xref: /netbsd-src/sys/dev/pci/mly.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: mly.c,v 1.49 2014/07/25 08:10:38 dholland Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 2000, 2001 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
59  */
60 
61 /*
62  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
63  *
64  * TODO:
65  *
66  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
67  * o Handle FC and multiple LUNs.
68  * o Fix mmbox usage.
69  * o Fix transfer speed fudge.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.49 2014/07/25 08:10:38 dholland Exp $");
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/device.h>
78 #include <sys/kernel.h>
79 #include <sys/queue.h>
80 #include <sys/buf.h>
81 #include <sys/endian.h>
82 #include <sys/conf.h>
83 #include <sys/malloc.h>
84 #include <sys/ioctl.h>
85 #include <sys/scsiio.h>
86 #include <sys/kthread.h>
87 #include <sys/kauth.h>
88 
89 #include <sys/bus.h>
90 
91 #include <dev/scsipi/scsi_all.h>
92 #include <dev/scsipi/scsipi_all.h>
93 #include <dev/scsipi/scsiconf.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98 
99 #include <dev/pci/mlyreg.h>
100 #include <dev/pci/mlyio.h>
101 #include <dev/pci/mlyvar.h>
102 #include <dev/pci/mly_tables.h>
103 
104 static void	mly_attach(device_t, device_t, void *);
105 static int	mly_match(device_t, cfdata_t, void *);
106 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
107 static int	mly_fwhandshake(struct mly_softc *);
108 static int	mly_flush(struct mly_softc *);
109 static int	mly_intr(void *);
110 static void	mly_shutdown(void *);
111 
112 static int	mly_alloc_ccbs(struct mly_softc *);
113 static void	mly_check_event(struct mly_softc *);
114 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
115 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
116 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
117 				 void **, bus_addr_t *, bus_dma_segment_t *);
118 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
119 				void *, bus_dma_segment_t *);
120 static int	mly_enable_mmbox(struct mly_softc *);
121 static void	mly_fetch_event(struct mly_softc *);
122 static int	mly_get_controllerinfo(struct mly_softc *);
123 static int	mly_get_eventstatus(struct mly_softc *);
124 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
125 			  void **, size_t, void *, size_t *);
126 static void	mly_padstr(char *, const char *, int);
127 static void	mly_process_event(struct mly_softc *, struct mly_event *);
128 static void	mly_release_ccbs(struct mly_softc *);
129 static int	mly_scan_btl(struct mly_softc *, int, int);
130 static void	mly_scan_channel(struct mly_softc *, int);
131 static void	mly_thread(void *);
132 
133 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
134 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
135 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
136 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
137 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
138 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
139 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
140 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
141 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
142 
143 static void	mly_get_xfer_mode(struct mly_softc *, int,
144 				  struct scsipi_xfer_mode *);
145 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
146 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, void *,
147 				 int, struct proc *);
148 static void	mly_scsipi_minphys(struct buf *);
149 static void	mly_scsipi_request(struct scsipi_channel *,
150 				   scsipi_adapter_req_t, void *);
151 
152 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
153 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
154 
155 extern struct	cfdriver mly_cd;
156 
157 CFATTACH_DECL_NEW(mly, sizeof(struct mly_softc),
158     mly_match, mly_attach, NULL, NULL);
159 
160 dev_type_open(mlyopen);
161 dev_type_close(mlyclose);
162 dev_type_ioctl(mlyioctl);
163 
164 const struct cdevsw mly_cdevsw = {
165 	.d_open = mlyopen,
166 	.d_close = mlyclose,
167 	.d_read = noread,
168 	.d_write = nowrite,
169 	.d_ioctl = mlyioctl,
170 	.d_stop = nostop,
171 	.d_tty = notty,
172 	.d_poll = nopoll,
173 	.d_mmap = nommap,
174 	.d_kqfilter = nokqfilter,
175 	.d_discard = nodiscard,
176 	.d_flag = D_OTHER
177 };
178 
179 static struct mly_ident {
180 	u_short	vendor;
181 	u_short	product;
182 	u_short	subvendor;
183 	u_short	subproduct;
184 	int	hwif;
185 	const char	*desc;
186 } const mly_ident[] = {
187 	{
188 		PCI_VENDOR_MYLEX,
189 		PCI_PRODUCT_MYLEX_EXTREMERAID,
190 		PCI_VENDOR_MYLEX,
191 		0x0040,
192 		MLY_HWIF_STRONGARM,
193 		"eXtremeRAID 2000"
194 	},
195 	{
196 		PCI_VENDOR_MYLEX,
197 		PCI_PRODUCT_MYLEX_EXTREMERAID,
198 		PCI_VENDOR_MYLEX,
199 		0x0030,
200 		MLY_HWIF_STRONGARM,
201 		"eXtremeRAID 3000"
202 	},
203 	{
204 		PCI_VENDOR_MYLEX,
205 		PCI_PRODUCT_MYLEX_ACCELERAID,
206 		PCI_VENDOR_MYLEX,
207 		0x0050,
208 		MLY_HWIF_I960RX,
209 		"AcceleRAID 352"
210 	},
211 	{
212 		PCI_VENDOR_MYLEX,
213 		PCI_PRODUCT_MYLEX_ACCELERAID,
214 		PCI_VENDOR_MYLEX,
215 		0x0052,
216 		MLY_HWIF_I960RX,
217 		"AcceleRAID 170"
218 	},
219 	{
220 		PCI_VENDOR_MYLEX,
221 		PCI_PRODUCT_MYLEX_ACCELERAID,
222 		PCI_VENDOR_MYLEX,
223 		0x0054,
224 		MLY_HWIF_I960RX,
225 		"AcceleRAID 160"
226 	},
227 };
228 
229 static void	*mly_sdh;
230 
231 /*
232  * Try to find a `mly_ident' entry corresponding to this board.
233  */
234 static const struct mly_ident *
235 mly_find_ident(struct pci_attach_args *pa)
236 {
237 	const struct mly_ident *mpi, *maxmpi;
238 	pcireg_t reg;
239 
240 	mpi = mly_ident;
241 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
242 
243 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
244 		return (NULL);
245 
246 	for (; mpi < maxmpi; mpi++) {
247 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
248 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
249 			continue;
250 
251 		if (mpi->subvendor == 0x0000)
252 			return (mpi);
253 
254 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
255 
256 		if (PCI_VENDOR(reg) == mpi->subvendor &&
257 		    PCI_PRODUCT(reg) == mpi->subproduct)
258 			return (mpi);
259 	}
260 
261 	return (NULL);
262 }
263 
264 /*
265  * Match a supported board.
266  */
267 static int
268 mly_match(device_t parent, cfdata_t cfdata, void *aux)
269 {
270 
271 	return (mly_find_ident(aux) != NULL);
272 }
273 
274 /*
275  * Attach a supported board.
276  */
277 static void
278 mly_attach(device_t parent, device_t self, void *aux)
279 {
280 	struct pci_attach_args *pa;
281 	struct mly_softc *mly;
282 	struct mly_ioctl_getcontrollerinfo *mi;
283 	const struct mly_ident *ident;
284 	pci_chipset_tag_t pc;
285 	pci_intr_handle_t ih;
286 	bus_space_handle_t memh, ioh;
287 	bus_space_tag_t memt, iot;
288 	pcireg_t reg;
289 	const char *intrstr;
290 	int ior, memr, i, rv, state;
291 	struct scsipi_adapter *adapt;
292 	struct scsipi_channel *chan;
293 	char intrbuf[PCI_INTRSTR_LEN];
294 
295 	mly = device_private(self);
296 	mly->mly_dv = self;
297 	pa = aux;
298 	pc = pa->pa_pc;
299 	ident = mly_find_ident(pa);
300 	state = 0;
301 
302 	mly->mly_dmat = pa->pa_dmat;
303 	mly->mly_hwif = ident->hwif;
304 
305 	printf(": Mylex %s\n", ident->desc);
306 
307 	/*
308 	 * Map the PCI register window.
309 	 */
310 	memr = -1;
311 	ior = -1;
312 
313 	for (i = 0x10; i <= 0x14; i += 4) {
314 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
315 
316 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
317 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
318 				ior = i;
319 		} else {
320 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
321 				memr = i;
322 		}
323 	}
324 
325 	if (memr != -1)
326 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
327 		    &memt, &memh, NULL, NULL))
328 			memr = -1;
329 	if (ior != -1)
330 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
331 		    &iot, &ioh, NULL, NULL))
332 		    	ior = -1;
333 
334 	if (memr != -1) {
335 		mly->mly_iot = memt;
336 		mly->mly_ioh = memh;
337 	} else if (ior != -1) {
338 		mly->mly_iot = iot;
339 		mly->mly_ioh = ioh;
340 	} else {
341 		aprint_error_dev(self, "can't map i/o or memory space\n");
342 		return;
343 	}
344 
345 	/*
346 	 * Enable the device.
347 	 */
348 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
349 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
350 	    reg | PCI_COMMAND_MASTER_ENABLE);
351 
352 	/*
353 	 * Map and establish the interrupt.
354 	 */
355 	if (pci_intr_map(pa, &ih)) {
356 		aprint_error_dev(self, "can't map interrupt\n");
357 		return;
358 	}
359 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
360 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
361 	if (mly->mly_ih == NULL) {
362 		aprint_error_dev(self, "can't establish interrupt");
363 		if (intrstr != NULL)
364 			aprint_error(" at %s", intrstr);
365 		aprint_error("\n");
366 		return;
367 	}
368 
369 	if (intrstr != NULL)
370 		aprint_normal_dev(self, "interrupting at %s\n",
371 		    intrstr);
372 
373 	/*
374 	 * Take care of interface-specific tasks.
375 	 */
376 	switch (mly->mly_hwif) {
377 	case MLY_HWIF_I960RX:
378 		mly->mly_doorbell_true = 0x00;
379 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
380 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
381 		mly->mly_idbr = MLY_I960RX_IDBR;
382 		mly->mly_odbr = MLY_I960RX_ODBR;
383 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
384 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
385 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
386 		break;
387 
388 	case MLY_HWIF_STRONGARM:
389 		mly->mly_doorbell_true = 0xff;
390 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
391 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
392 		mly->mly_idbr = MLY_STRONGARM_IDBR;
393 		mly->mly_odbr = MLY_STRONGARM_ODBR;
394 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
395 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
396 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
397 		break;
398 	}
399 
400 	/*
401 	 * Allocate and map the scatter/gather lists.
402 	 */
403 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
404 	    &mly->mly_sg_dmamap, (void **)&mly->mly_sg,
405 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
406 	if (rv) {
407 		printf("%s: unable to allocate S/G maps\n",
408 		    device_xname(self));
409 		goto bad;
410 	}
411 	state++;
412 
413 	/*
414 	 * Allocate and map the memory mailbox.
415 	 */
416 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
417 	    &mly->mly_mmbox_dmamap, (void **)&mly->mly_mmbox,
418 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
419 	if (rv) {
420 		aprint_error_dev(self, "unable to allocate mailboxes\n");
421 		goto bad;
422 	}
423 	state++;
424 
425 	/*
426 	 * Initialise per-controller queues.
427 	 */
428 	SLIST_INIT(&mly->mly_ccb_free);
429 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
430 
431 	/*
432 	 * Disable interrupts before we start talking to the controller.
433 	 */
434 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
435 
436 	/*
437 	 * Wait for the controller to come ready, handshaking with the
438 	 * firmware if required.  This is typically only necessary on
439 	 * platforms where the controller BIOS does not run.
440 	 */
441 	if (mly_fwhandshake(mly)) {
442 		aprint_error_dev(self, "unable to bring controller online\n");
443 		goto bad;
444 	}
445 
446 	/*
447 	 * Allocate initial command buffers, obtain controller feature
448 	 * information, and then reallocate command buffers, since we'll
449 	 * know how many we want.
450 	 */
451 	if (mly_alloc_ccbs(mly)) {
452 		aprint_error_dev(self, "unable to allocate CCBs\n");
453 		goto bad;
454 	}
455 	state++;
456 	if (mly_get_controllerinfo(mly)) {
457 		aprint_error_dev(self, "unable to retrieve controller info\n");
458 		goto bad;
459 	}
460 	mly_release_ccbs(mly);
461 	if (mly_alloc_ccbs(mly)) {
462 		aprint_error_dev(self, "unable to allocate CCBs\n");
463 		state--;
464 		goto bad;
465 	}
466 
467 	/*
468 	 * Get the current event counter for health purposes, populate the
469 	 * initial health status buffer.
470 	 */
471 	if (mly_get_eventstatus(mly)) {
472 		aprint_error_dev(self, "unable to retrieve event status\n");
473 		goto bad;
474 	}
475 
476 	/*
477 	 * Enable memory-mailbox mode.
478 	 */
479 	if (mly_enable_mmbox(mly)) {
480 		aprint_error_dev(self, "unable to enable memory mailbox\n");
481 		goto bad;
482 	}
483 
484 	/*
485 	 * Print a little information about the controller.
486 	 */
487 	mi = mly->mly_controllerinfo;
488 
489 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
490 	    "(%02d%02d%02d%02d), %dMB RAM\n", device_xname(self),
491 	    mi->physical_channels_present,
492 	    (mi->physical_channels_present) > 1 ? "s" : "",
493 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
494 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
495 	    le16toh(mi->memory_size));
496 
497 	/*
498 	 * Register our `shutdownhook'.
499 	 */
500 	if (mly_sdh == NULL)
501 		shutdownhook_establish(mly_shutdown, NULL);
502 
503 	/*
504 	 * Clear any previous BTL information.  For each bus that scsipi
505 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
506 	 * all BTL info at that point.
507 	 */
508 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
509 
510 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
511 	    mly->mly_controllerinfo->virtual_channels_present;
512 
513 	/*
514 	 * Attach to scsipi.
515 	 */
516 	adapt = &mly->mly_adapt;
517 	memset(adapt, 0, sizeof(*adapt));
518 	adapt->adapt_dev = self;
519 	adapt->adapt_nchannels = mly->mly_nchans;
520 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
521 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
522 	adapt->adapt_request = mly_scsipi_request;
523 	adapt->adapt_minphys = mly_scsipi_minphys;
524 	adapt->adapt_ioctl = mly_scsipi_ioctl;
525 
526 	for (i = 0; i < mly->mly_nchans; i++) {
527 		chan = &mly->mly_chans[i];
528 		memset(chan, 0, sizeof(*chan));
529 		chan->chan_adapter = adapt;
530 		chan->chan_bustype = &scsi_bustype;
531 		chan->chan_channel = i;
532 		chan->chan_ntargets = MLY_MAX_TARGETS;
533 		chan->chan_nluns = MLY_MAX_LUNS;
534 		chan->chan_id = mly->mly_controllerparam->initiator_id;
535 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
536 		config_found(self, chan, scsiprint);
537 	}
538 
539 	/*
540 	 * Now enable interrupts...
541 	 */
542 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
543 
544 	/*
545 	 * Finally, create our monitoring thread.
546 	 */
547 	mly->mly_state |= MLY_STATE_INITOK;
548 	rv = kthread_create(PRI_NONE, 0, NULL, mly_thread, mly,
549 	    &mly->mly_thread, "%s", device_xname(self));
550  	if (rv != 0)
551 		aprint_error_dev(self, "unable to create thread (%d)\n",
552 		    rv);
553 	return;
554 
555  bad:
556 	if (state > 2)
557 		mly_release_ccbs(mly);
558 	if (state > 1)
559 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
560 		    mly->mly_mmbox_dmamap, (void *)mly->mly_mmbox,
561 		    &mly->mly_mmbox_seg);
562 	if (state > 0)
563 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
564 		    mly->mly_sg_dmamap, (void *)mly->mly_sg,
565 		    &mly->mly_sg_seg);
566 }
567 
568 /*
569  * Scan all possible devices on the specified channel.
570  */
571 static void
572 mly_scan_channel(struct mly_softc *mly, int bus)
573 {
574 	int s, target;
575 
576 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
577 		s = splbio();
578 		if (!mly_scan_btl(mly, bus, target)) {
579 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
580 			    0);
581 		}
582 		splx(s);
583 	}
584 }
585 
586 /*
587  * Shut down all configured `mly' devices.
588  */
589 static void
590 mly_shutdown(void *cookie)
591 {
592 	struct mly_softc *mly;
593 	int i;
594 
595 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
596 		if ((mly = device_lookup_private(&mly_cd, i)) == NULL)
597 			continue;
598 
599 		if (mly_flush(mly))
600 			aprint_error_dev(mly->mly_dv, "unable to flush cache\n");
601 	}
602 }
603 
604 /*
605  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
606  * softc.
607  */
608 static int
609 mly_get_controllerinfo(struct mly_softc *mly)
610 {
611 	struct mly_cmd_ioctl mci;
612 	int rv;
613 
614 	/*
615 	 * Build the getcontrollerinfo ioctl and send it.
616 	 */
617 	memset(&mci, 0, sizeof(mci));
618 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
619 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
620 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
621 	if (rv != 0)
622 		return (rv);
623 
624 	/*
625 	 * Build the getcontrollerparameter ioctl and send it.
626 	 */
627 	memset(&mci, 0, sizeof(mci));
628 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
629 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
630 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
631 
632 	return (rv);
633 }
634 
635 /*
636  * Rescan a device, possibly as a consequence of getting an event which
637  * suggests that it may have changed.  Must be called with interrupts
638  * blocked.
639  */
640 static int
641 mly_scan_btl(struct mly_softc *mly, int bus, int target)
642 {
643 	struct mly_ccb *mc;
644 	struct mly_cmd_ioctl *mci;
645 	int rv;
646 
647 	if (target == mly->mly_controllerparam->initiator_id) {
648 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
649 		return (EIO);
650 	}
651 
652 	/* Don't re-scan if a scan is already in progress. */
653 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
654 		return (EBUSY);
655 
656 	/* Get a command. */
657 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
658 		return (rv);
659 
660 	/* Set up the data buffer. */
661 	mc->mc_data = malloc(sizeof(union mly_devinfo),
662 	    M_DEVBUF, M_NOWAIT|M_ZERO);
663 
664 	mc->mc_flags |= MLY_CCB_DATAIN;
665 	mc->mc_complete = mly_complete_rescan;
666 
667 	/*
668 	 * Build the ioctl.
669 	 */
670 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
671 	mci->opcode = MDACMD_IOCTL;
672 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
673 	memset(&mci->param, 0, sizeof(mci->param));
674 
675 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
676 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
677 		mci->data_size = htole32(mc->mc_length);
678 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
679 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
680 		    mci->addr);
681 	} else {
682 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
683 		mci->data_size = htole32(mc->mc_length);
684 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
685 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
686 	}
687 
688 	/*
689 	 * Dispatch the command.
690 	 */
691 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
692 		free(mc->mc_data, M_DEVBUF);
693 		mly_ccb_free(mly, mc);
694 		return(rv);
695 	}
696 
697 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
698 	mly_ccb_enqueue(mly, mc);
699 	return (0);
700 }
701 
702 /*
703  * Handle the completion of a rescan operation.
704  */
705 static void
706 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
707 {
708 	struct mly_ioctl_getlogdevinfovalid *ldi;
709 	struct mly_ioctl_getphysdevinfovalid *pdi;
710 	struct mly_cmd_ioctl *mci;
711 	struct mly_btl btl, *btlp;
712 	struct scsipi_xfer_mode xm;
713 	int bus, target, rescan;
714 	u_int tmp;
715 
716 	mly_ccb_unmap(mly, mc);
717 
718 	/*
719 	 * Recover the bus and target from the command.  We need these even
720 	 * in the case where we don't have a useful response.
721 	 */
722 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
723 	tmp = _3ltol(mci->addr);
724 	rescan = 0;
725 
726 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
727 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
728 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
729 	} else {
730 		bus = MLY_PHYADDR_CHANNEL(tmp);
731 		target = MLY_PHYADDR_TARGET(tmp);
732 	}
733 
734 	btlp = &mly->mly_btl[bus][target];
735 
736 	/* The default result is 'no device'. */
737 	memset(&btl, 0, sizeof(btl));
738 	btl.mb_flags = MLY_BTL_PROTECTED;
739 
740 	/* If the rescan completed OK, we have possibly-new BTL data. */
741 	if (mc->mc_status != 0)
742 		goto out;
743 
744 	if (mc->mc_length == sizeof(*ldi)) {
745 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
746 		tmp = le32toh(ldi->logical_device_number);
747 
748 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
749 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
750 #ifdef MLYDEBUG
751 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
752 			    "returned data for %d:%d instead\n",
753 			   device_xname(mly->mly_dv), bus, target,
754 			   MLY_LOGDEV_BUS(mly, tmp),
755 			   MLY_LOGDEV_TARGET(mly, tmp));
756 #endif
757 			goto out;
758 		}
759 
760 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
761 		btl.mb_type = ldi->raid_level;
762 		btl.mb_state = ldi->state;
763 	} else if (mc->mc_length == sizeof(*pdi)) {
764 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
765 
766 		if (pdi->channel != bus || pdi->target != target) {
767 #ifdef MLYDEBUG
768 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
769 			    " returned data for %d:%d instead\n",
770 			   device_xname(mly->mly_dv),
771 			   bus, target, pdi->channel, pdi->target);
772 #endif
773 			goto out;
774 		}
775 
776 		btl.mb_flags = MLY_BTL_PHYSICAL;
777 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
778 		btl.mb_state = pdi->state;
779 		btl.mb_speed = pdi->speed;
780 		btl.mb_width = pdi->width;
781 
782 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
783 			btl.mb_flags |= MLY_BTL_PROTECTED;
784 		if (pdi->command_tags != 0)
785 			btl.mb_flags |= MLY_BTL_TQING;
786 	} else {
787 		printf("%s: BTL rescan result invalid\n", device_xname(mly->mly_dv));
788 		goto out;
789 	}
790 
791 	/* Decide whether we need to rescan the device. */
792 	if (btl.mb_flags != btlp->mb_flags ||
793 	    btl.mb_speed != btlp->mb_speed ||
794 	    btl.mb_width != btlp->mb_width)
795 		rescan = 1;
796 
797  out:
798 	*btlp = btl;
799 
800 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
801 		xm.xm_target = target;
802 		mly_get_xfer_mode(mly, bus, &xm);
803 		/* XXX SCSI mid-layer rescan goes here. */
804 	}
805 
806 	/* Wake anybody waiting on the device to be rescanned. */
807 	wakeup(btlp);
808 
809 	free(mc->mc_data, M_DEVBUF);
810 	mly_ccb_free(mly, mc);
811 }
812 
813 /*
814  * Get the current health status and set the 'next event' counter to suit.
815  */
816 static int
817 mly_get_eventstatus(struct mly_softc *mly)
818 {
819 	struct mly_cmd_ioctl mci;
820 	struct mly_health_status *mh;
821 	int rv;
822 
823 	/* Build the gethealthstatus ioctl and send it. */
824 	memset(&mci, 0, sizeof(mci));
825 	mh = NULL;
826 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
827 
828 	rv = mly_ioctl(mly, &mci, (void *)&mh, sizeof(*mh), NULL, NULL);
829 	if (rv)
830 		return (rv);
831 
832 	/* Get the event counter. */
833 	mly->mly_event_change = le32toh(mh->change_counter);
834 	mly->mly_event_waiting = le32toh(mh->next_event);
835 	mly->mly_event_counter = le32toh(mh->next_event);
836 
837 	/* Save the health status into the memory mailbox */
838 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
839 
840 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
841 	    offsetof(struct mly_mmbox, mmm_health),
842 	    sizeof(mly->mly_mmbox->mmm_health),
843 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
844 
845 	free(mh, M_DEVBUF);
846 	return (0);
847 }
848 
849 /*
850  * Enable memory mailbox mode.
851  */
852 static int
853 mly_enable_mmbox(struct mly_softc *mly)
854 {
855 	struct mly_cmd_ioctl mci;
856 	u_int8_t *sp;
857 	u_int64_t tmp;
858 	int rv;
859 
860 	/* Build the ioctl and send it. */
861 	memset(&mci, 0, sizeof(mci));
862 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
863 
864 	/* Set buffer addresses. */
865 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
866 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
867 
868 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
869 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
870 
871 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
872 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
873 
874 	/* Set buffer sizes - abuse of data_size field is revolting. */
875 	sp = (u_int8_t *)&mci.data_size;
876 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
877 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
878 	mci.param.setmemorymailbox.health_buffer_size =
879 	    sizeof(union mly_health_region) >> 10;
880 
881 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
882 	if (rv)
883 		return (rv);
884 
885 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
886 	return (0);
887 }
888 
889 /*
890  * Flush all pending I/O from the controller.
891  */
892 static int
893 mly_flush(struct mly_softc *mly)
894 {
895 	struct mly_cmd_ioctl mci;
896 
897 	/* Build the ioctl */
898 	memset(&mci, 0, sizeof(mci));
899 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
900 	mci.param.deviceoperation.operation_device =
901 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
902 
903 	/* Pass it off to the controller */
904 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
905 }
906 
907 /*
908  * Perform an ioctl command.
909  *
910  * If (data) is not NULL, the command requires data transfer to the
911  * controller.  If (*data) is NULL the command requires data transfer from
912  * the controller, and we will allocate a buffer for it.
913  */
914 static int
915 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
916 	  size_t datasize, void *sense_buffer,
917 	  size_t *sense_length)
918 {
919 	struct mly_ccb *mc;
920 	struct mly_cmd_ioctl *mci;
921 	u_int8_t status;
922 	int rv;
923 
924 	mc = NULL;
925 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
926 		goto bad;
927 
928 	/*
929 	 * Copy the ioctl structure, but save some important fields and then
930 	 * fixup.
931 	 */
932 	mci = &mc->mc_packet->ioctl;
933 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
934 	ioctl->maximum_sense_size = mci->maximum_sense_size;
935 	*mci = *ioctl;
936 	mci->opcode = MDACMD_IOCTL;
937 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
938 
939 	/* Handle the data buffer. */
940 	if (data != NULL) {
941 		if (*data == NULL) {
942 			/* Allocate data buffer */
943 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
944 			mc->mc_flags |= MLY_CCB_DATAIN;
945 		} else {
946 			mc->mc_data = *data;
947 			mc->mc_flags |= MLY_CCB_DATAOUT;
948 		}
949 		mc->mc_length = datasize;
950 		mc->mc_packet->generic.data_size = htole32(datasize);
951 	}
952 
953 	/* Run the command. */
954 	if (datasize > 0)
955 		if ((rv = mly_ccb_map(mly, mc)) != 0)
956 			goto bad;
957 	rv = mly_ccb_poll(mly, mc, 30000);
958 	if (datasize > 0)
959 		mly_ccb_unmap(mly, mc);
960 	if (rv != 0)
961 		goto bad;
962 
963 	/* Clean up and return any data. */
964 	status = mc->mc_status;
965 
966 	if (status != 0)
967 		printf("mly_ioctl: command status %d\n", status);
968 
969 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
970 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
971 		*sense_length = mc->mc_sense;
972 		goto bad;
973 	}
974 
975 	/* Should we return a data pointer? */
976 	if (data != NULL && *data == NULL)
977 		*data = mc->mc_data;
978 
979 	/* Command completed OK. */
980 	rv = (status != 0 ? EIO : 0);
981 
982  bad:
983 	if (mc != NULL) {
984 		/* Do we need to free a data buffer we allocated? */
985 		if (rv != 0 && mc->mc_data != NULL &&
986 		    (data == NULL || *data == NULL))
987 			free(mc->mc_data, M_DEVBUF);
988 		mly_ccb_free(mly, mc);
989 	}
990 
991 	return (rv);
992 }
993 
994 /*
995  * Check for event(s) outstanding in the controller.
996  */
997 static void
998 mly_check_event(struct mly_softc *mly)
999 {
1000 
1001 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1002 	    offsetof(struct mly_mmbox, mmm_health),
1003 	    sizeof(mly->mly_mmbox->mmm_health),
1004 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1005 
1006 	/*
1007 	 * The controller may have updated the health status information, so
1008 	 * check for it here.  Note that the counters are all in host
1009 	 * memory, so this check is very cheap.  Also note that we depend on
1010 	 * checking on completion
1011 	 */
1012 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
1013 	    mly->mly_event_change) {
1014 		mly->mly_event_change =
1015 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
1016 		mly->mly_event_waiting =
1017 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
1018 
1019 		/* Wake up anyone that might be interested in this. */
1020 		wakeup(&mly->mly_event_change);
1021 	}
1022 
1023 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1024 	    offsetof(struct mly_mmbox, mmm_health),
1025 	    sizeof(mly->mly_mmbox->mmm_health),
1026 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1027 
1028 	if (mly->mly_event_counter != mly->mly_event_waiting)
1029 		mly_fetch_event(mly);
1030 }
1031 
1032 /*
1033  * Fetch one event from the controller.  If we fail due to resource
1034  * starvation, we'll be retried the next time a command completes.
1035  */
1036 static void
1037 mly_fetch_event(struct mly_softc *mly)
1038 {
1039 	struct mly_ccb *mc;
1040 	struct mly_cmd_ioctl *mci;
1041 	int s;
1042 	u_int32_t event;
1043 
1044 	/* Get a command. */
1045 	if (mly_ccb_alloc(mly, &mc))
1046 		return;
1047 
1048 	/* Set up the data buffer. */
1049 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF,
1050 	    M_NOWAIT|M_ZERO);
1051 
1052 	mc->mc_length = sizeof(struct mly_event);
1053 	mc->mc_flags |= MLY_CCB_DATAIN;
1054 	mc->mc_complete = mly_complete_event;
1055 
1056 	/*
1057 	 * Get an event number to fetch.  It's possible that we've raced
1058 	 * with another context for the last event, in which case there will
1059 	 * be no more events.
1060 	 */
1061 	s = splbio();
1062 	if (mly->mly_event_counter == mly->mly_event_waiting) {
1063 		splx(s);
1064 		free(mc->mc_data, M_DEVBUF);
1065 		mly_ccb_free(mly, mc);
1066 		return;
1067 	}
1068 	event = mly->mly_event_counter++;
1069 	splx(s);
1070 
1071 	/*
1072 	 * Build the ioctl.
1073 	 *
1074 	 * At this point we are committed to sending this request, as it
1075 	 * will be the only one constructed for this particular event
1076 	 * number.
1077 	 */
1078 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
1079 	mci->opcode = MDACMD_IOCTL;
1080 	mci->data_size = htole32(sizeof(struct mly_event));
1081 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
1082 	    mci->addr);
1083 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
1084 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
1085 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
1086 
1087 	/*
1088 	 * Submit the command.
1089 	 */
1090 	if (mly_ccb_map(mly, mc) != 0)
1091 		goto bad;
1092 	mly_ccb_enqueue(mly, mc);
1093 	return;
1094 
1095  bad:
1096 	printf("%s: couldn't fetch event %u\n", device_xname(mly->mly_dv), event);
1097 	free(mc->mc_data, M_DEVBUF);
1098 	mly_ccb_free(mly, mc);
1099 }
1100 
1101 /*
1102  * Handle the completion of an event poll.
1103  */
1104 static void
1105 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
1106 {
1107 	struct mly_event *me;
1108 
1109 	me = (struct mly_event *)mc->mc_data;
1110 	mly_ccb_unmap(mly, mc);
1111 	mly_ccb_free(mly, mc);
1112 
1113 	/* If the event was successfully fetched, process it. */
1114 	if (mc->mc_status == SCSI_OK)
1115 		mly_process_event(mly, me);
1116 	else
1117 		aprint_error_dev(mly->mly_dv, "unable to fetch event; status = 0x%x\n",
1118 		    mc->mc_status);
1119 
1120 	free(me, M_DEVBUF);
1121 
1122 	/* Check for another event. */
1123 	mly_check_event(mly);
1124 }
1125 
1126 /*
1127  * Process a controller event.  Called with interrupts blocked (i.e., at
1128  * interrupt time).
1129  */
1130 static void
1131 mly_process_event(struct mly_softc *mly, struct mly_event *me)
1132 {
1133 	struct scsi_sense_data *ssd;
1134 	int bus, target, event, class, action;
1135 	const char *fp, *tp;
1136 
1137 	ssd = (struct scsi_sense_data *)&me->sense[0];
1138 
1139 	/*
1140 	 * Errors can be reported using vendor-unique sense data.  In this
1141 	 * case, the event code will be 0x1c (Request sense data present),
1142 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
1143 	 * will be set, and the actual event code will be a 16-bit value
1144 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
1145 	 * (low seven bits of the high byte).
1146 	 */
1147 	if (le32toh(me->code) == 0x1c &&
1148 	    SSD_SENSE_KEY(ssd->flags) == SKEY_VENDOR_SPECIFIC &&
1149 	    (ssd->asc & 0x80) != 0) {
1150 		event = ((int)(ssd->asc & ~0x80) << 8) +
1151 		    ssd->ascq;
1152 	} else
1153 		event = le32toh(me->code);
1154 
1155 	/* Look up event, get codes. */
1156 	fp = mly_describe_code(mly_table_event, event);
1157 
1158 	/* Quiet event? */
1159 	class = fp[0];
1160 #ifdef notyet
1161 	if (isupper(class) && bootverbose)
1162 		class = tolower(class);
1163 #endif
1164 
1165 	/* Get action code, text string. */
1166 	action = fp[1];
1167 	tp = fp + 3;
1168 
1169 	/*
1170 	 * Print some information about the event.
1171 	 *
1172 	 * This code uses a table derived from the corresponding portion of
1173 	 * the Linux driver, and thus the parser is very similar.
1174 	 */
1175 	switch (class) {
1176 	case 'p':
1177 		/*
1178 		 * Error on physical drive.
1179 		 */
1180 		printf("%s: physical device %d:%d %s\n", device_xname(mly->mly_dv),
1181 		    me->channel, me->target, tp);
1182 		if (action == 'r')
1183 			mly->mly_btl[me->channel][me->target].mb_flags |=
1184 			    MLY_BTL_RESCAN;
1185 		break;
1186 
1187 	case 'l':
1188 	case 'm':
1189 		/*
1190 		 * Error on logical unit, or message about logical unit.
1191 	 	 */
1192 		bus = MLY_LOGDEV_BUS(mly, me->lun);
1193 		target = MLY_LOGDEV_TARGET(mly, me->lun);
1194 		printf("%s: logical device %d:%d %s\n", device_xname(mly->mly_dv),
1195 		    bus, target, tp);
1196 		if (action == 'r')
1197 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1198 		break;
1199 
1200 	case 's':
1201 		/*
1202 		 * Report of sense data.
1203 		 */
1204 		if ((SSD_SENSE_KEY(ssd->flags) == SKEY_NO_SENSE ||
1205 		     SSD_SENSE_KEY(ssd->flags) == SKEY_NOT_READY) &&
1206 		    ssd->asc == 0x04 &&
1207 		    (ssd->ascq == 0x01 ||
1208 		     ssd->ascq == 0x02)) {
1209 			/* Ignore NO_SENSE or NOT_READY in one case */
1210 			break;
1211 		}
1212 
1213 		/*
1214 		 * XXX Should translate this if SCSIVERBOSE.
1215 		 */
1216 		printf("%s: physical device %d:%d %s\n", device_xname(mly->mly_dv),
1217 		    me->channel, me->target, tp);
1218 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
1219 		    device_xname(mly->mly_dv), SSD_SENSE_KEY(ssd->flags),
1220 		    ssd->asc, ssd->ascq);
1221 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
1222 		    device_xname(mly->mly_dv), ssd->info[0], ssd->info[1],
1223 		    ssd->info[2], ssd->info[3], ssd->csi[0],
1224 		    ssd->csi[1], ssd->csi[2],
1225 		    ssd->csi[3]);
1226 		if (action == 'r')
1227 			mly->mly_btl[me->channel][me->target].mb_flags |=
1228 			    MLY_BTL_RESCAN;
1229 		break;
1230 
1231 	case 'e':
1232 		printf("%s: ", device_xname(mly->mly_dv));
1233 		printf(tp, me->target, me->lun);
1234 		break;
1235 
1236 	case 'c':
1237 		printf("%s: controller %s\n", device_xname(mly->mly_dv), tp);
1238 		break;
1239 
1240 	case '?':
1241 		printf("%s: %s - %d\n", device_xname(mly->mly_dv), tp, event);
1242 		break;
1243 
1244 	default:
1245 		/* Probably a 'noisy' event being ignored. */
1246 		break;
1247 	}
1248 }
1249 
1250 /*
1251  * Perform periodic activities.
1252  */
1253 static void
1254 mly_thread(void *cookie)
1255 {
1256 	struct mly_softc *mly;
1257 	struct mly_btl *btl;
1258 	int s, bus, target, done;
1259 
1260 	mly = (struct mly_softc *)cookie;
1261 
1262 	for (;;) {
1263 		/* Check for new events. */
1264 		mly_check_event(mly);
1265 
1266 		/* Re-scan up to 1 device. */
1267 		s = splbio();
1268 		done = 0;
1269 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
1270 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
1271 				/* Perform device rescan? */
1272 				btl = &mly->mly_btl[bus][target];
1273 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
1274 					btl->mb_flags ^= MLY_BTL_RESCAN;
1275 					mly_scan_btl(mly, bus, target);
1276 					done = 1;
1277 					break;
1278 				}
1279 			}
1280 		}
1281 		splx(s);
1282 
1283 		/* Sleep for N seconds. */
1284 		tsleep(mly_thread, PWAIT, "mlyzzz",
1285 		    hz * MLY_PERIODIC_INTERVAL);
1286 	}
1287 }
1288 
1289 /*
1290  * Submit a command to the controller and poll on completion.  Return
1291  * non-zero on timeout.
1292  */
1293 static int
1294 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1295 {
1296 	int rv;
1297 
1298 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
1299 		return (rv);
1300 
1301 	for (timo *= 10; timo != 0; timo--) {
1302 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
1303 			break;
1304 		mly_intr(mly);
1305 		DELAY(100);
1306 	}
1307 
1308 	return (timo == 0);
1309 }
1310 
1311 /*
1312  * Submit a command to the controller and sleep on completion.  Return
1313  * non-zero on timeout.
1314  */
1315 static int
1316 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1317 {
1318 	int rv, s;
1319 
1320 	mly_ccb_enqueue(mly, mc);
1321 
1322 	s = splbio();
1323 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
1324 		splx(s);
1325 		return (0);
1326 	}
1327 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
1328 	splx(s);
1329 
1330 	return (rv);
1331 }
1332 
1333 /*
1334  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1335  * the order that they were enqueued and try to submit their command blocks
1336  * to the controller for execution.
1337  */
1338 void
1339 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
1340 {
1341 	int s;
1342 
1343 	s = splbio();
1344 
1345 	if (mc != NULL)
1346 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1347 
1348 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
1349 		if (mly_ccb_submit(mly, mc))
1350 			break;
1351 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc_link.simpleq);
1352 	}
1353 
1354 	splx(s);
1355 }
1356 
1357 /*
1358  * Deliver a command to the controller.
1359  */
1360 static int
1361 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
1362 {
1363 	union mly_cmd_packet *pkt;
1364 	int s, off;
1365 
1366 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
1367 
1368 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1369 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1370 	    sizeof(union mly_cmd_packet),
1371 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1372 
1373 	s = splbio();
1374 
1375 	/*
1376 	 * Do we have to use the hardware mailbox?
1377 	 */
1378 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
1379 		/*
1380 		 * Check to see if the controller is ready for us.
1381 		 */
1382 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
1383 			splx(s);
1384 			return (EBUSY);
1385 		}
1386 
1387 		/*
1388 		 * It's ready, send the command.
1389 		 */
1390 		mly_outl(mly, mly->mly_cmd_mailbox,
1391 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
1392 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
1393 		    (u_int64_t)mc->mc_packetphys >> 32);
1394 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
1395 	} else {
1396 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
1397 		off = (char *)pkt - (char *)mly->mly_mmbox;
1398 
1399 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1400 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1401 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1402 
1403 		/* Check to see if the next index is free yet. */
1404 		if (pkt->mmbox.flag != 0) {
1405 			splx(s);
1406 			return (EBUSY);
1407 		}
1408 
1409 		/* Copy in new command */
1410 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
1411 		    sizeof(pkt->mmbox.data));
1412 
1413 		/* Copy flag last. */
1414 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1415 
1416 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1417 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1418 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1419 
1420 		/* Signal controller and update index. */
1421 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
1422 		mly->mly_mmbox_cmd_idx =
1423 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
1424 	}
1425 
1426 	splx(s);
1427 	return (0);
1428 }
1429 
1430 /*
1431  * Pick up completed commands from the controller and handle accordingly.
1432  */
1433 int
1434 mly_intr(void *cookie)
1435 {
1436 	struct mly_ccb *mc;
1437 	union mly_status_packet	*sp;
1438 	u_int16_t slot;
1439 	int forus, off;
1440 	struct mly_softc *mly;
1441 
1442 	mly = cookie;
1443 	forus = 0;
1444 
1445 	/*
1446 	 * Pick up hardware-mailbox commands.
1447 	 */
1448 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
1449 		slot = mly_inw(mly, mly->mly_status_mailbox);
1450 
1451 		if (slot < MLY_SLOT_MAX) {
1452 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1453 			mc->mc_status =
1454 			    mly_inb(mly, mly->mly_status_mailbox + 2);
1455 			mc->mc_sense =
1456 			    mly_inb(mly, mly->mly_status_mailbox + 3);
1457 			mc->mc_resid =
1458 			    mly_inl(mly, mly->mly_status_mailbox + 4);
1459 
1460 			mly_ccb_complete(mly, mc);
1461 		} else {
1462 			/* Slot 0xffff may mean "extremely bogus command". */
1463 			printf("%s: got HM completion for illegal slot %u\n",
1464 			    device_xname(mly->mly_dv), slot);
1465 		}
1466 
1467 		/* Unconditionally acknowledge status. */
1468 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
1469 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
1470 		forus = 1;
1471 	}
1472 
1473 	/*
1474 	 * Pick up memory-mailbox commands.
1475 	 */
1476 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
1477 		for (;;) {
1478 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
1479 			off = (char *)sp - (char *)mly->mly_mmbox;
1480 
1481 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1482 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1483 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1484 
1485 			/* Check for more status. */
1486 			if (sp->mmbox.flag == 0)
1487 				break;
1488 
1489 			/* Get slot number. */
1490 			slot = le16toh(sp->status.command_id);
1491 			if (slot < MLY_SLOT_MAX) {
1492 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1493 				mc->mc_status = sp->status.status;
1494 				mc->mc_sense = sp->status.sense_length;
1495 				mc->mc_resid = le32toh(sp->status.residue);
1496 				mly_ccb_complete(mly, mc);
1497 			} else {
1498 				/*
1499 				 * Slot 0xffff may mean "extremely bogus
1500 				 * command".
1501 				 */
1502 				printf("%s: got AM completion for illegal "
1503 				    "slot %u at %d\n", device_xname(mly->mly_dv),
1504 				    slot, mly->mly_mmbox_sts_idx);
1505 			}
1506 
1507 			/* Clear and move to next index. */
1508 			sp->mmbox.flag = 0;
1509 			mly->mly_mmbox_sts_idx =
1510 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
1511 		}
1512 
1513 		/* Acknowledge that we have collected status value(s). */
1514 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
1515 		forus = 1;
1516 	}
1517 
1518 	/*
1519 	 * Run the queue.
1520 	 */
1521 	if (forus && ! SIMPLEQ_EMPTY(&mly->mly_ccb_queue))
1522 		mly_ccb_enqueue(mly, NULL);
1523 
1524 	return (forus);
1525 }
1526 
1527 /*
1528  * Process completed commands
1529  */
1530 static void
1531 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
1532 {
1533 	void (*complete)(struct mly_softc *, struct mly_ccb *);
1534 
1535 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1536 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1537 	    sizeof(union mly_cmd_packet),
1538 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1539 
1540 	complete = mc->mc_complete;
1541 	mc->mc_flags |= MLY_CCB_COMPLETE;
1542 
1543 	/*
1544 	 * Call completion handler or wake up sleeping consumer.
1545 	 */
1546 	if (complete != NULL)
1547 		(*complete)(mly, mc);
1548 	else
1549 		wakeup(mc);
1550 }
1551 
1552 /*
1553  * Allocate a command.
1554  */
1555 int
1556 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
1557 {
1558 	struct mly_ccb *mc;
1559 	int s;
1560 
1561 	s = splbio();
1562 	mc = SLIST_FIRST(&mly->mly_ccb_free);
1563 	if (mc != NULL)
1564 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
1565 	splx(s);
1566 
1567 	*mcp = mc;
1568 	return (mc == NULL ? EAGAIN : 0);
1569 }
1570 
1571 /*
1572  * Release a command back to the freelist.
1573  */
1574 void
1575 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
1576 {
1577 	int s;
1578 
1579 	/*
1580 	 * Fill in parts of the command that may cause confusion if a
1581 	 * consumer doesn't when we are later allocated.
1582 	 */
1583 	mc->mc_data = NULL;
1584 	mc->mc_flags = 0;
1585 	mc->mc_complete = NULL;
1586 	mc->mc_private = NULL;
1587 	mc->mc_packet->generic.command_control = 0;
1588 
1589 	/*
1590 	 * By default, we set up to overwrite the command packet with sense
1591 	 * information.
1592 	 */
1593 	mc->mc_packet->generic.sense_buffer_address =
1594 	    htole64(mc->mc_packetphys);
1595 	mc->mc_packet->generic.maximum_sense_size =
1596 	    sizeof(union mly_cmd_packet);
1597 
1598 	s = splbio();
1599 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
1600 	splx(s);
1601 }
1602 
1603 /*
1604  * Allocate and initialize command and packet structures.
1605  *
1606  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
1607  * allocation to that number.  If we don't yet know how many commands the
1608  * controller supports, allocate a very small set (suitable for initialization
1609  * purposes only).
1610  */
1611 static int
1612 mly_alloc_ccbs(struct mly_softc *mly)
1613 {
1614 	struct mly_ccb *mc;
1615 	int i, rv;
1616 
1617 	if (mly->mly_controllerinfo == NULL)
1618 		mly->mly_ncmds = MLY_CCBS_RESV;
1619 	else {
1620 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
1621 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
1622 	}
1623 
1624 	/*
1625 	 * Allocate enough space for all the command packets in one chunk
1626 	 * and map them permanently into controller-visible space.
1627 	 */
1628 	rv = mly_dmamem_alloc(mly,
1629 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
1630 	    &mly->mly_pkt_dmamap, (void **)&mly->mly_pkt,
1631 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
1632 	if (rv)
1633 		return (rv);
1634 
1635 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
1636 	    M_DEVBUF, M_NOWAIT|M_ZERO);
1637 
1638 	for (i = 0; i < mly->mly_ncmds; i++) {
1639 		mc = mly->mly_ccbs + i;
1640 		mc->mc_slot = MLY_SLOT_START + i;
1641 		mc->mc_packet = mly->mly_pkt + i;
1642 		mc->mc_packetphys = mly->mly_pkt_busaddr +
1643 		    (i * sizeof(union mly_cmd_packet));
1644 
1645 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
1646 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
1647 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1648 		    &mc->mc_datamap);
1649 		if (rv) {
1650 			mly_release_ccbs(mly);
1651 			return (rv);
1652 		}
1653 
1654 		mly_ccb_free(mly, mc);
1655 	}
1656 
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Free all the storage held by commands.
1662  *
1663  * Must be called with all commands on the free list.
1664  */
1665 static void
1666 mly_release_ccbs(struct mly_softc *mly)
1667 {
1668 	struct mly_ccb *mc;
1669 
1670 	/* Throw away command buffer DMA maps. */
1671 	while (mly_ccb_alloc(mly, &mc) == 0)
1672 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
1673 
1674 	/* Release CCB storage. */
1675 	free(mly->mly_ccbs, M_DEVBUF);
1676 
1677 	/* Release the packet storage. */
1678 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
1679 	    mly->mly_pkt_dmamap, (void *)mly->mly_pkt, &mly->mly_pkt_seg);
1680 }
1681 
1682 /*
1683  * Map a command into controller-visible space.
1684  */
1685 static int
1686 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
1687 {
1688 	struct mly_cmd_generic *gen;
1689 	struct mly_sg_entry *sg;
1690 	bus_dma_segment_t *ds;
1691 	int flg, nseg, rv;
1692 
1693 #ifdef DIAGNOSTIC
1694 	/* Don't map more than once. */
1695 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
1696 		panic("mly_ccb_map: already mapped");
1697 	mc->mc_flags |= MLY_CCB_MAPPED;
1698 
1699 	/* Does the command have a data buffer? */
1700 	if (mc->mc_data == NULL)
1701 		panic("mly_ccb_map: no data buffer");
1702 #endif
1703 
1704 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
1705 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1706 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
1707 	    BUS_DMA_READ : BUS_DMA_WRITE));
1708 	if (rv != 0)
1709 		return (rv);
1710 
1711 	gen = &mc->mc_packet->generic;
1712 
1713 	/*
1714 	 * Can we use the transfer structure directly?
1715 	 */
1716 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
1717 		mc->mc_sgoff = -1;
1718 		sg = &gen->transfer.direct.sg[0];
1719 	} else {
1720 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
1721 		    MLY_MAX_SEGS;
1722 		sg = mly->mly_sg + mc->mc_sgoff;
1723 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
1724 		gen->transfer.indirect.entries[0] = htole16(nseg);
1725 		gen->transfer.indirect.table_physaddr[0] =
1726 		    htole64(mly->mly_sg_busaddr +
1727 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
1728 	}
1729 
1730 	/*
1731 	 * Fill the S/G table.
1732 	 */
1733 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
1734 		sg->physaddr = htole64(ds->ds_addr);
1735 		sg->length = htole64(ds->ds_len);
1736 	}
1737 
1738 	/*
1739 	 * Sync up the data map.
1740 	 */
1741 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1742 		flg = BUS_DMASYNC_PREREAD;
1743 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
1744 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
1745 		flg = BUS_DMASYNC_PREWRITE;
1746 	}
1747 
1748 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1749 
1750 	/*
1751 	 * Sync up the chained S/G table, if we're using one.
1752 	 */
1753 	if (mc->mc_sgoff == -1)
1754 		return (0);
1755 
1756 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1757 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1758 
1759 	return (0);
1760 }
1761 
1762 /*
1763  * Unmap a command from controller-visible space.
1764  */
1765 static void
1766 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
1767 {
1768 	int flg;
1769 
1770 #ifdef DIAGNOSTIC
1771 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
1772 		panic("mly_ccb_unmap: not mapped");
1773 	mc->mc_flags &= ~MLY_CCB_MAPPED;
1774 #endif
1775 
1776 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1777 		flg = BUS_DMASYNC_POSTREAD;
1778 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
1779 		flg = BUS_DMASYNC_POSTWRITE;
1780 
1781 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1782 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
1783 
1784 	if (mc->mc_sgoff == -1)
1785 		return;
1786 
1787 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1788 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
1789 }
1790 
1791 /*
1792  * Adjust the size of each I/O before it passes to the SCSI layer.
1793  */
1794 static void
1795 mly_scsipi_minphys(struct buf *bp)
1796 {
1797 
1798 	if (bp->b_bcount > MLY_MAX_XFER)
1799 		bp->b_bcount = MLY_MAX_XFER;
1800 	minphys(bp);
1801 }
1802 
1803 /*
1804  * Start a SCSI command.
1805  */
1806 static void
1807 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1808 		   void *arg)
1809 {
1810 	struct mly_ccb *mc;
1811 	struct mly_cmd_scsi_small *ss;
1812 	struct scsipi_xfer *xs;
1813 	struct scsipi_periph *periph;
1814 	struct mly_softc *mly;
1815 	struct mly_btl *btl;
1816 	int s, tmp;
1817 
1818 	mly = device_private(chan->chan_adapter->adapt_dev);
1819 
1820 	switch (req) {
1821 	case ADAPTER_REQ_RUN_XFER:
1822 		xs = arg;
1823 		periph = xs->xs_periph;
1824 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
1825 		s = splbio();
1826 		tmp = btl->mb_flags;
1827 		splx(s);
1828 
1829 		/*
1830 		 * Check for I/O attempt to a protected or non-existant
1831 		 * device.
1832 		 */
1833 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
1834 			xs->error = XS_SELTIMEOUT;
1835 			scsipi_done(xs);
1836 			break;
1837 		}
1838 
1839 #ifdef DIAGNOSTIC
1840 		/* XXX Increase if/when we support large SCSI commands. */
1841 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
1842 			printf("%s: cmd too large\n", device_xname(mly->mly_dv));
1843 			xs->error = XS_DRIVER_STUFFUP;
1844 			scsipi_done(xs);
1845 			break;
1846 		}
1847 #endif
1848 
1849 		if (mly_ccb_alloc(mly, &mc)) {
1850 			xs->error = XS_RESOURCE_SHORTAGE;
1851 			scsipi_done(xs);
1852 			break;
1853 		}
1854 
1855 		/* Build the command. */
1856 		mc->mc_data = xs->data;
1857 		mc->mc_length = xs->datalen;
1858 		mc->mc_complete = mly_scsipi_complete;
1859 		mc->mc_private = xs;
1860 
1861 		/* Build the packet for the controller. */
1862 		ss = &mc->mc_packet->scsi_small;
1863 		ss->opcode = MDACMD_SCSI;
1864 #ifdef notdef
1865 		/*
1866 		 * XXX FreeBSD does this, but it doesn't fix anything,
1867 		 * XXX and appears potentially harmful.
1868 		 */
1869 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
1870 #endif
1871 
1872 		ss->data_size = htole32(xs->datalen);
1873 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
1874 		    periph->periph_target, periph->periph_lun), ss->addr);
1875 
1876 		if (xs->timeout < 60 * 1000)
1877 			ss->timeout = xs->timeout / 1000 |
1878 			    MLY_TIMEOUT_SECONDS;
1879 		else if (xs->timeout < 60 * 60 * 1000)
1880 			ss->timeout = xs->timeout / (60 * 1000) |
1881 			    MLY_TIMEOUT_MINUTES;
1882 		else
1883 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
1884 			    MLY_TIMEOUT_HOURS;
1885 
1886 		ss->maximum_sense_size = sizeof(xs->sense);
1887 		ss->cdb_length = xs->cmdlen;
1888 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
1889 
1890 		if (mc->mc_length != 0) {
1891 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
1892 				mc->mc_flags |= MLY_CCB_DATAOUT;
1893 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
1894 				mc->mc_flags |= MLY_CCB_DATAIN;
1895 
1896 			if (mly_ccb_map(mly, mc) != 0) {
1897 				xs->error = XS_DRIVER_STUFFUP;
1898 				mly_ccb_free(mly, mc);
1899 				scsipi_done(xs);
1900 				break;
1901 			}
1902 		}
1903 
1904 		/*
1905 		 * Give the command to the controller.
1906 		 */
1907 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
1908 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
1909 				xs->error = XS_REQUEUE;
1910 				if (mc->mc_length != 0)
1911 					mly_ccb_unmap(mly, mc);
1912 				mly_ccb_free(mly, mc);
1913 				scsipi_done(xs);
1914 			}
1915 		} else
1916 			mly_ccb_enqueue(mly, mc);
1917 
1918 		break;
1919 
1920 	case ADAPTER_REQ_GROW_RESOURCES:
1921 		/*
1922 		 * Not supported.
1923 		 */
1924 		break;
1925 
1926 	case ADAPTER_REQ_SET_XFER_MODE:
1927 		/*
1928 		 * We can't change the transfer mode, but at least let
1929 		 * scsipi know what the adapter has negotiated.
1930 		 */
1931 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
1932 		break;
1933 	}
1934 }
1935 
1936 /*
1937  * Handle completion of a SCSI command.
1938  */
1939 static void
1940 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
1941 {
1942 	struct scsipi_xfer *xs;
1943 	struct scsipi_channel *chan;
1944 	struct scsipi_inquiry_data *inq;
1945 	struct mly_btl *btl;
1946 	int target, sl, s;
1947 	const char *p;
1948 
1949 	xs = mc->mc_private;
1950 	xs->status = mc->mc_status;
1951 
1952 	/*
1953 	 * XXX The `resid' value as returned by the controller appears to be
1954 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
1955 	 * count?
1956 	 */
1957 	xs->resid = 0; /* mc->mc_resid; */
1958 
1959 	if (mc->mc_length != 0)
1960 		mly_ccb_unmap(mly, mc);
1961 
1962 	switch (mc->mc_status) {
1963 	case SCSI_OK:
1964 		/*
1965 		 * In order to report logical device type and status, we
1966 		 * overwrite the result of the INQUIRY command to logical
1967 		 * devices.
1968 		 */
1969 		if (xs->cmd->opcode == INQUIRY) {
1970 			chan = xs->xs_periph->periph_channel;
1971 			target = xs->xs_periph->periph_target;
1972 			btl = &mly->mly_btl[chan->chan_channel][target];
1973 
1974 			s = splbio();
1975 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
1976 				inq = (struct scsipi_inquiry_data *)xs->data;
1977 				mly_padstr(inq->vendor, "MYLEX", 8);
1978 				p = mly_describe_code(mly_table_device_type,
1979 				    btl->mb_type);
1980 				mly_padstr(inq->product, p, 16);
1981 				p = mly_describe_code(mly_table_device_state,
1982 				    btl->mb_state);
1983 				mly_padstr(inq->revision, p, 4);
1984 			}
1985 			splx(s);
1986 		}
1987 
1988 		xs->error = XS_NOERROR;
1989 		break;
1990 
1991 	case SCSI_CHECK:
1992 		sl = mc->mc_sense;
1993 		if (sl > sizeof(xs->sense.scsi_sense))
1994 			sl = sizeof(xs->sense.scsi_sense);
1995 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
1996 		xs->error = XS_SENSE;
1997 		break;
1998 
1999 	case SCSI_BUSY:
2000 	case SCSI_QUEUE_FULL:
2001 		xs->error = XS_BUSY;
2002 		break;
2003 
2004 	default:
2005 		printf("%s: unknown SCSI status 0x%x\n",
2006 		    device_xname(mly->mly_dv), xs->status);
2007 		xs->error = XS_DRIVER_STUFFUP;
2008 		break;
2009 	}
2010 
2011 	mly_ccb_free(mly, mc);
2012 	scsipi_done(xs);
2013 }
2014 
2015 /*
2016  * Notify scsipi about a target's transfer mode.
2017  */
2018 static void
2019 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
2020 {
2021 	struct mly_btl *btl;
2022 	int s;
2023 
2024 	btl = &mly->mly_btl[bus][xm->xm_target];
2025 	xm->xm_mode = 0;
2026 
2027 	s = splbio();
2028 
2029 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
2030 		if (btl->mb_speed == 0) {
2031 			xm->xm_period = 0;
2032 			xm->xm_offset = 0;
2033 		} else {
2034 			xm->xm_period = 12;			/* XXX */
2035 			xm->xm_offset = 8;			/* XXX */
2036 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
2037 		}
2038 
2039 		switch (btl->mb_width) {
2040 		case 32:
2041 			xm->xm_mode = PERIPH_CAP_WIDE32;
2042 			break;
2043 		case 16:
2044 			xm->xm_mode = PERIPH_CAP_WIDE16;
2045 			break;
2046 		default:
2047 			xm->xm_mode = 0;
2048 			break;
2049 		}
2050 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
2051 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
2052 		xm->xm_period = 12;
2053 		xm->xm_offset = 8;
2054 	}
2055 
2056 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
2057 		xm->xm_mode |= PERIPH_CAP_TQING;
2058 
2059 	splx(s);
2060 
2061 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
2062 }
2063 
2064 /*
2065  * ioctl hook; used here only to initiate low-level rescans.
2066  */
2067 static int
2068 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, void *data,
2069     int flag, struct proc *p)
2070 {
2071 	struct mly_softc *mly;
2072 	int rv;
2073 
2074 	mly = device_private(chan->chan_adapter->adapt_dev);
2075 
2076 	switch (cmd) {
2077 	case SCBUSIOLLSCAN:
2078 		mly_scan_channel(mly, chan->chan_channel);
2079 		rv = 0;
2080 		break;
2081 	default:
2082 		rv = ENOTTY;
2083 		break;
2084 	}
2085 
2086 	return (rv);
2087 }
2088 
2089 /*
2090  * Handshake with the firmware while the card is being initialized.
2091  */
2092 static int
2093 mly_fwhandshake(struct mly_softc *mly)
2094 {
2095 	u_int8_t error;
2096 	int spinup;
2097 
2098 	spinup = 0;
2099 
2100 	/* Set HM_STSACK and let the firmware initialize. */
2101 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
2102 	DELAY(1000);	/* too short? */
2103 
2104 	/* If HM_STSACK is still true, the controller is initializing. */
2105 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
2106 		return (0);
2107 
2108 	printf("%s: controller initialization started\n",
2109 	    device_xname(mly->mly_dv));
2110 
2111 	/*
2112 	 * Spin waiting for initialization to finish, or for a message to be
2113 	 * delivered.
2114 	 */
2115 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
2116 		/* Check for a message */
2117 		if (!mly_error_valid(mly))
2118 			continue;
2119 
2120 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
2121 		(void)mly_inb(mly, mly->mly_cmd_mailbox);
2122 		(void)mly_inb(mly, mly->mly_cmd_mailbox + 1);
2123 
2124 		switch (error) {
2125 		case MLY_MSG_SPINUP:
2126 			if (!spinup) {
2127 				printf("%s: drive spinup in progress\n",
2128 				    device_xname(mly->mly_dv));
2129 				spinup = 1;
2130 			}
2131 			break;
2132 
2133 		case MLY_MSG_RACE_RECOVERY_FAIL:
2134 			printf("%s: mirror race recovery failed - \n",
2135 			    device_xname(mly->mly_dv));
2136 			printf("%s: one or more drives offline\n",
2137 			    device_xname(mly->mly_dv));
2138 			break;
2139 
2140 		case MLY_MSG_RACE_IN_PROGRESS:
2141 			printf("%s: mirror race recovery in progress\n",
2142 			    device_xname(mly->mly_dv));
2143 			break;
2144 
2145 		case MLY_MSG_RACE_ON_CRITICAL:
2146 			printf("%s: mirror race recovery on critical drive\n",
2147 			    device_xname(mly->mly_dv));
2148 			break;
2149 
2150 		case MLY_MSG_PARITY_ERROR:
2151 			printf("%s: FATAL MEMORY PARITY ERROR\n",
2152 			    device_xname(mly->mly_dv));
2153 			return (ENXIO);
2154 
2155 		default:
2156 			printf("%s: unknown initialization code 0x%x\n",
2157 			    device_xname(mly->mly_dv), error);
2158 			break;
2159 		}
2160 	}
2161 
2162 	return (0);
2163 }
2164 
2165 /*
2166  * Space-fill a character string
2167  */
2168 static void
2169 mly_padstr(char *dst, const char *src, int len)
2170 {
2171 
2172 	while (len-- > 0) {
2173 		if (*src != '\0')
2174 			*dst++ = *src++;
2175 		else
2176 			*dst++ = ' ';
2177 	}
2178 }
2179 
2180 /*
2181  * Allocate DMA safe memory.
2182  */
2183 static int
2184 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
2185 		 void **kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
2186 {
2187 	int rseg, rv, state;
2188 
2189 	state = 0;
2190 
2191 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, PAGE_SIZE, 0,
2192 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
2193 		aprint_error_dev(mly->mly_dv, "dmamem_alloc = %d\n", rv);
2194 		goto bad;
2195 	}
2196 
2197 	state++;
2198 
2199 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
2200 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2201 		aprint_error_dev(mly->mly_dv, "dmamem_map = %d\n", rv);
2202 		goto bad;
2203 	}
2204 
2205 	state++;
2206 
2207 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
2208 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
2209 		aprint_error_dev(mly->mly_dv, "dmamap_create = %d\n", rv);
2210 		goto bad;
2211 	}
2212 
2213 	state++;
2214 
2215 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
2216 	    NULL, BUS_DMA_NOWAIT)) != 0) {
2217 		aprint_error_dev(mly->mly_dv, "dmamap_load = %d\n", rv);
2218 		goto bad;
2219 	}
2220 
2221 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
2222 	memset(*kva, 0, size);
2223 	return (0);
2224 
2225  bad:
2226 	if (state > 2)
2227 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
2228 	if (state > 1)
2229 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
2230 	if (state > 0)
2231 		bus_dmamem_free(mly->mly_dmat, seg, 1);
2232 
2233 	return (rv);
2234 }
2235 
2236 /*
2237  * Free DMA safe memory.
2238  */
2239 static void
2240 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
2241 		void *kva, bus_dma_segment_t *seg)
2242 {
2243 
2244 	bus_dmamap_unload(mly->mly_dmat, dmamap);
2245 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
2246 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
2247 	bus_dmamem_free(mly->mly_dmat, seg, 1);
2248 }
2249 
2250 
2251 /*
2252  * Accept an open operation on the control device.
2253  */
2254 int
2255 mlyopen(dev_t dev, int flag, int mode, struct lwp *l)
2256 {
2257 	struct mly_softc *mly;
2258 
2259 	if ((mly = device_lookup_private(&mly_cd, minor(dev))) == NULL)
2260 		return (ENXIO);
2261 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
2262 		return (ENXIO);
2263 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
2264 		return (EBUSY);
2265 
2266 	mly->mly_state |= MLY_STATE_OPEN;
2267 	return (0);
2268 }
2269 
2270 /*
2271  * Accept the last close on the control device.
2272  */
2273 int
2274 mlyclose(dev_t dev, int flag, int mode,
2275     struct lwp *l)
2276 {
2277 	struct mly_softc *mly;
2278 
2279 	mly = device_lookup_private(&mly_cd, minor(dev));
2280 	mly->mly_state &= ~MLY_STATE_OPEN;
2281 	return (0);
2282 }
2283 
2284 /*
2285  * Handle control operations.
2286  */
2287 int
2288 mlyioctl(dev_t dev, u_long cmd, void *data, int flag,
2289     struct lwp *l)
2290 {
2291 	struct mly_softc *mly;
2292 	int rv;
2293 
2294 	mly = device_lookup_private(&mly_cd, minor(dev));
2295 
2296 	switch (cmd) {
2297 	case MLYIO_COMMAND:
2298 		rv = kauth_authorize_device_passthru(l->l_cred, dev,
2299 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
2300 		if (rv)
2301 			break;
2302 
2303 		rv = mly_user_command(mly, (void *)data);
2304 		break;
2305 	case MLYIO_HEALTH:
2306 		rv = mly_user_health(mly, (void *)data);
2307 		break;
2308 	default:
2309 		rv = ENOTTY;
2310 		break;
2311 	}
2312 
2313 	return (rv);
2314 }
2315 
2316 /*
2317  * Execute a command passed in from userspace.
2318  *
2319  * The control structure contains the actual command for the controller, as
2320  * well as the user-space data pointer and data size, and an optional sense
2321  * buffer size/pointer.  On completion, the data size is adjusted to the
2322  * command residual, and the sense buffer size to the size of the returned
2323  * sense data.
2324  */
2325 static int
2326 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
2327 {
2328 	struct mly_ccb	*mc;
2329 	int rv, mapped;
2330 
2331 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
2332 		return (rv);
2333 
2334 	mapped = 0;
2335 	mc->mc_data = NULL;
2336 
2337 	/*
2338 	 * Handle data size/direction.
2339 	 */
2340 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
2341 		if (mc->mc_length > MAXPHYS) {
2342 			rv = EINVAL;
2343 			goto out;
2344 		}
2345 
2346 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
2347 		if (mc->mc_data == NULL) {
2348 			rv = ENOMEM;
2349 			goto out;
2350 		}
2351 
2352 		if (uc->DataTransferLength > 0) {
2353 			mc->mc_flags |= MLY_CCB_DATAIN;
2354 			memset(mc->mc_data, 0, mc->mc_length);
2355 		}
2356 
2357 		if (uc->DataTransferLength < 0) {
2358 			mc->mc_flags |= MLY_CCB_DATAOUT;
2359 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
2360 			    mc->mc_length);
2361 			if (rv != 0)
2362 				goto out;
2363 		}
2364 
2365 		if ((rv = mly_ccb_map(mly, mc)) != 0)
2366 			goto out;
2367 		mapped = 1;
2368 	}
2369 
2370 	/* Copy in the command and execute it. */
2371 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
2372 
2373 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
2374 		goto out;
2375 
2376 	/* Return the data to userspace. */
2377 	if (uc->DataTransferLength > 0) {
2378 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
2379 		    mc->mc_length);
2380 		if (rv != 0)
2381 			goto out;
2382 	}
2383 
2384 	/* Return the sense buffer to userspace. */
2385 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
2386 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2387 		    min(uc->RequestSenseLength, mc->mc_sense));
2388 		if (rv != 0)
2389 			goto out;
2390 	}
2391 
2392 	/* Return command results to userspace (caller will copy out). */
2393 	uc->DataTransferLength = mc->mc_resid;
2394 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2395 	uc->CommandStatus = mc->mc_status;
2396 	rv = 0;
2397 
2398  out:
2399  	if (mapped)
2400  		mly_ccb_unmap(mly, mc);
2401 	if (mc->mc_data != NULL)
2402 		free(mc->mc_data, M_DEVBUF);
2403 	mly_ccb_free(mly, mc);
2404 
2405 	return (rv);
2406 }
2407 
2408 /*
2409  * Return health status to userspace.  If the health change index in the
2410  * user structure does not match that currently exported by the controller,
2411  * we return the current status immediately.  Otherwise, we block until
2412  * either interrupted or new status is delivered.
2413  */
2414 static int
2415 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
2416 {
2417 	struct mly_health_status mh;
2418 	int rv, s;
2419 
2420 	/* Fetch the current health status from userspace. */
2421 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
2422 	if (rv != 0)
2423 		return (rv);
2424 
2425 	/* spin waiting for a status update */
2426 	s = splbio();
2427 	if (mly->mly_event_change == mh.change_counter)
2428 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
2429 		    "mlyhealth", 0);
2430 	splx(s);
2431 
2432 	if (rv == 0) {
2433 		/*
2434 		 * Copy the controller's health status buffer out (there is
2435 		 * a race here if it changes again).
2436 		 */
2437 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
2438 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
2439 	}
2440 
2441 	return (rv);
2442 }
2443