xref: /netbsd-src/sys/dev/pci/mly.c (revision 06be8101a16cc95f40783b3cb7afd12112103a9a)
1 /*	$NetBSD: mly.c,v 1.8 2001/11/13 07:48:46 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 2000, 2001 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
66  */
67 
68 /*
69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
70  *
71  * TODO:
72  *
73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
74  * o Handle FC and multiple LUNs.
75  * o Fix mmbox usage.
76  * o Fix transfer speed fudge.
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.8 2001/11/13 07:48:46 lukem Exp $");
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/queue.h>
87 #include <sys/buf.h>
88 #include <sys/endian.h>
89 #include <sys/conf.h>
90 #include <sys/malloc.h>
91 #include <sys/ioctl.h>
92 #include <sys/scsiio.h>
93 #include <sys/kthread.h>
94 
95 #include <uvm/uvm_extern.h>
96 
97 #include <machine/bus.h>
98 
99 #include <dev/scsipi/scsi_all.h>
100 #include <dev/scsipi/scsipi_all.h>
101 #include <dev/scsipi/scsiconf.h>
102 
103 #include <dev/pci/pcireg.h>
104 #include <dev/pci/pcivar.h>
105 #include <dev/pci/pcidevs.h>
106 
107 #include <dev/pci/mlyreg.h>
108 #include <dev/pci/mlyio.h>
109 #include <dev/pci/mlyvar.h>
110 #include <dev/pci/mly_tables.h>
111 
112 static void	mly_attach(struct device *, struct device *, void *);
113 static int	mly_match(struct device *, struct cfdata *, void *);
114 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
115 static int	mly_fwhandshake(struct mly_softc *);
116 static int	mly_flush(struct mly_softc *);
117 static int	mly_intr(void *);
118 static void	mly_shutdown(void *);
119 
120 static int	mly_alloc_ccbs(struct mly_softc *);
121 static void	mly_check_event(struct mly_softc *);
122 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
123 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
124 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
125 				 caddr_t *, bus_addr_t *, bus_dma_segment_t *);
126 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
127 				caddr_t, bus_dma_segment_t *);
128 static int	mly_enable_mmbox(struct mly_softc *);
129 static void	mly_fetch_event(struct mly_softc *);
130 static int	mly_get_controllerinfo(struct mly_softc *);
131 static int	mly_get_eventstatus(struct mly_softc *);
132 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
133 			  void **, size_t, void *, size_t *);
134 static void	mly_padstr(char *, const char *, int);
135 static void	mly_process_event(struct mly_softc *, struct mly_event *);
136 static void	mly_release_ccbs(struct mly_softc *);
137 static int	mly_scan_btl(struct mly_softc *, int, int);
138 static void	mly_scan_channel(struct mly_softc *, int);
139 static void	mly_thread(void *);
140 static void	mly_thread_create(void *);
141 
142 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
143 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
144 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
145 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
146 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
147 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
148 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
149 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
150 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
151 
152 static void	mly_get_xfer_mode(struct mly_softc *, int,
153 				  struct scsipi_xfer_mode *);
154 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
155 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, caddr_t,
156 				 int, struct proc *);
157 static void	mly_scsipi_minphys(struct buf *);
158 static void	mly_scsipi_request(struct scsipi_channel *,
159 				   scsipi_adapter_req_t, void *);
160 
161 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
162 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
163 
164 cdev_decl(mly);
165 
166 extern struct	cfdriver mly_cd;
167 
168 struct cfattach mly_ca = {
169 	sizeof(struct mly_softc), mly_match, mly_attach
170 };
171 
172 struct mly_ident {
173 	u_short	vendor;
174 	u_short	product;
175 	u_short	subvendor;
176 	u_short	subproduct;
177 	int	hwif;
178 	const char	*desc;
179 } static const mly_ident[] = {
180 	{
181 		PCI_VENDOR_MYLEX,
182 		PCI_PRODUCT_MYLEX_EXTREMERAID,
183 		PCI_VENDOR_MYLEX,
184 		0x0040,
185 		MLY_HWIF_STRONGARM,
186 		"eXtremeRAID 2000"
187 	},
188 	{
189 		PCI_VENDOR_MYLEX,
190 		PCI_PRODUCT_MYLEX_EXTREMERAID,
191 		PCI_VENDOR_MYLEX,
192 		0x0030,
193 		MLY_HWIF_STRONGARM,
194 		"eXtremeRAID 3000"
195 	},
196 	{
197 		PCI_VENDOR_MYLEX,
198 		PCI_PRODUCT_MYLEX_ACCELERAID,
199 		PCI_VENDOR_MYLEX,
200 		0x0050,
201 		MLY_HWIF_I960RX,
202 		"AcceleRAID 352"
203 	},
204 	{
205 		PCI_VENDOR_MYLEX,
206 		PCI_PRODUCT_MYLEX_ACCELERAID,
207 		PCI_VENDOR_MYLEX,
208 		0x0052,
209 		MLY_HWIF_I960RX,
210 		"AcceleRAID 170"
211 	},
212 	{
213 		PCI_VENDOR_MYLEX,
214 		PCI_PRODUCT_MYLEX_ACCELERAID,
215 		PCI_VENDOR_MYLEX,
216 		0x0054,
217 		MLY_HWIF_I960RX,
218 		"AcceleRAID 160"
219 	},
220 };
221 
222 static void	*mly_sdh;
223 
224 /*
225  * Try to find a `mly_ident' entry corresponding to this board.
226  */
227 static const struct mly_ident *
228 mly_find_ident(struct pci_attach_args *pa)
229 {
230 	const struct mly_ident *mpi, *maxmpi;
231 	pcireg_t reg;
232 
233 	mpi = mly_ident;
234 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
235 
236 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
237 		return (NULL);
238 
239 	for (; mpi < maxmpi; mpi++) {
240 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
241 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
242 			continue;
243 
244 		if (mpi->subvendor == 0x0000)
245 			return (mpi);
246 
247 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
248 
249 		if (PCI_VENDOR(reg) == mpi->subvendor &&
250 		    PCI_PRODUCT(reg) == mpi->subproduct)
251 			return (mpi);
252 	}
253 
254 	return (NULL);
255 }
256 
257 /*
258  * Match a supported board.
259  */
260 static int
261 mly_match(struct device *parent, struct cfdata *cfdata, void *aux)
262 {
263 
264 	return (mly_find_ident(aux) != NULL);
265 }
266 
267 /*
268  * Attach a supported board.
269  */
270 static void
271 mly_attach(struct device *parent, struct device *self, void *aux)
272 {
273 	struct pci_attach_args *pa;
274 	struct mly_softc *mly;
275 	struct mly_ioctl_getcontrollerinfo *mi;
276 	const struct mly_ident *ident;
277 	pci_chipset_tag_t pc;
278 	pci_intr_handle_t ih;
279 	bus_space_handle_t memh, ioh;
280 	bus_space_tag_t memt, iot;
281 	pcireg_t reg;
282 	const char *intrstr;
283 	int ior, memr, i, rv, state;
284 	struct scsipi_adapter *adapt;
285 	struct scsipi_channel *chan;
286 
287 	mly = (struct mly_softc *)self;
288 	pa = aux;
289 	pc = pa->pa_pc;
290 	ident = mly_find_ident(pa);
291 	state = 0;
292 
293 	mly->mly_dmat = pa->pa_dmat;
294 	mly->mly_hwif = ident->hwif;
295 
296 	printf(": Mylex %s\n", ident->desc);
297 
298 	/*
299 	 * Map the PCI register window.
300 	 */
301 	memr = -1;
302 	ior = -1;
303 
304 	for (i = 0x10; i <= 0x14; i += 4) {
305 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
306 
307 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
308 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
309 				ior = i;
310 		} else {
311 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
312 				memr = i;
313 		}
314 	}
315 
316 	if (memr != -1)
317 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
318 		    &memt, &memh, NULL, NULL))
319 			memr = -1;
320 	if (ior != -1)
321 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
322 		    &iot, &ioh, NULL, NULL))
323 		    	ior = -1;
324 
325 	if (memr != -1) {
326 		mly->mly_iot = memt;
327 		mly->mly_ioh = memh;
328 	} else if (ior != -1) {
329 		mly->mly_iot = iot;
330 		mly->mly_ioh = ioh;
331 	} else {
332 		printf("%s: can't map i/o or memory space\n", self->dv_xname);
333 		return;
334 	}
335 
336 	/*
337 	 * Enable the device.
338 	 */
339 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
340 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
341 	    reg | PCI_COMMAND_MASTER_ENABLE);
342 
343 	/*
344 	 * Map and establish the interrupt.
345 	 */
346 	if (pci_intr_map(pa, &ih)) {
347 		printf("%s: can't map interrupt\n", self->dv_xname);
348 		return;
349 	}
350 	intrstr = pci_intr_string(pc, ih);
351 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
352 	if (mly->mly_ih == NULL) {
353 		printf("%s: can't establish interrupt", self->dv_xname);
354 		if (intrstr != NULL)
355 			printf(" at %s", intrstr);
356 		printf("\n");
357 		return;
358 	}
359 
360 	if (intrstr != NULL)
361 		printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
362 		    intrstr);
363 
364 	/*
365 	 * Take care of interface-specific tasks.
366 	 */
367 	switch (mly->mly_hwif) {
368 	case MLY_HWIF_I960RX:
369 		mly->mly_doorbell_true = 0x00;
370 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
371 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
372 		mly->mly_idbr = MLY_I960RX_IDBR;
373 		mly->mly_odbr = MLY_I960RX_ODBR;
374 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
375 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
376 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
377 		break;
378 
379 	case MLY_HWIF_STRONGARM:
380 		mly->mly_doorbell_true = 0xff;
381 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
382 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
383 		mly->mly_idbr = MLY_STRONGARM_IDBR;
384 		mly->mly_odbr = MLY_STRONGARM_ODBR;
385 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
386 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
387 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
388 		break;
389 	}
390 
391 	/*
392 	 * Allocate and map the scatter/gather lists.
393 	 */
394 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
395 	    &mly->mly_sg_dmamap, (caddr_t *)&mly->mly_sg,
396 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
397 	if (rv) {
398 		printf("%s: unable to allocate S/G maps\n",
399 		    mly->mly_dv.dv_xname);
400 		goto bad;
401 	}
402 	state++;
403 
404 	/*
405 	 * Allocate and map the memory mailbox.
406 	 */
407 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
408 	    &mly->mly_mmbox_dmamap, (caddr_t *)&mly->mly_mmbox,
409 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
410 	if (rv) {
411 		printf("%s: unable to allocate mailboxes\n",
412 		    mly->mly_dv.dv_xname);
413 		goto bad;
414 	}
415 	state++;
416 
417 	/*
418 	 * Initialise per-controller queues.
419 	 */
420 	SLIST_INIT(&mly->mly_ccb_free);
421 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
422 
423 	/*
424 	 * Disable interrupts before we start talking to the controller.
425 	 */
426 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
427 
428 	/*
429 	 * Wait for the controller to come ready, handshaking with the
430 	 * firmware if required.  This is typically only necessary on
431 	 * platforms where the controller BIOS does not run.
432 	 */
433 	if (mly_fwhandshake(mly)) {
434 		printf("%s: unable to bring controller online\n",
435 		    mly->mly_dv.dv_xname);
436 		goto bad;
437 	}
438 
439 	/*
440 	 * Allocate initial command buffers, obtain controller feature
441 	 * information, and then reallocate command buffers, since we'll
442 	 * know how many we want.
443 	 */
444 	if (mly_alloc_ccbs(mly)) {
445 		printf("%s: unable to allocate CCBs\n",
446 		    mly->mly_dv.dv_xname);
447 		goto bad;
448 	}
449 	state++;
450 	if (mly_get_controllerinfo(mly)) {
451 		printf("%s: unable to retrieve controller info\n",
452 		    mly->mly_dv.dv_xname);
453 		goto bad;
454 	}
455 	mly_release_ccbs(mly);
456 	if (mly_alloc_ccbs(mly)) {
457 		printf("%s: unable to allocate CCBs\n",
458 		    mly->mly_dv.dv_xname);
459 		state--;
460 		goto bad;
461 	}
462 
463 	/*
464 	 * Get the current event counter for health purposes, populate the
465 	 * initial health status buffer.
466 	 */
467 	if (mly_get_eventstatus(mly)) {
468 		printf("%s: unable to retrieve event status\n",
469 		    mly->mly_dv.dv_xname);
470 		goto bad;
471 	}
472 
473 	/*
474 	 * Enable memory-mailbox mode.
475 	 */
476 	if (mly_enable_mmbox(mly)) {
477 		printf("%s: unable to enable memory mailbox\n",
478 		    mly->mly_dv.dv_xname);
479 		goto bad;
480 	}
481 
482 	/*
483 	 * Print a little information about the controller.
484 	 */
485 	mi = mly->mly_controllerinfo;
486 
487 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
488 	    "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
489 	    mi->physical_channels_present,
490 	    (mi->physical_channels_present) > 1 ? "s" : "",
491 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
492 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
493 	    le16toh(mi->memory_size));
494 
495 	/*
496 	 * Register our `shutdownhook'.
497 	 */
498 	if (mly_sdh == NULL)
499 		shutdownhook_establish(mly_shutdown, NULL);
500 
501 	/*
502 	 * Clear any previous BTL information.  For each bus that scsipi
503 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
504 	 * all BTL info at that point.
505 	 */
506 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
507 
508 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
509 	    mly->mly_controllerinfo->virtual_channels_present;
510 
511 	/*
512 	 * Attach to scsipi.
513 	 */
514 	adapt = &mly->mly_adapt;
515 	memset(adapt, 0, sizeof(*adapt));
516 	adapt->adapt_dev = &mly->mly_dv;
517 	adapt->adapt_nchannels = mly->mly_nchans;
518 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
519 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
520 	adapt->adapt_request = mly_scsipi_request;
521 	adapt->adapt_minphys = mly_scsipi_minphys;
522 	adapt->adapt_ioctl = mly_scsipi_ioctl;
523 
524 	for (i = 0; i < mly->mly_nchans; i++) {
525 		chan = &mly->mly_chans[i];
526 		memset(chan, 0, sizeof(*chan));
527 		chan->chan_adapter = adapt;
528 		chan->chan_bustype = &scsi_bustype;
529 		chan->chan_channel = i;
530 		chan->chan_ntargets = MLY_MAX_TARGETS;
531 		chan->chan_nluns = MLY_MAX_LUNS;
532 		chan->chan_id = mly->mly_controllerparam->initiator_id;
533 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
534 		config_found(&mly->mly_dv, chan, scsiprint);
535 	}
536 
537 	/*
538 	 * Now enable interrupts...
539 	 */
540 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
541 
542 	/*
543 	 * Finally, create our monitoring thread.
544 	 */
545 	kthread_create(mly_thread_create, mly);
546 
547 	mly->mly_state |= MLY_STATE_INITOK;
548 	return;
549 
550  bad:
551 	if (state > 2)
552 		mly_release_ccbs(mly);
553 	if (state > 1)
554 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
555 		    mly->mly_mmbox_dmamap, (caddr_t)mly->mly_mmbox,
556 		    &mly->mly_mmbox_seg);
557 	if (state > 0)
558 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
559 		    mly->mly_sg_dmamap, (caddr_t)mly->mly_sg,
560 		    &mly->mly_sg_seg);
561 }
562 
563 /*
564  * Scan all possible devices on the specified channel.
565  */
566 static void
567 mly_scan_channel(struct mly_softc *mly, int bus)
568 {
569 	int s, target;
570 
571 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
572 		s = splbio();
573 		if (!mly_scan_btl(mly, bus, target)) {
574 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
575 			    0);
576 		}
577 		splx(s);
578 	}
579 }
580 
581 /*
582  * Shut down all configured `mly' devices.
583  */
584 static void
585 mly_shutdown(void *cookie)
586 {
587 	struct mly_softc *mly;
588 	int i;
589 
590 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
591 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
592 			continue;
593 
594 		if (mly_flush(mly))
595 			printf("%s: unable to flush cache\n",
596 			    mly->mly_dv.dv_xname);
597 	}
598 }
599 
600 /*
601  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
602  * softc.
603  */
604 static int
605 mly_get_controllerinfo(struct mly_softc *mly)
606 {
607 	struct mly_cmd_ioctl mci;
608 	int rv;
609 
610 	/*
611 	 * Build the getcontrollerinfo ioctl and send it.
612 	 */
613 	memset(&mci, 0, sizeof(mci));
614 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
615 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
616 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
617 	if (rv != 0)
618 		return (rv);
619 
620 	/*
621 	 * Build the getcontrollerparameter ioctl and send it.
622 	 */
623 	memset(&mci, 0, sizeof(mci));
624 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
625 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
626 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
627 
628 	return (rv);
629 }
630 
631 /*
632  * Rescan a device, possibly as a consequence of getting an event which
633  * suggests that it may have changed.  Must be called with interrupts
634  * blocked.
635  */
636 static int
637 mly_scan_btl(struct mly_softc *mly, int bus, int target)
638 {
639 	struct mly_ccb *mc;
640 	struct mly_cmd_ioctl *mci;
641 	int rv;
642 
643 	if (target == mly->mly_controllerparam->initiator_id) {
644 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
645 		return (EIO);
646 	}
647 
648 	/* Don't re-scan if a scan is already in progress. */
649 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
650 		return (EBUSY);
651 
652 	/* Get a command. */
653 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
654 		return (rv);
655 
656 	/* Set up the data buffer. */
657 	mc->mc_data = malloc(sizeof(union mly_devinfo),
658 	    M_DEVBUF, M_NOWAIT);
659 	memset(mc->mc_data, 0, sizeof(union mly_devinfo));
660 
661 	mc->mc_flags |= MLY_CCB_DATAIN;
662 	mc->mc_complete = mly_complete_rescan;
663 
664 	/*
665 	 * Build the ioctl.
666 	 */
667 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
668 	mci->opcode = MDACMD_IOCTL;
669 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
670 	memset(&mci->param, 0, sizeof(mci->param));
671 
672 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
673 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
674 		mci->data_size = htole32(mc->mc_length);
675 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
676 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
677 		    mci->addr);
678 	} else {
679 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
680 		mci->data_size = htole32(mc->mc_length);
681 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
682 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
683 	}
684 
685 	/*
686 	 * Dispatch the command.
687 	 */
688 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
689 		free(mc->mc_data, M_DEVBUF);
690 		mly_ccb_free(mly, mc);
691 		return(rv);
692 	}
693 
694 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
695 	mly_ccb_enqueue(mly, mc);
696 	return (0);
697 }
698 
699 /*
700  * Handle the completion of a rescan operation.
701  */
702 static void
703 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
704 {
705 	struct mly_ioctl_getlogdevinfovalid *ldi;
706 	struct mly_ioctl_getphysdevinfovalid *pdi;
707 	struct mly_cmd_ioctl *mci;
708 	struct mly_btl btl, *btlp;
709 	struct scsipi_xfer_mode xm;
710 	int bus, target, rescan;
711 	u_int tmp;
712 
713 	mly_ccb_unmap(mly, mc);
714 
715 	/*
716 	 * Recover the bus and target from the command.  We need these even
717 	 * in the case where we don't have a useful response.
718 	 */
719 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
720 	tmp = _3ltol(mci->addr);
721 	rescan = 0;
722 
723 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
724 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
725 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
726 	} else {
727 		bus = MLY_PHYADDR_CHANNEL(tmp);
728 		target = MLY_PHYADDR_TARGET(tmp);
729 	}
730 
731 	btlp = &mly->mly_btl[bus][target];
732 
733 	/* The default result is 'no device'. */
734 	memset(&btl, 0, sizeof(btl));
735 	btl.mb_flags = MLY_BTL_PROTECTED;
736 
737 	/* If the rescan completed OK, we have possibly-new BTL data. */
738 	if (mc->mc_status != 0)
739 		goto out;
740 
741 	if (mc->mc_length == sizeof(*ldi)) {
742 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
743 		tmp = le32toh(ldi->logical_device_number);
744 
745 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
746 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
747 #ifdef MLYDEBUG
748 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
749 			    "returned data for %d:%d instead\n",
750 			   mly->mly_dv.dv_xname, bus, target,
751 			   MLY_LOGDEV_BUS(mly, tmp),
752 			   MLY_LOGDEV_TARGET(mly, tmp));
753 #endif
754 			goto out;
755 		}
756 
757 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
758 		btl.mb_type = ldi->raid_level;
759 		btl.mb_state = ldi->state;
760 	} else if (mc->mc_length == sizeof(*pdi)) {
761 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
762 
763 		if (pdi->channel != bus || pdi->target != target) {
764 #ifdef MLYDEBUG
765 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
766 			    " returned data for %d:%d instead\n",
767 			   mly->mly_dv.dv_xname,
768 			   bus, target, pdi->channel, pdi->target);
769 #endif
770 			goto out;
771 		}
772 
773 		btl.mb_flags = MLY_BTL_PHYSICAL;
774 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
775 		btl.mb_state = pdi->state;
776 		btl.mb_speed = pdi->speed;
777 		btl.mb_width = pdi->width;
778 
779 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
780 			btl.mb_flags |= MLY_BTL_PROTECTED;
781 		if (pdi->command_tags != 0)
782 			btl.mb_flags |= MLY_BTL_TQING;
783 	} else {
784 		printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
785 		goto out;
786 	}
787 
788 	/* Decide whether we need to rescan the device. */
789 	if (btl.mb_flags != btlp->mb_flags ||
790 	    btl.mb_speed != btlp->mb_speed ||
791 	    btl.mb_width != btlp->mb_width)
792 		rescan = 1;
793 
794  out:
795 	*btlp = btl;
796 
797 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
798 		xm.xm_target = target;
799 		mly_get_xfer_mode(mly, bus, &xm);
800 		/* XXX SCSI mid-layer rescan goes here. */
801 	}
802 
803 	/* Wake anybody waiting on the device to be rescanned. */
804 	wakeup(btlp);
805 
806 	free(mc->mc_data, M_DEVBUF);
807 	mly_ccb_free(mly, mc);
808 }
809 
810 /*
811  * Get the current health status and set the 'next event' counter to suit.
812  */
813 static int
814 mly_get_eventstatus(struct mly_softc *mly)
815 {
816 	struct mly_cmd_ioctl mci;
817 	struct mly_health_status *mh;
818 	int rv;
819 
820 	/* Build the gethealthstatus ioctl and send it. */
821 	memset(&mci, 0, sizeof(mci));
822 	mh = NULL;
823 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
824 
825 	rv = mly_ioctl(mly, &mci, (void **)&mh, sizeof(*mh), NULL, NULL);
826 	if (rv)
827 		return (rv);
828 
829 	/* Get the event counter. */
830 	mly->mly_event_change = le32toh(mh->change_counter);
831 	mly->mly_event_waiting = le32toh(mh->next_event);
832 	mly->mly_event_counter = le32toh(mh->next_event);
833 
834 	/* Save the health status into the memory mailbox */
835 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
836 
837 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
838 	    offsetof(struct mly_mmbox, mmm_health),
839 	    sizeof(mly->mly_mmbox->mmm_health),
840 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
841 
842 	free(mh, M_DEVBUF);
843 	return (0);
844 }
845 
846 /*
847  * Enable memory mailbox mode.
848  */
849 static int
850 mly_enable_mmbox(struct mly_softc *mly)
851 {
852 	struct mly_cmd_ioctl mci;
853 	u_int8_t *sp;
854 	u_int64_t tmp;
855 	int rv;
856 
857 	/* Build the ioctl and send it. */
858 	memset(&mci, 0, sizeof(mci));
859 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
860 
861 	/* Set buffer addresses. */
862 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
863 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
864 
865 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
866 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
867 
868 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
869 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
870 
871 	/* Set buffer sizes - abuse of data_size field is revolting. */
872 	sp = (u_int8_t *)&mci.data_size;
873 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
874 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
875 	mci.param.setmemorymailbox.health_buffer_size =
876 	    sizeof(union mly_health_region) >> 10;
877 
878 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
879 	if (rv)
880 		return (rv);
881 
882 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
883 	return (0);
884 }
885 
886 /*
887  * Flush all pending I/O from the controller.
888  */
889 static int
890 mly_flush(struct mly_softc *mly)
891 {
892 	struct mly_cmd_ioctl mci;
893 
894 	/* Build the ioctl */
895 	memset(&mci, 0, sizeof(mci));
896 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
897 	mci.param.deviceoperation.operation_device =
898 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
899 
900 	/* Pass it off to the controller */
901 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
902 }
903 
904 /*
905  * Perform an ioctl command.
906  *
907  * If (data) is not NULL, the command requires data transfer to the
908  * controller.  If (*data) is NULL the command requires data transfer from
909  * the controller, and we will allocate a buffer for it.
910  */
911 static int
912 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
913 	  size_t datasize, void *sense_buffer,
914 	  size_t *sense_length)
915 {
916 	struct mly_ccb *mc;
917 	struct mly_cmd_ioctl *mci;
918 	u_int8_t status;
919 	int rv;
920 
921 	mc = NULL;
922 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
923 		goto bad;
924 
925 	/*
926 	 * Copy the ioctl structure, but save some important fields and then
927 	 * fixup.
928 	 */
929 	mci = &mc->mc_packet->ioctl;
930 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
931 	ioctl->maximum_sense_size = mci->maximum_sense_size;
932 	*mci = *ioctl;
933 	mci->opcode = MDACMD_IOCTL;
934 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
935 
936 	/* Handle the data buffer. */
937 	if (data != NULL) {
938 		if (*data == NULL) {
939 			/* Allocate data buffer */
940 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
941 			mc->mc_flags |= MLY_CCB_DATAIN;
942 		} else {
943 			mc->mc_data = *data;
944 			mc->mc_flags |= MLY_CCB_DATAOUT;
945 		}
946 		mc->mc_length = datasize;
947 		mc->mc_packet->generic.data_size = htole32(datasize);
948 	}
949 
950 	/* Run the command. */
951 	if (datasize > 0)
952 		if ((rv = mly_ccb_map(mly, mc)) != 0)
953 			goto bad;
954 	rv = mly_ccb_poll(mly, mc, 30000);
955 	if (datasize > 0)
956 		mly_ccb_unmap(mly, mc);
957 	if (rv != 0)
958 		goto bad;
959 
960 	/* Clean up and return any data. */
961 	status = mc->mc_status;
962 
963 	if (status != 0)
964 		printf("mly_ioctl: command status %d\n", status);
965 
966 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
967 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
968 		*sense_length = mc->mc_sense;
969 		goto bad;
970 	}
971 
972 	/* Should we return a data pointer? */
973 	if (data != NULL && *data == NULL)
974 		*data = mc->mc_data;
975 
976 	/* Command completed OK. */
977 	rv = (status != 0 ? EIO : 0);
978 
979  bad:
980 	if (mc != NULL) {
981 		/* Do we need to free a data buffer we allocated? */
982 		if (rv != 0 && mc->mc_data != NULL && *data == NULL)
983 			free(mc->mc_data, M_DEVBUF);
984 		mly_ccb_free(mly, mc);
985 	}
986 
987 	return (rv);
988 }
989 
990 /*
991  * Check for event(s) outstanding in the controller.
992  */
993 static void
994 mly_check_event(struct mly_softc *mly)
995 {
996 
997 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
998 	    offsetof(struct mly_mmbox, mmm_health),
999 	    sizeof(mly->mly_mmbox->mmm_health),
1000 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1001 
1002 	/*
1003 	 * The controller may have updated the health status information, so
1004 	 * check for it here.  Note that the counters are all in host
1005 	 * memory, so this check is very cheap.  Also note that we depend on
1006 	 * checking on completion
1007 	 */
1008 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
1009 	    mly->mly_event_change) {
1010 		mly->mly_event_change =
1011 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
1012 		mly->mly_event_waiting =
1013 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
1014 
1015 		/* Wake up anyone that might be interested in this. */
1016 		wakeup(&mly->mly_event_change);
1017 	}
1018 
1019 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1020 	    offsetof(struct mly_mmbox, mmm_health),
1021 	    sizeof(mly->mly_mmbox->mmm_health),
1022 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1023 
1024 	if (mly->mly_event_counter != mly->mly_event_waiting)
1025 		mly_fetch_event(mly);
1026 }
1027 
1028 /*
1029  * Fetch one event from the controller.  If we fail due to resource
1030  * starvation, we'll be retried the next time a command completes.
1031  */
1032 static void
1033 mly_fetch_event(struct mly_softc *mly)
1034 {
1035 	struct mly_ccb *mc;
1036 	struct mly_cmd_ioctl *mci;
1037 	int s;
1038 	u_int32_t event;
1039 
1040 	/* Get a command. */
1041 	if (mly_ccb_alloc(mly, &mc))
1042 		return;
1043 
1044 	/* Set up the data buffer. */
1045 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT);
1046 	memset(mc->mc_data, 0, sizeof(struct mly_event));
1047 
1048 	mc->mc_length = sizeof(struct mly_event);
1049 	mc->mc_flags |= MLY_CCB_DATAIN;
1050 	mc->mc_complete = mly_complete_event;
1051 
1052 	/*
1053 	 * Get an event number to fetch.  It's possible that we've raced
1054 	 * with another context for the last event, in which case there will
1055 	 * be no more events.
1056 	 */
1057 	s = splbio();
1058 	if (mly->mly_event_counter == mly->mly_event_waiting) {
1059 		splx(s);
1060 		free(mc->mc_data, M_DEVBUF);
1061 		mly_ccb_free(mly, mc);
1062 		return;
1063 	}
1064 	event = mly->mly_event_counter++;
1065 	splx(s);
1066 
1067 	/*
1068 	 * Build the ioctl.
1069 	 *
1070 	 * At this point we are committed to sending this request, as it
1071 	 * will be the only one constructed for this particular event
1072 	 * number.
1073 	 */
1074 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
1075 	mci->opcode = MDACMD_IOCTL;
1076 	mci->data_size = htole32(sizeof(struct mly_event));
1077 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
1078 	    mci->addr);
1079 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
1080 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
1081 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
1082 
1083 	/*
1084 	 * Submit the command.
1085 	 */
1086 	if (mly_ccb_map(mly, mc) != 0)
1087 		goto bad;
1088 	mly_ccb_enqueue(mly, mc);
1089 	return;
1090 
1091  bad:
1092 	printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
1093 	free(mc->mc_data, M_DEVBUF);
1094 	mly_ccb_free(mly, mc);
1095 }
1096 
1097 /*
1098  * Handle the completion of an event poll.
1099  */
1100 static void
1101 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
1102 {
1103 	struct mly_event *me;
1104 
1105 	me = (struct mly_event *)mc->mc_data;
1106 	mly_ccb_unmap(mly, mc);
1107 	mly_ccb_free(mly, mc);
1108 
1109 	/* If the event was successfully fetched, process it. */
1110 	if (mc->mc_status == SCSI_OK)
1111 		mly_process_event(mly, me);
1112 	else
1113 		printf("%s: unable to fetch event; status = 0x%x\n",
1114 		    mly->mly_dv.dv_xname, mc->mc_status);
1115 
1116 	free(me, M_DEVBUF);
1117 
1118 	/* Check for another event. */
1119 	mly_check_event(mly);
1120 }
1121 
1122 /*
1123  * Process a controller event.  Called with interupts blocked (i.e., at
1124  * interrupt time).
1125  */
1126 static void
1127 mly_process_event(struct mly_softc *mly, struct mly_event *me)
1128 {
1129 	struct scsipi_sense_data *ssd;
1130 	int bus, target, event, class, action;
1131 	const char *fp, *tp;
1132 
1133 	ssd = (struct scsipi_sense_data *)&me->sense[0];
1134 
1135 	/*
1136 	 * Errors can be reported using vendor-unique sense data.  In this
1137 	 * case, the event code will be 0x1c (Request sense data present),
1138 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
1139 	 * will be set, and the actual event code will be a 16-bit value
1140 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
1141 	 * (low seven bits of the high byte).
1142 	 */
1143 	if (le32toh(me->code) == 0x1c &&
1144 	    (ssd->flags & SSD_KEY) == SKEY_VENDOR_UNIQUE &&
1145 	    (ssd->add_sense_code & 0x80) != 0) {
1146 		event = ((int)(ssd->add_sense_code & ~0x80) << 8) +
1147 		    ssd->add_sense_code_qual;
1148 	} else
1149 		event = le32toh(me->code);
1150 
1151 	/* Look up event, get codes. */
1152 	fp = mly_describe_code(mly_table_event, event);
1153 
1154 	/* Quiet event? */
1155 	class = fp[0];
1156 #ifdef notyet
1157 	if (isupper(class) && bootverbose)
1158 		class = tolower(class);
1159 #endif
1160 
1161 	/* Get action code, text string. */
1162 	action = fp[1];
1163 	tp = fp + 3;
1164 
1165 	/*
1166 	 * Print some information about the event.
1167 	 *
1168 	 * This code uses a table derived from the corresponding portion of
1169 	 * the Linux driver, and thus the parser is very similar.
1170 	 */
1171 	switch (class) {
1172 	case 'p':
1173 		/*
1174 		 * Error on physical drive.
1175 		 */
1176 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1177 		    me->channel, me->target, tp);
1178 		if (action == 'r')
1179 			mly->mly_btl[me->channel][me->target].mb_flags |=
1180 			    MLY_BTL_RESCAN;
1181 		break;
1182 
1183 	case 'l':
1184 	case 'm':
1185 		/*
1186 		 * Error on logical unit, or message about logical unit.
1187 	 	 */
1188 		bus = MLY_LOGDEV_BUS(mly, me->lun);
1189 		target = MLY_LOGDEV_TARGET(mly, me->lun);
1190 		printf("%s: logical device %d:%d %s\n", mly->mly_dv.dv_xname,
1191 		    bus, target, tp);
1192 		if (action == 'r')
1193 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1194 		break;
1195 
1196 	case 's':
1197 		/*
1198 		 * Report of sense data.
1199 		 */
1200 		if (((ssd->flags & SSD_KEY) == SKEY_NO_SENSE ||
1201 		    (ssd->flags & SSD_KEY) == SKEY_NOT_READY) &&
1202 		    ssd->add_sense_code == 0x04 &&
1203 		    (ssd->add_sense_code_qual == 0x01 ||
1204 		    ssd->add_sense_code_qual == 0x02)) {
1205 			/* Ignore NO_SENSE or NOT_READY in one case */
1206 			break;
1207 		}
1208 
1209 		/*
1210 		 * XXX Should translate this if SCSIVERBOSE.
1211 		 */
1212 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1213 		    me->channel, me->target, tp);
1214 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
1215 		    mly->mly_dv.dv_xname, ssd->flags & SSD_KEY,
1216 		    ssd->add_sense_code, ssd->add_sense_code_qual);
1217 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
1218 		    mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
1219 		    ssd->info[2], ssd->info[3], ssd->cmd_spec_info[0],
1220 		    ssd->cmd_spec_info[1], ssd->cmd_spec_info[2],
1221 		    ssd->cmd_spec_info[3]);
1222 		if (action == 'r')
1223 			mly->mly_btl[me->channel][me->target].mb_flags |=
1224 			    MLY_BTL_RESCAN;
1225 		break;
1226 
1227 	case 'e':
1228 		printf("%s: ", mly->mly_dv.dv_xname);
1229 		printf(tp, me->target, me->lun);
1230 		break;
1231 
1232 	case 'c':
1233 		printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
1234 		break;
1235 
1236 	case '?':
1237 		printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
1238 		break;
1239 
1240 	default:
1241 		/* Probably a 'noisy' event being ignored. */
1242 		break;
1243 	}
1244 }
1245 
1246 /*
1247  * Create the monitoring thread.  Called after the standard kernel threads
1248  * have been created.
1249  */
1250 static void
1251 mly_thread_create(void *cookie)
1252 {
1253 	struct mly_softc *mly;
1254 	int rv;
1255 
1256 	mly = cookie;
1257 
1258 	rv = kthread_create1(mly_thread, mly, &mly->mly_thread, "%s",
1259 	    mly->mly_dv.dv_xname);
1260  	if (rv != 0)
1261 		printf("%s: unable to create thread (%d)\n",
1262 		    mly->mly_dv.dv_xname, rv);
1263 }
1264 
1265 /*
1266  * Perform periodic activities.
1267  */
1268 static void
1269 mly_thread(void *cookie)
1270 {
1271 	struct mly_softc *mly;
1272 	struct mly_btl *btl;
1273 	int s, bus, target, done;
1274 
1275 	mly = (struct mly_softc *)cookie;
1276 
1277 	for (;;) {
1278 		/* Check for new events. */
1279 		mly_check_event(mly);
1280 
1281 		/* Re-scan up to 1 device. */
1282 		s = splbio();
1283 		done = 0;
1284 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
1285 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
1286 				/* Perform device rescan? */
1287 				btl = &mly->mly_btl[bus][target];
1288 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
1289 					btl->mb_flags ^= MLY_BTL_RESCAN;
1290 					mly_scan_btl(mly, bus, target);
1291 					done = 1;
1292 					break;
1293 				}
1294 			}
1295 		}
1296 		splx(s);
1297 
1298 		/* Sleep for N seconds. */
1299 		tsleep(mly_thread, PWAIT, "mlyzzz",
1300 		    hz * MLY_PERIODIC_INTERVAL);
1301 	}
1302 }
1303 
1304 /*
1305  * Submit a command to the controller and poll on completion.  Return
1306  * non-zero on timeout.
1307  */
1308 static int
1309 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1310 {
1311 	int rv;
1312 
1313 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
1314 		return (rv);
1315 
1316 	for (timo *= 10; timo != 0; timo--) {
1317 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
1318 			break;
1319 		mly_intr(mly);
1320 		DELAY(100);
1321 	}
1322 
1323 	return (timo == 0);
1324 }
1325 
1326 /*
1327  * Submit a command to the controller and sleep on completion.  Return
1328  * non-zero on timeout.
1329  */
1330 static int
1331 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1332 {
1333 	int rv, s;
1334 
1335 	mly_ccb_enqueue(mly, mc);
1336 
1337 	s = splbio();
1338 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
1339 		splx(s);
1340 		return (0);
1341 	}
1342 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
1343 	splx(s);
1344 
1345 	return (rv);
1346 }
1347 
1348 /*
1349  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1350  * the order that they were enqueued and try to submit their command blocks
1351  * to the controller for execution.
1352  */
1353 void
1354 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
1355 {
1356 	int s;
1357 
1358 	s = splbio();
1359 
1360 	if (mc != NULL)
1361 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1362 
1363 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
1364 		if (mly_ccb_submit(mly, mc))
1365 			break;
1366 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1367 	}
1368 
1369 	splx(s);
1370 }
1371 
1372 /*
1373  * Deliver a command to the controller.
1374  */
1375 static int
1376 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
1377 {
1378 	union mly_cmd_packet *pkt;
1379 	int s, off;
1380 
1381 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
1382 
1383 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1384 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1385 	    sizeof(union mly_cmd_packet),
1386 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1387 
1388 	s = splbio();
1389 
1390 	/*
1391 	 * Do we have to use the hardware mailbox?
1392 	 */
1393 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
1394 		/*
1395 		 * Check to see if the controller is ready for us.
1396 		 */
1397 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
1398 			splx(s);
1399 			return (EBUSY);
1400 		}
1401 
1402 		/*
1403 		 * It's ready, send the command.
1404 		 */
1405 		mly_outl(mly, mly->mly_cmd_mailbox,
1406 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
1407 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
1408 		    (u_int64_t)mc->mc_packetphys >> 32);
1409 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
1410 	} else {
1411 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
1412 		off = (caddr_t)pkt - (caddr_t)mly->mly_mmbox;
1413 
1414 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1415 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1416 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1417 
1418 		/* Check to see if the next index is free yet. */
1419 		if (pkt->mmbox.flag != 0) {
1420 			splx(s);
1421 			return (EBUSY);
1422 		}
1423 
1424 		/* Copy in new command */
1425 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
1426 		    sizeof(pkt->mmbox.data));
1427 
1428 		/* Copy flag last. */
1429 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1430 
1431 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1432 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1433 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1434 
1435 		/* Signal controller and update index. */
1436 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
1437 		mly->mly_mmbox_cmd_idx =
1438 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
1439 	}
1440 
1441 	splx(s);
1442 	return (0);
1443 }
1444 
1445 /*
1446  * Pick up completed commands from the controller and handle accordingly.
1447  */
1448 int
1449 mly_intr(void *cookie)
1450 {
1451 	struct mly_ccb *mc;
1452 	union mly_status_packet	*sp;
1453 	u_int16_t slot;
1454 	int forus, off;
1455 	struct mly_softc *mly;
1456 
1457 	mly = cookie;
1458 	forus = 0;
1459 
1460 	/*
1461 	 * Pick up hardware-mailbox commands.
1462 	 */
1463 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
1464 		slot = mly_inw(mly, mly->mly_status_mailbox);
1465 
1466 		if (slot < MLY_SLOT_MAX) {
1467 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1468 			mc->mc_status =
1469 			    mly_inb(mly, mly->mly_status_mailbox + 2);
1470 			mc->mc_sense =
1471 			    mly_inb(mly, mly->mly_status_mailbox + 3);
1472 			mc->mc_resid =
1473 			    mly_inl(mly, mly->mly_status_mailbox + 4);
1474 
1475 			mly_ccb_complete(mly, mc);
1476 		} else {
1477 			/* Slot 0xffff may mean "extremely bogus command". */
1478 			printf("%s: got HM completion for illegal slot %u\n",
1479 			    mly->mly_dv.dv_xname, slot);
1480 		}
1481 
1482 		/* Unconditionally acknowledge status. */
1483 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
1484 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
1485 		forus = 1;
1486 	}
1487 
1488 	/*
1489 	 * Pick up memory-mailbox commands.
1490 	 */
1491 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
1492 		for (;;) {
1493 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
1494 			off = (caddr_t)sp - (caddr_t)mly->mly_mmbox;
1495 
1496 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1497 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1498 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1499 
1500 			/* Check for more status. */
1501 			if (sp->mmbox.flag == 0)
1502 				break;
1503 
1504 			/* Get slot number. */
1505 			slot = le16toh(sp->status.command_id);
1506 			if (slot < MLY_SLOT_MAX) {
1507 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1508 				mc->mc_status = sp->status.status;
1509 				mc->mc_sense = sp->status.sense_length;
1510 				mc->mc_resid = le32toh(sp->status.residue);
1511 				mly_ccb_complete(mly, mc);
1512 			} else {
1513 				/*
1514 				 * Slot 0xffff may mean "extremely bogus
1515 				 * command".
1516 				 */
1517 				printf("%s: got AM completion for illegal "
1518 				    "slot %u at %d\n", mly->mly_dv.dv_xname,
1519 				    slot, mly->mly_mmbox_sts_idx);
1520 			}
1521 
1522 			/* Clear and move to next index. */
1523 			sp->mmbox.flag = 0;
1524 			mly->mly_mmbox_sts_idx =
1525 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
1526 		}
1527 
1528 		/* Acknowledge that we have collected status value(s). */
1529 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
1530 		forus = 1;
1531 	}
1532 
1533 	/*
1534 	 * Run the queue.
1535 	 */
1536 	if (forus && SIMPLEQ_FIRST(&mly->mly_ccb_queue) != NULL)
1537 		mly_ccb_enqueue(mly, NULL);
1538 
1539 	return (forus);
1540 }
1541 
1542 /*
1543  * Process completed commands
1544  */
1545 static void
1546 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
1547 {
1548 	void (*complete)(struct mly_softc *, struct mly_ccb *);
1549 
1550 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1551 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1552 	    sizeof(union mly_cmd_packet),
1553 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1554 
1555 	complete = mc->mc_complete;
1556 	mc->mc_flags |= MLY_CCB_COMPLETE;
1557 
1558 	/*
1559 	 * Call completion handler or wake up sleeping consumer.
1560 	 */
1561 	if (complete != NULL)
1562 		(*complete)(mly, mc);
1563 	else
1564 		wakeup(mc);
1565 }
1566 
1567 /*
1568  * Allocate a command.
1569  */
1570 int
1571 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
1572 {
1573 	struct mly_ccb *mc;
1574 	int s;
1575 
1576 	s = splbio();
1577 	mc = SLIST_FIRST(&mly->mly_ccb_free);
1578 	if (mc != NULL)
1579 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
1580 	splx(s);
1581 
1582 	*mcp = mc;
1583 	return (mc == NULL ? EAGAIN : 0);
1584 }
1585 
1586 /*
1587  * Release a command back to the freelist.
1588  */
1589 void
1590 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
1591 {
1592 	int s;
1593 
1594 	/*
1595 	 * Fill in parts of the command that may cause confusion if a
1596 	 * consumer doesn't when we are later allocated.
1597 	 */
1598 	mc->mc_data = NULL;
1599 	mc->mc_flags = 0;
1600 	mc->mc_complete = NULL;
1601 	mc->mc_private = NULL;
1602 	mc->mc_packet->generic.command_control = 0;
1603 
1604 	/*
1605 	 * By default, we set up to overwrite the command packet with sense
1606 	 * information.
1607 	 */
1608 	mc->mc_packet->generic.sense_buffer_address =
1609 	    htole64(mc->mc_packetphys);
1610 	mc->mc_packet->generic.maximum_sense_size =
1611 	    sizeof(union mly_cmd_packet);
1612 
1613 	s = splbio();
1614 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
1615 	splx(s);
1616 }
1617 
1618 /*
1619  * Allocate and initialise command and packet structures.
1620  *
1621  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
1622  * allocation to that number.  If we don't yet know how many commands the
1623  * controller supports, allocate a very small set (suitable for initialisation
1624  * purposes only).
1625  */
1626 static int
1627 mly_alloc_ccbs(struct mly_softc *mly)
1628 {
1629 	struct mly_ccb *mc;
1630 	int i, rv;
1631 
1632 	if (mly->mly_controllerinfo == NULL)
1633 		mly->mly_ncmds = MLY_CCBS_RESV;
1634 	else {
1635 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
1636 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
1637 	}
1638 
1639 	/*
1640 	 * Allocate enough space for all the command packets in one chunk
1641 	 * and map them permanently into controller-visible space.
1642 	 */
1643 	rv = mly_dmamem_alloc(mly,
1644 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
1645 	    &mly->mly_pkt_dmamap, (caddr_t *)&mly->mly_pkt,
1646 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
1647 	if (rv)
1648 		return (rv);
1649 
1650 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
1651 	    M_DEVBUF, M_NOWAIT);
1652 	memset(mly->mly_ccbs, 0, sizeof(struct mly_ccb) * mly->mly_ncmds);
1653 
1654 	for (i = 0; i < mly->mly_ncmds; i++) {
1655 		mc = mly->mly_ccbs + i;
1656 		mc->mc_slot = MLY_SLOT_START + i;
1657 		mc->mc_packet = mly->mly_pkt + i;
1658 		mc->mc_packetphys = mly->mly_pkt_busaddr +
1659 		    (i * sizeof(union mly_cmd_packet));
1660 
1661 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
1662 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
1663 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1664 		    &mc->mc_datamap);
1665 		if (rv) {
1666 			mly_release_ccbs(mly);
1667 			return (rv);
1668 		}
1669 
1670 		mly_ccb_free(mly, mc);
1671 	}
1672 
1673 	return (0);
1674 }
1675 
1676 /*
1677  * Free all the storage held by commands.
1678  *
1679  * Must be called with all commands on the free list.
1680  */
1681 static void
1682 mly_release_ccbs(struct mly_softc *mly)
1683 {
1684 	struct mly_ccb *mc;
1685 
1686 	/* Throw away command buffer DMA maps. */
1687 	while (mly_ccb_alloc(mly, &mc) == 0)
1688 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
1689 
1690 	/* Release CCB storage. */
1691 	free(mly->mly_ccbs, M_DEVBUF);
1692 
1693 	/* Release the packet storage. */
1694 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
1695 	    mly->mly_pkt_dmamap, (caddr_t)mly->mly_pkt, &mly->mly_pkt_seg);
1696 }
1697 
1698 /*
1699  * Map a command into controller-visible space.
1700  */
1701 static int
1702 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
1703 {
1704 	struct mly_cmd_generic *gen;
1705 	struct mly_sg_entry *sg;
1706 	bus_dma_segment_t *ds;
1707 	int flg, nseg, rv;
1708 
1709 #ifdef DIAGNOSTIC
1710 	/* Don't map more than once. */
1711 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
1712 		panic("mly_ccb_map: already mapped");
1713 	mc->mc_flags |= MLY_CCB_MAPPED;
1714 
1715 	/* Does the command have a data buffer? */
1716 	if (mc->mc_data == NULL)
1717 		panic("mly_ccb_map: no data buffer");
1718 #endif
1719 
1720 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
1721 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1722 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
1723 	    BUS_DMA_READ : BUS_DMA_WRITE));
1724 	if (rv != 0)
1725 		return (rv);
1726 
1727 	gen = &mc->mc_packet->generic;
1728 
1729 	/*
1730 	 * Can we use the transfer structure directly?
1731 	 */
1732 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
1733 		mc->mc_sgoff = -1;
1734 		sg = &gen->transfer.direct.sg[0];
1735 	} else {
1736 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
1737 		    MLY_MAX_SEGS;
1738 		sg = mly->mly_sg + mc->mc_sgoff;
1739 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
1740 		gen->transfer.indirect.entries[0] = htole16(nseg);
1741 		gen->transfer.indirect.table_physaddr[0] =
1742 		    htole64(mly->mly_sg_busaddr +
1743 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
1744 	}
1745 
1746 	/*
1747 	 * Fill the S/G table.
1748 	 */
1749 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
1750 		sg->physaddr = htole64(ds->ds_addr);
1751 		sg->length = htole64(ds->ds_len);
1752 	}
1753 
1754 	/*
1755 	 * Sync up the data map.
1756 	 */
1757 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1758 		flg = BUS_DMASYNC_PREREAD;
1759 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
1760 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
1761 		flg = BUS_DMASYNC_PREWRITE;
1762 	}
1763 
1764 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1765 
1766 	/*
1767 	 * Sync up the chained S/G table, if we're using one.
1768 	 */
1769 	if (mc->mc_sgoff == -1)
1770 		return (0);
1771 
1772 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1773 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1774 
1775 	return (0);
1776 }
1777 
1778 /*
1779  * Unmap a command from controller-visible space.
1780  */
1781 static void
1782 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
1783 {
1784 	int flg;
1785 
1786 #ifdef DIAGNOSTIC
1787 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
1788 		panic("mly_ccb_unmap: not mapped");
1789 	mc->mc_flags &= ~MLY_CCB_MAPPED;
1790 #endif
1791 
1792 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1793 		flg = BUS_DMASYNC_POSTREAD;
1794 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
1795 		flg = BUS_DMASYNC_POSTWRITE;
1796 
1797 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1798 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
1799 
1800 	if (mc->mc_sgoff == -1)
1801 		return;
1802 
1803 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1804 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
1805 }
1806 
1807 /*
1808  * Adjust the size of each I/O before it passes to the SCSI layer.
1809  */
1810 static void
1811 mly_scsipi_minphys(struct buf *bp)
1812 {
1813 
1814 	if (bp->b_bcount > MLY_MAX_XFER)
1815 		bp->b_bcount = MLY_MAX_XFER;
1816 	minphys(bp);
1817 }
1818 
1819 /*
1820  * Start a SCSI command.
1821  */
1822 static void
1823 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1824 		   void *arg)
1825 {
1826 	struct mly_ccb *mc;
1827 	struct mly_cmd_scsi_small *ss;
1828 	struct scsipi_xfer *xs;
1829 	struct scsipi_periph *periph;
1830 	struct mly_softc *mly;
1831 	struct mly_btl *btl;
1832 	int s, tmp;
1833 
1834 	mly = (void *)chan->chan_adapter->adapt_dev;
1835 
1836 	switch (req) {
1837 	case ADAPTER_REQ_RUN_XFER:
1838 		xs = arg;
1839 		periph = xs->xs_periph;
1840 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
1841 		s = splbio();
1842 		tmp = btl->mb_flags;
1843 		splx(s);
1844 
1845 		/*
1846 		 * Check for I/O attempt to a protected or non-existant
1847 		 * device.
1848 		 */
1849 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
1850 			xs->error = XS_SELTIMEOUT;
1851 			scsipi_done(xs);
1852 			break;
1853 		}
1854 
1855 #ifdef DIAGNOSTIC
1856 		/* XXX Increase if/when we support large SCSI commands. */
1857 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
1858 			printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
1859 			xs->error = XS_DRIVER_STUFFUP;
1860 			scsipi_done(xs);
1861 			break;
1862 		}
1863 #endif
1864 
1865 		if (mly_ccb_alloc(mly, &mc)) {
1866 			xs->error = XS_RESOURCE_SHORTAGE;
1867 			scsipi_done(xs);
1868 			break;
1869 		}
1870 
1871 		/* Build the command. */
1872 		mc->mc_data = xs->data;
1873 		mc->mc_length = xs->datalen;
1874 		mc->mc_complete = mly_scsipi_complete;
1875 		mc->mc_private = xs;
1876 
1877 		/* Build the packet for the controller. */
1878 		ss = &mc->mc_packet->scsi_small;
1879 		ss->opcode = MDACMD_SCSI;
1880 #ifdef notdef
1881 		/*
1882 		 * XXX FreeBSD does this, but it doesn't fix anything,
1883 		 * XXX and appears potentially harmful.
1884 		 */
1885 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
1886 #endif
1887 
1888 		ss->data_size = htole32(xs->datalen);
1889 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
1890 		    periph->periph_target, periph->periph_lun), ss->addr);
1891 
1892 		if (xs->timeout < 60 * 1000)
1893 			ss->timeout = xs->timeout / 1000 |
1894 			    MLY_TIMEOUT_SECONDS;
1895 		else if (xs->timeout < 60 * 60 * 1000)
1896 			ss->timeout = xs->timeout / (60 * 1000) |
1897 			    MLY_TIMEOUT_MINUTES;
1898 		else
1899 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
1900 			    MLY_TIMEOUT_HOURS;
1901 
1902 		ss->maximum_sense_size = sizeof(xs->sense);
1903 		ss->cdb_length = xs->cmdlen;
1904 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
1905 
1906 		if (mc->mc_length != 0) {
1907 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
1908 				mc->mc_flags |= MLY_CCB_DATAOUT;
1909 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
1910 				mc->mc_flags |= MLY_CCB_DATAIN;
1911 
1912 			if (mly_ccb_map(mly, mc) != 0) {
1913 				xs->error = XS_DRIVER_STUFFUP;
1914 				mly_ccb_free(mly, mc);
1915 				scsipi_done(xs);
1916 				break;
1917 			}
1918 		}
1919 
1920 		/*
1921 		 * Give the command to the controller.
1922 		 */
1923 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
1924 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
1925 				xs->error = XS_REQUEUE;
1926 				if (mc->mc_length != 0)
1927 					mly_ccb_unmap(mly, mc);
1928 				mly_ccb_free(mly, mc);
1929 				scsipi_done(xs);
1930 			}
1931 		} else
1932 			mly_ccb_enqueue(mly, mc);
1933 
1934 		break;
1935 
1936 	case ADAPTER_REQ_GROW_RESOURCES:
1937 		/*
1938 		 * Not supported.
1939 		 */
1940 		break;
1941 
1942 	case ADAPTER_REQ_SET_XFER_MODE:
1943 		/*
1944 		 * We can't change the transfer mode, but at least let
1945 		 * scsipi know what the adapter has negotiated.
1946 		 */
1947 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
1948 		break;
1949 	}
1950 }
1951 
1952 /*
1953  * Handle completion of a SCSI command.
1954  */
1955 static void
1956 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
1957 {
1958 	struct scsipi_xfer *xs;
1959 	struct scsipi_channel *chan;
1960 	struct scsipi_inquiry_data *inq;
1961 	struct mly_btl *btl;
1962 	int target, sl, s;
1963 	const char *p;
1964 
1965 	xs = mc->mc_private;
1966 	xs->status = mc->mc_status;
1967 
1968 	/*
1969 	 * XXX The `resid' value as returned by the controller appears to be
1970 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
1971 	 * count?
1972 	 */
1973 	xs->resid = 0; /* mc->mc_resid; */
1974 
1975 	if (mc->mc_length != 0)
1976 		mly_ccb_unmap(mly, mc);
1977 
1978 	switch (mc->mc_status) {
1979 	case SCSI_OK:
1980 		/*
1981 		 * In order to report logical device type and status, we
1982 		 * overwrite the result of the INQUIRY command to logical
1983 		 * devices.
1984 		 */
1985 		if (xs->cmd->opcode == INQUIRY) {
1986 			chan = xs->xs_periph->periph_channel;
1987 			target = xs->xs_periph->periph_target;
1988 			btl = &mly->mly_btl[chan->chan_channel][target];
1989 
1990 			s = splbio();
1991 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
1992 				inq = (struct scsipi_inquiry_data *)xs->data;
1993 				mly_padstr(inq->vendor, "MYLEX", 8);
1994 				p = mly_describe_code(mly_table_device_type,
1995 				    btl->mb_type);
1996 				mly_padstr(inq->product, p, 16);
1997 				p = mly_describe_code(mly_table_device_state,
1998 				    btl->mb_state);
1999 				mly_padstr(inq->revision, p, 4);
2000 			}
2001 			splx(s);
2002 		}
2003 
2004 		xs->error = XS_NOERROR;
2005 		break;
2006 
2007 	case SCSI_CHECK:
2008 		sl = mc->mc_sense;
2009 		if (sl > sizeof(xs->sense.scsi_sense))
2010 			sl = sizeof(xs->sense.scsi_sense);
2011 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
2012 		xs->error = XS_SENSE;
2013 		break;
2014 
2015 	case SCSI_BUSY:
2016 	case SCSI_QUEUE_FULL:
2017 		xs->error = XS_BUSY;
2018 		break;
2019 
2020 	default:
2021 		printf("%s: unknown SCSI status 0x%x\n",
2022 		    mly->mly_dv.dv_xname, xs->status);
2023 		xs->error = XS_DRIVER_STUFFUP;
2024 		break;
2025 	}
2026 
2027 	mly_ccb_free(mly, mc);
2028 	scsipi_done(xs);
2029 }
2030 
2031 /*
2032  * Notify scsipi about a target's transfer mode.
2033  */
2034 static void
2035 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
2036 {
2037 	struct mly_btl *btl;
2038 	int s;
2039 
2040 	btl = &mly->mly_btl[bus][xm->xm_target];
2041 	xm->xm_mode = 0;
2042 
2043 	s = splbio();
2044 
2045 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
2046 		if (btl->mb_speed == 0) {
2047 			xm->xm_period = 0;
2048 			xm->xm_offset = 0;
2049 		} else {
2050 			xm->xm_period = 12;			/* XXX */
2051 			xm->xm_offset = 8;			/* XXX */
2052 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
2053 		}
2054 
2055 		switch (btl->mb_width) {
2056 		case 32:
2057 			xm->xm_mode = PERIPH_CAP_WIDE32;
2058 			break;
2059 		case 16:
2060 			xm->xm_mode = PERIPH_CAP_WIDE16;
2061 			break;
2062 		default:
2063 			xm->xm_mode = 0;
2064 			break;
2065 		}
2066 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
2067 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
2068 		xm->xm_period = 12;
2069 		xm->xm_offset = 8;
2070 	}
2071 
2072 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
2073 		xm->xm_mode |= PERIPH_CAP_TQING;
2074 
2075 	splx(s);
2076 
2077 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
2078 }
2079 
2080 /*
2081  * ioctl hook; used here only to initiate low-level rescans.
2082  */
2083 static int
2084 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, caddr_t data,
2085 		 int flag, struct proc *p)
2086 {
2087 	struct mly_softc *mly;
2088 	int rv;
2089 
2090 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
2091 
2092 	switch (cmd) {
2093 	case SCBUSIOLLSCAN:
2094 		mly_scan_channel(mly, chan->chan_channel);
2095 		rv = 0;
2096 		break;
2097 	default:
2098 		rv = ENOTTY;
2099 		break;
2100 	}
2101 
2102 	return (rv);
2103 }
2104 
2105 /*
2106  * Handshake with the firmware while the card is being initialised.
2107  */
2108 static int
2109 mly_fwhandshake(struct mly_softc *mly)
2110 {
2111 	u_int8_t error, param0, param1;
2112 	int spinup;
2113 
2114 	spinup = 0;
2115 
2116 	/* Set HM_STSACK and let the firmware initialise. */
2117 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
2118 	DELAY(1000);	/* too short? */
2119 
2120 	/* If HM_STSACK is still true, the controller is initialising. */
2121 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
2122 		return (0);
2123 
2124 	printf("%s: controller initialisation started\n",
2125 	    mly->mly_dv.dv_xname);
2126 
2127 	/*
2128 	 * Spin waiting for initialisation to finish, or for a message to be
2129 	 * delivered.
2130 	 */
2131 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
2132 		/* Check for a message */
2133 		if (!mly_error_valid(mly))
2134 			continue;
2135 
2136 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
2137 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
2138 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
2139 
2140 		switch (error) {
2141 		case MLY_MSG_SPINUP:
2142 			if (!spinup) {
2143 				printf("%s: drive spinup in progress\n",
2144 				    mly->mly_dv.dv_xname);
2145 				spinup = 1;
2146 			}
2147 			break;
2148 
2149 		case MLY_MSG_RACE_RECOVERY_FAIL:
2150 			printf("%s: mirror race recovery failed - \n",
2151 			    mly->mly_dv.dv_xname);
2152 			printf("%s: one or more drives offline\n",
2153 			    mly->mly_dv.dv_xname);
2154 			break;
2155 
2156 		case MLY_MSG_RACE_IN_PROGRESS:
2157 			printf("%s: mirror race recovery in progress\n",
2158 			    mly->mly_dv.dv_xname);
2159 			break;
2160 
2161 		case MLY_MSG_RACE_ON_CRITICAL:
2162 			printf("%s: mirror race recovery on critical drive\n",
2163 			    mly->mly_dv.dv_xname);
2164 			break;
2165 
2166 		case MLY_MSG_PARITY_ERROR:
2167 			printf("%s: FATAL MEMORY PARITY ERROR\n",
2168 			    mly->mly_dv.dv_xname);
2169 			return (ENXIO);
2170 
2171 		default:
2172 			printf("%s: unknown initialisation code 0x%x\n",
2173 			    mly->mly_dv.dv_xname, error);
2174 			break;
2175 		}
2176 	}
2177 
2178 	return (0);
2179 }
2180 
2181 /*
2182  * Space-fill a character string
2183  */
2184 static void
2185 mly_padstr(char *dst, const char *src, int len)
2186 {
2187 
2188 	while (len-- > 0) {
2189 		if (*src != '\0')
2190 			*dst++ = *src++;
2191 		else
2192 			*dst++ = ' ';
2193 	}
2194 }
2195 
2196 /*
2197  * Allocate DMA safe memory.
2198  */
2199 static int
2200 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
2201 		 caddr_t *kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
2202 {
2203 	int rseg, rv, state;
2204 
2205 	state = 0;
2206 
2207 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, NBPG, 0,
2208 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
2209 		printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
2210 		goto bad;
2211 	}
2212 
2213 	state++;
2214 
2215 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
2216 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2217 		printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
2218 		goto bad;
2219 	}
2220 
2221 	state++;
2222 
2223 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
2224 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
2225 		printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
2226 		goto bad;
2227 	}
2228 
2229 	state++;
2230 
2231 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
2232 	    NULL, BUS_DMA_NOWAIT)) != 0) {
2233 		printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
2234 		goto bad;
2235 	}
2236 
2237 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
2238 	memset(*kva, 0, size);
2239 	return (0);
2240 
2241  bad:
2242 	if (state > 2)
2243 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
2244 	if (state > 1)
2245 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
2246 	if (state > 0)
2247 		bus_dmamem_free(mly->mly_dmat, seg, 1);
2248 
2249 	return (rv);
2250 }
2251 
2252 /*
2253  * Free DMA safe memory.
2254  */
2255 static void
2256 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
2257 		caddr_t kva, bus_dma_segment_t *seg)
2258 {
2259 
2260 	bus_dmamap_unload(mly->mly_dmat, dmamap);
2261 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
2262 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
2263 	bus_dmamem_free(mly->mly_dmat, seg, 1);
2264 }
2265 
2266 
2267 /*
2268  * Accept an open operation on the control device.
2269  */
2270 int
2271 mlyopen(dev_t dev, int flag, int mode, struct proc *p)
2272 {
2273 	struct mly_softc *mly;
2274 
2275 	if ((mly = device_lookup(&mly_cd, minor(dev))) == NULL)
2276 		return (ENXIO);
2277 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
2278 		return (ENXIO);
2279 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
2280 		return (EBUSY);
2281 
2282 	mly->mly_state |= MLY_STATE_OPEN;
2283 	return (0);
2284 }
2285 
2286 /*
2287  * Accept the last close on the control device.
2288  */
2289 int
2290 mlyclose(dev_t dev, int flag, int mode, struct proc *p)
2291 {
2292 	struct mly_softc *mly;
2293 
2294 	mly = device_lookup(&mly_cd, minor(dev));
2295 	mly->mly_state &= ~MLY_STATE_OPEN;
2296 	return (0);
2297 }
2298 
2299 /*
2300  * Handle control operations.
2301  */
2302 int
2303 mlyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
2304 {
2305 	struct mly_softc *mly;
2306 	int rv;
2307 
2308 	if (securelevel >= 2)
2309 		return (EPERM);
2310 
2311 	mly = device_lookup(&mly_cd, minor(dev));
2312 
2313 	switch (cmd) {
2314 	case MLYIO_COMMAND:
2315 		rv = mly_user_command(mly, (void *)data);
2316 		break;
2317 	case MLYIO_HEALTH:
2318 		rv = mly_user_health(mly, (void *)data);
2319 		break;
2320 	default:
2321 		rv = ENOTTY;
2322 		break;
2323 	}
2324 
2325 	return (rv);
2326 }
2327 
2328 /*
2329  * Execute a command passed in from userspace.
2330  *
2331  * The control structure contains the actual command for the controller, as
2332  * well as the user-space data pointer and data size, and an optional sense
2333  * buffer size/pointer.  On completion, the data size is adjusted to the
2334  * command residual, and the sense buffer size to the size of the returned
2335  * sense data.
2336  */
2337 static int
2338 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
2339 {
2340 	struct mly_ccb	*mc;
2341 	int rv, mapped;
2342 
2343 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
2344 		return (rv);
2345 
2346 	mapped = 0;
2347 	mc->mc_data = NULL;
2348 
2349 	/*
2350 	 * Handle data size/direction.
2351 	 */
2352 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
2353 		if (mc->mc_length > MAXPHYS) {
2354 			rv = EINVAL;
2355 			goto out;
2356 		}
2357 
2358 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
2359 		if (mc->mc_data == NULL) {
2360 			rv = ENOMEM;
2361 			goto out;
2362 		}
2363 
2364 		if (uc->DataTransferLength > 0) {
2365 			mc->mc_flags |= MLY_CCB_DATAIN;
2366 			memset(mc->mc_data, 0, mc->mc_length);
2367 		}
2368 
2369 		if (uc->DataTransferLength < 0) {
2370 			mc->mc_flags |= MLY_CCB_DATAOUT;
2371 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
2372 			    mc->mc_length);
2373 			if (rv != 0)
2374 				goto out;
2375 		}
2376 
2377 		if ((rv = mly_ccb_map(mly, mc)) != 0)
2378 			goto out;
2379 		mapped = 1;
2380 	}
2381 
2382 	/* Copy in the command and execute it. */
2383 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
2384 
2385 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
2386 		goto out;
2387 
2388 	/* Return the data to userspace. */
2389 	if (uc->DataTransferLength > 0) {
2390 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
2391 		    mc->mc_length);
2392 		if (rv != 0)
2393 			goto out;
2394 	}
2395 
2396 	/* Return the sense buffer to userspace. */
2397 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
2398 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2399 		    min(uc->RequestSenseLength, mc->mc_sense));
2400 		if (rv != 0)
2401 			goto out;
2402 	}
2403 
2404 	/* Return command results to userspace (caller will copy out). */
2405 	uc->DataTransferLength = mc->mc_resid;
2406 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2407 	uc->CommandStatus = mc->mc_status;
2408 	rv = 0;
2409 
2410  out:
2411  	if (mapped)
2412  		mly_ccb_unmap(mly, mc);
2413 	if (mc->mc_data != NULL)
2414 		free(mc->mc_data, M_DEVBUF);
2415 	if (mc != NULL)
2416 		mly_ccb_free(mly, mc);
2417 
2418 	return (rv);
2419 }
2420 
2421 /*
2422  * Return health status to userspace.  If the health change index in the
2423  * user structure does not match that currently exported by the controller,
2424  * we return the current status immediately.  Otherwise, we block until
2425  * either interrupted or new status is delivered.
2426  */
2427 static int
2428 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
2429 {
2430 	struct mly_health_status mh;
2431 	int rv, s;
2432 
2433 	/* Fetch the current health status from userspace. */
2434 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
2435 	if (rv != 0)
2436 		return (rv);
2437 
2438 	/* spin waiting for a status update */
2439 	s = splbio();
2440 	if (mly->mly_event_change == mh.change_counter)
2441 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
2442 		    "mlyhealth", 0);
2443 	splx(s);
2444 
2445 	if (rv == 0) {
2446 		/*
2447 		 * Copy the controller's health status buffer out (there is
2448 		 * a race here if it changes again).
2449 		 */
2450 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
2451 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
2452 	}
2453 
2454 	return (rv);
2455 }
2456