xref: /netbsd-src/sys/dev/pci/ixgbe/ixgbe_common.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* $NetBSD: ixgbe_common.c,v 1.22 2018/04/04 08:59:22 msaitoh Exp $ */
2 
3 /******************************************************************************
4   SPDX-License-Identifier: BSD-3-Clause
5 
6   Copyright (c) 2001-2017, Intel Corporation
7   All rights reserved.
8 
9   Redistribution and use in source and binary forms, with or without
10   modification, are permitted provided that the following conditions are met:
11 
12    1. Redistributions of source code must retain the above copyright notice,
13       this list of conditions and the following disclaimer.
14 
15    2. Redistributions in binary form must reproduce the above copyright
16       notice, this list of conditions and the following disclaimer in the
17       documentation and/or other materials provided with the distribution.
18 
19    3. Neither the name of the Intel Corporation nor the names of its
20       contributors may be used to endorse or promote products derived from
21       this software without specific prior written permission.
22 
23   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33   POSSIBILITY OF SUCH DAMAGE.
34 
35 ******************************************************************************/
36 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 
38 #include "ixgbe_common.h"
39 #include "ixgbe_phy.h"
40 #include "ixgbe_dcb.h"
41 #include "ixgbe_dcb_82599.h"
42 #include "ixgbe_api.h"
43 
44 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
45 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
46 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
47 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
48 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
49 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
50 					u16 count);
51 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
52 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
53 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
54 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
55 
56 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
57 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
58 					 u16 *san_mac_offset);
59 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 					     u16 words, u16 *data);
61 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
62 					      u16 words, u16 *data);
63 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
64 						 u16 offset);
65 
66 /**
67  *  ixgbe_init_ops_generic - Inits function ptrs
68  *  @hw: pointer to the hardware structure
69  *
70  *  Initialize the function pointers.
71  **/
72 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
73 {
74 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
75 	struct ixgbe_mac_info *mac = &hw->mac;
76 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
77 
78 	DEBUGFUNC("ixgbe_init_ops_generic");
79 
80 	/* EEPROM */
81 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
82 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
83 	if (eec & IXGBE_EEC_PRES) {
84 		eeprom->ops.read = ixgbe_read_eerd_generic;
85 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
86 	} else {
87 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
88 		eeprom->ops.read_buffer =
89 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
90 	}
91 	eeprom->ops.write = ixgbe_write_eeprom_generic;
92 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
93 	eeprom->ops.validate_checksum =
94 				      ixgbe_validate_eeprom_checksum_generic;
95 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
96 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
97 
98 	/* MAC */
99 	mac->ops.init_hw = ixgbe_init_hw_generic;
100 	mac->ops.reset_hw = NULL;
101 	mac->ops.start_hw = ixgbe_start_hw_generic;
102 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
103 	mac->ops.get_media_type = NULL;
104 	mac->ops.get_supported_physical_layer = NULL;
105 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
106 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
107 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
108 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
109 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
110 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
111 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
112 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
113 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
114 
115 	/* LEDs */
116 	mac->ops.led_on = ixgbe_led_on_generic;
117 	mac->ops.led_off = ixgbe_led_off_generic;
118 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
119 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
120 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
121 
122 	/* RAR, Multicast, VLAN */
123 	mac->ops.set_rar = ixgbe_set_rar_generic;
124 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
125 	mac->ops.insert_mac_addr = NULL;
126 	mac->ops.set_vmdq = NULL;
127 	mac->ops.clear_vmdq = NULL;
128 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
129 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
130 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
131 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
132 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
133 	mac->ops.clear_vfta = NULL;
134 	mac->ops.set_vfta = NULL;
135 	mac->ops.set_vlvf = NULL;
136 	mac->ops.init_uta_tables = NULL;
137 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
138 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
139 
140 	/* Flow Control */
141 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
142 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
143 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
144 
145 	/* Link */
146 	mac->ops.get_link_capabilities = NULL;
147 	mac->ops.setup_link = NULL;
148 	mac->ops.check_link = NULL;
149 	mac->ops.dmac_config = NULL;
150 	mac->ops.dmac_update_tcs = NULL;
151 	mac->ops.dmac_config_tcs = NULL;
152 
153 	return IXGBE_SUCCESS;
154 }
155 
156 /**
157  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
158  * of flow control
159  * @hw: pointer to hardware structure
160  *
161  * This function returns TRUE if the device supports flow control
162  * autonegotiation, and FALSE if it does not.
163  *
164  **/
165 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
166 {
167 	bool supported = FALSE;
168 	ixgbe_link_speed speed;
169 	bool link_up;
170 
171 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
172 
173 	switch (hw->phy.media_type) {
174 	case ixgbe_media_type_fiber_fixed:
175 	case ixgbe_media_type_fiber_qsfp:
176 	case ixgbe_media_type_fiber:
177 		/* flow control autoneg black list */
178 		switch (hw->device_id) {
179 		case IXGBE_DEV_ID_X550EM_A_SFP:
180 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
181 		case IXGBE_DEV_ID_X550EM_A_QSFP:
182 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
183 			supported = FALSE;
184 			break;
185 		default:
186 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
187 			/* if link is down, assume supported */
188 			if (link_up)
189 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
190 				    TRUE : FALSE;
191 			else
192 				supported = TRUE;
193 		}
194 
195 		break;
196 	case ixgbe_media_type_backplane:
197 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
198 			supported = FALSE;
199 		else
200 			supported = TRUE;
201 		break;
202 	case ixgbe_media_type_copper:
203 		/* only some copper devices support flow control autoneg */
204 		switch (hw->device_id) {
205 		case IXGBE_DEV_ID_82599_T3_LOM:
206 		case IXGBE_DEV_ID_X540T:
207 		case IXGBE_DEV_ID_X540T1:
208 		case IXGBE_DEV_ID_X540_BYPASS:
209 		case IXGBE_DEV_ID_X550T:
210 		case IXGBE_DEV_ID_X550T1:
211 		case IXGBE_DEV_ID_X550EM_X_10G_T:
212 		case IXGBE_DEV_ID_X550EM_A_10G_T:
213 		case IXGBE_DEV_ID_X550EM_A_1G_T:
214 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
215 			supported = TRUE;
216 			break;
217 		default:
218 			supported = FALSE;
219 		}
220 	default:
221 		break;
222 	}
223 
224 	if (!supported)
225 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
226 			      "Device %x does not support flow control autoneg",
227 			      hw->device_id);
228 
229 	return supported;
230 }
231 
232 /**
233  *  ixgbe_setup_fc_generic - Set up flow control
234  *  @hw: pointer to hardware structure
235  *
236  *  Called at init time to set up flow control.
237  **/
238 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
239 {
240 	s32 ret_val = IXGBE_SUCCESS;
241 	u32 reg = 0, reg_bp = 0;
242 	u16 reg_cu = 0;
243 	bool locked = FALSE;
244 
245 	DEBUGFUNC("ixgbe_setup_fc_generic");
246 
247 	/* Validate the requested mode */
248 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
249 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
250 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
251 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
252 		goto out;
253 	}
254 
255 	/*
256 	 * 10gig parts do not have a word in the EEPROM to determine the
257 	 * default flow control setting, so we explicitly set it to full.
258 	 */
259 	if (hw->fc.requested_mode == ixgbe_fc_default)
260 		hw->fc.requested_mode = ixgbe_fc_full;
261 
262 	/*
263 	 * Set up the 1G and 10G flow control advertisement registers so the
264 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
265 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
266 	 */
267 	switch (hw->phy.media_type) {
268 	case ixgbe_media_type_backplane:
269 		/* some MAC's need RMW protection on AUTOC */
270 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
271 		if (ret_val != IXGBE_SUCCESS)
272 			goto out;
273 
274 		/* fall through - only backplane uses autoc */
275 	case ixgbe_media_type_fiber_fixed:
276 	case ixgbe_media_type_fiber_qsfp:
277 	case ixgbe_media_type_fiber:
278 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
279 
280 		break;
281 	case ixgbe_media_type_copper:
282 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
283 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
284 		break;
285 	default:
286 		break;
287 	}
288 
289 	/*
290 	 * The possible values of fc.requested_mode are:
291 	 * 0: Flow control is completely disabled
292 	 * 1: Rx flow control is enabled (we can receive pause frames,
293 	 *    but not send pause frames).
294 	 * 2: Tx flow control is enabled (we can send pause frames but
295 	 *    we do not support receiving pause frames).
296 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
297 	 * other: Invalid.
298 	 */
299 	switch (hw->fc.requested_mode) {
300 	case ixgbe_fc_none:
301 		/* Flow control completely disabled by software override. */
302 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
303 		if (hw->phy.media_type == ixgbe_media_type_backplane)
304 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
305 				    IXGBE_AUTOC_ASM_PAUSE);
306 		else if (hw->phy.media_type == ixgbe_media_type_copper)
307 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
308 		break;
309 	case ixgbe_fc_tx_pause:
310 		/*
311 		 * Tx Flow control is enabled, and Rx Flow control is
312 		 * disabled by software override.
313 		 */
314 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
315 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
316 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
317 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
318 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
319 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
320 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
321 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
322 		}
323 		break;
324 	case ixgbe_fc_rx_pause:
325 		/*
326 		 * Rx Flow control is enabled and Tx Flow control is
327 		 * disabled by software override. Since there really
328 		 * isn't a way to advertise that we are capable of RX
329 		 * Pause ONLY, we will advertise that we support both
330 		 * symmetric and asymmetric Rx PAUSE, as such we fall
331 		 * through to the fc_full statement.  Later, we will
332 		 * disable the adapter's ability to send PAUSE frames.
333 		 */
334 	case ixgbe_fc_full:
335 		/* Flow control (both Rx and Tx) is enabled by SW override. */
336 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
337 		if (hw->phy.media_type == ixgbe_media_type_backplane)
338 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
339 				  IXGBE_AUTOC_ASM_PAUSE;
340 		else if (hw->phy.media_type == ixgbe_media_type_copper)
341 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
342 		break;
343 	default:
344 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
345 			     "Flow control param set incorrectly\n");
346 		ret_val = IXGBE_ERR_CONFIG;
347 		goto out;
348 		break;
349 	}
350 
351 	if (hw->mac.type < ixgbe_mac_X540) {
352 		/*
353 		 * Enable auto-negotiation between the MAC & PHY;
354 		 * the MAC will advertise clause 37 flow control.
355 		 */
356 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
357 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
358 
359 		/* Disable AN timeout */
360 		if (hw->fc.strict_ieee)
361 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
362 
363 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
364 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
365 	}
366 
367 	/*
368 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
369 	 * and copper. There is no need to set the PCS1GCTL register.
370 	 *
371 	 */
372 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
373 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
374 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
375 		if (ret_val)
376 			goto out;
377 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
378 		    (ixgbe_device_supports_autoneg_fc(hw))) {
379 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
380 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
381 	}
382 
383 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
384 out:
385 	return ret_val;
386 }
387 
388 /**
389  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
390  *  @hw: pointer to hardware structure
391  *
392  *  Starts the hardware by filling the bus info structure and media type, clears
393  *  all on chip counters, initializes receive address registers, multicast
394  *  table, VLAN filter table, calls routine to set up link and flow control
395  *  settings, and leaves transmit and receive units disabled and uninitialized
396  **/
397 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
398 {
399 	s32 ret_val;
400 	u32 ctrl_ext;
401 	u16 device_caps;
402 
403 	DEBUGFUNC("ixgbe_start_hw_generic");
404 
405 	/* Set the media type */
406 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
407 
408 	/* PHY ops initialization must be done in reset_hw() */
409 
410 	/* Clear the VLAN filter table */
411 	hw->mac.ops.clear_vfta(hw);
412 
413 	/* Clear statistics registers */
414 	hw->mac.ops.clear_hw_cntrs(hw);
415 
416 	/* Set No Snoop Disable */
417 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
418 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
419 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
420 	IXGBE_WRITE_FLUSH(hw);
421 
422 	/* Setup flow control */
423 	ret_val = ixgbe_setup_fc(hw);
424 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
425 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
426 		return ret_val;
427 	}
428 
429 	/* Cache bit indicating need for crosstalk fix */
430 	switch (hw->mac.type) {
431 	case ixgbe_mac_82599EB:
432 	case ixgbe_mac_X550EM_x:
433 	case ixgbe_mac_X550EM_a:
434 		hw->mac.ops.get_device_caps(hw, &device_caps);
435 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
436 			hw->need_crosstalk_fix = FALSE;
437 		else
438 			hw->need_crosstalk_fix = TRUE;
439 		break;
440 	default:
441 		hw->need_crosstalk_fix = FALSE;
442 		break;
443 	}
444 
445 	/* Clear adapter stopped flag */
446 	hw->adapter_stopped = FALSE;
447 
448 	return IXGBE_SUCCESS;
449 }
450 
451 /**
452  *  ixgbe_start_hw_gen2 - Init sequence for common device family
453  *  @hw: pointer to hw structure
454  *
455  * Performs the init sequence common to the second generation
456  * of 10 GbE devices.
457  * Devices in the second generation:
458  *     82599
459  *     X540
460  **/
461 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
462 {
463 	u32 i;
464 	u32 regval;
465 
466 	/* Clear the rate limiters */
467 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
468 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
469 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
470 	}
471 	IXGBE_WRITE_FLUSH(hw);
472 
473 	/* Disable relaxed ordering */
474 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
475 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
476 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
477 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
478 	}
479 
480 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
481 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
482 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
483 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
484 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
485 	}
486 
487 	return IXGBE_SUCCESS;
488 }
489 
490 /**
491  *  ixgbe_init_hw_generic - Generic hardware initialization
492  *  @hw: pointer to hardware structure
493  *
494  *  Initialize the hardware by resetting the hardware, filling the bus info
495  *  structure and media type, clears all on chip counters, initializes receive
496  *  address registers, multicast table, VLAN filter table, calls routine to set
497  *  up link and flow control settings, and leaves transmit and receive units
498  *  disabled and uninitialized
499  **/
500 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
501 {
502 	s32 status;
503 
504 	DEBUGFUNC("ixgbe_init_hw_generic");
505 
506 	/* Reset the hardware */
507 	status = hw->mac.ops.reset_hw(hw);
508 
509 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
510 		/* Start the HW */
511 		status = hw->mac.ops.start_hw(hw);
512 	}
513 
514 	/* Initialize the LED link active for LED blink support */
515 	if (hw->mac.ops.init_led_link_act)
516 		hw->mac.ops.init_led_link_act(hw);
517 
518 	if (status != IXGBE_SUCCESS)
519 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
520 
521 	return status;
522 }
523 
524 /**
525  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
526  *  @hw: pointer to hardware structure
527  *
528  *  Clears all hardware statistics counters by reading them from the hardware
529  *  Statistics counters are clear on read.
530  **/
531 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
532 {
533 	u16 i = 0;
534 
535 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
536 
537 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
538 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
539 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
540 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
541 	if (hw->mac.type >= ixgbe_mac_X550)
542 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
543 	for (i = 0; i < 8; i++)
544 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
545 
546 	IXGBE_READ_REG(hw, IXGBE_MLFC);
547 	IXGBE_READ_REG(hw, IXGBE_MRFC);
548 	IXGBE_READ_REG(hw, IXGBE_RLEC);
549 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
550 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
551 	if (hw->mac.type >= ixgbe_mac_82599EB) {
552 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
553 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
554 	} else {
555 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
556 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
557 	}
558 
559 	for (i = 0; i < 8; i++) {
560 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
561 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
562 		if (hw->mac.type >= ixgbe_mac_82599EB) {
563 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
564 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
565 		} else {
566 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
567 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
568 		}
569 	}
570 	if (hw->mac.type >= ixgbe_mac_82599EB)
571 		for (i = 0; i < 8; i++)
572 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
573 	IXGBE_READ_REG(hw, IXGBE_PRC64);
574 	IXGBE_READ_REG(hw, IXGBE_PRC127);
575 	IXGBE_READ_REG(hw, IXGBE_PRC255);
576 	IXGBE_READ_REG(hw, IXGBE_PRC511);
577 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
578 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
579 	IXGBE_READ_REG(hw, IXGBE_GPRC);
580 	IXGBE_READ_REG(hw, IXGBE_BPRC);
581 	IXGBE_READ_REG(hw, IXGBE_MPRC);
582 	IXGBE_READ_REG(hw, IXGBE_GPTC);
583 	IXGBE_READ_REG(hw, IXGBE_GORCL);
584 	IXGBE_READ_REG(hw, IXGBE_GORCH);
585 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
586 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
587 	if (hw->mac.type == ixgbe_mac_82598EB)
588 		for (i = 0; i < 8; i++)
589 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
590 	IXGBE_READ_REG(hw, IXGBE_RUC);
591 	IXGBE_READ_REG(hw, IXGBE_RFC);
592 	IXGBE_READ_REG(hw, IXGBE_ROC);
593 	IXGBE_READ_REG(hw, IXGBE_RJC);
594 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
595 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
596 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
597 	IXGBE_READ_REG(hw, IXGBE_TORL);
598 	IXGBE_READ_REG(hw, IXGBE_TORH);
599 	IXGBE_READ_REG(hw, IXGBE_TPR);
600 	IXGBE_READ_REG(hw, IXGBE_TPT);
601 	IXGBE_READ_REG(hw, IXGBE_PTC64);
602 	IXGBE_READ_REG(hw, IXGBE_PTC127);
603 	IXGBE_READ_REG(hw, IXGBE_PTC255);
604 	IXGBE_READ_REG(hw, IXGBE_PTC511);
605 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
606 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
607 	IXGBE_READ_REG(hw, IXGBE_MPTC);
608 	IXGBE_READ_REG(hw, IXGBE_BPTC);
609 	for (i = 0; i < 16; i++) {
610 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
611 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
612 		if (hw->mac.type >= ixgbe_mac_82599EB) {
613 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
614 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
615 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
616 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
617 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
618 		} else {
619 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
620 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
621 		}
622 	}
623 
624 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
625 		if (hw->phy.id == 0)
626 			ixgbe_identify_phy(hw);
627 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
628 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
629 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
630 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
631 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
632 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
633 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
634 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
635 	}
636 
637 	return IXGBE_SUCCESS;
638 }
639 
640 /**
641  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
642  *  @hw: pointer to hardware structure
643  *  @pba_num: stores the part number string from the EEPROM
644  *  @pba_num_size: part number string buffer length
645  *
646  *  Reads the part number string from the EEPROM.
647  **/
648 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
649 				  u32 pba_num_size)
650 {
651 	s32 ret_val;
652 	u16 data;
653 	u16 pba_ptr;
654 	u16 offset;
655 	u16 length;
656 
657 	DEBUGFUNC("ixgbe_read_pba_string_generic");
658 
659 	if (pba_num == NULL) {
660 		DEBUGOUT("PBA string buffer was null\n");
661 		return IXGBE_ERR_INVALID_ARGUMENT;
662 	}
663 
664 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
665 	if (ret_val) {
666 		DEBUGOUT("NVM Read Error\n");
667 		return ret_val;
668 	}
669 
670 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
671 	if (ret_val) {
672 		DEBUGOUT("NVM Read Error\n");
673 		return ret_val;
674 	}
675 
676 	/*
677 	 * if data is not ptr guard the PBA must be in legacy format which
678 	 * means pba_ptr is actually our second data word for the PBA number
679 	 * and we can decode it into an ascii string
680 	 */
681 	if (data != IXGBE_PBANUM_PTR_GUARD) {
682 		DEBUGOUT("NVM PBA number is not stored as string\n");
683 
684 		/* we will need 11 characters to store the PBA */
685 		if (pba_num_size < 11) {
686 			DEBUGOUT("PBA string buffer too small\n");
687 			return IXGBE_ERR_NO_SPACE;
688 		}
689 
690 		/* extract hex string from data and pba_ptr */
691 		pba_num[0] = (data >> 12) & 0xF;
692 		pba_num[1] = (data >> 8) & 0xF;
693 		pba_num[2] = (data >> 4) & 0xF;
694 		pba_num[3] = data & 0xF;
695 		pba_num[4] = (pba_ptr >> 12) & 0xF;
696 		pba_num[5] = (pba_ptr >> 8) & 0xF;
697 		pba_num[6] = '-';
698 		pba_num[7] = 0;
699 		pba_num[8] = (pba_ptr >> 4) & 0xF;
700 		pba_num[9] = pba_ptr & 0xF;
701 
702 		/* put a null character on the end of our string */
703 		pba_num[10] = '\0';
704 
705 		/* switch all the data but the '-' to hex char */
706 		for (offset = 0; offset < 10; offset++) {
707 			if (pba_num[offset] < 0xA)
708 				pba_num[offset] += '0';
709 			else if (pba_num[offset] < 0x10)
710 				pba_num[offset] += 'A' - 0xA;
711 		}
712 
713 		return IXGBE_SUCCESS;
714 	}
715 
716 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
717 	if (ret_val) {
718 		DEBUGOUT("NVM Read Error\n");
719 		return ret_val;
720 	}
721 
722 	if (length == 0xFFFF || length == 0) {
723 		DEBUGOUT("NVM PBA number section invalid length\n");
724 		return IXGBE_ERR_PBA_SECTION;
725 	}
726 
727 	/* check if pba_num buffer is big enough */
728 	if (pba_num_size  < (((u32)length * 2) - 1)) {
729 		DEBUGOUT("PBA string buffer too small\n");
730 		return IXGBE_ERR_NO_SPACE;
731 	}
732 
733 	/* trim pba length from start of string */
734 	pba_ptr++;
735 	length--;
736 
737 	for (offset = 0; offset < length; offset++) {
738 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
739 		if (ret_val) {
740 			DEBUGOUT("NVM Read Error\n");
741 			return ret_val;
742 		}
743 		pba_num[offset * 2] = (u8)(data >> 8);
744 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
745 	}
746 	pba_num[offset * 2] = '\0';
747 
748 	return IXGBE_SUCCESS;
749 }
750 
751 /**
752  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
753  *  @hw: pointer to hardware structure
754  *  @pba_num: stores the part number from the EEPROM
755  *
756  *  Reads the part number from the EEPROM.
757  **/
758 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
759 {
760 	s32 ret_val;
761 	u16 data;
762 
763 	DEBUGFUNC("ixgbe_read_pba_num_generic");
764 
765 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
766 	if (ret_val) {
767 		DEBUGOUT("NVM Read Error\n");
768 		return ret_val;
769 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
770 		DEBUGOUT("NVM Not supported\n");
771 		return IXGBE_NOT_IMPLEMENTED;
772 	}
773 	*pba_num = (u32)(data << 16);
774 
775 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
776 	if (ret_val) {
777 		DEBUGOUT("NVM Read Error\n");
778 		return ret_val;
779 	}
780 	*pba_num |= data;
781 
782 	return IXGBE_SUCCESS;
783 }
784 
785 /**
786  *  ixgbe_read_pba_raw
787  *  @hw: pointer to the HW structure
788  *  @eeprom_buf: optional pointer to EEPROM image
789  *  @eeprom_buf_size: size of EEPROM image in words
790  *  @max_pba_block_size: PBA block size limit
791  *  @pba: pointer to output PBA structure
792  *
793  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
794  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
795  *
796  **/
797 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
798 		       u32 eeprom_buf_size, u16 max_pba_block_size,
799 		       struct ixgbe_pba *pba)
800 {
801 	s32 ret_val;
802 	u16 pba_block_size;
803 
804 	if (pba == NULL)
805 		return IXGBE_ERR_PARAM;
806 
807 	if (eeprom_buf == NULL) {
808 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
809 						     &pba->word[0]);
810 		if (ret_val)
811 			return ret_val;
812 	} else {
813 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
814 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
815 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
816 		} else {
817 			return IXGBE_ERR_PARAM;
818 		}
819 	}
820 
821 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
822 		if (pba->pba_block == NULL)
823 			return IXGBE_ERR_PARAM;
824 
825 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
826 						   eeprom_buf_size,
827 						   &pba_block_size);
828 		if (ret_val)
829 			return ret_val;
830 
831 		if (pba_block_size > max_pba_block_size)
832 			return IXGBE_ERR_PARAM;
833 
834 		if (eeprom_buf == NULL) {
835 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
836 							     pba_block_size,
837 							     pba->pba_block);
838 			if (ret_val)
839 				return ret_val;
840 		} else {
841 			if (eeprom_buf_size > (u32)(pba->word[1] +
842 					      pba_block_size)) {
843 				memcpy(pba->pba_block,
844 				       &eeprom_buf[pba->word[1]],
845 				       pba_block_size * sizeof(u16));
846 			} else {
847 				return IXGBE_ERR_PARAM;
848 			}
849 		}
850 	}
851 
852 	return IXGBE_SUCCESS;
853 }
854 
855 /**
856  *  ixgbe_write_pba_raw
857  *  @hw: pointer to the HW structure
858  *  @eeprom_buf: optional pointer to EEPROM image
859  *  @eeprom_buf_size: size of EEPROM image in words
860  *  @pba: pointer to PBA structure
861  *
862  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
863  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
864  *
865  **/
866 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
867 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
868 {
869 	s32 ret_val;
870 
871 	if (pba == NULL)
872 		return IXGBE_ERR_PARAM;
873 
874 	if (eeprom_buf == NULL) {
875 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
876 						      &pba->word[0]);
877 		if (ret_val)
878 			return ret_val;
879 	} else {
880 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
881 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
882 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
883 		} else {
884 			return IXGBE_ERR_PARAM;
885 		}
886 	}
887 
888 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
889 		if (pba->pba_block == NULL)
890 			return IXGBE_ERR_PARAM;
891 
892 		if (eeprom_buf == NULL) {
893 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
894 							      pba->pba_block[0],
895 							      pba->pba_block);
896 			if (ret_val)
897 				return ret_val;
898 		} else {
899 			if (eeprom_buf_size > (u32)(pba->word[1] +
900 					      pba->pba_block[0])) {
901 				memcpy(&eeprom_buf[pba->word[1]],
902 				       pba->pba_block,
903 				       pba->pba_block[0] * sizeof(u16));
904 			} else {
905 				return IXGBE_ERR_PARAM;
906 			}
907 		}
908 	}
909 
910 	return IXGBE_SUCCESS;
911 }
912 
913 /**
914  *  ixgbe_get_pba_block_size
915  *  @hw: pointer to the HW structure
916  *  @eeprom_buf: optional pointer to EEPROM image
917  *  @eeprom_buf_size: size of EEPROM image in words
918  *  @pba_data_size: pointer to output variable
919  *
920  *  Returns the size of the PBA block in words. Function operates on EEPROM
921  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
922  *  EEPROM device.
923  *
924  **/
925 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
926 			     u32 eeprom_buf_size, u16 *pba_block_size)
927 {
928 	s32 ret_val;
929 	u16 pba_word[2];
930 	u16 length;
931 
932 	DEBUGFUNC("ixgbe_get_pba_block_size");
933 
934 	if (eeprom_buf == NULL) {
935 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
936 						     &pba_word[0]);
937 		if (ret_val)
938 			return ret_val;
939 	} else {
940 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
941 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
942 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
943 		} else {
944 			return IXGBE_ERR_PARAM;
945 		}
946 	}
947 
948 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
949 		if (eeprom_buf == NULL) {
950 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
951 						      &length);
952 			if (ret_val)
953 				return ret_val;
954 		} else {
955 			if (eeprom_buf_size > pba_word[1])
956 				length = eeprom_buf[pba_word[1] + 0];
957 			else
958 				return IXGBE_ERR_PARAM;
959 		}
960 
961 		if (length == 0xFFFF || length == 0)
962 			return IXGBE_ERR_PBA_SECTION;
963 	} else {
964 		/* PBA number in legacy format, there is no PBA Block. */
965 		length = 0;
966 	}
967 
968 	if (pba_block_size != NULL)
969 		*pba_block_size = length;
970 
971 	return IXGBE_SUCCESS;
972 }
973 
974 /**
975  *  ixgbe_get_mac_addr_generic - Generic get MAC address
976  *  @hw: pointer to hardware structure
977  *  @mac_addr: Adapter MAC address
978  *
979  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
980  *  A reset of the adapter must be performed prior to calling this function
981  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
982  **/
983 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
984 {
985 	u32 rar_high;
986 	u32 rar_low;
987 	u16 i;
988 
989 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
990 
991 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
992 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
993 
994 	for (i = 0; i < 4; i++)
995 		mac_addr[i] = (u8)(rar_low >> (i*8));
996 
997 	for (i = 0; i < 2; i++)
998 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
999 
1000 	return IXGBE_SUCCESS;
1001 }
1002 
1003 /**
1004  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1005  *  @hw: pointer to hardware structure
1006  *  @link_status: the link status returned by the PCI config space
1007  *
1008  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1009  **/
1010 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1011 {
1012 	struct ixgbe_mac_info *mac = &hw->mac;
1013 
1014 	if (hw->bus.type == ixgbe_bus_type_unknown)
1015 		hw->bus.type = ixgbe_bus_type_pci_express;
1016 
1017 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1018 	case IXGBE_PCI_LINK_WIDTH_1:
1019 		hw->bus.width = ixgbe_bus_width_pcie_x1;
1020 		break;
1021 	case IXGBE_PCI_LINK_WIDTH_2:
1022 		hw->bus.width = ixgbe_bus_width_pcie_x2;
1023 		break;
1024 	case IXGBE_PCI_LINK_WIDTH_4:
1025 		hw->bus.width = ixgbe_bus_width_pcie_x4;
1026 		break;
1027 	case IXGBE_PCI_LINK_WIDTH_8:
1028 		hw->bus.width = ixgbe_bus_width_pcie_x8;
1029 		break;
1030 	default:
1031 		hw->bus.width = ixgbe_bus_width_unknown;
1032 		break;
1033 	}
1034 
1035 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1036 	case IXGBE_PCI_LINK_SPEED_2500:
1037 		hw->bus.speed = ixgbe_bus_speed_2500;
1038 		break;
1039 	case IXGBE_PCI_LINK_SPEED_5000:
1040 		hw->bus.speed = ixgbe_bus_speed_5000;
1041 		break;
1042 	case IXGBE_PCI_LINK_SPEED_8000:
1043 		hw->bus.speed = ixgbe_bus_speed_8000;
1044 		break;
1045 	default:
1046 		hw->bus.speed = ixgbe_bus_speed_unknown;
1047 		break;
1048 	}
1049 
1050 	mac->ops.set_lan_id(hw);
1051 }
1052 
1053 /**
1054  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1055  *  @hw: pointer to hardware structure
1056  *
1057  *  Gets the PCI bus info (speed, width, type) then calls helper function to
1058  *  store this data within the ixgbe_hw structure.
1059  **/
1060 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1061 {
1062 	u16 link_status;
1063 
1064 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1065 
1066 	/* Get the negotiated link width and speed from PCI config space */
1067 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1068 
1069 	ixgbe_set_pci_config_data_generic(hw, link_status);
1070 
1071 	return IXGBE_SUCCESS;
1072 }
1073 
1074 /**
1075  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1076  *  @hw: pointer to the HW structure
1077  *
1078  *  Determines the LAN function id by reading memory-mapped registers and swaps
1079  *  the port value if requested, and set MAC instance for devices that share
1080  *  CS4227.
1081  **/
1082 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1083 {
1084 	struct ixgbe_bus_info *bus = &hw->bus;
1085 	u32 reg;
1086 	u16 ee_ctrl_4;
1087 
1088 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1089 
1090 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1091 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1092 	bus->lan_id = (u8)bus->func;
1093 
1094 	/* check for a port swap */
1095 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1096 	if (reg & IXGBE_FACTPS_LFS)
1097 		bus->func ^= 0x1;
1098 
1099 	/* Get MAC instance from EEPROM for configuring CS4227 */
1100 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1101 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1102 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1103 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1104 	}
1105 }
1106 
1107 /**
1108  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1109  *  @hw: pointer to hardware structure
1110  *
1111  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1112  *  disables transmit and receive units. The adapter_stopped flag is used by
1113  *  the shared code and drivers to determine if the adapter is in a stopped
1114  *  state and should not touch the hardware.
1115  **/
1116 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1117 {
1118 	u32 reg_val;
1119 	u16 i;
1120 
1121 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1122 
1123 	/*
1124 	 * Set the adapter_stopped flag so other driver functions stop touching
1125 	 * the hardware
1126 	 */
1127 	hw->adapter_stopped = TRUE;
1128 
1129 	/* Disable the receive unit */
1130 	ixgbe_disable_rx(hw);
1131 
1132 	/* Clear interrupt mask to stop interrupts from being generated */
1133 	/*
1134 	 * XXX
1135 	 * This function is called in the state of both interrupt disabled
1136 	 * and interrupt enabled, e.g.
1137 	 * + interrupt disabled case:
1138 	 *   - ixgbe_stop()
1139 	 *     - ixgbe_disable_intr() // interrupt disabled here
1140 	 *     - ixgbe_stop_adapter()
1141 	 *       - hw->mac.ops.stop_adapter()
1142 	 *         == this function
1143 	 * + interrupt enabled case:
1144 	 *   - ixgbe_local_timer1()
1145 	 *     - ixgbe_init_locked()
1146 	 *       - ixgbe_stop_adapter()
1147 	 *         - hw->mac.ops.stop_adapter()
1148 	 *           == this function
1149 	 * Therefore, it causes nest status breaking to nest the status
1150 	 * (that is, que->im_nest++) at all times. So, this function must
1151 	 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1152 	 */
1153 	ixgbe_ensure_disabled_intr(hw->back);
1154 
1155 	/* Clear any pending interrupts, flush previous writes */
1156 	IXGBE_READ_REG(hw, IXGBE_EICR);
1157 
1158 	/* Disable the transmit unit.  Each queue must be disabled. */
1159 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1160 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1161 
1162 	/* Disable the receive unit by stopping each queue */
1163 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1164 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1165 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1166 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1167 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1168 	}
1169 
1170 	/* flush all queues disables */
1171 	IXGBE_WRITE_FLUSH(hw);
1172 	msec_delay(2);
1173 
1174 	/*
1175 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1176 	 * access and verify no pending requests
1177 	 */
1178 	return ixgbe_disable_pcie_master(hw);
1179 }
1180 
1181 /**
1182  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1183  *  @hw: pointer to hardware structure
1184  *
1185  *  Store the index for the link active LED. This will be used to support
1186  *  blinking the LED.
1187  **/
1188 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1189 {
1190 	struct ixgbe_mac_info *mac = &hw->mac;
1191 	u32 led_reg, led_mode;
1192 	u8 i;
1193 
1194 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1195 
1196 	/* Get LED link active from the LEDCTL register */
1197 	for (i = 0; i < 4; i++) {
1198 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1199 
1200 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1201 		     IXGBE_LED_LINK_ACTIVE) {
1202 			mac->led_link_act = i;
1203 			return IXGBE_SUCCESS;
1204 		}
1205 	}
1206 
1207 	/*
1208 	 * If LEDCTL register does not have the LED link active set, then use
1209 	 * known MAC defaults.
1210 	 */
1211 	switch (hw->mac.type) {
1212 	case ixgbe_mac_X550EM_a:
1213 	case ixgbe_mac_X550EM_x:
1214 		mac->led_link_act = 1;
1215 		break;
1216 	default:
1217 		mac->led_link_act = 2;
1218 	}
1219 	return IXGBE_SUCCESS;
1220 }
1221 
1222 /**
1223  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1224  *  @hw: pointer to hardware structure
1225  *  @index: led number to turn on
1226  **/
1227 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1228 {
1229 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1230 
1231 	DEBUGFUNC("ixgbe_led_on_generic");
1232 
1233 	if (index > 3)
1234 		return IXGBE_ERR_PARAM;
1235 
1236 	/* To turn on the LED, set mode to ON. */
1237 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1238 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1239 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1240 	IXGBE_WRITE_FLUSH(hw);
1241 
1242 	return IXGBE_SUCCESS;
1243 }
1244 
1245 /**
1246  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1247  *  @hw: pointer to hardware structure
1248  *  @index: led number to turn off
1249  **/
1250 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1251 {
1252 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1253 
1254 	DEBUGFUNC("ixgbe_led_off_generic");
1255 
1256 	if (index > 3)
1257 		return IXGBE_ERR_PARAM;
1258 
1259 	/* To turn off the LED, set mode to OFF. */
1260 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1261 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1262 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1263 	IXGBE_WRITE_FLUSH(hw);
1264 
1265 	return IXGBE_SUCCESS;
1266 }
1267 
1268 /**
1269  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1270  *  @hw: pointer to hardware structure
1271  *
1272  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1273  *  ixgbe_hw struct in order to set up EEPROM access.
1274  **/
1275 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1276 {
1277 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1278 	u32 eec;
1279 	u16 eeprom_size;
1280 
1281 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1282 
1283 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1284 		eeprom->type = ixgbe_eeprom_none;
1285 		/* Set default semaphore delay to 10ms which is a well
1286 		 * tested value */
1287 		eeprom->semaphore_delay = 10;
1288 		/* Clear EEPROM page size, it will be initialized as needed */
1289 		eeprom->word_page_size = 0;
1290 
1291 		/*
1292 		 * Check for EEPROM present first.
1293 		 * If not present leave as none
1294 		 */
1295 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1296 		if (eec & IXGBE_EEC_PRES) {
1297 			eeprom->type = ixgbe_eeprom_spi;
1298 
1299 			/*
1300 			 * SPI EEPROM is assumed here.  This code would need to
1301 			 * change if a future EEPROM is not SPI.
1302 			 */
1303 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1304 					    IXGBE_EEC_SIZE_SHIFT);
1305 			eeprom->word_size = 1 << (eeprom_size +
1306 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1307 		}
1308 
1309 		if (eec & IXGBE_EEC_ADDR_SIZE)
1310 			eeprom->address_bits = 16;
1311 		else
1312 			eeprom->address_bits = 8;
1313 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1314 			  "%d\n", eeprom->type, eeprom->word_size,
1315 			  eeprom->address_bits);
1316 	}
1317 
1318 	return IXGBE_SUCCESS;
1319 }
1320 
1321 /**
1322  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1323  *  @hw: pointer to hardware structure
1324  *  @offset: offset within the EEPROM to write
1325  *  @words: number of word(s)
1326  *  @data: 16 bit word(s) to write to EEPROM
1327  *
1328  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1329  **/
1330 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1331 					       u16 words, u16 *data)
1332 {
1333 	s32 status = IXGBE_SUCCESS;
1334 	u16 i, count;
1335 
1336 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1337 
1338 	hw->eeprom.ops.init_params(hw);
1339 
1340 	if (words == 0) {
1341 		status = IXGBE_ERR_INVALID_ARGUMENT;
1342 		goto out;
1343 	}
1344 
1345 	if (offset + words > hw->eeprom.word_size) {
1346 		status = IXGBE_ERR_EEPROM;
1347 		goto out;
1348 	}
1349 
1350 	/*
1351 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1352 	 * initialization. It is worth to do that when we write large buffer.
1353 	 */
1354 	if ((hw->eeprom.word_page_size == 0) &&
1355 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1356 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1357 
1358 	/*
1359 	 * We cannot hold synchronization semaphores for too long
1360 	 * to avoid other entity starvation. However it is more efficient
1361 	 * to read in bursts than synchronizing access for each word.
1362 	 */
1363 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1364 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1365 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1366 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1367 							    count, &data[i]);
1368 
1369 		if (status != IXGBE_SUCCESS)
1370 			break;
1371 	}
1372 
1373 out:
1374 	return status;
1375 }
1376 
1377 /**
1378  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1379  *  @hw: pointer to hardware structure
1380  *  @offset: offset within the EEPROM to be written to
1381  *  @words: number of word(s)
1382  *  @data: 16 bit word(s) to be written to the EEPROM
1383  *
1384  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1385  *  EEPROM will most likely contain an invalid checksum.
1386  **/
1387 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1388 					      u16 words, u16 *data)
1389 {
1390 	s32 status;
1391 	u16 word;
1392 	u16 page_size;
1393 	u16 i;
1394 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1395 
1396 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1397 
1398 	/* Prepare the EEPROM for writing  */
1399 	status = ixgbe_acquire_eeprom(hw);
1400 
1401 	if (status == IXGBE_SUCCESS) {
1402 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1403 			ixgbe_release_eeprom(hw);
1404 			status = IXGBE_ERR_EEPROM;
1405 		}
1406 	}
1407 
1408 	if (status == IXGBE_SUCCESS) {
1409 		for (i = 0; i < words; i++) {
1410 			ixgbe_standby_eeprom(hw);
1411 
1412 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1413 			ixgbe_shift_out_eeprom_bits(hw,
1414 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1415 						   IXGBE_EEPROM_OPCODE_BITS);
1416 
1417 			ixgbe_standby_eeprom(hw);
1418 
1419 			/*
1420 			 * Some SPI eeproms use the 8th address bit embedded
1421 			 * in the opcode
1422 			 */
1423 			if ((hw->eeprom.address_bits == 8) &&
1424 			    ((offset + i) >= 128))
1425 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1426 
1427 			/* Send the Write command (8-bit opcode + addr) */
1428 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1429 						    IXGBE_EEPROM_OPCODE_BITS);
1430 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1431 						    hw->eeprom.address_bits);
1432 
1433 			page_size = hw->eeprom.word_page_size;
1434 
1435 			/* Send the data in burst via SPI*/
1436 			do {
1437 				word = data[i];
1438 				word = (word >> 8) | (word << 8);
1439 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1440 
1441 				if (page_size == 0)
1442 					break;
1443 
1444 				/* do not wrap around page */
1445 				if (((offset + i) & (page_size - 1)) ==
1446 				    (page_size - 1))
1447 					break;
1448 			} while (++i < words);
1449 
1450 			ixgbe_standby_eeprom(hw);
1451 			msec_delay(10);
1452 		}
1453 		/* Done with writing - release the EEPROM */
1454 		ixgbe_release_eeprom(hw);
1455 	}
1456 
1457 	return status;
1458 }
1459 
1460 /**
1461  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1462  *  @hw: pointer to hardware structure
1463  *  @offset: offset within the EEPROM to be written to
1464  *  @data: 16 bit word to be written to the EEPROM
1465  *
1466  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1467  *  EEPROM will most likely contain an invalid checksum.
1468  **/
1469 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1470 {
1471 	s32 status;
1472 
1473 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1474 
1475 	hw->eeprom.ops.init_params(hw);
1476 
1477 	if (offset >= hw->eeprom.word_size) {
1478 		status = IXGBE_ERR_EEPROM;
1479 		goto out;
1480 	}
1481 
1482 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1483 
1484 out:
1485 	return status;
1486 }
1487 
1488 /**
1489  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1490  *  @hw: pointer to hardware structure
1491  *  @offset: offset within the EEPROM to be read
1492  *  @data: read 16 bit words(s) from EEPROM
1493  *  @words: number of word(s)
1494  *
1495  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1496  **/
1497 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1498 					      u16 words, u16 *data)
1499 {
1500 	s32 status = IXGBE_SUCCESS;
1501 	u16 i, count;
1502 
1503 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1504 
1505 	hw->eeprom.ops.init_params(hw);
1506 
1507 	if (words == 0) {
1508 		status = IXGBE_ERR_INVALID_ARGUMENT;
1509 		goto out;
1510 	}
1511 
1512 	if (offset + words > hw->eeprom.word_size) {
1513 		status = IXGBE_ERR_EEPROM;
1514 		goto out;
1515 	}
1516 
1517 	/*
1518 	 * We cannot hold synchronization semaphores for too long
1519 	 * to avoid other entity starvation. However it is more efficient
1520 	 * to read in bursts than synchronizing access for each word.
1521 	 */
1522 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1523 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1524 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1525 
1526 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1527 							   count, &data[i]);
1528 
1529 		if (status != IXGBE_SUCCESS)
1530 			break;
1531 	}
1532 
1533 out:
1534 	return status;
1535 }
1536 
1537 /**
1538  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1539  *  @hw: pointer to hardware structure
1540  *  @offset: offset within the EEPROM to be read
1541  *  @words: number of word(s)
1542  *  @data: read 16 bit word(s) from EEPROM
1543  *
1544  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1545  **/
1546 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1547 					     u16 words, u16 *data)
1548 {
1549 	s32 status;
1550 	u16 word_in;
1551 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1552 	u16 i;
1553 
1554 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1555 
1556 	/* Prepare the EEPROM for reading  */
1557 	status = ixgbe_acquire_eeprom(hw);
1558 
1559 	if (status == IXGBE_SUCCESS) {
1560 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1561 			ixgbe_release_eeprom(hw);
1562 			status = IXGBE_ERR_EEPROM;
1563 		}
1564 	}
1565 
1566 	if (status == IXGBE_SUCCESS) {
1567 		for (i = 0; i < words; i++) {
1568 			ixgbe_standby_eeprom(hw);
1569 			/*
1570 			 * Some SPI eeproms use the 8th address bit embedded
1571 			 * in the opcode
1572 			 */
1573 			if ((hw->eeprom.address_bits == 8) &&
1574 			    ((offset + i) >= 128))
1575 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1576 
1577 			/* Send the READ command (opcode + addr) */
1578 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1579 						    IXGBE_EEPROM_OPCODE_BITS);
1580 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1581 						    hw->eeprom.address_bits);
1582 
1583 			/* Read the data. */
1584 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1585 			data[i] = (word_in >> 8) | (word_in << 8);
1586 		}
1587 
1588 		/* End this read operation */
1589 		ixgbe_release_eeprom(hw);
1590 	}
1591 
1592 	return status;
1593 }
1594 
1595 /**
1596  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1597  *  @hw: pointer to hardware structure
1598  *  @offset: offset within the EEPROM to be read
1599  *  @data: read 16 bit value from EEPROM
1600  *
1601  *  Reads 16 bit value from EEPROM through bit-bang method
1602  **/
1603 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1604 				       u16 *data)
1605 {
1606 	s32 status;
1607 
1608 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1609 
1610 	hw->eeprom.ops.init_params(hw);
1611 
1612 	if (offset >= hw->eeprom.word_size) {
1613 		status = IXGBE_ERR_EEPROM;
1614 		goto out;
1615 	}
1616 
1617 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1618 
1619 out:
1620 	return status;
1621 }
1622 
1623 /**
1624  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1625  *  @hw: pointer to hardware structure
1626  *  @offset: offset of word in the EEPROM to read
1627  *  @words: number of word(s)
1628  *  @data: 16 bit word(s) from the EEPROM
1629  *
1630  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1631  **/
1632 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1633 				   u16 words, u16 *data)
1634 {
1635 	u32 eerd;
1636 	s32 status = IXGBE_SUCCESS;
1637 	u32 i;
1638 
1639 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1640 
1641 	hw->eeprom.ops.init_params(hw);
1642 
1643 	if (words == 0) {
1644 		status = IXGBE_ERR_INVALID_ARGUMENT;
1645 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1646 		goto out;
1647 	}
1648 
1649 	if (offset >= hw->eeprom.word_size) {
1650 		status = IXGBE_ERR_EEPROM;
1651 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1652 		goto out;
1653 	}
1654 
1655 	for (i = 0; i < words; i++) {
1656 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1657 		       IXGBE_EEPROM_RW_REG_START;
1658 
1659 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1660 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1661 
1662 		if (status == IXGBE_SUCCESS) {
1663 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1664 				   IXGBE_EEPROM_RW_REG_DATA);
1665 		} else {
1666 			DEBUGOUT("Eeprom read timed out\n");
1667 			goto out;
1668 		}
1669 	}
1670 out:
1671 	return status;
1672 }
1673 
1674 /**
1675  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1676  *  @hw: pointer to hardware structure
1677  *  @offset: offset within the EEPROM to be used as a scratch pad
1678  *
1679  *  Discover EEPROM page size by writing marching data at given offset.
1680  *  This function is called only when we are writing a new large buffer
1681  *  at given offset so the data would be overwritten anyway.
1682  **/
1683 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1684 						 u16 offset)
1685 {
1686 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1687 	s32 status = IXGBE_SUCCESS;
1688 	u16 i;
1689 
1690 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1691 
1692 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1693 		data[i] = i;
1694 
1695 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1696 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1697 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1698 	hw->eeprom.word_page_size = 0;
1699 	if (status != IXGBE_SUCCESS)
1700 		goto out;
1701 
1702 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1703 	if (status != IXGBE_SUCCESS)
1704 		goto out;
1705 
1706 	/*
1707 	 * When writing in burst more than the actual page size
1708 	 * EEPROM address wraps around current page.
1709 	 */
1710 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1711 
1712 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1713 		  hw->eeprom.word_page_size);
1714 out:
1715 	return status;
1716 }
1717 
1718 /**
1719  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1720  *  @hw: pointer to hardware structure
1721  *  @offset: offset of  word in the EEPROM to read
1722  *  @data: word read from the EEPROM
1723  *
1724  *  Reads a 16 bit word from the EEPROM using the EERD register.
1725  **/
1726 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1727 {
1728 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1729 }
1730 
1731 /**
1732  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1733  *  @hw: pointer to hardware structure
1734  *  @offset: offset of  word in the EEPROM to write
1735  *  @words: number of word(s)
1736  *  @data: word(s) write to the EEPROM
1737  *
1738  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1739  **/
1740 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1741 				    u16 words, u16 *data)
1742 {
1743 	u32 eewr;
1744 	s32 status = IXGBE_SUCCESS;
1745 	u16 i;
1746 
1747 	DEBUGFUNC("ixgbe_write_eewr_generic");
1748 
1749 	hw->eeprom.ops.init_params(hw);
1750 
1751 	if (words == 0) {
1752 		status = IXGBE_ERR_INVALID_ARGUMENT;
1753 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1754 		goto out;
1755 	}
1756 
1757 	if (offset >= hw->eeprom.word_size) {
1758 		status = IXGBE_ERR_EEPROM;
1759 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1760 		goto out;
1761 	}
1762 
1763 	for (i = 0; i < words; i++) {
1764 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1765 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1766 			IXGBE_EEPROM_RW_REG_START;
1767 
1768 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1769 		if (status != IXGBE_SUCCESS) {
1770 			DEBUGOUT("Eeprom write EEWR timed out\n");
1771 			goto out;
1772 		}
1773 
1774 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1775 
1776 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1777 		if (status != IXGBE_SUCCESS) {
1778 			DEBUGOUT("Eeprom write EEWR timed out\n");
1779 			goto out;
1780 		}
1781 	}
1782 
1783 out:
1784 	return status;
1785 }
1786 
1787 /**
1788  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1789  *  @hw: pointer to hardware structure
1790  *  @offset: offset of  word in the EEPROM to write
1791  *  @data: word write to the EEPROM
1792  *
1793  *  Write a 16 bit word to the EEPROM using the EEWR register.
1794  **/
1795 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1796 {
1797 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1798 }
1799 
1800 /**
1801  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1802  *  @hw: pointer to hardware structure
1803  *  @ee_reg: EEPROM flag for polling
1804  *
1805  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1806  *  read or write is done respectively.
1807  **/
1808 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1809 {
1810 	u32 i;
1811 	u32 reg;
1812 	s32 status = IXGBE_ERR_EEPROM;
1813 
1814 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1815 
1816 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1817 		if (ee_reg == IXGBE_NVM_POLL_READ)
1818 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1819 		else
1820 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1821 
1822 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1823 			status = IXGBE_SUCCESS;
1824 			break;
1825 		}
1826 		usec_delay(5);
1827 	}
1828 
1829 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1830 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1831 			     "EEPROM read/write done polling timed out");
1832 
1833 	return status;
1834 }
1835 
1836 /**
1837  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1838  *  @hw: pointer to hardware structure
1839  *
1840  *  Prepares EEPROM for access using bit-bang method. This function should
1841  *  be called before issuing a command to the EEPROM.
1842  **/
1843 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1844 {
1845 	s32 status = IXGBE_SUCCESS;
1846 	u32 eec;
1847 	u32 i;
1848 
1849 	DEBUGFUNC("ixgbe_acquire_eeprom");
1850 
1851 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1852 	    != IXGBE_SUCCESS)
1853 		status = IXGBE_ERR_SWFW_SYNC;
1854 
1855 	if (status == IXGBE_SUCCESS) {
1856 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1857 
1858 		/* Request EEPROM Access */
1859 		eec |= IXGBE_EEC_REQ;
1860 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1861 
1862 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1863 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1864 			if (eec & IXGBE_EEC_GNT)
1865 				break;
1866 			usec_delay(5);
1867 		}
1868 
1869 		/* Release if grant not acquired */
1870 		if (!(eec & IXGBE_EEC_GNT)) {
1871 			eec &= ~IXGBE_EEC_REQ;
1872 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1873 			DEBUGOUT("Could not acquire EEPROM grant\n");
1874 
1875 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1876 			status = IXGBE_ERR_EEPROM;
1877 		}
1878 
1879 		/* Setup EEPROM for Read/Write */
1880 		if (status == IXGBE_SUCCESS) {
1881 			/* Clear CS and SK */
1882 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1883 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1884 			IXGBE_WRITE_FLUSH(hw);
1885 			usec_delay(1);
1886 		}
1887 	}
1888 	return status;
1889 }
1890 
1891 /**
1892  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1893  *  @hw: pointer to hardware structure
1894  *
1895  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1896  **/
1897 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1898 {
1899 	s32 status = IXGBE_ERR_EEPROM;
1900 	u32 timeout = 2000;
1901 	u32 i;
1902 	u32 swsm;
1903 
1904 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1905 
1906 
1907 	/* Get SMBI software semaphore between device drivers first */
1908 	for (i = 0; i < timeout; i++) {
1909 		/*
1910 		 * If the SMBI bit is 0 when we read it, then the bit will be
1911 		 * set and we have the semaphore
1912 		 */
1913 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1914 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1915 			status = IXGBE_SUCCESS;
1916 			break;
1917 		}
1918 		usec_delay(50);
1919 	}
1920 
1921 	if (i == timeout) {
1922 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1923 			 "not granted.\n");
1924 		/*
1925 		 * this release is particularly important because our attempts
1926 		 * above to get the semaphore may have succeeded, and if there
1927 		 * was a timeout, we should unconditionally clear the semaphore
1928 		 * bits to free the driver to make progress
1929 		 */
1930 		ixgbe_release_eeprom_semaphore(hw);
1931 
1932 		usec_delay(50);
1933 		/*
1934 		 * one last try
1935 		 * If the SMBI bit is 0 when we read it, then the bit will be
1936 		 * set and we have the semaphore
1937 		 */
1938 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1939 		if (!(swsm & IXGBE_SWSM_SMBI))
1940 			status = IXGBE_SUCCESS;
1941 	}
1942 
1943 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1944 	if (status == IXGBE_SUCCESS) {
1945 		for (i = 0; i < timeout; i++) {
1946 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1947 
1948 			/* Set the SW EEPROM semaphore bit to request access */
1949 			swsm |= IXGBE_SWSM_SWESMBI;
1950 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1951 
1952 			/*
1953 			 * If we set the bit successfully then we got the
1954 			 * semaphore.
1955 			 */
1956 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1957 			if (swsm & IXGBE_SWSM_SWESMBI)
1958 				break;
1959 
1960 			usec_delay(50);
1961 		}
1962 
1963 		/*
1964 		 * Release semaphores and return error if SW EEPROM semaphore
1965 		 * was not granted because we don't have access to the EEPROM
1966 		 */
1967 		if (i >= timeout) {
1968 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1969 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1970 			ixgbe_release_eeprom_semaphore(hw);
1971 			status = IXGBE_ERR_EEPROM;
1972 		}
1973 	} else {
1974 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1975 			     "Software semaphore SMBI between device drivers "
1976 			     "not granted.\n");
1977 	}
1978 
1979 	return status;
1980 }
1981 
1982 /**
1983  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1984  *  @hw: pointer to hardware structure
1985  *
1986  *  This function clears hardware semaphore bits.
1987  **/
1988 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1989 {
1990 	u32 swsm;
1991 
1992 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1993 
1994 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1995 
1996 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1997 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1998 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1999 	IXGBE_WRITE_FLUSH(hw);
2000 }
2001 
2002 /**
2003  *  ixgbe_ready_eeprom - Polls for EEPROM ready
2004  *  @hw: pointer to hardware structure
2005  **/
2006 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2007 {
2008 	s32 status = IXGBE_SUCCESS;
2009 	u16 i;
2010 	u8 spi_stat_reg;
2011 
2012 	DEBUGFUNC("ixgbe_ready_eeprom");
2013 
2014 	/*
2015 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
2016 	 * EEPROM will signal that the command has been completed by clearing
2017 	 * bit 0 of the internal status register.  If it's not cleared within
2018 	 * 5 milliseconds, then error out.
2019 	 */
2020 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2021 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2022 					    IXGBE_EEPROM_OPCODE_BITS);
2023 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2024 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2025 			break;
2026 
2027 		usec_delay(5);
2028 		ixgbe_standby_eeprom(hw);
2029 	}
2030 
2031 	/*
2032 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2033 	 * devices (and only 0-5mSec on 5V devices)
2034 	 */
2035 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2036 		DEBUGOUT("SPI EEPROM Status error\n");
2037 		status = IXGBE_ERR_EEPROM;
2038 	}
2039 
2040 	return status;
2041 }
2042 
2043 /**
2044  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2045  *  @hw: pointer to hardware structure
2046  **/
2047 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2048 {
2049 	u32 eec;
2050 
2051 	DEBUGFUNC("ixgbe_standby_eeprom");
2052 
2053 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2054 
2055 	/* Toggle CS to flush commands */
2056 	eec |= IXGBE_EEC_CS;
2057 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2058 	IXGBE_WRITE_FLUSH(hw);
2059 	usec_delay(1);
2060 	eec &= ~IXGBE_EEC_CS;
2061 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2062 	IXGBE_WRITE_FLUSH(hw);
2063 	usec_delay(1);
2064 }
2065 
2066 /**
2067  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2068  *  @hw: pointer to hardware structure
2069  *  @data: data to send to the EEPROM
2070  *  @count: number of bits to shift out
2071  **/
2072 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2073 					u16 count)
2074 {
2075 	u32 eec;
2076 	u32 mask;
2077 	u32 i;
2078 
2079 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2080 
2081 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2082 
2083 	/*
2084 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2085 	 * one bit at a time.  Determine the starting bit based on count
2086 	 */
2087 	mask = 0x01 << (count - 1);
2088 
2089 	for (i = 0; i < count; i++) {
2090 		/*
2091 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2092 		 * "1", and then raising and then lowering the clock (the SK
2093 		 * bit controls the clock input to the EEPROM).  A "0" is
2094 		 * shifted out to the EEPROM by setting "DI" to "0" and then
2095 		 * raising and then lowering the clock.
2096 		 */
2097 		if (data & mask)
2098 			eec |= IXGBE_EEC_DI;
2099 		else
2100 			eec &= ~IXGBE_EEC_DI;
2101 
2102 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2103 		IXGBE_WRITE_FLUSH(hw);
2104 
2105 		usec_delay(1);
2106 
2107 		ixgbe_raise_eeprom_clk(hw, &eec);
2108 		ixgbe_lower_eeprom_clk(hw, &eec);
2109 
2110 		/*
2111 		 * Shift mask to signify next bit of data to shift in to the
2112 		 * EEPROM
2113 		 */
2114 		mask = mask >> 1;
2115 	}
2116 
2117 	/* We leave the "DI" bit set to "0" when we leave this routine. */
2118 	eec &= ~IXGBE_EEC_DI;
2119 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2120 	IXGBE_WRITE_FLUSH(hw);
2121 }
2122 
2123 /**
2124  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2125  *  @hw: pointer to hardware structure
2126  *  @count: number of bits to shift
2127  **/
2128 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2129 {
2130 	u32 eec;
2131 	u32 i;
2132 	u16 data = 0;
2133 
2134 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2135 
2136 	/*
2137 	 * In order to read a register from the EEPROM, we need to shift
2138 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2139 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2140 	 * the value of the "DO" bit.  During this "shifting in" process the
2141 	 * "DI" bit should always be clear.
2142 	 */
2143 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2144 
2145 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2146 
2147 	for (i = 0; i < count; i++) {
2148 		data = data << 1;
2149 		ixgbe_raise_eeprom_clk(hw, &eec);
2150 
2151 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2152 
2153 		eec &= ~(IXGBE_EEC_DI);
2154 		if (eec & IXGBE_EEC_DO)
2155 			data |= 1;
2156 
2157 		ixgbe_lower_eeprom_clk(hw, &eec);
2158 	}
2159 
2160 	return data;
2161 }
2162 
2163 /**
2164  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2165  *  @hw: pointer to hardware structure
2166  *  @eec: EEC register's current value
2167  **/
2168 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2169 {
2170 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2171 
2172 	/*
2173 	 * Raise the clock input to the EEPROM
2174 	 * (setting the SK bit), then delay
2175 	 */
2176 	*eec = *eec | IXGBE_EEC_SK;
2177 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2178 	IXGBE_WRITE_FLUSH(hw);
2179 	usec_delay(1);
2180 }
2181 
2182 /**
2183  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2184  *  @hw: pointer to hardware structure
2185  *  @eec: EEC's current value
2186  **/
2187 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2188 {
2189 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2190 
2191 	/*
2192 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2193 	 * delay
2194 	 */
2195 	*eec = *eec & ~IXGBE_EEC_SK;
2196 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2197 	IXGBE_WRITE_FLUSH(hw);
2198 	usec_delay(1);
2199 }
2200 
2201 /**
2202  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2203  *  @hw: pointer to hardware structure
2204  **/
2205 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2206 {
2207 	u32 eec;
2208 
2209 	DEBUGFUNC("ixgbe_release_eeprom");
2210 
2211 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2212 
2213 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2214 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2215 
2216 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2217 	IXGBE_WRITE_FLUSH(hw);
2218 
2219 	usec_delay(1);
2220 
2221 	/* Stop requesting EEPROM access */
2222 	eec &= ~IXGBE_EEC_REQ;
2223 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2224 
2225 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2226 
2227 	/* Delay before attempt to obtain semaphore again to allow FW access */
2228 	msec_delay(hw->eeprom.semaphore_delay);
2229 }
2230 
2231 /**
2232  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2233  *  @hw: pointer to hardware structure
2234  *
2235  *  Returns a negative error code on error, or the 16-bit checksum
2236  **/
2237 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2238 {
2239 	u16 i;
2240 	u16 j;
2241 	u16 checksum = 0;
2242 	u16 length = 0;
2243 	u16 pointer = 0;
2244 	u16 word = 0;
2245 
2246 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2247 
2248 	/* Include 0x0-0x3F in the checksum */
2249 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2250 		if (hw->eeprom.ops.read(hw, i, &word)) {
2251 			DEBUGOUT("EEPROM read failed\n");
2252 			return IXGBE_ERR_EEPROM;
2253 		}
2254 		checksum += word;
2255 	}
2256 
2257 	/* Include all data from pointers except for the fw pointer */
2258 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2259 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2260 			DEBUGOUT("EEPROM read failed\n");
2261 			return IXGBE_ERR_EEPROM;
2262 		}
2263 
2264 		/* If the pointer seems invalid */
2265 		if (pointer == 0xFFFF || pointer == 0)
2266 			continue;
2267 
2268 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2269 			DEBUGOUT("EEPROM read failed\n");
2270 			return IXGBE_ERR_EEPROM;
2271 		}
2272 
2273 		if (length == 0xFFFF || length == 0)
2274 			continue;
2275 
2276 		for (j = pointer + 1; j <= pointer + length; j++) {
2277 			if (hw->eeprom.ops.read(hw, j, &word)) {
2278 				DEBUGOUT("EEPROM read failed\n");
2279 				return IXGBE_ERR_EEPROM;
2280 			}
2281 			checksum += word;
2282 		}
2283 	}
2284 
2285 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2286 
2287 	return (s32)checksum;
2288 }
2289 
2290 /**
2291  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2292  *  @hw: pointer to hardware structure
2293  *  @checksum_val: calculated checksum
2294  *
2295  *  Performs checksum calculation and validates the EEPROM checksum.  If the
2296  *  caller does not need checksum_val, the value can be NULL.
2297  **/
2298 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2299 					   u16 *checksum_val)
2300 {
2301 	s32 status;
2302 	u16 checksum;
2303 	u16 read_checksum = 0;
2304 
2305 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2306 
2307 	/* Read the first word from the EEPROM. If this times out or fails, do
2308 	 * not continue or we could be in for a very long wait while every
2309 	 * EEPROM read fails
2310 	 */
2311 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2312 	if (status) {
2313 		DEBUGOUT("EEPROM read failed\n");
2314 		return status;
2315 	}
2316 
2317 	status = hw->eeprom.ops.calc_checksum(hw);
2318 	if (status < 0)
2319 		return status;
2320 
2321 	checksum = (u16)(status & 0xffff);
2322 
2323 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2324 	if (status) {
2325 		DEBUGOUT("EEPROM read failed\n");
2326 		return status;
2327 	}
2328 
2329 	/* Verify read checksum from EEPROM is the same as
2330 	 * calculated checksum
2331 	 */
2332 	if (read_checksum != checksum)
2333 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2334 
2335 	/* If the user cares, return the calculated checksum */
2336 	if (checksum_val)
2337 		*checksum_val = checksum;
2338 
2339 	return status;
2340 }
2341 
2342 /**
2343  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2344  *  @hw: pointer to hardware structure
2345  **/
2346 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2347 {
2348 	s32 status;
2349 	u16 checksum;
2350 
2351 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2352 
2353 	/* Read the first word from the EEPROM. If this times out or fails, do
2354 	 * not continue or we could be in for a very long wait while every
2355 	 * EEPROM read fails
2356 	 */
2357 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2358 	if (status) {
2359 		DEBUGOUT("EEPROM read failed\n");
2360 		return status;
2361 	}
2362 
2363 	status = hw->eeprom.ops.calc_checksum(hw);
2364 	if (status < 0)
2365 		return status;
2366 
2367 	checksum = (u16)(status & 0xffff);
2368 
2369 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2370 
2371 	return status;
2372 }
2373 
2374 /**
2375  *  ixgbe_validate_mac_addr - Validate MAC address
2376  *  @mac_addr: pointer to MAC address.
2377  *
2378  *  Tests a MAC address to ensure it is a valid Individual Address.
2379  **/
2380 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2381 {
2382 	s32 status = IXGBE_SUCCESS;
2383 
2384 	DEBUGFUNC("ixgbe_validate_mac_addr");
2385 
2386 	/* Make sure it is not a multicast address */
2387 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2388 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2389 	/* Not a broadcast address */
2390 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2391 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2392 	/* Reject the zero address */
2393 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2394 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2395 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2396 	}
2397 	return status;
2398 }
2399 
2400 /**
2401  *  ixgbe_set_rar_generic - Set Rx address register
2402  *  @hw: pointer to hardware structure
2403  *  @index: Receive address register to write
2404  *  @addr: Address to put into receive address register
2405  *  @vmdq: VMDq "set" or "pool" index
2406  *  @enable_addr: set flag that address is active
2407  *
2408  *  Puts an ethernet address into a receive address register.
2409  **/
2410 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2411 			  u32 enable_addr)
2412 {
2413 	u32 rar_low, rar_high;
2414 	u32 rar_entries = hw->mac.num_rar_entries;
2415 
2416 	DEBUGFUNC("ixgbe_set_rar_generic");
2417 
2418 	/* Make sure we are using a valid rar index range */
2419 	if (index >= rar_entries) {
2420 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2421 			     "RAR index %d is out of range.\n", index);
2422 		return IXGBE_ERR_INVALID_ARGUMENT;
2423 	}
2424 
2425 	/* setup VMDq pool selection before this RAR gets enabled */
2426 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2427 
2428 	/*
2429 	 * HW expects these in little endian so we reverse the byte
2430 	 * order from network order (big endian) to little endian
2431 	 */
2432 	rar_low = ((u32)addr[0] |
2433 		   ((u32)addr[1] << 8) |
2434 		   ((u32)addr[2] << 16) |
2435 		   ((u32)addr[3] << 24));
2436 	/*
2437 	 * Some parts put the VMDq setting in the extra RAH bits,
2438 	 * so save everything except the lower 16 bits that hold part
2439 	 * of the address and the address valid bit.
2440 	 */
2441 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2442 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2443 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2444 
2445 	if (enable_addr != 0)
2446 		rar_high |= IXGBE_RAH_AV;
2447 
2448 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2449 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2450 
2451 	return IXGBE_SUCCESS;
2452 }
2453 
2454 /**
2455  *  ixgbe_clear_rar_generic - Remove Rx address register
2456  *  @hw: pointer to hardware structure
2457  *  @index: Receive address register to write
2458  *
2459  *  Clears an ethernet address from a receive address register.
2460  **/
2461 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2462 {
2463 	u32 rar_high;
2464 	u32 rar_entries = hw->mac.num_rar_entries;
2465 
2466 	DEBUGFUNC("ixgbe_clear_rar_generic");
2467 
2468 	/* Make sure we are using a valid rar index range */
2469 	if (index >= rar_entries) {
2470 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2471 			     "RAR index %d is out of range.\n", index);
2472 		return IXGBE_ERR_INVALID_ARGUMENT;
2473 	}
2474 
2475 	/*
2476 	 * Some parts put the VMDq setting in the extra RAH bits,
2477 	 * so save everything except the lower 16 bits that hold part
2478 	 * of the address and the address valid bit.
2479 	 */
2480 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2481 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2482 
2483 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2484 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2485 
2486 	/* clear VMDq pool/queue selection for this RAR */
2487 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2488 
2489 	return IXGBE_SUCCESS;
2490 }
2491 
2492 /**
2493  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2494  *  @hw: pointer to hardware structure
2495  *
2496  *  Places the MAC address in receive address register 0 and clears the rest
2497  *  of the receive address registers. Clears the multicast table. Assumes
2498  *  the receiver is in reset when the routine is called.
2499  **/
2500 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2501 {
2502 	u32 i;
2503 	u32 rar_entries = hw->mac.num_rar_entries;
2504 
2505 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2506 
2507 	/*
2508 	 * If the current mac address is valid, assume it is a software override
2509 	 * to the permanent address.
2510 	 * Otherwise, use the permanent address from the eeprom.
2511 	 */
2512 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2513 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2514 		/* Get the MAC address from the RAR0 for later reference */
2515 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2516 
2517 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2518 			  hw->mac.addr[0], hw->mac.addr[1],
2519 			  hw->mac.addr[2]);
2520 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2521 			  hw->mac.addr[4], hw->mac.addr[5]);
2522 	} else {
2523 		/* Setup the receive address. */
2524 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2525 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2526 			  hw->mac.addr[0], hw->mac.addr[1],
2527 			  hw->mac.addr[2]);
2528 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2529 			  hw->mac.addr[4], hw->mac.addr[5]);
2530 
2531 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2532 	}
2533 
2534 	/* clear VMDq pool/queue selection for RAR 0 */
2535 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2536 
2537 	hw->addr_ctrl.overflow_promisc = 0;
2538 
2539 	hw->addr_ctrl.rar_used_count = 1;
2540 
2541 	/* Zero out the other receive addresses. */
2542 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2543 	for (i = 1; i < rar_entries; i++) {
2544 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2545 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2546 	}
2547 
2548 	/* Clear the MTA */
2549 	hw->addr_ctrl.mta_in_use = 0;
2550 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2551 
2552 	DEBUGOUT(" Clearing MTA\n");
2553 	for (i = 0; i < hw->mac.mcft_size; i++)
2554 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2555 
2556 	ixgbe_init_uta_tables(hw);
2557 
2558 	return IXGBE_SUCCESS;
2559 }
2560 
2561 /**
2562  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2563  *  @hw: pointer to hardware structure
2564  *  @addr: new address
2565  *  @vmdq: VMDq "set" or "pool" index
2566  *
2567  *  Adds it to unused receive address register or goes into promiscuous mode.
2568  **/
2569 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2570 {
2571 	u32 rar_entries = hw->mac.num_rar_entries;
2572 	u32 rar;
2573 
2574 	DEBUGFUNC("ixgbe_add_uc_addr");
2575 
2576 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2577 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2578 
2579 	/*
2580 	 * Place this address in the RAR if there is room,
2581 	 * else put the controller into promiscuous mode
2582 	 */
2583 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2584 		rar = hw->addr_ctrl.rar_used_count;
2585 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2586 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2587 		hw->addr_ctrl.rar_used_count++;
2588 	} else {
2589 		hw->addr_ctrl.overflow_promisc++;
2590 	}
2591 
2592 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2593 }
2594 
2595 /**
2596  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2597  *  @hw: pointer to hardware structure
2598  *  @addr_list: the list of new addresses
2599  *  @addr_count: number of addresses
2600  *  @next: iterator function to walk the address list
2601  *
2602  *  The given list replaces any existing list.  Clears the secondary addrs from
2603  *  receive address registers.  Uses unused receive address registers for the
2604  *  first secondary addresses, and falls back to promiscuous mode as needed.
2605  *
2606  *  Drivers using secondary unicast addresses must set user_set_promisc when
2607  *  manually putting the device into promiscuous mode.
2608  **/
2609 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2610 				      u32 addr_count, ixgbe_mc_addr_itr next)
2611 {
2612 	u8 *addr;
2613 	u32 i;
2614 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2615 	u32 uc_addr_in_use;
2616 	u32 fctrl;
2617 	u32 vmdq;
2618 
2619 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2620 
2621 	/*
2622 	 * Clear accounting of old secondary address list,
2623 	 * don't count RAR[0]
2624 	 */
2625 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2626 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2627 	hw->addr_ctrl.overflow_promisc = 0;
2628 
2629 	/* Zero out the other receive addresses */
2630 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2631 	for (i = 0; i < uc_addr_in_use; i++) {
2632 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2633 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2634 	}
2635 
2636 	/* Add the new addresses */
2637 	for (i = 0; i < addr_count; i++) {
2638 		DEBUGOUT(" Adding the secondary addresses:\n");
2639 		addr = next(hw, &addr_list, &vmdq);
2640 		ixgbe_add_uc_addr(hw, addr, vmdq);
2641 	}
2642 
2643 	if (hw->addr_ctrl.overflow_promisc) {
2644 		/* enable promisc if not already in overflow or set by user */
2645 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2646 			DEBUGOUT(" Entering address overflow promisc mode\n");
2647 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2648 			fctrl |= IXGBE_FCTRL_UPE;
2649 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2650 		}
2651 	} else {
2652 		/* only disable if set by overflow, not by user */
2653 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2654 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2655 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2656 			fctrl &= ~IXGBE_FCTRL_UPE;
2657 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2658 		}
2659 	}
2660 
2661 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2662 	return IXGBE_SUCCESS;
2663 }
2664 
2665 /**
2666  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2667  *  @hw: pointer to hardware structure
2668  *  @mc_addr: the multicast address
2669  *
2670  *  Extracts the 12 bits, from a multicast address, to determine which
2671  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2672  *  incoming rx multicast addresses, to determine the bit-vector to check in
2673  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2674  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2675  *  to mc_filter_type.
2676  **/
2677 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2678 {
2679 	u32 vector = 0;
2680 
2681 	DEBUGFUNC("ixgbe_mta_vector");
2682 
2683 	switch (hw->mac.mc_filter_type) {
2684 	case 0:   /* use bits [47:36] of the address */
2685 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2686 		break;
2687 	case 1:   /* use bits [46:35] of the address */
2688 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2689 		break;
2690 	case 2:   /* use bits [45:34] of the address */
2691 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2692 		break;
2693 	case 3:   /* use bits [43:32] of the address */
2694 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2695 		break;
2696 	default:  /* Invalid mc_filter_type */
2697 		DEBUGOUT("MC filter type param set incorrectly\n");
2698 		ASSERT(0);
2699 		break;
2700 	}
2701 
2702 	/* vector can only be 12-bits or boundary will be exceeded */
2703 	vector &= 0xFFF;
2704 	return vector;
2705 }
2706 
2707 /**
2708  *  ixgbe_set_mta - Set bit-vector in multicast table
2709  *  @hw: pointer to hardware structure
2710  *  @mc_addr: Multicast address
2711  *
2712  *  Sets the bit-vector in the multicast table.
2713  **/
2714 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2715 {
2716 	u32 vector;
2717 	u32 vector_bit;
2718 	u32 vector_reg;
2719 
2720 	DEBUGFUNC("ixgbe_set_mta");
2721 
2722 	hw->addr_ctrl.mta_in_use++;
2723 
2724 	vector = ixgbe_mta_vector(hw, mc_addr);
2725 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2726 
2727 	/*
2728 	 * The MTA is a register array of 128 32-bit registers. It is treated
2729 	 * like an array of 4096 bits.  We want to set bit
2730 	 * BitArray[vector_value]. So we figure out what register the bit is
2731 	 * in, read it, OR in the new bit, then write back the new value.  The
2732 	 * register is determined by the upper 7 bits of the vector value and
2733 	 * the bit within that register are determined by the lower 5 bits of
2734 	 * the value.
2735 	 */
2736 	vector_reg = (vector >> 5) & 0x7F;
2737 	vector_bit = vector & 0x1F;
2738 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2739 }
2740 
2741 /**
2742  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2743  *  @hw: pointer to hardware structure
2744  *  @mc_addr_list: the list of new multicast addresses
2745  *  @mc_addr_count: number of addresses
2746  *  @next: iterator function to walk the multicast address list
2747  *  @clear: flag, when set clears the table beforehand
2748  *
2749  *  When the clear flag is set, the given list replaces any existing list.
2750  *  Hashes the given addresses into the multicast table.
2751  **/
2752 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2753 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2754 				      bool clear)
2755 {
2756 	u32 i;
2757 	u32 vmdq;
2758 
2759 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2760 
2761 	/*
2762 	 * Set the new number of MC addresses that we are being requested to
2763 	 * use.
2764 	 */
2765 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2766 	hw->addr_ctrl.mta_in_use = 0;
2767 
2768 	/* Clear mta_shadow */
2769 	if (clear) {
2770 		DEBUGOUT(" Clearing MTA\n");
2771 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2772 	}
2773 
2774 	/* Update mta_shadow */
2775 	for (i = 0; i < mc_addr_count; i++) {
2776 		DEBUGOUT(" Adding the multicast addresses:\n");
2777 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2778 	}
2779 
2780 	/* Enable mta */
2781 	for (i = 0; i < hw->mac.mcft_size; i++)
2782 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2783 				      hw->mac.mta_shadow[i]);
2784 
2785 	if (hw->addr_ctrl.mta_in_use > 0)
2786 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2787 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2788 
2789 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2790 	return IXGBE_SUCCESS;
2791 }
2792 
2793 /**
2794  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2795  *  @hw: pointer to hardware structure
2796  *
2797  *  Enables multicast address in RAR and the use of the multicast hash table.
2798  **/
2799 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2800 {
2801 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2802 
2803 	DEBUGFUNC("ixgbe_enable_mc_generic");
2804 
2805 	if (a->mta_in_use > 0)
2806 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2807 				hw->mac.mc_filter_type);
2808 
2809 	return IXGBE_SUCCESS;
2810 }
2811 
2812 /**
2813  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2814  *  @hw: pointer to hardware structure
2815  *
2816  *  Disables multicast address in RAR and the use of the multicast hash table.
2817  **/
2818 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2819 {
2820 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2821 
2822 	DEBUGFUNC("ixgbe_disable_mc_generic");
2823 
2824 	if (a->mta_in_use > 0)
2825 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2826 
2827 	return IXGBE_SUCCESS;
2828 }
2829 
2830 /**
2831  *  ixgbe_fc_enable_generic - Enable flow control
2832  *  @hw: pointer to hardware structure
2833  *
2834  *  Enable flow control according to the current settings.
2835  **/
2836 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2837 {
2838 	s32 ret_val = IXGBE_SUCCESS;
2839 	u32 mflcn_reg, fccfg_reg;
2840 	u32 reg;
2841 	u32 fcrtl, fcrth;
2842 	int i;
2843 
2844 	DEBUGFUNC("ixgbe_fc_enable_generic");
2845 
2846 	/* Validate the water mark configuration */
2847 	if (!hw->fc.pause_time) {
2848 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2849 		goto out;
2850 	}
2851 
2852 	/* Low water mark of zero causes XOFF floods */
2853 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2854 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2855 		    hw->fc.high_water[i]) {
2856 			if (!hw->fc.low_water[i] ||
2857 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2858 				DEBUGOUT("Invalid water mark configuration\n");
2859 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2860 				goto out;
2861 			}
2862 		}
2863 	}
2864 
2865 	/* Negotiate the fc mode to use */
2866 	hw->mac.ops.fc_autoneg(hw);
2867 
2868 	/* Disable any previous flow control settings */
2869 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2870 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2871 
2872 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2873 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2874 
2875 	/*
2876 	 * The possible values of fc.current_mode are:
2877 	 * 0: Flow control is completely disabled
2878 	 * 1: Rx flow control is enabled (we can receive pause frames,
2879 	 *    but not send pause frames).
2880 	 * 2: Tx flow control is enabled (we can send pause frames but
2881 	 *    we do not support receiving pause frames).
2882 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2883 	 * other: Invalid.
2884 	 */
2885 	switch (hw->fc.current_mode) {
2886 	case ixgbe_fc_none:
2887 		/*
2888 		 * Flow control is disabled by software override or autoneg.
2889 		 * The code below will actually disable it in the HW.
2890 		 */
2891 		break;
2892 	case ixgbe_fc_rx_pause:
2893 		/*
2894 		 * Rx Flow control is enabled and Tx Flow control is
2895 		 * disabled by software override. Since there really
2896 		 * isn't a way to advertise that we are capable of RX
2897 		 * Pause ONLY, we will advertise that we support both
2898 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2899 		 * disable the adapter's ability to send PAUSE frames.
2900 		 */
2901 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2902 		break;
2903 	case ixgbe_fc_tx_pause:
2904 		/*
2905 		 * Tx Flow control is enabled, and Rx Flow control is
2906 		 * disabled by software override.
2907 		 */
2908 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2909 		break;
2910 	case ixgbe_fc_full:
2911 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2912 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2913 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2914 		break;
2915 	default:
2916 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2917 			     "Flow control param set incorrectly\n");
2918 		ret_val = IXGBE_ERR_CONFIG;
2919 		goto out;
2920 		break;
2921 	}
2922 
2923 	/* Set 802.3x based flow control settings. */
2924 	mflcn_reg |= IXGBE_MFLCN_DPF;
2925 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2926 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2927 
2928 
2929 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2930 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2931 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2932 		    hw->fc.high_water[i]) {
2933 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2934 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2935 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2936 		} else {
2937 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2938 			/*
2939 			 * In order to prevent Tx hangs when the internal Tx
2940 			 * switch is enabled we must set the high water mark
2941 			 * to the Rx packet buffer size - 24KB.  This allows
2942 			 * the Tx switch to function even under heavy Rx
2943 			 * workloads.
2944 			 */
2945 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2946 		}
2947 
2948 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2949 	}
2950 
2951 	/* Configure pause time (2 TCs per register) */
2952 	reg = hw->fc.pause_time * 0x00010001;
2953 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2954 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2955 
2956 	/* Configure flow control refresh threshold value */
2957 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2958 
2959 out:
2960 	return ret_val;
2961 }
2962 
2963 /**
2964  *  ixgbe_negotiate_fc - Negotiate flow control
2965  *  @hw: pointer to hardware structure
2966  *  @adv_reg: flow control advertised settings
2967  *  @lp_reg: link partner's flow control settings
2968  *  @adv_sym: symmetric pause bit in advertisement
2969  *  @adv_asm: asymmetric pause bit in advertisement
2970  *  @lp_sym: symmetric pause bit in link partner advertisement
2971  *  @lp_asm: asymmetric pause bit in link partner advertisement
2972  *
2973  *  Find the intersection between advertised settings and link partner's
2974  *  advertised settings
2975  **/
2976 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2977 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2978 {
2979 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2980 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2981 			     "Local or link partner's advertised flow control "
2982 			     "settings are NULL. Local: %x, link partner: %x\n",
2983 			     adv_reg, lp_reg);
2984 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2985 	}
2986 
2987 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2988 		/*
2989 		 * Now we need to check if the user selected Rx ONLY
2990 		 * of pause frames.  In this case, we had to advertise
2991 		 * FULL flow control because we could not advertise RX
2992 		 * ONLY. Hence, we must now check to see if we need to
2993 		 * turn OFF the TRANSMISSION of PAUSE frames.
2994 		 */
2995 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2996 			hw->fc.current_mode = ixgbe_fc_full;
2997 			DEBUGOUT("Flow Control = FULL.\n");
2998 		} else {
2999 			hw->fc.current_mode = ixgbe_fc_rx_pause;
3000 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3001 		}
3002 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3003 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3004 		hw->fc.current_mode = ixgbe_fc_tx_pause;
3005 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3006 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3007 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3008 		hw->fc.current_mode = ixgbe_fc_rx_pause;
3009 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3010 	} else {
3011 		hw->fc.current_mode = ixgbe_fc_none;
3012 		DEBUGOUT("Flow Control = NONE.\n");
3013 	}
3014 	return IXGBE_SUCCESS;
3015 }
3016 
3017 /**
3018  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3019  *  @hw: pointer to hardware structure
3020  *
3021  *  Enable flow control according on 1 gig fiber.
3022  **/
3023 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3024 {
3025 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3026 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3027 
3028 	/*
3029 	 * On multispeed fiber at 1g, bail out if
3030 	 * - link is up but AN did not complete, or if
3031 	 * - link is up and AN completed but timed out
3032 	 */
3033 
3034 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3035 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3036 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3037 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3038 		goto out;
3039 	}
3040 
3041 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3042 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3043 
3044 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3045 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3046 				      IXGBE_PCS1GANA_ASM_PAUSE,
3047 				      IXGBE_PCS1GANA_SYM_PAUSE,
3048 				      IXGBE_PCS1GANA_ASM_PAUSE);
3049 
3050 out:
3051 	return ret_val;
3052 }
3053 
3054 /**
3055  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3056  *  @hw: pointer to hardware structure
3057  *
3058  *  Enable flow control according to IEEE clause 37.
3059  **/
3060 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3061 {
3062 	u32 links2, anlp1_reg, autoc_reg, links;
3063 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3064 
3065 	/*
3066 	 * On backplane, bail out if
3067 	 * - backplane autoneg was not completed, or if
3068 	 * - we are 82599 and link partner is not AN enabled
3069 	 */
3070 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3071 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3072 		DEBUGOUT("Auto-Negotiation did not complete\n");
3073 		goto out;
3074 	}
3075 
3076 	if (hw->mac.type == ixgbe_mac_82599EB) {
3077 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3078 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3079 			DEBUGOUT("Link partner is not AN enabled\n");
3080 			goto out;
3081 		}
3082 	}
3083 	/*
3084 	 * Read the 10g AN autoc and LP ability registers and resolve
3085 	 * local flow control settings accordingly
3086 	 */
3087 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3088 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3089 
3090 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3091 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3092 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3093 
3094 out:
3095 	return ret_val;
3096 }
3097 
3098 /**
3099  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3100  *  @hw: pointer to hardware structure
3101  *
3102  *  Enable flow control according to IEEE clause 37.
3103  **/
3104 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3105 {
3106 	u16 technology_ability_reg = 0;
3107 	u16 lp_technology_ability_reg = 0;
3108 
3109 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3110 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3111 			     &technology_ability_reg);
3112 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3113 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3114 			     &lp_technology_ability_reg);
3115 
3116 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3117 				  (u32)lp_technology_ability_reg,
3118 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3119 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3120 }
3121 
3122 /**
3123  *  ixgbe_fc_autoneg - Configure flow control
3124  *  @hw: pointer to hardware structure
3125  *
3126  *  Compares our advertised flow control capabilities to those advertised by
3127  *  our link partner, and determines the proper flow control mode to use.
3128  **/
3129 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3130 {
3131 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3132 	ixgbe_link_speed speed;
3133 	bool link_up;
3134 
3135 	DEBUGFUNC("ixgbe_fc_autoneg");
3136 
3137 	/*
3138 	 * AN should have completed when the cable was plugged in.
3139 	 * Look for reasons to bail out.  Bail out if:
3140 	 * - FC autoneg is disabled, or if
3141 	 * - link is not up.
3142 	 */
3143 	if (hw->fc.disable_fc_autoneg) {
3144 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3145 			     "Flow control autoneg is disabled");
3146 		goto out;
3147 	}
3148 
3149 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3150 	if (!link_up) {
3151 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3152 		goto out;
3153 	}
3154 
3155 	switch (hw->phy.media_type) {
3156 	/* Autoneg flow control on fiber adapters */
3157 	case ixgbe_media_type_fiber_fixed:
3158 	case ixgbe_media_type_fiber_qsfp:
3159 	case ixgbe_media_type_fiber:
3160 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3161 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3162 		break;
3163 
3164 	/* Autoneg flow control on backplane adapters */
3165 	case ixgbe_media_type_backplane:
3166 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3167 		break;
3168 
3169 	/* Autoneg flow control on copper adapters */
3170 	case ixgbe_media_type_copper:
3171 		if (ixgbe_device_supports_autoneg_fc(hw))
3172 			ret_val = ixgbe_fc_autoneg_copper(hw);
3173 		break;
3174 
3175 	default:
3176 		break;
3177 	}
3178 
3179 out:
3180 	if (ret_val == IXGBE_SUCCESS) {
3181 		hw->fc.fc_was_autonegged = TRUE;
3182 	} else {
3183 		hw->fc.fc_was_autonegged = FALSE;
3184 		hw->fc.current_mode = hw->fc.requested_mode;
3185 	}
3186 }
3187 
3188 /*
3189  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3190  * @hw: pointer to hardware structure
3191  *
3192  * System-wide timeout range is encoded in PCIe Device Control2 register.
3193  *
3194  * Add 10% to specified maximum and return the number of times to poll for
3195  * completion timeout, in units of 100 microsec.  Never return less than
3196  * 800 = 80 millisec.
3197  */
3198 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3199 {
3200 	s16 devctl2;
3201 	u32 pollcnt;
3202 
3203 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3204 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3205 
3206 	switch (devctl2) {
3207 	case IXGBE_PCIDEVCTRL2_65_130ms:
3208 		pollcnt = 1300;		/* 130 millisec */
3209 		break;
3210 	case IXGBE_PCIDEVCTRL2_260_520ms:
3211 		pollcnt = 5200;		/* 520 millisec */
3212 		break;
3213 	case IXGBE_PCIDEVCTRL2_1_2s:
3214 		pollcnt = 20000;	/* 2 sec */
3215 		break;
3216 	case IXGBE_PCIDEVCTRL2_4_8s:
3217 		pollcnt = 80000;	/* 8 sec */
3218 		break;
3219 	case IXGBE_PCIDEVCTRL2_17_34s:
3220 		pollcnt = 34000;	/* 34 sec */
3221 		break;
3222 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3223 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3224 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3225 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3226 	default:
3227 		pollcnt = 800;		/* 80 millisec minimum */
3228 		break;
3229 	}
3230 
3231 	/* add 10% to spec maximum */
3232 	return (pollcnt * 11) / 10;
3233 }
3234 
3235 /**
3236  *  ixgbe_disable_pcie_master - Disable PCI-express master access
3237  *  @hw: pointer to hardware structure
3238  *
3239  *  Disables PCI-Express master access and verifies there are no pending
3240  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3241  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3242  *  is returned signifying master requests disabled.
3243  **/
3244 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3245 {
3246 	s32 status = IXGBE_SUCCESS;
3247 	u32 i, poll;
3248 	u16 value;
3249 
3250 	DEBUGFUNC("ixgbe_disable_pcie_master");
3251 
3252 	/* Always set this bit to ensure any future transactions are blocked */
3253 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3254 
3255 	/* Exit if master requests are blocked */
3256 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3257 	    IXGBE_REMOVED(hw->hw_addr))
3258 		goto out;
3259 
3260 	/* Poll for master request bit to clear */
3261 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3262 		usec_delay(100);
3263 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3264 			goto out;
3265 	}
3266 
3267 	/*
3268 	 * Two consecutive resets are required via CTRL.RST per datasheet
3269 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3270 	 * of this need.  The first reset prevents new master requests from
3271 	 * being issued by our device.  We then must wait 1usec or more for any
3272 	 * remaining completions from the PCIe bus to trickle in, and then reset
3273 	 * again to clear out any effects they may have had on our device.
3274 	 */
3275 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3276 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3277 
3278 	if (hw->mac.type >= ixgbe_mac_X550)
3279 		goto out;
3280 
3281 	/*
3282 	 * Before proceeding, make sure that the PCIe block does not have
3283 	 * transactions pending.
3284 	 */
3285 	poll = ixgbe_pcie_timeout_poll(hw);
3286 	for (i = 0; i < poll; i++) {
3287 		usec_delay(100);
3288 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3289 		if (IXGBE_REMOVED(hw->hw_addr))
3290 			goto out;
3291 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3292 			goto out;
3293 	}
3294 
3295 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3296 		     "PCIe transaction pending bit also did not clear.\n");
3297 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3298 
3299 out:
3300 	return status;
3301 }
3302 
3303 /**
3304  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3305  *  @hw: pointer to hardware structure
3306  *  @mask: Mask to specify which semaphore to acquire
3307  *
3308  *  Acquires the SWFW semaphore through the GSSR register for the specified
3309  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3310  **/
3311 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3312 {
3313 	u32 gssr = 0;
3314 	u32 swmask = mask;
3315 	u32 fwmask = mask << 5;
3316 	u32 timeout = 200;
3317 	u32 i;
3318 
3319 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3320 
3321 	for (i = 0; i < timeout; i++) {
3322 		/*
3323 		 * SW NVM semaphore bit is used for access to all
3324 		 * SW_FW_SYNC bits (not just NVM)
3325 		 */
3326 		if (ixgbe_get_eeprom_semaphore(hw))
3327 			return IXGBE_ERR_SWFW_SYNC;
3328 
3329 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3330 		if (!(gssr & (fwmask | swmask))) {
3331 			gssr |= swmask;
3332 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3333 			ixgbe_release_eeprom_semaphore(hw);
3334 			return IXGBE_SUCCESS;
3335 		} else {
3336 			/* Resource is currently in use by FW or SW */
3337 			ixgbe_release_eeprom_semaphore(hw);
3338 			msec_delay(5);
3339 		}
3340 	}
3341 
3342 	/* If time expired clear the bits holding the lock and retry */
3343 	if (gssr & (fwmask | swmask))
3344 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3345 
3346 	msec_delay(5);
3347 	return IXGBE_ERR_SWFW_SYNC;
3348 }
3349 
3350 /**
3351  *  ixgbe_release_swfw_sync - Release SWFW semaphore
3352  *  @hw: pointer to hardware structure
3353  *  @mask: Mask to specify which semaphore to release
3354  *
3355  *  Releases the SWFW semaphore through the GSSR register for the specified
3356  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3357  **/
3358 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3359 {
3360 	u32 gssr;
3361 	u32 swmask = mask;
3362 
3363 	DEBUGFUNC("ixgbe_release_swfw_sync");
3364 
3365 	ixgbe_get_eeprom_semaphore(hw);
3366 
3367 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3368 	gssr &= ~swmask;
3369 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3370 
3371 	ixgbe_release_eeprom_semaphore(hw);
3372 }
3373 
3374 /**
3375  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3376  *  @hw: pointer to hardware structure
3377  *
3378  *  Stops the receive data path and waits for the HW to internally empty
3379  *  the Rx security block
3380  **/
3381 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3382 {
3383 #define IXGBE_MAX_SECRX_POLL 4000
3384 
3385 	int i;
3386 	int secrxreg;
3387 
3388 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3389 
3390 
3391 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3392 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3393 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3394 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3395 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3396 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3397 			break;
3398 		else
3399 			/* Use interrupt-safe sleep just in case */
3400 			usec_delay(10);
3401 	}
3402 
3403 	/* For informational purposes only */
3404 	if (i >= IXGBE_MAX_SECRX_POLL)
3405 		DEBUGOUT("Rx unit being enabled before security "
3406 			 "path fully disabled.  Continuing with init.\n");
3407 
3408 	return IXGBE_SUCCESS;
3409 }
3410 
3411 /**
3412  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3413  *  @hw: pointer to hardware structure
3414  *  @locked: bool to indicate whether the SW/FW lock was taken
3415  *  @reg_val: Value we read from AUTOC
3416  *
3417  *  The default case requires no protection so just to the register read.
3418  */
3419 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3420 {
3421 	*locked = FALSE;
3422 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3423 	return IXGBE_SUCCESS;
3424 }
3425 
3426 /**
3427  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3428  * @hw: pointer to hardware structure
3429  * @reg_val: value to write to AUTOC
3430  * @locked: bool to indicate whether the SW/FW lock was already taken by
3431  *           previous read.
3432  *
3433  * The default case requires no protection so just to the register write.
3434  */
3435 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3436 {
3437 	UNREFERENCED_1PARAMETER(locked);
3438 
3439 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3440 	return IXGBE_SUCCESS;
3441 }
3442 
3443 /**
3444  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3445  *  @hw: pointer to hardware structure
3446  *
3447  *  Enables the receive data path.
3448  **/
3449 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3450 {
3451 	u32 secrxreg;
3452 
3453 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3454 
3455 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3456 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3457 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3458 	IXGBE_WRITE_FLUSH(hw);
3459 
3460 	return IXGBE_SUCCESS;
3461 }
3462 
3463 /**
3464  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3465  *  @hw: pointer to hardware structure
3466  *  @regval: register value to write to RXCTRL
3467  *
3468  *  Enables the Rx DMA unit
3469  **/
3470 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3471 {
3472 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3473 
3474 	if (regval & IXGBE_RXCTRL_RXEN)
3475 		ixgbe_enable_rx(hw);
3476 	else
3477 		ixgbe_disable_rx(hw);
3478 
3479 	return IXGBE_SUCCESS;
3480 }
3481 
3482 /**
3483  *  ixgbe_blink_led_start_generic - Blink LED based on index.
3484  *  @hw: pointer to hardware structure
3485  *  @index: led number to blink
3486  **/
3487 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3488 {
3489 	ixgbe_link_speed speed = 0;
3490 	bool link_up = 0;
3491 	u32 autoc_reg = 0;
3492 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3493 	s32 ret_val = IXGBE_SUCCESS;
3494 	bool locked = FALSE;
3495 
3496 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3497 
3498 	if (index > 3)
3499 		return IXGBE_ERR_PARAM;
3500 
3501 	/*
3502 	 * Link must be up to auto-blink the LEDs;
3503 	 * Force it if link is down.
3504 	 */
3505 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3506 
3507 	if (!link_up) {
3508 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3509 		if (ret_val != IXGBE_SUCCESS)
3510 			goto out;
3511 
3512 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3513 		autoc_reg |= IXGBE_AUTOC_FLU;
3514 
3515 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3516 		if (ret_val != IXGBE_SUCCESS)
3517 			goto out;
3518 
3519 		IXGBE_WRITE_FLUSH(hw);
3520 		msec_delay(10);
3521 	}
3522 
3523 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3524 	led_reg |= IXGBE_LED_BLINK(index);
3525 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3526 	IXGBE_WRITE_FLUSH(hw);
3527 
3528 out:
3529 	return ret_val;
3530 }
3531 
3532 /**
3533  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3534  *  @hw: pointer to hardware structure
3535  *  @index: led number to stop blinking
3536  **/
3537 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3538 {
3539 	u32 autoc_reg = 0;
3540 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3541 	s32 ret_val = IXGBE_SUCCESS;
3542 	bool locked = FALSE;
3543 
3544 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3545 
3546 	if (index > 3)
3547 		return IXGBE_ERR_PARAM;
3548 
3549 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3550 	if (ret_val != IXGBE_SUCCESS)
3551 		goto out;
3552 
3553 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3554 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3555 
3556 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3557 	if (ret_val != IXGBE_SUCCESS)
3558 		goto out;
3559 
3560 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3561 	led_reg &= ~IXGBE_LED_BLINK(index);
3562 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3563 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3564 	IXGBE_WRITE_FLUSH(hw);
3565 
3566 out:
3567 	return ret_val;
3568 }
3569 
3570 /**
3571  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3572  *  @hw: pointer to hardware structure
3573  *  @san_mac_offset: SAN MAC address offset
3574  *
3575  *  This function will read the EEPROM location for the SAN MAC address
3576  *  pointer, and returns the value at that location.  This is used in both
3577  *  get and set mac_addr routines.
3578  **/
3579 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3580 					 u16 *san_mac_offset)
3581 {
3582 	s32 ret_val;
3583 
3584 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3585 
3586 	/*
3587 	 * First read the EEPROM pointer to see if the MAC addresses are
3588 	 * available.
3589 	 */
3590 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3591 				      san_mac_offset);
3592 	if (ret_val) {
3593 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3594 			      "eeprom at offset %d failed",
3595 			      IXGBE_SAN_MAC_ADDR_PTR);
3596 	}
3597 
3598 	return ret_val;
3599 }
3600 
3601 /**
3602  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3603  *  @hw: pointer to hardware structure
3604  *  @san_mac_addr: SAN MAC address
3605  *
3606  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3607  *  per-port, so set_lan_id() must be called before reading the addresses.
3608  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3609  *  upon for non-SFP connections, so we must call it here.
3610  **/
3611 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3612 {
3613 	u16 san_mac_data, san_mac_offset;
3614 	u8 i;
3615 	s32 ret_val;
3616 
3617 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3618 
3619 	/*
3620 	 * First read the EEPROM pointer to see if the MAC addresses are
3621 	 * available.  If they're not, no point in calling set_lan_id() here.
3622 	 */
3623 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3624 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3625 		goto san_mac_addr_out;
3626 
3627 	/* make sure we know which port we need to program */
3628 	hw->mac.ops.set_lan_id(hw);
3629 	/* apply the port offset to the address offset */
3630 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3631 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3632 	for (i = 0; i < 3; i++) {
3633 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3634 					      &san_mac_data);
3635 		if (ret_val) {
3636 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3637 				      "eeprom read at offset %d failed",
3638 				      san_mac_offset);
3639 			goto san_mac_addr_out;
3640 		}
3641 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3642 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3643 		san_mac_offset++;
3644 	}
3645 	return IXGBE_SUCCESS;
3646 
3647 san_mac_addr_out:
3648 	/*
3649 	 * No addresses available in this EEPROM.  It's not an
3650 	 * error though, so just wipe the local address and return.
3651 	 */
3652 	for (i = 0; i < 6; i++)
3653 		san_mac_addr[i] = 0xFF;
3654 	return IXGBE_SUCCESS;
3655 }
3656 
3657 /**
3658  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3659  *  @hw: pointer to hardware structure
3660  *  @san_mac_addr: SAN MAC address
3661  *
3662  *  Write a SAN MAC address to the EEPROM.
3663  **/
3664 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3665 {
3666 	s32 ret_val;
3667 	u16 san_mac_data, san_mac_offset;
3668 	u8 i;
3669 
3670 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3671 
3672 	/* Look for SAN mac address pointer.  If not defined, return */
3673 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3674 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3675 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3676 
3677 	/* Make sure we know which port we need to write */
3678 	hw->mac.ops.set_lan_id(hw);
3679 	/* Apply the port offset to the address offset */
3680 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3681 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3682 
3683 	for (i = 0; i < 3; i++) {
3684 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3685 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3686 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3687 		san_mac_offset++;
3688 	}
3689 
3690 	return IXGBE_SUCCESS;
3691 }
3692 
3693 /**
3694  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3695  *  @hw: pointer to hardware structure
3696  *
3697  *  Read PCIe configuration space, and get the MSI-X vector count from
3698  *  the capabilities table.
3699  **/
3700 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3701 {
3702 	u16 msix_count = 1;
3703 	u16 max_msix_count;
3704 	u16 pcie_offset;
3705 
3706 	switch (hw->mac.type) {
3707 	case ixgbe_mac_82598EB:
3708 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3709 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3710 		break;
3711 	case ixgbe_mac_82599EB:
3712 	case ixgbe_mac_X540:
3713 	case ixgbe_mac_X550:
3714 	case ixgbe_mac_X550EM_x:
3715 	case ixgbe_mac_X550EM_a:
3716 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3717 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3718 		break;
3719 	default:
3720 		return msix_count;
3721 	}
3722 
3723 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3724 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3725 	if (IXGBE_REMOVED(hw->hw_addr))
3726 		msix_count = 0;
3727 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3728 
3729 	/* MSI-X count is zero-based in HW */
3730 	msix_count++;
3731 
3732 	if (msix_count > max_msix_count)
3733 		msix_count = max_msix_count;
3734 
3735 	return msix_count;
3736 }
3737 
3738 /**
3739  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3740  *  @hw: pointer to hardware structure
3741  *  @addr: Address to put into receive address register
3742  *  @vmdq: VMDq pool to assign
3743  *
3744  *  Puts an ethernet address into a receive address register, or
3745  *  finds the rar that it is already in; adds to the pool list
3746  **/
3747 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3748 {
3749 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3750 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3751 	u32 rar;
3752 	u32 rar_low, rar_high;
3753 	u32 addr_low, addr_high;
3754 
3755 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3756 
3757 	/* swap bytes for HW little endian */
3758 	addr_low  = addr[0] | (addr[1] << 8)
3759 			    | (addr[2] << 16)
3760 			    | (addr[3] << 24);
3761 	addr_high = addr[4] | (addr[5] << 8);
3762 
3763 	/*
3764 	 * Either find the mac_id in rar or find the first empty space.
3765 	 * rar_highwater points to just after the highest currently used
3766 	 * rar in order to shorten the search.  It grows when we add a new
3767 	 * rar to the top.
3768 	 */
3769 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3770 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3771 
3772 		if (((IXGBE_RAH_AV & rar_high) == 0)
3773 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3774 			first_empty_rar = rar;
3775 		} else if ((rar_high & 0xFFFF) == addr_high) {
3776 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3777 			if (rar_low == addr_low)
3778 				break;    /* found it already in the rars */
3779 		}
3780 	}
3781 
3782 	if (rar < hw->mac.rar_highwater) {
3783 		/* already there so just add to the pool bits */
3784 		ixgbe_set_vmdq(hw, rar, vmdq);
3785 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3786 		/* stick it into first empty RAR slot we found */
3787 		rar = first_empty_rar;
3788 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3789 	} else if (rar == hw->mac.rar_highwater) {
3790 		/* add it to the top of the list and inc the highwater mark */
3791 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3792 		hw->mac.rar_highwater++;
3793 	} else if (rar >= hw->mac.num_rar_entries) {
3794 		return IXGBE_ERR_INVALID_MAC_ADDR;
3795 	}
3796 
3797 	/*
3798 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3799 	 * remains cleared to be sure default pool packets will get delivered
3800 	 */
3801 	if (rar == 0)
3802 		ixgbe_clear_vmdq(hw, rar, 0);
3803 
3804 	return rar;
3805 }
3806 
3807 /**
3808  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3809  *  @hw: pointer to hardware struct
3810  *  @rar: receive address register index to disassociate
3811  *  @vmdq: VMDq pool index to remove from the rar
3812  **/
3813 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3814 {
3815 	u32 mpsar_lo, mpsar_hi;
3816 	u32 rar_entries = hw->mac.num_rar_entries;
3817 
3818 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3819 
3820 	/* Make sure we are using a valid rar index range */
3821 	if (rar >= rar_entries) {
3822 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3823 			     "RAR index %d is out of range.\n", rar);
3824 		return IXGBE_ERR_INVALID_ARGUMENT;
3825 	}
3826 
3827 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3828 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3829 
3830 	if (IXGBE_REMOVED(hw->hw_addr))
3831 		goto done;
3832 
3833 	if (!mpsar_lo && !mpsar_hi)
3834 		goto done;
3835 
3836 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3837 		if (mpsar_lo) {
3838 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3839 			mpsar_lo = 0;
3840 		}
3841 		if (mpsar_hi) {
3842 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3843 			mpsar_hi = 0;
3844 		}
3845 	} else if (vmdq < 32) {
3846 		mpsar_lo &= ~(1 << vmdq);
3847 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3848 	} else {
3849 		mpsar_hi &= ~(1 << (vmdq - 32));
3850 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3851 	}
3852 
3853 	/* was that the last pool using this rar? */
3854 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3855 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3856 		hw->mac.ops.clear_rar(hw, rar);
3857 done:
3858 	return IXGBE_SUCCESS;
3859 }
3860 
3861 /**
3862  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3863  *  @hw: pointer to hardware struct
3864  *  @rar: receive address register index to associate with a VMDq index
3865  *  @vmdq: VMDq pool index
3866  **/
3867 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3868 {
3869 	u32 mpsar;
3870 	u32 rar_entries = hw->mac.num_rar_entries;
3871 
3872 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3873 
3874 	/* Make sure we are using a valid rar index range */
3875 	if (rar >= rar_entries) {
3876 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3877 			     "RAR index %d is out of range.\n", rar);
3878 		return IXGBE_ERR_INVALID_ARGUMENT;
3879 	}
3880 
3881 	if (vmdq < 32) {
3882 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3883 		mpsar |= 1 << vmdq;
3884 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3885 	} else {
3886 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3887 		mpsar |= 1 << (vmdq - 32);
3888 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3889 	}
3890 	return IXGBE_SUCCESS;
3891 }
3892 
3893 /**
3894  *  This function should only be involved in the IOV mode.
3895  *  In IOV mode, Default pool is next pool after the number of
3896  *  VFs advertized and not 0.
3897  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3898  *
3899  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3900  *  @hw: pointer to hardware struct
3901  *  @vmdq: VMDq pool index
3902  **/
3903 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3904 {
3905 	u32 rar = hw->mac.san_mac_rar_index;
3906 
3907 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3908 
3909 	if (vmdq < 32) {
3910 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3911 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3912 	} else {
3913 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3914 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3915 	}
3916 
3917 	return IXGBE_SUCCESS;
3918 }
3919 
3920 /**
3921  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3922  *  @hw: pointer to hardware structure
3923  **/
3924 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3925 {
3926 	int i;
3927 
3928 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3929 	DEBUGOUT(" Clearing UTA\n");
3930 
3931 	for (i = 0; i < 128; i++)
3932 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3933 
3934 	return IXGBE_SUCCESS;
3935 }
3936 
3937 /**
3938  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3939  *  @hw: pointer to hardware structure
3940  *  @vlan: VLAN id to write to VLAN filter
3941  *  @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3942  *		  vlanid not found
3943  *
3944  *
3945  *  return the VLVF index where this VLAN id should be placed
3946  *
3947  **/
3948 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3949 {
3950 	s32 regindex, first_empty_slot;
3951 	u32 bits;
3952 
3953 	/* short cut the special case */
3954 	if (vlan == 0)
3955 		return 0;
3956 
3957 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3958 	 * will simply bypass the VLVF if there are no entries present in the
3959 	 * VLVF that contain our VLAN
3960 	 */
3961 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3962 
3963 	/* add VLAN enable bit for comparison */
3964 	vlan |= IXGBE_VLVF_VIEN;
3965 
3966 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3967 	 * slot found along the way.
3968 	 *
3969 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3970 	 */
3971 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3972 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3973 		if (bits == vlan)
3974 			return regindex;
3975 		if (!first_empty_slot && !bits)
3976 			first_empty_slot = regindex;
3977 	}
3978 
3979 	/* If we are here then we didn't find the VLAN.  Return first empty
3980 	 * slot we found during our search, else error.
3981 	 */
3982 	if (!first_empty_slot)
3983 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3984 
3985 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3986 }
3987 
3988 /**
3989  *  ixgbe_set_vfta_generic - Set VLAN filter table
3990  *  @hw: pointer to hardware structure
3991  *  @vlan: VLAN id to write to VLAN filter
3992  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
3993  *  @vlan_on: boolean flag to turn on/off VLAN
3994  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3995  *
3996  *  Turn on/off specified VLAN in the VLAN filter table.
3997  **/
3998 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3999 			   bool vlan_on, bool vlvf_bypass)
4000 {
4001 	u32 regidx, vfta_delta, vfta;
4002 	s32 ret_val;
4003 
4004 	DEBUGFUNC("ixgbe_set_vfta_generic");
4005 
4006 	if (vlan > 4095 || vind > 63)
4007 		return IXGBE_ERR_PARAM;
4008 
4009 	/*
4010 	 * this is a 2 part operation - first the VFTA, then the
4011 	 * VLVF and VLVFB if VT Mode is set
4012 	 * We don't write the VFTA until we know the VLVF part succeeded.
4013 	 */
4014 
4015 	/* Part 1
4016 	 * The VFTA is a bitstring made up of 128 32-bit registers
4017 	 * that enable the particular VLAN id, much like the MTA:
4018 	 *    bits[11-5]: which register
4019 	 *    bits[4-0]:  which bit in the register
4020 	 */
4021 	regidx = vlan / 32;
4022 	vfta_delta = 1 << (vlan % 32);
4023 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4024 
4025 	/*
4026 	 * vfta_delta represents the difference between the current value
4027 	 * of vfta and the value we want in the register.  Since the diff
4028 	 * is an XOR mask we can just update the vfta using an XOR
4029 	 */
4030 	vfta_delta &= vlan_on ? ~vfta : vfta;
4031 	vfta ^= vfta_delta;
4032 
4033 	/* Part 2
4034 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4035 	 */
4036 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4037 					 vfta, vlvf_bypass);
4038 	if (ret_val != IXGBE_SUCCESS) {
4039 		if (vlvf_bypass)
4040 			goto vfta_update;
4041 		return ret_val;
4042 	}
4043 
4044 vfta_update:
4045 	/* Update VFTA now that we are ready for traffic */
4046 	if (vfta_delta)
4047 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4048 
4049 	return IXGBE_SUCCESS;
4050 }
4051 
4052 /**
4053  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4054  *  @hw: pointer to hardware structure
4055  *  @vlan: VLAN id to write to VLAN filter
4056  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
4057  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
4058  *  @vfta_delta: pointer to the difference between the current value of VFTA
4059  *		 and the desired value
4060  *  @vfta: the desired value of the VFTA
4061  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
4062  *
4063  *  Turn on/off specified bit in VLVF table.
4064  **/
4065 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4066 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4067 			   bool vlvf_bypass)
4068 {
4069 	u32 bits;
4070 	s32 vlvf_index;
4071 
4072 	DEBUGFUNC("ixgbe_set_vlvf_generic");
4073 
4074 	if (vlan > 4095 || vind > 63)
4075 		return IXGBE_ERR_PARAM;
4076 
4077 	/* If VT Mode is set
4078 	 *   Either vlan_on
4079 	 *     make sure the vlan is in VLVF
4080 	 *     set the vind bit in the matching VLVFB
4081 	 *   Or !vlan_on
4082 	 *     clear the pool bit and possibly the vind
4083 	 */
4084 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4085 		return IXGBE_SUCCESS;
4086 
4087 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4088 	if (vlvf_index < 0)
4089 		return vlvf_index;
4090 
4091 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4092 
4093 	/* set the pool bit */
4094 	bits |= 1 << (vind % 32);
4095 	if (vlan_on)
4096 		goto vlvf_update;
4097 
4098 	/* clear the pool bit */
4099 	bits ^= 1 << (vind % 32);
4100 
4101 	if (!bits &&
4102 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4103 		/* Clear VFTA first, then disable VLVF.  Otherwise
4104 		 * we run the risk of stray packets leaking into
4105 		 * the PF via the default pool
4106 		 */
4107 		if (*vfta_delta)
4108 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4109 
4110 		/* disable VLVF and clear remaining bit from pool */
4111 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4112 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4113 
4114 		return IXGBE_SUCCESS;
4115 	}
4116 
4117 	/* If there are still bits set in the VLVFB registers
4118 	 * for the VLAN ID indicated we need to see if the
4119 	 * caller is requesting that we clear the VFTA entry bit.
4120 	 * If the caller has requested that we clear the VFTA
4121 	 * entry bit but there are still pools/VFs using this VLAN
4122 	 * ID entry then ignore the request.  We're not worried
4123 	 * about the case where we're turning the VFTA VLAN ID
4124 	 * entry bit on, only when requested to turn it off as
4125 	 * there may be multiple pools and/or VFs using the
4126 	 * VLAN ID entry.  In that case we cannot clear the
4127 	 * VFTA bit until all pools/VFs using that VLAN ID have also
4128 	 * been cleared.  This will be indicated by "bits" being
4129 	 * zero.
4130 	 */
4131 	*vfta_delta = 0;
4132 
4133 vlvf_update:
4134 	/* record pool change and enable VLAN ID if not already enabled */
4135 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4136 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4137 
4138 	return IXGBE_SUCCESS;
4139 }
4140 
4141 /**
4142  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4143  *  @hw: pointer to hardware structure
4144  *
4145  *  Clears the VLAN filer table, and the VMDq index associated with the filter
4146  **/
4147 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4148 {
4149 	u32 offset;
4150 
4151 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4152 
4153 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4154 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4155 
4156 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4157 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4158 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4159 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4160 	}
4161 
4162 	return IXGBE_SUCCESS;
4163 }
4164 
4165 /**
4166  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4167  *  @hw: pointer to hardware structure
4168  *
4169  *  Contains the logic to identify if we need to verify link for the
4170  *  crosstalk fix
4171  **/
4172 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4173 {
4174 
4175 	/* Does FW say we need the fix */
4176 	if (!hw->need_crosstalk_fix)
4177 		return FALSE;
4178 
4179 	/* Only consider SFP+ PHYs i.e. media type fiber */
4180 	switch (hw->mac.ops.get_media_type(hw)) {
4181 	case ixgbe_media_type_fiber:
4182 	case ixgbe_media_type_fiber_qsfp:
4183 		break;
4184 	default:
4185 		return FALSE;
4186 	}
4187 
4188 	return TRUE;
4189 }
4190 
4191 /**
4192  *  ixgbe_check_mac_link_generic - Determine link and speed status
4193  *  @hw: pointer to hardware structure
4194  *  @speed: pointer to link speed
4195  *  @link_up: TRUE when link is up
4196  *  @link_up_wait_to_complete: bool used to wait for link up or not
4197  *
4198  *  Reads the links register to determine if link is up and the current speed
4199  **/
4200 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4201 				 bool *link_up, bool link_up_wait_to_complete)
4202 {
4203 	u32 links_reg, links_orig;
4204 	u32 i;
4205 
4206 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4207 
4208 	/* If Crosstalk fix enabled do the sanity check of making sure
4209 	 * the SFP+ cage is full.
4210 	 */
4211 	if (ixgbe_need_crosstalk_fix(hw)) {
4212 		u32 sfp_cage_full;
4213 
4214 		switch (hw->mac.type) {
4215 		case ixgbe_mac_82599EB:
4216 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4217 					IXGBE_ESDP_SDP2;
4218 			break;
4219 		case ixgbe_mac_X550EM_x:
4220 		case ixgbe_mac_X550EM_a:
4221 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4222 					IXGBE_ESDP_SDP0;
4223 			break;
4224 		default:
4225 			/* sanity check - No SFP+ devices here */
4226 			sfp_cage_full = FALSE;
4227 			break;
4228 		}
4229 
4230 		if (!sfp_cage_full) {
4231 			*link_up = FALSE;
4232 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4233 			return IXGBE_SUCCESS;
4234 		}
4235 	}
4236 
4237 	/* clear the old state */
4238 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4239 
4240 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4241 
4242 	if (links_orig != links_reg) {
4243 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4244 			  links_orig, links_reg);
4245 	}
4246 
4247 	if (link_up_wait_to_complete) {
4248 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4249 			if (links_reg & IXGBE_LINKS_UP) {
4250 				*link_up = TRUE;
4251 				break;
4252 			} else {
4253 				*link_up = FALSE;
4254 			}
4255 			msec_delay(100);
4256 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4257 		}
4258 	} else {
4259 		if (links_reg & IXGBE_LINKS_UP)
4260 			*link_up = TRUE;
4261 		else
4262 			*link_up = FALSE;
4263 	}
4264 
4265 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4266 	case IXGBE_LINKS_SPEED_10G_82599:
4267 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4268 		if (hw->mac.type >= ixgbe_mac_X550) {
4269 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4270 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4271 		}
4272 		break;
4273 	case IXGBE_LINKS_SPEED_1G_82599:
4274 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4275 		break;
4276 	case IXGBE_LINKS_SPEED_100_82599:
4277 		*speed = IXGBE_LINK_SPEED_100_FULL;
4278 		if (hw->mac.type >= ixgbe_mac_X550) {
4279 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4280 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4281 		}
4282 		break;
4283 	case IXGBE_LINKS_SPEED_10_X550EM_A:
4284 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4285 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4286 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4287 			*speed = IXGBE_LINK_SPEED_10_FULL;
4288 		break;
4289 	default:
4290 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4291 	}
4292 
4293 	return IXGBE_SUCCESS;
4294 }
4295 
4296 /**
4297  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4298  *  the EEPROM
4299  *  @hw: pointer to hardware structure
4300  *  @wwnn_prefix: the alternative WWNN prefix
4301  *  @wwpn_prefix: the alternative WWPN prefix
4302  *
4303  *  This function will read the EEPROM from the alternative SAN MAC address
4304  *  block to check the support for the alternative WWNN/WWPN prefix support.
4305  **/
4306 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4307 				 u16 *wwpn_prefix)
4308 {
4309 	u16 offset, caps;
4310 	u16 alt_san_mac_blk_offset;
4311 
4312 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4313 
4314 	/* clear output first */
4315 	*wwnn_prefix = 0xFFFF;
4316 	*wwpn_prefix = 0xFFFF;
4317 
4318 	/* check if alternative SAN MAC is supported */
4319 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4320 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4321 		goto wwn_prefix_err;
4322 
4323 	if ((alt_san_mac_blk_offset == 0) ||
4324 	    (alt_san_mac_blk_offset == 0xFFFF))
4325 		goto wwn_prefix_out;
4326 
4327 	/* check capability in alternative san mac address block */
4328 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4329 	if (hw->eeprom.ops.read(hw, offset, &caps))
4330 		goto wwn_prefix_err;
4331 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4332 		goto wwn_prefix_out;
4333 
4334 	/* get the corresponding prefix for WWNN/WWPN */
4335 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4336 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4337 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4338 			      "eeprom read at offset %d failed", offset);
4339 	}
4340 
4341 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4342 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4343 		goto wwn_prefix_err;
4344 
4345 wwn_prefix_out:
4346 	return IXGBE_SUCCESS;
4347 
4348 wwn_prefix_err:
4349 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4350 		      "eeprom read at offset %d failed", offset);
4351 	return IXGBE_SUCCESS;
4352 }
4353 
4354 /**
4355  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4356  *  @hw: pointer to hardware structure
4357  *  @bs: the fcoe boot status
4358  *
4359  *  This function will read the FCOE boot status from the iSCSI FCOE block
4360  **/
4361 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4362 {
4363 	u16 offset, caps, flags;
4364 	s32 status;
4365 
4366 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4367 
4368 	/* clear output first */
4369 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4370 
4371 	/* check if FCOE IBA block is present */
4372 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4373 	status = hw->eeprom.ops.read(hw, offset, &caps);
4374 	if (status != IXGBE_SUCCESS)
4375 		goto out;
4376 
4377 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4378 		goto out;
4379 
4380 	/* check if iSCSI FCOE block is populated */
4381 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4382 	if (status != IXGBE_SUCCESS)
4383 		goto out;
4384 
4385 	if ((offset == 0) || (offset == 0xFFFF))
4386 		goto out;
4387 
4388 	/* read fcoe flags in iSCSI FCOE block */
4389 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4390 	status = hw->eeprom.ops.read(hw, offset, &flags);
4391 	if (status != IXGBE_SUCCESS)
4392 		goto out;
4393 
4394 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4395 		*bs = ixgbe_fcoe_bootstatus_enabled;
4396 	else
4397 		*bs = ixgbe_fcoe_bootstatus_disabled;
4398 
4399 out:
4400 	return status;
4401 }
4402 
4403 /**
4404  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4405  *  @hw: pointer to hardware structure
4406  *  @enable: enable or disable switch for MAC anti-spoofing
4407  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4408  *
4409  **/
4410 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4411 {
4412 	int vf_target_reg = vf >> 3;
4413 	int vf_target_shift = vf % 8;
4414 	u32 pfvfspoof;
4415 
4416 	if (hw->mac.type == ixgbe_mac_82598EB)
4417 		return;
4418 
4419 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4420 	if (enable)
4421 		pfvfspoof |= (1 << vf_target_shift);
4422 	else
4423 		pfvfspoof &= ~(1 << vf_target_shift);
4424 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4425 }
4426 
4427 /**
4428  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4429  *  @hw: pointer to hardware structure
4430  *  @enable: enable or disable switch for VLAN anti-spoofing
4431  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4432  *
4433  **/
4434 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4435 {
4436 	int vf_target_reg = vf >> 3;
4437 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4438 	u32 pfvfspoof;
4439 
4440 	if (hw->mac.type == ixgbe_mac_82598EB)
4441 		return;
4442 
4443 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4444 	if (enable)
4445 		pfvfspoof |= (1 << vf_target_shift);
4446 	else
4447 		pfvfspoof &= ~(1 << vf_target_shift);
4448 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4449 }
4450 
4451 /**
4452  *  ixgbe_get_device_caps_generic - Get additional device capabilities
4453  *  @hw: pointer to hardware structure
4454  *  @device_caps: the EEPROM word with the extra device capabilities
4455  *
4456  *  This function will read the EEPROM location for the device capabilities,
4457  *  and return the word through device_caps.
4458  **/
4459 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4460 {
4461 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4462 
4463 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4464 
4465 	return IXGBE_SUCCESS;
4466 }
4467 
4468 /**
4469  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4470  *  @hw: pointer to hardware structure
4471  *
4472  **/
4473 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4474 {
4475 	u32 regval;
4476 	u32 i;
4477 
4478 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4479 
4480 	/* Enable relaxed ordering */
4481 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4482 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4483 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4484 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4485 	}
4486 
4487 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4488 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4489 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4490 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4491 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4492 	}
4493 
4494 }
4495 
4496 /**
4497  *  ixgbe_calculate_checksum - Calculate checksum for buffer
4498  *  @buffer: pointer to EEPROM
4499  *  @length: size of EEPROM to calculate a checksum for
4500  *  Calculates the checksum for some buffer on a specified length.  The
4501  *  checksum calculated is returned.
4502  **/
4503 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4504 {
4505 	u32 i;
4506 	u8 sum = 0;
4507 
4508 	DEBUGFUNC("ixgbe_calculate_checksum");
4509 
4510 	if (!buffer)
4511 		return 0;
4512 
4513 	for (i = 0; i < length; i++)
4514 		sum += buffer[i];
4515 
4516 	return (u8) (0 - sum);
4517 }
4518 
4519 /**
4520  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
4521  *  @hw: pointer to the HW structure
4522  *  @buffer: command to write and where the return status will be placed
4523  *  @length: length of buffer, must be multiple of 4 bytes
4524  *  @timeout: time in ms to wait for command completion
4525  *
4526  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4527  *  else returns semaphore error when encountering an error acquiring
4528  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4529  *
4530  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4531  *  by the caller.
4532  **/
4533 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4534 		       u32 timeout)
4535 {
4536 	u32 hicr, i, fwsts;
4537 	u16 dword_len;
4538 
4539 	DEBUGFUNC("ixgbe_hic_unlocked");
4540 
4541 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4542 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4543 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4544 	}
4545 
4546 	/* Set bit 9 of FWSTS clearing FW reset indication */
4547 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4548 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4549 
4550 	/* Check that the host interface is enabled. */
4551 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4552 	if (!(hicr & IXGBE_HICR_EN)) {
4553 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4554 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4555 	}
4556 
4557 	/* Calculate length in DWORDs. We must be DWORD aligned */
4558 	if (length % sizeof(u32)) {
4559 		DEBUGOUT("Buffer length failure, not aligned to dword");
4560 		return IXGBE_ERR_INVALID_ARGUMENT;
4561 	}
4562 
4563 	dword_len = length >> 2;
4564 
4565 	/* The device driver writes the relevant command block
4566 	 * into the ram area.
4567 	 */
4568 	for (i = 0; i < dword_len; i++)
4569 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4570 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4571 
4572 	/* Setting this bit tells the ARC that a new command is pending. */
4573 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4574 
4575 	for (i = 0; i < timeout; i++) {
4576 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4577 		if (!(hicr & IXGBE_HICR_C))
4578 			break;
4579 		msec_delay(1);
4580 	}
4581 
4582 	/* Check command completion */
4583 	if ((timeout && i == timeout) ||
4584 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4585 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4586 			     "Command has failed with no status valid.\n");
4587 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4588 	}
4589 
4590 	return IXGBE_SUCCESS;
4591 }
4592 
4593 /**
4594  *  ixgbe_host_interface_command - Issue command to manageability block
4595  *  @hw: pointer to the HW structure
4596  *  @buffer: contains the command to write and where the return status will
4597  *   be placed
4598  *  @length: length of buffer, must be multiple of 4 bytes
4599  *  @timeout: time in ms to wait for command completion
4600  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4601  *   Needed because FW structures are big endian and decoding of
4602  *   these fields can be 8 bit or 16 bit based on command. Decoding
4603  *   is not easily understood without making a table of commands.
4604  *   So we will leave this up to the caller to read back the data
4605  *   in these cases.
4606  *
4607  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4608  *  else returns semaphore error when encountering an error acquiring
4609  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4610  **/
4611 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4612 				 u32 length, u32 timeout, bool return_data)
4613 {
4614 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4615 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4616 	u16 buf_len;
4617 	s32 status;
4618 	u32 bi;
4619 	u32 dword_len;
4620 
4621 	DEBUGFUNC("ixgbe_host_interface_command");
4622 
4623 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4624 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4625 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4626 	}
4627 
4628 	/* Take management host interface semaphore */
4629 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4630 	if (status)
4631 		return status;
4632 
4633 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4634 	if (status)
4635 		goto rel_out;
4636 
4637 	if (!return_data)
4638 		goto rel_out;
4639 
4640 	/* Calculate length in DWORDs */
4641 	dword_len = hdr_size >> 2;
4642 
4643 	/* first pull in the header so we know the buffer length */
4644 	for (bi = 0; bi < dword_len; bi++) {
4645 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4646 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4647 	}
4648 
4649 	/*
4650 	 * If there is any thing in data position pull it in
4651 	 * Read Flash command requires reading buffer length from
4652 	 * two byes instead of one byte
4653 	 */
4654 	if (resp->cmd == 0x30) {
4655 		for (; bi < dword_len + 2; bi++) {
4656 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4657 							  bi);
4658 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
4659 		}
4660 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4661 				  & 0xF00) | resp->buf_len;
4662 		hdr_size += (2 << 2);
4663 	} else {
4664 		buf_len = resp->buf_len;
4665 	}
4666 	if (!buf_len)
4667 		goto rel_out;
4668 
4669 	if (length < buf_len + hdr_size) {
4670 		DEBUGOUT("Buffer not large enough for reply message.\n");
4671 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4672 		goto rel_out;
4673 	}
4674 
4675 	/* Calculate length in DWORDs, add 3 for odd lengths */
4676 	dword_len = (buf_len + 3) >> 2;
4677 
4678 	/* Pull in the rest of the buffer (bi is where we left off) */
4679 	for (; bi <= dword_len; bi++) {
4680 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4681 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4682 	}
4683 
4684 rel_out:
4685 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4686 
4687 	return status;
4688 }
4689 
4690 /**
4691  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4692  *  @hw: pointer to the HW structure
4693  *  @maj: driver version major number
4694  *  @minr: driver version minor number
4695  *  @build: driver version build number
4696  *  @sub: driver version sub build number
4697  *  @len: unused
4698  *  @driver_ver: unused
4699  *
4700  *  Sends driver version number to firmware through the manageability
4701  *  block.  On success return IXGBE_SUCCESS
4702  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4703  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4704  **/
4705 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4706 				 u8 build, u8 sub, u16 len,
4707 				 const char *driver_ver)
4708 {
4709 	struct ixgbe_hic_drv_info fw_cmd;
4710 	int i;
4711 	s32 ret_val = IXGBE_SUCCESS;
4712 
4713 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4714 	UNREFERENCED_2PARAMETER(len, driver_ver);
4715 
4716 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4717 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4718 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4719 	fw_cmd.port_num = (u8)hw->bus.func;
4720 	fw_cmd.ver_maj = maj;
4721 	fw_cmd.ver_min = minr;
4722 	fw_cmd.ver_build = build;
4723 	fw_cmd.ver_sub = sub;
4724 	fw_cmd.hdr.checksum = 0;
4725 	fw_cmd.pad = 0;
4726 	fw_cmd.pad2 = 0;
4727 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4728 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4729 
4730 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4731 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4732 						       sizeof(fw_cmd),
4733 						       IXGBE_HI_COMMAND_TIMEOUT,
4734 						       TRUE);
4735 		if (ret_val != IXGBE_SUCCESS)
4736 			continue;
4737 
4738 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4739 		    FW_CEM_RESP_STATUS_SUCCESS)
4740 			ret_val = IXGBE_SUCCESS;
4741 		else
4742 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4743 
4744 		break;
4745 	}
4746 
4747 	return ret_val;
4748 }
4749 
4750 /**
4751  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4752  * @hw: pointer to hardware structure
4753  * @num_pb: number of packet buffers to allocate
4754  * @headroom: reserve n KB of headroom
4755  * @strategy: packet buffer allocation strategy
4756  **/
4757 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4758 			     int strategy)
4759 {
4760 	u32 pbsize = hw->mac.rx_pb_size;
4761 	int i = 0;
4762 	u32 rxpktsize, txpktsize, txpbthresh;
4763 
4764 	/* Reserve headroom */
4765 	pbsize -= headroom;
4766 
4767 	if (!num_pb)
4768 		num_pb = 1;
4769 
4770 	/* Divide remaining packet buffer space amongst the number of packet
4771 	 * buffers requested using supplied strategy.
4772 	 */
4773 	switch (strategy) {
4774 	case PBA_STRATEGY_WEIGHTED:
4775 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4776 		 * buffer with 5/8 of the packet buffer space.
4777 		 */
4778 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4779 		pbsize -= rxpktsize * (num_pb / 2);
4780 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4781 		for (; i < (num_pb / 2); i++)
4782 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4783 		/* fall through - configure remaining packet buffers */
4784 	case PBA_STRATEGY_EQUAL:
4785 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4786 		for (; i < num_pb; i++)
4787 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4788 		break;
4789 	default:
4790 		break;
4791 	}
4792 
4793 	/* Only support an equally distributed Tx packet buffer strategy. */
4794 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4795 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4796 	for (i = 0; i < num_pb; i++) {
4797 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4798 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4799 	}
4800 
4801 	/* Clear unused TCs, if any, to zero buffer size*/
4802 	for (; i < IXGBE_MAX_PB; i++) {
4803 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4804 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4805 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4806 	}
4807 }
4808 
4809 /**
4810  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4811  * @hw: pointer to the hardware structure
4812  *
4813  * The 82599 and x540 MACs can experience issues if TX work is still pending
4814  * when a reset occurs.  This function prevents this by flushing the PCIe
4815  * buffers on the system.
4816  **/
4817 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4818 {
4819 	u32 gcr_ext, hlreg0, i, poll;
4820 	u16 value;
4821 
4822 	/*
4823 	 * If double reset is not requested then all transactions should
4824 	 * already be clear and as such there is no work to do
4825 	 */
4826 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4827 		return;
4828 
4829 	/*
4830 	 * Set loopback enable to prevent any transmits from being sent
4831 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4832 	 * has already been cleared.
4833 	 */
4834 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4835 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4836 
4837 	/* Wait for a last completion before clearing buffers */
4838 	IXGBE_WRITE_FLUSH(hw);
4839 	msec_delay(3);
4840 
4841 	/*
4842 	 * Before proceeding, make sure that the PCIe block does not have
4843 	 * transactions pending.
4844 	 */
4845 	poll = ixgbe_pcie_timeout_poll(hw);
4846 	for (i = 0; i < poll; i++) {
4847 		usec_delay(100);
4848 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4849 		if (IXGBE_REMOVED(hw->hw_addr))
4850 			goto out;
4851 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4852 			goto out;
4853 	}
4854 
4855 out:
4856 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4857 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4858 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4859 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4860 
4861 	/* Flush all writes and allow 20usec for all transactions to clear */
4862 	IXGBE_WRITE_FLUSH(hw);
4863 	usec_delay(20);
4864 
4865 	/* restore previous register values */
4866 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4867 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4868 }
4869 
4870 /**
4871  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4872  *
4873  *  @hw: pointer to hardware structure
4874  *  @cmd: Command we send to the FW
4875  *  @status: The reply from the FW
4876  *
4877  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
4878  **/
4879 #define IXGBE_BYPASS_BB_WAIT 1
4880 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4881 {
4882 	int i;
4883 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4884 	u32 esdp;
4885 
4886 	if (!status)
4887 		return IXGBE_ERR_PARAM;
4888 
4889 	*status = 0;
4890 
4891 	/* SDP vary by MAC type */
4892 	switch (hw->mac.type) {
4893 	case ixgbe_mac_82599EB:
4894 		sck = IXGBE_ESDP_SDP7;
4895 		sdi = IXGBE_ESDP_SDP0;
4896 		sdo = IXGBE_ESDP_SDP6;
4897 		dir_sck = IXGBE_ESDP_SDP7_DIR;
4898 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4899 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4900 		break;
4901 	case ixgbe_mac_X540:
4902 		sck = IXGBE_ESDP_SDP2;
4903 		sdi = IXGBE_ESDP_SDP0;
4904 		sdo = IXGBE_ESDP_SDP1;
4905 		dir_sck = IXGBE_ESDP_SDP2_DIR;
4906 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4907 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4908 		break;
4909 	default:
4910 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4911 	}
4912 
4913 	/* Set SDP pins direction */
4914 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4915 	esdp |= dir_sck;	/* SCK as output */
4916 	esdp |= dir_sdi;	/* SDI as output */
4917 	esdp &= ~dir_sdo;	/* SDO as input */
4918 	esdp |= sck;
4919 	esdp |= sdi;
4920 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4921 	IXGBE_WRITE_FLUSH(hw);
4922 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4923 
4924 	/* Generate start condition */
4925 	esdp &= ~sdi;
4926 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4927 	IXGBE_WRITE_FLUSH(hw);
4928 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4929 
4930 	esdp &= ~sck;
4931 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4932 	IXGBE_WRITE_FLUSH(hw);
4933 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4934 
4935 	/* Clock out the new control word and clock in the status */
4936 	for (i = 0; i < 32; i++) {
4937 		if ((cmd >> (31 - i)) & 0x01) {
4938 			esdp |= sdi;
4939 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4940 		} else {
4941 			esdp &= ~sdi;
4942 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4943 		}
4944 		IXGBE_WRITE_FLUSH(hw);
4945 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4946 
4947 		esdp |= sck;
4948 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4949 		IXGBE_WRITE_FLUSH(hw);
4950 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4951 
4952 		esdp &= ~sck;
4953 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4954 		IXGBE_WRITE_FLUSH(hw);
4955 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4956 
4957 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4958 		if (esdp & sdo)
4959 			*status = (*status << 1) | 0x01;
4960 		else
4961 			*status = (*status << 1) | 0x00;
4962 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4963 	}
4964 
4965 	/* stop condition */
4966 	esdp |= sck;
4967 	esdp &= ~sdi;
4968 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4969 	IXGBE_WRITE_FLUSH(hw);
4970 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4971 
4972 	esdp |= sdi;
4973 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4974 	IXGBE_WRITE_FLUSH(hw);
4975 
4976 	/* set the page bits to match the cmd that the status it belongs to */
4977 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4978 
4979 	return IXGBE_SUCCESS;
4980 }
4981 
4982 /**
4983  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4984  *
4985  * If we send a write we can't be sure it took until we can read back
4986  * that same register.  It can be a problem as some of the feilds may
4987  * for valid reasons change inbetween the time wrote the register and
4988  * we read it again to verify.  So this function check everything we
4989  * can check and then assumes it worked.
4990  *
4991  * @u32 in_reg - The register cmd for the bit-bang read.
4992  * @u32 out_reg - The register returned from a bit-bang read.
4993  **/
4994 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4995 {
4996 	u32 mask;
4997 
4998 	/* Page must match for all control pages */
4999 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5000 		return FALSE;
5001 
5002 	switch (in_reg & BYPASS_PAGE_M) {
5003 	case BYPASS_PAGE_CTL0:
5004 		/* All the following can't change since the last write
5005 		 *  - All the event actions
5006 		 *  - The timeout value
5007 		 */
5008 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5009 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5010 		       BYPASS_WDTIMEOUT_M |
5011 		       BYPASS_WDT_VALUE_M;
5012 		if ((out_reg & mask) != (in_reg & mask))
5013 			return FALSE;
5014 
5015 		/* 0x0 is never a valid value for bypass status */
5016 		if (!(out_reg & BYPASS_STATUS_OFF_M))
5017 			return FALSE;
5018 		break;
5019 	case BYPASS_PAGE_CTL1:
5020 		/* All the following can't change since the last write
5021 		 *  - time valid bit
5022 		 *  - time we last sent
5023 		 */
5024 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5025 		if ((out_reg & mask) != (in_reg & mask))
5026 			return FALSE;
5027 		break;
5028 	case BYPASS_PAGE_CTL2:
5029 		/* All we can check in this page is control number
5030 		 * which is already done above.
5031 		 */
5032 		break;
5033 	}
5034 
5035 	/* We are as sure as we can be return TRUE */
5036 	return TRUE;
5037 }
5038 
5039 /**
5040  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
5041  *
5042  *  @hw: pointer to hardware structure
5043  *  @cmd: The control word we are setting.
5044  *  @event: The event we are setting in the FW.  This also happens to
5045  *	    be the mask for the event we are setting (handy)
5046  *  @action: The action we set the event to in the FW. This is in a
5047  *	     bit field that happens to be what we want to put in
5048  *	     the event spot (also handy)
5049  **/
5050 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5051 			     u32 action)
5052 {
5053 	u32 by_ctl = 0;
5054 	u32 cmd, verify;
5055 	u32 count = 0;
5056 
5057 	/* Get current values */
5058 	cmd = ctrl;	/* just reading only need control number */
5059 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5060 		return IXGBE_ERR_INVALID_ARGUMENT;
5061 
5062 	/* Set to new action */
5063 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5064 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5065 		return IXGBE_ERR_INVALID_ARGUMENT;
5066 
5067 	/* Page 0 force a FW eeprom write which is slow so verify */
5068 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5069 		verify = BYPASS_PAGE_CTL0;
5070 		do {
5071 			if (count++ > 5)
5072 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5073 
5074 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5075 				return IXGBE_ERR_INVALID_ARGUMENT;
5076 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5077 	} else {
5078 		/* We have give the FW time for the write to stick */
5079 		msec_delay(100);
5080 	}
5081 
5082 	return IXGBE_SUCCESS;
5083 }
5084 
5085 /**
5086  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5087  *
5088  *  @hw: pointer to hardware structure
5089  *  @addr: The bypass eeprom address to read.
5090  *  @value: The 8b of data at the address above.
5091  **/
5092 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5093 {
5094 	u32 cmd;
5095 	u32 status;
5096 
5097 
5098 	/* send the request */
5099 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5100 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5101 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5102 		return IXGBE_ERR_INVALID_ARGUMENT;
5103 
5104 	/* We have give the FW time for the write to stick */
5105 	msec_delay(100);
5106 
5107 	/* now read the results */
5108 	cmd &= ~BYPASS_WE;
5109 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5110 		return IXGBE_ERR_INVALID_ARGUMENT;
5111 
5112 	*value = status & BYPASS_CTL2_DATA_M;
5113 
5114 	return IXGBE_SUCCESS;
5115 }
5116 
5117 /**
5118  *  ixgbe_get_orom_version - Return option ROM from EEPROM
5119  *
5120  *  @hw: pointer to hardware structure
5121  *  @nvm_ver: pointer to output structure
5122  *
5123  *  if valid option ROM version, nvm_ver->or_valid set to TRUE
5124  *  else nvm_ver->or_valid is FALSE.
5125  **/
5126 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5127 			    struct ixgbe_nvm_version *nvm_ver)
5128 {
5129 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5130 
5131 	nvm_ver->or_valid = FALSE;
5132 	/* Option Rom may or may not be present.  Start with pointer */
5133 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5134 
5135 	/* make sure offset is valid */
5136 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5137 		return;
5138 
5139 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5140 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5141 
5142 	/* option rom exists and is valid */
5143 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5144 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
5145 	    eeprom_cfg_blkh == NVM_VER_INVALID)
5146 		return;
5147 
5148 	nvm_ver->or_valid = TRUE;
5149 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5150 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5151 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5152 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5153 }
5154 
5155 /**
5156  *  ixgbe_get_oem_prod_version - Return OEM Product version
5157  *
5158  *  @hw: pointer to hardware structure
5159  *  @nvm_ver: pointer to output structure
5160  *
5161  *  if valid OEM product version, nvm_ver->oem_valid set to TRUE
5162  *  else nvm_ver->oem_valid is FALSE.
5163  **/
5164 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5165 				struct ixgbe_nvm_version *nvm_ver)
5166 {
5167 	u16 rel_num, prod_ver, mod_len, cap, offset;
5168 
5169 	nvm_ver->oem_valid = FALSE;
5170 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5171 
5172 	/* Return is offset to OEM Product Version block is invalid */
5173 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
5174 		return;
5175 
5176 	/* Read product version block */
5177 	hw->eeprom.ops.read(hw, offset, &mod_len);
5178 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5179 
5180 	/* Return if OEM product version block is invalid */
5181 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5182 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5183 		return;
5184 
5185 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5186 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5187 
5188 	/* Return if version is invalid */
5189 	if ((rel_num | prod_ver) == 0x0 ||
5190 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5191 		return;
5192 
5193 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5194 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5195 	nvm_ver->oem_release = rel_num;
5196 	nvm_ver->oem_valid = TRUE;
5197 }
5198 
5199 /**
5200  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
5201  *
5202  *  @hw: pointer to hardware structure
5203  *  @nvm_ver: pointer to output structure
5204  *
5205  *  word read errors will return 0xFFFF
5206  **/
5207 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5208 {
5209 	u16 etk_id_l, etk_id_h;
5210 
5211 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5212 		etk_id_l = NVM_VER_INVALID;
5213 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5214 		etk_id_h = NVM_VER_INVALID;
5215 
5216 	/* The word order for the version format is determined by high order
5217 	 * word bit 15.
5218 	 */
5219 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
5220 		nvm_ver->etk_id = etk_id_h;
5221 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5222 	} else {
5223 		nvm_ver->etk_id = etk_id_l;
5224 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5225 	}
5226 }
5227 
5228 
5229 /**
5230  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5231  * @hw: pointer to hardware structure
5232  * @map: pointer to u8 arr for returning map
5233  *
5234  * Read the rtrup2tc HW register and resolve its content into map
5235  **/
5236 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5237 {
5238 	u32 reg, i;
5239 
5240 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5241 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5242 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5243 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5244 	return;
5245 }
5246 
5247 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5248 {
5249 	u32 pfdtxgswc;
5250 	u32 rxctrl;
5251 
5252 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5253 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5254 		if (hw->mac.type != ixgbe_mac_82598EB) {
5255 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5256 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5257 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5258 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5259 				hw->mac.set_lben = TRUE;
5260 			} else {
5261 				hw->mac.set_lben = FALSE;
5262 			}
5263 		}
5264 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5265 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5266 	}
5267 }
5268 
5269 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5270 {
5271 	u32 pfdtxgswc;
5272 	u32 rxctrl;
5273 
5274 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5275 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5276 
5277 	if (hw->mac.type != ixgbe_mac_82598EB) {
5278 		if (hw->mac.set_lben) {
5279 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5280 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5281 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5282 			hw->mac.set_lben = FALSE;
5283 		}
5284 	}
5285 }
5286 
5287 /**
5288  * ixgbe_mng_present - returns TRUE when management capability is present
5289  * @hw: pointer to hardware structure
5290  */
5291 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5292 {
5293 	u32 fwsm;
5294 
5295 	if (hw->mac.type < ixgbe_mac_82599EB)
5296 		return FALSE;
5297 
5298 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5299 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5300 }
5301 
5302 /**
5303  * ixgbe_mng_enabled - Is the manageability engine enabled?
5304  * @hw: pointer to hardware structure
5305  *
5306  * Returns TRUE if the manageability engine is enabled.
5307  **/
5308 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5309 {
5310 	u32 fwsm, manc, factps;
5311 
5312 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5313 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5314 		return FALSE;
5315 
5316 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5317 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5318 		return FALSE;
5319 
5320 	if (hw->mac.type <= ixgbe_mac_X540) {
5321 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5322 		if (factps & IXGBE_FACTPS_MNGCG)
5323 			return FALSE;
5324 	}
5325 
5326 	return TRUE;
5327 }
5328 
5329 /**
5330  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5331  *  @hw: pointer to hardware structure
5332  *  @speed: new link speed
5333  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5334  *
5335  *  Set the link speed in the MAC and/or PHY register and restarts link.
5336  **/
5337 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5338 					  ixgbe_link_speed speed,
5339 					  bool autoneg_wait_to_complete)
5340 {
5341 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5342 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5343 	s32 status = IXGBE_SUCCESS;
5344 	u32 speedcnt = 0;
5345 	u32 i = 0;
5346 	bool autoneg, link_up = FALSE;
5347 
5348 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5349 
5350 	/* Mask off requested but non-supported speeds */
5351 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5352 	if (status != IXGBE_SUCCESS)
5353 		return status;
5354 
5355 	speed &= link_speed;
5356 
5357 	/* Try each speed one by one, highest priority first.  We do this in
5358 	 * software because 10Gb fiber doesn't support speed autonegotiation.
5359 	 */
5360 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5361 		speedcnt++;
5362 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5363 
5364 		/* Set the module link speed */
5365 		switch (hw->phy.media_type) {
5366 		case ixgbe_media_type_fiber_fixed:
5367 		case ixgbe_media_type_fiber:
5368 			ixgbe_set_rate_select_speed(hw,
5369 						    IXGBE_LINK_SPEED_10GB_FULL);
5370 			break;
5371 		case ixgbe_media_type_fiber_qsfp:
5372 			/* QSFP module automatically detects MAC link speed */
5373 			break;
5374 		default:
5375 			DEBUGOUT("Unexpected media type.\n");
5376 			break;
5377 		}
5378 
5379 		/* Allow module to change analog characteristics (1G->10G) */
5380 		msec_delay(40);
5381 
5382 		status = ixgbe_setup_mac_link(hw,
5383 					      IXGBE_LINK_SPEED_10GB_FULL,
5384 					      autoneg_wait_to_complete);
5385 		if (status != IXGBE_SUCCESS)
5386 			return status;
5387 
5388 		/* Flap the Tx laser if it has not already been done */
5389 		ixgbe_flap_tx_laser(hw);
5390 
5391 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5392 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
5393 		 * attempted.  82599 uses the same timing for 10g SFI.
5394 		 */
5395 		for (i = 0; i < 5; i++) {
5396 			/* Wait for the link partner to also set speed */
5397 			msec_delay(100);
5398 
5399 			/* If we have link, just jump out */
5400 			status = ixgbe_check_link(hw, &link_speed,
5401 						  &link_up, FALSE);
5402 			if (status != IXGBE_SUCCESS)
5403 				return status;
5404 
5405 			if (link_up)
5406 				goto out;
5407 		}
5408 	}
5409 
5410 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5411 		speedcnt++;
5412 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5413 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5414 
5415 		/* Set the module link speed */
5416 		switch (hw->phy.media_type) {
5417 		case ixgbe_media_type_fiber_fixed:
5418 		case ixgbe_media_type_fiber:
5419 			ixgbe_set_rate_select_speed(hw,
5420 						    IXGBE_LINK_SPEED_1GB_FULL);
5421 			break;
5422 		case ixgbe_media_type_fiber_qsfp:
5423 			/* QSFP module automatically detects link speed */
5424 			break;
5425 		default:
5426 			DEBUGOUT("Unexpected media type.\n");
5427 			break;
5428 		}
5429 
5430 		/* Allow module to change analog characteristics (10G->1G) */
5431 		msec_delay(40);
5432 
5433 		status = ixgbe_setup_mac_link(hw,
5434 					      IXGBE_LINK_SPEED_1GB_FULL,
5435 					      autoneg_wait_to_complete);
5436 		if (status != IXGBE_SUCCESS)
5437 			return status;
5438 
5439 		/* Flap the Tx laser if it has not already been done */
5440 		ixgbe_flap_tx_laser(hw);
5441 
5442 		/* Wait for the link partner to also set speed */
5443 		msec_delay(100);
5444 
5445 		/* If we have link, just jump out */
5446 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5447 		if (status != IXGBE_SUCCESS)
5448 			return status;
5449 
5450 		if (link_up)
5451 			goto out;
5452 	}
5453 
5454 	if (speed == 0) {
5455 		/* Disable the Tx laser for media none */
5456 		ixgbe_disable_tx_laser(hw);
5457 
5458 		goto out;
5459 	}
5460 
5461 	/* We didn't get link.  Configure back to the highest speed we tried,
5462 	 * (if there was more than one).  We call ourselves back with just the
5463 	 * single highest speed that the user requested.
5464 	 */
5465 	if (speedcnt > 1)
5466 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5467 						      highest_link_speed,
5468 						      autoneg_wait_to_complete);
5469 
5470 out:
5471 	/* Set autoneg_advertised value based on input link speed */
5472 	hw->phy.autoneg_advertised = 0;
5473 
5474 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5475 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5476 
5477 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5478 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5479 
5480 	return status;
5481 }
5482 
5483 /**
5484  *  ixgbe_set_soft_rate_select_speed - Set module link speed
5485  *  @hw: pointer to hardware structure
5486  *  @speed: link speed to set
5487  *
5488  *  Set module link speed via the soft rate select.
5489  */
5490 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5491 					ixgbe_link_speed speed)
5492 {
5493 	s32 status;
5494 	u8 rs, eeprom_data;
5495 
5496 	switch (speed) {
5497 	case IXGBE_LINK_SPEED_10GB_FULL:
5498 		/* one bit mask same as setting on */
5499 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5500 		break;
5501 	case IXGBE_LINK_SPEED_1GB_FULL:
5502 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5503 		break;
5504 	default:
5505 		DEBUGOUT("Invalid fixed module speed\n");
5506 		return;
5507 	}
5508 
5509 	/* Set RS0 */
5510 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5511 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5512 					   &eeprom_data);
5513 	if (status) {
5514 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5515 		goto out;
5516 	}
5517 
5518 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5519 
5520 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5521 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5522 					    eeprom_data);
5523 	if (status) {
5524 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5525 		goto out;
5526 	}
5527 
5528 	/* Set RS1 */
5529 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5530 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5531 					   &eeprom_data);
5532 	if (status) {
5533 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5534 		goto out;
5535 	}
5536 
5537 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5538 
5539 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5540 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5541 					    eeprom_data);
5542 	if (status) {
5543 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5544 		goto out;
5545 	}
5546 out:
5547 	return;
5548 }
5549