xref: /netbsd-src/sys/dev/pci/mly.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: mly.c,v 1.7 2001/08/03 14:10:16 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 2000, 2001 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
66  */
67 
68 /*
69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
70  *
71  * TODO:
72  *
73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
74  * o Handle FC and multiple LUNs.
75  * o Fix mmbox usage.
76  * o Fix transfer speed fudge.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/kernel.h>
83 #include <sys/queue.h>
84 #include <sys/buf.h>
85 #include <sys/endian.h>
86 #include <sys/conf.h>
87 #include <sys/malloc.h>
88 #include <sys/ioctl.h>
89 #include <sys/scsiio.h>
90 #include <sys/kthread.h>
91 
92 #include <uvm/uvm_extern.h>
93 
94 #include <machine/bus.h>
95 
96 #include <dev/scsipi/scsi_all.h>
97 #include <dev/scsipi/scsipi_all.h>
98 #include <dev/scsipi/scsiconf.h>
99 
100 #include <dev/pci/pcireg.h>
101 #include <dev/pci/pcivar.h>
102 #include <dev/pci/pcidevs.h>
103 
104 #include <dev/pci/mlyreg.h>
105 #include <dev/pci/mlyio.h>
106 #include <dev/pci/mlyvar.h>
107 #include <dev/pci/mly_tables.h>
108 
109 static void	mly_attach(struct device *, struct device *, void *);
110 static int	mly_match(struct device *, struct cfdata *, void *);
111 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
112 static int	mly_fwhandshake(struct mly_softc *);
113 static int	mly_flush(struct mly_softc *);
114 static int	mly_intr(void *);
115 static void	mly_shutdown(void *);
116 
117 static int	mly_alloc_ccbs(struct mly_softc *);
118 static void	mly_check_event(struct mly_softc *);
119 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
120 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
121 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
122 				 caddr_t *, bus_addr_t *, bus_dma_segment_t *);
123 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
124 				caddr_t, bus_dma_segment_t *);
125 static int	mly_enable_mmbox(struct mly_softc *);
126 static void	mly_fetch_event(struct mly_softc *);
127 static int	mly_get_controllerinfo(struct mly_softc *);
128 static int	mly_get_eventstatus(struct mly_softc *);
129 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
130 			  void **, size_t, void *, size_t *);
131 static void	mly_padstr(char *, const char *, int);
132 static void	mly_process_event(struct mly_softc *, struct mly_event *);
133 static void	mly_release_ccbs(struct mly_softc *);
134 static int	mly_scan_btl(struct mly_softc *, int, int);
135 static void	mly_scan_channel(struct mly_softc *, int);
136 static void	mly_thread(void *);
137 static void	mly_thread_create(void *);
138 
139 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
140 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
141 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
142 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
143 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
144 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
145 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
146 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
147 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
148 
149 static void	mly_get_xfer_mode(struct mly_softc *, int,
150 				  struct scsipi_xfer_mode *);
151 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
152 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, caddr_t,
153 				 int, struct proc *);
154 static void	mly_scsipi_minphys(struct buf *);
155 static void	mly_scsipi_request(struct scsipi_channel *,
156 				   scsipi_adapter_req_t, void *);
157 
158 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
159 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
160 
161 cdev_decl(mly);
162 
163 extern struct	cfdriver mly_cd;
164 
165 struct cfattach mly_ca = {
166 	sizeof(struct mly_softc), mly_match, mly_attach
167 };
168 
169 struct mly_ident {
170 	u_short	vendor;
171 	u_short	product;
172 	u_short	subvendor;
173 	u_short	subproduct;
174 	int	hwif;
175 	const char	*desc;
176 } static const mly_ident[] = {
177 	{
178 		PCI_VENDOR_MYLEX,
179 		PCI_PRODUCT_MYLEX_EXTREMERAID,
180 		PCI_VENDOR_MYLEX,
181 		0x0040,
182 		MLY_HWIF_STRONGARM,
183 		"eXtremeRAID 2000"
184 	},
185 	{
186 		PCI_VENDOR_MYLEX,
187 		PCI_PRODUCT_MYLEX_EXTREMERAID,
188 		PCI_VENDOR_MYLEX,
189 		0x0030,
190 		MLY_HWIF_STRONGARM,
191 		"eXtremeRAID 3000"
192 	},
193 	{
194 		PCI_VENDOR_MYLEX,
195 		PCI_PRODUCT_MYLEX_ACCELERAID,
196 		PCI_VENDOR_MYLEX,
197 		0x0050,
198 		MLY_HWIF_I960RX,
199 		"AcceleRAID 352"
200 	},
201 	{
202 		PCI_VENDOR_MYLEX,
203 		PCI_PRODUCT_MYLEX_ACCELERAID,
204 		PCI_VENDOR_MYLEX,
205 		0x0052,
206 		MLY_HWIF_I960RX,
207 		"AcceleRAID 170"
208 	},
209 	{
210 		PCI_VENDOR_MYLEX,
211 		PCI_PRODUCT_MYLEX_ACCELERAID,
212 		PCI_VENDOR_MYLEX,
213 		0x0054,
214 		MLY_HWIF_I960RX,
215 		"AcceleRAID 160"
216 	},
217 };
218 
219 static void	*mly_sdh;
220 
221 /*
222  * Try to find a `mly_ident' entry corresponding to this board.
223  */
224 static const struct mly_ident *
225 mly_find_ident(struct pci_attach_args *pa)
226 {
227 	const struct mly_ident *mpi, *maxmpi;
228 	pcireg_t reg;
229 
230 	mpi = mly_ident;
231 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
232 
233 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
234 		return (NULL);
235 
236 	for (; mpi < maxmpi; mpi++) {
237 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
238 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
239 			continue;
240 
241 		if (mpi->subvendor == 0x0000)
242 			return (mpi);
243 
244 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
245 
246 		if (PCI_VENDOR(reg) == mpi->subvendor &&
247 		    PCI_PRODUCT(reg) == mpi->subproduct)
248 			return (mpi);
249 	}
250 
251 	return (NULL);
252 }
253 
254 /*
255  * Match a supported board.
256  */
257 static int
258 mly_match(struct device *parent, struct cfdata *cfdata, void *aux)
259 {
260 
261 	return (mly_find_ident(aux) != NULL);
262 }
263 
264 /*
265  * Attach a supported board.
266  */
267 static void
268 mly_attach(struct device *parent, struct device *self, void *aux)
269 {
270 	struct pci_attach_args *pa;
271 	struct mly_softc *mly;
272 	struct mly_ioctl_getcontrollerinfo *mi;
273 	const struct mly_ident *ident;
274 	pci_chipset_tag_t pc;
275 	pci_intr_handle_t ih;
276 	bus_space_handle_t memh, ioh;
277 	bus_space_tag_t memt, iot;
278 	pcireg_t reg;
279 	const char *intrstr;
280 	int ior, memr, i, rv, state;
281 	struct scsipi_adapter *adapt;
282 	struct scsipi_channel *chan;
283 
284 	mly = (struct mly_softc *)self;
285 	pa = aux;
286 	pc = pa->pa_pc;
287 	ident = mly_find_ident(pa);
288 	state = 0;
289 
290 	mly->mly_dmat = pa->pa_dmat;
291 	mly->mly_hwif = ident->hwif;
292 
293 	printf(": Mylex %s\n", ident->desc);
294 
295 	/*
296 	 * Map the PCI register window.
297 	 */
298 	memr = -1;
299 	ior = -1;
300 
301 	for (i = 0x10; i <= 0x14; i += 4) {
302 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
303 
304 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
305 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
306 				ior = i;
307 		} else {
308 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
309 				memr = i;
310 		}
311 	}
312 
313 	if (memr != -1)
314 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
315 		    &memt, &memh, NULL, NULL))
316 			memr = -1;
317 	if (ior != -1)
318 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
319 		    &iot, &ioh, NULL, NULL))
320 		    	ior = -1;
321 
322 	if (memr != -1) {
323 		mly->mly_iot = memt;
324 		mly->mly_ioh = memh;
325 	} else if (ior != -1) {
326 		mly->mly_iot = iot;
327 		mly->mly_ioh = ioh;
328 	} else {
329 		printf("%s: can't map i/o or memory space\n", self->dv_xname);
330 		return;
331 	}
332 
333 	/*
334 	 * Enable the device.
335 	 */
336 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
337 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
338 	    reg | PCI_COMMAND_MASTER_ENABLE);
339 
340 	/*
341 	 * Map and establish the interrupt.
342 	 */
343 	if (pci_intr_map(pa, &ih)) {
344 		printf("%s: can't map interrupt\n", self->dv_xname);
345 		return;
346 	}
347 	intrstr = pci_intr_string(pc, ih);
348 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
349 	if (mly->mly_ih == NULL) {
350 		printf("%s: can't establish interrupt", self->dv_xname);
351 		if (intrstr != NULL)
352 			printf(" at %s", intrstr);
353 		printf("\n");
354 		return;
355 	}
356 
357 	if (intrstr != NULL)
358 		printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
359 		    intrstr);
360 
361 	/*
362 	 * Take care of interface-specific tasks.
363 	 */
364 	switch (mly->mly_hwif) {
365 	case MLY_HWIF_I960RX:
366 		mly->mly_doorbell_true = 0x00;
367 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
368 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
369 		mly->mly_idbr = MLY_I960RX_IDBR;
370 		mly->mly_odbr = MLY_I960RX_ODBR;
371 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
372 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
373 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
374 		break;
375 
376 	case MLY_HWIF_STRONGARM:
377 		mly->mly_doorbell_true = 0xff;
378 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
379 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
380 		mly->mly_idbr = MLY_STRONGARM_IDBR;
381 		mly->mly_odbr = MLY_STRONGARM_ODBR;
382 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
383 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
384 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
385 		break;
386 	}
387 
388 	/*
389 	 * Allocate and map the scatter/gather lists.
390 	 */
391 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
392 	    &mly->mly_sg_dmamap, (caddr_t *)&mly->mly_sg,
393 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
394 	if (rv) {
395 		printf("%s: unable to allocate S/G maps\n",
396 		    mly->mly_dv.dv_xname);
397 		goto bad;
398 	}
399 	state++;
400 
401 	/*
402 	 * Allocate and map the memory mailbox.
403 	 */
404 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
405 	    &mly->mly_mmbox_dmamap, (caddr_t *)&mly->mly_mmbox,
406 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
407 	if (rv) {
408 		printf("%s: unable to allocate mailboxes\n",
409 		    mly->mly_dv.dv_xname);
410 		goto bad;
411 	}
412 	state++;
413 
414 	/*
415 	 * Initialise per-controller queues.
416 	 */
417 	SLIST_INIT(&mly->mly_ccb_free);
418 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
419 
420 	/*
421 	 * Disable interrupts before we start talking to the controller.
422 	 */
423 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
424 
425 	/*
426 	 * Wait for the controller to come ready, handshaking with the
427 	 * firmware if required.  This is typically only necessary on
428 	 * platforms where the controller BIOS does not run.
429 	 */
430 	if (mly_fwhandshake(mly)) {
431 		printf("%s: unable to bring controller online\n",
432 		    mly->mly_dv.dv_xname);
433 		goto bad;
434 	}
435 
436 	/*
437 	 * Allocate initial command buffers, obtain controller feature
438 	 * information, and then reallocate command buffers, since we'll
439 	 * know how many we want.
440 	 */
441 	if (mly_alloc_ccbs(mly)) {
442 		printf("%s: unable to allocate CCBs\n",
443 		    mly->mly_dv.dv_xname);
444 		goto bad;
445 	}
446 	state++;
447 	if (mly_get_controllerinfo(mly)) {
448 		printf("%s: unable to retrieve controller info\n",
449 		    mly->mly_dv.dv_xname);
450 		goto bad;
451 	}
452 	mly_release_ccbs(mly);
453 	if (mly_alloc_ccbs(mly)) {
454 		printf("%s: unable to allocate CCBs\n",
455 		    mly->mly_dv.dv_xname);
456 		state--;
457 		goto bad;
458 	}
459 
460 	/*
461 	 * Get the current event counter for health purposes, populate the
462 	 * initial health status buffer.
463 	 */
464 	if (mly_get_eventstatus(mly)) {
465 		printf("%s: unable to retrieve event status\n",
466 		    mly->mly_dv.dv_xname);
467 		goto bad;
468 	}
469 
470 	/*
471 	 * Enable memory-mailbox mode.
472 	 */
473 	if (mly_enable_mmbox(mly)) {
474 		printf("%s: unable to enable memory mailbox\n",
475 		    mly->mly_dv.dv_xname);
476 		goto bad;
477 	}
478 
479 	/*
480 	 * Print a little information about the controller.
481 	 */
482 	mi = mly->mly_controllerinfo;
483 
484 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
485 	    "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
486 	    mi->physical_channels_present,
487 	    (mi->physical_channels_present) > 1 ? "s" : "",
488 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
489 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
490 	    le16toh(mi->memory_size));
491 
492 	/*
493 	 * Register our `shutdownhook'.
494 	 */
495 	if (mly_sdh == NULL)
496 		shutdownhook_establish(mly_shutdown, NULL);
497 
498 	/*
499 	 * Clear any previous BTL information.  For each bus that scsipi
500 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
501 	 * all BTL info at that point.
502 	 */
503 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
504 
505 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
506 	    mly->mly_controllerinfo->virtual_channels_present;
507 
508 	/*
509 	 * Attach to scsipi.
510 	 */
511 	adapt = &mly->mly_adapt;
512 	memset(adapt, 0, sizeof(*adapt));
513 	adapt->adapt_dev = &mly->mly_dv;
514 	adapt->adapt_nchannels = mly->mly_nchans;
515 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
516 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
517 	adapt->adapt_request = mly_scsipi_request;
518 	adapt->adapt_minphys = mly_scsipi_minphys;
519 	adapt->adapt_ioctl = mly_scsipi_ioctl;
520 
521 	for (i = 0; i < mly->mly_nchans; i++) {
522 		chan = &mly->mly_chans[i];
523 		memset(chan, 0, sizeof(*chan));
524 		chan->chan_adapter = adapt;
525 		chan->chan_bustype = &scsi_bustype;
526 		chan->chan_channel = i;
527 		chan->chan_ntargets = MLY_MAX_TARGETS;
528 		chan->chan_nluns = MLY_MAX_LUNS;
529 		chan->chan_id = mly->mly_controllerparam->initiator_id;
530 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
531 		config_found(&mly->mly_dv, chan, scsiprint);
532 	}
533 
534 	/*
535 	 * Now enable interrupts...
536 	 */
537 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
538 
539 	/*
540 	 * Finally, create our monitoring thread.
541 	 */
542 	kthread_create(mly_thread_create, mly);
543 
544 	mly->mly_state |= MLY_STATE_INITOK;
545 	return;
546 
547  bad:
548 	if (state > 2)
549 		mly_release_ccbs(mly);
550 	if (state > 1)
551 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
552 		    mly->mly_mmbox_dmamap, (caddr_t)mly->mly_mmbox,
553 		    &mly->mly_mmbox_seg);
554 	if (state > 0)
555 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
556 		    mly->mly_sg_dmamap, (caddr_t)mly->mly_sg,
557 		    &mly->mly_sg_seg);
558 }
559 
560 /*
561  * Scan all possible devices on the specified channel.
562  */
563 static void
564 mly_scan_channel(struct mly_softc *mly, int bus)
565 {
566 	int s, target;
567 
568 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
569 		s = splbio();
570 		if (!mly_scan_btl(mly, bus, target)) {
571 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
572 			    0);
573 		}
574 		splx(s);
575 	}
576 }
577 
578 /*
579  * Shut down all configured `mly' devices.
580  */
581 static void
582 mly_shutdown(void *cookie)
583 {
584 	struct mly_softc *mly;
585 	int i;
586 
587 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
588 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
589 			continue;
590 
591 		if (mly_flush(mly))
592 			printf("%s: unable to flush cache\n",
593 			    mly->mly_dv.dv_xname);
594 	}
595 }
596 
597 /*
598  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
599  * softc.
600  */
601 static int
602 mly_get_controllerinfo(struct mly_softc *mly)
603 {
604 	struct mly_cmd_ioctl mci;
605 	int rv;
606 
607 	/*
608 	 * Build the getcontrollerinfo ioctl and send it.
609 	 */
610 	memset(&mci, 0, sizeof(mci));
611 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
612 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
613 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
614 	if (rv != 0)
615 		return (rv);
616 
617 	/*
618 	 * Build the getcontrollerparameter ioctl and send it.
619 	 */
620 	memset(&mci, 0, sizeof(mci));
621 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
622 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
623 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
624 
625 	return (rv);
626 }
627 
628 /*
629  * Rescan a device, possibly as a consequence of getting an event which
630  * suggests that it may have changed.  Must be called with interrupts
631  * blocked.
632  */
633 static int
634 mly_scan_btl(struct mly_softc *mly, int bus, int target)
635 {
636 	struct mly_ccb *mc;
637 	struct mly_cmd_ioctl *mci;
638 	int rv;
639 
640 	if (target == mly->mly_controllerparam->initiator_id) {
641 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
642 		return (EIO);
643 	}
644 
645 	/* Don't re-scan if a scan is already in progress. */
646 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
647 		return (EBUSY);
648 
649 	/* Get a command. */
650 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
651 		return (rv);
652 
653 	/* Set up the data buffer. */
654 	mc->mc_data = malloc(sizeof(union mly_devinfo),
655 	    M_DEVBUF, M_NOWAIT);
656 	memset(mc->mc_data, 0, sizeof(union mly_devinfo));
657 
658 	mc->mc_flags |= MLY_CCB_DATAIN;
659 	mc->mc_complete = mly_complete_rescan;
660 
661 	/*
662 	 * Build the ioctl.
663 	 */
664 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
665 	mci->opcode = MDACMD_IOCTL;
666 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
667 	memset(&mci->param, 0, sizeof(mci->param));
668 
669 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
670 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
671 		mci->data_size = htole32(mc->mc_length);
672 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
673 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
674 		    mci->addr);
675 	} else {
676 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
677 		mci->data_size = htole32(mc->mc_length);
678 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
679 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
680 	}
681 
682 	/*
683 	 * Dispatch the command.
684 	 */
685 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
686 		free(mc->mc_data, M_DEVBUF);
687 		mly_ccb_free(mly, mc);
688 		return(rv);
689 	}
690 
691 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
692 	mly_ccb_enqueue(mly, mc);
693 	return (0);
694 }
695 
696 /*
697  * Handle the completion of a rescan operation.
698  */
699 static void
700 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
701 {
702 	struct mly_ioctl_getlogdevinfovalid *ldi;
703 	struct mly_ioctl_getphysdevinfovalid *pdi;
704 	struct mly_cmd_ioctl *mci;
705 	struct mly_btl btl, *btlp;
706 	struct scsipi_xfer_mode xm;
707 	int bus, target, rescan;
708 	u_int tmp;
709 
710 	mly_ccb_unmap(mly, mc);
711 
712 	/*
713 	 * Recover the bus and target from the command.  We need these even
714 	 * in the case where we don't have a useful response.
715 	 */
716 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
717 	tmp = _3ltol(mci->addr);
718 	rescan = 0;
719 
720 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
721 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
722 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
723 	} else {
724 		bus = MLY_PHYADDR_CHANNEL(tmp);
725 		target = MLY_PHYADDR_TARGET(tmp);
726 	}
727 
728 	btlp = &mly->mly_btl[bus][target];
729 
730 	/* The default result is 'no device'. */
731 	memset(&btl, 0, sizeof(btl));
732 	btl.mb_flags = MLY_BTL_PROTECTED;
733 
734 	/* If the rescan completed OK, we have possibly-new BTL data. */
735 	if (mc->mc_status != 0)
736 		goto out;
737 
738 	if (mc->mc_length == sizeof(*ldi)) {
739 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
740 		tmp = le32toh(ldi->logical_device_number);
741 
742 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
743 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
744 #ifdef MLYDEBUG
745 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
746 			    "returned data for %d:%d instead\n",
747 			   mly->mly_dv.dv_xname, bus, target,
748 			   MLY_LOGDEV_BUS(mly, tmp),
749 			   MLY_LOGDEV_TARGET(mly, tmp));
750 #endif
751 			goto out;
752 		}
753 
754 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
755 		btl.mb_type = ldi->raid_level;
756 		btl.mb_state = ldi->state;
757 	} else if (mc->mc_length == sizeof(*pdi)) {
758 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
759 
760 		if (pdi->channel != bus || pdi->target != target) {
761 #ifdef MLYDEBUG
762 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
763 			    " returned data for %d:%d instead\n",
764 			   mly->mly_dv.dv_xname,
765 			   bus, target, pdi->channel, pdi->target);
766 #endif
767 			goto out;
768 		}
769 
770 		btl.mb_flags = MLY_BTL_PHYSICAL;
771 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
772 		btl.mb_state = pdi->state;
773 		btl.mb_speed = pdi->speed;
774 		btl.mb_width = pdi->width;
775 
776 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
777 			btl.mb_flags |= MLY_BTL_PROTECTED;
778 		if (pdi->command_tags != 0)
779 			btl.mb_flags |= MLY_BTL_TQING;
780 	} else {
781 		printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
782 		goto out;
783 	}
784 
785 	/* Decide whether we need to rescan the device. */
786 	if (btl.mb_flags != btlp->mb_flags ||
787 	    btl.mb_speed != btlp->mb_speed ||
788 	    btl.mb_width != btlp->mb_width)
789 		rescan = 1;
790 
791  out:
792 	*btlp = btl;
793 
794 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
795 		xm.xm_target = target;
796 		mly_get_xfer_mode(mly, bus, &xm);
797 		/* XXX SCSI mid-layer rescan goes here. */
798 	}
799 
800 	/* Wake anybody waiting on the device to be rescanned. */
801 	wakeup(btlp);
802 
803 	free(mc->mc_data, M_DEVBUF);
804 	mly_ccb_free(mly, mc);
805 }
806 
807 /*
808  * Get the current health status and set the 'next event' counter to suit.
809  */
810 static int
811 mly_get_eventstatus(struct mly_softc *mly)
812 {
813 	struct mly_cmd_ioctl mci;
814 	struct mly_health_status *mh;
815 	int rv;
816 
817 	/* Build the gethealthstatus ioctl and send it. */
818 	memset(&mci, 0, sizeof(mci));
819 	mh = NULL;
820 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
821 
822 	rv = mly_ioctl(mly, &mci, (void **)&mh, sizeof(*mh), NULL, NULL);
823 	if (rv)
824 		return (rv);
825 
826 	/* Get the event counter. */
827 	mly->mly_event_change = le32toh(mh->change_counter);
828 	mly->mly_event_waiting = le32toh(mh->next_event);
829 	mly->mly_event_counter = le32toh(mh->next_event);
830 
831 	/* Save the health status into the memory mailbox */
832 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
833 
834 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
835 	    offsetof(struct mly_mmbox, mmm_health),
836 	    sizeof(mly->mly_mmbox->mmm_health),
837 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
838 
839 	free(mh, M_DEVBUF);
840 	return (0);
841 }
842 
843 /*
844  * Enable memory mailbox mode.
845  */
846 static int
847 mly_enable_mmbox(struct mly_softc *mly)
848 {
849 	struct mly_cmd_ioctl mci;
850 	u_int8_t *sp;
851 	u_int64_t tmp;
852 	int rv;
853 
854 	/* Build the ioctl and send it. */
855 	memset(&mci, 0, sizeof(mci));
856 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
857 
858 	/* Set buffer addresses. */
859 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
860 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
861 
862 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
863 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
864 
865 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
866 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
867 
868 	/* Set buffer sizes - abuse of data_size field is revolting. */
869 	sp = (u_int8_t *)&mci.data_size;
870 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
871 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
872 	mci.param.setmemorymailbox.health_buffer_size =
873 	    sizeof(union mly_health_region) >> 10;
874 
875 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
876 	if (rv)
877 		return (rv);
878 
879 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
880 	return (0);
881 }
882 
883 /*
884  * Flush all pending I/O from the controller.
885  */
886 static int
887 mly_flush(struct mly_softc *mly)
888 {
889 	struct mly_cmd_ioctl mci;
890 
891 	/* Build the ioctl */
892 	memset(&mci, 0, sizeof(mci));
893 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
894 	mci.param.deviceoperation.operation_device =
895 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
896 
897 	/* Pass it off to the controller */
898 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
899 }
900 
901 /*
902  * Perform an ioctl command.
903  *
904  * If (data) is not NULL, the command requires data transfer to the
905  * controller.  If (*data) is NULL the command requires data transfer from
906  * the controller, and we will allocate a buffer for it.
907  */
908 static int
909 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
910 	  size_t datasize, void *sense_buffer,
911 	  size_t *sense_length)
912 {
913 	struct mly_ccb *mc;
914 	struct mly_cmd_ioctl *mci;
915 	u_int8_t status;
916 	int rv;
917 
918 	mc = NULL;
919 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
920 		goto bad;
921 
922 	/*
923 	 * Copy the ioctl structure, but save some important fields and then
924 	 * fixup.
925 	 */
926 	mci = &mc->mc_packet->ioctl;
927 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
928 	ioctl->maximum_sense_size = mci->maximum_sense_size;
929 	*mci = *ioctl;
930 	mci->opcode = MDACMD_IOCTL;
931 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
932 
933 	/* Handle the data buffer. */
934 	if (data != NULL) {
935 		if (*data == NULL) {
936 			/* Allocate data buffer */
937 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
938 			mc->mc_flags |= MLY_CCB_DATAIN;
939 		} else {
940 			mc->mc_data = *data;
941 			mc->mc_flags |= MLY_CCB_DATAOUT;
942 		}
943 		mc->mc_length = datasize;
944 		mc->mc_packet->generic.data_size = htole32(datasize);
945 	}
946 
947 	/* Run the command. */
948 	if (datasize > 0)
949 		if ((rv = mly_ccb_map(mly, mc)) != 0)
950 			goto bad;
951 	rv = mly_ccb_poll(mly, mc, 30000);
952 	if (datasize > 0)
953 		mly_ccb_unmap(mly, mc);
954 	if (rv != 0)
955 		goto bad;
956 
957 	/* Clean up and return any data. */
958 	status = mc->mc_status;
959 
960 	if (status != 0)
961 		printf("mly_ioctl: command status %d\n", status);
962 
963 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
964 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
965 		*sense_length = mc->mc_sense;
966 		goto bad;
967 	}
968 
969 	/* Should we return a data pointer? */
970 	if (data != NULL && *data == NULL)
971 		*data = mc->mc_data;
972 
973 	/* Command completed OK. */
974 	rv = (status != 0 ? EIO : 0);
975 
976  bad:
977 	if (mc != NULL) {
978 		/* Do we need to free a data buffer we allocated? */
979 		if (rv != 0 && mc->mc_data != NULL && *data == NULL)
980 			free(mc->mc_data, M_DEVBUF);
981 		mly_ccb_free(mly, mc);
982 	}
983 
984 	return (rv);
985 }
986 
987 /*
988  * Check for event(s) outstanding in the controller.
989  */
990 static void
991 mly_check_event(struct mly_softc *mly)
992 {
993 
994 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
995 	    offsetof(struct mly_mmbox, mmm_health),
996 	    sizeof(mly->mly_mmbox->mmm_health),
997 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
998 
999 	/*
1000 	 * The controller may have updated the health status information, so
1001 	 * check for it here.  Note that the counters are all in host
1002 	 * memory, so this check is very cheap.  Also note that we depend on
1003 	 * checking on completion
1004 	 */
1005 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
1006 	    mly->mly_event_change) {
1007 		mly->mly_event_change =
1008 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
1009 		mly->mly_event_waiting =
1010 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
1011 
1012 		/* Wake up anyone that might be interested in this. */
1013 		wakeup(&mly->mly_event_change);
1014 	}
1015 
1016 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1017 	    offsetof(struct mly_mmbox, mmm_health),
1018 	    sizeof(mly->mly_mmbox->mmm_health),
1019 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1020 
1021 	if (mly->mly_event_counter != mly->mly_event_waiting)
1022 		mly_fetch_event(mly);
1023 }
1024 
1025 /*
1026  * Fetch one event from the controller.  If we fail due to resource
1027  * starvation, we'll be retried the next time a command completes.
1028  */
1029 static void
1030 mly_fetch_event(struct mly_softc *mly)
1031 {
1032 	struct mly_ccb *mc;
1033 	struct mly_cmd_ioctl *mci;
1034 	int s;
1035 	u_int32_t event;
1036 
1037 	/* Get a command. */
1038 	if (mly_ccb_alloc(mly, &mc))
1039 		return;
1040 
1041 	/* Set up the data buffer. */
1042 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT);
1043 	memset(mc->mc_data, 0, sizeof(struct mly_event));
1044 
1045 	mc->mc_length = sizeof(struct mly_event);
1046 	mc->mc_flags |= MLY_CCB_DATAIN;
1047 	mc->mc_complete = mly_complete_event;
1048 
1049 	/*
1050 	 * Get an event number to fetch.  It's possible that we've raced
1051 	 * with another context for the last event, in which case there will
1052 	 * be no more events.
1053 	 */
1054 	s = splbio();
1055 	if (mly->mly_event_counter == mly->mly_event_waiting) {
1056 		splx(s);
1057 		free(mc->mc_data, M_DEVBUF);
1058 		mly_ccb_free(mly, mc);
1059 		return;
1060 	}
1061 	event = mly->mly_event_counter++;
1062 	splx(s);
1063 
1064 	/*
1065 	 * Build the ioctl.
1066 	 *
1067 	 * At this point we are committed to sending this request, as it
1068 	 * will be the only one constructed for this particular event
1069 	 * number.
1070 	 */
1071 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
1072 	mci->opcode = MDACMD_IOCTL;
1073 	mci->data_size = htole32(sizeof(struct mly_event));
1074 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
1075 	    mci->addr);
1076 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
1077 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
1078 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
1079 
1080 	/*
1081 	 * Submit the command.
1082 	 */
1083 	if (mly_ccb_map(mly, mc) != 0)
1084 		goto bad;
1085 	mly_ccb_enqueue(mly, mc);
1086 	return;
1087 
1088  bad:
1089 	printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
1090 	free(mc->mc_data, M_DEVBUF);
1091 	mly_ccb_free(mly, mc);
1092 }
1093 
1094 /*
1095  * Handle the completion of an event poll.
1096  */
1097 static void
1098 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
1099 {
1100 	struct mly_event *me;
1101 
1102 	me = (struct mly_event *)mc->mc_data;
1103 	mly_ccb_unmap(mly, mc);
1104 	mly_ccb_free(mly, mc);
1105 
1106 	/* If the event was successfully fetched, process it. */
1107 	if (mc->mc_status == SCSI_OK)
1108 		mly_process_event(mly, me);
1109 	else
1110 		printf("%s: unable to fetch event; status = 0x%x\n",
1111 		    mly->mly_dv.dv_xname, mc->mc_status);
1112 
1113 	free(me, M_DEVBUF);
1114 
1115 	/* Check for another event. */
1116 	mly_check_event(mly);
1117 }
1118 
1119 /*
1120  * Process a controller event.  Called with interupts blocked (i.e., at
1121  * interrupt time).
1122  */
1123 static void
1124 mly_process_event(struct mly_softc *mly, struct mly_event *me)
1125 {
1126 	struct scsipi_sense_data *ssd;
1127 	int bus, target, event, class, action;
1128 	const char *fp, *tp;
1129 
1130 	ssd = (struct scsipi_sense_data *)&me->sense[0];
1131 
1132 	/*
1133 	 * Errors can be reported using vendor-unique sense data.  In this
1134 	 * case, the event code will be 0x1c (Request sense data present),
1135 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
1136 	 * will be set, and the actual event code will be a 16-bit value
1137 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
1138 	 * (low seven bits of the high byte).
1139 	 */
1140 	if (le32toh(me->code) == 0x1c &&
1141 	    (ssd->flags & SSD_KEY) == SKEY_VENDOR_UNIQUE &&
1142 	    (ssd->add_sense_code & 0x80) != 0) {
1143 		event = ((int)(ssd->add_sense_code & ~0x80) << 8) +
1144 		    ssd->add_sense_code_qual;
1145 	} else
1146 		event = le32toh(me->code);
1147 
1148 	/* Look up event, get codes. */
1149 	fp = mly_describe_code(mly_table_event, event);
1150 
1151 	/* Quiet event? */
1152 	class = fp[0];
1153 #ifdef notyet
1154 	if (isupper(class) && bootverbose)
1155 		class = tolower(class);
1156 #endif
1157 
1158 	/* Get action code, text string. */
1159 	action = fp[1];
1160 	tp = fp + 3;
1161 
1162 	/*
1163 	 * Print some information about the event.
1164 	 *
1165 	 * This code uses a table derived from the corresponding portion of
1166 	 * the Linux driver, and thus the parser is very similar.
1167 	 */
1168 	switch (class) {
1169 	case 'p':
1170 		/*
1171 		 * Error on physical drive.
1172 		 */
1173 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1174 		    me->channel, me->target, tp);
1175 		if (action == 'r')
1176 			mly->mly_btl[me->channel][me->target].mb_flags |=
1177 			    MLY_BTL_RESCAN;
1178 		break;
1179 
1180 	case 'l':
1181 	case 'm':
1182 		/*
1183 		 * Error on logical unit, or message about logical unit.
1184 	 	 */
1185 		bus = MLY_LOGDEV_BUS(mly, me->lun);
1186 		target = MLY_LOGDEV_TARGET(mly, me->lun);
1187 		printf("%s: logical device %d:%d %s\n", mly->mly_dv.dv_xname,
1188 		    bus, target, tp);
1189 		if (action == 'r')
1190 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1191 		break;
1192 
1193 	case 's':
1194 		/*
1195 		 * Report of sense data.
1196 		 */
1197 		if (((ssd->flags & SSD_KEY) == SKEY_NO_SENSE ||
1198 		    (ssd->flags & SSD_KEY) == SKEY_NOT_READY) &&
1199 		    ssd->add_sense_code == 0x04 &&
1200 		    (ssd->add_sense_code_qual == 0x01 ||
1201 		    ssd->add_sense_code_qual == 0x02)) {
1202 			/* Ignore NO_SENSE or NOT_READY in one case */
1203 			break;
1204 		}
1205 
1206 		/*
1207 		 * XXX Should translate this if SCSIVERBOSE.
1208 		 */
1209 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1210 		    me->channel, me->target, tp);
1211 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
1212 		    mly->mly_dv.dv_xname, ssd->flags & SSD_KEY,
1213 		    ssd->add_sense_code, ssd->add_sense_code_qual);
1214 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
1215 		    mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
1216 		    ssd->info[2], ssd->info[3], ssd->cmd_spec_info[0],
1217 		    ssd->cmd_spec_info[1], ssd->cmd_spec_info[2],
1218 		    ssd->cmd_spec_info[3]);
1219 		if (action == 'r')
1220 			mly->mly_btl[me->channel][me->target].mb_flags |=
1221 			    MLY_BTL_RESCAN;
1222 		break;
1223 
1224 	case 'e':
1225 		printf("%s: ", mly->mly_dv.dv_xname);
1226 		printf(tp, me->target, me->lun);
1227 		break;
1228 
1229 	case 'c':
1230 		printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
1231 		break;
1232 
1233 	case '?':
1234 		printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
1235 		break;
1236 
1237 	default:
1238 		/* Probably a 'noisy' event being ignored. */
1239 		break;
1240 	}
1241 }
1242 
1243 /*
1244  * Create the monitoring thread.  Called after the standard kernel threads
1245  * have been created.
1246  */
1247 static void
1248 mly_thread_create(void *cookie)
1249 {
1250 	struct mly_softc *mly;
1251 	int rv;
1252 
1253 	mly = cookie;
1254 
1255 	rv = kthread_create1(mly_thread, mly, &mly->mly_thread, "%s",
1256 	    mly->mly_dv.dv_xname);
1257  	if (rv != 0)
1258 		printf("%s: unable to create thread (%d)\n",
1259 		    mly->mly_dv.dv_xname, rv);
1260 }
1261 
1262 /*
1263  * Perform periodic activities.
1264  */
1265 static void
1266 mly_thread(void *cookie)
1267 {
1268 	struct mly_softc *mly;
1269 	struct mly_btl *btl;
1270 	int s, bus, target, done;
1271 
1272 	mly = (struct mly_softc *)cookie;
1273 
1274 	for (;;) {
1275 		/* Check for new events. */
1276 		mly_check_event(mly);
1277 
1278 		/* Re-scan up to 1 device. */
1279 		s = splbio();
1280 		done = 0;
1281 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
1282 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
1283 				/* Perform device rescan? */
1284 				btl = &mly->mly_btl[bus][target];
1285 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
1286 					btl->mb_flags ^= MLY_BTL_RESCAN;
1287 					mly_scan_btl(mly, bus, target);
1288 					done = 1;
1289 					break;
1290 				}
1291 			}
1292 		}
1293 		splx(s);
1294 
1295 		/* Sleep for N seconds. */
1296 		tsleep(mly_thread, PWAIT, "mlyzzz",
1297 		    hz * MLY_PERIODIC_INTERVAL);
1298 	}
1299 }
1300 
1301 /*
1302  * Submit a command to the controller and poll on completion.  Return
1303  * non-zero on timeout.
1304  */
1305 static int
1306 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1307 {
1308 	int rv;
1309 
1310 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
1311 		return (rv);
1312 
1313 	for (timo *= 10; timo != 0; timo--) {
1314 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
1315 			break;
1316 		mly_intr(mly);
1317 		DELAY(100);
1318 	}
1319 
1320 	return (timo == 0);
1321 }
1322 
1323 /*
1324  * Submit a command to the controller and sleep on completion.  Return
1325  * non-zero on timeout.
1326  */
1327 static int
1328 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1329 {
1330 	int rv, s;
1331 
1332 	mly_ccb_enqueue(mly, mc);
1333 
1334 	s = splbio();
1335 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
1336 		splx(s);
1337 		return (0);
1338 	}
1339 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
1340 	splx(s);
1341 
1342 	return (rv);
1343 }
1344 
1345 /*
1346  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1347  * the order that they were enqueued and try to submit their command blocks
1348  * to the controller for execution.
1349  */
1350 void
1351 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
1352 {
1353 	int s;
1354 
1355 	s = splbio();
1356 
1357 	if (mc != NULL)
1358 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1359 
1360 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
1361 		if (mly_ccb_submit(mly, mc))
1362 			break;
1363 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1364 	}
1365 
1366 	splx(s);
1367 }
1368 
1369 /*
1370  * Deliver a command to the controller.
1371  */
1372 static int
1373 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
1374 {
1375 	union mly_cmd_packet *pkt;
1376 	int s, off;
1377 
1378 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
1379 
1380 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1381 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1382 	    sizeof(union mly_cmd_packet),
1383 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1384 
1385 	s = splbio();
1386 
1387 	/*
1388 	 * Do we have to use the hardware mailbox?
1389 	 */
1390 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
1391 		/*
1392 		 * Check to see if the controller is ready for us.
1393 		 */
1394 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
1395 			splx(s);
1396 			return (EBUSY);
1397 		}
1398 
1399 		/*
1400 		 * It's ready, send the command.
1401 		 */
1402 		mly_outl(mly, mly->mly_cmd_mailbox,
1403 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
1404 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
1405 		    (u_int64_t)mc->mc_packetphys >> 32);
1406 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
1407 	} else {
1408 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
1409 		off = (caddr_t)pkt - (caddr_t)mly->mly_mmbox;
1410 
1411 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1412 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1413 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1414 
1415 		/* Check to see if the next index is free yet. */
1416 		if (pkt->mmbox.flag != 0) {
1417 			splx(s);
1418 			return (EBUSY);
1419 		}
1420 
1421 		/* Copy in new command */
1422 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
1423 		    sizeof(pkt->mmbox.data));
1424 
1425 		/* Copy flag last. */
1426 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1427 
1428 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1429 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1430 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1431 
1432 		/* Signal controller and update index. */
1433 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
1434 		mly->mly_mmbox_cmd_idx =
1435 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
1436 	}
1437 
1438 	splx(s);
1439 	return (0);
1440 }
1441 
1442 /*
1443  * Pick up completed commands from the controller and handle accordingly.
1444  */
1445 int
1446 mly_intr(void *cookie)
1447 {
1448 	struct mly_ccb *mc;
1449 	union mly_status_packet	*sp;
1450 	u_int16_t slot;
1451 	int forus, off;
1452 	struct mly_softc *mly;
1453 
1454 	mly = cookie;
1455 	forus = 0;
1456 
1457 	/*
1458 	 * Pick up hardware-mailbox commands.
1459 	 */
1460 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
1461 		slot = mly_inw(mly, mly->mly_status_mailbox);
1462 
1463 		if (slot < MLY_SLOT_MAX) {
1464 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1465 			mc->mc_status =
1466 			    mly_inb(mly, mly->mly_status_mailbox + 2);
1467 			mc->mc_sense =
1468 			    mly_inb(mly, mly->mly_status_mailbox + 3);
1469 			mc->mc_resid =
1470 			    mly_inl(mly, mly->mly_status_mailbox + 4);
1471 
1472 			mly_ccb_complete(mly, mc);
1473 		} else {
1474 			/* Slot 0xffff may mean "extremely bogus command". */
1475 			printf("%s: got HM completion for illegal slot %u\n",
1476 			    mly->mly_dv.dv_xname, slot);
1477 		}
1478 
1479 		/* Unconditionally acknowledge status. */
1480 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
1481 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
1482 		forus = 1;
1483 	}
1484 
1485 	/*
1486 	 * Pick up memory-mailbox commands.
1487 	 */
1488 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
1489 		for (;;) {
1490 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
1491 			off = (caddr_t)sp - (caddr_t)mly->mly_mmbox;
1492 
1493 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1494 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1495 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1496 
1497 			/* Check for more status. */
1498 			if (sp->mmbox.flag == 0)
1499 				break;
1500 
1501 			/* Get slot number. */
1502 			slot = le16toh(sp->status.command_id);
1503 			if (slot < MLY_SLOT_MAX) {
1504 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1505 				mc->mc_status = sp->status.status;
1506 				mc->mc_sense = sp->status.sense_length;
1507 				mc->mc_resid = le32toh(sp->status.residue);
1508 				mly_ccb_complete(mly, mc);
1509 			} else {
1510 				/*
1511 				 * Slot 0xffff may mean "extremely bogus
1512 				 * command".
1513 				 */
1514 				printf("%s: got AM completion for illegal "
1515 				    "slot %u at %d\n", mly->mly_dv.dv_xname,
1516 				    slot, mly->mly_mmbox_sts_idx);
1517 			}
1518 
1519 			/* Clear and move to next index. */
1520 			sp->mmbox.flag = 0;
1521 			mly->mly_mmbox_sts_idx =
1522 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
1523 		}
1524 
1525 		/* Acknowledge that we have collected status value(s). */
1526 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
1527 		forus = 1;
1528 	}
1529 
1530 	/*
1531 	 * Run the queue.
1532 	 */
1533 	if (forus && SIMPLEQ_FIRST(&mly->mly_ccb_queue) != NULL)
1534 		mly_ccb_enqueue(mly, NULL);
1535 
1536 	return (forus);
1537 }
1538 
1539 /*
1540  * Process completed commands
1541  */
1542 static void
1543 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
1544 {
1545 	void (*complete)(struct mly_softc *, struct mly_ccb *);
1546 
1547 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1548 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1549 	    sizeof(union mly_cmd_packet),
1550 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1551 
1552 	complete = mc->mc_complete;
1553 	mc->mc_flags |= MLY_CCB_COMPLETE;
1554 
1555 	/*
1556 	 * Call completion handler or wake up sleeping consumer.
1557 	 */
1558 	if (complete != NULL)
1559 		(*complete)(mly, mc);
1560 	else
1561 		wakeup(mc);
1562 }
1563 
1564 /*
1565  * Allocate a command.
1566  */
1567 int
1568 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
1569 {
1570 	struct mly_ccb *mc;
1571 	int s;
1572 
1573 	s = splbio();
1574 	mc = SLIST_FIRST(&mly->mly_ccb_free);
1575 	if (mc != NULL)
1576 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
1577 	splx(s);
1578 
1579 	*mcp = mc;
1580 	return (mc == NULL ? EAGAIN : 0);
1581 }
1582 
1583 /*
1584  * Release a command back to the freelist.
1585  */
1586 void
1587 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
1588 {
1589 	int s;
1590 
1591 	/*
1592 	 * Fill in parts of the command that may cause confusion if a
1593 	 * consumer doesn't when we are later allocated.
1594 	 */
1595 	mc->mc_data = NULL;
1596 	mc->mc_flags = 0;
1597 	mc->mc_complete = NULL;
1598 	mc->mc_private = NULL;
1599 	mc->mc_packet->generic.command_control = 0;
1600 
1601 	/*
1602 	 * By default, we set up to overwrite the command packet with sense
1603 	 * information.
1604 	 */
1605 	mc->mc_packet->generic.sense_buffer_address =
1606 	    htole64(mc->mc_packetphys);
1607 	mc->mc_packet->generic.maximum_sense_size =
1608 	    sizeof(union mly_cmd_packet);
1609 
1610 	s = splbio();
1611 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
1612 	splx(s);
1613 }
1614 
1615 /*
1616  * Allocate and initialise command and packet structures.
1617  *
1618  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
1619  * allocation to that number.  If we don't yet know how many commands the
1620  * controller supports, allocate a very small set (suitable for initialisation
1621  * purposes only).
1622  */
1623 static int
1624 mly_alloc_ccbs(struct mly_softc *mly)
1625 {
1626 	struct mly_ccb *mc;
1627 	int i, rv;
1628 
1629 	if (mly->mly_controllerinfo == NULL)
1630 		mly->mly_ncmds = MLY_CCBS_RESV;
1631 	else {
1632 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
1633 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
1634 	}
1635 
1636 	/*
1637 	 * Allocate enough space for all the command packets in one chunk
1638 	 * and map them permanently into controller-visible space.
1639 	 */
1640 	rv = mly_dmamem_alloc(mly,
1641 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
1642 	    &mly->mly_pkt_dmamap, (caddr_t *)&mly->mly_pkt,
1643 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
1644 	if (rv)
1645 		return (rv);
1646 
1647 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
1648 	    M_DEVBUF, M_NOWAIT);
1649 	memset(mly->mly_ccbs, 0, sizeof(struct mly_ccb) * mly->mly_ncmds);
1650 
1651 	for (i = 0; i < mly->mly_ncmds; i++) {
1652 		mc = mly->mly_ccbs + i;
1653 		mc->mc_slot = MLY_SLOT_START + i;
1654 		mc->mc_packet = mly->mly_pkt + i;
1655 		mc->mc_packetphys = mly->mly_pkt_busaddr +
1656 		    (i * sizeof(union mly_cmd_packet));
1657 
1658 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
1659 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
1660 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1661 		    &mc->mc_datamap);
1662 		if (rv) {
1663 			mly_release_ccbs(mly);
1664 			return (rv);
1665 		}
1666 
1667 		mly_ccb_free(mly, mc);
1668 	}
1669 
1670 	return (0);
1671 }
1672 
1673 /*
1674  * Free all the storage held by commands.
1675  *
1676  * Must be called with all commands on the free list.
1677  */
1678 static void
1679 mly_release_ccbs(struct mly_softc *mly)
1680 {
1681 	struct mly_ccb *mc;
1682 
1683 	/* Throw away command buffer DMA maps. */
1684 	while (mly_ccb_alloc(mly, &mc) == 0)
1685 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
1686 
1687 	/* Release CCB storage. */
1688 	free(mly->mly_ccbs, M_DEVBUF);
1689 
1690 	/* Release the packet storage. */
1691 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
1692 	    mly->mly_pkt_dmamap, (caddr_t)mly->mly_pkt, &mly->mly_pkt_seg);
1693 }
1694 
1695 /*
1696  * Map a command into controller-visible space.
1697  */
1698 static int
1699 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
1700 {
1701 	struct mly_cmd_generic *gen;
1702 	struct mly_sg_entry *sg;
1703 	bus_dma_segment_t *ds;
1704 	int flg, nseg, rv;
1705 
1706 #ifdef DIAGNOSTIC
1707 	/* Don't map more than once. */
1708 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
1709 		panic("mly_ccb_map: already mapped");
1710 	mc->mc_flags |= MLY_CCB_MAPPED;
1711 
1712 	/* Does the command have a data buffer? */
1713 	if (mc->mc_data == NULL)
1714 		panic("mly_ccb_map: no data buffer");
1715 #endif
1716 
1717 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
1718 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1719 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
1720 	    BUS_DMA_READ : BUS_DMA_WRITE));
1721 	if (rv != 0)
1722 		return (rv);
1723 
1724 	gen = &mc->mc_packet->generic;
1725 
1726 	/*
1727 	 * Can we use the transfer structure directly?
1728 	 */
1729 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
1730 		mc->mc_sgoff = -1;
1731 		sg = &gen->transfer.direct.sg[0];
1732 	} else {
1733 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
1734 		    MLY_MAX_SEGS;
1735 		sg = mly->mly_sg + mc->mc_sgoff;
1736 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
1737 		gen->transfer.indirect.entries[0] = htole16(nseg);
1738 		gen->transfer.indirect.table_physaddr[0] =
1739 		    htole64(mly->mly_sg_busaddr +
1740 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
1741 	}
1742 
1743 	/*
1744 	 * Fill the S/G table.
1745 	 */
1746 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
1747 		sg->physaddr = htole64(ds->ds_addr);
1748 		sg->length = htole64(ds->ds_len);
1749 	}
1750 
1751 	/*
1752 	 * Sync up the data map.
1753 	 */
1754 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1755 		flg = BUS_DMASYNC_PREREAD;
1756 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
1757 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
1758 		flg = BUS_DMASYNC_PREWRITE;
1759 	}
1760 
1761 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1762 
1763 	/*
1764 	 * Sync up the chained S/G table, if we're using one.
1765 	 */
1766 	if (mc->mc_sgoff == -1)
1767 		return (0);
1768 
1769 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1770 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1771 
1772 	return (0);
1773 }
1774 
1775 /*
1776  * Unmap a command from controller-visible space.
1777  */
1778 static void
1779 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
1780 {
1781 	int flg;
1782 
1783 #ifdef DIAGNOSTIC
1784 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
1785 		panic("mly_ccb_unmap: not mapped");
1786 	mc->mc_flags &= ~MLY_CCB_MAPPED;
1787 #endif
1788 
1789 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1790 		flg = BUS_DMASYNC_POSTREAD;
1791 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
1792 		flg = BUS_DMASYNC_POSTWRITE;
1793 
1794 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1795 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
1796 
1797 	if (mc->mc_sgoff == -1)
1798 		return;
1799 
1800 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1801 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
1802 }
1803 
1804 /*
1805  * Adjust the size of each I/O before it passes to the SCSI layer.
1806  */
1807 static void
1808 mly_scsipi_minphys(struct buf *bp)
1809 {
1810 
1811 	if (bp->b_bcount > MLY_MAX_XFER)
1812 		bp->b_bcount = MLY_MAX_XFER;
1813 	minphys(bp);
1814 }
1815 
1816 /*
1817  * Start a SCSI command.
1818  */
1819 static void
1820 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1821 		   void *arg)
1822 {
1823 	struct mly_ccb *mc;
1824 	struct mly_cmd_scsi_small *ss;
1825 	struct scsipi_xfer *xs;
1826 	struct scsipi_periph *periph;
1827 	struct mly_softc *mly;
1828 	struct mly_btl *btl;
1829 	int s, tmp;
1830 
1831 	mly = (void *)chan->chan_adapter->adapt_dev;
1832 
1833 	switch (req) {
1834 	case ADAPTER_REQ_RUN_XFER:
1835 		xs = arg;
1836 		periph = xs->xs_periph;
1837 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
1838 		s = splbio();
1839 		tmp = btl->mb_flags;
1840 		splx(s);
1841 
1842 		/*
1843 		 * Check for I/O attempt to a protected or non-existant
1844 		 * device.
1845 		 */
1846 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
1847 			xs->error = XS_SELTIMEOUT;
1848 			scsipi_done(xs);
1849 			break;
1850 		}
1851 
1852 #ifdef DIAGNOSTIC
1853 		/* XXX Increase if/when we support large SCSI commands. */
1854 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
1855 			printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
1856 			xs->error = XS_DRIVER_STUFFUP;
1857 			scsipi_done(xs);
1858 			break;
1859 		}
1860 #endif
1861 
1862 		if (mly_ccb_alloc(mly, &mc)) {
1863 			xs->error = XS_RESOURCE_SHORTAGE;
1864 			scsipi_done(xs);
1865 			break;
1866 		}
1867 
1868 		/* Build the command. */
1869 		mc->mc_data = xs->data;
1870 		mc->mc_length = xs->datalen;
1871 		mc->mc_complete = mly_scsipi_complete;
1872 		mc->mc_private = xs;
1873 
1874 		/* Build the packet for the controller. */
1875 		ss = &mc->mc_packet->scsi_small;
1876 		ss->opcode = MDACMD_SCSI;
1877 #ifdef notdef
1878 		/*
1879 		 * XXX FreeBSD does this, but it doesn't fix anything,
1880 		 * XXX and appears potentially harmful.
1881 		 */
1882 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
1883 #endif
1884 
1885 		ss->data_size = htole32(xs->datalen);
1886 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
1887 		    periph->periph_target, periph->periph_lun), ss->addr);
1888 
1889 		if (xs->timeout < 60 * 1000)
1890 			ss->timeout = xs->timeout / 1000 |
1891 			    MLY_TIMEOUT_SECONDS;
1892 		else if (xs->timeout < 60 * 60 * 1000)
1893 			ss->timeout = xs->timeout / (60 * 1000) |
1894 			    MLY_TIMEOUT_MINUTES;
1895 		else
1896 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
1897 			    MLY_TIMEOUT_HOURS;
1898 
1899 		ss->maximum_sense_size = sizeof(xs->sense);
1900 		ss->cdb_length = xs->cmdlen;
1901 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
1902 
1903 		if (mc->mc_length != 0) {
1904 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
1905 				mc->mc_flags |= MLY_CCB_DATAOUT;
1906 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
1907 				mc->mc_flags |= MLY_CCB_DATAIN;
1908 
1909 			if (mly_ccb_map(mly, mc) != 0) {
1910 				xs->error = XS_DRIVER_STUFFUP;
1911 				mly_ccb_free(mly, mc);
1912 				scsipi_done(xs);
1913 				break;
1914 			}
1915 		}
1916 
1917 		/*
1918 		 * Give the command to the controller.
1919 		 */
1920 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
1921 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
1922 				xs->error = XS_REQUEUE;
1923 				if (mc->mc_length != 0)
1924 					mly_ccb_unmap(mly, mc);
1925 				mly_ccb_free(mly, mc);
1926 				scsipi_done(xs);
1927 			}
1928 		} else
1929 			mly_ccb_enqueue(mly, mc);
1930 
1931 		break;
1932 
1933 	case ADAPTER_REQ_GROW_RESOURCES:
1934 		/*
1935 		 * Not supported.
1936 		 */
1937 		break;
1938 
1939 	case ADAPTER_REQ_SET_XFER_MODE:
1940 		/*
1941 		 * We can't change the transfer mode, but at least let
1942 		 * scsipi know what the adapter has negotiated.
1943 		 */
1944 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
1945 		break;
1946 	}
1947 }
1948 
1949 /*
1950  * Handle completion of a SCSI command.
1951  */
1952 static void
1953 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
1954 {
1955 	struct scsipi_xfer *xs;
1956 	struct scsipi_channel *chan;
1957 	struct scsipi_inquiry_data *inq;
1958 	struct mly_btl *btl;
1959 	int target, sl, s;
1960 	const char *p;
1961 
1962 	xs = mc->mc_private;
1963 	xs->status = mc->mc_status;
1964 
1965 	/*
1966 	 * XXX The `resid' value as returned by the controller appears to be
1967 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
1968 	 * count?
1969 	 */
1970 	xs->resid = 0; /* mc->mc_resid; */
1971 
1972 	if (mc->mc_length != 0)
1973 		mly_ccb_unmap(mly, mc);
1974 
1975 	switch (mc->mc_status) {
1976 	case SCSI_OK:
1977 		/*
1978 		 * In order to report logical device type and status, we
1979 		 * overwrite the result of the INQUIRY command to logical
1980 		 * devices.
1981 		 */
1982 		if (xs->cmd->opcode == INQUIRY) {
1983 			chan = xs->xs_periph->periph_channel;
1984 			target = xs->xs_periph->periph_target;
1985 			btl = &mly->mly_btl[chan->chan_channel][target];
1986 
1987 			s = splbio();
1988 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
1989 				inq = (struct scsipi_inquiry_data *)xs->data;
1990 				mly_padstr(inq->vendor, "MYLEX", 8);
1991 				p = mly_describe_code(mly_table_device_type,
1992 				    btl->mb_type);
1993 				mly_padstr(inq->product, p, 16);
1994 				p = mly_describe_code(mly_table_device_state,
1995 				    btl->mb_state);
1996 				mly_padstr(inq->revision, p, 4);
1997 			}
1998 			splx(s);
1999 		}
2000 
2001 		xs->error = XS_NOERROR;
2002 		break;
2003 
2004 	case SCSI_CHECK:
2005 		sl = mc->mc_sense;
2006 		if (sl > sizeof(xs->sense.scsi_sense))
2007 			sl = sizeof(xs->sense.scsi_sense);
2008 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
2009 		xs->error = XS_SENSE;
2010 		break;
2011 
2012 	case SCSI_BUSY:
2013 	case SCSI_QUEUE_FULL:
2014 		xs->error = XS_BUSY;
2015 		break;
2016 
2017 	default:
2018 		printf("%s: unknown SCSI status 0x%x\n",
2019 		    mly->mly_dv.dv_xname, xs->status);
2020 		xs->error = XS_DRIVER_STUFFUP;
2021 		break;
2022 	}
2023 
2024 	mly_ccb_free(mly, mc);
2025 	scsipi_done(xs);
2026 }
2027 
2028 /*
2029  * Notify scsipi about a target's transfer mode.
2030  */
2031 static void
2032 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
2033 {
2034 	struct mly_btl *btl;
2035 	int s;
2036 
2037 	btl = &mly->mly_btl[bus][xm->xm_target];
2038 	xm->xm_mode = 0;
2039 
2040 	s = splbio();
2041 
2042 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
2043 		if (btl->mb_speed == 0) {
2044 			xm->xm_period = 0;
2045 			xm->xm_offset = 0;
2046 		} else {
2047 			xm->xm_period = 12;			/* XXX */
2048 			xm->xm_offset = 8;			/* XXX */
2049 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
2050 		}
2051 
2052 		switch (btl->mb_width) {
2053 		case 32:
2054 			xm->xm_mode = PERIPH_CAP_WIDE32;
2055 			break;
2056 		case 16:
2057 			xm->xm_mode = PERIPH_CAP_WIDE16;
2058 			break;
2059 		default:
2060 			xm->xm_mode = 0;
2061 			break;
2062 		}
2063 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
2064 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
2065 		xm->xm_period = 12;
2066 		xm->xm_offset = 8;
2067 	}
2068 
2069 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
2070 		xm->xm_mode |= PERIPH_CAP_TQING;
2071 
2072 	splx(s);
2073 
2074 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
2075 }
2076 
2077 /*
2078  * ioctl hook; used here only to initiate low-level rescans.
2079  */
2080 static int
2081 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, caddr_t data,
2082 		 int flag, struct proc *p)
2083 {
2084 	struct mly_softc *mly;
2085 	int rv;
2086 
2087 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
2088 
2089 	switch (cmd) {
2090 	case SCBUSIOLLSCAN:
2091 		mly_scan_channel(mly, chan->chan_channel);
2092 		rv = 0;
2093 		break;
2094 	default:
2095 		rv = ENOTTY;
2096 		break;
2097 	}
2098 
2099 	return (rv);
2100 }
2101 
2102 /*
2103  * Handshake with the firmware while the card is being initialised.
2104  */
2105 static int
2106 mly_fwhandshake(struct mly_softc *mly)
2107 {
2108 	u_int8_t error, param0, param1;
2109 	int spinup;
2110 
2111 	spinup = 0;
2112 
2113 	/* Set HM_STSACK and let the firmware initialise. */
2114 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
2115 	DELAY(1000);	/* too short? */
2116 
2117 	/* If HM_STSACK is still true, the controller is initialising. */
2118 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
2119 		return (0);
2120 
2121 	printf("%s: controller initialisation started\n",
2122 	    mly->mly_dv.dv_xname);
2123 
2124 	/*
2125 	 * Spin waiting for initialisation to finish, or for a message to be
2126 	 * delivered.
2127 	 */
2128 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
2129 		/* Check for a message */
2130 		if (!mly_error_valid(mly))
2131 			continue;
2132 
2133 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
2134 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
2135 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
2136 
2137 		switch (error) {
2138 		case MLY_MSG_SPINUP:
2139 			if (!spinup) {
2140 				printf("%s: drive spinup in progress\n",
2141 				    mly->mly_dv.dv_xname);
2142 				spinup = 1;
2143 			}
2144 			break;
2145 
2146 		case MLY_MSG_RACE_RECOVERY_FAIL:
2147 			printf("%s: mirror race recovery failed - \n",
2148 			    mly->mly_dv.dv_xname);
2149 			printf("%s: one or more drives offline\n",
2150 			    mly->mly_dv.dv_xname);
2151 			break;
2152 
2153 		case MLY_MSG_RACE_IN_PROGRESS:
2154 			printf("%s: mirror race recovery in progress\n",
2155 			    mly->mly_dv.dv_xname);
2156 			break;
2157 
2158 		case MLY_MSG_RACE_ON_CRITICAL:
2159 			printf("%s: mirror race recovery on critical drive\n",
2160 			    mly->mly_dv.dv_xname);
2161 			break;
2162 
2163 		case MLY_MSG_PARITY_ERROR:
2164 			printf("%s: FATAL MEMORY PARITY ERROR\n",
2165 			    mly->mly_dv.dv_xname);
2166 			return (ENXIO);
2167 
2168 		default:
2169 			printf("%s: unknown initialisation code 0x%x\n",
2170 			    mly->mly_dv.dv_xname, error);
2171 			break;
2172 		}
2173 	}
2174 
2175 	return (0);
2176 }
2177 
2178 /*
2179  * Space-fill a character string
2180  */
2181 static void
2182 mly_padstr(char *dst, const char *src, int len)
2183 {
2184 
2185 	while (len-- > 0) {
2186 		if (*src != '\0')
2187 			*dst++ = *src++;
2188 		else
2189 			*dst++ = ' ';
2190 	}
2191 }
2192 
2193 /*
2194  * Allocate DMA safe memory.
2195  */
2196 static int
2197 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
2198 		 caddr_t *kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
2199 {
2200 	int rseg, rv, state;
2201 
2202 	state = 0;
2203 
2204 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, NBPG, 0,
2205 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
2206 		printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
2207 		goto bad;
2208 	}
2209 
2210 	state++;
2211 
2212 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
2213 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2214 		printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
2215 		goto bad;
2216 	}
2217 
2218 	state++;
2219 
2220 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
2221 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
2222 		printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
2223 		goto bad;
2224 	}
2225 
2226 	state++;
2227 
2228 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
2229 	    NULL, BUS_DMA_NOWAIT)) != 0) {
2230 		printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
2231 		goto bad;
2232 	}
2233 
2234 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
2235 	memset(*kva, 0, size);
2236 	return (0);
2237 
2238  bad:
2239 	if (state > 2)
2240 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
2241 	if (state > 1)
2242 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
2243 	if (state > 0)
2244 		bus_dmamem_free(mly->mly_dmat, seg, 1);
2245 
2246 	return (rv);
2247 }
2248 
2249 /*
2250  * Free DMA safe memory.
2251  */
2252 static void
2253 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
2254 		caddr_t kva, bus_dma_segment_t *seg)
2255 {
2256 
2257 	bus_dmamap_unload(mly->mly_dmat, dmamap);
2258 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
2259 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
2260 	bus_dmamem_free(mly->mly_dmat, seg, 1);
2261 }
2262 
2263 
2264 /*
2265  * Accept an open operation on the control device.
2266  */
2267 int
2268 mlyopen(dev_t dev, int flag, int mode, struct proc *p)
2269 {
2270 	struct mly_softc *mly;
2271 
2272 	if ((mly = device_lookup(&mly_cd, minor(dev))) == NULL)
2273 		return (ENXIO);
2274 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
2275 		return (ENXIO);
2276 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
2277 		return (EBUSY);
2278 
2279 	mly->mly_state |= MLY_STATE_OPEN;
2280 	return (0);
2281 }
2282 
2283 /*
2284  * Accept the last close on the control device.
2285  */
2286 int
2287 mlyclose(dev_t dev, int flag, int mode, struct proc *p)
2288 {
2289 	struct mly_softc *mly;
2290 
2291 	mly = device_lookup(&mly_cd, minor(dev));
2292 	mly->mly_state &= ~MLY_STATE_OPEN;
2293 	return (0);
2294 }
2295 
2296 /*
2297  * Handle control operations.
2298  */
2299 int
2300 mlyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
2301 {
2302 	struct mly_softc *mly;
2303 	int rv;
2304 
2305 	if (securelevel >= 2)
2306 		return (EPERM);
2307 
2308 	mly = device_lookup(&mly_cd, minor(dev));
2309 
2310 	switch (cmd) {
2311 	case MLYIO_COMMAND:
2312 		rv = mly_user_command(mly, (void *)data);
2313 		break;
2314 	case MLYIO_HEALTH:
2315 		rv = mly_user_health(mly, (void *)data);
2316 		break;
2317 	default:
2318 		rv = ENOTTY;
2319 		break;
2320 	}
2321 
2322 	return (rv);
2323 }
2324 
2325 /*
2326  * Execute a command passed in from userspace.
2327  *
2328  * The control structure contains the actual command for the controller, as
2329  * well as the user-space data pointer and data size, and an optional sense
2330  * buffer size/pointer.  On completion, the data size is adjusted to the
2331  * command residual, and the sense buffer size to the size of the returned
2332  * sense data.
2333  */
2334 static int
2335 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
2336 {
2337 	struct mly_ccb	*mc;
2338 	int rv, mapped;
2339 
2340 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
2341 		return (rv);
2342 
2343 	mapped = 0;
2344 	mc->mc_data = NULL;
2345 
2346 	/*
2347 	 * Handle data size/direction.
2348 	 */
2349 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
2350 		if (mc->mc_length > MAXPHYS) {
2351 			rv = EINVAL;
2352 			goto out;
2353 		}
2354 
2355 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
2356 		if (mc->mc_data == NULL) {
2357 			rv = ENOMEM;
2358 			goto out;
2359 		}
2360 
2361 		if (uc->DataTransferLength > 0) {
2362 			mc->mc_flags |= MLY_CCB_DATAIN;
2363 			memset(mc->mc_data, 0, mc->mc_length);
2364 		}
2365 
2366 		if (uc->DataTransferLength < 0) {
2367 			mc->mc_flags |= MLY_CCB_DATAOUT;
2368 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
2369 			    mc->mc_length);
2370 			if (rv != 0)
2371 				goto out;
2372 		}
2373 
2374 		if ((rv = mly_ccb_map(mly, mc)) != 0)
2375 			goto out;
2376 		mapped = 1;
2377 	}
2378 
2379 	/* Copy in the command and execute it. */
2380 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
2381 
2382 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
2383 		goto out;
2384 
2385 	/* Return the data to userspace. */
2386 	if (uc->DataTransferLength > 0) {
2387 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
2388 		    mc->mc_length);
2389 		if (rv != 0)
2390 			goto out;
2391 	}
2392 
2393 	/* Return the sense buffer to userspace. */
2394 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
2395 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2396 		    min(uc->RequestSenseLength, mc->mc_sense));
2397 		if (rv != 0)
2398 			goto out;
2399 	}
2400 
2401 	/* Return command results to userspace (caller will copy out). */
2402 	uc->DataTransferLength = mc->mc_resid;
2403 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2404 	uc->CommandStatus = mc->mc_status;
2405 	rv = 0;
2406 
2407  out:
2408  	if (mapped)
2409  		mly_ccb_unmap(mly, mc);
2410 	if (mc->mc_data != NULL)
2411 		free(mc->mc_data, M_DEVBUF);
2412 	if (mc != NULL)
2413 		mly_ccb_free(mly, mc);
2414 
2415 	return (rv);
2416 }
2417 
2418 /*
2419  * Return health status to userspace.  If the health change index in the
2420  * user structure does not match that currently exported by the controller,
2421  * we return the current status immediately.  Otherwise, we block until
2422  * either interrupted or new status is delivered.
2423  */
2424 static int
2425 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
2426 {
2427 	struct mly_health_status mh;
2428 	int rv, s;
2429 
2430 	/* Fetch the current health status from userspace. */
2431 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
2432 	if (rv != 0)
2433 		return (rv);
2434 
2435 	/* spin waiting for a status update */
2436 	s = splbio();
2437 	if (mly->mly_event_change == mh.change_counter)
2438 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
2439 		    "mlyhealth", 0);
2440 	splx(s);
2441 
2442 	if (rv == 0) {
2443 		/*
2444 		 * Copy the controller's health status buffer out (there is
2445 		 * a race here if it changes again).
2446 		 */
2447 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
2448 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
2449 	}
2450 
2451 	return (rv);
2452 }
2453