xref: /netbsd-src/sys/dev/pci/ixgbe/ixgbe_common.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /* $NetBSD: ixgbe_common.c,v 1.43 2022/06/06 02:16:37 msaitoh Exp $ */
2 
3 /******************************************************************************
4   SPDX-License-Identifier: BSD-3-Clause
5 
6   Copyright (c) 2001-2020, Intel Corporation
7   All rights reserved.
8 
9   Redistribution and use in source and binary forms, with or without
10   modification, are permitted provided that the following conditions are met:
11 
12    1. Redistributions of source code must retain the above copyright notice,
13       this list of conditions and the following disclaimer.
14 
15    2. Redistributions in binary form must reproduce the above copyright
16       notice, this list of conditions and the following disclaimer in the
17       documentation and/or other materials provided with the distribution.
18 
19    3. Neither the name of the Intel Corporation nor the names of its
20       contributors may be used to endorse or promote products derived from
21       this software without specific prior written permission.
22 
23   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33   POSSIBILITY OF SUCH DAMAGE.
34 
35 ******************************************************************************/
36 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.43 2022/06/06 02:16:37 msaitoh Exp $");
40 
41 #include "ixgbe_common.h"
42 #include "ixgbe_phy.h"
43 #include "ixgbe_dcb.h"
44 #include "ixgbe_dcb_82599.h"
45 #include "ixgbe_api.h"
46 
47 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
48 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
49 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
50 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
51 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
52 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
53 					u16 count);
54 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
55 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
56 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
57 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
58 
59 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
60 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
61 					 u16 *san_mac_offset);
62 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 					     u16 words, u16 *data);
64 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 					      u16 words, u16 *data);
66 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 						 u16 offset);
68 
69 /**
70  * ixgbe_init_ops_generic - Inits function ptrs
71  * @hw: pointer to the hardware structure
72  *
73  * Initialize the function pointers.
74  **/
75 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 {
77 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 	struct ixgbe_mac_info *mac = &hw->mac;
79 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
80 
81 	DEBUGFUNC("ixgbe_init_ops_generic");
82 
83 	/* EEPROM */
84 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
85 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 	if (eec & IXGBE_EEC_PRES) {
87 		eeprom->ops.read = ixgbe_read_eerd_generic;
88 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
89 	} else {
90 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
91 		eeprom->ops.read_buffer =
92 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
93 	}
94 	eeprom->ops.write = ixgbe_write_eeprom_generic;
95 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
96 	eeprom->ops.validate_checksum =
97 				      ixgbe_validate_eeprom_checksum_generic;
98 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
99 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
100 
101 	/* MAC */
102 	mac->ops.init_hw = ixgbe_init_hw_generic;
103 	mac->ops.reset_hw = NULL;
104 	mac->ops.start_hw = ixgbe_start_hw_generic;
105 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
106 	mac->ops.get_media_type = NULL;
107 	mac->ops.get_supported_physical_layer = NULL;
108 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
109 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
110 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
111 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
112 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
113 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
114 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
115 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
116 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
117 
118 	/* LEDs */
119 	mac->ops.led_on = ixgbe_led_on_generic;
120 	mac->ops.led_off = ixgbe_led_off_generic;
121 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
122 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
123 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
124 
125 	/* RAR, Multicast, VLAN */
126 	mac->ops.set_rar = ixgbe_set_rar_generic;
127 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
128 	mac->ops.insert_mac_addr = NULL;
129 	mac->ops.set_vmdq = NULL;
130 	mac->ops.clear_vmdq = NULL;
131 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
132 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
133 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
134 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
135 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
136 	mac->ops.clear_vfta = NULL;
137 	mac->ops.set_vfta = NULL;
138 	mac->ops.set_vlvf = NULL;
139 	mac->ops.init_uta_tables = NULL;
140 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
141 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
142 	mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
143 
144 	/* Flow Control */
145 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
146 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
147 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
148 
149 	/* Link */
150 	mac->ops.get_link_capabilities = NULL;
151 	mac->ops.setup_link = NULL;
152 	mac->ops.check_link = NULL;
153 	mac->ops.dmac_config = NULL;
154 	mac->ops.dmac_update_tcs = NULL;
155 	mac->ops.dmac_config_tcs = NULL;
156 
157 	return IXGBE_SUCCESS;
158 }
159 
160 /**
161  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
162  * of flow control
163  * @hw: pointer to hardware structure
164  *
165  * This function returns TRUE if the device supports flow control
166  * autonegotiation, and FALSE if it does not.
167  *
168  **/
169 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
170 {
171 	bool supported = FALSE;
172 	ixgbe_link_speed speed;
173 	bool link_up;
174 
175 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
176 
177 	switch (hw->phy.media_type) {
178 	case ixgbe_media_type_fiber_fixed:
179 	case ixgbe_media_type_fiber_qsfp:
180 	case ixgbe_media_type_fiber:
181 		/* flow control autoneg black list */
182 		switch (hw->device_id) {
183 		case IXGBE_DEV_ID_X550EM_A_SFP:
184 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
185 		case IXGBE_DEV_ID_X550EM_A_QSFP:
186 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
187 			supported = FALSE;
188 			break;
189 		default:
190 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
191 			/* if link is down, assume supported */
192 			if (link_up)
193 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
194 				    TRUE : FALSE;
195 			else
196 				supported = TRUE;
197 		}
198 
199 		break;
200 	case ixgbe_media_type_backplane:
201 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
202 			supported = FALSE;
203 		else
204 			supported = TRUE;
205 		break;
206 	case ixgbe_media_type_copper:
207 		/* only some copper devices support flow control autoneg */
208 		switch (hw->device_id) {
209 		case IXGBE_DEV_ID_82599_T3_LOM:
210 		case IXGBE_DEV_ID_X540T:
211 		case IXGBE_DEV_ID_X540T1:
212 		case IXGBE_DEV_ID_X540_BYPASS:
213 		case IXGBE_DEV_ID_X550T:
214 		case IXGBE_DEV_ID_X550T1:
215 		case IXGBE_DEV_ID_X550EM_X_10G_T:
216 		case IXGBE_DEV_ID_X550EM_A_10G_T:
217 		case IXGBE_DEV_ID_X550EM_A_1G_T:
218 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
219 			supported = TRUE;
220 			break;
221 		default:
222 			supported = FALSE;
223 		}
224 	default:
225 		break;
226 	}
227 
228 	return supported;
229 }
230 
231 /**
232  * ixgbe_setup_fc_generic - Set up flow control
233  * @hw: pointer to hardware structure
234  *
235  * Called at init time to set up flow control.
236  **/
237 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
238 {
239 	s32 ret_val = IXGBE_SUCCESS;
240 	u32 reg = 0, reg_bp = 0;
241 	u16 reg_cu = 0;
242 	bool locked = FALSE;
243 
244 	DEBUGFUNC("ixgbe_setup_fc_generic");
245 
246 	/* Validate the requested mode */
247 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
248 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
249 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
250 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
251 		goto out;
252 	}
253 
254 	/*
255 	 * 10gig parts do not have a word in the EEPROM to determine the
256 	 * default flow control setting, so we explicitly set it to full.
257 	 */
258 	if (hw->fc.requested_mode == ixgbe_fc_default)
259 		hw->fc.requested_mode = ixgbe_fc_full;
260 
261 	/*
262 	 * Set up the 1G and 10G flow control advertisement registers so the
263 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
264 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
265 	 */
266 	switch (hw->phy.media_type) {
267 	case ixgbe_media_type_backplane:
268 		/* some MAC's need RMW protection on AUTOC */
269 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
270 		if (ret_val != IXGBE_SUCCESS)
271 			goto out;
272 
273 		/* fall through - only backplane uses autoc */
274 	case ixgbe_media_type_fiber_fixed:
275 	case ixgbe_media_type_fiber_qsfp:
276 	case ixgbe_media_type_fiber:
277 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
278 
279 		break;
280 	case ixgbe_media_type_copper:
281 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
282 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
283 		break;
284 	default:
285 		break;
286 	}
287 
288 	/*
289 	 * The possible values of fc.requested_mode are:
290 	 * 0: Flow control is completely disabled
291 	 * 1: Rx flow control is enabled (we can receive pause frames,
292 	 *    but not send pause frames).
293 	 * 2: Tx flow control is enabled (we can send pause frames but
294 	 *    we do not support receiving pause frames).
295 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
296 	 * other: Invalid.
297 	 */
298 	switch (hw->fc.requested_mode) {
299 	case ixgbe_fc_none:
300 		/* Flow control completely disabled by software override. */
301 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
302 		if (hw->phy.media_type == ixgbe_media_type_backplane)
303 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
304 				    IXGBE_AUTOC_ASM_PAUSE);
305 		else if (hw->phy.media_type == ixgbe_media_type_copper)
306 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
307 		break;
308 	case ixgbe_fc_tx_pause:
309 		/*
310 		 * Tx Flow control is enabled, and Rx Flow control is
311 		 * disabled by software override.
312 		 */
313 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
314 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
315 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
316 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
317 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
318 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
319 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
320 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
321 		}
322 		break;
323 	case ixgbe_fc_rx_pause:
324 		/*
325 		 * Rx Flow control is enabled and Tx Flow control is
326 		 * disabled by software override. Since there really
327 		 * isn't a way to advertise that we are capable of RX
328 		 * Pause ONLY, we will advertise that we support both
329 		 * symmetric and asymmetric Rx PAUSE, as such we fall
330 		 * through to the fc_full statement.  Later, we will
331 		 * disable the adapter's ability to send PAUSE frames.
332 		 */
333 	case ixgbe_fc_full:
334 		/* Flow control (both Rx and Tx) is enabled by SW override. */
335 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
336 		if (hw->phy.media_type == ixgbe_media_type_backplane)
337 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
338 				  IXGBE_AUTOC_ASM_PAUSE;
339 		else if (hw->phy.media_type == ixgbe_media_type_copper)
340 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
341 		break;
342 	default:
343 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
344 			     "Flow control param set incorrectly\n");
345 		ret_val = IXGBE_ERR_CONFIG;
346 		goto out;
347 		break;
348 	}
349 
350 	if (hw->mac.type < ixgbe_mac_X540) {
351 		/*
352 		 * Enable auto-negotiation between the MAC & PHY;
353 		 * the MAC will advertise clause 37 flow control.
354 		 */
355 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
356 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
357 
358 		/* Disable AN timeout */
359 		if (hw->fc.strict_ieee)
360 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
361 
362 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
363 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
364 	}
365 
366 	/*
367 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
368 	 * and copper. There is no need to set the PCS1GCTL register.
369 	 *
370 	 */
371 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
372 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
373 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
374 		if (ret_val)
375 			goto out;
376 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
377 		    (ixgbe_device_supports_autoneg_fc(hw))) {
378 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
379 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
380 	}
381 
382 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
383 out:
384 	return ret_val;
385 }
386 
387 /**
388  * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
389  * @hw: pointer to hardware structure
390  *
391  * Starts the hardware by filling the bus info structure and media type, clears
392  * all on chip counters, initializes receive address registers, multicast
393  * table, VLAN filter table, calls routine to set up link and flow control
394  * settings, and leaves transmit and receive units disabled and uninitialized
395  **/
396 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
397 {
398 	s32 ret_val;
399 	u32 ctrl_ext;
400 	u16 device_caps;
401 
402 	DEBUGFUNC("ixgbe_start_hw_generic");
403 
404 	/* Set the media type */
405 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
406 
407 	/* PHY ops initialization must be done in reset_hw() */
408 
409 	/* Clear the VLAN filter table */
410 	hw->mac.ops.clear_vfta(hw);
411 
412 	/* Clear statistics registers */
413 	hw->mac.ops.clear_hw_cntrs(hw);
414 
415 	/* Set No Snoop Disable */
416 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
417 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
418 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
419 	IXGBE_WRITE_FLUSH(hw);
420 
421 	/* Setup flow control */
422 	ret_val = ixgbe_setup_fc(hw);
423 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
424 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
425 		return ret_val;
426 	}
427 
428 	/* Cache bit indicating need for crosstalk fix */
429 	switch (hw->mac.type) {
430 	case ixgbe_mac_82599EB:
431 	case ixgbe_mac_X550EM_x:
432 	case ixgbe_mac_X550EM_a:
433 		hw->mac.ops.get_device_caps(hw, &device_caps);
434 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
435 			hw->need_crosstalk_fix = FALSE;
436 		else
437 			hw->need_crosstalk_fix = TRUE;
438 		break;
439 	default:
440 		hw->need_crosstalk_fix = FALSE;
441 		break;
442 	}
443 
444 	/* Clear adapter stopped flag */
445 	hw->adapter_stopped = FALSE;
446 
447 	return IXGBE_SUCCESS;
448 }
449 
450 /**
451  * ixgbe_start_hw_gen2 - Init sequence for common device family
452  * @hw: pointer to hw structure
453  *
454  * Performs the init sequence common to the second generation
455  * of 10 GbE devices.
456  * Devices in the second generation:
457  *    82599
458  *    X540
459  **/
460 void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
461 {
462 	u32 i;
463 	u32 regval;
464 
465 	DEBUGFUNC("ixgbe_start_hw_gen2");
466 
467 	/* Clear the rate limiters */
468 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
469 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
470 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
471 	}
472 	IXGBE_WRITE_FLUSH(hw);
473 
474 	/* Disable relaxed ordering */
475 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
476 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
477 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
478 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
479 	}
480 
481 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
482 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
483 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
484 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
485 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
486 	}
487 }
488 
489 /**
490  * ixgbe_init_hw_generic - Generic hardware initialization
491  * @hw: pointer to hardware structure
492  *
493  * Initialize the hardware by resetting the hardware, filling the bus info
494  * structure and media type, clears all on chip counters, initializes receive
495  * address registers, multicast table, VLAN filter table, calls routine to set
496  * up link and flow control settings, and leaves transmit and receive units
497  * disabled and uninitialized
498  **/
499 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
500 {
501 	s32 status;
502 
503 	DEBUGFUNC("ixgbe_init_hw_generic");
504 
505 	/* Reset the hardware */
506 	status = hw->mac.ops.reset_hw(hw);
507 
508 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
509 		/* Start the HW */
510 		status = hw->mac.ops.start_hw(hw);
511 	}
512 
513 	/* Initialize the LED link active for LED blink support */
514 	if (hw->mac.ops.init_led_link_act)
515 		hw->mac.ops.init_led_link_act(hw);
516 
517 	if (status != IXGBE_SUCCESS)
518 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
519 
520 	return status;
521 }
522 
523 /**
524  * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
525  * @hw: pointer to hardware structure
526  *
527  * Clears all hardware statistics counters by reading them from the hardware
528  * Statistics counters are clear on read.
529  **/
530 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
531 {
532 	u16 i = 0;
533 
534 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
535 
536 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
537 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
538 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
539 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
540 	if (hw->mac.type >= ixgbe_mac_X550)
541 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
542 	for (i = 0; i < 8; i++)
543 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
544 
545 	IXGBE_READ_REG(hw, IXGBE_MLFC);
546 	IXGBE_READ_REG(hw, IXGBE_MRFC);
547 	IXGBE_READ_REG(hw, IXGBE_RLEC);
548 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
549 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
550 	if (hw->mac.type >= ixgbe_mac_82599EB) {
551 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
552 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
553 	} else {
554 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
555 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
556 	}
557 
558 	for (i = 0; i < 8; i++) {
559 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
560 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
561 		if (hw->mac.type >= ixgbe_mac_82599EB) {
562 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
563 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
564 		} else {
565 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
566 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
567 		}
568 	}
569 	if (hw->mac.type >= ixgbe_mac_82599EB)
570 		for (i = 0; i < 8; i++)
571 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
572 	IXGBE_READ_REG(hw, IXGBE_PRC64);
573 	IXGBE_READ_REG(hw, IXGBE_PRC127);
574 	IXGBE_READ_REG(hw, IXGBE_PRC255);
575 	IXGBE_READ_REG(hw, IXGBE_PRC511);
576 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
577 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
578 	IXGBE_READ_REG(hw, IXGBE_GPRC);
579 	IXGBE_READ_REG(hw, IXGBE_BPRC);
580 	IXGBE_READ_REG(hw, IXGBE_MPRC);
581 	IXGBE_READ_REG(hw, IXGBE_GPTC);
582 	IXGBE_READ_REG(hw, IXGBE_GORCL);
583 	IXGBE_READ_REG(hw, IXGBE_GORCH);
584 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
585 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
586 	if (hw->mac.type == ixgbe_mac_82598EB)
587 		for (i = 0; i < 8; i++)
588 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
589 	IXGBE_READ_REG(hw, IXGBE_RUC);
590 	IXGBE_READ_REG(hw, IXGBE_RFC);
591 	IXGBE_READ_REG(hw, IXGBE_ROC);
592 	IXGBE_READ_REG(hw, IXGBE_RJC);
593 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
594 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
595 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
596 	IXGBE_READ_REG(hw, IXGBE_TORL);
597 	IXGBE_READ_REG(hw, IXGBE_TORH);
598 	IXGBE_READ_REG(hw, IXGBE_TPR);
599 	IXGBE_READ_REG(hw, IXGBE_TPT);
600 	IXGBE_READ_REG(hw, IXGBE_PTC64);
601 	IXGBE_READ_REG(hw, IXGBE_PTC127);
602 	IXGBE_READ_REG(hw, IXGBE_PTC255);
603 	IXGBE_READ_REG(hw, IXGBE_PTC511);
604 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
605 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
606 	IXGBE_READ_REG(hw, IXGBE_MPTC);
607 	IXGBE_READ_REG(hw, IXGBE_BPTC);
608 	for (i = 0; i < 16; i++) {
609 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
610 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
611 		if (hw->mac.type >= ixgbe_mac_82599EB) {
612 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
613 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
614 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
615 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
616 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
617 		} else {
618 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
619 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
620 		}
621 	}
622 
623 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
624 		if (hw->phy.id == 0)
625 			ixgbe_identify_phy(hw);
626 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
627 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
628 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
629 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
630 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
631 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
632 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
633 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
634 	}
635 
636 	return IXGBE_SUCCESS;
637 }
638 
639 /**
640  * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
641  * @hw: pointer to hardware structure
642  * @pba_num: stores the part number string from the EEPROM
643  * @pba_num_size: part number string buffer length
644  *
645  * Reads the part number string from the EEPROM.
646  **/
647 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
648 				  u32 pba_num_size)
649 {
650 	s32 ret_val;
651 	u16 data;
652 	u16 pba_ptr;
653 	u16 offset;
654 	u16 length;
655 
656 	DEBUGFUNC("ixgbe_read_pba_string_generic");
657 
658 	if (pba_num == NULL) {
659 		DEBUGOUT("PBA string buffer was null\n");
660 		return IXGBE_ERR_INVALID_ARGUMENT;
661 	}
662 
663 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
664 	if (ret_val) {
665 		DEBUGOUT("NVM Read Error\n");
666 		return ret_val;
667 	}
668 
669 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
670 	if (ret_val) {
671 		DEBUGOUT("NVM Read Error\n");
672 		return ret_val;
673 	}
674 
675 	/*
676 	 * if data is not ptr guard the PBA must be in legacy format which
677 	 * means pba_ptr is actually our second data word for the PBA number
678 	 * and we can decode it into an ascii string
679 	 */
680 	if (data != IXGBE_PBANUM_PTR_GUARD) {
681 		DEBUGOUT("NVM PBA number is not stored as string\n");
682 
683 		/* we will need 11 characters to store the PBA */
684 		if (pba_num_size < 11) {
685 			DEBUGOUT("PBA string buffer too small\n");
686 			return IXGBE_ERR_NO_SPACE;
687 		}
688 
689 		/* extract hex string from data and pba_ptr */
690 		pba_num[0] = (data >> 12) & 0xF;
691 		pba_num[1] = (data >> 8) & 0xF;
692 		pba_num[2] = (data >> 4) & 0xF;
693 		pba_num[3] = data & 0xF;
694 		pba_num[4] = (pba_ptr >> 12) & 0xF;
695 		pba_num[5] = (pba_ptr >> 8) & 0xF;
696 		pba_num[6] = '-';
697 		pba_num[7] = 0;
698 		pba_num[8] = (pba_ptr >> 4) & 0xF;
699 		pba_num[9] = pba_ptr & 0xF;
700 
701 		/* put a null character on the end of our string */
702 		pba_num[10] = '\0';
703 
704 		/* switch all the data but the '-' to hex char */
705 		for (offset = 0; offset < 10; offset++) {
706 			if (pba_num[offset] < 0xA)
707 				pba_num[offset] += '0';
708 			else if (pba_num[offset] < 0x10)
709 				pba_num[offset] += 'A' - 0xA;
710 		}
711 
712 		return IXGBE_SUCCESS;
713 	}
714 
715 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
716 	if (ret_val) {
717 		DEBUGOUT("NVM Read Error\n");
718 		return ret_val;
719 	}
720 
721 	if (length == 0xFFFF || length == 0) {
722 		DEBUGOUT("NVM PBA number section invalid length\n");
723 		return IXGBE_ERR_PBA_SECTION;
724 	}
725 
726 	/* check if pba_num buffer is big enough */
727 	if (pba_num_size  < (((u32)length * 2) - 1)) {
728 		DEBUGOUT("PBA string buffer too small\n");
729 		return IXGBE_ERR_NO_SPACE;
730 	}
731 
732 	/* trim pba length from start of string */
733 	pba_ptr++;
734 	length--;
735 
736 	for (offset = 0; offset < length; offset++) {
737 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
738 		if (ret_val) {
739 			DEBUGOUT("NVM Read Error\n");
740 			return ret_val;
741 		}
742 		pba_num[offset * 2] = (u8)(data >> 8);
743 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
744 	}
745 	pba_num[offset * 2] = '\0';
746 
747 	return IXGBE_SUCCESS;
748 }
749 
750 /**
751  * ixgbe_read_pba_num_generic - Reads part number from EEPROM
752  * @hw: pointer to hardware structure
753  * @pba_num: stores the part number from the EEPROM
754  *
755  * Reads the part number from the EEPROM.
756  **/
757 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
758 {
759 	s32 ret_val;
760 	u16 data;
761 
762 	DEBUGFUNC("ixgbe_read_pba_num_generic");
763 
764 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
765 	if (ret_val) {
766 		DEBUGOUT("NVM Read Error\n");
767 		return ret_val;
768 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
769 		DEBUGOUT("NVM Not supported\n");
770 		return IXGBE_NOT_IMPLEMENTED;
771 	}
772 	*pba_num = (u32)(data << 16);
773 
774 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
775 	if (ret_val) {
776 		DEBUGOUT("NVM Read Error\n");
777 		return ret_val;
778 	}
779 	*pba_num |= (u32)data;
780 
781 	return IXGBE_SUCCESS;
782 }
783 
784 /**
785  * ixgbe_read_pba_raw
786  * @hw: pointer to the HW structure
787  * @eeprom_buf: optional pointer to EEPROM image
788  * @eeprom_buf_size: size of EEPROM image in words
789  * @max_pba_block_size: PBA block size limit
790  * @pba: pointer to output PBA structure
791  *
792  * Reads PBA from EEPROM image when eeprom_buf is not NULL.
793  * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
794  *
795  **/
796 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
797 		       u32 eeprom_buf_size, u16 max_pba_block_size,
798 		       struct ixgbe_pba *pba)
799 {
800 	s32 ret_val;
801 	u16 pba_block_size;
802 
803 	if (pba == NULL)
804 		return IXGBE_ERR_PARAM;
805 
806 	if (eeprom_buf == NULL) {
807 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
808 						     &pba->word[0]);
809 		if (ret_val)
810 			return ret_val;
811 	} else {
812 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
813 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
814 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
815 		} else {
816 			return IXGBE_ERR_PARAM;
817 		}
818 	}
819 
820 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
821 		if (pba->pba_block == NULL)
822 			return IXGBE_ERR_PARAM;
823 
824 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
825 						   eeprom_buf_size,
826 						   &pba_block_size);
827 		if (ret_val)
828 			return ret_val;
829 
830 		if (pba_block_size > max_pba_block_size)
831 			return IXGBE_ERR_PARAM;
832 
833 		if (eeprom_buf == NULL) {
834 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
835 							     pba_block_size,
836 							     pba->pba_block);
837 			if (ret_val)
838 				return ret_val;
839 		} else {
840 			if (eeprom_buf_size > (u32)(pba->word[1] +
841 					      pba_block_size)) {
842 				memcpy(pba->pba_block,
843 				       &eeprom_buf[pba->word[1]],
844 				       pba_block_size * sizeof(u16));
845 			} else {
846 				return IXGBE_ERR_PARAM;
847 			}
848 		}
849 	}
850 
851 	return IXGBE_SUCCESS;
852 }
853 
854 /**
855  * ixgbe_write_pba_raw
856  * @hw: pointer to the HW structure
857  * @eeprom_buf: optional pointer to EEPROM image
858  * @eeprom_buf_size: size of EEPROM image in words
859  * @pba: pointer to PBA structure
860  *
861  * Writes PBA to EEPROM image when eeprom_buf is not NULL.
862  * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
863  *
864  **/
865 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
866 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
867 {
868 	s32 ret_val;
869 
870 	if (pba == NULL)
871 		return IXGBE_ERR_PARAM;
872 
873 	if (eeprom_buf == NULL) {
874 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
875 						      &pba->word[0]);
876 		if (ret_val)
877 			return ret_val;
878 	} else {
879 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
880 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
881 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
882 		} else {
883 			return IXGBE_ERR_PARAM;
884 		}
885 	}
886 
887 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
888 		if (pba->pba_block == NULL)
889 			return IXGBE_ERR_PARAM;
890 
891 		if (eeprom_buf == NULL) {
892 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
893 							      pba->pba_block[0],
894 							      pba->pba_block);
895 			if (ret_val)
896 				return ret_val;
897 		} else {
898 			if (eeprom_buf_size > (u32)(pba->word[1] +
899 					      pba->pba_block[0])) {
900 				memcpy(&eeprom_buf[pba->word[1]],
901 				       pba->pba_block,
902 				       pba->pba_block[0] * sizeof(u16));
903 			} else {
904 				return IXGBE_ERR_PARAM;
905 			}
906 		}
907 	}
908 
909 	return IXGBE_SUCCESS;
910 }
911 
912 /**
913  * ixgbe_get_pba_block_size
914  * @hw: pointer to the HW structure
915  * @eeprom_buf: optional pointer to EEPROM image
916  * @eeprom_buf_size: size of EEPROM image in words
917  * @pba_data_size: pointer to output variable
918  *
919  * Returns the size of the PBA block in words. Function operates on EEPROM
920  * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
921  * EEPROM device.
922  *
923  **/
924 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
925 			     u32 eeprom_buf_size, u16 *pba_block_size)
926 {
927 	s32 ret_val;
928 	u16 pba_word[2];
929 	u16 length;
930 
931 	DEBUGFUNC("ixgbe_get_pba_block_size");
932 
933 	if (eeprom_buf == NULL) {
934 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
935 						     &pba_word[0]);
936 		if (ret_val)
937 			return ret_val;
938 	} else {
939 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
940 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
941 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
942 		} else {
943 			return IXGBE_ERR_PARAM;
944 		}
945 	}
946 
947 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
948 		if (eeprom_buf == NULL) {
949 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
950 						      &length);
951 			if (ret_val)
952 				return ret_val;
953 		} else {
954 			if (eeprom_buf_size > pba_word[1])
955 				length = eeprom_buf[pba_word[1] + 0];
956 			else
957 				return IXGBE_ERR_PARAM;
958 		}
959 
960 		if (length == 0xFFFF || length == 0)
961 			return IXGBE_ERR_PBA_SECTION;
962 	} else {
963 		/* PBA number in legacy format, there is no PBA Block. */
964 		length = 0;
965 	}
966 
967 	if (pba_block_size != NULL)
968 		*pba_block_size = length;
969 
970 	return IXGBE_SUCCESS;
971 }
972 
973 /**
974  * ixgbe_get_mac_addr_generic - Generic get MAC address
975  * @hw: pointer to hardware structure
976  * @mac_addr: Adapter MAC address
977  *
978  * Reads the adapter's MAC address from first Receive Address Register (RAR0)
979  * A reset of the adapter must be performed prior to calling this function
980  * in order for the MAC address to have been loaded from the EEPROM into RAR0
981  **/
982 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
983 {
984 	u32 rar_high;
985 	u32 rar_low;
986 	u16 i;
987 
988 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
989 
990 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
991 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
992 
993 	for (i = 0; i < 4; i++)
994 		mac_addr[i] = (u8)(rar_low >> (i*8));
995 
996 	for (i = 0; i < 2; i++)
997 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
998 
999 	return IXGBE_SUCCESS;
1000 }
1001 
1002 /**
1003  * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1004  * @hw: pointer to hardware structure
1005  * @link_status: the link status returned by the PCI config space
1006  *
1007  * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1008  **/
1009 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1010 {
1011 	struct ixgbe_mac_info *mac = &hw->mac;
1012 
1013 	if (hw->bus.type == ixgbe_bus_type_unknown)
1014 		hw->bus.type = ixgbe_bus_type_pci_express;
1015 
1016 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1017 	case IXGBE_PCI_LINK_WIDTH_1:
1018 		hw->bus.width = ixgbe_bus_width_pcie_x1;
1019 		break;
1020 	case IXGBE_PCI_LINK_WIDTH_2:
1021 		hw->bus.width = ixgbe_bus_width_pcie_x2;
1022 		break;
1023 	case IXGBE_PCI_LINK_WIDTH_4:
1024 		hw->bus.width = ixgbe_bus_width_pcie_x4;
1025 		break;
1026 	case IXGBE_PCI_LINK_WIDTH_8:
1027 		hw->bus.width = ixgbe_bus_width_pcie_x8;
1028 		break;
1029 	default:
1030 		hw->bus.width = ixgbe_bus_width_unknown;
1031 		break;
1032 	}
1033 
1034 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1035 	case IXGBE_PCI_LINK_SPEED_2500:
1036 		hw->bus.speed = ixgbe_bus_speed_2500;
1037 		break;
1038 	case IXGBE_PCI_LINK_SPEED_5000:
1039 		hw->bus.speed = ixgbe_bus_speed_5000;
1040 		break;
1041 	case IXGBE_PCI_LINK_SPEED_8000:
1042 		hw->bus.speed = ixgbe_bus_speed_8000;
1043 		break;
1044 	default:
1045 		hw->bus.speed = ixgbe_bus_speed_unknown;
1046 		break;
1047 	}
1048 
1049 	mac->ops.set_lan_id(hw);
1050 }
1051 
1052 /**
1053  * ixgbe_get_bus_info_generic - Generic set PCI bus info
1054  * @hw: pointer to hardware structure
1055  *
1056  * Gets the PCI bus info (speed, width, type) then calls helper function to
1057  * store this data within the ixgbe_hw structure.
1058  **/
1059 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1060 {
1061 	u16 link_status;
1062 
1063 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1064 
1065 	/* Get the negotiated link width and speed from PCI config space */
1066 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1067 
1068 	ixgbe_set_pci_config_data_generic(hw, link_status);
1069 
1070 	return IXGBE_SUCCESS;
1071 }
1072 
1073 /**
1074  * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1075  * @hw: pointer to the HW structure
1076  *
1077  * Determines the LAN function id by reading memory-mapped registers and swaps
1078  * the port value if requested, and set MAC instance for devices that share
1079  * CS4227.
1080  **/
1081 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1082 {
1083 	struct ixgbe_bus_info *bus = &hw->bus;
1084 	u32 reg;
1085 	u16 ee_ctrl_4;
1086 
1087 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1088 
1089 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1090 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1091 	bus->lan_id = (u8)bus->func;
1092 
1093 	/* check for a port swap */
1094 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1095 	if (reg & IXGBE_FACTPS_LFS)
1096 		bus->func ^= 0x1;
1097 
1098 	/* Get MAC instance from EEPROM for configuring CS4227 */
1099 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1100 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1101 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1102 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1103 	}
1104 }
1105 
1106 /**
1107  * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1108  * @hw: pointer to hardware structure
1109  *
1110  * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1111  * disables transmit and receive units. The adapter_stopped flag is used by
1112  * the shared code and drivers to determine if the adapter is in a stopped
1113  * state and should not touch the hardware.
1114  **/
1115 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1116 {
1117 	u32 reg_val;
1118 	u16 i;
1119 
1120 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1121 
1122 	/*
1123 	 * Set the adapter_stopped flag so other driver functions stop touching
1124 	 * the hardware
1125 	 */
1126 	hw->adapter_stopped = TRUE;
1127 
1128 	/* Disable the receive unit */
1129 	ixgbe_disable_rx(hw);
1130 
1131 	/* Clear interrupt mask to stop interrupts from being generated */
1132 	/*
1133 	 * XXX
1134 	 * This function is called in the state of both interrupt disabled
1135 	 * and interrupt enabled, e.g.
1136 	 * + interrupt disabled case:
1137 	 *   - ixgbe_stop_locked()
1138 	 *     - ixgbe_disable_intr() // interrupt disabled here
1139 	 *     - ixgbe_stop_adapter()
1140 	 *       - hw->mac.ops.stop_adapter()
1141 	 *         == this function
1142 	 * + interrupt enabled case:
1143 	 *   - ixgbe_local_timer1()
1144 	 *     - ixgbe_init_locked()
1145 	 *       - ixgbe_stop_adapter()
1146 	 *         - hw->mac.ops.stop_adapter()
1147 	 *           == this function
1148 	 * Therefore, it causes nest status breaking to nest the status
1149 	 * (that is, que->im_nest++) at all times. So, this function must
1150 	 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1151 	 */
1152 	ixgbe_ensure_disabled_intr(hw->back);
1153 
1154 	/* Clear any pending interrupts, flush previous writes */
1155 	IXGBE_READ_REG(hw, IXGBE_EICR);
1156 
1157 	/* Disable the transmit unit.  Each queue must be disabled. */
1158 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1159 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1160 
1161 	/* Disable the receive unit by stopping each queue */
1162 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1163 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1164 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1165 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1166 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1167 	}
1168 
1169 	/* flush all queues disables */
1170 	IXGBE_WRITE_FLUSH(hw);
1171 	msec_delay(2);
1172 
1173 	/*
1174 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1175 	 * access and verify no pending requests
1176 	 */
1177 	return ixgbe_disable_pcie_master(hw);
1178 }
1179 
1180 /**
1181  * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1182  * @hw: pointer to hardware structure
1183  *
1184  * Store the index for the link active LED. This will be used to support
1185  * blinking the LED.
1186  **/
1187 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1188 {
1189 	struct ixgbe_mac_info *mac = &hw->mac;
1190 	u32 led_reg, led_mode;
1191 	u8 i;
1192 
1193 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1194 
1195 	/* Get LED link active from the LEDCTL register */
1196 	for (i = 0; i < 4; i++) {
1197 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1198 
1199 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1200 		     IXGBE_LED_LINK_ACTIVE) {
1201 			mac->led_link_act = i;
1202 			return IXGBE_SUCCESS;
1203 		}
1204 	}
1205 
1206 	/*
1207 	 * If LEDCTL register does not have the LED link active set, then use
1208 	 * known MAC defaults.
1209 	 */
1210 	switch (hw->mac.type) {
1211 	case ixgbe_mac_X550EM_a:
1212 	case ixgbe_mac_X550EM_x:
1213 		mac->led_link_act = 1;
1214 		break;
1215 	default:
1216 		mac->led_link_act = 2;
1217 	}
1218 	return IXGBE_SUCCESS;
1219 }
1220 
1221 /**
1222  * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1223  * @hw: pointer to hardware structure
1224  * @index: led number to turn on
1225  **/
1226 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1227 {
1228 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1229 
1230 	DEBUGFUNC("ixgbe_led_on_generic");
1231 
1232 	if (index > 3)
1233 		return IXGBE_ERR_PARAM;
1234 
1235 	/* To turn on the LED, set mode to ON. */
1236 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1237 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1238 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1239 	IXGBE_WRITE_FLUSH(hw);
1240 
1241 	return IXGBE_SUCCESS;
1242 }
1243 
1244 /**
1245  * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1246  * @hw: pointer to hardware structure
1247  * @index: led number to turn off
1248  **/
1249 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1250 {
1251 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1252 
1253 	DEBUGFUNC("ixgbe_led_off_generic");
1254 
1255 	if (index > 3)
1256 		return IXGBE_ERR_PARAM;
1257 
1258 	/* To turn off the LED, set mode to OFF. */
1259 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1260 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1261 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1262 	IXGBE_WRITE_FLUSH(hw);
1263 
1264 	return IXGBE_SUCCESS;
1265 }
1266 
1267 /**
1268  * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1269  * @hw: pointer to hardware structure
1270  *
1271  * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1272  * ixgbe_hw struct in order to set up EEPROM access.
1273  **/
1274 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1275 {
1276 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1277 	u32 eec;
1278 	u16 eeprom_size;
1279 
1280 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1281 
1282 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1283 		eeprom->type = ixgbe_eeprom_none;
1284 		/* Set default semaphore delay to 10ms which is a well
1285 		 * tested value */
1286 		eeprom->semaphore_delay = 10;
1287 		/* Clear EEPROM page size, it will be initialized as needed */
1288 		eeprom->word_page_size = 0;
1289 
1290 		/*
1291 		 * Check for EEPROM present first.
1292 		 * If not present leave as none
1293 		 */
1294 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1295 		if (eec & IXGBE_EEC_PRES) {
1296 			eeprom->type = ixgbe_eeprom_spi;
1297 
1298 			/*
1299 			 * SPI EEPROM is assumed here.  This code would need to
1300 			 * change if a future EEPROM is not SPI.
1301 			 */
1302 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1303 					    IXGBE_EEC_SIZE_SHIFT);
1304 			eeprom->word_size = 1 << (eeprom_size +
1305 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1306 		}
1307 
1308 		if (eec & IXGBE_EEC_ADDR_SIZE)
1309 			eeprom->address_bits = 16;
1310 		else
1311 			eeprom->address_bits = 8;
1312 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1313 			  "%d\n", eeprom->type, eeprom->word_size,
1314 			  eeprom->address_bits);
1315 	}
1316 
1317 	return IXGBE_SUCCESS;
1318 }
1319 
1320 /**
1321  * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1322  * @hw: pointer to hardware structure
1323  * @offset: offset within the EEPROM to write
1324  * @words: number of word(s)
1325  * @data: 16 bit word(s) to write to EEPROM
1326  *
1327  * Reads 16 bit word(s) from EEPROM through bit-bang method
1328  **/
1329 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1330 					       u16 words, u16 *data)
1331 {
1332 	s32 status = IXGBE_SUCCESS;
1333 	u16 i, count;
1334 
1335 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1336 
1337 	hw->eeprom.ops.init_params(hw);
1338 
1339 	if (words == 0) {
1340 		status = IXGBE_ERR_INVALID_ARGUMENT;
1341 		goto out;
1342 	}
1343 
1344 	if (offset + words > hw->eeprom.word_size) {
1345 		status = IXGBE_ERR_EEPROM;
1346 		goto out;
1347 	}
1348 
1349 	/*
1350 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1351 	 * initialization. It is worth to do that when we write large buffer.
1352 	 */
1353 	if ((hw->eeprom.word_page_size == 0) &&
1354 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1355 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1356 
1357 	/*
1358 	 * We cannot hold synchronization semaphores for too long
1359 	 * to avoid other entity starvation. However it is more efficient
1360 	 * to read in bursts than synchronizing access for each word.
1361 	 */
1362 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1363 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1364 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1365 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1366 							    count, &data[i]);
1367 
1368 		if (status != IXGBE_SUCCESS)
1369 			break;
1370 	}
1371 
1372 out:
1373 	return status;
1374 }
1375 
1376 /**
1377  * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1378  * @hw: pointer to hardware structure
1379  * @offset: offset within the EEPROM to be written to
1380  * @words: number of word(s)
1381  * @data: 16 bit word(s) to be written to the EEPROM
1382  *
1383  * If ixgbe_eeprom_update_checksum is not called after this function, the
1384  * EEPROM will most likely contain an invalid checksum.
1385  **/
1386 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1387 					      u16 words, u16 *data)
1388 {
1389 	s32 status;
1390 	u16 word;
1391 	u16 page_size;
1392 	u16 i;
1393 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1394 
1395 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1396 
1397 	/* Prepare the EEPROM for writing  */
1398 	status = ixgbe_acquire_eeprom(hw);
1399 
1400 	if (status == IXGBE_SUCCESS) {
1401 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1402 			ixgbe_release_eeprom(hw);
1403 			status = IXGBE_ERR_EEPROM;
1404 		}
1405 	}
1406 
1407 	if (status == IXGBE_SUCCESS) {
1408 		for (i = 0; i < words; i++) {
1409 			ixgbe_standby_eeprom(hw);
1410 
1411 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1412 			ixgbe_shift_out_eeprom_bits(hw,
1413 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1414 						   IXGBE_EEPROM_OPCODE_BITS);
1415 
1416 			ixgbe_standby_eeprom(hw);
1417 
1418 			/*
1419 			 * Some SPI eeproms use the 8th address bit embedded
1420 			 * in the opcode
1421 			 */
1422 			if ((hw->eeprom.address_bits == 8) &&
1423 			    ((offset + i) >= 128))
1424 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1425 
1426 			/* Send the Write command (8-bit opcode + addr) */
1427 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1428 						    IXGBE_EEPROM_OPCODE_BITS);
1429 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1430 						    hw->eeprom.address_bits);
1431 
1432 			page_size = hw->eeprom.word_page_size;
1433 
1434 			/* Send the data in burst via SPI*/
1435 			do {
1436 				word = data[i];
1437 				word = (word >> 8) | (word << 8);
1438 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1439 
1440 				if (page_size == 0)
1441 					break;
1442 
1443 				/* do not wrap around page */
1444 				if (((offset + i) & (page_size - 1)) ==
1445 				    (page_size - 1))
1446 					break;
1447 			} while (++i < words);
1448 
1449 			ixgbe_standby_eeprom(hw);
1450 			msec_delay(10);
1451 		}
1452 		/* Done with writing - release the EEPROM */
1453 		ixgbe_release_eeprom(hw);
1454 	}
1455 
1456 	return status;
1457 }
1458 
1459 /**
1460  * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1461  * @hw: pointer to hardware structure
1462  * @offset: offset within the EEPROM to be written to
1463  * @data: 16 bit word to be written to the EEPROM
1464  *
1465  * If ixgbe_eeprom_update_checksum is not called after this function, the
1466  * EEPROM will most likely contain an invalid checksum.
1467  **/
1468 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1469 {
1470 	s32 status;
1471 
1472 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1473 
1474 	hw->eeprom.ops.init_params(hw);
1475 
1476 	if (offset >= hw->eeprom.word_size) {
1477 		status = IXGBE_ERR_EEPROM;
1478 		goto out;
1479 	}
1480 
1481 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1482 
1483 out:
1484 	return status;
1485 }
1486 
1487 /**
1488  * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1489  * @hw: pointer to hardware structure
1490  * @offset: offset within the EEPROM to be read
1491  * @data: read 16 bit words(s) from EEPROM
1492  * @words: number of word(s)
1493  *
1494  * Reads 16 bit word(s) from EEPROM through bit-bang method
1495  **/
1496 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1497 					      u16 words, u16 *data)
1498 {
1499 	s32 status = IXGBE_SUCCESS;
1500 	u16 i, count;
1501 
1502 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1503 
1504 	hw->eeprom.ops.init_params(hw);
1505 
1506 	if (words == 0) {
1507 		status = IXGBE_ERR_INVALID_ARGUMENT;
1508 		goto out;
1509 	}
1510 
1511 	if (offset + words > hw->eeprom.word_size) {
1512 		status = IXGBE_ERR_EEPROM;
1513 		goto out;
1514 	}
1515 
1516 	/*
1517 	 * We cannot hold synchronization semaphores for too long
1518 	 * to avoid other entity starvation. However it is more efficient
1519 	 * to read in bursts than synchronizing access for each word.
1520 	 */
1521 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1522 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1523 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1524 
1525 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1526 							   count, &data[i]);
1527 
1528 		if (status != IXGBE_SUCCESS)
1529 			break;
1530 	}
1531 
1532 out:
1533 	return status;
1534 }
1535 
1536 /**
1537  * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1538  * @hw: pointer to hardware structure
1539  * @offset: offset within the EEPROM to be read
1540  * @words: number of word(s)
1541  * @data: read 16 bit word(s) from EEPROM
1542  *
1543  * Reads 16 bit word(s) from EEPROM through bit-bang method
1544  **/
1545 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1546 					     u16 words, u16 *data)
1547 {
1548 	s32 status;
1549 	u16 word_in;
1550 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1551 	u16 i;
1552 
1553 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1554 
1555 	/* Prepare the EEPROM for reading  */
1556 	status = ixgbe_acquire_eeprom(hw);
1557 
1558 	if (status == IXGBE_SUCCESS) {
1559 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1560 			ixgbe_release_eeprom(hw);
1561 			status = IXGBE_ERR_EEPROM;
1562 		}
1563 	}
1564 
1565 	if (status == IXGBE_SUCCESS) {
1566 		for (i = 0; i < words; i++) {
1567 			ixgbe_standby_eeprom(hw);
1568 			/*
1569 			 * Some SPI eeproms use the 8th address bit embedded
1570 			 * in the opcode
1571 			 */
1572 			if ((hw->eeprom.address_bits == 8) &&
1573 			    ((offset + i) >= 128))
1574 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1575 
1576 			/* Send the READ command (opcode + addr) */
1577 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1578 						    IXGBE_EEPROM_OPCODE_BITS);
1579 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1580 						    hw->eeprom.address_bits);
1581 
1582 			/* Read the data. */
1583 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1584 			data[i] = (word_in >> 8) | (word_in << 8);
1585 		}
1586 
1587 		/* End this read operation */
1588 		ixgbe_release_eeprom(hw);
1589 	}
1590 
1591 	return status;
1592 }
1593 
1594 /**
1595  * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1596  * @hw: pointer to hardware structure
1597  * @offset: offset within the EEPROM to be read
1598  * @data: read 16 bit value from EEPROM
1599  *
1600  * Reads 16 bit value from EEPROM through bit-bang method
1601  **/
1602 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1603 				       u16 *data)
1604 {
1605 	s32 status;
1606 
1607 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1608 
1609 	hw->eeprom.ops.init_params(hw);
1610 
1611 	if (offset >= hw->eeprom.word_size) {
1612 		status = IXGBE_ERR_EEPROM;
1613 		goto out;
1614 	}
1615 
1616 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1617 
1618 out:
1619 	return status;
1620 }
1621 
1622 /**
1623  * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1624  * @hw: pointer to hardware structure
1625  * @offset: offset of word in the EEPROM to read
1626  * @words: number of word(s)
1627  * @data: 16 bit word(s) from the EEPROM
1628  *
1629  * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1630  **/
1631 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1632 				   u16 words, u16 *data)
1633 {
1634 	u32 eerd;
1635 	s32 status = IXGBE_SUCCESS;
1636 	u32 i;
1637 
1638 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1639 
1640 	hw->eeprom.ops.init_params(hw);
1641 
1642 	if (words == 0) {
1643 		status = IXGBE_ERR_INVALID_ARGUMENT;
1644 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1645 		goto out;
1646 	}
1647 
1648 	if (offset >= hw->eeprom.word_size) {
1649 		status = IXGBE_ERR_EEPROM;
1650 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1651 		goto out;
1652 	}
1653 
1654 	for (i = 0; i < words; i++) {
1655 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1656 		       IXGBE_EEPROM_RW_REG_START;
1657 
1658 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1659 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1660 
1661 		if (status == IXGBE_SUCCESS) {
1662 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1663 				   IXGBE_EEPROM_RW_REG_DATA);
1664 		} else {
1665 			DEBUGOUT("Eeprom read timed out\n");
1666 			goto out;
1667 		}
1668 	}
1669 out:
1670 	return status;
1671 }
1672 
1673 /**
1674  * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1675  * @hw: pointer to hardware structure
1676  * @offset: offset within the EEPROM to be used as a scratch pad
1677  *
1678  * Discover EEPROM page size by writing marching data at given offset.
1679  * This function is called only when we are writing a new large buffer
1680  * at given offset so the data would be overwritten anyway.
1681  **/
1682 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1683 						 u16 offset)
1684 {
1685 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1686 	s32 status = IXGBE_SUCCESS;
1687 	u16 i;
1688 
1689 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1690 
1691 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1692 		data[i] = i;
1693 
1694 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1695 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1696 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1697 	hw->eeprom.word_page_size = 0;
1698 	if (status != IXGBE_SUCCESS)
1699 		goto out;
1700 
1701 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1702 	if (status != IXGBE_SUCCESS)
1703 		goto out;
1704 
1705 	/*
1706 	 * When writing in burst more than the actual page size
1707 	 * EEPROM address wraps around current page.
1708 	 */
1709 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1710 
1711 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1712 		  hw->eeprom.word_page_size);
1713 out:
1714 	return status;
1715 }
1716 
1717 /**
1718  * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1719  * @hw: pointer to hardware structure
1720  * @offset: offset of  word in the EEPROM to read
1721  * @data: word read from the EEPROM
1722  *
1723  * Reads a 16 bit word from the EEPROM using the EERD register.
1724  **/
1725 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1726 {
1727 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1728 }
1729 
1730 /**
1731  * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1732  * @hw: pointer to hardware structure
1733  * @offset: offset of  word in the EEPROM to write
1734  * @words: number of word(s)
1735  * @data: word(s) write to the EEPROM
1736  *
1737  * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1738  **/
1739 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1740 				    u16 words, u16 *data)
1741 {
1742 	u32 eewr;
1743 	s32 status = IXGBE_SUCCESS;
1744 	u16 i;
1745 
1746 	DEBUGFUNC("ixgbe_write_eewr_generic");
1747 
1748 	hw->eeprom.ops.init_params(hw);
1749 
1750 	if (words == 0) {
1751 		status = IXGBE_ERR_INVALID_ARGUMENT;
1752 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1753 		goto out;
1754 	}
1755 
1756 	if (offset >= hw->eeprom.word_size) {
1757 		status = IXGBE_ERR_EEPROM;
1758 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1759 		goto out;
1760 	}
1761 
1762 	for (i = 0; i < words; i++) {
1763 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1764 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1765 			IXGBE_EEPROM_RW_REG_START;
1766 
1767 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1768 		if (status != IXGBE_SUCCESS) {
1769 			DEBUGOUT("Eeprom write EEWR timed out\n");
1770 			goto out;
1771 		}
1772 
1773 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1774 
1775 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1776 		if (status != IXGBE_SUCCESS) {
1777 			DEBUGOUT("Eeprom write EEWR timed out\n");
1778 			goto out;
1779 		}
1780 	}
1781 
1782 out:
1783 	return status;
1784 }
1785 
1786 /**
1787  * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1788  * @hw: pointer to hardware structure
1789  * @offset: offset of  word in the EEPROM to write
1790  * @data: word write to the EEPROM
1791  *
1792  * Write a 16 bit word to the EEPROM using the EEWR register.
1793  **/
1794 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1795 {
1796 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1797 }
1798 
1799 /**
1800  * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1801  * @hw: pointer to hardware structure
1802  * @ee_reg: EEPROM flag for polling
1803  *
1804  * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1805  * read or write is done respectively.
1806  **/
1807 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1808 {
1809 	u32 i;
1810 	u32 reg;
1811 	s32 status = IXGBE_ERR_EEPROM;
1812 
1813 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1814 
1815 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1816 		if (ee_reg == IXGBE_NVM_POLL_READ)
1817 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1818 		else
1819 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1820 
1821 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1822 			status = IXGBE_SUCCESS;
1823 			break;
1824 		}
1825 		usec_delay(5);
1826 	}
1827 
1828 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1829 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1830 			     "EEPROM read/write done polling timed out");
1831 
1832 	return status;
1833 }
1834 
1835 /**
1836  * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1837  * @hw: pointer to hardware structure
1838  *
1839  * Prepares EEPROM for access using bit-bang method. This function should
1840  * be called before issuing a command to the EEPROM.
1841  **/
1842 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1843 {
1844 	s32 status = IXGBE_SUCCESS;
1845 	u32 eec;
1846 	u32 i;
1847 
1848 	DEBUGFUNC("ixgbe_acquire_eeprom");
1849 
1850 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1851 	    != IXGBE_SUCCESS)
1852 		status = IXGBE_ERR_SWFW_SYNC;
1853 
1854 	if (status == IXGBE_SUCCESS) {
1855 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1856 
1857 		/* Request EEPROM Access */
1858 		eec |= IXGBE_EEC_REQ;
1859 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1860 
1861 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1862 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1863 			if (eec & IXGBE_EEC_GNT)
1864 				break;
1865 			usec_delay(5);
1866 		}
1867 
1868 		/* Release if grant not acquired */
1869 		if (!(eec & IXGBE_EEC_GNT)) {
1870 			eec &= ~IXGBE_EEC_REQ;
1871 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1872 			DEBUGOUT("Could not acquire EEPROM grant\n");
1873 
1874 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1875 			status = IXGBE_ERR_EEPROM;
1876 		}
1877 
1878 		/* Setup EEPROM for Read/Write */
1879 		if (status == IXGBE_SUCCESS) {
1880 			/* Clear CS and SK */
1881 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1882 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1883 			IXGBE_WRITE_FLUSH(hw);
1884 			usec_delay(1);
1885 		}
1886 	}
1887 	return status;
1888 }
1889 
1890 /**
1891  * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1892  * @hw: pointer to hardware structure
1893  *
1894  * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1895  **/
1896 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1897 {
1898 	s32 status = IXGBE_ERR_EEPROM;
1899 	u32 timeout = 2000;
1900 	u32 i;
1901 	u32 swsm;
1902 
1903 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1904 
1905 
1906 	/* Get SMBI software semaphore between device drivers first */
1907 	for (i = 0; i < timeout; i++) {
1908 		/*
1909 		 * If the SMBI bit is 0 when we read it, then the bit will be
1910 		 * set and we have the semaphore
1911 		 */
1912 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1913 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1914 			status = IXGBE_SUCCESS;
1915 			break;
1916 		}
1917 		usec_delay(50);
1918 	}
1919 
1920 	if (i == timeout) {
1921 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1922 			 "not granted.\n");
1923 		/*
1924 		 * this release is particularly important because our attempts
1925 		 * above to get the semaphore may have succeeded, and if there
1926 		 * was a timeout, we should unconditionally clear the semaphore
1927 		 * bits to free the driver to make progress
1928 		 */
1929 		ixgbe_release_eeprom_semaphore(hw);
1930 
1931 		usec_delay(50);
1932 		/*
1933 		 * one last try
1934 		 * If the SMBI bit is 0 when we read it, then the bit will be
1935 		 * set and we have the semaphore
1936 		 */
1937 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1938 		if (!(swsm & IXGBE_SWSM_SMBI))
1939 			status = IXGBE_SUCCESS;
1940 	}
1941 
1942 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1943 	if (status == IXGBE_SUCCESS) {
1944 		for (i = 0; i < timeout; i++) {
1945 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1946 
1947 			/* Set the SW EEPROM semaphore bit to request access */
1948 			swsm |= IXGBE_SWSM_SWESMBI;
1949 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1950 
1951 			/*
1952 			 * If we set the bit successfully then we got the
1953 			 * semaphore.
1954 			 */
1955 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1956 			if (swsm & IXGBE_SWSM_SWESMBI)
1957 				break;
1958 
1959 			usec_delay(50);
1960 		}
1961 
1962 		/*
1963 		 * Release semaphores and return error if SW EEPROM semaphore
1964 		 * was not granted because we don't have access to the EEPROM
1965 		 */
1966 		if (i >= timeout) {
1967 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1968 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1969 			ixgbe_release_eeprom_semaphore(hw);
1970 			status = IXGBE_ERR_EEPROM;
1971 		}
1972 	} else {
1973 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1974 			     "Software semaphore SMBI between device drivers "
1975 			     "not granted.\n");
1976 	}
1977 
1978 	return status;
1979 }
1980 
1981 /**
1982  * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1983  * @hw: pointer to hardware structure
1984  *
1985  * This function clears hardware semaphore bits.
1986  **/
1987 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1988 {
1989 	u32 swsm;
1990 
1991 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1992 
1993 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1994 
1995 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1996 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1997 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1998 	IXGBE_WRITE_FLUSH(hw);
1999 }
2000 
2001 /**
2002  * ixgbe_ready_eeprom - Polls for EEPROM ready
2003  * @hw: pointer to hardware structure
2004  **/
2005 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2006 {
2007 	s32 status = IXGBE_SUCCESS;
2008 	u16 i;
2009 	u8 spi_stat_reg;
2010 
2011 	DEBUGFUNC("ixgbe_ready_eeprom");
2012 
2013 	/*
2014 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
2015 	 * EEPROM will signal that the command has been completed by clearing
2016 	 * bit 0 of the internal status register.  If it's not cleared within
2017 	 * 5 milliseconds, then error out.
2018 	 */
2019 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2020 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2021 					    IXGBE_EEPROM_OPCODE_BITS);
2022 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2023 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2024 			break;
2025 
2026 		usec_delay(5);
2027 		ixgbe_standby_eeprom(hw);
2028 	}
2029 
2030 	/*
2031 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2032 	 * devices (and only 0-5mSec on 5V devices)
2033 	 */
2034 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2035 		DEBUGOUT("SPI EEPROM Status error\n");
2036 		status = IXGBE_ERR_EEPROM;
2037 	}
2038 
2039 	return status;
2040 }
2041 
2042 /**
2043  * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2044  * @hw: pointer to hardware structure
2045  **/
2046 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2047 {
2048 	u32 eec;
2049 
2050 	DEBUGFUNC("ixgbe_standby_eeprom");
2051 
2052 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2053 
2054 	/* Toggle CS to flush commands */
2055 	eec |= IXGBE_EEC_CS;
2056 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2057 	IXGBE_WRITE_FLUSH(hw);
2058 	usec_delay(1);
2059 	eec &= ~IXGBE_EEC_CS;
2060 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2061 	IXGBE_WRITE_FLUSH(hw);
2062 	usec_delay(1);
2063 }
2064 
2065 /**
2066  * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2067  * @hw: pointer to hardware structure
2068  * @data: data to send to the EEPROM
2069  * @count: number of bits to shift out
2070  **/
2071 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2072 					u16 count)
2073 {
2074 	u32 eec;
2075 	u32 mask;
2076 	u32 i;
2077 
2078 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2079 
2080 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2081 
2082 	/*
2083 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2084 	 * one bit at a time.  Determine the starting bit based on count
2085 	 */
2086 	mask = 0x01 << (count - 1);
2087 
2088 	for (i = 0; i < count; i++) {
2089 		/*
2090 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2091 		 * "1", and then raising and then lowering the clock (the SK
2092 		 * bit controls the clock input to the EEPROM).  A "0" is
2093 		 * shifted out to the EEPROM by setting "DI" to "0" and then
2094 		 * raising and then lowering the clock.
2095 		 */
2096 		if (data & mask)
2097 			eec |= IXGBE_EEC_DI;
2098 		else
2099 			eec &= ~IXGBE_EEC_DI;
2100 
2101 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2102 		IXGBE_WRITE_FLUSH(hw);
2103 
2104 		usec_delay(1);
2105 
2106 		ixgbe_raise_eeprom_clk(hw, &eec);
2107 		ixgbe_lower_eeprom_clk(hw, &eec);
2108 
2109 		/*
2110 		 * Shift mask to signify next bit of data to shift in to the
2111 		 * EEPROM
2112 		 */
2113 		mask = mask >> 1;
2114 	}
2115 
2116 	/* We leave the "DI" bit set to "0" when we leave this routine. */
2117 	eec &= ~IXGBE_EEC_DI;
2118 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2119 	IXGBE_WRITE_FLUSH(hw);
2120 }
2121 
2122 /**
2123  * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2124  * @hw: pointer to hardware structure
2125  * @count: number of bits to shift
2126  **/
2127 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2128 {
2129 	u32 eec;
2130 	u32 i;
2131 	u16 data = 0;
2132 
2133 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2134 
2135 	/*
2136 	 * In order to read a register from the EEPROM, we need to shift
2137 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2138 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2139 	 * the value of the "DO" bit.  During this "shifting in" process the
2140 	 * "DI" bit should always be clear.
2141 	 */
2142 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2143 
2144 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2145 
2146 	for (i = 0; i < count; i++) {
2147 		data = data << 1;
2148 		ixgbe_raise_eeprom_clk(hw, &eec);
2149 
2150 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2151 
2152 		eec &= ~(IXGBE_EEC_DI);
2153 		if (eec & IXGBE_EEC_DO)
2154 			data |= 1;
2155 
2156 		ixgbe_lower_eeprom_clk(hw, &eec);
2157 	}
2158 
2159 	return data;
2160 }
2161 
2162 /**
2163  * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2164  * @hw: pointer to hardware structure
2165  * @eec: EEC register's current value
2166  **/
2167 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2168 {
2169 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2170 
2171 	/*
2172 	 * Raise the clock input to the EEPROM
2173 	 * (setting the SK bit), then delay
2174 	 */
2175 	*eec = *eec | IXGBE_EEC_SK;
2176 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2177 	IXGBE_WRITE_FLUSH(hw);
2178 	usec_delay(1);
2179 }
2180 
2181 /**
2182  * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2183  * @hw: pointer to hardware structure
2184  * @eec: EEC's current value
2185  **/
2186 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2187 {
2188 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2189 
2190 	/*
2191 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2192 	 * delay
2193 	 */
2194 	*eec = *eec & ~IXGBE_EEC_SK;
2195 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2196 	IXGBE_WRITE_FLUSH(hw);
2197 	usec_delay(1);
2198 }
2199 
2200 /**
2201  * ixgbe_release_eeprom - Release EEPROM, release semaphores
2202  * @hw: pointer to hardware structure
2203  **/
2204 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2205 {
2206 	u32 eec;
2207 
2208 	DEBUGFUNC("ixgbe_release_eeprom");
2209 
2210 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2211 
2212 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2213 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2214 
2215 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2216 	IXGBE_WRITE_FLUSH(hw);
2217 
2218 	usec_delay(1);
2219 
2220 	/* Stop requesting EEPROM access */
2221 	eec &= ~IXGBE_EEC_REQ;
2222 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2223 
2224 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2225 
2226 	/* Delay before attempt to obtain semaphore again to allow FW access */
2227 	msec_delay(hw->eeprom.semaphore_delay);
2228 }
2229 
2230 /**
2231  * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2232  * @hw: pointer to hardware structure
2233  *
2234  * Returns a negative error code on error, or the 16-bit checksum
2235  **/
2236 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2237 {
2238 	u16 i;
2239 	u16 j;
2240 	u16 checksum = 0;
2241 	u16 length = 0;
2242 	u16 pointer = 0;
2243 	u16 word = 0;
2244 
2245 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2246 
2247 	/* Include 0x0-0x3F in the checksum */
2248 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2249 		if (hw->eeprom.ops.read(hw, i, &word)) {
2250 			DEBUGOUT("EEPROM read failed\n");
2251 			return IXGBE_ERR_EEPROM;
2252 		}
2253 		checksum += word;
2254 	}
2255 
2256 	/* Include all data from pointers except for the fw pointer */
2257 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2258 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2259 			DEBUGOUT("EEPROM read failed\n");
2260 			return IXGBE_ERR_EEPROM;
2261 		}
2262 
2263 		/* If the pointer seems invalid */
2264 		if (pointer == 0xFFFF || pointer == 0)
2265 			continue;
2266 
2267 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2268 			DEBUGOUT("EEPROM read failed\n");
2269 			return IXGBE_ERR_EEPROM;
2270 		}
2271 
2272 		if (length == 0xFFFF || length == 0)
2273 			continue;
2274 
2275 		for (j = pointer + 1; j <= pointer + length; j++) {
2276 			if (hw->eeprom.ops.read(hw, j, &word)) {
2277 				DEBUGOUT("EEPROM read failed\n");
2278 				return IXGBE_ERR_EEPROM;
2279 			}
2280 			checksum += word;
2281 		}
2282 	}
2283 
2284 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2285 
2286 	return (s32)checksum;
2287 }
2288 
2289 /**
2290  * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2291  * @hw: pointer to hardware structure
2292  * @checksum_val: calculated checksum
2293  *
2294  * Performs checksum calculation and validates the EEPROM checksum.  If the
2295  * caller does not need checksum_val, the value can be NULL.
2296  **/
2297 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2298 					   u16 *checksum_val)
2299 {
2300 	s32 status;
2301 	u16 checksum;
2302 	u16 read_checksum = 0;
2303 
2304 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2305 
2306 	/* Read the first word from the EEPROM. If this times out or fails, do
2307 	 * not continue or we could be in for a very long wait while every
2308 	 * EEPROM read fails
2309 	 */
2310 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2311 	if (status) {
2312 		DEBUGOUT("EEPROM read failed\n");
2313 		return status;
2314 	}
2315 
2316 	status = hw->eeprom.ops.calc_checksum(hw);
2317 	if (status < 0)
2318 		return status;
2319 
2320 	checksum = (u16)(status & 0xffff);
2321 
2322 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2323 	if (status) {
2324 		DEBUGOUT("EEPROM read failed\n");
2325 		return status;
2326 	}
2327 
2328 	/* Verify read checksum from EEPROM is the same as
2329 	 * calculated checksum
2330 	 */
2331 	if (read_checksum != checksum)
2332 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2333 
2334 	/* If the user cares, return the calculated checksum */
2335 	if (checksum_val)
2336 		*checksum_val = checksum;
2337 
2338 	return status;
2339 }
2340 
2341 /**
2342  * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2343  * @hw: pointer to hardware structure
2344  **/
2345 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2346 {
2347 	s32 status;
2348 	u16 checksum;
2349 
2350 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2351 
2352 	/* Read the first word from the EEPROM. If this times out or fails, do
2353 	 * not continue or we could be in for a very long wait while every
2354 	 * EEPROM read fails
2355 	 */
2356 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2357 	if (status) {
2358 		DEBUGOUT("EEPROM read failed\n");
2359 		return status;
2360 	}
2361 
2362 	status = hw->eeprom.ops.calc_checksum(hw);
2363 	if (status < 0)
2364 		return status;
2365 
2366 	checksum = (u16)(status & 0xffff);
2367 
2368 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2369 
2370 	return status;
2371 }
2372 
2373 /**
2374  * ixgbe_validate_mac_addr - Validate MAC address
2375  * @mac_addr: pointer to MAC address.
2376  *
2377  * Tests a MAC address to ensure it is a valid Individual Address.
2378  **/
2379 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2380 {
2381 	s32 status = IXGBE_SUCCESS;
2382 
2383 	DEBUGFUNC("ixgbe_validate_mac_addr");
2384 
2385 	/* Make sure it is not a multicast address */
2386 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2387 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2388 	/* Not a broadcast address */
2389 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2390 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2391 	/* Reject the zero address */
2392 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2393 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2394 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2395 	}
2396 	return status;
2397 }
2398 
2399 /**
2400  * ixgbe_set_rar_generic - Set Rx address register
2401  * @hw: pointer to hardware structure
2402  * @index: Receive address register to write
2403  * @addr: Address to put into receive address register
2404  * @vmdq: VMDq "set" or "pool" index
2405  * @enable_addr: set flag that address is active
2406  *
2407  * Puts an ethernet address into a receive address register.
2408  **/
2409 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2410 			  u32 enable_addr)
2411 {
2412 	u32 rar_low, rar_high;
2413 	u32 rar_entries = hw->mac.num_rar_entries;
2414 
2415 	DEBUGFUNC("ixgbe_set_rar_generic");
2416 
2417 	/* Make sure we are using a valid rar index range */
2418 	if (index >= rar_entries) {
2419 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2420 			     "RAR index %d is out of range.\n", index);
2421 		return IXGBE_ERR_INVALID_ARGUMENT;
2422 	}
2423 
2424 	/* setup VMDq pool selection before this RAR gets enabled */
2425 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2426 
2427 	/*
2428 	 * HW expects these in little endian so we reverse the byte
2429 	 * order from network order (big endian) to little endian
2430 	 */
2431 	rar_low = ((u32)addr[0] |
2432 		   ((u32)addr[1] << 8) |
2433 		   ((u32)addr[2] << 16) |
2434 		   ((u32)addr[3] << 24));
2435 	/*
2436 	 * Some parts put the VMDq setting in the extra RAH bits,
2437 	 * so save everything except the lower 16 bits that hold part
2438 	 * of the address and the address valid bit.
2439 	 */
2440 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2441 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2442 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2443 
2444 	if (enable_addr != 0)
2445 		rar_high |= IXGBE_RAH_AV;
2446 
2447 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2448 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2449 
2450 	return IXGBE_SUCCESS;
2451 }
2452 
2453 /**
2454  * ixgbe_clear_rar_generic - Remove Rx address register
2455  * @hw: pointer to hardware structure
2456  * @index: Receive address register to write
2457  *
2458  * Clears an ethernet address from a receive address register.
2459  **/
2460 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2461 {
2462 	u32 rar_high;
2463 	u32 rar_entries = hw->mac.num_rar_entries;
2464 
2465 	DEBUGFUNC("ixgbe_clear_rar_generic");
2466 
2467 	/* Make sure we are using a valid rar index range */
2468 	if (index >= rar_entries) {
2469 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2470 			     "RAR index %d is out of range.\n", index);
2471 		return IXGBE_ERR_INVALID_ARGUMENT;
2472 	}
2473 
2474 	/*
2475 	 * Some parts put the VMDq setting in the extra RAH bits,
2476 	 * so save everything except the lower 16 bits that hold part
2477 	 * of the address and the address valid bit.
2478 	 */
2479 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2480 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2481 
2482 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2483 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2484 
2485 	/* clear VMDq pool/queue selection for this RAR */
2486 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2487 
2488 	return IXGBE_SUCCESS;
2489 }
2490 
2491 /**
2492  * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2493  * @hw: pointer to hardware structure
2494  *
2495  * Places the MAC address in receive address register 0 and clears the rest
2496  * of the receive address registers. Clears the multicast table. Assumes
2497  * the receiver is in reset when the routine is called.
2498  **/
2499 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2500 {
2501 	u32 i;
2502 	u32 rar_entries = hw->mac.num_rar_entries;
2503 
2504 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2505 
2506 	/*
2507 	 * If the current mac address is valid, assume it is a software override
2508 	 * to the permanent address.
2509 	 * Otherwise, use the permanent address from the eeprom.
2510 	 */
2511 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2512 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2513 		/* Get the MAC address from the RAR0 for later reference */
2514 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2515 
2516 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2517 			  hw->mac.addr[0], hw->mac.addr[1],
2518 			  hw->mac.addr[2]);
2519 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2520 			  hw->mac.addr[4], hw->mac.addr[5]);
2521 	} else {
2522 		/* Setup the receive address. */
2523 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2524 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2525 			  hw->mac.addr[0], hw->mac.addr[1],
2526 			  hw->mac.addr[2]);
2527 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2528 			  hw->mac.addr[4], hw->mac.addr[5]);
2529 
2530 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2531 	}
2532 
2533 	/* clear VMDq pool/queue selection for RAR 0 */
2534 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2535 
2536 	hw->addr_ctrl.overflow_promisc = 0;
2537 
2538 	hw->addr_ctrl.rar_used_count = 1;
2539 
2540 	/* Zero out the other receive addresses. */
2541 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2542 	for (i = 1; i < rar_entries; i++) {
2543 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2544 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2545 	}
2546 
2547 	/* Clear the MTA */
2548 	hw->addr_ctrl.mta_in_use = 0;
2549 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2550 
2551 	DEBUGOUT(" Clearing MTA\n");
2552 	for (i = 0; i < hw->mac.mcft_size; i++)
2553 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2554 
2555 	ixgbe_init_uta_tables(hw);
2556 
2557 	return IXGBE_SUCCESS;
2558 }
2559 
2560 /**
2561  * ixgbe_add_uc_addr - Adds a secondary unicast address.
2562  * @hw: pointer to hardware structure
2563  * @addr: new address
2564  * @vmdq: VMDq "set" or "pool" index
2565  *
2566  * Adds it to unused receive address register or goes into promiscuous mode.
2567  **/
2568 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2569 {
2570 	u32 rar_entries = hw->mac.num_rar_entries;
2571 	u32 rar;
2572 
2573 	DEBUGFUNC("ixgbe_add_uc_addr");
2574 
2575 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2576 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2577 
2578 	/*
2579 	 * Place this address in the RAR if there is room,
2580 	 * else put the controller into promiscuous mode
2581 	 */
2582 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2583 		rar = hw->addr_ctrl.rar_used_count;
2584 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2585 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2586 		hw->addr_ctrl.rar_used_count++;
2587 	} else {
2588 		hw->addr_ctrl.overflow_promisc++;
2589 	}
2590 
2591 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2592 }
2593 
2594 /**
2595  * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2596  * @hw: pointer to hardware structure
2597  * @addr_list: the list of new addresses
2598  * @addr_count: number of addresses
2599  * @next: iterator function to walk the address list
2600  *
2601  * The given list replaces any existing list.  Clears the secondary addrs from
2602  * receive address registers.  Uses unused receive address registers for the
2603  * first secondary addresses, and falls back to promiscuous mode as needed.
2604  *
2605  * Drivers using secondary unicast addresses must set user_set_promisc when
2606  * manually putting the device into promiscuous mode.
2607  **/
2608 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2609 				      u32 addr_count, ixgbe_mc_addr_itr next)
2610 {
2611 	u8 *addr;
2612 	u32 i;
2613 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2614 	u32 uc_addr_in_use;
2615 	u32 fctrl;
2616 	u32 vmdq;
2617 
2618 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2619 
2620 	/*
2621 	 * Clear accounting of old secondary address list,
2622 	 * don't count RAR[0]
2623 	 */
2624 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2625 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2626 	hw->addr_ctrl.overflow_promisc = 0;
2627 
2628 	/* Zero out the other receive addresses */
2629 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2630 	for (i = 0; i < uc_addr_in_use; i++) {
2631 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2632 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2633 	}
2634 
2635 	/* Add the new addresses */
2636 	for (i = 0; i < addr_count; i++) {
2637 		DEBUGOUT(" Adding the secondary addresses:\n");
2638 		addr = next(hw, &addr_list, &vmdq);
2639 		ixgbe_add_uc_addr(hw, addr, vmdq);
2640 	}
2641 
2642 	if (hw->addr_ctrl.overflow_promisc) {
2643 		/* enable promisc if not already in overflow or set by user */
2644 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2645 			DEBUGOUT(" Entering address overflow promisc mode\n");
2646 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2647 			fctrl |= IXGBE_FCTRL_UPE;
2648 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2649 		}
2650 	} else {
2651 		/* only disable if set by overflow, not by user */
2652 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2653 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2654 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2655 			fctrl &= ~IXGBE_FCTRL_UPE;
2656 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2657 		}
2658 	}
2659 
2660 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2661 	return IXGBE_SUCCESS;
2662 }
2663 
2664 /**
2665  * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2666  * @hw: pointer to hardware structure
2667  * @mc_addr: the multicast address
2668  *
2669  * Extracts the 12 bits, from a multicast address, to determine which
2670  * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2671  * incoming rx multicast addresses, to determine the bit-vector to check in
2672  * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2673  * by the MO field of the MCSTCTRL. The MO field is set during initialization
2674  * to mc_filter_type.
2675  **/
2676 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2677 {
2678 	u32 vector = 0;
2679 
2680 	DEBUGFUNC("ixgbe_mta_vector");
2681 
2682 	switch (hw->mac.mc_filter_type) {
2683 	case 0:   /* use bits [47:36] of the address */
2684 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2685 		break;
2686 	case 1:   /* use bits [46:35] of the address */
2687 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2688 		break;
2689 	case 2:   /* use bits [45:34] of the address */
2690 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2691 		break;
2692 	case 3:   /* use bits [43:32] of the address */
2693 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2694 		break;
2695 	default:  /* Invalid mc_filter_type */
2696 		DEBUGOUT("MC filter type param set incorrectly\n");
2697 		ASSERT(0);
2698 		break;
2699 	}
2700 
2701 	/* vector can only be 12-bits or boundary will be exceeded */
2702 	vector &= 0xFFF;
2703 	return vector;
2704 }
2705 
2706 /**
2707  * ixgbe_set_mta - Set bit-vector in multicast table
2708  * @hw: pointer to hardware structure
2709  * @mc_addr: Multicast address
2710  *
2711  * Sets the bit-vector in the multicast table.
2712  **/
2713 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2714 {
2715 	u32 vector;
2716 	u32 vector_bit;
2717 	u32 vector_reg;
2718 
2719 	DEBUGFUNC("ixgbe_set_mta");
2720 
2721 	hw->addr_ctrl.mta_in_use++;
2722 
2723 	vector = ixgbe_mta_vector(hw, mc_addr);
2724 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2725 
2726 	/*
2727 	 * The MTA is a register array of 128 32-bit registers. It is treated
2728 	 * like an array of 4096 bits.  We want to set bit
2729 	 * BitArray[vector_value]. So we figure out what register the bit is
2730 	 * in, read it, OR in the new bit, then write back the new value.  The
2731 	 * register is determined by the upper 7 bits of the vector value and
2732 	 * the bit within that register are determined by the lower 5 bits of
2733 	 * the value.
2734 	 */
2735 	vector_reg = (vector >> 5) & 0x7F;
2736 	vector_bit = vector & 0x1F;
2737 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2738 }
2739 
2740 /**
2741  * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2742  * @hw: pointer to hardware structure
2743  * @mc_addr_list: the list of new multicast addresses
2744  * @mc_addr_count: number of addresses
2745  * @next: iterator function to walk the multicast address list
2746  * @clear: flag, when set clears the table beforehand
2747  *
2748  * When the clear flag is set, the given list replaces any existing list.
2749  * Hashes the given addresses into the multicast table.
2750  **/
2751 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2752 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2753 				      bool clear)
2754 {
2755 	u32 i;
2756 	u32 vmdq;
2757 
2758 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2759 
2760 	/*
2761 	 * Set the new number of MC addresses that we are being requested to
2762 	 * use.
2763 	 */
2764 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2765 	hw->addr_ctrl.mta_in_use = 0;
2766 
2767 	/* Clear mta_shadow */
2768 	if (clear) {
2769 		DEBUGOUT(" Clearing MTA\n");
2770 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2771 	}
2772 
2773 	/* Update mta_shadow */
2774 	for (i = 0; i < mc_addr_count; i++) {
2775 		DEBUGOUT(" Adding the multicast addresses:\n");
2776 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2777 	}
2778 
2779 	/* Enable mta */
2780 	for (i = 0; i < hw->mac.mcft_size; i++)
2781 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2782 				      hw->mac.mta_shadow[i]);
2783 
2784 	if (hw->addr_ctrl.mta_in_use > 0)
2785 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2786 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2787 
2788 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2789 	return IXGBE_SUCCESS;
2790 }
2791 
2792 /**
2793  * ixgbe_enable_mc_generic - Enable multicast address in RAR
2794  * @hw: pointer to hardware structure
2795  *
2796  * Enables multicast address in RAR and the use of the multicast hash table.
2797  **/
2798 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2799 {
2800 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2801 
2802 	DEBUGFUNC("ixgbe_enable_mc_generic");
2803 
2804 	if (a->mta_in_use > 0)
2805 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2806 				hw->mac.mc_filter_type);
2807 
2808 	return IXGBE_SUCCESS;
2809 }
2810 
2811 /**
2812  * ixgbe_disable_mc_generic - Disable multicast address in RAR
2813  * @hw: pointer to hardware structure
2814  *
2815  * Disables multicast address in RAR and the use of the multicast hash table.
2816  **/
2817 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2818 {
2819 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2820 
2821 	DEBUGFUNC("ixgbe_disable_mc_generic");
2822 
2823 	if (a->mta_in_use > 0)
2824 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2825 
2826 	return IXGBE_SUCCESS;
2827 }
2828 
2829 /**
2830  * ixgbe_fc_enable_generic - Enable flow control
2831  * @hw: pointer to hardware structure
2832  *
2833  * Enable flow control according to the current settings.
2834  **/
2835 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2836 {
2837 	s32 ret_val = IXGBE_SUCCESS;
2838 	u32 mflcn_reg, fccfg_reg;
2839 	u32 reg;
2840 	u32 fcrtl, fcrth;
2841 	int i;
2842 
2843 	DEBUGFUNC("ixgbe_fc_enable_generic");
2844 
2845 	/* Validate the water mark configuration */
2846 	if (!hw->fc.pause_time) {
2847 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2848 		goto out;
2849 	}
2850 
2851 	/* Low water mark of zero causes XOFF floods */
2852 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2853 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2854 		    hw->fc.high_water[i]) {
2855 			if (!hw->fc.low_water[i] ||
2856 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2857 				DEBUGOUT("Invalid water mark configuration\n");
2858 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2859 				goto out;
2860 			}
2861 		}
2862 	}
2863 
2864 	/* Negotiate the fc mode to use */
2865 	hw->mac.ops.fc_autoneg(hw);
2866 
2867 	/* Disable any previous flow control settings */
2868 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2869 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2870 
2871 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2872 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2873 
2874 	/*
2875 	 * The possible values of fc.current_mode are:
2876 	 * 0: Flow control is completely disabled
2877 	 * 1: Rx flow control is enabled (we can receive pause frames,
2878 	 *    but not send pause frames).
2879 	 * 2: Tx flow control is enabled (we can send pause frames but
2880 	 *    we do not support receiving pause frames).
2881 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2882 	 * other: Invalid.
2883 	 */
2884 	switch (hw->fc.current_mode) {
2885 	case ixgbe_fc_none:
2886 		/*
2887 		 * Flow control is disabled by software override or autoneg.
2888 		 * The code below will actually disable it in the HW.
2889 		 */
2890 		break;
2891 	case ixgbe_fc_rx_pause:
2892 		/*
2893 		 * Rx Flow control is enabled and Tx Flow control is
2894 		 * disabled by software override. Since there really
2895 		 * isn't a way to advertise that we are capable of RX
2896 		 * Pause ONLY, we will advertise that we support both
2897 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2898 		 * disable the adapter's ability to send PAUSE frames.
2899 		 */
2900 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2901 		break;
2902 	case ixgbe_fc_tx_pause:
2903 		/*
2904 		 * Tx Flow control is enabled, and Rx Flow control is
2905 		 * disabled by software override.
2906 		 */
2907 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2908 		break;
2909 	case ixgbe_fc_full:
2910 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2911 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2912 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2913 		break;
2914 	default:
2915 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2916 			     "Flow control param set incorrectly\n");
2917 		ret_val = IXGBE_ERR_CONFIG;
2918 		goto out;
2919 		break;
2920 	}
2921 
2922 	/* Set 802.3x based flow control settings. */
2923 	mflcn_reg |= IXGBE_MFLCN_DPF;
2924 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2925 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2926 
2927 
2928 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2929 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2930 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2931 		    hw->fc.high_water[i]) {
2932 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2933 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2934 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2935 		} else {
2936 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2937 			/*
2938 			 * In order to prevent Tx hangs when the internal Tx
2939 			 * switch is enabled we must set the high water mark
2940 			 * to the Rx packet buffer size - 24KB.  This allows
2941 			 * the Tx switch to function even under heavy Rx
2942 			 * workloads.
2943 			 */
2944 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2945 		}
2946 
2947 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2948 	}
2949 
2950 	/* Configure pause time (2 TCs per register) */
2951 	reg = (u32)hw->fc.pause_time * 0x00010001;
2952 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2953 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2954 
2955 	/* Configure flow control refresh threshold value */
2956 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2957 
2958 out:
2959 	return ret_val;
2960 }
2961 
2962 /**
2963  * ixgbe_negotiate_fc - Negotiate flow control
2964  * @hw: pointer to hardware structure
2965  * @adv_reg: flow control advertised settings
2966  * @lp_reg: link partner's flow control settings
2967  * @adv_sym: symmetric pause bit in advertisement
2968  * @adv_asm: asymmetric pause bit in advertisement
2969  * @lp_sym: symmetric pause bit in link partner advertisement
2970  * @lp_asm: asymmetric pause bit in link partner advertisement
2971  *
2972  * Find the intersection between advertised settings and link partner's
2973  * advertised settings
2974  **/
2975 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2976 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2977 {
2978 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2979 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2980 			     "Local or link partner's advertised flow control "
2981 			     "settings are NULL. Local: %x, link partner: %x\n",
2982 			     adv_reg, lp_reg);
2983 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2984 	}
2985 
2986 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2987 		/*
2988 		 * Now we need to check if the user selected Rx ONLY
2989 		 * of pause frames.  In this case, we had to advertise
2990 		 * FULL flow control because we could not advertise RX
2991 		 * ONLY. Hence, we must now check to see if we need to
2992 		 * turn OFF the TRANSMISSION of PAUSE frames.
2993 		 */
2994 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2995 			hw->fc.current_mode = ixgbe_fc_full;
2996 			DEBUGOUT("Flow Control = FULL.\n");
2997 		} else {
2998 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2999 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3000 		}
3001 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3002 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3003 		hw->fc.current_mode = ixgbe_fc_tx_pause;
3004 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3005 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3006 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3007 		hw->fc.current_mode = ixgbe_fc_rx_pause;
3008 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3009 	} else {
3010 		hw->fc.current_mode = ixgbe_fc_none;
3011 		DEBUGOUT("Flow Control = NONE.\n");
3012 	}
3013 	return IXGBE_SUCCESS;
3014 }
3015 
3016 /**
3017  * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3018  * @hw: pointer to hardware structure
3019  *
3020  * Enable flow control according on 1 gig fiber.
3021  **/
3022 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3023 {
3024 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3025 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3026 
3027 	/*
3028 	 * On multispeed fiber at 1g, bail out if
3029 	 * - link is up but AN did not complete, or if
3030 	 * - link is up and AN completed but timed out
3031 	 */
3032 
3033 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3034 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3035 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3036 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3037 		goto out;
3038 	}
3039 
3040 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3041 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3042 
3043 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3044 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3045 				      IXGBE_PCS1GANA_ASM_PAUSE,
3046 				      IXGBE_PCS1GANA_SYM_PAUSE,
3047 				      IXGBE_PCS1GANA_ASM_PAUSE);
3048 
3049 out:
3050 	return ret_val;
3051 }
3052 
3053 /**
3054  * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3055  * @hw: pointer to hardware structure
3056  *
3057  * Enable flow control according to IEEE clause 37.
3058  **/
3059 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3060 {
3061 	u32 links2, anlp1_reg, autoc_reg, links;
3062 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3063 
3064 	/*
3065 	 * On backplane, bail out if
3066 	 * - backplane autoneg was not completed, or if
3067 	 * - we are 82599 and link partner is not AN enabled
3068 	 */
3069 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3070 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3071 		DEBUGOUT("Auto-Negotiation did not complete\n");
3072 		goto out;
3073 	}
3074 
3075 	if (hw->mac.type == ixgbe_mac_82599EB) {
3076 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3077 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3078 			DEBUGOUT("Link partner is not AN enabled\n");
3079 			goto out;
3080 		}
3081 	}
3082 	/*
3083 	 * Read the 10g AN autoc and LP ability registers and resolve
3084 	 * local flow control settings accordingly
3085 	 */
3086 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3087 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3088 
3089 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3090 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3091 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3092 
3093 out:
3094 	return ret_val;
3095 }
3096 
3097 /**
3098  * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3099  * @hw: pointer to hardware structure
3100  *
3101  * Enable flow control according to IEEE clause 37.
3102  **/
3103 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3104 {
3105 	u16 technology_ability_reg = 0;
3106 	u16 lp_technology_ability_reg = 0;
3107 
3108 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3109 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3110 			     &technology_ability_reg);
3111 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3112 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3113 			     &lp_technology_ability_reg);
3114 
3115 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3116 				  (u32)lp_technology_ability_reg,
3117 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3118 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3119 }
3120 
3121 /**
3122  * ixgbe_fc_autoneg - Configure flow control
3123  * @hw: pointer to hardware structure
3124  *
3125  * Compares our advertised flow control capabilities to those advertised by
3126  * our link partner, and determines the proper flow control mode to use.
3127  **/
3128 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3129 {
3130 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3131 	ixgbe_link_speed speed;
3132 	bool link_up;
3133 
3134 	DEBUGFUNC("ixgbe_fc_autoneg");
3135 
3136 	/*
3137 	 * AN should have completed when the cable was plugged in.
3138 	 * Look for reasons to bail out.  Bail out if:
3139 	 * - FC autoneg is disabled, or if
3140 	 * - link is not up.
3141 	 */
3142 	if (hw->fc.disable_fc_autoneg) {
3143 		/* TODO: This should be just an informative log */
3144 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
3145 			      "Flow control autoneg is disabled");
3146 		goto out;
3147 	}
3148 
3149 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3150 	if (!link_up) {
3151 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3152 		goto out;
3153 	}
3154 
3155 	switch (hw->phy.media_type) {
3156 	/* Autoneg flow control on fiber adapters */
3157 	case ixgbe_media_type_fiber_fixed:
3158 	case ixgbe_media_type_fiber_qsfp:
3159 	case ixgbe_media_type_fiber:
3160 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3161 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3162 		break;
3163 
3164 	/* Autoneg flow control on backplane adapters */
3165 	case ixgbe_media_type_backplane:
3166 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3167 		break;
3168 
3169 	/* Autoneg flow control on copper adapters */
3170 	case ixgbe_media_type_copper:
3171 		if (ixgbe_device_supports_autoneg_fc(hw))
3172 			ret_val = ixgbe_fc_autoneg_copper(hw);
3173 		break;
3174 
3175 	default:
3176 		break;
3177 	}
3178 
3179 out:
3180 	if (ret_val == IXGBE_SUCCESS) {
3181 		hw->fc.fc_was_autonegged = TRUE;
3182 	} else {
3183 		hw->fc.fc_was_autonegged = FALSE;
3184 		hw->fc.current_mode = hw->fc.requested_mode;
3185 	}
3186 }
3187 
3188 /*
3189  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3190  * @hw: pointer to hardware structure
3191  *
3192  * System-wide timeout range is encoded in PCIe Device Control2 register.
3193  *
3194  * Add 10% to specified maximum and return the number of times to poll for
3195  * completion timeout, in units of 100 microsec.  Never return less than
3196  * 800 = 80 millisec.
3197  */
3198 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3199 {
3200 	s16 devctl2;
3201 	u32 pollcnt;
3202 
3203 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3204 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3205 
3206 	switch (devctl2) {
3207 	case IXGBE_PCIDEVCTRL2_65_130ms:
3208 		pollcnt = 1300;		/* 130 millisec */
3209 		break;
3210 	case IXGBE_PCIDEVCTRL2_260_520ms:
3211 		pollcnt = 5200;		/* 520 millisec */
3212 		break;
3213 	case IXGBE_PCIDEVCTRL2_1_2s:
3214 		pollcnt = 20000;	/* 2 sec */
3215 		break;
3216 	case IXGBE_PCIDEVCTRL2_4_8s:
3217 		pollcnt = 80000;	/* 8 sec */
3218 		break;
3219 	case IXGBE_PCIDEVCTRL2_17_34s:
3220 		pollcnt = 34000;	/* 34 sec */
3221 		break;
3222 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3223 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3224 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3225 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3226 	default:
3227 		pollcnt = 800;		/* 80 millisec minimum */
3228 		break;
3229 	}
3230 
3231 	/* add 10% to spec maximum */
3232 	return (pollcnt * 11) / 10;
3233 }
3234 
3235 /**
3236  * ixgbe_disable_pcie_master - Disable PCI-express master access
3237  * @hw: pointer to hardware structure
3238  *
3239  * Disables PCI-Express master access and verifies there are no pending
3240  * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3241  * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3242  * is returned signifying master requests disabled.
3243  **/
3244 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3245 {
3246 	s32 status = IXGBE_SUCCESS;
3247 	u32 i, poll;
3248 	u16 value;
3249 
3250 	DEBUGFUNC("ixgbe_disable_pcie_master");
3251 
3252 	/* Always set this bit to ensure any future transactions are blocked */
3253 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3254 
3255 	/* Exit if master requests are blocked */
3256 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3257 	    IXGBE_REMOVED(hw->hw_addr))
3258 		goto out;
3259 
3260 	/* Poll for master request bit to clear */
3261 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3262 		usec_delay(100);
3263 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3264 			goto out;
3265 	}
3266 
3267 	/*
3268 	 * Two consecutive resets are required via CTRL.RST per datasheet
3269 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3270 	 * of this need.  The first reset prevents new master requests from
3271 	 * being issued by our device.  We then must wait 1usec or more for any
3272 	 * remaining completions from the PCIe bus to trickle in, and then reset
3273 	 * again to clear out any effects they may have had on our device.
3274 	 */
3275 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3276 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3277 
3278 	if (hw->mac.type >= ixgbe_mac_X550)
3279 		goto out;
3280 
3281 	/*
3282 	 * Before proceeding, make sure that the PCIe block does not have
3283 	 * transactions pending.
3284 	 */
3285 	poll = ixgbe_pcie_timeout_poll(hw);
3286 	for (i = 0; i < poll; i++) {
3287 		usec_delay(100);
3288 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3289 		if (IXGBE_REMOVED(hw->hw_addr))
3290 			goto out;
3291 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3292 			goto out;
3293 	}
3294 
3295 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3296 		     "PCIe transaction pending bit also did not clear.\n");
3297 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3298 
3299 out:
3300 	return status;
3301 }
3302 
3303 /**
3304  * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3305  * @hw: pointer to hardware structure
3306  * @mask: Mask to specify which semaphore to acquire
3307  *
3308  * Acquires the SWFW semaphore through the GSSR register for the specified
3309  * function (CSR, PHY0, PHY1, EEPROM, Flash)
3310  **/
3311 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3312 {
3313 	u32 gssr = 0;
3314 	u32 swmask = mask;
3315 	u32 fwmask = mask << 5;
3316 	u32 timeout = 200;
3317 	u32 i;
3318 
3319 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3320 
3321 	for (i = 0; i < timeout; i++) {
3322 		/*
3323 		 * SW NVM semaphore bit is used for access to all
3324 		 * SW_FW_SYNC bits (not just NVM)
3325 		 */
3326 		if (ixgbe_get_eeprom_semaphore(hw))
3327 			return IXGBE_ERR_SWFW_SYNC;
3328 
3329 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3330 		if (!(gssr & (fwmask | swmask))) {
3331 			gssr |= swmask;
3332 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3333 			ixgbe_release_eeprom_semaphore(hw);
3334 			return IXGBE_SUCCESS;
3335 		} else {
3336 			/* Resource is currently in use by FW or SW */
3337 			ixgbe_release_eeprom_semaphore(hw);
3338 			msec_delay(5);
3339 		}
3340 	}
3341 
3342 	/* If time expired clear the bits holding the lock and retry */
3343 	if (gssr & (fwmask | swmask))
3344 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3345 
3346 	msec_delay(5);
3347 	return IXGBE_ERR_SWFW_SYNC;
3348 }
3349 
3350 /**
3351  * ixgbe_release_swfw_sync - Release SWFW semaphore
3352  * @hw: pointer to hardware structure
3353  * @mask: Mask to specify which semaphore to release
3354  *
3355  * Releases the SWFW semaphore through the GSSR register for the specified
3356  * function (CSR, PHY0, PHY1, EEPROM, Flash)
3357  **/
3358 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3359 {
3360 	u32 gssr;
3361 	u32 swmask = mask;
3362 
3363 	DEBUGFUNC("ixgbe_release_swfw_sync");
3364 
3365 	ixgbe_get_eeprom_semaphore(hw);
3366 
3367 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3368 	gssr &= ~swmask;
3369 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3370 
3371 	ixgbe_release_eeprom_semaphore(hw);
3372 }
3373 
3374 /**
3375  * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3376  * @hw: pointer to hardware structure
3377  *
3378  * Stops the receive data path and waits for the HW to internally empty
3379  * the Rx security block
3380  **/
3381 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3382 {
3383 #define IXGBE_MAX_SECRX_POLL 4000
3384 
3385 	int i;
3386 	int secrxreg;
3387 
3388 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3389 
3390 
3391 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3392 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3393 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3394 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3395 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3396 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3397 			break;
3398 		else
3399 			/* Use interrupt-safe sleep just in case */
3400 			usec_delay(10);
3401 	}
3402 
3403 	/* For informational purposes only */
3404 	if (i >= IXGBE_MAX_SECRX_POLL)
3405 		DEBUGOUT("Rx unit being enabled before security "
3406 			 "path fully disabled.  Continuing with init.\n");
3407 
3408 	return IXGBE_SUCCESS;
3409 }
3410 
3411 /**
3412  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3413  * @hw: pointer to hardware structure
3414  * @locked: bool to indicate whether the SW/FW lock was taken
3415  * @reg_val: Value we read from AUTOC
3416  *
3417  * The default case requires no protection so just to the register read.
3418  */
3419 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3420 {
3421 	*locked = FALSE;
3422 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3423 	return IXGBE_SUCCESS;
3424 }
3425 
3426 /**
3427  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3428  * @hw: pointer to hardware structure
3429  * @reg_val: value to write to AUTOC
3430  * @locked: bool to indicate whether the SW/FW lock was already taken by
3431  *          previous read.
3432  *
3433  * The default case requires no protection so just to the register write.
3434  */
3435 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3436 {
3437 	UNREFERENCED_1PARAMETER(locked);
3438 
3439 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3440 	return IXGBE_SUCCESS;
3441 }
3442 
3443 /**
3444  * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3445  * @hw: pointer to hardware structure
3446  *
3447  * Enables the receive data path.
3448  **/
3449 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3450 {
3451 	u32 secrxreg;
3452 
3453 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3454 
3455 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3456 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3457 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3458 	IXGBE_WRITE_FLUSH(hw);
3459 
3460 	return IXGBE_SUCCESS;
3461 }
3462 
3463 /**
3464  * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3465  * @hw: pointer to hardware structure
3466  * @regval: register value to write to RXCTRL
3467  *
3468  * Enables the Rx DMA unit
3469  **/
3470 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3471 {
3472 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3473 
3474 	if (regval & IXGBE_RXCTRL_RXEN)
3475 		ixgbe_enable_rx(hw);
3476 	else
3477 		ixgbe_disable_rx(hw);
3478 
3479 	return IXGBE_SUCCESS;
3480 }
3481 
3482 /**
3483  * ixgbe_blink_led_start_generic - Blink LED based on index.
3484  * @hw: pointer to hardware structure
3485  * @index: led number to blink
3486  **/
3487 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3488 {
3489 	ixgbe_link_speed speed = 0;
3490 	bool link_up = 0;
3491 	u32 autoc_reg = 0;
3492 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3493 	s32 ret_val = IXGBE_SUCCESS;
3494 	bool locked = FALSE;
3495 
3496 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3497 
3498 	if (index > 3)
3499 		return IXGBE_ERR_PARAM;
3500 
3501 	/*
3502 	 * Link must be up to auto-blink the LEDs;
3503 	 * Force it if link is down.
3504 	 */
3505 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3506 
3507 	if (!link_up) {
3508 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3509 		if (ret_val != IXGBE_SUCCESS)
3510 			goto out;
3511 
3512 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3513 		autoc_reg |= IXGBE_AUTOC_FLU;
3514 
3515 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3516 		if (ret_val != IXGBE_SUCCESS)
3517 			goto out;
3518 
3519 		IXGBE_WRITE_FLUSH(hw);
3520 		msec_delay(10);
3521 	}
3522 
3523 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3524 	led_reg |= IXGBE_LED_BLINK(index);
3525 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3526 	IXGBE_WRITE_FLUSH(hw);
3527 
3528 out:
3529 	return ret_val;
3530 }
3531 
3532 /**
3533  * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3534  * @hw: pointer to hardware structure
3535  * @index: led number to stop blinking
3536  **/
3537 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3538 {
3539 	u32 autoc_reg = 0;
3540 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3541 	s32 ret_val = IXGBE_SUCCESS;
3542 	bool locked = FALSE;
3543 
3544 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3545 
3546 	if (index > 3)
3547 		return IXGBE_ERR_PARAM;
3548 
3549 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3550 	if (ret_val != IXGBE_SUCCESS)
3551 		goto out;
3552 
3553 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3554 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3555 
3556 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3557 	if (ret_val != IXGBE_SUCCESS)
3558 		goto out;
3559 
3560 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3561 	led_reg &= ~IXGBE_LED_BLINK(index);
3562 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3563 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3564 	IXGBE_WRITE_FLUSH(hw);
3565 
3566 out:
3567 	return ret_val;
3568 }
3569 
3570 /**
3571  * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3572  * @hw: pointer to hardware structure
3573  * @san_mac_offset: SAN MAC address offset
3574  *
3575  * This function will read the EEPROM location for the SAN MAC address
3576  * pointer, and returns the value at that location.  This is used in both
3577  * get and set mac_addr routines.
3578  **/
3579 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3580 					 u16 *san_mac_offset)
3581 {
3582 	s32 ret_val;
3583 
3584 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3585 
3586 	/*
3587 	 * First read the EEPROM pointer to see if the MAC addresses are
3588 	 * available.
3589 	 */
3590 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3591 				      san_mac_offset);
3592 	if (ret_val) {
3593 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3594 			      "eeprom at offset %d failed",
3595 			      IXGBE_SAN_MAC_ADDR_PTR);
3596 	}
3597 
3598 	return ret_val;
3599 }
3600 
3601 /**
3602  * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3603  * @hw: pointer to hardware structure
3604  * @san_mac_addr: SAN MAC address
3605  *
3606  * Reads the SAN MAC address from the EEPROM, if it's available.  This is
3607  * per-port, so set_lan_id() must be called before reading the addresses.
3608  * set_lan_id() is called by identify_sfp(), but this cannot be relied
3609  * upon for non-SFP connections, so we must call it here.
3610  **/
3611 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3612 {
3613 	u16 san_mac_data, san_mac_offset;
3614 	u8 i;
3615 	s32 ret_val;
3616 
3617 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3618 
3619 	/*
3620 	 * First read the EEPROM pointer to see if the MAC addresses are
3621 	 * available.  If they're not, no point in calling set_lan_id() here.
3622 	 */
3623 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3624 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3625 		goto san_mac_addr_out;
3626 
3627 	/* make sure we know which port we need to program */
3628 	hw->mac.ops.set_lan_id(hw);
3629 	/* apply the port offset to the address offset */
3630 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3631 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3632 	for (i = 0; i < 3; i++) {
3633 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3634 					      &san_mac_data);
3635 		if (ret_val) {
3636 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3637 				      "eeprom read at offset %d failed",
3638 				      san_mac_offset);
3639 			goto san_mac_addr_out;
3640 		}
3641 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3642 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3643 		san_mac_offset++;
3644 	}
3645 	return IXGBE_SUCCESS;
3646 
3647 san_mac_addr_out:
3648 	/*
3649 	 * No addresses available in this EEPROM.  It's not an
3650 	 * error though, so just wipe the local address and return.
3651 	 */
3652 	for (i = 0; i < 6; i++)
3653 		san_mac_addr[i] = 0xFF;
3654 	return IXGBE_SUCCESS;
3655 }
3656 
3657 /**
3658  * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3659  * @hw: pointer to hardware structure
3660  * @san_mac_addr: SAN MAC address
3661  *
3662  * Write a SAN MAC address to the EEPROM.
3663  **/
3664 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3665 {
3666 	s32 ret_val;
3667 	u16 san_mac_data, san_mac_offset;
3668 	u8 i;
3669 
3670 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3671 
3672 	/* Look for SAN mac address pointer.  If not defined, return */
3673 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3674 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3675 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3676 
3677 	/* Make sure we know which port we need to write */
3678 	hw->mac.ops.set_lan_id(hw);
3679 	/* Apply the port offset to the address offset */
3680 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3681 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3682 
3683 	for (i = 0; i < 3; i++) {
3684 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3685 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3686 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3687 		san_mac_offset++;
3688 	}
3689 
3690 	return IXGBE_SUCCESS;
3691 }
3692 
3693 /**
3694  * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3695  * @hw: pointer to hardware structure
3696  *
3697  * Read PCIe configuration space, and get the MSI-X vector count from
3698  * the capabilities table.
3699  **/
3700 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3701 {
3702 	u16 msix_count = 1;
3703 	u16 max_msix_count;
3704 	u16 pcie_offset;
3705 
3706 	switch (hw->mac.type) {
3707 	case ixgbe_mac_82598EB:
3708 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3709 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3710 		break;
3711 	case ixgbe_mac_82599EB:
3712 	case ixgbe_mac_X540:
3713 	case ixgbe_mac_X550:
3714 	case ixgbe_mac_X550EM_x:
3715 	case ixgbe_mac_X550EM_a:
3716 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3717 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3718 		break;
3719 	default:
3720 		return msix_count;
3721 	}
3722 
3723 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3724 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3725 	if (IXGBE_REMOVED(hw->hw_addr))
3726 		msix_count = 0;
3727 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3728 
3729 	/* MSI-X count is zero-based in HW */
3730 	msix_count++;
3731 
3732 	if (msix_count > max_msix_count)
3733 		msix_count = max_msix_count;
3734 
3735 	return msix_count;
3736 }
3737 
3738 /**
3739  * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3740  * @hw: pointer to hardware structure
3741  * @addr: Address to put into receive address register
3742  * @vmdq: VMDq pool to assign
3743  *
3744  * Puts an ethernet address into a receive address register, or
3745  * finds the rar that it is already in; adds to the pool list
3746  **/
3747 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3748 {
3749 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3750 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3751 	u32 rar;
3752 	u32 rar_low, rar_high;
3753 	u32 addr_low, addr_high;
3754 
3755 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3756 
3757 	/* swap bytes for HW little endian */
3758 	addr_low  = addr[0] | (addr[1] << 8)
3759 			    | (addr[2] << 16)
3760 			    | (addr[3] << 24);
3761 	addr_high = addr[4] | (addr[5] << 8);
3762 
3763 	/*
3764 	 * Either find the mac_id in rar or find the first empty space.
3765 	 * rar_highwater points to just after the highest currently used
3766 	 * rar in order to shorten the search.  It grows when we add a new
3767 	 * rar to the top.
3768 	 */
3769 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3770 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3771 
3772 		if (((IXGBE_RAH_AV & rar_high) == 0)
3773 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3774 			first_empty_rar = rar;
3775 		} else if ((rar_high & 0xFFFF) == addr_high) {
3776 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3777 			if (rar_low == addr_low)
3778 				break;    /* found it already in the rars */
3779 		}
3780 	}
3781 
3782 	if (rar < hw->mac.rar_highwater) {
3783 		/* already there so just add to the pool bits */
3784 		ixgbe_set_vmdq(hw, rar, vmdq);
3785 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3786 		/* stick it into first empty RAR slot we found */
3787 		rar = first_empty_rar;
3788 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3789 	} else if (rar == hw->mac.rar_highwater) {
3790 		/* add it to the top of the list and inc the highwater mark */
3791 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3792 		hw->mac.rar_highwater++;
3793 	} else if (rar >= hw->mac.num_rar_entries) {
3794 		return IXGBE_ERR_INVALID_MAC_ADDR;
3795 	}
3796 
3797 	/*
3798 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3799 	 * remains cleared to be sure default pool packets will get delivered
3800 	 */
3801 	if (rar == 0)
3802 		ixgbe_clear_vmdq(hw, rar, 0);
3803 
3804 	return rar;
3805 }
3806 
3807 /**
3808  * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3809  * @hw: pointer to hardware struct
3810  * @rar: receive address register index to disassociate
3811  * @vmdq: VMDq pool index to remove from the rar
3812  **/
3813 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3814 {
3815 	u32 mpsar_lo, mpsar_hi;
3816 	u32 rar_entries = hw->mac.num_rar_entries;
3817 
3818 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3819 
3820 	/* Make sure we are using a valid rar index range */
3821 	if (rar >= rar_entries) {
3822 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3823 			     "RAR index %d is out of range.\n", rar);
3824 		return IXGBE_ERR_INVALID_ARGUMENT;
3825 	}
3826 
3827 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3828 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3829 
3830 	if (IXGBE_REMOVED(hw->hw_addr))
3831 		goto done;
3832 
3833 	if (!mpsar_lo && !mpsar_hi)
3834 		goto done;
3835 
3836 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3837 		if (mpsar_lo) {
3838 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3839 			mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3840 		}
3841 		if (mpsar_hi) {
3842 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3843 			mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3844 		}
3845 	} else if (vmdq < 32) {
3846 		mpsar_lo &= ~(1 << vmdq);
3847 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3848 	} else {
3849 		mpsar_hi &= ~(1 << (vmdq - 32));
3850 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3851 	}
3852 
3853 	/* was that the last pool using this rar? */
3854 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3855 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3856 		hw->mac.ops.clear_rar(hw, rar);
3857 done:
3858 	return IXGBE_SUCCESS;
3859 }
3860 
3861 /**
3862  * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3863  * @hw: pointer to hardware struct
3864  * @rar: receive address register index to associate with a VMDq index
3865  * @vmdq: VMDq pool index
3866  **/
3867 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3868 {
3869 	u32 mpsar;
3870 	u32 rar_entries = hw->mac.num_rar_entries;
3871 
3872 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3873 
3874 	/* Make sure we are using a valid rar index range */
3875 	if (rar >= rar_entries) {
3876 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3877 			     "RAR index %d is out of range.\n", rar);
3878 		return IXGBE_ERR_INVALID_ARGUMENT;
3879 	}
3880 
3881 	if (vmdq < 32) {
3882 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3883 		mpsar |= 1 << vmdq;
3884 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3885 	} else {
3886 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3887 		mpsar |= 1 << (vmdq - 32);
3888 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3889 	}
3890 	return IXGBE_SUCCESS;
3891 }
3892 
3893 /**
3894  * This function should only be involved in the IOV mode.
3895  * In IOV mode, Default pool is next pool after the number of
3896  * VFs advertized and not 0.
3897  * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3898  *
3899  * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3900  * @hw: pointer to hardware struct
3901  * @vmdq: VMDq pool index
3902  **/
3903 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3904 {
3905 	u32 rar = hw->mac.san_mac_rar_index;
3906 
3907 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3908 
3909 	if (vmdq < 32) {
3910 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3911 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3912 	} else {
3913 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3914 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3915 	}
3916 
3917 	return IXGBE_SUCCESS;
3918 }
3919 
3920 /**
3921  * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3922  * @hw: pointer to hardware structure
3923  **/
3924 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3925 {
3926 	int i;
3927 
3928 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3929 	DEBUGOUT(" Clearing UTA\n");
3930 
3931 	for (i = 0; i < 128; i++)
3932 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3933 
3934 	return IXGBE_SUCCESS;
3935 }
3936 
3937 /**
3938  * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3939  * @hw: pointer to hardware structure
3940  * @vlan: VLAN id to write to VLAN filter
3941  * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3942  *		  vlanid not found
3943  *
3944  *
3945  * return the VLVF index where this VLAN id should be placed
3946  *
3947  **/
3948 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3949 {
3950 	s32 regindex, first_empty_slot;
3951 	u32 bits;
3952 
3953 	/* short cut the special case */
3954 	if (vlan == 0)
3955 		return 0;
3956 
3957 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3958 	 * will simply bypass the VLVF if there are no entries present in the
3959 	 * VLVF that contain our VLAN
3960 	 */
3961 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3962 
3963 	/* add VLAN enable bit for comparison */
3964 	vlan |= IXGBE_VLVF_VIEN;
3965 
3966 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3967 	 * slot found along the way.
3968 	 *
3969 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3970 	 */
3971 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3972 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3973 		if (bits == vlan)
3974 			return regindex;
3975 		if (!first_empty_slot && !bits)
3976 			first_empty_slot = regindex;
3977 	}
3978 
3979 	/* If we are here then we didn't find the VLAN.  Return first empty
3980 	 * slot we found during our search, else error.
3981 	 */
3982 	if (!first_empty_slot)
3983 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3984 
3985 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3986 }
3987 
3988 /**
3989  * ixgbe_set_vfta_generic - Set VLAN filter table
3990  * @hw: pointer to hardware structure
3991  * @vlan: VLAN id to write to VLAN filter
3992  * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3993  * @vlan_on: boolean flag to turn on/off VLAN
3994  * @vlvf_bypass: boolean flag indicating updating default pool is okay
3995  *
3996  * Turn on/off specified VLAN in the VLAN filter table.
3997  **/
3998 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3999 			   bool vlan_on, bool vlvf_bypass)
4000 {
4001 	u32 regidx, vfta_delta, vfta;
4002 	s32 ret_val;
4003 
4004 	DEBUGFUNC("ixgbe_set_vfta_generic");
4005 
4006 	if (vlan > 4095 || vind > 63)
4007 		return IXGBE_ERR_PARAM;
4008 
4009 	/*
4010 	 * this is a 2 part operation - first the VFTA, then the
4011 	 * VLVF and VLVFB if VT Mode is set
4012 	 * We don't write the VFTA until we know the VLVF part succeeded.
4013 	 */
4014 
4015 	/* Part 1
4016 	 * The VFTA is a bitstring made up of 128 32-bit registers
4017 	 * that enable the particular VLAN id, much like the MTA:
4018 	 *    bits[11-5]: which register
4019 	 *    bits[4-0]:  which bit in the register
4020 	 */
4021 	regidx = vlan / 32;
4022 	vfta_delta = (u32)1 << (vlan % 32);
4023 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4024 
4025 	/*
4026 	 * vfta_delta represents the difference between the current value
4027 	 * of vfta and the value we want in the register.  Since the diff
4028 	 * is an XOR mask we can just update the vfta using an XOR
4029 	 */
4030 	vfta_delta &= vlan_on ? ~vfta : vfta;
4031 	vfta ^= vfta_delta;
4032 
4033 	/* Part 2
4034 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4035 	 */
4036 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4037 					 vfta, vlvf_bypass);
4038 	if (ret_val != IXGBE_SUCCESS) {
4039 		if (vlvf_bypass)
4040 			goto vfta_update;
4041 		return ret_val;
4042 	}
4043 
4044 vfta_update:
4045 	/* Update VFTA now that we are ready for traffic */
4046 	if (vfta_delta)
4047 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4048 
4049 	return IXGBE_SUCCESS;
4050 }
4051 
4052 /**
4053  * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4054  * @hw: pointer to hardware structure
4055  * @vlan: VLAN id to write to VLAN filter
4056  * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4057  * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4058  * @vfta_delta: pointer to the difference between the current value of VFTA
4059  *		 and the desired value
4060  * @vfta: the desired value of the VFTA
4061  * @vlvf_bypass: boolean flag indicating updating default pool is okay
4062  *
4063  * Turn on/off specified bit in VLVF table.
4064  **/
4065 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4066 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4067 			   bool vlvf_bypass)
4068 {
4069 	u32 bits;
4070 	s32 vlvf_index;
4071 
4072 	DEBUGFUNC("ixgbe_set_vlvf_generic");
4073 
4074 	if (vlan > 4095 || vind > 63)
4075 		return IXGBE_ERR_PARAM;
4076 
4077 	/* If VT Mode is set
4078 	 *   Either vlan_on
4079 	 *     make sure the vlan is in VLVF
4080 	 *     set the vind bit in the matching VLVFB
4081 	 *   Or !vlan_on
4082 	 *     clear the pool bit and possibly the vind
4083 	 */
4084 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4085 		return IXGBE_SUCCESS;
4086 
4087 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4088 	if (vlvf_index < 0)
4089 		return vlvf_index;
4090 
4091 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4092 
4093 	/* set the pool bit */
4094 	bits |= 1 << (vind % 32);
4095 	if (vlan_on)
4096 		goto vlvf_update;
4097 
4098 	/* clear the pool bit */
4099 	bits ^= 1 << (vind % 32);
4100 
4101 	if (!bits &&
4102 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4103 		/* Clear VFTA first, then disable VLVF.  Otherwise
4104 		 * we run the risk of stray packets leaking into
4105 		 * the PF via the default pool
4106 		 */
4107 		if (*vfta_delta)
4108 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4109 
4110 		/* disable VLVF and clear remaining bit from pool */
4111 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4112 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4113 
4114 		return IXGBE_SUCCESS;
4115 	}
4116 
4117 	/* If there are still bits set in the VLVFB registers
4118 	 * for the VLAN ID indicated we need to see if the
4119 	 * caller is requesting that we clear the VFTA entry bit.
4120 	 * If the caller has requested that we clear the VFTA
4121 	 * entry bit but there are still pools/VFs using this VLAN
4122 	 * ID entry then ignore the request.  We're not worried
4123 	 * about the case where we're turning the VFTA VLAN ID
4124 	 * entry bit on, only when requested to turn it off as
4125 	 * there may be multiple pools and/or VFs using the
4126 	 * VLAN ID entry.  In that case we cannot clear the
4127 	 * VFTA bit until all pools/VFs using that VLAN ID have also
4128 	 * been cleared.  This will be indicated by "bits" being
4129 	 * zero.
4130 	 */
4131 	*vfta_delta = 0;
4132 
4133 vlvf_update:
4134 	/* record pool change and enable VLAN ID if not already enabled */
4135 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4136 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4137 
4138 	return IXGBE_SUCCESS;
4139 }
4140 
4141 /**
4142  * ixgbe_clear_vfta_generic - Clear VLAN filter table
4143  * @hw: pointer to hardware structure
4144  *
4145  * Clears the VLAN filter table, and the VMDq index associated with the filter
4146  **/
4147 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4148 {
4149 	u32 offset;
4150 
4151 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4152 
4153 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4154 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4155 
4156 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4157 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4158 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4159 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4160 	}
4161 
4162 	return IXGBE_SUCCESS;
4163 }
4164 
4165 /**
4166  * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4167  * @hw: pointer to hardware structure
4168  * @vf_number: VF index
4169  *
4170  * Enable and disable each queue in VF.
4171  */
4172 s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4173 {
4174 	u8  queue_count, i;
4175 	u32 offset, reg;
4176 
4177 	if (vf_number > 63)
4178 		return IXGBE_ERR_PARAM;
4179 
4180 	/*
4181 	 * Determine number of queues by checking
4182 	 * number of virtual functions
4183 	 */
4184 	reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4185 	switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4186 	case IXGBE_GCR_EXT_VT_MODE_64:
4187 		queue_count = 2;
4188 		break;
4189 	case IXGBE_GCR_EXT_VT_MODE_32:
4190 		queue_count = 4;
4191 		break;
4192 	case IXGBE_GCR_EXT_VT_MODE_16:
4193 		queue_count = 8;
4194 		break;
4195 	default:
4196 		return IXGBE_ERR_CONFIG;
4197 	}
4198 
4199 	/* Toggle queues */
4200 	for (i = 0; i < queue_count; ++i) {
4201 		/* Calculate offset of current queue */
4202 		offset = queue_count * vf_number + i;
4203 
4204 		/* Enable queue */
4205 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4206 		reg |= IXGBE_TXDCTL_ENABLE;
4207 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4208 		IXGBE_WRITE_FLUSH(hw);
4209 
4210 		/* Disable queue */
4211 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4212 		reg &= ~IXGBE_TXDCTL_ENABLE;
4213 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4214 		IXGBE_WRITE_FLUSH(hw);
4215 	}
4216 
4217 	return IXGBE_SUCCESS;
4218 }
4219 
4220 /**
4221  * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4222  * @hw: pointer to hardware structure
4223  *
4224  * Contains the logic to identify if we need to verify link for the
4225  * crosstalk fix
4226  **/
4227 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4228 {
4229 
4230 	/* Does FW say we need the fix */
4231 	if (!hw->need_crosstalk_fix)
4232 		return FALSE;
4233 
4234 	/* Only consider SFP+ PHYs i.e. media type fiber */
4235 	switch (hw->mac.ops.get_media_type(hw)) {
4236 	case ixgbe_media_type_fiber:
4237 	case ixgbe_media_type_fiber_qsfp:
4238 		break;
4239 	default:
4240 		return FALSE;
4241 	}
4242 
4243 	return TRUE;
4244 }
4245 
4246 /**
4247  * ixgbe_check_mac_link_generic - Determine link and speed status
4248  * @hw: pointer to hardware structure
4249  * @speed: pointer to link speed
4250  * @link_up: TRUE when link is up
4251  * @link_up_wait_to_complete: bool used to wait for link up or not
4252  *
4253  * Reads the links register to determine if link is up and the current speed
4254  **/
4255 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4256 				 bool *link_up, bool link_up_wait_to_complete)
4257 {
4258 	u32 links_reg, links_orig;
4259 	u32 i;
4260 
4261 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4262 
4263 	/* If Crosstalk fix enabled do the sanity check of making sure
4264 	 * the SFP+ cage is full.
4265 	 */
4266 	if (ixgbe_need_crosstalk_fix(hw)) {
4267 		if ((hw->mac.type != ixgbe_mac_82598EB) &&
4268 		    !ixgbe_sfp_cage_full(hw)) {
4269 			*link_up = FALSE;
4270 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4271 			return IXGBE_SUCCESS;
4272 		}
4273 	}
4274 
4275 	/* clear the old state */
4276 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4277 
4278 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4279 
4280 	if (links_orig != links_reg) {
4281 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4282 			  links_orig, links_reg);
4283 	}
4284 
4285 	if (link_up_wait_to_complete) {
4286 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4287 			if (links_reg & IXGBE_LINKS_UP) {
4288 				*link_up = TRUE;
4289 				break;
4290 			} else {
4291 				*link_up = FALSE;
4292 			}
4293 			msec_delay(100);
4294 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4295 		}
4296 	} else {
4297 		if (links_reg & IXGBE_LINKS_UP)
4298 			*link_up = TRUE;
4299 		else
4300 			*link_up = FALSE;
4301 	}
4302 
4303 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4304 	case IXGBE_LINKS_SPEED_10G_82599:
4305 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4306 		if (hw->mac.type >= ixgbe_mac_X550) {
4307 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4308 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4309 		}
4310 		break;
4311 	case IXGBE_LINKS_SPEED_1G_82599:
4312 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4313 		break;
4314 	case IXGBE_LINKS_SPEED_100_82599:
4315 		*speed = IXGBE_LINK_SPEED_100_FULL;
4316 		if (hw->mac.type >= ixgbe_mac_X550) {
4317 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4318 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4319 		}
4320 		break;
4321 	case IXGBE_LINKS_SPEED_10_X550EM_A:
4322 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4323 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4324 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4325 			*speed = IXGBE_LINK_SPEED_10_FULL;
4326 		break;
4327 	default:
4328 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4329 	}
4330 
4331 	return IXGBE_SUCCESS;
4332 }
4333 
4334 /**
4335  * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4336  * the EEPROM
4337  * @hw: pointer to hardware structure
4338  * @wwnn_prefix: the alternative WWNN prefix
4339  * @wwpn_prefix: the alternative WWPN prefix
4340  *
4341  * This function will read the EEPROM from the alternative SAN MAC address
4342  * block to check the support for the alternative WWNN/WWPN prefix support.
4343  **/
4344 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4345 				 u16 *wwpn_prefix)
4346 {
4347 	u16 offset, caps;
4348 	u16 alt_san_mac_blk_offset;
4349 
4350 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4351 
4352 	/* clear output first */
4353 	*wwnn_prefix = 0xFFFF;
4354 	*wwpn_prefix = 0xFFFF;
4355 
4356 	/* check if alternative SAN MAC is supported */
4357 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4358 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4359 		goto wwn_prefix_err;
4360 
4361 	if ((alt_san_mac_blk_offset == 0) ||
4362 	    (alt_san_mac_blk_offset == 0xFFFF))
4363 		goto wwn_prefix_out;
4364 
4365 	/* check capability in alternative san mac address block */
4366 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4367 	if (hw->eeprom.ops.read(hw, offset, &caps))
4368 		goto wwn_prefix_err;
4369 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4370 		goto wwn_prefix_out;
4371 
4372 	/* get the corresponding prefix for WWNN/WWPN */
4373 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4374 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4375 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4376 			      "eeprom read at offset %d failed", offset);
4377 	}
4378 
4379 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4380 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4381 		goto wwn_prefix_err;
4382 
4383 wwn_prefix_out:
4384 	return IXGBE_SUCCESS;
4385 
4386 wwn_prefix_err:
4387 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4388 		      "eeprom read at offset %d failed", offset);
4389 	return IXGBE_SUCCESS;
4390 }
4391 
4392 /**
4393  * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4394  * @hw: pointer to hardware structure
4395  * @bs: the fcoe boot status
4396  *
4397  * This function will read the FCOE boot status from the iSCSI FCOE block
4398  **/
4399 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4400 {
4401 	u16 offset, caps, flags;
4402 	s32 status;
4403 
4404 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4405 
4406 	/* clear output first */
4407 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4408 
4409 	/* check if FCOE IBA block is present */
4410 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4411 	status = hw->eeprom.ops.read(hw, offset, &caps);
4412 	if (status != IXGBE_SUCCESS)
4413 		goto out;
4414 
4415 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4416 		goto out;
4417 
4418 	/* check if iSCSI FCOE block is populated */
4419 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4420 	if (status != IXGBE_SUCCESS)
4421 		goto out;
4422 
4423 	if ((offset == 0) || (offset == 0xFFFF))
4424 		goto out;
4425 
4426 	/* read fcoe flags in iSCSI FCOE block */
4427 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4428 	status = hw->eeprom.ops.read(hw, offset, &flags);
4429 	if (status != IXGBE_SUCCESS)
4430 		goto out;
4431 
4432 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4433 		*bs = ixgbe_fcoe_bootstatus_enabled;
4434 	else
4435 		*bs = ixgbe_fcoe_bootstatus_disabled;
4436 
4437 out:
4438 	return status;
4439 }
4440 
4441 /**
4442  * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4443  * @hw: pointer to hardware structure
4444  * @enable: enable or disable switch for MAC anti-spoofing
4445  * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4446  *
4447  **/
4448 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4449 {
4450 	int vf_target_reg = vf >> 3;
4451 	int vf_target_shift = vf % 8;
4452 	u32 pfvfspoof;
4453 
4454 	if (hw->mac.type == ixgbe_mac_82598EB)
4455 		return;
4456 
4457 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4458 	if (enable)
4459 		pfvfspoof |= (1 << vf_target_shift);
4460 	else
4461 		pfvfspoof &= ~(1 << vf_target_shift);
4462 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4463 }
4464 
4465 /**
4466  * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4467  * @hw: pointer to hardware structure
4468  * @enable: enable or disable switch for VLAN anti-spoofing
4469  * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4470  *
4471  **/
4472 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4473 {
4474 	int vf_target_reg = vf >> 3;
4475 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4476 	u32 pfvfspoof;
4477 
4478 	if (hw->mac.type == ixgbe_mac_82598EB)
4479 		return;
4480 
4481 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4482 	if (enable)
4483 		pfvfspoof |= (1 << vf_target_shift);
4484 	else
4485 		pfvfspoof &= ~(1 << vf_target_shift);
4486 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4487 }
4488 
4489 /**
4490  * ixgbe_get_device_caps_generic - Get additional device capabilities
4491  * @hw: pointer to hardware structure
4492  * @device_caps: the EEPROM word with the extra device capabilities
4493  *
4494  * This function will read the EEPROM location for the device capabilities,
4495  * and return the word through device_caps.
4496  **/
4497 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4498 {
4499 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4500 
4501 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4502 
4503 	return IXGBE_SUCCESS;
4504 }
4505 
4506 /**
4507  * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4508  * @hw: pointer to hardware structure
4509  *
4510  **/
4511 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4512 {
4513 	u32 regval;
4514 	u32 i;
4515 
4516 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4517 
4518 	/* Enable relaxed ordering */
4519 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4520 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4521 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4522 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4523 	}
4524 
4525 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4526 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4527 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4528 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4529 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4530 	}
4531 
4532 }
4533 
4534 /**
4535  * ixgbe_calculate_checksum - Calculate checksum for buffer
4536  * @buffer: pointer to EEPROM
4537  * @length: size of EEPROM to calculate a checksum for
4538  * Calculates the checksum for some buffer on a specified length.  The
4539  * checksum calculated is returned.
4540  **/
4541 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4542 {
4543 	u32 i;
4544 	u8 sum = 0;
4545 
4546 	DEBUGFUNC("ixgbe_calculate_checksum");
4547 
4548 	if (!buffer)
4549 		return 0;
4550 
4551 	for (i = 0; i < length; i++)
4552 		sum += buffer[i];
4553 
4554 	return (u8) (0 - sum);
4555 }
4556 
4557 /**
4558  * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4559  * @hw: pointer to the HW structure
4560  * @buffer: command to write and where the return status will be placed
4561  * @length: length of buffer, must be multiple of 4 bytes
4562  * @timeout: time in ms to wait for command completion
4563  *
4564  * Communicates with the manageability block. On success return IXGBE_SUCCESS
4565  * else returns semaphore error when encountering an error acquiring
4566  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4567  *
4568  * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4569  * by the caller.
4570  **/
4571 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4572 		       u32 timeout)
4573 {
4574 	u32 hicr, i, fwsts;
4575 	u16 dword_len;
4576 
4577 	DEBUGFUNC("ixgbe_hic_unlocked");
4578 
4579 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4580 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4581 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4582 	}
4583 
4584 	/* Set bit 9 of FWSTS clearing FW reset indication */
4585 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4586 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4587 
4588 	/* Check that the host interface is enabled. */
4589 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4590 	if (!(hicr & IXGBE_HICR_EN)) {
4591 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4592 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4593 	}
4594 
4595 	/* Calculate length in DWORDs. We must be DWORD aligned */
4596 	if (length % sizeof(u32)) {
4597 		DEBUGOUT("Buffer length failure, not aligned to dword");
4598 		return IXGBE_ERR_INVALID_ARGUMENT;
4599 	}
4600 
4601 	dword_len = length >> 2;
4602 
4603 	/* The device driver writes the relevant command block
4604 	 * into the ram area.
4605 	 */
4606 	for (i = 0; i < dword_len; i++)
4607 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4608 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4609 
4610 	/* Setting this bit tells the ARC that a new command is pending. */
4611 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4612 
4613 	for (i = 0; i < timeout; i++) {
4614 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4615 		if (!(hicr & IXGBE_HICR_C))
4616 			break;
4617 		msec_delay(1);
4618 	}
4619 
4620 	/* For each command except "Apply Update" perform
4621 	 * status checks in the HICR registry.
4622 	 */
4623 	if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4624 	    IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4625 		return IXGBE_SUCCESS;
4626 
4627 	/* Check command completion */
4628 	if ((timeout && i == timeout) ||
4629 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4630 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4631 			      "Command has failed with no status valid.\n");
4632 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4633 	}
4634 
4635 	return IXGBE_SUCCESS;
4636 }
4637 
4638 /**
4639  * ixgbe_host_interface_command - Issue command to manageability block
4640  * @hw: pointer to the HW structure
4641  * @buffer: contains the command to write and where the return status will
4642  *  be placed
4643  * @length: length of buffer, must be multiple of 4 bytes
4644  * @timeout: time in ms to wait for command completion
4645  * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4646  *  Needed because FW structures are big endian and decoding of
4647  *  these fields can be 8 bit or 16 bit based on command. Decoding
4648  *  is not easily understood without making a table of commands.
4649  *  So we will leave this up to the caller to read back the data
4650  *  in these cases.
4651  *
4652  * Communicates with the manageability block. On success return IXGBE_SUCCESS
4653  * else returns semaphore error when encountering an error acquiring
4654  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4655  **/
4656 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4657 				 u32 length, u32 timeout, bool return_data)
4658 {
4659 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4660 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4661 	u16 buf_len;
4662 	s32 status;
4663 	u32 bi;
4664 	u32 dword_len;
4665 
4666 	DEBUGFUNC("ixgbe_host_interface_command");
4667 
4668 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4669 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4670 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4671 	}
4672 
4673 	/* Take management host interface semaphore */
4674 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4675 	if (status)
4676 		return status;
4677 
4678 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4679 	if (status)
4680 		goto rel_out;
4681 
4682 	if (!return_data)
4683 		goto rel_out;
4684 
4685 	/* Calculate length in DWORDs */
4686 	dword_len = hdr_size >> 2;
4687 
4688 	/* first pull in the header so we know the buffer length */
4689 	for (bi = 0; bi < dword_len; bi++) {
4690 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4691 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4692 	}
4693 
4694 	/*
4695 	 * If there is any thing in data position pull it in
4696 	 * Read Flash command requires reading buffer length from
4697 	 * two byes instead of one byte
4698 	 */
4699 	if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD ||
4700 	    resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) {
4701 		for (; bi < dword_len + 2; bi++) {
4702 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4703 							  bi);
4704 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
4705 		}
4706 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4707 				  & 0xF00) | resp->buf_len;
4708 		hdr_size += (2 << 2);
4709 	} else {
4710 		buf_len = resp->buf_len;
4711 	}
4712 	if (!buf_len)
4713 		goto rel_out;
4714 
4715 	if (length < buf_len + hdr_size) {
4716 		DEBUGOUT("Buffer not large enough for reply message.\n");
4717 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4718 		goto rel_out;
4719 	}
4720 
4721 	/* Calculate length in DWORDs, add 3 for odd lengths */
4722 	dword_len = (buf_len + 3) >> 2;
4723 
4724 	/* Pull in the rest of the buffer (bi is where we left off) */
4725 	for (; bi <= dword_len; bi++) {
4726 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4727 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4728 	}
4729 
4730 rel_out:
4731 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4732 
4733 	return status;
4734 }
4735 
4736 /**
4737  * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4738  * @hw: pointer to the HW structure
4739  * @maj: driver version major number
4740  * @minr: driver version minor number
4741  * @build: driver version build number
4742  * @sub: driver version sub build number
4743  * @len: unused
4744  * @driver_ver: unused
4745  *
4746  * Sends driver version number to firmware through the manageability
4747  * block.  On success return IXGBE_SUCCESS
4748  * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4749  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4750  **/
4751 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4752 				 u8 build, u8 sub, u16 len,
4753 				 const char *driver_ver)
4754 {
4755 	struct ixgbe_hic_drv_info fw_cmd;
4756 	int i;
4757 	s32 ret_val = IXGBE_SUCCESS;
4758 
4759 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4760 	UNREFERENCED_2PARAMETER(len, driver_ver);
4761 
4762 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4763 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4764 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4765 	fw_cmd.port_num = (u8)hw->bus.func;
4766 	fw_cmd.ver_maj = maj;
4767 	fw_cmd.ver_min = minr;
4768 	fw_cmd.ver_build = build;
4769 	fw_cmd.ver_sub = sub;
4770 	fw_cmd.hdr.checksum = 0;
4771 	fw_cmd.pad = 0;
4772 	fw_cmd.pad2 = 0;
4773 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4774 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4775 
4776 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4777 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4778 						       sizeof(fw_cmd),
4779 						       IXGBE_HI_COMMAND_TIMEOUT,
4780 						       TRUE);
4781 		if (ret_val != IXGBE_SUCCESS)
4782 			continue;
4783 
4784 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4785 		    FW_CEM_RESP_STATUS_SUCCESS)
4786 			ret_val = IXGBE_SUCCESS;
4787 		else
4788 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4789 
4790 		break;
4791 	}
4792 
4793 	return ret_val;
4794 }
4795 
4796 /**
4797  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4798  * @hw: pointer to hardware structure
4799  * @num_pb: number of packet buffers to allocate
4800  * @headroom: reserve n KB of headroom
4801  * @strategy: packet buffer allocation strategy
4802  **/
4803 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4804 			     int strategy)
4805 {
4806 	u32 pbsize = hw->mac.rx_pb_size;
4807 	int i = 0;
4808 	u32 rxpktsize, txpktsize, txpbthresh;
4809 
4810 	/* Reserve headroom */
4811 	pbsize -= headroom;
4812 
4813 	if (!num_pb)
4814 		num_pb = 1;
4815 
4816 	/* Divide remaining packet buffer space amongst the number of packet
4817 	 * buffers requested using supplied strategy.
4818 	 */
4819 	switch (strategy) {
4820 	case PBA_STRATEGY_WEIGHTED:
4821 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4822 		 * buffer with 5/8 of the packet buffer space.
4823 		 */
4824 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4825 		pbsize -= rxpktsize * (num_pb / 2);
4826 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4827 		for (; i < (num_pb / 2); i++)
4828 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4829 		/* fall through - configure remaining packet buffers */
4830 	case PBA_STRATEGY_EQUAL:
4831 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4832 		for (; i < num_pb; i++)
4833 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4834 		break;
4835 	default:
4836 		break;
4837 	}
4838 
4839 	/* Only support an equally distributed Tx packet buffer strategy. */
4840 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4841 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4842 	for (i = 0; i < num_pb; i++) {
4843 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4844 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4845 	}
4846 
4847 	/* Clear unused TCs, if any, to zero buffer size*/
4848 	for (; i < IXGBE_MAX_PB; i++) {
4849 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4850 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4851 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4852 	}
4853 }
4854 
4855 /**
4856  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4857  * @hw: pointer to the hardware structure
4858  *
4859  * The 82599 and x540 MACs can experience issues if TX work is still pending
4860  * when a reset occurs.  This function prevents this by flushing the PCIe
4861  * buffers on the system.
4862  **/
4863 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4864 {
4865 	u32 gcr_ext, hlreg0, i, poll;
4866 	u16 value;
4867 
4868 	/*
4869 	 * If double reset is not requested then all transactions should
4870 	 * already be clear and as such there is no work to do
4871 	 */
4872 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4873 		return;
4874 
4875 	/*
4876 	 * Set loopback enable to prevent any transmits from being sent
4877 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4878 	 * has already been cleared.
4879 	 */
4880 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4881 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4882 
4883 	/* Wait for a last completion before clearing buffers */
4884 	IXGBE_WRITE_FLUSH(hw);
4885 	msec_delay(3);
4886 
4887 	/*
4888 	 * Before proceeding, make sure that the PCIe block does not have
4889 	 * transactions pending.
4890 	 */
4891 	poll = ixgbe_pcie_timeout_poll(hw);
4892 	for (i = 0; i < poll; i++) {
4893 		usec_delay(100);
4894 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4895 		if (IXGBE_REMOVED(hw->hw_addr))
4896 			goto out;
4897 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4898 			goto out;
4899 	}
4900 
4901 out:
4902 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4903 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4904 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4905 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4906 
4907 	/* Flush all writes and allow 20usec for all transactions to clear */
4908 	IXGBE_WRITE_FLUSH(hw);
4909 	usec_delay(20);
4910 
4911 	/* restore previous register values */
4912 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4913 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4914 }
4915 
4916 #define IXGBE_BYPASS_BB_WAIT 1
4917 
4918 /**
4919  * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4920  * @hw: pointer to hardware structure
4921  * @cmd: Command we send to the FW
4922  * @status: The reply from the FW
4923  *
4924  * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4925  **/
4926 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4927 {
4928 	int i;
4929 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4930 	u32 esdp;
4931 
4932 	if (!status)
4933 		return IXGBE_ERR_PARAM;
4934 
4935 	*status = 0;
4936 
4937 	/* SDP vary by MAC type */
4938 	switch (hw->mac.type) {
4939 	case ixgbe_mac_82599EB:
4940 		sck = IXGBE_ESDP_SDP7;
4941 		sdi = IXGBE_ESDP_SDP0;
4942 		sdo = IXGBE_ESDP_SDP6;
4943 		dir_sck = IXGBE_ESDP_SDP7_DIR;
4944 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4945 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4946 		break;
4947 	case ixgbe_mac_X540:
4948 		sck = IXGBE_ESDP_SDP2;
4949 		sdi = IXGBE_ESDP_SDP0;
4950 		sdo = IXGBE_ESDP_SDP1;
4951 		dir_sck = IXGBE_ESDP_SDP2_DIR;
4952 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4953 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4954 		break;
4955 	default:
4956 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4957 	}
4958 
4959 	/* Set SDP pins direction */
4960 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4961 	esdp |= dir_sck;	/* SCK as output */
4962 	esdp |= dir_sdi;	/* SDI as output */
4963 	esdp &= ~dir_sdo;	/* SDO as input */
4964 	esdp |= sck;
4965 	esdp |= sdi;
4966 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4967 	IXGBE_WRITE_FLUSH(hw);
4968 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4969 
4970 	/* Generate start condition */
4971 	esdp &= ~sdi;
4972 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4973 	IXGBE_WRITE_FLUSH(hw);
4974 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4975 
4976 	esdp &= ~sck;
4977 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4978 	IXGBE_WRITE_FLUSH(hw);
4979 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4980 
4981 	/* Clock out the new control word and clock in the status */
4982 	for (i = 0; i < 32; i++) {
4983 		if ((cmd >> (31 - i)) & 0x01) {
4984 			esdp |= sdi;
4985 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4986 		} else {
4987 			esdp &= ~sdi;
4988 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4989 		}
4990 		IXGBE_WRITE_FLUSH(hw);
4991 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4992 
4993 		esdp |= sck;
4994 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4995 		IXGBE_WRITE_FLUSH(hw);
4996 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4997 
4998 		esdp &= ~sck;
4999 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5000 		IXGBE_WRITE_FLUSH(hw);
5001 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5002 
5003 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5004 		if (esdp & sdo)
5005 			*status = (*status << 1) | 0x01;
5006 		else
5007 			*status = (*status << 1) | 0x00;
5008 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5009 	}
5010 
5011 	/* stop condition */
5012 	esdp |= sck;
5013 	esdp &= ~sdi;
5014 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5015 	IXGBE_WRITE_FLUSH(hw);
5016 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5017 
5018 	esdp |= sdi;
5019 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5020 	IXGBE_WRITE_FLUSH(hw);
5021 
5022 	/* set the page bits to match the cmd that the status it belongs to */
5023 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5024 
5025 	return IXGBE_SUCCESS;
5026 }
5027 
5028 /**
5029  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5030  * @in_reg: The register cmd for the bit-bang read.
5031  * @out_reg: The register returned from a bit-bang read.
5032  *
5033  * If we send a write we can't be sure it took until we can read back
5034  * that same register.  It can be a problem as some of the fields may
5035  * for valid reasons change in-between the time wrote the register and
5036  * we read it again to verify.  So this function check everything we
5037  * can check and then assumes it worked.
5038  **/
5039 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5040 {
5041 	u32 mask;
5042 
5043 	/* Page must match for all control pages */
5044 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5045 		return FALSE;
5046 
5047 	switch (in_reg & BYPASS_PAGE_M) {
5048 	case BYPASS_PAGE_CTL0:
5049 		/* All the following can't change since the last write
5050 		 *  - All the event actions
5051 		 *  - The timeout value
5052 		 */
5053 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5054 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5055 		       BYPASS_WDTIMEOUT_M |
5056 		       BYPASS_WDT_VALUE_M;
5057 		if ((out_reg & mask) != (in_reg & mask))
5058 			return FALSE;
5059 
5060 		/* 0x0 is never a valid value for bypass status */
5061 		if (!(out_reg & BYPASS_STATUS_OFF_M))
5062 			return FALSE;
5063 		break;
5064 	case BYPASS_PAGE_CTL1:
5065 		/* All the following can't change since the last write
5066 		 *  - time valid bit
5067 		 *  - time we last sent
5068 		 */
5069 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5070 		if ((out_reg & mask) != (in_reg & mask))
5071 			return FALSE;
5072 		break;
5073 	case BYPASS_PAGE_CTL2:
5074 		/* All we can check in this page is control number
5075 		 * which is already done above.
5076 		 */
5077 		break;
5078 	}
5079 
5080 	/* We are as sure as we can be return TRUE */
5081 	return TRUE;
5082 }
5083 
5084 /**
5085  * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register.
5086  * @hw: pointer to hardware structure
5087  * @ctrl: The control word we are setting.
5088  * @event: The event we are setting in the FW.  This also happens to
5089  *	    be the mask for the event we are setting (handy)
5090  * @action: The action we set the event to in the FW. This is in a
5091  *	     bit field that happens to be what we want to put in
5092  *	     the event spot (also handy)
5093  **/
5094 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5095 			     u32 action)
5096 {
5097 	u32 by_ctl = 0;
5098 	u32 cmd, verify;
5099 	u32 count = 0;
5100 
5101 	/* Get current values */
5102 	cmd = ctrl;	/* just reading only need control number */
5103 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5104 		return IXGBE_ERR_INVALID_ARGUMENT;
5105 
5106 	/* Set to new action */
5107 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5108 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5109 		return IXGBE_ERR_INVALID_ARGUMENT;
5110 
5111 	/* Page 0 force a FW eeprom write which is slow so verify */
5112 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5113 		verify = BYPASS_PAGE_CTL0;
5114 		do {
5115 			if (count++ > 5)
5116 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5117 
5118 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5119 				return IXGBE_ERR_INVALID_ARGUMENT;
5120 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5121 	} else {
5122 		/* We have give the FW time for the write to stick */
5123 		msec_delay(100);
5124 	}
5125 
5126 	return IXGBE_SUCCESS;
5127 }
5128 
5129 /**
5130  * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address.
5131  *
5132  * @hw: pointer to hardware structure
5133  * @addr: The bypass eeprom address to read.
5134  * @value: The 8b of data at the address above.
5135  **/
5136 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5137 {
5138 	u32 cmd;
5139 	u32 status;
5140 
5141 
5142 	/* send the request */
5143 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5144 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5145 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5146 		return IXGBE_ERR_INVALID_ARGUMENT;
5147 
5148 	/* We have give the FW time for the write to stick */
5149 	msec_delay(100);
5150 
5151 	/* now read the results */
5152 	cmd &= ~BYPASS_WE;
5153 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5154 		return IXGBE_ERR_INVALID_ARGUMENT;
5155 
5156 	*value = status & BYPASS_CTL2_DATA_M;
5157 
5158 	return IXGBE_SUCCESS;
5159 }
5160 
5161 /**
5162  * ixgbe_get_orom_version - Return option ROM from EEPROM
5163  *
5164  * @hw: pointer to hardware structure
5165  * @nvm_ver: pointer to output structure
5166  *
5167  * if valid option ROM version, nvm_ver->or_valid set to TRUE
5168  * else nvm_ver->or_valid is FALSE.
5169  **/
5170 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5171 			    struct ixgbe_nvm_version *nvm_ver)
5172 {
5173 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5174 
5175 	nvm_ver->or_valid = FALSE;
5176 	/* Option Rom may or may not be present.  Start with pointer */
5177 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5178 
5179 	/* make sure offset is valid */
5180 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5181 		return;
5182 
5183 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5184 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5185 
5186 	/* option rom exists and is valid */
5187 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5188 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
5189 	    eeprom_cfg_blkh == NVM_VER_INVALID)
5190 		return;
5191 
5192 	nvm_ver->or_valid = TRUE;
5193 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5194 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5195 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5196 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5197 }
5198 
5199 /**
5200  * ixgbe_get_oem_prod_version - Return OEM Product version
5201  *
5202  * @hw: pointer to hardware structure
5203  * @nvm_ver: pointer to output structure
5204  *
5205  * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5206  * else nvm_ver->oem_valid is FALSE.
5207  **/
5208 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5209 				struct ixgbe_nvm_version *nvm_ver)
5210 {
5211 	u16 rel_num, prod_ver, mod_len, cap, offset;
5212 
5213 	nvm_ver->oem_valid = FALSE;
5214 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5215 
5216 	/* Return if offset to OEM Product Version block is invalid */
5217 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
5218 		return;
5219 
5220 	/* Read product version block */
5221 	hw->eeprom.ops.read(hw, offset, &mod_len);
5222 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5223 
5224 	/* Return if OEM product version block is invalid */
5225 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5226 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5227 		return;
5228 
5229 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5230 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5231 
5232 	/* Return if version is invalid */
5233 	if ((rel_num | prod_ver) == 0x0 ||
5234 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5235 		return;
5236 
5237 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5238 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5239 	nvm_ver->oem_release = rel_num;
5240 	nvm_ver->oem_valid = TRUE;
5241 }
5242 
5243 /**
5244  * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5245  *
5246  * @hw: pointer to hardware structure
5247  * @nvm_ver: pointer to output structure
5248  *
5249  * word read errors will return 0xFFFF
5250  **/
5251 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5252 {
5253 	u16 etk_id_l, etk_id_h;
5254 
5255 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5256 		etk_id_l = NVM_VER_INVALID;
5257 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5258 		etk_id_h = NVM_VER_INVALID;
5259 
5260 	/* The word order for the version format is determined by high order
5261 	 * word bit 15.
5262 	 */
5263 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
5264 		nvm_ver->etk_id = etk_id_h;
5265 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5266 	} else {
5267 		nvm_ver->etk_id = etk_id_l;
5268 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5269 	}
5270 }
5271 
5272 
5273 /**
5274  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5275  * @hw: pointer to hardware structure
5276  * @map: pointer to u8 arr for returning map
5277  *
5278  * Read the rtrup2tc HW register and resolve its content into map
5279  **/
5280 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5281 {
5282 	u32 reg, i;
5283 
5284 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5285 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5286 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5287 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5288 	return;
5289 }
5290 
5291 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5292 {
5293 	u32 pfdtxgswc;
5294 	u32 rxctrl;
5295 
5296 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5297 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5298 		if (hw->mac.type != ixgbe_mac_82598EB) {
5299 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5300 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5301 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5302 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5303 				hw->mac.set_lben = TRUE;
5304 			} else {
5305 				hw->mac.set_lben = FALSE;
5306 			}
5307 		}
5308 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5309 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5310 	}
5311 }
5312 
5313 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5314 {
5315 	u32 pfdtxgswc;
5316 	u32 rxctrl;
5317 
5318 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5319 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5320 
5321 	if (hw->mac.type != ixgbe_mac_82598EB) {
5322 		if (hw->mac.set_lben) {
5323 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5324 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5325 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5326 			hw->mac.set_lben = FALSE;
5327 		}
5328 	}
5329 }
5330 
5331 /**
5332  * ixgbe_mng_present - returns TRUE when management capability is present
5333  * @hw: pointer to hardware structure
5334  */
5335 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5336 {
5337 	u32 fwsm;
5338 
5339 	if (hw->mac.type < ixgbe_mac_82599EB)
5340 		return FALSE;
5341 
5342 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5343 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5344 }
5345 
5346 /**
5347  * ixgbe_mng_enabled - Is the manageability engine enabled?
5348  * @hw: pointer to hardware structure
5349  *
5350  * Returns TRUE if the manageability engine is enabled.
5351  **/
5352 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5353 {
5354 	u32 fwsm, manc, factps;
5355 
5356 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5357 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5358 		return FALSE;
5359 
5360 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5361 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5362 		return FALSE;
5363 
5364 	if (hw->mac.type <= ixgbe_mac_X540) {
5365 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5366 		if (factps & IXGBE_FACTPS_MNGCG)
5367 			return FALSE;
5368 	}
5369 
5370 	return TRUE;
5371 }
5372 
5373 /**
5374  * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5375  * @hw: pointer to hardware structure
5376  * @speed: new link speed
5377  * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5378  *
5379  * Set the link speed in the MAC and/or PHY register and restarts link.
5380  **/
5381 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5382 					  ixgbe_link_speed speed,
5383 					  bool autoneg_wait_to_complete)
5384 {
5385 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5386 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5387 	s32 status = IXGBE_SUCCESS;
5388 	u32 speedcnt = 0;
5389 	u32 i = 0;
5390 	bool autoneg, link_up = FALSE;
5391 
5392 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5393 
5394 	/* Mask off requested but non-supported speeds */
5395 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5396 	if (status != IXGBE_SUCCESS)
5397 		return status;
5398 
5399 	speed &= link_speed;
5400 
5401 	/* Try each speed one by one, highest priority first.  We do this in
5402 	 * software because 10Gb fiber doesn't support speed autonegotiation.
5403 	 */
5404 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5405 		speedcnt++;
5406 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5407 
5408 		/* Set the module link speed */
5409 		switch (hw->phy.media_type) {
5410 		case ixgbe_media_type_fiber_fixed:
5411 		case ixgbe_media_type_fiber:
5412 			ixgbe_set_rate_select_speed(hw,
5413 						    IXGBE_LINK_SPEED_10GB_FULL);
5414 			break;
5415 		case ixgbe_media_type_fiber_qsfp:
5416 			/* QSFP module automatically detects MAC link speed */
5417 			break;
5418 		default:
5419 			DEBUGOUT("Unexpected media type.\n");
5420 			break;
5421 		}
5422 
5423 		/* Allow module to change analog characteristics (1G->10G) */
5424 		msec_delay(40);
5425 
5426 		status = ixgbe_setup_mac_link(hw,
5427 					      IXGBE_LINK_SPEED_10GB_FULL,
5428 					      autoneg_wait_to_complete);
5429 		if (status != IXGBE_SUCCESS)
5430 			return status;
5431 
5432 		/* Flap the Tx laser if it has not already been done */
5433 		ixgbe_flap_tx_laser(hw);
5434 
5435 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5436 		 * Section 73.10.2, we may have to wait up to 1000ms if KR is
5437 		 * attempted.  82599 uses the same timing for 10g SFI.
5438 		 */
5439 		for (i = 0; i < 10; i++) {
5440 			/* Wait for the link partner to also set speed */
5441 			msec_delay(100);
5442 
5443 			/* If we have link, just jump out */
5444 			status = ixgbe_check_link(hw, &link_speed,
5445 						  &link_up, FALSE);
5446 			if (status != IXGBE_SUCCESS)
5447 				return status;
5448 
5449 			if (link_up)
5450 				goto out;
5451 		}
5452 	}
5453 
5454 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5455 		speedcnt++;
5456 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5457 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5458 
5459 		/* Set the module link speed */
5460 		switch (hw->phy.media_type) {
5461 		case ixgbe_media_type_fiber_fixed:
5462 		case ixgbe_media_type_fiber:
5463 			ixgbe_set_rate_select_speed(hw,
5464 						    IXGBE_LINK_SPEED_1GB_FULL);
5465 			break;
5466 		case ixgbe_media_type_fiber_qsfp:
5467 			/* QSFP module automatically detects link speed */
5468 			break;
5469 		default:
5470 			DEBUGOUT("Unexpected media type.\n");
5471 			break;
5472 		}
5473 
5474 		/* Allow module to change analog characteristics (10G->1G) */
5475 		msec_delay(40);
5476 
5477 		status = ixgbe_setup_mac_link(hw,
5478 					      IXGBE_LINK_SPEED_1GB_FULL,
5479 					      autoneg_wait_to_complete);
5480 		if (status != IXGBE_SUCCESS)
5481 			return status;
5482 
5483 		/* Flap the Tx laser if it has not already been done */
5484 		ixgbe_flap_tx_laser(hw);
5485 
5486 		/* Wait for the link partner to also set speed */
5487 		msec_delay(100);
5488 
5489 		/* If we have link, just jump out */
5490 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5491 		if (status != IXGBE_SUCCESS)
5492 			return status;
5493 
5494 		if (link_up)
5495 			goto out;
5496 	}
5497 
5498 	if (speed == 0) {
5499 		/* Disable the Tx laser for media none */
5500 		ixgbe_disable_tx_laser(hw);
5501 
5502 		goto out;
5503 	}
5504 
5505 	/* We didn't get link.  Configure back to the highest speed we tried,
5506 	 * (if there was more than one).  We call ourselves back with just the
5507 	 * single highest speed that the user requested.
5508 	 */
5509 	if (speedcnt > 1)
5510 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5511 						      highest_link_speed,
5512 						      autoneg_wait_to_complete);
5513 
5514 out:
5515 	/* Set autoneg_advertised value based on input link speed */
5516 	hw->phy.autoneg_advertised = 0;
5517 
5518 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5519 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5520 
5521 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5522 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5523 
5524 	return status;
5525 }
5526 
5527 /**
5528  * ixgbe_set_soft_rate_select_speed - Set module link speed
5529  * @hw: pointer to hardware structure
5530  * @speed: link speed to set
5531  *
5532  * Set module link speed via the soft rate select.
5533  */
5534 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5535 					ixgbe_link_speed speed)
5536 {
5537 	s32 status;
5538 	u8 rs, eeprom_data;
5539 
5540 	switch (speed) {
5541 	case IXGBE_LINK_SPEED_10GB_FULL:
5542 		/* one bit mask same as setting on */
5543 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5544 		break;
5545 	case IXGBE_LINK_SPEED_1GB_FULL:
5546 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5547 		break;
5548 	default:
5549 		DEBUGOUT("Invalid fixed module speed\n");
5550 		return;
5551 	}
5552 
5553 	/* Set RS0 */
5554 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5555 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5556 					   &eeprom_data);
5557 	if (status) {
5558 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5559 		goto out;
5560 	}
5561 
5562 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5563 
5564 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5565 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5566 					    eeprom_data);
5567 	if (status) {
5568 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5569 		goto out;
5570 	}
5571 
5572 	/* Set RS1 */
5573 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5574 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5575 					   &eeprom_data);
5576 	if (status) {
5577 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5578 		goto out;
5579 	}
5580 
5581 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5582 
5583 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5584 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5585 					    eeprom_data);
5586 	if (status) {
5587 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5588 		goto out;
5589 	}
5590 out:
5591 	return;
5592 }
5593