xref: /netbsd-src/sys/dev/pci/mly.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: mly.c,v 1.46 2013/10/17 21:06:15 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 2000, 2001 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
59  */
60 
61 /*
62  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
63  *
64  * TODO:
65  *
66  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
67  * o Handle FC and multiple LUNs.
68  * o Fix mmbox usage.
69  * o Fix transfer speed fudge.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.46 2013/10/17 21:06:15 christos Exp $");
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/device.h>
78 #include <sys/kernel.h>
79 #include <sys/queue.h>
80 #include <sys/buf.h>
81 #include <sys/endian.h>
82 #include <sys/conf.h>
83 #include <sys/malloc.h>
84 #include <sys/ioctl.h>
85 #include <sys/scsiio.h>
86 #include <sys/kthread.h>
87 #include <sys/kauth.h>
88 
89 #include <sys/bus.h>
90 
91 #include <dev/scsipi/scsi_all.h>
92 #include <dev/scsipi/scsipi_all.h>
93 #include <dev/scsipi/scsiconf.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98 
99 #include <dev/pci/mlyreg.h>
100 #include <dev/pci/mlyio.h>
101 #include <dev/pci/mlyvar.h>
102 #include <dev/pci/mly_tables.h>
103 
104 static void	mly_attach(device_t, device_t, void *);
105 static int	mly_match(device_t, cfdata_t, void *);
106 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
107 static int	mly_fwhandshake(struct mly_softc *);
108 static int	mly_flush(struct mly_softc *);
109 static int	mly_intr(void *);
110 static void	mly_shutdown(void *);
111 
112 static int	mly_alloc_ccbs(struct mly_softc *);
113 static void	mly_check_event(struct mly_softc *);
114 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
115 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
116 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
117 				 void **, bus_addr_t *, bus_dma_segment_t *);
118 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
119 				void *, bus_dma_segment_t *);
120 static int	mly_enable_mmbox(struct mly_softc *);
121 static void	mly_fetch_event(struct mly_softc *);
122 static int	mly_get_controllerinfo(struct mly_softc *);
123 static int	mly_get_eventstatus(struct mly_softc *);
124 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
125 			  void **, size_t, void *, size_t *);
126 static void	mly_padstr(char *, const char *, int);
127 static void	mly_process_event(struct mly_softc *, struct mly_event *);
128 static void	mly_release_ccbs(struct mly_softc *);
129 static int	mly_scan_btl(struct mly_softc *, int, int);
130 static void	mly_scan_channel(struct mly_softc *, int);
131 static void	mly_thread(void *);
132 
133 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
134 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
135 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
136 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
137 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
138 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
139 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
140 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
141 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
142 
143 static void	mly_get_xfer_mode(struct mly_softc *, int,
144 				  struct scsipi_xfer_mode *);
145 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
146 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, void *,
147 				 int, struct proc *);
148 static void	mly_scsipi_minphys(struct buf *);
149 static void	mly_scsipi_request(struct scsipi_channel *,
150 				   scsipi_adapter_req_t, void *);
151 
152 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
153 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
154 
155 extern struct	cfdriver mly_cd;
156 
157 CFATTACH_DECL_NEW(mly, sizeof(struct mly_softc),
158     mly_match, mly_attach, NULL, NULL);
159 
160 dev_type_open(mlyopen);
161 dev_type_close(mlyclose);
162 dev_type_ioctl(mlyioctl);
163 
164 const struct cdevsw mly_cdevsw = {
165 	mlyopen, mlyclose, noread, nowrite, mlyioctl,
166 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
167 };
168 
169 static struct mly_ident {
170 	u_short	vendor;
171 	u_short	product;
172 	u_short	subvendor;
173 	u_short	subproduct;
174 	int	hwif;
175 	const char	*desc;
176 } const mly_ident[] = {
177 	{
178 		PCI_VENDOR_MYLEX,
179 		PCI_PRODUCT_MYLEX_EXTREMERAID,
180 		PCI_VENDOR_MYLEX,
181 		0x0040,
182 		MLY_HWIF_STRONGARM,
183 		"eXtremeRAID 2000"
184 	},
185 	{
186 		PCI_VENDOR_MYLEX,
187 		PCI_PRODUCT_MYLEX_EXTREMERAID,
188 		PCI_VENDOR_MYLEX,
189 		0x0030,
190 		MLY_HWIF_STRONGARM,
191 		"eXtremeRAID 3000"
192 	},
193 	{
194 		PCI_VENDOR_MYLEX,
195 		PCI_PRODUCT_MYLEX_ACCELERAID,
196 		PCI_VENDOR_MYLEX,
197 		0x0050,
198 		MLY_HWIF_I960RX,
199 		"AcceleRAID 352"
200 	},
201 	{
202 		PCI_VENDOR_MYLEX,
203 		PCI_PRODUCT_MYLEX_ACCELERAID,
204 		PCI_VENDOR_MYLEX,
205 		0x0052,
206 		MLY_HWIF_I960RX,
207 		"AcceleRAID 170"
208 	},
209 	{
210 		PCI_VENDOR_MYLEX,
211 		PCI_PRODUCT_MYLEX_ACCELERAID,
212 		PCI_VENDOR_MYLEX,
213 		0x0054,
214 		MLY_HWIF_I960RX,
215 		"AcceleRAID 160"
216 	},
217 };
218 
219 static void	*mly_sdh;
220 
221 /*
222  * Try to find a `mly_ident' entry corresponding to this board.
223  */
224 static const struct mly_ident *
225 mly_find_ident(struct pci_attach_args *pa)
226 {
227 	const struct mly_ident *mpi, *maxmpi;
228 	pcireg_t reg;
229 
230 	mpi = mly_ident;
231 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
232 
233 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
234 		return (NULL);
235 
236 	for (; mpi < maxmpi; mpi++) {
237 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
238 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
239 			continue;
240 
241 		if (mpi->subvendor == 0x0000)
242 			return (mpi);
243 
244 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
245 
246 		if (PCI_VENDOR(reg) == mpi->subvendor &&
247 		    PCI_PRODUCT(reg) == mpi->subproduct)
248 			return (mpi);
249 	}
250 
251 	return (NULL);
252 }
253 
254 /*
255  * Match a supported board.
256  */
257 static int
258 mly_match(device_t parent, cfdata_t cfdata, void *aux)
259 {
260 
261 	return (mly_find_ident(aux) != NULL);
262 }
263 
264 /*
265  * Attach a supported board.
266  */
267 static void
268 mly_attach(device_t parent, device_t self, void *aux)
269 {
270 	struct pci_attach_args *pa;
271 	struct mly_softc *mly;
272 	struct mly_ioctl_getcontrollerinfo *mi;
273 	const struct mly_ident *ident;
274 	pci_chipset_tag_t pc;
275 	pci_intr_handle_t ih;
276 	bus_space_handle_t memh, ioh;
277 	bus_space_tag_t memt, iot;
278 	pcireg_t reg;
279 	const char *intrstr;
280 	int ior, memr, i, rv, state;
281 	struct scsipi_adapter *adapt;
282 	struct scsipi_channel *chan;
283 
284 	mly = device_private(self);
285 	mly->mly_dv = self;
286 	pa = aux;
287 	pc = pa->pa_pc;
288 	ident = mly_find_ident(pa);
289 	state = 0;
290 
291 	mly->mly_dmat = pa->pa_dmat;
292 	mly->mly_hwif = ident->hwif;
293 
294 	printf(": Mylex %s\n", ident->desc);
295 
296 	/*
297 	 * Map the PCI register window.
298 	 */
299 	memr = -1;
300 	ior = -1;
301 
302 	for (i = 0x10; i <= 0x14; i += 4) {
303 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
304 
305 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
306 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
307 				ior = i;
308 		} else {
309 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
310 				memr = i;
311 		}
312 	}
313 
314 	if (memr != -1)
315 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
316 		    &memt, &memh, NULL, NULL))
317 			memr = -1;
318 	if (ior != -1)
319 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
320 		    &iot, &ioh, NULL, NULL))
321 		    	ior = -1;
322 
323 	if (memr != -1) {
324 		mly->mly_iot = memt;
325 		mly->mly_ioh = memh;
326 	} else if (ior != -1) {
327 		mly->mly_iot = iot;
328 		mly->mly_ioh = ioh;
329 	} else {
330 		aprint_error_dev(self, "can't map i/o or memory space\n");
331 		return;
332 	}
333 
334 	/*
335 	 * Enable the device.
336 	 */
337 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
338 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
339 	    reg | PCI_COMMAND_MASTER_ENABLE);
340 
341 	/*
342 	 * Map and establish the interrupt.
343 	 */
344 	if (pci_intr_map(pa, &ih)) {
345 		aprint_error_dev(self, "can't map interrupt\n");
346 		return;
347 	}
348 	intrstr = pci_intr_string(pc, ih);
349 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
350 	if (mly->mly_ih == NULL) {
351 		aprint_error_dev(self, "can't establish interrupt");
352 		if (intrstr != NULL)
353 			aprint_error(" at %s", intrstr);
354 		aprint_error("\n");
355 		return;
356 	}
357 
358 	if (intrstr != NULL)
359 		aprint_normal_dev(self, "interrupting at %s\n",
360 		    intrstr);
361 
362 	/*
363 	 * Take care of interface-specific tasks.
364 	 */
365 	switch (mly->mly_hwif) {
366 	case MLY_HWIF_I960RX:
367 		mly->mly_doorbell_true = 0x00;
368 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
369 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
370 		mly->mly_idbr = MLY_I960RX_IDBR;
371 		mly->mly_odbr = MLY_I960RX_ODBR;
372 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
373 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
374 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
375 		break;
376 
377 	case MLY_HWIF_STRONGARM:
378 		mly->mly_doorbell_true = 0xff;
379 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
380 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
381 		mly->mly_idbr = MLY_STRONGARM_IDBR;
382 		mly->mly_odbr = MLY_STRONGARM_ODBR;
383 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
384 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
385 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
386 		break;
387 	}
388 
389 	/*
390 	 * Allocate and map the scatter/gather lists.
391 	 */
392 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
393 	    &mly->mly_sg_dmamap, (void **)&mly->mly_sg,
394 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
395 	if (rv) {
396 		printf("%s: unable to allocate S/G maps\n",
397 		    device_xname(self));
398 		goto bad;
399 	}
400 	state++;
401 
402 	/*
403 	 * Allocate and map the memory mailbox.
404 	 */
405 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
406 	    &mly->mly_mmbox_dmamap, (void **)&mly->mly_mmbox,
407 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
408 	if (rv) {
409 		aprint_error_dev(self, "unable to allocate mailboxes\n");
410 		goto bad;
411 	}
412 	state++;
413 
414 	/*
415 	 * Initialise per-controller queues.
416 	 */
417 	SLIST_INIT(&mly->mly_ccb_free);
418 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
419 
420 	/*
421 	 * Disable interrupts before we start talking to the controller.
422 	 */
423 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
424 
425 	/*
426 	 * Wait for the controller to come ready, handshaking with the
427 	 * firmware if required.  This is typically only necessary on
428 	 * platforms where the controller BIOS does not run.
429 	 */
430 	if (mly_fwhandshake(mly)) {
431 		aprint_error_dev(self, "unable to bring controller online\n");
432 		goto bad;
433 	}
434 
435 	/*
436 	 * Allocate initial command buffers, obtain controller feature
437 	 * information, and then reallocate command buffers, since we'll
438 	 * know how many we want.
439 	 */
440 	if (mly_alloc_ccbs(mly)) {
441 		aprint_error_dev(self, "unable to allocate CCBs\n");
442 		goto bad;
443 	}
444 	state++;
445 	if (mly_get_controllerinfo(mly)) {
446 		aprint_error_dev(self, "unable to retrieve controller info\n");
447 		goto bad;
448 	}
449 	mly_release_ccbs(mly);
450 	if (mly_alloc_ccbs(mly)) {
451 		aprint_error_dev(self, "unable to allocate CCBs\n");
452 		state--;
453 		goto bad;
454 	}
455 
456 	/*
457 	 * Get the current event counter for health purposes, populate the
458 	 * initial health status buffer.
459 	 */
460 	if (mly_get_eventstatus(mly)) {
461 		aprint_error_dev(self, "unable to retrieve event status\n");
462 		goto bad;
463 	}
464 
465 	/*
466 	 * Enable memory-mailbox mode.
467 	 */
468 	if (mly_enable_mmbox(mly)) {
469 		aprint_error_dev(self, "unable to enable memory mailbox\n");
470 		goto bad;
471 	}
472 
473 	/*
474 	 * Print a little information about the controller.
475 	 */
476 	mi = mly->mly_controllerinfo;
477 
478 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
479 	    "(%02d%02d%02d%02d), %dMB RAM\n", device_xname(self),
480 	    mi->physical_channels_present,
481 	    (mi->physical_channels_present) > 1 ? "s" : "",
482 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
483 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
484 	    le16toh(mi->memory_size));
485 
486 	/*
487 	 * Register our `shutdownhook'.
488 	 */
489 	if (mly_sdh == NULL)
490 		shutdownhook_establish(mly_shutdown, NULL);
491 
492 	/*
493 	 * Clear any previous BTL information.  For each bus that scsipi
494 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
495 	 * all BTL info at that point.
496 	 */
497 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
498 
499 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
500 	    mly->mly_controllerinfo->virtual_channels_present;
501 
502 	/*
503 	 * Attach to scsipi.
504 	 */
505 	adapt = &mly->mly_adapt;
506 	memset(adapt, 0, sizeof(*adapt));
507 	adapt->adapt_dev = self;
508 	adapt->adapt_nchannels = mly->mly_nchans;
509 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
510 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
511 	adapt->adapt_request = mly_scsipi_request;
512 	adapt->adapt_minphys = mly_scsipi_minphys;
513 	adapt->adapt_ioctl = mly_scsipi_ioctl;
514 
515 	for (i = 0; i < mly->mly_nchans; i++) {
516 		chan = &mly->mly_chans[i];
517 		memset(chan, 0, sizeof(*chan));
518 		chan->chan_adapter = adapt;
519 		chan->chan_bustype = &scsi_bustype;
520 		chan->chan_channel = i;
521 		chan->chan_ntargets = MLY_MAX_TARGETS;
522 		chan->chan_nluns = MLY_MAX_LUNS;
523 		chan->chan_id = mly->mly_controllerparam->initiator_id;
524 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
525 		config_found(self, chan, scsiprint);
526 	}
527 
528 	/*
529 	 * Now enable interrupts...
530 	 */
531 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
532 
533 	/*
534 	 * Finally, create our monitoring thread.
535 	 */
536 	mly->mly_state |= MLY_STATE_INITOK;
537 	rv = kthread_create(PRI_NONE, 0, NULL, mly_thread, mly,
538 	    &mly->mly_thread, "%s", device_xname(self));
539  	if (rv != 0)
540 		aprint_error_dev(self, "unable to create thread (%d)\n",
541 		    rv);
542 	return;
543 
544  bad:
545 	if (state > 2)
546 		mly_release_ccbs(mly);
547 	if (state > 1)
548 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
549 		    mly->mly_mmbox_dmamap, (void *)mly->mly_mmbox,
550 		    &mly->mly_mmbox_seg);
551 	if (state > 0)
552 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
553 		    mly->mly_sg_dmamap, (void *)mly->mly_sg,
554 		    &mly->mly_sg_seg);
555 }
556 
557 /*
558  * Scan all possible devices on the specified channel.
559  */
560 static void
561 mly_scan_channel(struct mly_softc *mly, int bus)
562 {
563 	int s, target;
564 
565 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
566 		s = splbio();
567 		if (!mly_scan_btl(mly, bus, target)) {
568 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
569 			    0);
570 		}
571 		splx(s);
572 	}
573 }
574 
575 /*
576  * Shut down all configured `mly' devices.
577  */
578 static void
579 mly_shutdown(void *cookie)
580 {
581 	struct mly_softc *mly;
582 	int i;
583 
584 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
585 		if ((mly = device_lookup_private(&mly_cd, i)) == NULL)
586 			continue;
587 
588 		if (mly_flush(mly))
589 			aprint_error_dev(mly->mly_dv, "unable to flush cache\n");
590 	}
591 }
592 
593 /*
594  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
595  * softc.
596  */
597 static int
598 mly_get_controllerinfo(struct mly_softc *mly)
599 {
600 	struct mly_cmd_ioctl mci;
601 	int rv;
602 
603 	/*
604 	 * Build the getcontrollerinfo ioctl and send it.
605 	 */
606 	memset(&mci, 0, sizeof(mci));
607 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
608 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
609 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
610 	if (rv != 0)
611 		return (rv);
612 
613 	/*
614 	 * Build the getcontrollerparameter ioctl and send it.
615 	 */
616 	memset(&mci, 0, sizeof(mci));
617 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
618 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
619 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
620 
621 	return (rv);
622 }
623 
624 /*
625  * Rescan a device, possibly as a consequence of getting an event which
626  * suggests that it may have changed.  Must be called with interrupts
627  * blocked.
628  */
629 static int
630 mly_scan_btl(struct mly_softc *mly, int bus, int target)
631 {
632 	struct mly_ccb *mc;
633 	struct mly_cmd_ioctl *mci;
634 	int rv;
635 
636 	if (target == mly->mly_controllerparam->initiator_id) {
637 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
638 		return (EIO);
639 	}
640 
641 	/* Don't re-scan if a scan is already in progress. */
642 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
643 		return (EBUSY);
644 
645 	/* Get a command. */
646 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
647 		return (rv);
648 
649 	/* Set up the data buffer. */
650 	mc->mc_data = malloc(sizeof(union mly_devinfo),
651 	    M_DEVBUF, M_NOWAIT|M_ZERO);
652 
653 	mc->mc_flags |= MLY_CCB_DATAIN;
654 	mc->mc_complete = mly_complete_rescan;
655 
656 	/*
657 	 * Build the ioctl.
658 	 */
659 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
660 	mci->opcode = MDACMD_IOCTL;
661 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
662 	memset(&mci->param, 0, sizeof(mci->param));
663 
664 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
665 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
666 		mci->data_size = htole32(mc->mc_length);
667 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
668 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
669 		    mci->addr);
670 	} else {
671 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
672 		mci->data_size = htole32(mc->mc_length);
673 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
674 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
675 	}
676 
677 	/*
678 	 * Dispatch the command.
679 	 */
680 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
681 		free(mc->mc_data, M_DEVBUF);
682 		mly_ccb_free(mly, mc);
683 		return(rv);
684 	}
685 
686 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
687 	mly_ccb_enqueue(mly, mc);
688 	return (0);
689 }
690 
691 /*
692  * Handle the completion of a rescan operation.
693  */
694 static void
695 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
696 {
697 	struct mly_ioctl_getlogdevinfovalid *ldi;
698 	struct mly_ioctl_getphysdevinfovalid *pdi;
699 	struct mly_cmd_ioctl *mci;
700 	struct mly_btl btl, *btlp;
701 	struct scsipi_xfer_mode xm;
702 	int bus, target, rescan;
703 	u_int tmp;
704 
705 	mly_ccb_unmap(mly, mc);
706 
707 	/*
708 	 * Recover the bus and target from the command.  We need these even
709 	 * in the case where we don't have a useful response.
710 	 */
711 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
712 	tmp = _3ltol(mci->addr);
713 	rescan = 0;
714 
715 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
716 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
717 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
718 	} else {
719 		bus = MLY_PHYADDR_CHANNEL(tmp);
720 		target = MLY_PHYADDR_TARGET(tmp);
721 	}
722 
723 	btlp = &mly->mly_btl[bus][target];
724 
725 	/* The default result is 'no device'. */
726 	memset(&btl, 0, sizeof(btl));
727 	btl.mb_flags = MLY_BTL_PROTECTED;
728 
729 	/* If the rescan completed OK, we have possibly-new BTL data. */
730 	if (mc->mc_status != 0)
731 		goto out;
732 
733 	if (mc->mc_length == sizeof(*ldi)) {
734 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
735 		tmp = le32toh(ldi->logical_device_number);
736 
737 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
738 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
739 #ifdef MLYDEBUG
740 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
741 			    "returned data for %d:%d instead\n",
742 			   device_xname(mly->mly_dv), bus, target,
743 			   MLY_LOGDEV_BUS(mly, tmp),
744 			   MLY_LOGDEV_TARGET(mly, tmp));
745 #endif
746 			goto out;
747 		}
748 
749 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
750 		btl.mb_type = ldi->raid_level;
751 		btl.mb_state = ldi->state;
752 	} else if (mc->mc_length == sizeof(*pdi)) {
753 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
754 
755 		if (pdi->channel != bus || pdi->target != target) {
756 #ifdef MLYDEBUG
757 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
758 			    " returned data for %d:%d instead\n",
759 			   device_xname(mly->mly_dv),
760 			   bus, target, pdi->channel, pdi->target);
761 #endif
762 			goto out;
763 		}
764 
765 		btl.mb_flags = MLY_BTL_PHYSICAL;
766 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
767 		btl.mb_state = pdi->state;
768 		btl.mb_speed = pdi->speed;
769 		btl.mb_width = pdi->width;
770 
771 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
772 			btl.mb_flags |= MLY_BTL_PROTECTED;
773 		if (pdi->command_tags != 0)
774 			btl.mb_flags |= MLY_BTL_TQING;
775 	} else {
776 		printf("%s: BTL rescan result invalid\n", device_xname(mly->mly_dv));
777 		goto out;
778 	}
779 
780 	/* Decide whether we need to rescan the device. */
781 	if (btl.mb_flags != btlp->mb_flags ||
782 	    btl.mb_speed != btlp->mb_speed ||
783 	    btl.mb_width != btlp->mb_width)
784 		rescan = 1;
785 
786  out:
787 	*btlp = btl;
788 
789 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
790 		xm.xm_target = target;
791 		mly_get_xfer_mode(mly, bus, &xm);
792 		/* XXX SCSI mid-layer rescan goes here. */
793 	}
794 
795 	/* Wake anybody waiting on the device to be rescanned. */
796 	wakeup(btlp);
797 
798 	free(mc->mc_data, M_DEVBUF);
799 	mly_ccb_free(mly, mc);
800 }
801 
802 /*
803  * Get the current health status and set the 'next event' counter to suit.
804  */
805 static int
806 mly_get_eventstatus(struct mly_softc *mly)
807 {
808 	struct mly_cmd_ioctl mci;
809 	struct mly_health_status *mh;
810 	int rv;
811 
812 	/* Build the gethealthstatus ioctl and send it. */
813 	memset(&mci, 0, sizeof(mci));
814 	mh = NULL;
815 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
816 
817 	rv = mly_ioctl(mly, &mci, (void *)&mh, sizeof(*mh), NULL, NULL);
818 	if (rv)
819 		return (rv);
820 
821 	/* Get the event counter. */
822 	mly->mly_event_change = le32toh(mh->change_counter);
823 	mly->mly_event_waiting = le32toh(mh->next_event);
824 	mly->mly_event_counter = le32toh(mh->next_event);
825 
826 	/* Save the health status into the memory mailbox */
827 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
828 
829 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
830 	    offsetof(struct mly_mmbox, mmm_health),
831 	    sizeof(mly->mly_mmbox->mmm_health),
832 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
833 
834 	free(mh, M_DEVBUF);
835 	return (0);
836 }
837 
838 /*
839  * Enable memory mailbox mode.
840  */
841 static int
842 mly_enable_mmbox(struct mly_softc *mly)
843 {
844 	struct mly_cmd_ioctl mci;
845 	u_int8_t *sp;
846 	u_int64_t tmp;
847 	int rv;
848 
849 	/* Build the ioctl and send it. */
850 	memset(&mci, 0, sizeof(mci));
851 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
852 
853 	/* Set buffer addresses. */
854 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
855 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
856 
857 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
858 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
859 
860 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
861 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
862 
863 	/* Set buffer sizes - abuse of data_size field is revolting. */
864 	sp = (u_int8_t *)&mci.data_size;
865 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
866 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
867 	mci.param.setmemorymailbox.health_buffer_size =
868 	    sizeof(union mly_health_region) >> 10;
869 
870 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
871 	if (rv)
872 		return (rv);
873 
874 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
875 	return (0);
876 }
877 
878 /*
879  * Flush all pending I/O from the controller.
880  */
881 static int
882 mly_flush(struct mly_softc *mly)
883 {
884 	struct mly_cmd_ioctl mci;
885 
886 	/* Build the ioctl */
887 	memset(&mci, 0, sizeof(mci));
888 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
889 	mci.param.deviceoperation.operation_device =
890 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
891 
892 	/* Pass it off to the controller */
893 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
894 }
895 
896 /*
897  * Perform an ioctl command.
898  *
899  * If (data) is not NULL, the command requires data transfer to the
900  * controller.  If (*data) is NULL the command requires data transfer from
901  * the controller, and we will allocate a buffer for it.
902  */
903 static int
904 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
905 	  size_t datasize, void *sense_buffer,
906 	  size_t *sense_length)
907 {
908 	struct mly_ccb *mc;
909 	struct mly_cmd_ioctl *mci;
910 	u_int8_t status;
911 	int rv;
912 
913 	mc = NULL;
914 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
915 		goto bad;
916 
917 	/*
918 	 * Copy the ioctl structure, but save some important fields and then
919 	 * fixup.
920 	 */
921 	mci = &mc->mc_packet->ioctl;
922 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
923 	ioctl->maximum_sense_size = mci->maximum_sense_size;
924 	*mci = *ioctl;
925 	mci->opcode = MDACMD_IOCTL;
926 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
927 
928 	/* Handle the data buffer. */
929 	if (data != NULL) {
930 		if (*data == NULL) {
931 			/* Allocate data buffer */
932 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
933 			mc->mc_flags |= MLY_CCB_DATAIN;
934 		} else {
935 			mc->mc_data = *data;
936 			mc->mc_flags |= MLY_CCB_DATAOUT;
937 		}
938 		mc->mc_length = datasize;
939 		mc->mc_packet->generic.data_size = htole32(datasize);
940 	}
941 
942 	/* Run the command. */
943 	if (datasize > 0)
944 		if ((rv = mly_ccb_map(mly, mc)) != 0)
945 			goto bad;
946 	rv = mly_ccb_poll(mly, mc, 30000);
947 	if (datasize > 0)
948 		mly_ccb_unmap(mly, mc);
949 	if (rv != 0)
950 		goto bad;
951 
952 	/* Clean up and return any data. */
953 	status = mc->mc_status;
954 
955 	if (status != 0)
956 		printf("mly_ioctl: command status %d\n", status);
957 
958 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
959 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
960 		*sense_length = mc->mc_sense;
961 		goto bad;
962 	}
963 
964 	/* Should we return a data pointer? */
965 	if (data != NULL && *data == NULL)
966 		*data = mc->mc_data;
967 
968 	/* Command completed OK. */
969 	rv = (status != 0 ? EIO : 0);
970 
971  bad:
972 	if (mc != NULL) {
973 		/* Do we need to free a data buffer we allocated? */
974 		if (rv != 0 && mc->mc_data != NULL &&
975 		    (data == NULL || *data == NULL))
976 			free(mc->mc_data, M_DEVBUF);
977 		mly_ccb_free(mly, mc);
978 	}
979 
980 	return (rv);
981 }
982 
983 /*
984  * Check for event(s) outstanding in the controller.
985  */
986 static void
987 mly_check_event(struct mly_softc *mly)
988 {
989 
990 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
991 	    offsetof(struct mly_mmbox, mmm_health),
992 	    sizeof(mly->mly_mmbox->mmm_health),
993 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
994 
995 	/*
996 	 * The controller may have updated the health status information, so
997 	 * check for it here.  Note that the counters are all in host
998 	 * memory, so this check is very cheap.  Also note that we depend on
999 	 * checking on completion
1000 	 */
1001 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
1002 	    mly->mly_event_change) {
1003 		mly->mly_event_change =
1004 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
1005 		mly->mly_event_waiting =
1006 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
1007 
1008 		/* Wake up anyone that might be interested in this. */
1009 		wakeup(&mly->mly_event_change);
1010 	}
1011 
1012 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1013 	    offsetof(struct mly_mmbox, mmm_health),
1014 	    sizeof(mly->mly_mmbox->mmm_health),
1015 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1016 
1017 	if (mly->mly_event_counter != mly->mly_event_waiting)
1018 		mly_fetch_event(mly);
1019 }
1020 
1021 /*
1022  * Fetch one event from the controller.  If we fail due to resource
1023  * starvation, we'll be retried the next time a command completes.
1024  */
1025 static void
1026 mly_fetch_event(struct mly_softc *mly)
1027 {
1028 	struct mly_ccb *mc;
1029 	struct mly_cmd_ioctl *mci;
1030 	int s;
1031 	u_int32_t event;
1032 
1033 	/* Get a command. */
1034 	if (mly_ccb_alloc(mly, &mc))
1035 		return;
1036 
1037 	/* Set up the data buffer. */
1038 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF,
1039 	    M_NOWAIT|M_ZERO);
1040 
1041 	mc->mc_length = sizeof(struct mly_event);
1042 	mc->mc_flags |= MLY_CCB_DATAIN;
1043 	mc->mc_complete = mly_complete_event;
1044 
1045 	/*
1046 	 * Get an event number to fetch.  It's possible that we've raced
1047 	 * with another context for the last event, in which case there will
1048 	 * be no more events.
1049 	 */
1050 	s = splbio();
1051 	if (mly->mly_event_counter == mly->mly_event_waiting) {
1052 		splx(s);
1053 		free(mc->mc_data, M_DEVBUF);
1054 		mly_ccb_free(mly, mc);
1055 		return;
1056 	}
1057 	event = mly->mly_event_counter++;
1058 	splx(s);
1059 
1060 	/*
1061 	 * Build the ioctl.
1062 	 *
1063 	 * At this point we are committed to sending this request, as it
1064 	 * will be the only one constructed for this particular event
1065 	 * number.
1066 	 */
1067 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
1068 	mci->opcode = MDACMD_IOCTL;
1069 	mci->data_size = htole32(sizeof(struct mly_event));
1070 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
1071 	    mci->addr);
1072 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
1073 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
1074 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
1075 
1076 	/*
1077 	 * Submit the command.
1078 	 */
1079 	if (mly_ccb_map(mly, mc) != 0)
1080 		goto bad;
1081 	mly_ccb_enqueue(mly, mc);
1082 	return;
1083 
1084  bad:
1085 	printf("%s: couldn't fetch event %u\n", device_xname(mly->mly_dv), event);
1086 	free(mc->mc_data, M_DEVBUF);
1087 	mly_ccb_free(mly, mc);
1088 }
1089 
1090 /*
1091  * Handle the completion of an event poll.
1092  */
1093 static void
1094 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
1095 {
1096 	struct mly_event *me;
1097 
1098 	me = (struct mly_event *)mc->mc_data;
1099 	mly_ccb_unmap(mly, mc);
1100 	mly_ccb_free(mly, mc);
1101 
1102 	/* If the event was successfully fetched, process it. */
1103 	if (mc->mc_status == SCSI_OK)
1104 		mly_process_event(mly, me);
1105 	else
1106 		aprint_error_dev(mly->mly_dv, "unable to fetch event; status = 0x%x\n",
1107 		    mc->mc_status);
1108 
1109 	free(me, M_DEVBUF);
1110 
1111 	/* Check for another event. */
1112 	mly_check_event(mly);
1113 }
1114 
1115 /*
1116  * Process a controller event.  Called with interrupts blocked (i.e., at
1117  * interrupt time).
1118  */
1119 static void
1120 mly_process_event(struct mly_softc *mly, struct mly_event *me)
1121 {
1122 	struct scsi_sense_data *ssd;
1123 	int bus, target, event, class, action;
1124 	const char *fp, *tp;
1125 
1126 	ssd = (struct scsi_sense_data *)&me->sense[0];
1127 
1128 	/*
1129 	 * Errors can be reported using vendor-unique sense data.  In this
1130 	 * case, the event code will be 0x1c (Request sense data present),
1131 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
1132 	 * will be set, and the actual event code will be a 16-bit value
1133 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
1134 	 * (low seven bits of the high byte).
1135 	 */
1136 	if (le32toh(me->code) == 0x1c &&
1137 	    SSD_SENSE_KEY(ssd->flags) == SKEY_VENDOR_SPECIFIC &&
1138 	    (ssd->asc & 0x80) != 0) {
1139 		event = ((int)(ssd->asc & ~0x80) << 8) +
1140 		    ssd->ascq;
1141 	} else
1142 		event = le32toh(me->code);
1143 
1144 	/* Look up event, get codes. */
1145 	fp = mly_describe_code(mly_table_event, event);
1146 
1147 	/* Quiet event? */
1148 	class = fp[0];
1149 #ifdef notyet
1150 	if (isupper(class) && bootverbose)
1151 		class = tolower(class);
1152 #endif
1153 
1154 	/* Get action code, text string. */
1155 	action = fp[1];
1156 	tp = fp + 3;
1157 
1158 	/*
1159 	 * Print some information about the event.
1160 	 *
1161 	 * This code uses a table derived from the corresponding portion of
1162 	 * the Linux driver, and thus the parser is very similar.
1163 	 */
1164 	switch (class) {
1165 	case 'p':
1166 		/*
1167 		 * Error on physical drive.
1168 		 */
1169 		printf("%s: physical device %d:%d %s\n", device_xname(mly->mly_dv),
1170 		    me->channel, me->target, tp);
1171 		if (action == 'r')
1172 			mly->mly_btl[me->channel][me->target].mb_flags |=
1173 			    MLY_BTL_RESCAN;
1174 		break;
1175 
1176 	case 'l':
1177 	case 'm':
1178 		/*
1179 		 * Error on logical unit, or message about logical unit.
1180 	 	 */
1181 		bus = MLY_LOGDEV_BUS(mly, me->lun);
1182 		target = MLY_LOGDEV_TARGET(mly, me->lun);
1183 		printf("%s: logical device %d:%d %s\n", device_xname(mly->mly_dv),
1184 		    bus, target, tp);
1185 		if (action == 'r')
1186 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1187 		break;
1188 
1189 	case 's':
1190 		/*
1191 		 * Report of sense data.
1192 		 */
1193 		if ((SSD_SENSE_KEY(ssd->flags) == SKEY_NO_SENSE ||
1194 		     SSD_SENSE_KEY(ssd->flags) == SKEY_NOT_READY) &&
1195 		    ssd->asc == 0x04 &&
1196 		    (ssd->ascq == 0x01 ||
1197 		     ssd->ascq == 0x02)) {
1198 			/* Ignore NO_SENSE or NOT_READY in one case */
1199 			break;
1200 		}
1201 
1202 		/*
1203 		 * XXX Should translate this if SCSIVERBOSE.
1204 		 */
1205 		printf("%s: physical device %d:%d %s\n", device_xname(mly->mly_dv),
1206 		    me->channel, me->target, tp);
1207 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
1208 		    device_xname(mly->mly_dv), SSD_SENSE_KEY(ssd->flags),
1209 		    ssd->asc, ssd->ascq);
1210 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
1211 		    device_xname(mly->mly_dv), ssd->info[0], ssd->info[1],
1212 		    ssd->info[2], ssd->info[3], ssd->csi[0],
1213 		    ssd->csi[1], ssd->csi[2],
1214 		    ssd->csi[3]);
1215 		if (action == 'r')
1216 			mly->mly_btl[me->channel][me->target].mb_flags |=
1217 			    MLY_BTL_RESCAN;
1218 		break;
1219 
1220 	case 'e':
1221 		printf("%s: ", device_xname(mly->mly_dv));
1222 		printf(tp, me->target, me->lun);
1223 		break;
1224 
1225 	case 'c':
1226 		printf("%s: controller %s\n", device_xname(mly->mly_dv), tp);
1227 		break;
1228 
1229 	case '?':
1230 		printf("%s: %s - %d\n", device_xname(mly->mly_dv), tp, event);
1231 		break;
1232 
1233 	default:
1234 		/* Probably a 'noisy' event being ignored. */
1235 		break;
1236 	}
1237 }
1238 
1239 /*
1240  * Perform periodic activities.
1241  */
1242 static void
1243 mly_thread(void *cookie)
1244 {
1245 	struct mly_softc *mly;
1246 	struct mly_btl *btl;
1247 	int s, bus, target, done;
1248 
1249 	mly = (struct mly_softc *)cookie;
1250 
1251 	for (;;) {
1252 		/* Check for new events. */
1253 		mly_check_event(mly);
1254 
1255 		/* Re-scan up to 1 device. */
1256 		s = splbio();
1257 		done = 0;
1258 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
1259 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
1260 				/* Perform device rescan? */
1261 				btl = &mly->mly_btl[bus][target];
1262 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
1263 					btl->mb_flags ^= MLY_BTL_RESCAN;
1264 					mly_scan_btl(mly, bus, target);
1265 					done = 1;
1266 					break;
1267 				}
1268 			}
1269 		}
1270 		splx(s);
1271 
1272 		/* Sleep for N seconds. */
1273 		tsleep(mly_thread, PWAIT, "mlyzzz",
1274 		    hz * MLY_PERIODIC_INTERVAL);
1275 	}
1276 }
1277 
1278 /*
1279  * Submit a command to the controller and poll on completion.  Return
1280  * non-zero on timeout.
1281  */
1282 static int
1283 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1284 {
1285 	int rv;
1286 
1287 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
1288 		return (rv);
1289 
1290 	for (timo *= 10; timo != 0; timo--) {
1291 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
1292 			break;
1293 		mly_intr(mly);
1294 		DELAY(100);
1295 	}
1296 
1297 	return (timo == 0);
1298 }
1299 
1300 /*
1301  * Submit a command to the controller and sleep on completion.  Return
1302  * non-zero on timeout.
1303  */
1304 static int
1305 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1306 {
1307 	int rv, s;
1308 
1309 	mly_ccb_enqueue(mly, mc);
1310 
1311 	s = splbio();
1312 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
1313 		splx(s);
1314 		return (0);
1315 	}
1316 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
1317 	splx(s);
1318 
1319 	return (rv);
1320 }
1321 
1322 /*
1323  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1324  * the order that they were enqueued and try to submit their command blocks
1325  * to the controller for execution.
1326  */
1327 void
1328 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
1329 {
1330 	int s;
1331 
1332 	s = splbio();
1333 
1334 	if (mc != NULL)
1335 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1336 
1337 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
1338 		if (mly_ccb_submit(mly, mc))
1339 			break;
1340 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc_link.simpleq);
1341 	}
1342 
1343 	splx(s);
1344 }
1345 
1346 /*
1347  * Deliver a command to the controller.
1348  */
1349 static int
1350 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
1351 {
1352 	union mly_cmd_packet *pkt;
1353 	int s, off;
1354 
1355 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
1356 
1357 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1358 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1359 	    sizeof(union mly_cmd_packet),
1360 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1361 
1362 	s = splbio();
1363 
1364 	/*
1365 	 * Do we have to use the hardware mailbox?
1366 	 */
1367 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
1368 		/*
1369 		 * Check to see if the controller is ready for us.
1370 		 */
1371 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
1372 			splx(s);
1373 			return (EBUSY);
1374 		}
1375 
1376 		/*
1377 		 * It's ready, send the command.
1378 		 */
1379 		mly_outl(mly, mly->mly_cmd_mailbox,
1380 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
1381 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
1382 		    (u_int64_t)mc->mc_packetphys >> 32);
1383 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
1384 	} else {
1385 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
1386 		off = (char *)pkt - (char *)mly->mly_mmbox;
1387 
1388 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1389 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1390 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1391 
1392 		/* Check to see if the next index is free yet. */
1393 		if (pkt->mmbox.flag != 0) {
1394 			splx(s);
1395 			return (EBUSY);
1396 		}
1397 
1398 		/* Copy in new command */
1399 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
1400 		    sizeof(pkt->mmbox.data));
1401 
1402 		/* Copy flag last. */
1403 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1404 
1405 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1406 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1407 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1408 
1409 		/* Signal controller and update index. */
1410 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
1411 		mly->mly_mmbox_cmd_idx =
1412 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
1413 	}
1414 
1415 	splx(s);
1416 	return (0);
1417 }
1418 
1419 /*
1420  * Pick up completed commands from the controller and handle accordingly.
1421  */
1422 int
1423 mly_intr(void *cookie)
1424 {
1425 	struct mly_ccb *mc;
1426 	union mly_status_packet	*sp;
1427 	u_int16_t slot;
1428 	int forus, off;
1429 	struct mly_softc *mly;
1430 
1431 	mly = cookie;
1432 	forus = 0;
1433 
1434 	/*
1435 	 * Pick up hardware-mailbox commands.
1436 	 */
1437 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
1438 		slot = mly_inw(mly, mly->mly_status_mailbox);
1439 
1440 		if (slot < MLY_SLOT_MAX) {
1441 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1442 			mc->mc_status =
1443 			    mly_inb(mly, mly->mly_status_mailbox + 2);
1444 			mc->mc_sense =
1445 			    mly_inb(mly, mly->mly_status_mailbox + 3);
1446 			mc->mc_resid =
1447 			    mly_inl(mly, mly->mly_status_mailbox + 4);
1448 
1449 			mly_ccb_complete(mly, mc);
1450 		} else {
1451 			/* Slot 0xffff may mean "extremely bogus command". */
1452 			printf("%s: got HM completion for illegal slot %u\n",
1453 			    device_xname(mly->mly_dv), slot);
1454 		}
1455 
1456 		/* Unconditionally acknowledge status. */
1457 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
1458 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
1459 		forus = 1;
1460 	}
1461 
1462 	/*
1463 	 * Pick up memory-mailbox commands.
1464 	 */
1465 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
1466 		for (;;) {
1467 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
1468 			off = (char *)sp - (char *)mly->mly_mmbox;
1469 
1470 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1471 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1472 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1473 
1474 			/* Check for more status. */
1475 			if (sp->mmbox.flag == 0)
1476 				break;
1477 
1478 			/* Get slot number. */
1479 			slot = le16toh(sp->status.command_id);
1480 			if (slot < MLY_SLOT_MAX) {
1481 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1482 				mc->mc_status = sp->status.status;
1483 				mc->mc_sense = sp->status.sense_length;
1484 				mc->mc_resid = le32toh(sp->status.residue);
1485 				mly_ccb_complete(mly, mc);
1486 			} else {
1487 				/*
1488 				 * Slot 0xffff may mean "extremely bogus
1489 				 * command".
1490 				 */
1491 				printf("%s: got AM completion for illegal "
1492 				    "slot %u at %d\n", device_xname(mly->mly_dv),
1493 				    slot, mly->mly_mmbox_sts_idx);
1494 			}
1495 
1496 			/* Clear and move to next index. */
1497 			sp->mmbox.flag = 0;
1498 			mly->mly_mmbox_sts_idx =
1499 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
1500 		}
1501 
1502 		/* Acknowledge that we have collected status value(s). */
1503 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
1504 		forus = 1;
1505 	}
1506 
1507 	/*
1508 	 * Run the queue.
1509 	 */
1510 	if (forus && ! SIMPLEQ_EMPTY(&mly->mly_ccb_queue))
1511 		mly_ccb_enqueue(mly, NULL);
1512 
1513 	return (forus);
1514 }
1515 
1516 /*
1517  * Process completed commands
1518  */
1519 static void
1520 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
1521 {
1522 	void (*complete)(struct mly_softc *, struct mly_ccb *);
1523 
1524 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1525 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1526 	    sizeof(union mly_cmd_packet),
1527 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1528 
1529 	complete = mc->mc_complete;
1530 	mc->mc_flags |= MLY_CCB_COMPLETE;
1531 
1532 	/*
1533 	 * Call completion handler or wake up sleeping consumer.
1534 	 */
1535 	if (complete != NULL)
1536 		(*complete)(mly, mc);
1537 	else
1538 		wakeup(mc);
1539 }
1540 
1541 /*
1542  * Allocate a command.
1543  */
1544 int
1545 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
1546 {
1547 	struct mly_ccb *mc;
1548 	int s;
1549 
1550 	s = splbio();
1551 	mc = SLIST_FIRST(&mly->mly_ccb_free);
1552 	if (mc != NULL)
1553 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
1554 	splx(s);
1555 
1556 	*mcp = mc;
1557 	return (mc == NULL ? EAGAIN : 0);
1558 }
1559 
1560 /*
1561  * Release a command back to the freelist.
1562  */
1563 void
1564 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
1565 {
1566 	int s;
1567 
1568 	/*
1569 	 * Fill in parts of the command that may cause confusion if a
1570 	 * consumer doesn't when we are later allocated.
1571 	 */
1572 	mc->mc_data = NULL;
1573 	mc->mc_flags = 0;
1574 	mc->mc_complete = NULL;
1575 	mc->mc_private = NULL;
1576 	mc->mc_packet->generic.command_control = 0;
1577 
1578 	/*
1579 	 * By default, we set up to overwrite the command packet with sense
1580 	 * information.
1581 	 */
1582 	mc->mc_packet->generic.sense_buffer_address =
1583 	    htole64(mc->mc_packetphys);
1584 	mc->mc_packet->generic.maximum_sense_size =
1585 	    sizeof(union mly_cmd_packet);
1586 
1587 	s = splbio();
1588 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
1589 	splx(s);
1590 }
1591 
1592 /*
1593  * Allocate and initialize command and packet structures.
1594  *
1595  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
1596  * allocation to that number.  If we don't yet know how many commands the
1597  * controller supports, allocate a very small set (suitable for initialization
1598  * purposes only).
1599  */
1600 static int
1601 mly_alloc_ccbs(struct mly_softc *mly)
1602 {
1603 	struct mly_ccb *mc;
1604 	int i, rv;
1605 
1606 	if (mly->mly_controllerinfo == NULL)
1607 		mly->mly_ncmds = MLY_CCBS_RESV;
1608 	else {
1609 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
1610 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
1611 	}
1612 
1613 	/*
1614 	 * Allocate enough space for all the command packets in one chunk
1615 	 * and map them permanently into controller-visible space.
1616 	 */
1617 	rv = mly_dmamem_alloc(mly,
1618 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
1619 	    &mly->mly_pkt_dmamap, (void **)&mly->mly_pkt,
1620 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
1621 	if (rv)
1622 		return (rv);
1623 
1624 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
1625 	    M_DEVBUF, M_NOWAIT|M_ZERO);
1626 
1627 	for (i = 0; i < mly->mly_ncmds; i++) {
1628 		mc = mly->mly_ccbs + i;
1629 		mc->mc_slot = MLY_SLOT_START + i;
1630 		mc->mc_packet = mly->mly_pkt + i;
1631 		mc->mc_packetphys = mly->mly_pkt_busaddr +
1632 		    (i * sizeof(union mly_cmd_packet));
1633 
1634 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
1635 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
1636 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1637 		    &mc->mc_datamap);
1638 		if (rv) {
1639 			mly_release_ccbs(mly);
1640 			return (rv);
1641 		}
1642 
1643 		mly_ccb_free(mly, mc);
1644 	}
1645 
1646 	return (0);
1647 }
1648 
1649 /*
1650  * Free all the storage held by commands.
1651  *
1652  * Must be called with all commands on the free list.
1653  */
1654 static void
1655 mly_release_ccbs(struct mly_softc *mly)
1656 {
1657 	struct mly_ccb *mc;
1658 
1659 	/* Throw away command buffer DMA maps. */
1660 	while (mly_ccb_alloc(mly, &mc) == 0)
1661 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
1662 
1663 	/* Release CCB storage. */
1664 	free(mly->mly_ccbs, M_DEVBUF);
1665 
1666 	/* Release the packet storage. */
1667 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
1668 	    mly->mly_pkt_dmamap, (void *)mly->mly_pkt, &mly->mly_pkt_seg);
1669 }
1670 
1671 /*
1672  * Map a command into controller-visible space.
1673  */
1674 static int
1675 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
1676 {
1677 	struct mly_cmd_generic *gen;
1678 	struct mly_sg_entry *sg;
1679 	bus_dma_segment_t *ds;
1680 	int flg, nseg, rv;
1681 
1682 #ifdef DIAGNOSTIC
1683 	/* Don't map more than once. */
1684 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
1685 		panic("mly_ccb_map: already mapped");
1686 	mc->mc_flags |= MLY_CCB_MAPPED;
1687 
1688 	/* Does the command have a data buffer? */
1689 	if (mc->mc_data == NULL)
1690 		panic("mly_ccb_map: no data buffer");
1691 #endif
1692 
1693 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
1694 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1695 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
1696 	    BUS_DMA_READ : BUS_DMA_WRITE));
1697 	if (rv != 0)
1698 		return (rv);
1699 
1700 	gen = &mc->mc_packet->generic;
1701 
1702 	/*
1703 	 * Can we use the transfer structure directly?
1704 	 */
1705 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
1706 		mc->mc_sgoff = -1;
1707 		sg = &gen->transfer.direct.sg[0];
1708 	} else {
1709 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
1710 		    MLY_MAX_SEGS;
1711 		sg = mly->mly_sg + mc->mc_sgoff;
1712 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
1713 		gen->transfer.indirect.entries[0] = htole16(nseg);
1714 		gen->transfer.indirect.table_physaddr[0] =
1715 		    htole64(mly->mly_sg_busaddr +
1716 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
1717 	}
1718 
1719 	/*
1720 	 * Fill the S/G table.
1721 	 */
1722 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
1723 		sg->physaddr = htole64(ds->ds_addr);
1724 		sg->length = htole64(ds->ds_len);
1725 	}
1726 
1727 	/*
1728 	 * Sync up the data map.
1729 	 */
1730 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1731 		flg = BUS_DMASYNC_PREREAD;
1732 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
1733 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
1734 		flg = BUS_DMASYNC_PREWRITE;
1735 	}
1736 
1737 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1738 
1739 	/*
1740 	 * Sync up the chained S/G table, if we're using one.
1741 	 */
1742 	if (mc->mc_sgoff == -1)
1743 		return (0);
1744 
1745 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1746 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1747 
1748 	return (0);
1749 }
1750 
1751 /*
1752  * Unmap a command from controller-visible space.
1753  */
1754 static void
1755 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
1756 {
1757 	int flg;
1758 
1759 #ifdef DIAGNOSTIC
1760 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
1761 		panic("mly_ccb_unmap: not mapped");
1762 	mc->mc_flags &= ~MLY_CCB_MAPPED;
1763 #endif
1764 
1765 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1766 		flg = BUS_DMASYNC_POSTREAD;
1767 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
1768 		flg = BUS_DMASYNC_POSTWRITE;
1769 
1770 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1771 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
1772 
1773 	if (mc->mc_sgoff == -1)
1774 		return;
1775 
1776 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1777 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
1778 }
1779 
1780 /*
1781  * Adjust the size of each I/O before it passes to the SCSI layer.
1782  */
1783 static void
1784 mly_scsipi_minphys(struct buf *bp)
1785 {
1786 
1787 	if (bp->b_bcount > MLY_MAX_XFER)
1788 		bp->b_bcount = MLY_MAX_XFER;
1789 	minphys(bp);
1790 }
1791 
1792 /*
1793  * Start a SCSI command.
1794  */
1795 static void
1796 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1797 		   void *arg)
1798 {
1799 	struct mly_ccb *mc;
1800 	struct mly_cmd_scsi_small *ss;
1801 	struct scsipi_xfer *xs;
1802 	struct scsipi_periph *periph;
1803 	struct mly_softc *mly;
1804 	struct mly_btl *btl;
1805 	int s, tmp;
1806 
1807 	mly = device_private(chan->chan_adapter->adapt_dev);
1808 
1809 	switch (req) {
1810 	case ADAPTER_REQ_RUN_XFER:
1811 		xs = arg;
1812 		periph = xs->xs_periph;
1813 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
1814 		s = splbio();
1815 		tmp = btl->mb_flags;
1816 		splx(s);
1817 
1818 		/*
1819 		 * Check for I/O attempt to a protected or non-existant
1820 		 * device.
1821 		 */
1822 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
1823 			xs->error = XS_SELTIMEOUT;
1824 			scsipi_done(xs);
1825 			break;
1826 		}
1827 
1828 #ifdef DIAGNOSTIC
1829 		/* XXX Increase if/when we support large SCSI commands. */
1830 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
1831 			printf("%s: cmd too large\n", device_xname(mly->mly_dv));
1832 			xs->error = XS_DRIVER_STUFFUP;
1833 			scsipi_done(xs);
1834 			break;
1835 		}
1836 #endif
1837 
1838 		if (mly_ccb_alloc(mly, &mc)) {
1839 			xs->error = XS_RESOURCE_SHORTAGE;
1840 			scsipi_done(xs);
1841 			break;
1842 		}
1843 
1844 		/* Build the command. */
1845 		mc->mc_data = xs->data;
1846 		mc->mc_length = xs->datalen;
1847 		mc->mc_complete = mly_scsipi_complete;
1848 		mc->mc_private = xs;
1849 
1850 		/* Build the packet for the controller. */
1851 		ss = &mc->mc_packet->scsi_small;
1852 		ss->opcode = MDACMD_SCSI;
1853 #ifdef notdef
1854 		/*
1855 		 * XXX FreeBSD does this, but it doesn't fix anything,
1856 		 * XXX and appears potentially harmful.
1857 		 */
1858 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
1859 #endif
1860 
1861 		ss->data_size = htole32(xs->datalen);
1862 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
1863 		    periph->periph_target, periph->periph_lun), ss->addr);
1864 
1865 		if (xs->timeout < 60 * 1000)
1866 			ss->timeout = xs->timeout / 1000 |
1867 			    MLY_TIMEOUT_SECONDS;
1868 		else if (xs->timeout < 60 * 60 * 1000)
1869 			ss->timeout = xs->timeout / (60 * 1000) |
1870 			    MLY_TIMEOUT_MINUTES;
1871 		else
1872 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
1873 			    MLY_TIMEOUT_HOURS;
1874 
1875 		ss->maximum_sense_size = sizeof(xs->sense);
1876 		ss->cdb_length = xs->cmdlen;
1877 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
1878 
1879 		if (mc->mc_length != 0) {
1880 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
1881 				mc->mc_flags |= MLY_CCB_DATAOUT;
1882 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
1883 				mc->mc_flags |= MLY_CCB_DATAIN;
1884 
1885 			if (mly_ccb_map(mly, mc) != 0) {
1886 				xs->error = XS_DRIVER_STUFFUP;
1887 				mly_ccb_free(mly, mc);
1888 				scsipi_done(xs);
1889 				break;
1890 			}
1891 		}
1892 
1893 		/*
1894 		 * Give the command to the controller.
1895 		 */
1896 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
1897 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
1898 				xs->error = XS_REQUEUE;
1899 				if (mc->mc_length != 0)
1900 					mly_ccb_unmap(mly, mc);
1901 				mly_ccb_free(mly, mc);
1902 				scsipi_done(xs);
1903 			}
1904 		} else
1905 			mly_ccb_enqueue(mly, mc);
1906 
1907 		break;
1908 
1909 	case ADAPTER_REQ_GROW_RESOURCES:
1910 		/*
1911 		 * Not supported.
1912 		 */
1913 		break;
1914 
1915 	case ADAPTER_REQ_SET_XFER_MODE:
1916 		/*
1917 		 * We can't change the transfer mode, but at least let
1918 		 * scsipi know what the adapter has negotiated.
1919 		 */
1920 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
1921 		break;
1922 	}
1923 }
1924 
1925 /*
1926  * Handle completion of a SCSI command.
1927  */
1928 static void
1929 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
1930 {
1931 	struct scsipi_xfer *xs;
1932 	struct scsipi_channel *chan;
1933 	struct scsipi_inquiry_data *inq;
1934 	struct mly_btl *btl;
1935 	int target, sl, s;
1936 	const char *p;
1937 
1938 	xs = mc->mc_private;
1939 	xs->status = mc->mc_status;
1940 
1941 	/*
1942 	 * XXX The `resid' value as returned by the controller appears to be
1943 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
1944 	 * count?
1945 	 */
1946 	xs->resid = 0; /* mc->mc_resid; */
1947 
1948 	if (mc->mc_length != 0)
1949 		mly_ccb_unmap(mly, mc);
1950 
1951 	switch (mc->mc_status) {
1952 	case SCSI_OK:
1953 		/*
1954 		 * In order to report logical device type and status, we
1955 		 * overwrite the result of the INQUIRY command to logical
1956 		 * devices.
1957 		 */
1958 		if (xs->cmd->opcode == INQUIRY) {
1959 			chan = xs->xs_periph->periph_channel;
1960 			target = xs->xs_periph->periph_target;
1961 			btl = &mly->mly_btl[chan->chan_channel][target];
1962 
1963 			s = splbio();
1964 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
1965 				inq = (struct scsipi_inquiry_data *)xs->data;
1966 				mly_padstr(inq->vendor, "MYLEX", 8);
1967 				p = mly_describe_code(mly_table_device_type,
1968 				    btl->mb_type);
1969 				mly_padstr(inq->product, p, 16);
1970 				p = mly_describe_code(mly_table_device_state,
1971 				    btl->mb_state);
1972 				mly_padstr(inq->revision, p, 4);
1973 			}
1974 			splx(s);
1975 		}
1976 
1977 		xs->error = XS_NOERROR;
1978 		break;
1979 
1980 	case SCSI_CHECK:
1981 		sl = mc->mc_sense;
1982 		if (sl > sizeof(xs->sense.scsi_sense))
1983 			sl = sizeof(xs->sense.scsi_sense);
1984 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
1985 		xs->error = XS_SENSE;
1986 		break;
1987 
1988 	case SCSI_BUSY:
1989 	case SCSI_QUEUE_FULL:
1990 		xs->error = XS_BUSY;
1991 		break;
1992 
1993 	default:
1994 		printf("%s: unknown SCSI status 0x%x\n",
1995 		    device_xname(mly->mly_dv), xs->status);
1996 		xs->error = XS_DRIVER_STUFFUP;
1997 		break;
1998 	}
1999 
2000 	mly_ccb_free(mly, mc);
2001 	scsipi_done(xs);
2002 }
2003 
2004 /*
2005  * Notify scsipi about a target's transfer mode.
2006  */
2007 static void
2008 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
2009 {
2010 	struct mly_btl *btl;
2011 	int s;
2012 
2013 	btl = &mly->mly_btl[bus][xm->xm_target];
2014 	xm->xm_mode = 0;
2015 
2016 	s = splbio();
2017 
2018 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
2019 		if (btl->mb_speed == 0) {
2020 			xm->xm_period = 0;
2021 			xm->xm_offset = 0;
2022 		} else {
2023 			xm->xm_period = 12;			/* XXX */
2024 			xm->xm_offset = 8;			/* XXX */
2025 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
2026 		}
2027 
2028 		switch (btl->mb_width) {
2029 		case 32:
2030 			xm->xm_mode = PERIPH_CAP_WIDE32;
2031 			break;
2032 		case 16:
2033 			xm->xm_mode = PERIPH_CAP_WIDE16;
2034 			break;
2035 		default:
2036 			xm->xm_mode = 0;
2037 			break;
2038 		}
2039 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
2040 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
2041 		xm->xm_period = 12;
2042 		xm->xm_offset = 8;
2043 	}
2044 
2045 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
2046 		xm->xm_mode |= PERIPH_CAP_TQING;
2047 
2048 	splx(s);
2049 
2050 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
2051 }
2052 
2053 /*
2054  * ioctl hook; used here only to initiate low-level rescans.
2055  */
2056 static int
2057 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, void *data,
2058     int flag, struct proc *p)
2059 {
2060 	struct mly_softc *mly;
2061 	int rv;
2062 
2063 	mly = device_private(chan->chan_adapter->adapt_dev);
2064 
2065 	switch (cmd) {
2066 	case SCBUSIOLLSCAN:
2067 		mly_scan_channel(mly, chan->chan_channel);
2068 		rv = 0;
2069 		break;
2070 	default:
2071 		rv = ENOTTY;
2072 		break;
2073 	}
2074 
2075 	return (rv);
2076 }
2077 
2078 /*
2079  * Handshake with the firmware while the card is being initialized.
2080  */
2081 static int
2082 mly_fwhandshake(struct mly_softc *mly)
2083 {
2084 	u_int8_t error;
2085 	int spinup;
2086 
2087 	spinup = 0;
2088 
2089 	/* Set HM_STSACK and let the firmware initialize. */
2090 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
2091 	DELAY(1000);	/* too short? */
2092 
2093 	/* If HM_STSACK is still true, the controller is initializing. */
2094 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
2095 		return (0);
2096 
2097 	printf("%s: controller initialization started\n",
2098 	    device_xname(mly->mly_dv));
2099 
2100 	/*
2101 	 * Spin waiting for initialization to finish, or for a message to be
2102 	 * delivered.
2103 	 */
2104 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
2105 		/* Check for a message */
2106 		if (!mly_error_valid(mly))
2107 			continue;
2108 
2109 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
2110 		(void)mly_inb(mly, mly->mly_cmd_mailbox);
2111 		(void)mly_inb(mly, mly->mly_cmd_mailbox + 1);
2112 
2113 		switch (error) {
2114 		case MLY_MSG_SPINUP:
2115 			if (!spinup) {
2116 				printf("%s: drive spinup in progress\n",
2117 				    device_xname(mly->mly_dv));
2118 				spinup = 1;
2119 			}
2120 			break;
2121 
2122 		case MLY_MSG_RACE_RECOVERY_FAIL:
2123 			printf("%s: mirror race recovery failed - \n",
2124 			    device_xname(mly->mly_dv));
2125 			printf("%s: one or more drives offline\n",
2126 			    device_xname(mly->mly_dv));
2127 			break;
2128 
2129 		case MLY_MSG_RACE_IN_PROGRESS:
2130 			printf("%s: mirror race recovery in progress\n",
2131 			    device_xname(mly->mly_dv));
2132 			break;
2133 
2134 		case MLY_MSG_RACE_ON_CRITICAL:
2135 			printf("%s: mirror race recovery on critical drive\n",
2136 			    device_xname(mly->mly_dv));
2137 			break;
2138 
2139 		case MLY_MSG_PARITY_ERROR:
2140 			printf("%s: FATAL MEMORY PARITY ERROR\n",
2141 			    device_xname(mly->mly_dv));
2142 			return (ENXIO);
2143 
2144 		default:
2145 			printf("%s: unknown initialization code 0x%x\n",
2146 			    device_xname(mly->mly_dv), error);
2147 			break;
2148 		}
2149 	}
2150 
2151 	return (0);
2152 }
2153 
2154 /*
2155  * Space-fill a character string
2156  */
2157 static void
2158 mly_padstr(char *dst, const char *src, int len)
2159 {
2160 
2161 	while (len-- > 0) {
2162 		if (*src != '\0')
2163 			*dst++ = *src++;
2164 		else
2165 			*dst++ = ' ';
2166 	}
2167 }
2168 
2169 /*
2170  * Allocate DMA safe memory.
2171  */
2172 static int
2173 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
2174 		 void **kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
2175 {
2176 	int rseg, rv, state;
2177 
2178 	state = 0;
2179 
2180 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, PAGE_SIZE, 0,
2181 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
2182 		aprint_error_dev(mly->mly_dv, "dmamem_alloc = %d\n", rv);
2183 		goto bad;
2184 	}
2185 
2186 	state++;
2187 
2188 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
2189 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2190 		aprint_error_dev(mly->mly_dv, "dmamem_map = %d\n", rv);
2191 		goto bad;
2192 	}
2193 
2194 	state++;
2195 
2196 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
2197 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
2198 		aprint_error_dev(mly->mly_dv, "dmamap_create = %d\n", rv);
2199 		goto bad;
2200 	}
2201 
2202 	state++;
2203 
2204 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
2205 	    NULL, BUS_DMA_NOWAIT)) != 0) {
2206 		aprint_error_dev(mly->mly_dv, "dmamap_load = %d\n", rv);
2207 		goto bad;
2208 	}
2209 
2210 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
2211 	memset(*kva, 0, size);
2212 	return (0);
2213 
2214  bad:
2215 	if (state > 2)
2216 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
2217 	if (state > 1)
2218 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
2219 	if (state > 0)
2220 		bus_dmamem_free(mly->mly_dmat, seg, 1);
2221 
2222 	return (rv);
2223 }
2224 
2225 /*
2226  * Free DMA safe memory.
2227  */
2228 static void
2229 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
2230 		void *kva, bus_dma_segment_t *seg)
2231 {
2232 
2233 	bus_dmamap_unload(mly->mly_dmat, dmamap);
2234 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
2235 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
2236 	bus_dmamem_free(mly->mly_dmat, seg, 1);
2237 }
2238 
2239 
2240 /*
2241  * Accept an open operation on the control device.
2242  */
2243 int
2244 mlyopen(dev_t dev, int flag, int mode, struct lwp *l)
2245 {
2246 	struct mly_softc *mly;
2247 
2248 	if ((mly = device_lookup_private(&mly_cd, minor(dev))) == NULL)
2249 		return (ENXIO);
2250 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
2251 		return (ENXIO);
2252 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
2253 		return (EBUSY);
2254 
2255 	mly->mly_state |= MLY_STATE_OPEN;
2256 	return (0);
2257 }
2258 
2259 /*
2260  * Accept the last close on the control device.
2261  */
2262 int
2263 mlyclose(dev_t dev, int flag, int mode,
2264     struct lwp *l)
2265 {
2266 	struct mly_softc *mly;
2267 
2268 	mly = device_lookup_private(&mly_cd, minor(dev));
2269 	mly->mly_state &= ~MLY_STATE_OPEN;
2270 	return (0);
2271 }
2272 
2273 /*
2274  * Handle control operations.
2275  */
2276 int
2277 mlyioctl(dev_t dev, u_long cmd, void *data, int flag,
2278     struct lwp *l)
2279 {
2280 	struct mly_softc *mly;
2281 	int rv;
2282 
2283 	mly = device_lookup_private(&mly_cd, minor(dev));
2284 
2285 	switch (cmd) {
2286 	case MLYIO_COMMAND:
2287 		rv = kauth_authorize_device_passthru(l->l_cred, dev,
2288 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
2289 		if (rv)
2290 			break;
2291 
2292 		rv = mly_user_command(mly, (void *)data);
2293 		break;
2294 	case MLYIO_HEALTH:
2295 		rv = mly_user_health(mly, (void *)data);
2296 		break;
2297 	default:
2298 		rv = ENOTTY;
2299 		break;
2300 	}
2301 
2302 	return (rv);
2303 }
2304 
2305 /*
2306  * Execute a command passed in from userspace.
2307  *
2308  * The control structure contains the actual command for the controller, as
2309  * well as the user-space data pointer and data size, and an optional sense
2310  * buffer size/pointer.  On completion, the data size is adjusted to the
2311  * command residual, and the sense buffer size to the size of the returned
2312  * sense data.
2313  */
2314 static int
2315 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
2316 {
2317 	struct mly_ccb	*mc;
2318 	int rv, mapped;
2319 
2320 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
2321 		return (rv);
2322 
2323 	mapped = 0;
2324 	mc->mc_data = NULL;
2325 
2326 	/*
2327 	 * Handle data size/direction.
2328 	 */
2329 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
2330 		if (mc->mc_length > MAXPHYS) {
2331 			rv = EINVAL;
2332 			goto out;
2333 		}
2334 
2335 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
2336 		if (mc->mc_data == NULL) {
2337 			rv = ENOMEM;
2338 			goto out;
2339 		}
2340 
2341 		if (uc->DataTransferLength > 0) {
2342 			mc->mc_flags |= MLY_CCB_DATAIN;
2343 			memset(mc->mc_data, 0, mc->mc_length);
2344 		}
2345 
2346 		if (uc->DataTransferLength < 0) {
2347 			mc->mc_flags |= MLY_CCB_DATAOUT;
2348 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
2349 			    mc->mc_length);
2350 			if (rv != 0)
2351 				goto out;
2352 		}
2353 
2354 		if ((rv = mly_ccb_map(mly, mc)) != 0)
2355 			goto out;
2356 		mapped = 1;
2357 	}
2358 
2359 	/* Copy in the command and execute it. */
2360 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
2361 
2362 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
2363 		goto out;
2364 
2365 	/* Return the data to userspace. */
2366 	if (uc->DataTransferLength > 0) {
2367 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
2368 		    mc->mc_length);
2369 		if (rv != 0)
2370 			goto out;
2371 	}
2372 
2373 	/* Return the sense buffer to userspace. */
2374 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
2375 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2376 		    min(uc->RequestSenseLength, mc->mc_sense));
2377 		if (rv != 0)
2378 			goto out;
2379 	}
2380 
2381 	/* Return command results to userspace (caller will copy out). */
2382 	uc->DataTransferLength = mc->mc_resid;
2383 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2384 	uc->CommandStatus = mc->mc_status;
2385 	rv = 0;
2386 
2387  out:
2388  	if (mapped)
2389  		mly_ccb_unmap(mly, mc);
2390 	if (mc->mc_data != NULL)
2391 		free(mc->mc_data, M_DEVBUF);
2392 	mly_ccb_free(mly, mc);
2393 
2394 	return (rv);
2395 }
2396 
2397 /*
2398  * Return health status to userspace.  If the health change index in the
2399  * user structure does not match that currently exported by the controller,
2400  * we return the current status immediately.  Otherwise, we block until
2401  * either interrupted or new status is delivered.
2402  */
2403 static int
2404 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
2405 {
2406 	struct mly_health_status mh;
2407 	int rv, s;
2408 
2409 	/* Fetch the current health status from userspace. */
2410 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
2411 	if (rv != 0)
2412 		return (rv);
2413 
2414 	/* spin waiting for a status update */
2415 	s = splbio();
2416 	if (mly->mly_event_change == mh.change_counter)
2417 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
2418 		    "mlyhealth", 0);
2419 	splx(s);
2420 
2421 	if (rv == 0) {
2422 		/*
2423 		 * Copy the controller's health status buffer out (there is
2424 		 * a race here if it changes again).
2425 		 */
2426 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
2427 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
2428 	}
2429 
2430 	return (rv);
2431 }
2432