
461 	}
462 	mly_release_ccbs(mly);
463 	if (mly_alloc_ccbs(mly)) {
464 		printf("%s: unable to allocate CCBs\n",
465 		    mly->mly_dv.dv_xname);
466 		state--;
467 		goto bad;
468 	}
469 
470 	/*
471 	 * Get the current event counter for health purposes, populate the
472 	 * initial health status buffer.
473 	 */
474 	if (mly_get_eventstatus(mly)) {
475 		printf("%s: unable to retrieve event status\n",
476 		    mly->mly_dv.dv_xname);
477 		goto bad;
478 	}
479 
480 	/*
481 	 * Enable memory-mailbox mode.
482 	 */
483 	if (mly_enable_mmbox(mly)) {
484 		printf("%s: unable to enable memory mailbox\n",
485 		    mly->mly_dv.dv_xname);
486 		goto bad;
487 	}
488 
489 	/*
490 	 * Print a little information about the controller.
491 	 */
492 	mi = mly->mly_controllerinfo;
493 
494 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
495 	    "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
496 	    mi->physical_channels_present,
497 	    (mi->physical_channels_present) > 1 ? "s" : "",
498 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
499 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
500 	    le16toh(mi->memory_size));
501 
502 	/*
503 	 * Register our `shutdownhook'.
504 	 */
505 	if (mly_sdh == NULL)
506 		shutdownhook_establish(mly_shutdown, NULL);
507 
508 	/*
509 	 * Clear any previous BTL information.  For each bus that scsipi
510 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
511 	 * all BTL info at that point.
512 	 */
513 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
514 
515 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
516 	    mly->mly_controllerinfo->virtual_channels_present;
517 
518 	/*
519 	 * Attach to scsipi.
520 	 */
521 	adapt = &mly->mly_adapt;
522 	memset(adapt, 0, sizeof(*adapt));
523 	adapt->adapt_dev = &mly->mly_dv;
524 	adapt->adapt_nchannels = mly->mly_nchans;
525 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
526 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
527 	adapt->adapt_request = mly_scsipi_request;
528 	adapt->adapt_minphys = mly_scsipi_minphys;
529 	adapt->adapt_ioctl = mly_scsipi_ioctl;
530 
531 	for (i = 0; i < mly->mly_nchans; i++) {
532 		chan = &mly->mly_chans[i];
533 		memset(chan, 0, sizeof(*chan));
534 		chan->chan_adapter = adapt;
535 		chan->chan_bustype = &scsi_bustype;
536 		chan->chan_channel = i;
537 		chan->chan_ntargets = MLY_MAX_TARGETS;
538 		chan->chan_nluns = MLY_MAX_LUNS;
539 		chan->chan_id = mly->mly_controllerparam->initiator_id;
540 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
541 		config_found(&mly->mly_dv, chan, scsiprint);
542 	}
543 
544 	/*
545 	 * Now enable interrupts...
546 	 */
547 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
548 
549 	/*
550 	 * Finally, create our monitoring thread.
551 	 */
552 	kthread_create(mly_thread_create, mly);
553 
554 	mly->mly_state |= MLY_STATE_INITOK;
555 	return;
556 
557  bad:
558 	if (state > 2)
559 		mly_release_ccbs(mly);
560 	if (state > 1)
561 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
562 		    mly->mly_mmbox_dmamap, (caddr_t)mly->mly_mmbox,
563 		    &mly->mly_mmbox_seg);
564 	if (state > 0)
565 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
566 		    mly->mly_sg_dmamap, (caddr_t)mly->mly_sg,
567 		    &mly->mly_sg_seg);
568 }
569 
570 /*
571  * Scan all possible devices on the specified channel.
572  */
573 static void
574 mly_scan_channel(struct mly_softc *mly, int bus)
575 {
576 	int s, target;
577 
578 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
579 		s = splbio();
580 		if (!mly_scan_btl(mly, bus, target)) {
581 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
582 			    0);
583 		}
584 		splx(s);
585 	}
586 }
587 
588 /*
589  * Shut down all configured `mly' devices.
590  */
591 static void
592 mly_shutdown(void *cookie __unused)
593 {
594 	struct mly_softc *mly;
595 	int i;
596 
597 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
598 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
599 			continue;
600 
601 		if (mly_flush(mly))
602 			printf("%s: unable to flush cache\n",
603 			    mly->mly_dv.dv_xname);
604 	}
605 }
606 
607 /*
608  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
609  * softc.
610  */
611 static int
612 mly_get_controllerinfo(struct mly_softc *mly)
613 {
614 	struct mly_cmd_ioctl mci;
615 	int rv;
616 
617 	/*
618 	 * Build the getcontrollerinfo ioctl and send it.
619 	 */
620 	memset(&mci, 0, sizeof(mci));
621 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
622 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
623 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
624 	if (rv != 0)
625 		return (rv);
626 
627 	/*
628 	 * Build the getcontrollerparameter ioctl and send it.
629 	 */
630 	memset(&mci, 0, sizeof(mci));
631 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
632 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
633 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
634 
635 	return (rv);
636 }
637 
638 /*
639  * Rescan a device, possibly as a consequence of getting an event which
640  * suggests that it may have changed.  Must be called with interrupts
641  * blocked.
642  */
643 static int
644 mly_scan_btl(struct mly_softc *mly, int bus, int target)
645 {
646 	struct mly_ccb *mc;
647 	struct mly_cmd_ioctl *mci;
648 	int rv;
649 
650 	if (target == mly->mly_controllerparam->initiator_id) {
651 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
652 		return (EIO);
653 	}
654 
655 	/* Don't re-scan if a scan is already in progress. */
656 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
657 		return (EBUSY);
658 
659 	/* Get a command. */
660 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
661 		return (rv);
662 
663 	/* Set up the data buffer. */
664 	mc->mc_data = malloc(sizeof(union mly_devinfo),
665 	    M_DEVBUF, M_NOWAIT|M_ZERO);
666 
667 	mc->mc_flags |= MLY_CCB_DATAIN;
668 	mc->mc_complete = mly_complete_rescan;
669 
670 	/*
671 	 * Build the ioctl.
672 	 */
673 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
674 	mci->opcode = MDACMD_IOCTL;
675 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
676 	memset(&mci->param, 0, sizeof(mci->param));
677 
678 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
679 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
680 		mci->data_size = htole32(mc->mc_length);
681 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
682 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
683 		    mci->addr);
684 	} else {
685 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
686 		mci->data_size = htole32(mc->mc_length);
687 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
688 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
689 	}
690 
691 	/*
692 	 * Dispatch the command.
693 	 */
694 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
695 		free(mc->mc_data, M_DEVBUF);
696 		mly_ccb_free(mly, mc);
697 		return(rv);
698 	}
699 
700 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
701 	mly_ccb_enqueue(mly, mc);
702 	return (0);
703 }
704 
705 /*
706  * Handle the completion of a rescan operation.
707  */
708 static void
709 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
710 {
711 	struct mly_ioctl_getlogdevinfovalid *ldi;
712 	struct mly_ioctl_getphysdevinfovalid *pdi;
713 	struct mly_cmd_ioctl *mci;
714 	struct mly_btl btl, *btlp;
715 	struct scsipi_xfer_mode xm;
716 	int bus, target, rescan;
717 	u_int tmp;
718 
719 	mly_ccb_unmap(mly, mc);
720 
721 	/*
722 	 * Recover the bus and target from the command.  We need these even
723 	 * in the case where we don't have a useful response.
724 	 */
725 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
726 	tmp = _3ltol(mci->addr);
727 	rescan = 0;
728 
729 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
730 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
731 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
732 	} else {
733 		bus = MLY_PHYADDR_CHANNEL(tmp);
734 		target = MLY_PHYADDR_TARGET(tmp);
735 	}
736 
737 	btlp = &mly->mly_btl[bus][target];
738 
739 	/* The default result is 'no device'. */
740 	memset(&btl, 0, sizeof(btl));
741 	btl.mb_flags = MLY_BTL_PROTECTED;
742 
743 	/* If the rescan completed OK, we have possibly-new BTL data. */
744 	if (mc->mc_status != 0)
745 		goto out;
746 
747 	if (mc->mc_length == sizeof(*ldi)) {
748 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
749 		tmp = le32toh(ldi->logical_device_number);
750 
751 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
752 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
753 #ifdef MLYDEBUG
754 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
755 			    "returned data for %d:%d instead\n",
756 			   mly->mly_dv.dv_xname, bus, target,
757 			   MLY_LOGDEV_BUS(mly, tmp),
758 			   MLY_LOGDEV_TARGET(mly, tmp));
759 #endif
760 			goto out;
761 		}
762 
763 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
764 		btl.mb_type = ldi->raid_level;
765 		btl.mb_state = ldi->state;
766 	} else if (mc->mc_length == sizeof(*pdi)) {
767 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
768 
769 		if (pdi->channel != bus || pdi->target != target) {
770 #ifdef MLYDEBUG
771 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
772 			    " returned data for %d:%d instead\n",
773 			   mly->mly_dv.dv_xname,
774 			   bus, target, pdi->channel, pdi->target);
775 #endif
776 			goto out;
777 		}
778 
779 		btl.mb_flags = MLY_BTL_PHYSICAL;
780 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
781 		btl.mb_state = pdi->state;
782 		btl.mb_speed = pdi->speed;
783 		btl.mb_width = pdi->width;
784 
785 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
786 			btl.mb_flags |= MLY_BTL_PROTECTED;
787 		if (pdi->command_tags != 0)
788 			btl.mb_flags |= MLY_BTL_TQING;
789 	} else {
790 		printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
791 		goto out;
792 	}
793 
794 	/* Decide whether we need to rescan the device. */
795 	if (btl.mb_flags != btlp->mb_flags ||
796 	    btl.mb_speed != btlp->mb_speed ||
797 	    btl.mb_width != btlp->mb_width)
798 		rescan = 1;
799 
800  out:
801 	*btlp = btl;
802 
803 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
804 		xm.xm_target = target;
805 		mly_get_xfer_mode(mly, bus, &xm);
806 		/* XXX SCSI mid-layer rescan goes here. */
807 	}
808 
809 	/* Wake anybody waiting on the device to be rescanned. */
810 	wakeup(btlp);
811 
812 	free(mc->mc_data, M_DEVBUF);
813 	mly_ccb_free(mly, mc);
814 }
815 
816 /*
817  * Get the current health status and set the 'next event' counter to suit.
818  */
819 static int
820 mly_get_eventstatus(struct mly_softc *mly)
821 {
822 	struct mly_cmd_ioctl mci;
823 	struct mly_health_status *mh;
824 	int rv;
825 
826 	/* Build the gethealthstatus ioctl and send it. */
827 	memset(&mci, 0, sizeof(mci));
828 	mh = NULL;
829 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
830 
831 	rv = mly_ioctl(mly, &mci, (void *)&mh, sizeof(*mh), NULL, NULL);
832 	if (rv)
833 		return (rv);
834 
835 	/* Get the event counter. */
836 	mly->mly_event_change = le32toh(mh->change_counter);
837 	mly->mly_event_waiting = le32toh(mh->next_event);
838 	mly->mly_event_counter = le32toh(mh->next_event);
839 
840 	/* Save the health status into the memory mailbox */
841 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
842 
843 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
844 	    offsetof(struct mly_mmbox, mmm_health),
845 	    sizeof(mly->mly_mmbox->mmm_health),
846 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
847 
848 	free(mh, M_DEVBUF);
849 	return (0);
850 }
851 
852 /*
853  * Enable memory mailbox mode.
854  */
855 static int
856 mly_enable_mmbox(struct mly_softc *mly)
857 {
858 	struct mly_cmd_ioctl mci;
859 	u_int8_t *sp;
860 	u_int64_t tmp;
861 	int rv;
862 
863 	/* Build the ioctl and send it. */
864 	memset(&mci, 0, sizeof(mci));
865 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
866 
867 	/* Set buffer addresses. */
868 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
869 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
870 
871 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
872 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
873 
874 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
875 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
876 
877 	/* Set buffer sizes - abuse of data_size field is revolting. */
878 	sp = (u_int8_t *)&mci.data_size;
879 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
880 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
881 	mci.param.setmemorymailbox.health_buffer_size =
882 	    sizeof(union mly_health_region) >> 10;
883 
884 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
885 	if (rv)
886 		return (rv);
887 
888 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
889 	return (0);
890 }
891 
892 /*
893  * Flush all pending I/O from the controller.
894  */
895 static int
896 mly_flush(struct mly_softc *mly)
897 {
898 	struct mly_cmd_ioctl mci;
899 
900 	/* Build the ioctl */
901 	memset(&mci, 0, sizeof(mci));
902 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
903 	mci.param.deviceoperation.operation_device =
904 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
905 
906 	/* Pass it off to the controller */
907 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
908 }
909 
910 /*
911  * Perform an ioctl command.
912  *
913  * If (data) is not NULL, the command requires data transfer to the
914  * controller.  If (*data) is NULL the command requires data transfer from
915  * the controller, and we will allocate a buffer for it.
916  */
917 static int
918 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
919 	  size_t datasize, void *sense_buffer,
920 	  size_t *sense_length)
921 {
922 	struct mly_ccb *mc;
923 	struct mly_cmd_ioctl *mci;
924 	u_int8_t status;
925 	int rv;
926 
927 	mc = NULL;
928 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
929 		goto bad;
930 
931 	/*
932 	 * Copy the ioctl structure, but save some important fields and then
933 	 * fixup.
934 	 */
935 	mci = &mc->mc_packet->ioctl;
936 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
937 	ioctl->maximum_sense_size = mci->maximum_sense_size;
938 	*mci = *ioctl;
939 	mci->opcode = MDACMD_IOCTL;
940 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
941 
942 	/* Handle the data buffer. */
943 	if (data != NULL) {
944 		if (*data == NULL) {
945 			/* Allocate data buffer */
946 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
947 			mc->mc_flags |= MLY_CCB_DATAIN;
948 		} else {
949 			mc->mc_data = *data;
950 			mc->mc_flags |= MLY_CCB_DATAOUT;
951 		}
952 		mc->mc_length = datasize;
953 		mc->mc_packet->generic.data_size = htole32(datasize);
954 	}
955 
956 	/* Run the command. */
957 	if (datasize > 0)
958 		if ((rv = mly_ccb_map(mly, mc)) != 0)
959 			goto bad;
960 	rv = mly_ccb_poll(mly, mc, 30000);
961 	if (datasize > 0)
962 		mly_ccb_unmap(mly, mc);
963 	if (rv != 0)
964 		goto bad;
965 
966 	/* Clean up and return any data. */
967 	status = mc->mc_status;
968 
969 	if (status != 0)
970 		printf("mly_ioctl: command status %d\n", status);
971 
972 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
973 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
974 		*sense_length = mc->mc_sense;
975 		goto bad;
976 	}
977 
978 	/* Should we return a data pointer? */
979 	if (data != NULL && *data == NULL)
980 		*data = mc->mc_data;
981 
982 	/* Command completed OK. */
983 	rv = (status != 0 ? EIO : 0);
984 
985  bad:
986 	if (mc != NULL) {
987 		/* Do we need to free a data buffer we allocated? */
988 		if (rv != 0 && mc->mc_data != NULL &&
989 		    (data == NULL || *data == NULL))
990 			free(mc->mc_data, M_DEVBUF);
991 		mly_ccb_free(mly, mc);
992 	}
993 
994 	return (rv);
995 }
996 
997 /*
998  * Check for event(s) outstanding in the controller.
999  */
1000 static void
1001 mly_check_event(struct mly_softc *mly)
1002 {
1003 
1004 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1005 	    offsetof(struct mly_mmbox, mmm_health),
1006 	    sizeof(mly->mly_mmbox->mmm_health),
1007 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1008 
1009 	/*
1010 	 * The controller may have updated the health status information, so
1011 	 * check for it here.  Note that the counters are all in host
1012 	 * memory, so this check is very cheap.  Also note that we depend on
1013 	 * checking on completion
1014 	 */
1015 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
1016 	    mly->mly_event_change) {
1017 		mly->mly_event_change =
1018 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
1019 		mly->mly_event_waiting =
1020 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
1021 
1022 		/* Wake up anyone that might be interested in this. */
1023 		wakeup(&mly->mly_event_change);
1024 	}
1025 
1026 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1027 	    offsetof(struct mly_mmbox, mmm_health),
1028 	    sizeof(mly->mly_mmbox->mmm_health),
1029 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1030 
1031 	if (mly->mly_event_counter != mly->mly_event_waiting)
1032 		mly_fetch_event(mly);
1033 }
1034 
1035 /*
1036  * Fetch one event from the controller.  If we fail due to resource
1037  * starvation, we'll be retried the next time a command completes.
1038  */
1039 static void
1040 mly_fetch_event(struct mly_softc *mly)
1041 {
1042 	struct mly_ccb *mc;
1043 	struct mly_cmd_ioctl *mci;
1044 	int s;
1045 	u_int32_t event;
1046 
1047 	/* Get a command. */
1048 	if (mly_ccb_alloc(mly, &mc))
1049 		return;
1050 
1051 	/* Set up the data buffer. */
1052 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF,
1053 	    M_NOWAIT|M_ZERO);
1054 
1055 	mc->mc_length = sizeof(struct mly_event);
1056 	mc->mc_flags |= MLY_CCB_DATAIN;
1057 	mc->mc_complete = mly_complete_event;
1058 
1059 	/*
1060 	 * Get an event number to fetch.  It's possible that we've raced
1061 	 * with another context for the last event, in which case there will
1062 	 * be no more events.
1063 	 */
1064 	s = splbio();
1065 	if (mly->mly_event_counter == mly->mly_event_waiting) {
1066 		splx(s);
1067 		free(mc->mc_data, M_DEVBUF);
1068 		mly_ccb_free(mly, mc);
1069 		return;
1070 	}
1071 	event = mly->mly_event_counter++;
1072 	splx(s);
1073 
1074 	/*
1075 	 * Build the ioctl.
1076 	 *
1077 	 * At this point we are committed to sending this request, as it
1078 	 * will be the only one constructed for this particular event
1079 	 * number.
1080 	 */
1081 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
1082 	mci->opcode = MDACMD_IOCTL;
1083 	mci->data_size = htole32(sizeof(struct mly_event));
1084 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
1085 	    mci->addr);
1086 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
1087 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
1088 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
1089 
1090 	/*
1091 	 * Submit the command.
1092 	 */
1093 	if (mly_ccb_map(mly, mc) != 0)
1094 		goto bad;
1095 	mly_ccb_enqueue(mly, mc);
1096 	return;
1097 
1098  bad:
1099 	printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
1100 	free(mc->mc_data, M_DEVBUF);
1101 	mly_ccb_free(mly, mc);
1102 }
1103 
1104 /*
1105  * Handle the completion of an event poll.
1106  */
1107 static void
1108 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
1109 {
1110 	struct mly_event *me;
1111 
1112 	me = (struct mly_event *)mc->mc_data;
1113 	mly_ccb_unmap(mly, mc);
1114 	mly_ccb_free(mly, mc);
1115 
1116 	/* If the event was successfully fetched, process it. */
1117 	if (mc->mc_status == SCSI_OK)
1118 		mly_process_event(mly, me);
1119 	else
1120 		printf("%s: unable to fetch event; status = 0x%x\n",
1121 		    mly->mly_dv.dv_xname, mc->mc_status);
1122 
1123 	free(me, M_DEVBUF);
1124 
1125 	/* Check for another event. */
1126 	mly_check_event(mly);
1127 }
1128 
1129 /*
1130  * Process a controller event.  Called with interrupts blocked (i.e., at
1131  * interrupt time).
1132  */
1133 static void
1134 mly_process_event(struct mly_softc *mly, struct mly_event *me)
1135 {
1136 	struct scsi_sense_data *ssd;
1137 	int bus, target, event, class, action;
1138 	const char *fp, *tp;
1139 
1140 	ssd = (struct scsi_sense_data *)&me->sense[0];
1141 
1142 	/*
1143 	 * Errors can be reported using vendor-unique sense data.  In this
1144 	 * case, the event code will be 0x1c (Request sense data present),
1145 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
1146 	 * will be set, and the actual event code will be a 16-bit value
1147 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
1148 	 * (low seven bits of the high byte).
1149 	 */
1150 	if (le32toh(me->code) == 0x1c &&
1151 	    SSD_SENSE_KEY(ssd->flags) == SKEY_VENDOR_SPECIFIC &&
1152 	    (ssd->asc & 0x80) != 0) {
1153 		event = ((int)(ssd->asc & ~0x80) << 8) +
1154 		    ssd->ascq;
1155 	} else
1156 		event = le32toh(me->code);
1157 
1158 	/* Look up event, get codes. */
1159 	fp = mly_describe_code(mly_table_event, event);
1160 
1161 	/* Quiet event? */
1162 	class = fp[0];
1163 #ifdef notyet
1164 	if (isupper(class) && bootverbose)
1165 		class = tolower(class);
1166 #endif
1167 
1168 	/* Get action code, text string. */
1169 	action = fp[1];
1170 	tp = fp + 3;
1171 
1172 	/*
1173 	 * Print some information about the event.
1174 	 *
1175 	 * This code uses a table derived from the corresponding portion of
1176 	 * the Linux driver, and thus the parser is very similar.
1177 	 */
1178 	switch (class) {
1179 	case 'p':
1180 		/*
1181 		 * Error on physical drive.
1182 		 */
1183 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1184 		    me->channel, me->target, tp);
1185 		if (action == 'r')
1186 			mly->mly_btl[me->channel][me->target].mb_flags |=
1187 			    MLY_BTL_RESCAN;
1188 		break;
1189 
1190 	case 'l':
1191 	case 'm':
1192 		/*
1193 		 * Error on logical unit, or message about logical unit.
1194 	 	 */
1195 		bus = MLY_LOGDEV_BUS(mly, me->lun);
1196 		target = MLY_LOGDEV_TARGET(mly, me->lun);
1197 		printf("%s: logical device %d:%d %s\n", mly->mly_dv.dv_xname,
1198 		    bus, target, tp);
1199 		if (action == 'r')
1200 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1201 		break;
1202 
1203 	case 's':
1204 		/*
1205 		 * Report of sense data.
1206 		 */
1207 		if ((SSD_SENSE_KEY(ssd->flags) == SKEY_NO_SENSE ||
1208 		     SSD_SENSE_KEY(ssd->flags) == SKEY_NOT_READY) &&
1209 		    ssd->asc == 0x04 &&
1210 		    (ssd->ascq == 0x01 ||
1211 		     ssd->ascq == 0x02)) {
1212 			/* Ignore NO_SENSE or NOT_READY in one case */
1213 			break;
1214 		}
1215 
1216 		/*
1217 		 * XXX Should translate this if SCSIVERBOSE.
1218 		 */
1219 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1220 		    me->channel, me->target, tp);
1221 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
1222 		    mly->mly_dv.dv_xname, SSD_SENSE_KEY(ssd->flags),
1223 		    ssd->asc, ssd->ascq);
1224 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
1225 		    mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
1226 		    ssd->info[2], ssd->info[3], ssd->csi[0],
1227 		    ssd->csi[1], ssd->csi[2],
1228 		    ssd->csi[3]);
1229 		if (action == 'r')
1230 			mly->mly_btl[me->channel][me->target].mb_flags |=
1231 			    MLY_BTL_RESCAN;
1232 		break;
1233 
1234 	case 'e':
1235 		printf("%s: ", mly->mly_dv.dv_xname);
1236 		printf(tp, me->target, me->lun);
1237 		break;
1238 
1239 	case 'c':
1240 		printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
1241 		break;
1242 
1243 	case '?':
1244 		printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
1245 		break;
1246 
1247 	default:
1248 		/* Probably a 'noisy' event being ignored. */
1249 		break;
1250 	}
1251 }
1252 
1253 /*
1254  * Create the monitoring thread.  Called after the standard kernel threads
1255  * have been created.
1256  */
1257 static void
1258 mly_thread_create(void *cookie)
1259 {
1260 	struct mly_softc *mly;
1261 	int rv;
1262 
1263 	mly = cookie;
1264 
1265 	rv = kthread_create1(mly_thread, mly, &mly->mly_thread, "%s",
1266 	    mly->mly_dv.dv_xname);
1267  	if (rv != 0)
1268 		printf("%s: unable to create thread (%d)\n",
1269 		    mly->mly_dv.dv_xname, rv);
1270 }
1271 
1272 /*
1273  * Perform periodic activities.
1274  */
1275 static void
1276 mly_thread(void *cookie)
1277 {
1278 	struct mly_softc *mly;
1279 	struct mly_btl *btl;
1280 	int s, bus, target, done;
1281 
1282 	mly = (struct mly_softc *)cookie;
1283 
1284 	for (;;) {
1285 		/* Check for new events. */
1286 		mly_check_event(mly);
1287 
1288 		/* Re-scan up to 1 device. */
1289 		s = splbio();
1290 		done = 0;
1291 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
1292 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
1293 				/* Perform device rescan? */
1294 				btl = &mly->mly_btl[bus][target];
1295 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
1296 					btl->mb_flags ^= MLY_BTL_RESCAN;
1297 					mly_scan_btl(mly, bus, target);
1298 					done = 1;
1299 					break;
1300 				}
1301 			}
1302 		}
1303 		splx(s);
1304 
1305 		/* Sleep for N seconds. */
1306 		tsleep(mly_thread, PWAIT, "mlyzzz",
1307 		    hz * MLY_PERIODIC_INTERVAL);
1308 	}
1309 }
1310 
1311 /*
1312  * Submit a command to the controller and poll on completion.  Return
1313  * non-zero on timeout.
1314  */
1315 static int
1316 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1317 {
1318 	int rv;
1319 
1320 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
1321 		return (rv);
1322 
1323 	for (timo *= 10; timo != 0; timo--) {
1324 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
1325 			break;
1326 		mly_intr(mly);
1327 		DELAY(100);
1328 	}
1329 
1330 	return (timo == 0);
1331 }
1332 
1333 /*
1334  * Submit a command to the controller and sleep on completion.  Return
1335  * non-zero on timeout.
1336  */
1337 static int
1338 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1339 {
1340 	int rv, s;
1341 
1342 	mly_ccb_enqueue(mly, mc);
1343 
1344 	s = splbio();
1345 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
1346 		splx(s);
1347 		return (0);
1348 	}
1349 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
1350 	splx(s);
1351 
1352 	return (rv);
1353 }
1354 
1355 /*
1356  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1357  * the order that they were enqueued and try to submit their command blocks
1358  * to the controller for execution.
1359  */
1360 void
1361 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
1362 {
1363 	int s;
1364 
1365 	s = splbio();
1366 
1367 	if (mc != NULL)
1368 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1369 
1370 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
1371 		if (mly_ccb_submit(mly, mc))
1372 			break;
1373 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc_link.simpleq);
1374 	}
1375 
1376 	splx(s);
1377 }
1378 
1379 /*
1380  * Deliver a command to the controller.
1381  */
1382 static int
1383 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
1384 {
1385 	union mly_cmd_packet *pkt;
1386 	int s, off;
1387 
1388 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
1389 
1390 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1391 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1392 	    sizeof(union mly_cmd_packet),
1393 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1394 
1395 	s = splbio();
1396 
1397 	/*
1398 	 * Do we have to use the hardware mailbox?
1399 	 */
1400 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
1401 		/*
1402 		 * Check to see if the controller is ready for us.
1403 		 */
1404 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
1405 			splx(s);
1406 			return (EBUSY);
1407 		}
1408 
1409 		/*
1410 		 * It's ready, send the command.
1411 		 */
1412 		mly_outl(mly, mly->mly_cmd_mailbox,
1413 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
1414 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
1415 		    (u_int64_t)mc->mc_packetphys >> 32);
1416 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
1417 	} else {
1418 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
1419 		off = (caddr_t)pkt - (caddr_t)mly->mly_mmbox;
1420 
1421 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1422 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1423 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1424 
1425 		/* Check to see if the next index is free yet. */
1426 		if (pkt->mmbox.flag != 0) {
1427 			splx(s);
1428 			return (EBUSY);
1429 		}
1430 
1431 		/* Copy in new command */
1432 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
1433 		    sizeof(pkt->mmbox.data));
1434 
1435 		/* Copy flag last. */
1436 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1437 
1438 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1439 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1440 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1441 
1442 		/* Signal controller and update index. */
1443 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
1444 		mly->mly_mmbox_cmd_idx =
1445 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
1446 	}
1447 
1448 	splx(s);
1449 	return (0);
1450 }
1451 
1452 /*
1453  * Pick up completed commands from the controller and handle accordingly.
1454  */
1455 int
1456 mly_intr(void *cookie)
1457 {
1458 	struct mly_ccb *mc;
1459 	union mly_status_packet	*sp;
1460 	u_int16_t slot;
1461 	int forus, off;
1462 	struct mly_softc *mly;
1463 
1464 	mly = cookie;
1465 	forus = 0;
1466 
1467 	/*
1468 	 * Pick up hardware-mailbox commands.
1469 	 */
1470 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
1471 		slot = mly_inw(mly, mly->mly_status_mailbox);
1472 
1473 		if (slot < MLY_SLOT_MAX) {
1474 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1475 			mc->mc_status =
1476 			    mly_inb(mly, mly->mly_status_mailbox + 2);
1477 			mc->mc_sense =
1478 			    mly_inb(mly, mly->mly_status_mailbox + 3);
1479 			mc->mc_resid =
1480 			    mly_inl(mly, mly->mly_status_mailbox + 4);
1481 
1482 			mly_ccb_complete(mly, mc);
1483 		} else {
1484 			/* Slot 0xffff may mean "extremely bogus command". */
1485 			printf("%s: got HM completion for illegal slot %u\n",
1486 			    mly->mly_dv.dv_xname, slot);
1487 		}
1488 
1489 		/* Unconditionally acknowledge status. */
1490 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
1491 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
1492 		forus = 1;
1493 	}
1494 
1495 	/*
1496 	 * Pick up memory-mailbox commands.
1497 	 */
1498 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
1499 		for (;;) {
1500 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
1501 			off = (caddr_t)sp - (caddr_t)mly->mly_mmbox;
1502 
1503 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1504 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1505 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1506 
1507 			/* Check for more status. */
1508 			if (sp->mmbox.flag == 0)
1509 				break;
1510 
1511 			/* Get slot number. */
1512 			slot = le16toh(sp->status.command_id);
1513 			if (slot < MLY_SLOT_MAX) {
1514 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1515 				mc->mc_status = sp->status.status;
1516 				mc->mc_sense = sp->status.sense_length;
1517 				mc->mc_resid = le32toh(sp->status.residue);
1518 				mly_ccb_complete(mly, mc);
1519 			} else {
1520 				/*
1521 				 * Slot 0xffff may mean "extremely bogus
1522 				 * command".
1523 				 */
1524 				printf("%s: got AM completion for illegal "
1525 				    "slot %u at %d\n", mly->mly_dv.dv_xname,
1526 				    slot, mly->mly_mmbox_sts_idx);
1527 			}
1528 
1529 			/* Clear and move to next index. */
1530 			sp->mmbox.flag = 0;
1531 			mly->mly_mmbox_sts_idx =
1532 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
1533 		}
1534 
1535 		/* Acknowledge that we have collected status value(s). */
1536 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
1537 		forus = 1;
1538 	}
1539 
1540 	/*
1541 	 * Run the queue.
1542 	 */
1543 	if (forus && ! SIMPLEQ_EMPTY(&mly->mly_ccb_queue))
1544 		mly_ccb_enqueue(mly, NULL);
1545 
1546 	return (forus);
1547 }
1548 
1549 /*
1550  * Process completed commands
1551  */
1552 static void
1553 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
1554 {
1555 	void (*complete)(struct mly_softc *, struct mly_ccb *);
1556 
1557 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1558 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1559 	    sizeof(union mly_cmd_packet),
1560 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1561 
1562 	complete = mc->mc_complete;
1563 	mc->mc_flags |= MLY_CCB_COMPLETE;
1564 
1565 	/*
1566 	 * Call completion handler or wake up sleeping consumer.
1567 	 */
1568 	if (complete != NULL)
1569 		(*complete)(mly, mc);
1570 	else
1571 		wakeup(mc);
1572 }
1573 
1574 /*
1575  * Allocate a command.
1576  */
1577 int
1578 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
1579 {
1580 	struct mly_ccb *mc;
1581 	int s;
1582 
1583 	s = splbio();
1584 	mc = SLIST_FIRST(&mly->mly_ccb_free);
1585 	if (mc != NULL)
1586 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
1587 	splx(s);
1588 
1589 	*mcp = mc;
1590 	return (mc == NULL ? EAGAIN : 0);
1591 }
1592 
1593 /*
1594  * Release a command back to the freelist.
1595  */
1596 void
1597 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
1598 {
1599 	int s;
1600 
1601 	/*
1602 	 * Fill in parts of the command that may cause confusion if a
1603 	 * consumer doesn't when we are later allocated.
1604 	 */
1605 	mc->mc_data = NULL;
1606 	mc->mc_flags = 0;
1607 	mc->mc_complete = NULL;
1608 	mc->mc_private = NULL;
1609 	mc->mc_packet->generic.command_control = 0;
1610 
1611 	/*
1612 	 * By default, we set up to overwrite the command packet with sense
1613 	 * information.
1614 	 */
1615 	mc->mc_packet->generic.sense_buffer_address =
1616 	    htole64(mc->mc_packetphys);
1617 	mc->mc_packet->generic.maximum_sense_size =
1618 	    sizeof(union mly_cmd_packet);
1619 
1620 	s = splbio();
1621 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
1622 	splx(s);
1623 }
1624 
1625 /*
1626  * Allocate and initialize command and packet structures.
1627  *
1628  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
1629  * allocation to that number.  If we don't yet know how many commands the
1630  * controller supports, allocate a very small set (suitable for initialization
1631  * purposes only).
1632  */
1633 static int
1634 mly_alloc_ccbs(struct mly_softc *mly)
1635 {
1636 	struct mly_ccb *mc;
1637 	int i, rv;
1638 
1639 	if (mly->mly_controllerinfo == NULL)
1640 		mly->mly_ncmds = MLY_CCBS_RESV;
1641 	else {
1642 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
1643 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
1644 	}
1645 
1646 	/*
1647 	 * Allocate enough space for all the command packets in one chunk
1648 	 * and map them permanently into controller-visible space.
1649 	 */
1650 	rv = mly_dmamem_alloc(mly,
1651 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
1652 	    &mly->mly_pkt_dmamap, (caddr_t *)&mly->mly_pkt,
1653 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
1654 	if (rv)
1655 		return (rv);
1656 
1657 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
1658 	    M_DEVBUF, M_NOWAIT|M_ZERO);
1659 
1660 	for (i = 0; i < mly->mly_ncmds; i++) {
1661 		mc = mly->mly_ccbs + i;
1662 		mc->mc_slot = MLY_SLOT_START + i;
1663 		mc->mc_packet = mly->mly_pkt + i;
1664 		mc->mc_packetphys = mly->mly_pkt_busaddr +
1665 		    (i * sizeof(union mly_cmd_packet));
1666 
1667 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
1668 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
1669 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1670 		    &mc->mc_datamap);
1671 		if (rv) {
1672 			mly_release_ccbs(mly);
1673 			return (rv);
1674 		}
1675 
1676 		mly_ccb_free(mly, mc);
1677 	}
1678 
1679 	return (0);
1680 }
1681 
1682 /*
1683  * Free all the storage held by commands.
1684  *
1685  * Must be called with all commands on the free list.
1686  */
1687 static void
1688 mly_release_ccbs(struct mly_softc *mly)
1689 {
1690 	struct mly_ccb *mc;
1691 
1692 	/* Throw away command buffer DMA maps. */
1693 	while (mly_ccb_alloc(mly, &mc) == 0)
1694 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
1695 
1696 	/* Release CCB storage. */
1697 	free(mly->mly_ccbs, M_DEVBUF);
1698 
1699 	/* Release the packet storage. */
1700 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
1701 	    mly->mly_pkt_dmamap, (caddr_t)mly->mly_pkt, &mly->mly_pkt_seg);
1702 }
1703 
1704 /*
1705  * Map a command into controller-visible space.
1706  */
1707 static int
1708 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
1709 {
1710 	struct mly_cmd_generic *gen;
1711 	struct mly_sg_entry *sg;
1712 	bus_dma_segment_t *ds;
1713 	int flg, nseg, rv;
1714 
1715 #ifdef DIAGNOSTIC
1716 	/* Don't map more than once. */
1717 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
1718 		panic("mly_ccb_map: already mapped");
1719 	mc->mc_flags |= MLY_CCB_MAPPED;
1720 
1721 	/* Does the command have a data buffer? */
1722 	if (mc->mc_data == NULL)
1723 		panic("mly_ccb_map: no data buffer");
1724 #endif
1725 
1726 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
1727 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1728 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
1729 	    BUS_DMA_READ : BUS_DMA_WRITE));
1730 	if (rv != 0)
1731 		return (rv);
1732 
1733 	gen = &mc->mc_packet->generic;
1734 
1735 	/*
1736 	 * Can we use the transfer structure directly?
1737 	 */
1738 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
1739 		mc->mc_sgoff = -1;
1740 		sg = &gen->transfer.direct.sg[0];
1741 	} else {
1742 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
1743 		    MLY_MAX_SEGS;
1744 		sg = mly->mly_sg + mc->mc_sgoff;
1745 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
1746 		gen->transfer.indirect.entries[0] = htole16(nseg);
1747 		gen->transfer.indirect.table_physaddr[0] =
1748 		    htole64(mly->mly_sg_busaddr +
1749 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
1750 	}
1751 
1752 	/*
1753 	 * Fill the S/G table.
1754 	 */
1755 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
1756 		sg->physaddr = htole64(ds->ds_addr);
1757 		sg->length = htole64(ds->ds_len);
1758 	}
1759 
1760 	/*
1761 	 * Sync up the data map.
1762 	 */
1763 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1764 		flg = BUS_DMASYNC_PREREAD;
1765 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
1766 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
1767 		flg = BUS_DMASYNC_PREWRITE;
1768 	}
1769 
1770 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1771 
1772 	/*
1773 	 * Sync up the chained S/G table, if we're using one.
1774 	 */
1775 	if (mc->mc_sgoff == -1)
1776 		return (0);
1777 
1778 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1779 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1780 
1781 	return (0);
1782 }
1783 
1784 /*
1785  * Unmap a command from controller-visible space.
1786  */
1787 static void
1788 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
1789 {
1790 	int flg;
1791 
1792 #ifdef DIAGNOSTIC
1793 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
1794 		panic("mly_ccb_unmap: not mapped");
1795 	mc->mc_flags &= ~MLY_CCB_MAPPED;
1796 #endif
1797 
1798 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1799 		flg = BUS_DMASYNC_POSTREAD;
1800 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
1801 		flg = BUS_DMASYNC_POSTWRITE;
1802 
1803 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1804 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
1805 
1806 	if (mc->mc_sgoff == -1)
1807 		return;
1808 
1809 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1810 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
1811 }
1812 
1813 /*
1814  * Adjust the size of each I/O before it passes to the SCSI layer.
1815  */
1816 static void
1817 mly_scsipi_minphys(struct buf *bp)
1818 {
1819 
1820 	if (bp->b_bcount > MLY_MAX_XFER)
1821 		bp->b_bcount = MLY_MAX_XFER;
1822 	minphys(bp);
1823 }
1824 
1825 /*
1826  * Start a SCSI command.
1827  */
1828 static void
1829 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1830 		   void *arg)
1831 {
1832 	struct mly_ccb *mc;
1833 	struct mly_cmd_scsi_small *ss;
1834 	struct scsipi_xfer *xs;
1835 	struct scsipi_periph *periph;
1836 	struct mly_softc *mly;
1837 	struct mly_btl *btl;
1838 	int s, tmp;
1839 
1840 	mly = (void *)chan->chan_adapter->adapt_dev;
1841 
1842 	switch (req) {
1843 	case ADAPTER_REQ_RUN_XFER:
1844 		xs = arg;
1845 		periph = xs->xs_periph;
1846 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
1847 		s = splbio();
1848 		tmp = btl->mb_flags;
1849 		splx(s);
1850 
1851 		/*
1852 		 * Check for I/O attempt to a protected or non-existant
1853 		 * device.
1854 		 */
1855 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
1856 			xs->error = XS_SELTIMEOUT;
1857 			scsipi_done(xs);
1858 			break;
1859 		}
1860 
1861 #ifdef DIAGNOSTIC
1862 		/* XXX Increase if/when we support large SCSI commands. */
1863 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
1864 			printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
1865 			xs->error = XS_DRIVER_STUFFUP;
1866 			scsipi_done(xs);
1867 			break;
1868 		}
1869 #endif
1870 
1871 		if (mly_ccb_alloc(mly, &mc)) {
1872 			xs->error = XS_RESOURCE_SHORTAGE;
1873 			scsipi_done(xs);
1874 			break;
1875 		}
1876 
1877 		/* Build the command. */
1878 		mc->mc_data = xs->data;
1879 		mc->mc_length = xs->datalen;
1880 		mc->mc_complete = mly_scsipi_complete;
1881 		mc->mc_private = xs;
1882 
1883 		/* Build the packet for the controller. */
1884 		ss = &mc->mc_packet->scsi_small;
1885 		ss->opcode = MDACMD_SCSI;
1886 #ifdef notdef
1887 		/*
1888 		 * XXX FreeBSD does this, but it doesn't fix anything,
1889 		 * XXX and appears potentially harmful.
1890 		 */
1891 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
1892 #endif
1893 
1894 		ss->data_size = htole32(xs->datalen);
1895 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
1896 		    periph->periph_target, periph->periph_lun), ss->addr);
1897 
1898 		if (xs->timeout < 60 * 1000)
1899 			ss->timeout = xs->timeout / 1000 |
1900 			    MLY_TIMEOUT_SECONDS;
1901 		else if (xs->timeout < 60 * 60 * 1000)
1902 			ss->timeout = xs->timeout / (60 * 1000) |
1903 			    MLY_TIMEOUT_MINUTES;
1904 		else
1905 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
1906 			    MLY_TIMEOUT_HOURS;
1907 
1908 		ss->maximum_sense_size = sizeof(xs->sense);
1909 		ss->cdb_length = xs->cmdlen;
1910 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
1911 
1912 		if (mc->mc_length != 0) {
1913 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
1914 				mc->mc_flags |= MLY_CCB_DATAOUT;
1915 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
1916 				mc->mc_flags |= MLY_CCB_DATAIN;
1917 
1918 			if (mly_ccb_map(mly, mc) != 0) {
1919 				xs->error = XS_DRIVER_STUFFUP;
1920 				mly_ccb_free(mly, mc);
1921 				scsipi_done(xs);
1922 				break;
1923 			}
1924 		}
1925 
1926 		/*
1927 		 * Give the command to the controller.
1928 		 */
1929 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
1930 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
1931 				xs->error = XS_REQUEUE;
1932 				if (mc->mc_length != 0)
1933 					mly_ccb_unmap(mly, mc);
1934 				mly_ccb_free(mly, mc);
1935 				scsipi_done(xs);
1936 			}
1937 		} else
1938 			mly_ccb_enqueue(mly, mc);
1939 
1940 		break;
1941 
1942 	case ADAPTER_REQ_GROW_RESOURCES:
1943 		/*
1944 		 * Not supported.
1945 		 */
1946 		break;
1947 
1948 	case ADAPTER_REQ_SET_XFER_MODE:
1949 		/*
1950 		 * We can't change the transfer mode, but at least let
1951 		 * scsipi know what the adapter has negotiated.
1952 		 */
1953 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
1954 		break;
1955 	}
1956 }
1957 
1958 /*
1959  * Handle completion of a SCSI command.
1960  */
1961 static void
1962 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
1963 {
1964 	struct scsipi_xfer *xs;
1965 	struct scsipi_channel *chan;
1966 	struct scsipi_inquiry_data *inq;
1967 	struct mly_btl *btl;
1968 	int target, sl, s;
1969 	const char *p;
1970 
1971 	xs = mc->mc_private;
1972 	xs->status = mc->mc_status;
1973 
1974 	/*
1975 	 * XXX The `resid' value as returned by the controller appears to be
1976 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
1977 	 * count?
1978 	 */
1979 	xs->resid = 0; /* mc->mc_resid; */
1980 
1981 	if (mc->mc_length != 0)
1982 		mly_ccb_unmap(mly, mc);
1983 
1984 	switch (mc->mc_status) {
1985 	case SCSI_OK:
1986 		/*
1987 		 * In order to report logical device type and status, we
1988 		 * overwrite the result of the INQUIRY command to logical
1989 		 * devices.
1990 		 */
1991 		if (xs->cmd->opcode == INQUIRY) {
1992 			chan = xs->xs_periph->periph_channel;
1993 			target = xs->xs_periph->periph_target;
1994 			btl = &mly->mly_btl[chan->chan_channel][target];
1995 
1996 			s = splbio();
1997 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
1998 				inq = (struct scsipi_inquiry_data *)xs->data;
1999 				mly_padstr(inq->vendor, "MYLEX", 8);
2000 				p = mly_describe_code(mly_table_device_type,
2001 				    btl->mb_type);
2002 				mly_padstr(inq->product, p, 16);
2003 				p = mly_describe_code(mly_table_device_state,
2004 				    btl->mb_state);
2005 				mly_padstr(inq->revision, p, 4);
2006 			}
2007 			splx(s);
2008 		}
2009 
2010 		xs->error = XS_NOERROR;
2011 		break;
2012 
2013 	case SCSI_CHECK:
2014 		sl = mc->mc_sense;
2015 		if (sl > sizeof(xs->sense.scsi_sense))
2016 			sl = sizeof(xs->sense.scsi_sense);
2017 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
2018 		xs->error = XS_SENSE;
2019 		break;
2020 
2021 	case SCSI_BUSY:
2022 	case SCSI_QUEUE_FULL:
2023 		xs->error = XS_BUSY;
2024 		break;
2025 
2026 	default:
2027 		printf("%s: unknown SCSI status 0x%x\n",
2028 		    mly->mly_dv.dv_xname, xs->status);
2029 		xs->error = XS_DRIVER_STUFFUP;
2030 		break;
2031 	}
2032 
2033 	mly_ccb_free(mly, mc);
2034 	scsipi_done(xs);
2035 }
2036 
2037 /*
2038  * Notify scsipi about a target's transfer mode.
2039  */
2040 static void
2041 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
2042 {
2043 	struct mly_btl *btl;
2044 	int s;
2045 
2046 	btl = &mly->mly_btl[bus][xm->xm_target];
2047 	xm->xm_mode = 0;
2048 
2049 	s = splbio();
2050 
2051 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
2052 		if (btl->mb_speed == 0) {
2053 			xm->xm_period = 0;
2054 			xm->xm_offset = 0;
2055 		} else {
2056 			xm->xm_period = 12;			/* XXX */
2057 			xm->xm_offset = 8;			/* XXX */
2058 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
2059 		}
2060 
2061 		switch (btl->mb_width) {
2062 		case 32:
2063 			xm->xm_mode = PERIPH_CAP_WIDE32;
2064 			break;
2065 		case 16:
2066 			xm->xm_mode = PERIPH_CAP_WIDE16;
2067 			break;
2068 		default:
2069 			xm->xm_mode = 0;
2070 			break;
2071 		}
2072 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
2073 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
2074 		xm->xm_period = 12;
2075 		xm->xm_offset = 8;
2076 	}
2077 
2078 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
2079 		xm->xm_mode |= PERIPH_CAP_TQING;
2080 
2081 	splx(s);
2082 
2083 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
2084 }
2085 
2086 /*
2087  * ioctl hook; used here only to initiate low-level rescans.
2088  */
2089 static int
2090 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, caddr_t data __unused,
2091     int flag __unused, struct proc *p __unused)
2092 {
2093 	struct mly_softc *mly;
2094 	int rv;
2095 
2096 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
2097 
2098 	switch (cmd) {
2099 	case SCBUSIOLLSCAN:
2100 		mly_scan_channel(mly, chan->chan_channel);
2101 		rv = 0;
2102 		break;
2103 	default:
2104 		rv = ENOTTY;
2105 		break;
2106 	}
2107 
2108 	return (rv);
2109 }
2110 
2111 /*
2112  * Handshake with the firmware while the card is being initialized.
2113  */
2114 static int
2115 mly_fwhandshake(struct mly_softc *mly)
2116 {
2117 	u_int8_t error, param0, param1;
2118 	int spinup;
2119 
2120 	spinup = 0;
2121 
2122 	/* Set HM_STSACK and let the firmware initialize. */
2123 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
2124 	DELAY(1000);	/* too short? */
2125 
2126 	/* If HM_STSACK is still true, the controller is initializing. */
2127 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
2128 		return (0);
2129 
2130 	printf("%s: controller initialization started\n",
2131 	    mly->mly_dv.dv_xname);
2132 
2133 	/*
2134 	 * Spin waiting for initialization to finish, or for a message to be
2135 	 * delivered.
2136 	 */
2137 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
2138 		/* Check for a message */
2139 		if (!mly_error_valid(mly))
2140 			continue;
2141 
2142 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
2143 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
2144 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
2145 
2146 		switch (error) {
2147 		case MLY_MSG_SPINUP:
2148 			if (!spinup) {
2149 				printf("%s: drive spinup in progress\n",
2150 				    mly->mly_dv.dv_xname);
2151 				spinup = 1;
2152 			}
2153 			break;
2154 
2155 		case MLY_MSG_RACE_RECOVERY_FAIL:
2156 			printf("%s: mirror race recovery failed - \n",
2157 			    mly->mly_dv.dv_xname);
2158 			printf("%s: one or more drives offline\n",
2159 			    mly->mly_dv.dv_xname);
2160 			break;
2161 
2162 		case MLY_MSG_RACE_IN_PROGRESS:
2163 			printf("%s: mirror race recovery in progress\n",
2164 			    mly->mly_dv.dv_xname);
2165 			break;
2166 
2167 		case MLY_MSG_RACE_ON_CRITICAL:
2168 			printf("%s: mirror race recovery on critical drive\n",
2169 			    mly->mly_dv.dv_xname);
2170 			break;
2171 
2172 		case MLY_MSG_PARITY_ERROR:
2173 			printf("%s: FATAL MEMORY PARITY ERROR\n",
2174 			    mly->mly_dv.dv_xname);
2175 			return (ENXIO);
2176 
2177 		default:
2178 			printf("%s: unknown initialization code 0x%x\n",
2179 			    mly->mly_dv.dv_xname, error);
2180 			break;
2181 		}
2182 	}
2183 
2184 	return (0);
2185 }
2186 
2187 /*
2188  * Space-fill a character string
2189  */
2190 static void
2191 mly_padstr(char *dst, const char *src, int len)
2192 {
2193 
2194 	while (len-- > 0) {
2195 		if (*src != '\0')
2196 			*dst++ = *src++;
2197 		else
2198 			*dst++ = ' ';
2199 	}
2200 }
2201 
2202 /*
2203  * Allocate DMA safe memory.
2204  */
2205 static int
2206 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
2207 		 caddr_t *kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
2208 {
2209 	int rseg, rv, state;
2210 
2211 	state = 0;
2212 
2213 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, PAGE_SIZE, 0,
2214 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
2215 		printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
2216 		goto bad;
2217 	}
2218 
2219 	state++;
2220 
2221 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
2222 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2223 		printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
2224 		goto bad;
2225 	}
2226 
2227 	state++;
2228 
2229 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
2230 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
2231 		printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
2232 		goto bad;
2233 	}
2234 
2235 	state++;
2236 
2237 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
2238 	    NULL, BUS_DMA_NOWAIT)) != 0) {
2239 		printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
2240 		goto bad;
2241 	}
2242 
2243 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
2244 	memset(*kva, 0, size);
2245 	return (0);
2246 
2247  bad:
2248 	if (state > 2)
2249 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
2250 	if (state > 1)
2251 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
2252 	if (state > 0)
2253 		bus_dmamem_free(mly->mly_dmat, seg, 1);
2254 
2255 	return (rv);
2256 }
2257 
2258 /*
2259  * Free DMA safe memory.
2260  */
2261 static void
2262 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
2263 		caddr_t kva, bus_dma_segment_t *seg)
2264 {
2265 
2266 	bus_dmamap_unload(mly->mly_dmat, dmamap);
2267 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
2268 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
2269 	bus_dmamem_free(mly->mly_dmat, seg, 1);
2270 }
2271 
2272 
2273 /*
2274  * Accept an open operation on the control device.
2275  */
2276 int
2277 mlyopen(dev_t dev, int flag __unused, int mode __unused, struct lwp *l __unused)
2278 {
2279 	struct mly_softc *mly;
2280 
2281 	if ((mly = device_lookup(&mly_cd, minor(dev))) == NULL)
2282 		return (ENXIO);
2283 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
2284 		return (ENXIO);
2285 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
2286 		return (EBUSY);
2287 
2288 	mly->mly_state |= MLY_STATE_OPEN;
2289 	return (0);
2290 }
2291 
2292 /*
2293  * Accept the last close on the control device.
2294  */
2295 int
2296 mlyclose(dev_t dev, int flag __unused, int mode __unused,
2297     struct lwp *l __unused)
2298 {
2299 	struct mly_softc *mly;
2300 
2301 	mly = device_lookup(&mly_cd, minor(dev));
2302 	mly->mly_state &= ~MLY_STATE_OPEN;
2303 	return (0);
2304 }
2305 
2306 /*
2307  * Handle control operations.
2308  */
2309 int
2310 mlyioctl(dev_t dev, u_long cmd, caddr_t data, int flag __unused,
2311     struct lwp *l __unused)
2312 {
2313 	struct mly_softc *mly;
2314 	int rv;
2315 
2316 	mly = device_lookup(&mly_cd, minor(dev));
2317 
2318 	switch (cmd) {
2319 	case MLYIO_COMMAND:
2320 		if (securelevel >= 2)
2321 			rv = EPERM;
2322 		else
2323 			rv = mly_user_command(mly, (void *)data);
2324 		break;
2325 	case MLYIO_HEALTH:
2326 		rv = mly_user_health(mly, (void *)data);
2327 		break;
2328 	default:
2329 		rv = ENOTTY;
2330 		break;
2331 	}
2332 
2333 	return (rv);
2334 }
2335 
2336 /*
2337  * Execute a command passed in from userspace.
2338  *
2339  * The control structure contains the actual command for the controller, as
2340  * well as the user-space data pointer and data size, and an optional sense
2341  * buffer size/pointer.  On completion, the data size is adjusted to the
2342  * command residual, and the sense buffer size to the size of the returned
2343  * sense data.
2344  */
2345 static int
2346 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
2347 {
2348 	struct mly_ccb	*mc;
2349 	int rv, mapped;
2350 
2351 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
2352 		return (rv);
2353 
2354 	mapped = 0;
2355 	mc->mc_data = NULL;
2356 
2357 	/*
2358 	 * Handle data size/direction.
2359 	 */
2360 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
2361 		if (mc->mc_length > MAXPHYS) {
2362 			rv = EINVAL;
2363 			goto out;
2364 		}
2365 
2366 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
2367 		if (mc->mc_data == NULL) {
2368 			rv = ENOMEM;
2369 			goto out;
2370 		}
2371 
2372 		if (uc->DataTransferLength > 0) {
2373 			mc->mc_flags |= MLY_CCB_DATAIN;
2374 			memset(mc->mc_data, 0, mc->mc_length);
2375 		}
2376 
2377 		if (uc->DataTransferLength < 0) {
2378 			mc->mc_flags |= MLY_CCB_DATAOUT;
2379 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
2380 			    mc->mc_length);
2381 			if (rv != 0)
2382 				goto out;
2383 		}
2384 
2385 		if ((rv = mly_ccb_map(mly, mc)) != 0)
2386 			goto out;
2387 		mapped = 1;
2388 	}
2389 
2390 	/* Copy in the command and execute it. */
2391 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
2392 
2393 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
2394 		goto out;
2395 
2396 	/* Return the data to userspace. */
2397 	if (uc->DataTransferLength > 0) {
2398 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
2399 		    mc->mc_length);
2400 		if (rv != 0)
2401 			goto out;
2402 	}
2403 
2404 	/* Return the sense buffer to userspace. */
2405 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
2406 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2407 		    min(uc->RequestSenseLength, mc->mc_sense));
2408 		if (rv != 0)
2409 			goto out;
2410 	}
2411 
2412 	/* Return command results to userspace (caller will copy out). */
2413 	uc->DataTransferLength = mc->mc_resid;
2414 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2415 	uc->CommandStatus = mc->mc_status;
2416 	rv = 0;
2417 
2418  out:
2419  	if (mapped)
2420  		mly_ccb_unmap(mly, mc);
2421 	if (mc->mc_data != NULL)
2422 		free(mc->mc_data, M_DEVBUF);
2423 	mly_ccb_free(mly, mc);
2424 
2425 	return (rv);
2426 }
2427 
2428 /*
2429  * Return health status to userspace.  If the health change index in the
2430  * user structure does not match that currently exported by the controller,
2431  * we return the current status immediately.  Otherwise, we block until
2432  * either interrupted or new status is delivered.
2433  */
2434 static int
2435 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
2436 {
2437 	struct mly_health_status mh;
2438 	int rv, s;
2439 
2440 	/* Fetch the current health status from userspace. */
2441 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
2442 	if (rv != 0)
2443 		return (rv);
2444 
2445 	/* spin waiting for a status update */
2446 	s = splbio();
2447 	if (mly->mly_event_change == mh.change_counter)
2448 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
2449 		    "mlyhealth", 0);
2450 	splx(s);
2451 
2452 	if (rv == 0) {
2453 		/*
2454 		 * Copy the controller's health status buffer out (there is
2455 		 * a race here if it changes again).
2456 		 */
2457 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
2458 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
2459 	}
2460 
2461 	return (rv);
2462 }
2463