xref: /netbsd-src/sys/dev/pci/ixgbe/ixgbe_common.c (revision 404ee5b9334f618040b6cdef96a0ff35a6fc4636)
1 /* $NetBSD: ixgbe_common.c,v 1.25 2019/07/25 09:01:56 msaitoh Exp $ */
2 
3 /******************************************************************************
4   SPDX-License-Identifier: BSD-3-Clause
5 
6   Copyright (c) 2001-2017, Intel Corporation
7   All rights reserved.
8 
9   Redistribution and use in source and binary forms, with or without
10   modification, are permitted provided that the following conditions are met:
11 
12    1. Redistributions of source code must retain the above copyright notice,
13       this list of conditions and the following disclaimer.
14 
15    2. Redistributions in binary form must reproduce the above copyright
16       notice, this list of conditions and the following disclaimer in the
17       documentation and/or other materials provided with the distribution.
18 
19    3. Neither the name of the Intel Corporation nor the names of its
20       contributors may be used to endorse or promote products derived from
21       this software without specific prior written permission.
22 
23   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33   POSSIBILITY OF SUCH DAMAGE.
34 
35 ******************************************************************************/
36 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 
38 #include "ixgbe_common.h"
39 #include "ixgbe_phy.h"
40 #include "ixgbe_dcb.h"
41 #include "ixgbe_dcb_82599.h"
42 #include "ixgbe_api.h"
43 
44 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
45 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
46 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
47 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
48 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
49 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
50 					u16 count);
51 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
52 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
53 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
54 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
55 
56 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
57 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
58 					 u16 *san_mac_offset);
59 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 					     u16 words, u16 *data);
61 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
62 					      u16 words, u16 *data);
63 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
64 						 u16 offset);
65 
66 /**
67  *  ixgbe_init_ops_generic - Inits function ptrs
68  *  @hw: pointer to the hardware structure
69  *
70  *  Initialize the function pointers.
71  **/
72 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
73 {
74 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
75 	struct ixgbe_mac_info *mac = &hw->mac;
76 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
77 
78 	DEBUGFUNC("ixgbe_init_ops_generic");
79 
80 	/* EEPROM */
81 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
82 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
83 	if (eec & IXGBE_EEC_PRES) {
84 		eeprom->ops.read = ixgbe_read_eerd_generic;
85 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
86 	} else {
87 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
88 		eeprom->ops.read_buffer =
89 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
90 	}
91 	eeprom->ops.write = ixgbe_write_eeprom_generic;
92 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
93 	eeprom->ops.validate_checksum =
94 				      ixgbe_validate_eeprom_checksum_generic;
95 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
96 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
97 
98 	/* MAC */
99 	mac->ops.init_hw = ixgbe_init_hw_generic;
100 	mac->ops.reset_hw = NULL;
101 	mac->ops.start_hw = ixgbe_start_hw_generic;
102 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
103 	mac->ops.get_media_type = NULL;
104 	mac->ops.get_supported_physical_layer = NULL;
105 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
106 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
107 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
108 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
109 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
110 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
111 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
112 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
113 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
114 
115 	/* LEDs */
116 	mac->ops.led_on = ixgbe_led_on_generic;
117 	mac->ops.led_off = ixgbe_led_off_generic;
118 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
119 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
120 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
121 
122 	/* RAR, Multicast, VLAN */
123 	mac->ops.set_rar = ixgbe_set_rar_generic;
124 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
125 	mac->ops.insert_mac_addr = NULL;
126 	mac->ops.set_vmdq = NULL;
127 	mac->ops.clear_vmdq = NULL;
128 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
129 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
130 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
131 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
132 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
133 	mac->ops.clear_vfta = NULL;
134 	mac->ops.set_vfta = NULL;
135 	mac->ops.set_vlvf = NULL;
136 	mac->ops.init_uta_tables = NULL;
137 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
138 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
139 	mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
140 
141 	/* Flow Control */
142 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
143 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
144 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
145 
146 	/* Link */
147 	mac->ops.get_link_capabilities = NULL;
148 	mac->ops.setup_link = NULL;
149 	mac->ops.check_link = NULL;
150 	mac->ops.dmac_config = NULL;
151 	mac->ops.dmac_update_tcs = NULL;
152 	mac->ops.dmac_config_tcs = NULL;
153 
154 	return IXGBE_SUCCESS;
155 }
156 
157 /**
158  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
159  * of flow control
160  * @hw: pointer to hardware structure
161  *
162  * This function returns TRUE if the device supports flow control
163  * autonegotiation, and FALSE if it does not.
164  *
165  **/
166 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
167 {
168 	bool supported = FALSE;
169 	ixgbe_link_speed speed;
170 	bool link_up;
171 
172 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
173 
174 	switch (hw->phy.media_type) {
175 	case ixgbe_media_type_fiber_fixed:
176 	case ixgbe_media_type_fiber_qsfp:
177 	case ixgbe_media_type_fiber:
178 		/* flow control autoneg black list */
179 		switch (hw->device_id) {
180 		case IXGBE_DEV_ID_X550EM_A_SFP:
181 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
182 		case IXGBE_DEV_ID_X550EM_A_QSFP:
183 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
184 			supported = FALSE;
185 			break;
186 		default:
187 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
188 			/* if link is down, assume supported */
189 			if (link_up)
190 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
191 				    TRUE : FALSE;
192 			else
193 				supported = TRUE;
194 		}
195 
196 		break;
197 	case ixgbe_media_type_backplane:
198 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
199 			supported = FALSE;
200 		else
201 			supported = TRUE;
202 		break;
203 	case ixgbe_media_type_copper:
204 		/* only some copper devices support flow control autoneg */
205 		switch (hw->device_id) {
206 		case IXGBE_DEV_ID_82599_T3_LOM:
207 		case IXGBE_DEV_ID_X540T:
208 		case IXGBE_DEV_ID_X540T1:
209 		case IXGBE_DEV_ID_X540_BYPASS:
210 		case IXGBE_DEV_ID_X550T:
211 		case IXGBE_DEV_ID_X550T1:
212 		case IXGBE_DEV_ID_X550EM_X_10G_T:
213 		case IXGBE_DEV_ID_X550EM_A_10G_T:
214 		case IXGBE_DEV_ID_X550EM_A_1G_T:
215 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
216 			supported = TRUE;
217 			break;
218 		default:
219 			supported = FALSE;
220 		}
221 	default:
222 		break;
223 	}
224 
225 	if (!supported)
226 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
227 			      "Device %x does not support flow control autoneg",
228 			      hw->device_id);
229 
230 	return supported;
231 }
232 
233 /**
234  *  ixgbe_setup_fc_generic - Set up flow control
235  *  @hw: pointer to hardware structure
236  *
237  *  Called at init time to set up flow control.
238  **/
239 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
240 {
241 	s32 ret_val = IXGBE_SUCCESS;
242 	u32 reg = 0, reg_bp = 0;
243 	u16 reg_cu = 0;
244 	bool locked = FALSE;
245 
246 	DEBUGFUNC("ixgbe_setup_fc_generic");
247 
248 	/* Validate the requested mode */
249 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
250 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
251 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
252 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
253 		goto out;
254 	}
255 
256 	/*
257 	 * 10gig parts do not have a word in the EEPROM to determine the
258 	 * default flow control setting, so we explicitly set it to full.
259 	 */
260 	if (hw->fc.requested_mode == ixgbe_fc_default)
261 		hw->fc.requested_mode = ixgbe_fc_full;
262 
263 	/*
264 	 * Set up the 1G and 10G flow control advertisement registers so the
265 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
266 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
267 	 */
268 	switch (hw->phy.media_type) {
269 	case ixgbe_media_type_backplane:
270 		/* some MAC's need RMW protection on AUTOC */
271 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
272 		if (ret_val != IXGBE_SUCCESS)
273 			goto out;
274 
275 		/* fall through - only backplane uses autoc */
276 	case ixgbe_media_type_fiber_fixed:
277 	case ixgbe_media_type_fiber_qsfp:
278 	case ixgbe_media_type_fiber:
279 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
280 
281 		break;
282 	case ixgbe_media_type_copper:
283 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
284 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
285 		break;
286 	default:
287 		break;
288 	}
289 
290 	/*
291 	 * The possible values of fc.requested_mode are:
292 	 * 0: Flow control is completely disabled
293 	 * 1: Rx flow control is enabled (we can receive pause frames,
294 	 *    but not send pause frames).
295 	 * 2: Tx flow control is enabled (we can send pause frames but
296 	 *    we do not support receiving pause frames).
297 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
298 	 * other: Invalid.
299 	 */
300 	switch (hw->fc.requested_mode) {
301 	case ixgbe_fc_none:
302 		/* Flow control completely disabled by software override. */
303 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
304 		if (hw->phy.media_type == ixgbe_media_type_backplane)
305 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
306 				    IXGBE_AUTOC_ASM_PAUSE);
307 		else if (hw->phy.media_type == ixgbe_media_type_copper)
308 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
309 		break;
310 	case ixgbe_fc_tx_pause:
311 		/*
312 		 * Tx Flow control is enabled, and Rx Flow control is
313 		 * disabled by software override.
314 		 */
315 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
316 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
317 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
318 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
319 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
320 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
321 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
322 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
323 		}
324 		break;
325 	case ixgbe_fc_rx_pause:
326 		/*
327 		 * Rx Flow control is enabled and Tx Flow control is
328 		 * disabled by software override. Since there really
329 		 * isn't a way to advertise that we are capable of RX
330 		 * Pause ONLY, we will advertise that we support both
331 		 * symmetric and asymmetric Rx PAUSE, as such we fall
332 		 * through to the fc_full statement.  Later, we will
333 		 * disable the adapter's ability to send PAUSE frames.
334 		 */
335 	case ixgbe_fc_full:
336 		/* Flow control (both Rx and Tx) is enabled by SW override. */
337 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
338 		if (hw->phy.media_type == ixgbe_media_type_backplane)
339 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
340 				  IXGBE_AUTOC_ASM_PAUSE;
341 		else if (hw->phy.media_type == ixgbe_media_type_copper)
342 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
343 		break;
344 	default:
345 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
346 			     "Flow control param set incorrectly\n");
347 		ret_val = IXGBE_ERR_CONFIG;
348 		goto out;
349 		break;
350 	}
351 
352 	if (hw->mac.type < ixgbe_mac_X540) {
353 		/*
354 		 * Enable auto-negotiation between the MAC & PHY;
355 		 * the MAC will advertise clause 37 flow control.
356 		 */
357 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
358 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
359 
360 		/* Disable AN timeout */
361 		if (hw->fc.strict_ieee)
362 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
363 
364 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
365 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
366 	}
367 
368 	/*
369 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
370 	 * and copper. There is no need to set the PCS1GCTL register.
371 	 *
372 	 */
373 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
374 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
375 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
376 		if (ret_val)
377 			goto out;
378 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
379 		    (ixgbe_device_supports_autoneg_fc(hw))) {
380 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
381 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
382 	}
383 
384 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
385 out:
386 	return ret_val;
387 }
388 
389 /**
390  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
391  *  @hw: pointer to hardware structure
392  *
393  *  Starts the hardware by filling the bus info structure and media type, clears
394  *  all on chip counters, initializes receive address registers, multicast
395  *  table, VLAN filter table, calls routine to set up link and flow control
396  *  settings, and leaves transmit and receive units disabled and uninitialized
397  **/
398 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
399 {
400 	s32 ret_val;
401 	u32 ctrl_ext;
402 	u16 device_caps;
403 
404 	DEBUGFUNC("ixgbe_start_hw_generic");
405 
406 	/* Set the media type */
407 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
408 
409 	/* PHY ops initialization must be done in reset_hw() */
410 
411 	/* Clear the VLAN filter table */
412 	hw->mac.ops.clear_vfta(hw);
413 
414 	/* Clear statistics registers */
415 	hw->mac.ops.clear_hw_cntrs(hw);
416 
417 	/* Set No Snoop Disable */
418 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
419 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
420 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
421 	IXGBE_WRITE_FLUSH(hw);
422 
423 	/* Setup flow control */
424 	ret_val = ixgbe_setup_fc(hw);
425 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
426 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
427 		return ret_val;
428 	}
429 
430 	/* Cache bit indicating need for crosstalk fix */
431 	switch (hw->mac.type) {
432 	case ixgbe_mac_82599EB:
433 	case ixgbe_mac_X550EM_x:
434 	case ixgbe_mac_X550EM_a:
435 		hw->mac.ops.get_device_caps(hw, &device_caps);
436 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
437 			hw->need_crosstalk_fix = FALSE;
438 		else
439 			hw->need_crosstalk_fix = TRUE;
440 		break;
441 	default:
442 		hw->need_crosstalk_fix = FALSE;
443 		break;
444 	}
445 
446 	/* Clear adapter stopped flag */
447 	hw->adapter_stopped = FALSE;
448 
449 	return IXGBE_SUCCESS;
450 }
451 
452 /**
453  *  ixgbe_start_hw_gen2 - Init sequence for common device family
454  *  @hw: pointer to hw structure
455  *
456  * Performs the init sequence common to the second generation
457  * of 10 GbE devices.
458  * Devices in the second generation:
459  *     82599
460  *     X540
461  **/
462 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
463 {
464 	u32 i;
465 	u32 regval;
466 
467 	/* Clear the rate limiters */
468 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
469 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
470 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
471 	}
472 	IXGBE_WRITE_FLUSH(hw);
473 
474 	/* Disable relaxed ordering */
475 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
476 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
477 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
478 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
479 	}
480 
481 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
482 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
483 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
484 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
485 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
486 	}
487 
488 	return IXGBE_SUCCESS;
489 }
490 
491 /**
492  *  ixgbe_init_hw_generic - Generic hardware initialization
493  *  @hw: pointer to hardware structure
494  *
495  *  Initialize the hardware by resetting the hardware, filling the bus info
496  *  structure and media type, clears all on chip counters, initializes receive
497  *  address registers, multicast table, VLAN filter table, calls routine to set
498  *  up link and flow control settings, and leaves transmit and receive units
499  *  disabled and uninitialized
500  **/
501 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
502 {
503 	s32 status;
504 
505 	DEBUGFUNC("ixgbe_init_hw_generic");
506 
507 	/* Reset the hardware */
508 	status = hw->mac.ops.reset_hw(hw);
509 
510 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
511 		/* Start the HW */
512 		status = hw->mac.ops.start_hw(hw);
513 	}
514 
515 	/* Initialize the LED link active for LED blink support */
516 	if (hw->mac.ops.init_led_link_act)
517 		hw->mac.ops.init_led_link_act(hw);
518 
519 	if (status != IXGBE_SUCCESS)
520 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
521 
522 	return status;
523 }
524 
525 /**
526  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
527  *  @hw: pointer to hardware structure
528  *
529  *  Clears all hardware statistics counters by reading them from the hardware
530  *  Statistics counters are clear on read.
531  **/
532 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
533 {
534 	u16 i = 0;
535 
536 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
537 
538 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
539 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
540 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
541 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
542 	if (hw->mac.type >= ixgbe_mac_X550)
543 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
544 	for (i = 0; i < 8; i++)
545 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
546 
547 	IXGBE_READ_REG(hw, IXGBE_MLFC);
548 	IXGBE_READ_REG(hw, IXGBE_MRFC);
549 	IXGBE_READ_REG(hw, IXGBE_RLEC);
550 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
551 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
552 	if (hw->mac.type >= ixgbe_mac_82599EB) {
553 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
554 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
555 	} else {
556 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
557 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
558 	}
559 
560 	for (i = 0; i < 8; i++) {
561 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
562 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
563 		if (hw->mac.type >= ixgbe_mac_82599EB) {
564 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
565 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
566 		} else {
567 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
568 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
569 		}
570 	}
571 	if (hw->mac.type >= ixgbe_mac_82599EB)
572 		for (i = 0; i < 8; i++)
573 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
574 	IXGBE_READ_REG(hw, IXGBE_PRC64);
575 	IXGBE_READ_REG(hw, IXGBE_PRC127);
576 	IXGBE_READ_REG(hw, IXGBE_PRC255);
577 	IXGBE_READ_REG(hw, IXGBE_PRC511);
578 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
579 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
580 	IXGBE_READ_REG(hw, IXGBE_GPRC);
581 	IXGBE_READ_REG(hw, IXGBE_BPRC);
582 	IXGBE_READ_REG(hw, IXGBE_MPRC);
583 	IXGBE_READ_REG(hw, IXGBE_GPTC);
584 	IXGBE_READ_REG(hw, IXGBE_GORCL);
585 	IXGBE_READ_REG(hw, IXGBE_GORCH);
586 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
587 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
588 	if (hw->mac.type == ixgbe_mac_82598EB)
589 		for (i = 0; i < 8; i++)
590 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
591 	IXGBE_READ_REG(hw, IXGBE_RUC);
592 	IXGBE_READ_REG(hw, IXGBE_RFC);
593 	IXGBE_READ_REG(hw, IXGBE_ROC);
594 	IXGBE_READ_REG(hw, IXGBE_RJC);
595 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
596 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
597 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
598 	IXGBE_READ_REG(hw, IXGBE_TORL);
599 	IXGBE_READ_REG(hw, IXGBE_TORH);
600 	IXGBE_READ_REG(hw, IXGBE_TPR);
601 	IXGBE_READ_REG(hw, IXGBE_TPT);
602 	IXGBE_READ_REG(hw, IXGBE_PTC64);
603 	IXGBE_READ_REG(hw, IXGBE_PTC127);
604 	IXGBE_READ_REG(hw, IXGBE_PTC255);
605 	IXGBE_READ_REG(hw, IXGBE_PTC511);
606 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
607 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
608 	IXGBE_READ_REG(hw, IXGBE_MPTC);
609 	IXGBE_READ_REG(hw, IXGBE_BPTC);
610 	for (i = 0; i < 16; i++) {
611 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
612 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
613 		if (hw->mac.type >= ixgbe_mac_82599EB) {
614 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
615 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
616 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
617 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
618 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
619 		} else {
620 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
621 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
622 		}
623 	}
624 
625 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
626 		if (hw->phy.id == 0)
627 			ixgbe_identify_phy(hw);
628 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
629 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
630 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
631 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
632 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
633 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
634 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
635 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
636 	}
637 
638 	return IXGBE_SUCCESS;
639 }
640 
641 /**
642  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
643  *  @hw: pointer to hardware structure
644  *  @pba_num: stores the part number string from the EEPROM
645  *  @pba_num_size: part number string buffer length
646  *
647  *  Reads the part number string from the EEPROM.
648  **/
649 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
650 				  u32 pba_num_size)
651 {
652 	s32 ret_val;
653 	u16 data;
654 	u16 pba_ptr;
655 	u16 offset;
656 	u16 length;
657 
658 	DEBUGFUNC("ixgbe_read_pba_string_generic");
659 
660 	if (pba_num == NULL) {
661 		DEBUGOUT("PBA string buffer was null\n");
662 		return IXGBE_ERR_INVALID_ARGUMENT;
663 	}
664 
665 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
666 	if (ret_val) {
667 		DEBUGOUT("NVM Read Error\n");
668 		return ret_val;
669 	}
670 
671 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
672 	if (ret_val) {
673 		DEBUGOUT("NVM Read Error\n");
674 		return ret_val;
675 	}
676 
677 	/*
678 	 * if data is not ptr guard the PBA must be in legacy format which
679 	 * means pba_ptr is actually our second data word for the PBA number
680 	 * and we can decode it into an ascii string
681 	 */
682 	if (data != IXGBE_PBANUM_PTR_GUARD) {
683 		DEBUGOUT("NVM PBA number is not stored as string\n");
684 
685 		/* we will need 11 characters to store the PBA */
686 		if (pba_num_size < 11) {
687 			DEBUGOUT("PBA string buffer too small\n");
688 			return IXGBE_ERR_NO_SPACE;
689 		}
690 
691 		/* extract hex string from data and pba_ptr */
692 		pba_num[0] = (data >> 12) & 0xF;
693 		pba_num[1] = (data >> 8) & 0xF;
694 		pba_num[2] = (data >> 4) & 0xF;
695 		pba_num[3] = data & 0xF;
696 		pba_num[4] = (pba_ptr >> 12) & 0xF;
697 		pba_num[5] = (pba_ptr >> 8) & 0xF;
698 		pba_num[6] = '-';
699 		pba_num[7] = 0;
700 		pba_num[8] = (pba_ptr >> 4) & 0xF;
701 		pba_num[9] = pba_ptr & 0xF;
702 
703 		/* put a null character on the end of our string */
704 		pba_num[10] = '\0';
705 
706 		/* switch all the data but the '-' to hex char */
707 		for (offset = 0; offset < 10; offset++) {
708 			if (pba_num[offset] < 0xA)
709 				pba_num[offset] += '0';
710 			else if (pba_num[offset] < 0x10)
711 				pba_num[offset] += 'A' - 0xA;
712 		}
713 
714 		return IXGBE_SUCCESS;
715 	}
716 
717 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
718 	if (ret_val) {
719 		DEBUGOUT("NVM Read Error\n");
720 		return ret_val;
721 	}
722 
723 	if (length == 0xFFFF || length == 0) {
724 		DEBUGOUT("NVM PBA number section invalid length\n");
725 		return IXGBE_ERR_PBA_SECTION;
726 	}
727 
728 	/* check if pba_num buffer is big enough */
729 	if (pba_num_size  < (((u32)length * 2) - 1)) {
730 		DEBUGOUT("PBA string buffer too small\n");
731 		return IXGBE_ERR_NO_SPACE;
732 	}
733 
734 	/* trim pba length from start of string */
735 	pba_ptr++;
736 	length--;
737 
738 	for (offset = 0; offset < length; offset++) {
739 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
740 		if (ret_val) {
741 			DEBUGOUT("NVM Read Error\n");
742 			return ret_val;
743 		}
744 		pba_num[offset * 2] = (u8)(data >> 8);
745 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
746 	}
747 	pba_num[offset * 2] = '\0';
748 
749 	return IXGBE_SUCCESS;
750 }
751 
752 /**
753  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
754  *  @hw: pointer to hardware structure
755  *  @pba_num: stores the part number from the EEPROM
756  *
757  *  Reads the part number from the EEPROM.
758  **/
759 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
760 {
761 	s32 ret_val;
762 	u16 data;
763 
764 	DEBUGFUNC("ixgbe_read_pba_num_generic");
765 
766 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
767 	if (ret_val) {
768 		DEBUGOUT("NVM Read Error\n");
769 		return ret_val;
770 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
771 		DEBUGOUT("NVM Not supported\n");
772 		return IXGBE_NOT_IMPLEMENTED;
773 	}
774 	*pba_num = (u32)(data << 16);
775 
776 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
777 	if (ret_val) {
778 		DEBUGOUT("NVM Read Error\n");
779 		return ret_val;
780 	}
781 	*pba_num |= data;
782 
783 	return IXGBE_SUCCESS;
784 }
785 
786 /**
787  *  ixgbe_read_pba_raw
788  *  @hw: pointer to the HW structure
789  *  @eeprom_buf: optional pointer to EEPROM image
790  *  @eeprom_buf_size: size of EEPROM image in words
791  *  @max_pba_block_size: PBA block size limit
792  *  @pba: pointer to output PBA structure
793  *
794  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
795  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
796  *
797  **/
798 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
799 		       u32 eeprom_buf_size, u16 max_pba_block_size,
800 		       struct ixgbe_pba *pba)
801 {
802 	s32 ret_val;
803 	u16 pba_block_size;
804 
805 	if (pba == NULL)
806 		return IXGBE_ERR_PARAM;
807 
808 	if (eeprom_buf == NULL) {
809 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
810 						     &pba->word[0]);
811 		if (ret_val)
812 			return ret_val;
813 	} else {
814 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
815 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
816 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
817 		} else {
818 			return IXGBE_ERR_PARAM;
819 		}
820 	}
821 
822 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
823 		if (pba->pba_block == NULL)
824 			return IXGBE_ERR_PARAM;
825 
826 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
827 						   eeprom_buf_size,
828 						   &pba_block_size);
829 		if (ret_val)
830 			return ret_val;
831 
832 		if (pba_block_size > max_pba_block_size)
833 			return IXGBE_ERR_PARAM;
834 
835 		if (eeprom_buf == NULL) {
836 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
837 							     pba_block_size,
838 							     pba->pba_block);
839 			if (ret_val)
840 				return ret_val;
841 		} else {
842 			if (eeprom_buf_size > (u32)(pba->word[1] +
843 					      pba_block_size)) {
844 				memcpy(pba->pba_block,
845 				       &eeprom_buf[pba->word[1]],
846 				       pba_block_size * sizeof(u16));
847 			} else {
848 				return IXGBE_ERR_PARAM;
849 			}
850 		}
851 	}
852 
853 	return IXGBE_SUCCESS;
854 }
855 
856 /**
857  *  ixgbe_write_pba_raw
858  *  @hw: pointer to the HW structure
859  *  @eeprom_buf: optional pointer to EEPROM image
860  *  @eeprom_buf_size: size of EEPROM image in words
861  *  @pba: pointer to PBA structure
862  *
863  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
864  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
865  *
866  **/
867 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
868 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
869 {
870 	s32 ret_val;
871 
872 	if (pba == NULL)
873 		return IXGBE_ERR_PARAM;
874 
875 	if (eeprom_buf == NULL) {
876 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
877 						      &pba->word[0]);
878 		if (ret_val)
879 			return ret_val;
880 	} else {
881 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
882 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
883 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
884 		} else {
885 			return IXGBE_ERR_PARAM;
886 		}
887 	}
888 
889 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
890 		if (pba->pba_block == NULL)
891 			return IXGBE_ERR_PARAM;
892 
893 		if (eeprom_buf == NULL) {
894 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
895 							      pba->pba_block[0],
896 							      pba->pba_block);
897 			if (ret_val)
898 				return ret_val;
899 		} else {
900 			if (eeprom_buf_size > (u32)(pba->word[1] +
901 					      pba->pba_block[0])) {
902 				memcpy(&eeprom_buf[pba->word[1]],
903 				       pba->pba_block,
904 				       pba->pba_block[0] * sizeof(u16));
905 			} else {
906 				return IXGBE_ERR_PARAM;
907 			}
908 		}
909 	}
910 
911 	return IXGBE_SUCCESS;
912 }
913 
914 /**
915  *  ixgbe_get_pba_block_size
916  *  @hw: pointer to the HW structure
917  *  @eeprom_buf: optional pointer to EEPROM image
918  *  @eeprom_buf_size: size of EEPROM image in words
919  *  @pba_data_size: pointer to output variable
920  *
921  *  Returns the size of the PBA block in words. Function operates on EEPROM
922  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
923  *  EEPROM device.
924  *
925  **/
926 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
927 			     u32 eeprom_buf_size, u16 *pba_block_size)
928 {
929 	s32 ret_val;
930 	u16 pba_word[2];
931 	u16 length;
932 
933 	DEBUGFUNC("ixgbe_get_pba_block_size");
934 
935 	if (eeprom_buf == NULL) {
936 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
937 						     &pba_word[0]);
938 		if (ret_val)
939 			return ret_val;
940 	} else {
941 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
942 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
943 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
944 		} else {
945 			return IXGBE_ERR_PARAM;
946 		}
947 	}
948 
949 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
950 		if (eeprom_buf == NULL) {
951 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
952 						      &length);
953 			if (ret_val)
954 				return ret_val;
955 		} else {
956 			if (eeprom_buf_size > pba_word[1])
957 				length = eeprom_buf[pba_word[1] + 0];
958 			else
959 				return IXGBE_ERR_PARAM;
960 		}
961 
962 		if (length == 0xFFFF || length == 0)
963 			return IXGBE_ERR_PBA_SECTION;
964 	} else {
965 		/* PBA number in legacy format, there is no PBA Block. */
966 		length = 0;
967 	}
968 
969 	if (pba_block_size != NULL)
970 		*pba_block_size = length;
971 
972 	return IXGBE_SUCCESS;
973 }
974 
975 /**
976  *  ixgbe_get_mac_addr_generic - Generic get MAC address
977  *  @hw: pointer to hardware structure
978  *  @mac_addr: Adapter MAC address
979  *
980  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
981  *  A reset of the adapter must be performed prior to calling this function
982  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
983  **/
984 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
985 {
986 	u32 rar_high;
987 	u32 rar_low;
988 	u16 i;
989 
990 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
991 
992 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
993 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
994 
995 	for (i = 0; i < 4; i++)
996 		mac_addr[i] = (u8)(rar_low >> (i*8));
997 
998 	for (i = 0; i < 2; i++)
999 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
1000 
1001 	return IXGBE_SUCCESS;
1002 }
1003 
1004 /**
1005  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1006  *  @hw: pointer to hardware structure
1007  *  @link_status: the link status returned by the PCI config space
1008  *
1009  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1010  **/
1011 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1012 {
1013 	struct ixgbe_mac_info *mac = &hw->mac;
1014 
1015 	if (hw->bus.type == ixgbe_bus_type_unknown)
1016 		hw->bus.type = ixgbe_bus_type_pci_express;
1017 
1018 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1019 	case IXGBE_PCI_LINK_WIDTH_1:
1020 		hw->bus.width = ixgbe_bus_width_pcie_x1;
1021 		break;
1022 	case IXGBE_PCI_LINK_WIDTH_2:
1023 		hw->bus.width = ixgbe_bus_width_pcie_x2;
1024 		break;
1025 	case IXGBE_PCI_LINK_WIDTH_4:
1026 		hw->bus.width = ixgbe_bus_width_pcie_x4;
1027 		break;
1028 	case IXGBE_PCI_LINK_WIDTH_8:
1029 		hw->bus.width = ixgbe_bus_width_pcie_x8;
1030 		break;
1031 	default:
1032 		hw->bus.width = ixgbe_bus_width_unknown;
1033 		break;
1034 	}
1035 
1036 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1037 	case IXGBE_PCI_LINK_SPEED_2500:
1038 		hw->bus.speed = ixgbe_bus_speed_2500;
1039 		break;
1040 	case IXGBE_PCI_LINK_SPEED_5000:
1041 		hw->bus.speed = ixgbe_bus_speed_5000;
1042 		break;
1043 	case IXGBE_PCI_LINK_SPEED_8000:
1044 		hw->bus.speed = ixgbe_bus_speed_8000;
1045 		break;
1046 	default:
1047 		hw->bus.speed = ixgbe_bus_speed_unknown;
1048 		break;
1049 	}
1050 
1051 	mac->ops.set_lan_id(hw);
1052 }
1053 
1054 /**
1055  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1056  *  @hw: pointer to hardware structure
1057  *
1058  *  Gets the PCI bus info (speed, width, type) then calls helper function to
1059  *  store this data within the ixgbe_hw structure.
1060  **/
1061 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1062 {
1063 	u16 link_status;
1064 
1065 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1066 
1067 	/* Get the negotiated link width and speed from PCI config space */
1068 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1069 
1070 	ixgbe_set_pci_config_data_generic(hw, link_status);
1071 
1072 	return IXGBE_SUCCESS;
1073 }
1074 
1075 /**
1076  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1077  *  @hw: pointer to the HW structure
1078  *
1079  *  Determines the LAN function id by reading memory-mapped registers and swaps
1080  *  the port value if requested, and set MAC instance for devices that share
1081  *  CS4227.
1082  **/
1083 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1084 {
1085 	struct ixgbe_bus_info *bus = &hw->bus;
1086 	u32 reg;
1087 	u16 ee_ctrl_4;
1088 
1089 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1090 
1091 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1092 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1093 	bus->lan_id = (u8)bus->func;
1094 
1095 	/* check for a port swap */
1096 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1097 	if (reg & IXGBE_FACTPS_LFS)
1098 		bus->func ^= 0x1;
1099 
1100 	/* Get MAC instance from EEPROM for configuring CS4227 */
1101 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1102 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1103 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1104 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1105 	}
1106 }
1107 
1108 /**
1109  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1110  *  @hw: pointer to hardware structure
1111  *
1112  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1113  *  disables transmit and receive units. The adapter_stopped flag is used by
1114  *  the shared code and drivers to determine if the adapter is in a stopped
1115  *  state and should not touch the hardware.
1116  **/
1117 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1118 {
1119 	u32 reg_val;
1120 	u16 i;
1121 
1122 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1123 
1124 	/*
1125 	 * Set the adapter_stopped flag so other driver functions stop touching
1126 	 * the hardware
1127 	 */
1128 	hw->adapter_stopped = TRUE;
1129 
1130 	/* Disable the receive unit */
1131 	ixgbe_disable_rx(hw);
1132 
1133 	/* Clear interrupt mask to stop interrupts from being generated */
1134 	/*
1135 	 * XXX
1136 	 * This function is called in the state of both interrupt disabled
1137 	 * and interrupt enabled, e.g.
1138 	 * + interrupt disabled case:
1139 	 *   - ixgbe_stop()
1140 	 *     - ixgbe_disable_intr() // interrupt disabled here
1141 	 *     - ixgbe_stop_adapter()
1142 	 *       - hw->mac.ops.stop_adapter()
1143 	 *         == this function
1144 	 * + interrupt enabled case:
1145 	 *   - ixgbe_local_timer1()
1146 	 *     - ixgbe_init_locked()
1147 	 *       - ixgbe_stop_adapter()
1148 	 *         - hw->mac.ops.stop_adapter()
1149 	 *           == this function
1150 	 * Therefore, it causes nest status breaking to nest the status
1151 	 * (that is, que->im_nest++) at all times. So, this function must
1152 	 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1153 	 */
1154 	ixgbe_ensure_disabled_intr(hw->back);
1155 
1156 	/* Clear any pending interrupts, flush previous writes */
1157 	IXGBE_READ_REG(hw, IXGBE_EICR);
1158 
1159 	/* Disable the transmit unit.  Each queue must be disabled. */
1160 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1161 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1162 
1163 	/* Disable the receive unit by stopping each queue */
1164 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1165 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1166 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1167 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1168 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1169 	}
1170 
1171 	/* flush all queues disables */
1172 	IXGBE_WRITE_FLUSH(hw);
1173 	msec_delay(2);
1174 
1175 	/*
1176 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1177 	 * access and verify no pending requests
1178 	 */
1179 	return ixgbe_disable_pcie_master(hw);
1180 }
1181 
1182 /**
1183  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1184  *  @hw: pointer to hardware structure
1185  *
1186  *  Store the index for the link active LED. This will be used to support
1187  *  blinking the LED.
1188  **/
1189 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1190 {
1191 	struct ixgbe_mac_info *mac = &hw->mac;
1192 	u32 led_reg, led_mode;
1193 	u8 i;
1194 
1195 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1196 
1197 	/* Get LED link active from the LEDCTL register */
1198 	for (i = 0; i < 4; i++) {
1199 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1200 
1201 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1202 		     IXGBE_LED_LINK_ACTIVE) {
1203 			mac->led_link_act = i;
1204 			return IXGBE_SUCCESS;
1205 		}
1206 	}
1207 
1208 	/*
1209 	 * If LEDCTL register does not have the LED link active set, then use
1210 	 * known MAC defaults.
1211 	 */
1212 	switch (hw->mac.type) {
1213 	case ixgbe_mac_X550EM_a:
1214 	case ixgbe_mac_X550EM_x:
1215 		mac->led_link_act = 1;
1216 		break;
1217 	default:
1218 		mac->led_link_act = 2;
1219 	}
1220 	return IXGBE_SUCCESS;
1221 }
1222 
1223 /**
1224  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1225  *  @hw: pointer to hardware structure
1226  *  @index: led number to turn on
1227  **/
1228 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1229 {
1230 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1231 
1232 	DEBUGFUNC("ixgbe_led_on_generic");
1233 
1234 	if (index > 3)
1235 		return IXGBE_ERR_PARAM;
1236 
1237 	/* To turn on the LED, set mode to ON. */
1238 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1239 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1240 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1241 	IXGBE_WRITE_FLUSH(hw);
1242 
1243 	return IXGBE_SUCCESS;
1244 }
1245 
1246 /**
1247  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1248  *  @hw: pointer to hardware structure
1249  *  @index: led number to turn off
1250  **/
1251 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1252 {
1253 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1254 
1255 	DEBUGFUNC("ixgbe_led_off_generic");
1256 
1257 	if (index > 3)
1258 		return IXGBE_ERR_PARAM;
1259 
1260 	/* To turn off the LED, set mode to OFF. */
1261 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1262 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1263 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1264 	IXGBE_WRITE_FLUSH(hw);
1265 
1266 	return IXGBE_SUCCESS;
1267 }
1268 
1269 /**
1270  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1271  *  @hw: pointer to hardware structure
1272  *
1273  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1274  *  ixgbe_hw struct in order to set up EEPROM access.
1275  **/
1276 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1277 {
1278 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1279 	u32 eec;
1280 	u16 eeprom_size;
1281 
1282 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1283 
1284 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1285 		eeprom->type = ixgbe_eeprom_none;
1286 		/* Set default semaphore delay to 10ms which is a well
1287 		 * tested value */
1288 		eeprom->semaphore_delay = 10;
1289 		/* Clear EEPROM page size, it will be initialized as needed */
1290 		eeprom->word_page_size = 0;
1291 
1292 		/*
1293 		 * Check for EEPROM present first.
1294 		 * If not present leave as none
1295 		 */
1296 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1297 		if (eec & IXGBE_EEC_PRES) {
1298 			eeprom->type = ixgbe_eeprom_spi;
1299 
1300 			/*
1301 			 * SPI EEPROM is assumed here.  This code would need to
1302 			 * change if a future EEPROM is not SPI.
1303 			 */
1304 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1305 					    IXGBE_EEC_SIZE_SHIFT);
1306 			eeprom->word_size = 1 << (eeprom_size +
1307 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1308 		}
1309 
1310 		if (eec & IXGBE_EEC_ADDR_SIZE)
1311 			eeprom->address_bits = 16;
1312 		else
1313 			eeprom->address_bits = 8;
1314 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1315 			  "%d\n", eeprom->type, eeprom->word_size,
1316 			  eeprom->address_bits);
1317 	}
1318 
1319 	return IXGBE_SUCCESS;
1320 }
1321 
1322 /**
1323  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1324  *  @hw: pointer to hardware structure
1325  *  @offset: offset within the EEPROM to write
1326  *  @words: number of word(s)
1327  *  @data: 16 bit word(s) to write to EEPROM
1328  *
1329  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1330  **/
1331 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1332 					       u16 words, u16 *data)
1333 {
1334 	s32 status = IXGBE_SUCCESS;
1335 	u16 i, count;
1336 
1337 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1338 
1339 	hw->eeprom.ops.init_params(hw);
1340 
1341 	if (words == 0) {
1342 		status = IXGBE_ERR_INVALID_ARGUMENT;
1343 		goto out;
1344 	}
1345 
1346 	if (offset + words > hw->eeprom.word_size) {
1347 		status = IXGBE_ERR_EEPROM;
1348 		goto out;
1349 	}
1350 
1351 	/*
1352 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1353 	 * initialization. It is worth to do that when we write large buffer.
1354 	 */
1355 	if ((hw->eeprom.word_page_size == 0) &&
1356 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1357 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1358 
1359 	/*
1360 	 * We cannot hold synchronization semaphores for too long
1361 	 * to avoid other entity starvation. However it is more efficient
1362 	 * to read in bursts than synchronizing access for each word.
1363 	 */
1364 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1365 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1366 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1367 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1368 							    count, &data[i]);
1369 
1370 		if (status != IXGBE_SUCCESS)
1371 			break;
1372 	}
1373 
1374 out:
1375 	return status;
1376 }
1377 
1378 /**
1379  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1380  *  @hw: pointer to hardware structure
1381  *  @offset: offset within the EEPROM to be written to
1382  *  @words: number of word(s)
1383  *  @data: 16 bit word(s) to be written to the EEPROM
1384  *
1385  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1386  *  EEPROM will most likely contain an invalid checksum.
1387  **/
1388 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1389 					      u16 words, u16 *data)
1390 {
1391 	s32 status;
1392 	u16 word;
1393 	u16 page_size;
1394 	u16 i;
1395 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1396 
1397 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1398 
1399 	/* Prepare the EEPROM for writing  */
1400 	status = ixgbe_acquire_eeprom(hw);
1401 
1402 	if (status == IXGBE_SUCCESS) {
1403 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1404 			ixgbe_release_eeprom(hw);
1405 			status = IXGBE_ERR_EEPROM;
1406 		}
1407 	}
1408 
1409 	if (status == IXGBE_SUCCESS) {
1410 		for (i = 0; i < words; i++) {
1411 			ixgbe_standby_eeprom(hw);
1412 
1413 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1414 			ixgbe_shift_out_eeprom_bits(hw,
1415 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1416 						   IXGBE_EEPROM_OPCODE_BITS);
1417 
1418 			ixgbe_standby_eeprom(hw);
1419 
1420 			/*
1421 			 * Some SPI eeproms use the 8th address bit embedded
1422 			 * in the opcode
1423 			 */
1424 			if ((hw->eeprom.address_bits == 8) &&
1425 			    ((offset + i) >= 128))
1426 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1427 
1428 			/* Send the Write command (8-bit opcode + addr) */
1429 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1430 						    IXGBE_EEPROM_OPCODE_BITS);
1431 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1432 						    hw->eeprom.address_bits);
1433 
1434 			page_size = hw->eeprom.word_page_size;
1435 
1436 			/* Send the data in burst via SPI*/
1437 			do {
1438 				word = data[i];
1439 				word = (word >> 8) | (word << 8);
1440 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1441 
1442 				if (page_size == 0)
1443 					break;
1444 
1445 				/* do not wrap around page */
1446 				if (((offset + i) & (page_size - 1)) ==
1447 				    (page_size - 1))
1448 					break;
1449 			} while (++i < words);
1450 
1451 			ixgbe_standby_eeprom(hw);
1452 			msec_delay(10);
1453 		}
1454 		/* Done with writing - release the EEPROM */
1455 		ixgbe_release_eeprom(hw);
1456 	}
1457 
1458 	return status;
1459 }
1460 
1461 /**
1462  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1463  *  @hw: pointer to hardware structure
1464  *  @offset: offset within the EEPROM to be written to
1465  *  @data: 16 bit word to be written to the EEPROM
1466  *
1467  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1468  *  EEPROM will most likely contain an invalid checksum.
1469  **/
1470 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1471 {
1472 	s32 status;
1473 
1474 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1475 
1476 	hw->eeprom.ops.init_params(hw);
1477 
1478 	if (offset >= hw->eeprom.word_size) {
1479 		status = IXGBE_ERR_EEPROM;
1480 		goto out;
1481 	}
1482 
1483 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1484 
1485 out:
1486 	return status;
1487 }
1488 
1489 /**
1490  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1491  *  @hw: pointer to hardware structure
1492  *  @offset: offset within the EEPROM to be read
1493  *  @data: read 16 bit words(s) from EEPROM
1494  *  @words: number of word(s)
1495  *
1496  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1497  **/
1498 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1499 					      u16 words, u16 *data)
1500 {
1501 	s32 status = IXGBE_SUCCESS;
1502 	u16 i, count;
1503 
1504 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1505 
1506 	hw->eeprom.ops.init_params(hw);
1507 
1508 	if (words == 0) {
1509 		status = IXGBE_ERR_INVALID_ARGUMENT;
1510 		goto out;
1511 	}
1512 
1513 	if (offset + words > hw->eeprom.word_size) {
1514 		status = IXGBE_ERR_EEPROM;
1515 		goto out;
1516 	}
1517 
1518 	/*
1519 	 * We cannot hold synchronization semaphores for too long
1520 	 * to avoid other entity starvation. However it is more efficient
1521 	 * to read in bursts than synchronizing access for each word.
1522 	 */
1523 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1524 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1525 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1526 
1527 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1528 							   count, &data[i]);
1529 
1530 		if (status != IXGBE_SUCCESS)
1531 			break;
1532 	}
1533 
1534 out:
1535 	return status;
1536 }
1537 
1538 /**
1539  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1540  *  @hw: pointer to hardware structure
1541  *  @offset: offset within the EEPROM to be read
1542  *  @words: number of word(s)
1543  *  @data: read 16 bit word(s) from EEPROM
1544  *
1545  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1546  **/
1547 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1548 					     u16 words, u16 *data)
1549 {
1550 	s32 status;
1551 	u16 word_in;
1552 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1553 	u16 i;
1554 
1555 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1556 
1557 	/* Prepare the EEPROM for reading  */
1558 	status = ixgbe_acquire_eeprom(hw);
1559 
1560 	if (status == IXGBE_SUCCESS) {
1561 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1562 			ixgbe_release_eeprom(hw);
1563 			status = IXGBE_ERR_EEPROM;
1564 		}
1565 	}
1566 
1567 	if (status == IXGBE_SUCCESS) {
1568 		for (i = 0; i < words; i++) {
1569 			ixgbe_standby_eeprom(hw);
1570 			/*
1571 			 * Some SPI eeproms use the 8th address bit embedded
1572 			 * in the opcode
1573 			 */
1574 			if ((hw->eeprom.address_bits == 8) &&
1575 			    ((offset + i) >= 128))
1576 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1577 
1578 			/* Send the READ command (opcode + addr) */
1579 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1580 						    IXGBE_EEPROM_OPCODE_BITS);
1581 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1582 						    hw->eeprom.address_bits);
1583 
1584 			/* Read the data. */
1585 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1586 			data[i] = (word_in >> 8) | (word_in << 8);
1587 		}
1588 
1589 		/* End this read operation */
1590 		ixgbe_release_eeprom(hw);
1591 	}
1592 
1593 	return status;
1594 }
1595 
1596 /**
1597  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1598  *  @hw: pointer to hardware structure
1599  *  @offset: offset within the EEPROM to be read
1600  *  @data: read 16 bit value from EEPROM
1601  *
1602  *  Reads 16 bit value from EEPROM through bit-bang method
1603  **/
1604 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1605 				       u16 *data)
1606 {
1607 	s32 status;
1608 
1609 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1610 
1611 	hw->eeprom.ops.init_params(hw);
1612 
1613 	if (offset >= hw->eeprom.word_size) {
1614 		status = IXGBE_ERR_EEPROM;
1615 		goto out;
1616 	}
1617 
1618 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1619 
1620 out:
1621 	return status;
1622 }
1623 
1624 /**
1625  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1626  *  @hw: pointer to hardware structure
1627  *  @offset: offset of word in the EEPROM to read
1628  *  @words: number of word(s)
1629  *  @data: 16 bit word(s) from the EEPROM
1630  *
1631  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1632  **/
1633 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1634 				   u16 words, u16 *data)
1635 {
1636 	u32 eerd;
1637 	s32 status = IXGBE_SUCCESS;
1638 	u32 i;
1639 
1640 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1641 
1642 	hw->eeprom.ops.init_params(hw);
1643 
1644 	if (words == 0) {
1645 		status = IXGBE_ERR_INVALID_ARGUMENT;
1646 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1647 		goto out;
1648 	}
1649 
1650 	if (offset >= hw->eeprom.word_size) {
1651 		status = IXGBE_ERR_EEPROM;
1652 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1653 		goto out;
1654 	}
1655 
1656 	for (i = 0; i < words; i++) {
1657 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1658 		       IXGBE_EEPROM_RW_REG_START;
1659 
1660 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1661 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1662 
1663 		if (status == IXGBE_SUCCESS) {
1664 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1665 				   IXGBE_EEPROM_RW_REG_DATA);
1666 		} else {
1667 			DEBUGOUT("Eeprom read timed out\n");
1668 			goto out;
1669 		}
1670 	}
1671 out:
1672 	return status;
1673 }
1674 
1675 /**
1676  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1677  *  @hw: pointer to hardware structure
1678  *  @offset: offset within the EEPROM to be used as a scratch pad
1679  *
1680  *  Discover EEPROM page size by writing marching data at given offset.
1681  *  This function is called only when we are writing a new large buffer
1682  *  at given offset so the data would be overwritten anyway.
1683  **/
1684 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1685 						 u16 offset)
1686 {
1687 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1688 	s32 status = IXGBE_SUCCESS;
1689 	u16 i;
1690 
1691 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1692 
1693 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1694 		data[i] = i;
1695 
1696 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1697 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1698 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1699 	hw->eeprom.word_page_size = 0;
1700 	if (status != IXGBE_SUCCESS)
1701 		goto out;
1702 
1703 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1704 	if (status != IXGBE_SUCCESS)
1705 		goto out;
1706 
1707 	/*
1708 	 * When writing in burst more than the actual page size
1709 	 * EEPROM address wraps around current page.
1710 	 */
1711 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1712 
1713 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1714 		  hw->eeprom.word_page_size);
1715 out:
1716 	return status;
1717 }
1718 
1719 /**
1720  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1721  *  @hw: pointer to hardware structure
1722  *  @offset: offset of  word in the EEPROM to read
1723  *  @data: word read from the EEPROM
1724  *
1725  *  Reads a 16 bit word from the EEPROM using the EERD register.
1726  **/
1727 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1728 {
1729 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1730 }
1731 
1732 /**
1733  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1734  *  @hw: pointer to hardware structure
1735  *  @offset: offset of  word in the EEPROM to write
1736  *  @words: number of word(s)
1737  *  @data: word(s) write to the EEPROM
1738  *
1739  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1740  **/
1741 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1742 				    u16 words, u16 *data)
1743 {
1744 	u32 eewr;
1745 	s32 status = IXGBE_SUCCESS;
1746 	u16 i;
1747 
1748 	DEBUGFUNC("ixgbe_write_eewr_generic");
1749 
1750 	hw->eeprom.ops.init_params(hw);
1751 
1752 	if (words == 0) {
1753 		status = IXGBE_ERR_INVALID_ARGUMENT;
1754 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1755 		goto out;
1756 	}
1757 
1758 	if (offset >= hw->eeprom.word_size) {
1759 		status = IXGBE_ERR_EEPROM;
1760 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1761 		goto out;
1762 	}
1763 
1764 	for (i = 0; i < words; i++) {
1765 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1766 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1767 			IXGBE_EEPROM_RW_REG_START;
1768 
1769 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1770 		if (status != IXGBE_SUCCESS) {
1771 			DEBUGOUT("Eeprom write EEWR timed out\n");
1772 			goto out;
1773 		}
1774 
1775 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1776 
1777 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1778 		if (status != IXGBE_SUCCESS) {
1779 			DEBUGOUT("Eeprom write EEWR timed out\n");
1780 			goto out;
1781 		}
1782 	}
1783 
1784 out:
1785 	return status;
1786 }
1787 
1788 /**
1789  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1790  *  @hw: pointer to hardware structure
1791  *  @offset: offset of  word in the EEPROM to write
1792  *  @data: word write to the EEPROM
1793  *
1794  *  Write a 16 bit word to the EEPROM using the EEWR register.
1795  **/
1796 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1797 {
1798 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1799 }
1800 
1801 /**
1802  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1803  *  @hw: pointer to hardware structure
1804  *  @ee_reg: EEPROM flag for polling
1805  *
1806  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1807  *  read or write is done respectively.
1808  **/
1809 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1810 {
1811 	u32 i;
1812 	u32 reg;
1813 	s32 status = IXGBE_ERR_EEPROM;
1814 
1815 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1816 
1817 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1818 		if (ee_reg == IXGBE_NVM_POLL_READ)
1819 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1820 		else
1821 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1822 
1823 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1824 			status = IXGBE_SUCCESS;
1825 			break;
1826 		}
1827 		usec_delay(5);
1828 	}
1829 
1830 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1831 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1832 			     "EEPROM read/write done polling timed out");
1833 
1834 	return status;
1835 }
1836 
1837 /**
1838  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1839  *  @hw: pointer to hardware structure
1840  *
1841  *  Prepares EEPROM for access using bit-bang method. This function should
1842  *  be called before issuing a command to the EEPROM.
1843  **/
1844 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1845 {
1846 	s32 status = IXGBE_SUCCESS;
1847 	u32 eec;
1848 	u32 i;
1849 
1850 	DEBUGFUNC("ixgbe_acquire_eeprom");
1851 
1852 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1853 	    != IXGBE_SUCCESS)
1854 		status = IXGBE_ERR_SWFW_SYNC;
1855 
1856 	if (status == IXGBE_SUCCESS) {
1857 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1858 
1859 		/* Request EEPROM Access */
1860 		eec |= IXGBE_EEC_REQ;
1861 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1862 
1863 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1864 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1865 			if (eec & IXGBE_EEC_GNT)
1866 				break;
1867 			usec_delay(5);
1868 		}
1869 
1870 		/* Release if grant not acquired */
1871 		if (!(eec & IXGBE_EEC_GNT)) {
1872 			eec &= ~IXGBE_EEC_REQ;
1873 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1874 			DEBUGOUT("Could not acquire EEPROM grant\n");
1875 
1876 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1877 			status = IXGBE_ERR_EEPROM;
1878 		}
1879 
1880 		/* Setup EEPROM for Read/Write */
1881 		if (status == IXGBE_SUCCESS) {
1882 			/* Clear CS and SK */
1883 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1884 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1885 			IXGBE_WRITE_FLUSH(hw);
1886 			usec_delay(1);
1887 		}
1888 	}
1889 	return status;
1890 }
1891 
1892 /**
1893  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1894  *  @hw: pointer to hardware structure
1895  *
1896  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1897  **/
1898 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1899 {
1900 	s32 status = IXGBE_ERR_EEPROM;
1901 	u32 timeout = 2000;
1902 	u32 i;
1903 	u32 swsm;
1904 
1905 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1906 
1907 
1908 	/* Get SMBI software semaphore between device drivers first */
1909 	for (i = 0; i < timeout; i++) {
1910 		/*
1911 		 * If the SMBI bit is 0 when we read it, then the bit will be
1912 		 * set and we have the semaphore
1913 		 */
1914 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1915 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1916 			status = IXGBE_SUCCESS;
1917 			break;
1918 		}
1919 		usec_delay(50);
1920 	}
1921 
1922 	if (i == timeout) {
1923 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1924 			 "not granted.\n");
1925 		/*
1926 		 * this release is particularly important because our attempts
1927 		 * above to get the semaphore may have succeeded, and if there
1928 		 * was a timeout, we should unconditionally clear the semaphore
1929 		 * bits to free the driver to make progress
1930 		 */
1931 		ixgbe_release_eeprom_semaphore(hw);
1932 
1933 		usec_delay(50);
1934 		/*
1935 		 * one last try
1936 		 * If the SMBI bit is 0 when we read it, then the bit will be
1937 		 * set and we have the semaphore
1938 		 */
1939 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1940 		if (!(swsm & IXGBE_SWSM_SMBI))
1941 			status = IXGBE_SUCCESS;
1942 	}
1943 
1944 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1945 	if (status == IXGBE_SUCCESS) {
1946 		for (i = 0; i < timeout; i++) {
1947 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1948 
1949 			/* Set the SW EEPROM semaphore bit to request access */
1950 			swsm |= IXGBE_SWSM_SWESMBI;
1951 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1952 
1953 			/*
1954 			 * If we set the bit successfully then we got the
1955 			 * semaphore.
1956 			 */
1957 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1958 			if (swsm & IXGBE_SWSM_SWESMBI)
1959 				break;
1960 
1961 			usec_delay(50);
1962 		}
1963 
1964 		/*
1965 		 * Release semaphores and return error if SW EEPROM semaphore
1966 		 * was not granted because we don't have access to the EEPROM
1967 		 */
1968 		if (i >= timeout) {
1969 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1970 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1971 			ixgbe_release_eeprom_semaphore(hw);
1972 			status = IXGBE_ERR_EEPROM;
1973 		}
1974 	} else {
1975 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1976 			     "Software semaphore SMBI between device drivers "
1977 			     "not granted.\n");
1978 	}
1979 
1980 	return status;
1981 }
1982 
1983 /**
1984  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1985  *  @hw: pointer to hardware structure
1986  *
1987  *  This function clears hardware semaphore bits.
1988  **/
1989 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1990 {
1991 	u32 swsm;
1992 
1993 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1994 
1995 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1996 
1997 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1998 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1999 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
2000 	IXGBE_WRITE_FLUSH(hw);
2001 }
2002 
2003 /**
2004  *  ixgbe_ready_eeprom - Polls for EEPROM ready
2005  *  @hw: pointer to hardware structure
2006  **/
2007 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2008 {
2009 	s32 status = IXGBE_SUCCESS;
2010 	u16 i;
2011 	u8 spi_stat_reg;
2012 
2013 	DEBUGFUNC("ixgbe_ready_eeprom");
2014 
2015 	/*
2016 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
2017 	 * EEPROM will signal that the command has been completed by clearing
2018 	 * bit 0 of the internal status register.  If it's not cleared within
2019 	 * 5 milliseconds, then error out.
2020 	 */
2021 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2022 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2023 					    IXGBE_EEPROM_OPCODE_BITS);
2024 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2025 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2026 			break;
2027 
2028 		usec_delay(5);
2029 		ixgbe_standby_eeprom(hw);
2030 	}
2031 
2032 	/*
2033 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2034 	 * devices (and only 0-5mSec on 5V devices)
2035 	 */
2036 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2037 		DEBUGOUT("SPI EEPROM Status error\n");
2038 		status = IXGBE_ERR_EEPROM;
2039 	}
2040 
2041 	return status;
2042 }
2043 
2044 /**
2045  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2046  *  @hw: pointer to hardware structure
2047  **/
2048 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2049 {
2050 	u32 eec;
2051 
2052 	DEBUGFUNC("ixgbe_standby_eeprom");
2053 
2054 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2055 
2056 	/* Toggle CS to flush commands */
2057 	eec |= IXGBE_EEC_CS;
2058 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2059 	IXGBE_WRITE_FLUSH(hw);
2060 	usec_delay(1);
2061 	eec &= ~IXGBE_EEC_CS;
2062 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2063 	IXGBE_WRITE_FLUSH(hw);
2064 	usec_delay(1);
2065 }
2066 
2067 /**
2068  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2069  *  @hw: pointer to hardware structure
2070  *  @data: data to send to the EEPROM
2071  *  @count: number of bits to shift out
2072  **/
2073 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2074 					u16 count)
2075 {
2076 	u32 eec;
2077 	u32 mask;
2078 	u32 i;
2079 
2080 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2081 
2082 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2083 
2084 	/*
2085 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2086 	 * one bit at a time.  Determine the starting bit based on count
2087 	 */
2088 	mask = 0x01 << (count - 1);
2089 
2090 	for (i = 0; i < count; i++) {
2091 		/*
2092 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2093 		 * "1", and then raising and then lowering the clock (the SK
2094 		 * bit controls the clock input to the EEPROM).  A "0" is
2095 		 * shifted out to the EEPROM by setting "DI" to "0" and then
2096 		 * raising and then lowering the clock.
2097 		 */
2098 		if (data & mask)
2099 			eec |= IXGBE_EEC_DI;
2100 		else
2101 			eec &= ~IXGBE_EEC_DI;
2102 
2103 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2104 		IXGBE_WRITE_FLUSH(hw);
2105 
2106 		usec_delay(1);
2107 
2108 		ixgbe_raise_eeprom_clk(hw, &eec);
2109 		ixgbe_lower_eeprom_clk(hw, &eec);
2110 
2111 		/*
2112 		 * Shift mask to signify next bit of data to shift in to the
2113 		 * EEPROM
2114 		 */
2115 		mask = mask >> 1;
2116 	}
2117 
2118 	/* We leave the "DI" bit set to "0" when we leave this routine. */
2119 	eec &= ~IXGBE_EEC_DI;
2120 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2121 	IXGBE_WRITE_FLUSH(hw);
2122 }
2123 
2124 /**
2125  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2126  *  @hw: pointer to hardware structure
2127  *  @count: number of bits to shift
2128  **/
2129 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2130 {
2131 	u32 eec;
2132 	u32 i;
2133 	u16 data = 0;
2134 
2135 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2136 
2137 	/*
2138 	 * In order to read a register from the EEPROM, we need to shift
2139 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2140 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2141 	 * the value of the "DO" bit.  During this "shifting in" process the
2142 	 * "DI" bit should always be clear.
2143 	 */
2144 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2145 
2146 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2147 
2148 	for (i = 0; i < count; i++) {
2149 		data = data << 1;
2150 		ixgbe_raise_eeprom_clk(hw, &eec);
2151 
2152 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2153 
2154 		eec &= ~(IXGBE_EEC_DI);
2155 		if (eec & IXGBE_EEC_DO)
2156 			data |= 1;
2157 
2158 		ixgbe_lower_eeprom_clk(hw, &eec);
2159 	}
2160 
2161 	return data;
2162 }
2163 
2164 /**
2165  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2166  *  @hw: pointer to hardware structure
2167  *  @eec: EEC register's current value
2168  **/
2169 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2170 {
2171 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2172 
2173 	/*
2174 	 * Raise the clock input to the EEPROM
2175 	 * (setting the SK bit), then delay
2176 	 */
2177 	*eec = *eec | IXGBE_EEC_SK;
2178 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2179 	IXGBE_WRITE_FLUSH(hw);
2180 	usec_delay(1);
2181 }
2182 
2183 /**
2184  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2185  *  @hw: pointer to hardware structure
2186  *  @eec: EEC's current value
2187  **/
2188 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2189 {
2190 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2191 
2192 	/*
2193 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2194 	 * delay
2195 	 */
2196 	*eec = *eec & ~IXGBE_EEC_SK;
2197 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2198 	IXGBE_WRITE_FLUSH(hw);
2199 	usec_delay(1);
2200 }
2201 
2202 /**
2203  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2204  *  @hw: pointer to hardware structure
2205  **/
2206 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2207 {
2208 	u32 eec;
2209 
2210 	DEBUGFUNC("ixgbe_release_eeprom");
2211 
2212 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2213 
2214 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2215 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2216 
2217 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2218 	IXGBE_WRITE_FLUSH(hw);
2219 
2220 	usec_delay(1);
2221 
2222 	/* Stop requesting EEPROM access */
2223 	eec &= ~IXGBE_EEC_REQ;
2224 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2225 
2226 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2227 
2228 	/* Delay before attempt to obtain semaphore again to allow FW access */
2229 	msec_delay(hw->eeprom.semaphore_delay);
2230 }
2231 
2232 /**
2233  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2234  *  @hw: pointer to hardware structure
2235  *
2236  *  Returns a negative error code on error, or the 16-bit checksum
2237  **/
2238 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2239 {
2240 	u16 i;
2241 	u16 j;
2242 	u16 checksum = 0;
2243 	u16 length = 0;
2244 	u16 pointer = 0;
2245 	u16 word = 0;
2246 
2247 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2248 
2249 	/* Include 0x0-0x3F in the checksum */
2250 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2251 		if (hw->eeprom.ops.read(hw, i, &word)) {
2252 			DEBUGOUT("EEPROM read failed\n");
2253 			return IXGBE_ERR_EEPROM;
2254 		}
2255 		checksum += word;
2256 	}
2257 
2258 	/* Include all data from pointers except for the fw pointer */
2259 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2260 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2261 			DEBUGOUT("EEPROM read failed\n");
2262 			return IXGBE_ERR_EEPROM;
2263 		}
2264 
2265 		/* If the pointer seems invalid */
2266 		if (pointer == 0xFFFF || pointer == 0)
2267 			continue;
2268 
2269 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2270 			DEBUGOUT("EEPROM read failed\n");
2271 			return IXGBE_ERR_EEPROM;
2272 		}
2273 
2274 		if (length == 0xFFFF || length == 0)
2275 			continue;
2276 
2277 		for (j = pointer + 1; j <= pointer + length; j++) {
2278 			if (hw->eeprom.ops.read(hw, j, &word)) {
2279 				DEBUGOUT("EEPROM read failed\n");
2280 				return IXGBE_ERR_EEPROM;
2281 			}
2282 			checksum += word;
2283 		}
2284 	}
2285 
2286 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2287 
2288 	return (s32)checksum;
2289 }
2290 
2291 /**
2292  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2293  *  @hw: pointer to hardware structure
2294  *  @checksum_val: calculated checksum
2295  *
2296  *  Performs checksum calculation and validates the EEPROM checksum.  If the
2297  *  caller does not need checksum_val, the value can be NULL.
2298  **/
2299 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2300 					   u16 *checksum_val)
2301 {
2302 	s32 status;
2303 	u16 checksum;
2304 	u16 read_checksum = 0;
2305 
2306 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2307 
2308 	/* Read the first word from the EEPROM. If this times out or fails, do
2309 	 * not continue or we could be in for a very long wait while every
2310 	 * EEPROM read fails
2311 	 */
2312 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2313 	if (status) {
2314 		DEBUGOUT("EEPROM read failed\n");
2315 		return status;
2316 	}
2317 
2318 	status = hw->eeprom.ops.calc_checksum(hw);
2319 	if (status < 0)
2320 		return status;
2321 
2322 	checksum = (u16)(status & 0xffff);
2323 
2324 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2325 	if (status) {
2326 		DEBUGOUT("EEPROM read failed\n");
2327 		return status;
2328 	}
2329 
2330 	/* Verify read checksum from EEPROM is the same as
2331 	 * calculated checksum
2332 	 */
2333 	if (read_checksum != checksum)
2334 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2335 
2336 	/* If the user cares, return the calculated checksum */
2337 	if (checksum_val)
2338 		*checksum_val = checksum;
2339 
2340 	return status;
2341 }
2342 
2343 /**
2344  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2345  *  @hw: pointer to hardware structure
2346  **/
2347 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2348 {
2349 	s32 status;
2350 	u16 checksum;
2351 
2352 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2353 
2354 	/* Read the first word from the EEPROM. If this times out or fails, do
2355 	 * not continue or we could be in for a very long wait while every
2356 	 * EEPROM read fails
2357 	 */
2358 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2359 	if (status) {
2360 		DEBUGOUT("EEPROM read failed\n");
2361 		return status;
2362 	}
2363 
2364 	status = hw->eeprom.ops.calc_checksum(hw);
2365 	if (status < 0)
2366 		return status;
2367 
2368 	checksum = (u16)(status & 0xffff);
2369 
2370 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2371 
2372 	return status;
2373 }
2374 
2375 /**
2376  *  ixgbe_validate_mac_addr - Validate MAC address
2377  *  @mac_addr: pointer to MAC address.
2378  *
2379  *  Tests a MAC address to ensure it is a valid Individual Address.
2380  **/
2381 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2382 {
2383 	s32 status = IXGBE_SUCCESS;
2384 
2385 	DEBUGFUNC("ixgbe_validate_mac_addr");
2386 
2387 	/* Make sure it is not a multicast address */
2388 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2389 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2390 	/* Not a broadcast address */
2391 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2392 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2393 	/* Reject the zero address */
2394 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2395 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2396 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2397 	}
2398 	return status;
2399 }
2400 
2401 /**
2402  *  ixgbe_set_rar_generic - Set Rx address register
2403  *  @hw: pointer to hardware structure
2404  *  @index: Receive address register to write
2405  *  @addr: Address to put into receive address register
2406  *  @vmdq: VMDq "set" or "pool" index
2407  *  @enable_addr: set flag that address is active
2408  *
2409  *  Puts an ethernet address into a receive address register.
2410  **/
2411 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2412 			  u32 enable_addr)
2413 {
2414 	u32 rar_low, rar_high;
2415 	u32 rar_entries = hw->mac.num_rar_entries;
2416 
2417 	DEBUGFUNC("ixgbe_set_rar_generic");
2418 
2419 	/* Make sure we are using a valid rar index range */
2420 	if (index >= rar_entries) {
2421 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2422 			     "RAR index %d is out of range.\n", index);
2423 		return IXGBE_ERR_INVALID_ARGUMENT;
2424 	}
2425 
2426 	/* setup VMDq pool selection before this RAR gets enabled */
2427 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2428 
2429 	/*
2430 	 * HW expects these in little endian so we reverse the byte
2431 	 * order from network order (big endian) to little endian
2432 	 */
2433 	rar_low = ((u32)addr[0] |
2434 		   ((u32)addr[1] << 8) |
2435 		   ((u32)addr[2] << 16) |
2436 		   ((u32)addr[3] << 24));
2437 	/*
2438 	 * Some parts put the VMDq setting in the extra RAH bits,
2439 	 * so save everything except the lower 16 bits that hold part
2440 	 * of the address and the address valid bit.
2441 	 */
2442 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2443 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2444 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2445 
2446 	if (enable_addr != 0)
2447 		rar_high |= IXGBE_RAH_AV;
2448 
2449 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2450 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2451 
2452 	return IXGBE_SUCCESS;
2453 }
2454 
2455 /**
2456  *  ixgbe_clear_rar_generic - Remove Rx address register
2457  *  @hw: pointer to hardware structure
2458  *  @index: Receive address register to write
2459  *
2460  *  Clears an ethernet address from a receive address register.
2461  **/
2462 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2463 {
2464 	u32 rar_high;
2465 	u32 rar_entries = hw->mac.num_rar_entries;
2466 
2467 	DEBUGFUNC("ixgbe_clear_rar_generic");
2468 
2469 	/* Make sure we are using a valid rar index range */
2470 	if (index >= rar_entries) {
2471 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2472 			     "RAR index %d is out of range.\n", index);
2473 		return IXGBE_ERR_INVALID_ARGUMENT;
2474 	}
2475 
2476 	/*
2477 	 * Some parts put the VMDq setting in the extra RAH bits,
2478 	 * so save everything except the lower 16 bits that hold part
2479 	 * of the address and the address valid bit.
2480 	 */
2481 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2482 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2483 
2484 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2485 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2486 
2487 	/* clear VMDq pool/queue selection for this RAR */
2488 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2489 
2490 	return IXGBE_SUCCESS;
2491 }
2492 
2493 /**
2494  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2495  *  @hw: pointer to hardware structure
2496  *
2497  *  Places the MAC address in receive address register 0 and clears the rest
2498  *  of the receive address registers. Clears the multicast table. Assumes
2499  *  the receiver is in reset when the routine is called.
2500  **/
2501 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2502 {
2503 	u32 i;
2504 	u32 rar_entries = hw->mac.num_rar_entries;
2505 
2506 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2507 
2508 	/*
2509 	 * If the current mac address is valid, assume it is a software override
2510 	 * to the permanent address.
2511 	 * Otherwise, use the permanent address from the eeprom.
2512 	 */
2513 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2514 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2515 		/* Get the MAC address from the RAR0 for later reference */
2516 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2517 
2518 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2519 			  hw->mac.addr[0], hw->mac.addr[1],
2520 			  hw->mac.addr[2]);
2521 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2522 			  hw->mac.addr[4], hw->mac.addr[5]);
2523 	} else {
2524 		/* Setup the receive address. */
2525 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2526 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2527 			  hw->mac.addr[0], hw->mac.addr[1],
2528 			  hw->mac.addr[2]);
2529 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2530 			  hw->mac.addr[4], hw->mac.addr[5]);
2531 
2532 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2533 	}
2534 
2535 	/* clear VMDq pool/queue selection for RAR 0 */
2536 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2537 
2538 	hw->addr_ctrl.overflow_promisc = 0;
2539 
2540 	hw->addr_ctrl.rar_used_count = 1;
2541 
2542 	/* Zero out the other receive addresses. */
2543 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2544 	for (i = 1; i < rar_entries; i++) {
2545 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2546 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2547 	}
2548 
2549 	/* Clear the MTA */
2550 	hw->addr_ctrl.mta_in_use = 0;
2551 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2552 
2553 	DEBUGOUT(" Clearing MTA\n");
2554 	for (i = 0; i < hw->mac.mcft_size; i++)
2555 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2556 
2557 	ixgbe_init_uta_tables(hw);
2558 
2559 	return IXGBE_SUCCESS;
2560 }
2561 
2562 /**
2563  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2564  *  @hw: pointer to hardware structure
2565  *  @addr: new address
2566  *  @vmdq: VMDq "set" or "pool" index
2567  *
2568  *  Adds it to unused receive address register or goes into promiscuous mode.
2569  **/
2570 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2571 {
2572 	u32 rar_entries = hw->mac.num_rar_entries;
2573 	u32 rar;
2574 
2575 	DEBUGFUNC("ixgbe_add_uc_addr");
2576 
2577 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2578 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2579 
2580 	/*
2581 	 * Place this address in the RAR if there is room,
2582 	 * else put the controller into promiscuous mode
2583 	 */
2584 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2585 		rar = hw->addr_ctrl.rar_used_count;
2586 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2587 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2588 		hw->addr_ctrl.rar_used_count++;
2589 	} else {
2590 		hw->addr_ctrl.overflow_promisc++;
2591 	}
2592 
2593 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2594 }
2595 
2596 /**
2597  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2598  *  @hw: pointer to hardware structure
2599  *  @addr_list: the list of new addresses
2600  *  @addr_count: number of addresses
2601  *  @next: iterator function to walk the address list
2602  *
2603  *  The given list replaces any existing list.  Clears the secondary addrs from
2604  *  receive address registers.  Uses unused receive address registers for the
2605  *  first secondary addresses, and falls back to promiscuous mode as needed.
2606  *
2607  *  Drivers using secondary unicast addresses must set user_set_promisc when
2608  *  manually putting the device into promiscuous mode.
2609  **/
2610 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2611 				      u32 addr_count, ixgbe_mc_addr_itr next)
2612 {
2613 	u8 *addr;
2614 	u32 i;
2615 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2616 	u32 uc_addr_in_use;
2617 	u32 fctrl;
2618 	u32 vmdq;
2619 
2620 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2621 
2622 	/*
2623 	 * Clear accounting of old secondary address list,
2624 	 * don't count RAR[0]
2625 	 */
2626 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2627 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2628 	hw->addr_ctrl.overflow_promisc = 0;
2629 
2630 	/* Zero out the other receive addresses */
2631 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2632 	for (i = 0; i < uc_addr_in_use; i++) {
2633 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2634 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2635 	}
2636 
2637 	/* Add the new addresses */
2638 	for (i = 0; i < addr_count; i++) {
2639 		DEBUGOUT(" Adding the secondary addresses:\n");
2640 		addr = next(hw, &addr_list, &vmdq);
2641 		ixgbe_add_uc_addr(hw, addr, vmdq);
2642 	}
2643 
2644 	if (hw->addr_ctrl.overflow_promisc) {
2645 		/* enable promisc if not already in overflow or set by user */
2646 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2647 			DEBUGOUT(" Entering address overflow promisc mode\n");
2648 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2649 			fctrl |= IXGBE_FCTRL_UPE;
2650 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2651 		}
2652 	} else {
2653 		/* only disable if set by overflow, not by user */
2654 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2655 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2656 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2657 			fctrl &= ~IXGBE_FCTRL_UPE;
2658 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2659 		}
2660 	}
2661 
2662 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2663 	return IXGBE_SUCCESS;
2664 }
2665 
2666 /**
2667  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2668  *  @hw: pointer to hardware structure
2669  *  @mc_addr: the multicast address
2670  *
2671  *  Extracts the 12 bits, from a multicast address, to determine which
2672  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2673  *  incoming rx multicast addresses, to determine the bit-vector to check in
2674  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2675  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2676  *  to mc_filter_type.
2677  **/
2678 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2679 {
2680 	u32 vector = 0;
2681 
2682 	DEBUGFUNC("ixgbe_mta_vector");
2683 
2684 	switch (hw->mac.mc_filter_type) {
2685 	case 0:   /* use bits [47:36] of the address */
2686 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2687 		break;
2688 	case 1:   /* use bits [46:35] of the address */
2689 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2690 		break;
2691 	case 2:   /* use bits [45:34] of the address */
2692 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2693 		break;
2694 	case 3:   /* use bits [43:32] of the address */
2695 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2696 		break;
2697 	default:  /* Invalid mc_filter_type */
2698 		DEBUGOUT("MC filter type param set incorrectly\n");
2699 		ASSERT(0);
2700 		break;
2701 	}
2702 
2703 	/* vector can only be 12-bits or boundary will be exceeded */
2704 	vector &= 0xFFF;
2705 	return vector;
2706 }
2707 
2708 /**
2709  *  ixgbe_set_mta - Set bit-vector in multicast table
2710  *  @hw: pointer to hardware structure
2711  *  @mc_addr: Multicast address
2712  *
2713  *  Sets the bit-vector in the multicast table.
2714  **/
2715 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2716 {
2717 	u32 vector;
2718 	u32 vector_bit;
2719 	u32 vector_reg;
2720 
2721 	DEBUGFUNC("ixgbe_set_mta");
2722 
2723 	hw->addr_ctrl.mta_in_use++;
2724 
2725 	vector = ixgbe_mta_vector(hw, mc_addr);
2726 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2727 
2728 	/*
2729 	 * The MTA is a register array of 128 32-bit registers. It is treated
2730 	 * like an array of 4096 bits.  We want to set bit
2731 	 * BitArray[vector_value]. So we figure out what register the bit is
2732 	 * in, read it, OR in the new bit, then write back the new value.  The
2733 	 * register is determined by the upper 7 bits of the vector value and
2734 	 * the bit within that register are determined by the lower 5 bits of
2735 	 * the value.
2736 	 */
2737 	vector_reg = (vector >> 5) & 0x7F;
2738 	vector_bit = vector & 0x1F;
2739 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2740 }
2741 
2742 /**
2743  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2744  *  @hw: pointer to hardware structure
2745  *  @mc_addr_list: the list of new multicast addresses
2746  *  @mc_addr_count: number of addresses
2747  *  @next: iterator function to walk the multicast address list
2748  *  @clear: flag, when set clears the table beforehand
2749  *
2750  *  When the clear flag is set, the given list replaces any existing list.
2751  *  Hashes the given addresses into the multicast table.
2752  **/
2753 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2754 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2755 				      bool clear)
2756 {
2757 	u32 i;
2758 	u32 vmdq;
2759 
2760 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2761 
2762 	/*
2763 	 * Set the new number of MC addresses that we are being requested to
2764 	 * use.
2765 	 */
2766 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2767 	hw->addr_ctrl.mta_in_use = 0;
2768 
2769 	/* Clear mta_shadow */
2770 	if (clear) {
2771 		DEBUGOUT(" Clearing MTA\n");
2772 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2773 	}
2774 
2775 	/* Update mta_shadow */
2776 	for (i = 0; i < mc_addr_count; i++) {
2777 		DEBUGOUT(" Adding the multicast addresses:\n");
2778 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2779 	}
2780 
2781 	/* Enable mta */
2782 	for (i = 0; i < hw->mac.mcft_size; i++)
2783 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2784 				      hw->mac.mta_shadow[i]);
2785 
2786 	if (hw->addr_ctrl.mta_in_use > 0)
2787 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2788 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2789 
2790 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2791 	return IXGBE_SUCCESS;
2792 }
2793 
2794 /**
2795  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2796  *  @hw: pointer to hardware structure
2797  *
2798  *  Enables multicast address in RAR and the use of the multicast hash table.
2799  **/
2800 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2801 {
2802 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2803 
2804 	DEBUGFUNC("ixgbe_enable_mc_generic");
2805 
2806 	if (a->mta_in_use > 0)
2807 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2808 				hw->mac.mc_filter_type);
2809 
2810 	return IXGBE_SUCCESS;
2811 }
2812 
2813 /**
2814  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2815  *  @hw: pointer to hardware structure
2816  *
2817  *  Disables multicast address in RAR and the use of the multicast hash table.
2818  **/
2819 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2820 {
2821 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2822 
2823 	DEBUGFUNC("ixgbe_disable_mc_generic");
2824 
2825 	if (a->mta_in_use > 0)
2826 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2827 
2828 	return IXGBE_SUCCESS;
2829 }
2830 
2831 /**
2832  *  ixgbe_fc_enable_generic - Enable flow control
2833  *  @hw: pointer to hardware structure
2834  *
2835  *  Enable flow control according to the current settings.
2836  **/
2837 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2838 {
2839 	s32 ret_val = IXGBE_SUCCESS;
2840 	u32 mflcn_reg, fccfg_reg;
2841 	u32 reg;
2842 	u32 fcrtl, fcrth;
2843 	int i;
2844 
2845 	DEBUGFUNC("ixgbe_fc_enable_generic");
2846 
2847 	/* Validate the water mark configuration */
2848 	if (!hw->fc.pause_time) {
2849 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2850 		goto out;
2851 	}
2852 
2853 	/* Low water mark of zero causes XOFF floods */
2854 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2855 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2856 		    hw->fc.high_water[i]) {
2857 			if (!hw->fc.low_water[i] ||
2858 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2859 				DEBUGOUT("Invalid water mark configuration\n");
2860 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2861 				goto out;
2862 			}
2863 		}
2864 	}
2865 
2866 	/* Negotiate the fc mode to use */
2867 	hw->mac.ops.fc_autoneg(hw);
2868 
2869 	/* Disable any previous flow control settings */
2870 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2871 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2872 
2873 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2874 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2875 
2876 	/*
2877 	 * The possible values of fc.current_mode are:
2878 	 * 0: Flow control is completely disabled
2879 	 * 1: Rx flow control is enabled (we can receive pause frames,
2880 	 *    but not send pause frames).
2881 	 * 2: Tx flow control is enabled (we can send pause frames but
2882 	 *    we do not support receiving pause frames).
2883 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2884 	 * other: Invalid.
2885 	 */
2886 	switch (hw->fc.current_mode) {
2887 	case ixgbe_fc_none:
2888 		/*
2889 		 * Flow control is disabled by software override or autoneg.
2890 		 * The code below will actually disable it in the HW.
2891 		 */
2892 		break;
2893 	case ixgbe_fc_rx_pause:
2894 		/*
2895 		 * Rx Flow control is enabled and Tx Flow control is
2896 		 * disabled by software override. Since there really
2897 		 * isn't a way to advertise that we are capable of RX
2898 		 * Pause ONLY, we will advertise that we support both
2899 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2900 		 * disable the adapter's ability to send PAUSE frames.
2901 		 */
2902 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2903 		break;
2904 	case ixgbe_fc_tx_pause:
2905 		/*
2906 		 * Tx Flow control is enabled, and Rx Flow control is
2907 		 * disabled by software override.
2908 		 */
2909 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2910 		break;
2911 	case ixgbe_fc_full:
2912 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2913 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2914 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2915 		break;
2916 	default:
2917 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2918 			     "Flow control param set incorrectly\n");
2919 		ret_val = IXGBE_ERR_CONFIG;
2920 		goto out;
2921 		break;
2922 	}
2923 
2924 	/* Set 802.3x based flow control settings. */
2925 	mflcn_reg |= IXGBE_MFLCN_DPF;
2926 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2927 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2928 
2929 
2930 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2931 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2932 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2933 		    hw->fc.high_water[i]) {
2934 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2935 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2936 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2937 		} else {
2938 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2939 			/*
2940 			 * In order to prevent Tx hangs when the internal Tx
2941 			 * switch is enabled we must set the high water mark
2942 			 * to the Rx packet buffer size - 24KB.  This allows
2943 			 * the Tx switch to function even under heavy Rx
2944 			 * workloads.
2945 			 */
2946 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2947 		}
2948 
2949 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2950 	}
2951 
2952 	/* Configure pause time (2 TCs per register) */
2953 	reg = (u32)hw->fc.pause_time * 0x00010001;
2954 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2955 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2956 
2957 	/* Configure flow control refresh threshold value */
2958 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2959 
2960 out:
2961 	return ret_val;
2962 }
2963 
2964 /**
2965  *  ixgbe_negotiate_fc - Negotiate flow control
2966  *  @hw: pointer to hardware structure
2967  *  @adv_reg: flow control advertised settings
2968  *  @lp_reg: link partner's flow control settings
2969  *  @adv_sym: symmetric pause bit in advertisement
2970  *  @adv_asm: asymmetric pause bit in advertisement
2971  *  @lp_sym: symmetric pause bit in link partner advertisement
2972  *  @lp_asm: asymmetric pause bit in link partner advertisement
2973  *
2974  *  Find the intersection between advertised settings and link partner's
2975  *  advertised settings
2976  **/
2977 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2978 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2979 {
2980 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2981 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2982 			     "Local or link partner's advertised flow control "
2983 			     "settings are NULL. Local: %x, link partner: %x\n",
2984 			     adv_reg, lp_reg);
2985 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2986 	}
2987 
2988 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2989 		/*
2990 		 * Now we need to check if the user selected Rx ONLY
2991 		 * of pause frames.  In this case, we had to advertise
2992 		 * FULL flow control because we could not advertise RX
2993 		 * ONLY. Hence, we must now check to see if we need to
2994 		 * turn OFF the TRANSMISSION of PAUSE frames.
2995 		 */
2996 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2997 			hw->fc.current_mode = ixgbe_fc_full;
2998 			DEBUGOUT("Flow Control = FULL.\n");
2999 		} else {
3000 			hw->fc.current_mode = ixgbe_fc_rx_pause;
3001 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3002 		}
3003 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3004 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3005 		hw->fc.current_mode = ixgbe_fc_tx_pause;
3006 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3007 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3008 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3009 		hw->fc.current_mode = ixgbe_fc_rx_pause;
3010 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3011 	} else {
3012 		hw->fc.current_mode = ixgbe_fc_none;
3013 		DEBUGOUT("Flow Control = NONE.\n");
3014 	}
3015 	return IXGBE_SUCCESS;
3016 }
3017 
3018 /**
3019  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3020  *  @hw: pointer to hardware structure
3021  *
3022  *  Enable flow control according on 1 gig fiber.
3023  **/
3024 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3025 {
3026 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3027 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3028 
3029 	/*
3030 	 * On multispeed fiber at 1g, bail out if
3031 	 * - link is up but AN did not complete, or if
3032 	 * - link is up and AN completed but timed out
3033 	 */
3034 
3035 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3036 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3037 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3038 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3039 		goto out;
3040 	}
3041 
3042 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3043 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3044 
3045 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3046 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3047 				      IXGBE_PCS1GANA_ASM_PAUSE,
3048 				      IXGBE_PCS1GANA_SYM_PAUSE,
3049 				      IXGBE_PCS1GANA_ASM_PAUSE);
3050 
3051 out:
3052 	return ret_val;
3053 }
3054 
3055 /**
3056  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3057  *  @hw: pointer to hardware structure
3058  *
3059  *  Enable flow control according to IEEE clause 37.
3060  **/
3061 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3062 {
3063 	u32 links2, anlp1_reg, autoc_reg, links;
3064 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3065 
3066 	/*
3067 	 * On backplane, bail out if
3068 	 * - backplane autoneg was not completed, or if
3069 	 * - we are 82599 and link partner is not AN enabled
3070 	 */
3071 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3072 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3073 		DEBUGOUT("Auto-Negotiation did not complete\n");
3074 		goto out;
3075 	}
3076 
3077 	if (hw->mac.type == ixgbe_mac_82599EB) {
3078 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3079 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3080 			DEBUGOUT("Link partner is not AN enabled\n");
3081 			goto out;
3082 		}
3083 	}
3084 	/*
3085 	 * Read the 10g AN autoc and LP ability registers and resolve
3086 	 * local flow control settings accordingly
3087 	 */
3088 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3089 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3090 
3091 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3092 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3093 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3094 
3095 out:
3096 	return ret_val;
3097 }
3098 
3099 /**
3100  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3101  *  @hw: pointer to hardware structure
3102  *
3103  *  Enable flow control according to IEEE clause 37.
3104  **/
3105 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3106 {
3107 	u16 technology_ability_reg = 0;
3108 	u16 lp_technology_ability_reg = 0;
3109 
3110 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3111 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3112 			     &technology_ability_reg);
3113 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3114 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3115 			     &lp_technology_ability_reg);
3116 
3117 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3118 				  (u32)lp_technology_ability_reg,
3119 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3120 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3121 }
3122 
3123 /**
3124  *  ixgbe_fc_autoneg - Configure flow control
3125  *  @hw: pointer to hardware structure
3126  *
3127  *  Compares our advertised flow control capabilities to those advertised by
3128  *  our link partner, and determines the proper flow control mode to use.
3129  **/
3130 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3131 {
3132 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3133 	ixgbe_link_speed speed;
3134 	bool link_up;
3135 
3136 	DEBUGFUNC("ixgbe_fc_autoneg");
3137 
3138 	/*
3139 	 * AN should have completed when the cable was plugged in.
3140 	 * Look for reasons to bail out.  Bail out if:
3141 	 * - FC autoneg is disabled, or if
3142 	 * - link is not up.
3143 	 */
3144 	if (hw->fc.disable_fc_autoneg) {
3145 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3146 			     "Flow control autoneg is disabled");
3147 		goto out;
3148 	}
3149 
3150 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3151 	if (!link_up) {
3152 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3153 		goto out;
3154 	}
3155 
3156 	switch (hw->phy.media_type) {
3157 	/* Autoneg flow control on fiber adapters */
3158 	case ixgbe_media_type_fiber_fixed:
3159 	case ixgbe_media_type_fiber_qsfp:
3160 	case ixgbe_media_type_fiber:
3161 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3162 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3163 		break;
3164 
3165 	/* Autoneg flow control on backplane adapters */
3166 	case ixgbe_media_type_backplane:
3167 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3168 		break;
3169 
3170 	/* Autoneg flow control on copper adapters */
3171 	case ixgbe_media_type_copper:
3172 		if (ixgbe_device_supports_autoneg_fc(hw))
3173 			ret_val = ixgbe_fc_autoneg_copper(hw);
3174 		break;
3175 
3176 	default:
3177 		break;
3178 	}
3179 
3180 out:
3181 	if (ret_val == IXGBE_SUCCESS) {
3182 		hw->fc.fc_was_autonegged = TRUE;
3183 	} else {
3184 		hw->fc.fc_was_autonegged = FALSE;
3185 		hw->fc.current_mode = hw->fc.requested_mode;
3186 	}
3187 }
3188 
3189 /*
3190  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3191  * @hw: pointer to hardware structure
3192  *
3193  * System-wide timeout range is encoded in PCIe Device Control2 register.
3194  *
3195  * Add 10% to specified maximum and return the number of times to poll for
3196  * completion timeout, in units of 100 microsec.  Never return less than
3197  * 800 = 80 millisec.
3198  */
3199 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3200 {
3201 	s16 devctl2;
3202 	u32 pollcnt;
3203 
3204 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3205 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3206 
3207 	switch (devctl2) {
3208 	case IXGBE_PCIDEVCTRL2_65_130ms:
3209 		pollcnt = 1300;		/* 130 millisec */
3210 		break;
3211 	case IXGBE_PCIDEVCTRL2_260_520ms:
3212 		pollcnt = 5200;		/* 520 millisec */
3213 		break;
3214 	case IXGBE_PCIDEVCTRL2_1_2s:
3215 		pollcnt = 20000;	/* 2 sec */
3216 		break;
3217 	case IXGBE_PCIDEVCTRL2_4_8s:
3218 		pollcnt = 80000;	/* 8 sec */
3219 		break;
3220 	case IXGBE_PCIDEVCTRL2_17_34s:
3221 		pollcnt = 34000;	/* 34 sec */
3222 		break;
3223 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3224 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3225 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3226 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3227 	default:
3228 		pollcnt = 800;		/* 80 millisec minimum */
3229 		break;
3230 	}
3231 
3232 	/* add 10% to spec maximum */
3233 	return (pollcnt * 11) / 10;
3234 }
3235 
3236 /**
3237  *  ixgbe_disable_pcie_master - Disable PCI-express master access
3238  *  @hw: pointer to hardware structure
3239  *
3240  *  Disables PCI-Express master access and verifies there are no pending
3241  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3242  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3243  *  is returned signifying master requests disabled.
3244  **/
3245 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3246 {
3247 	s32 status = IXGBE_SUCCESS;
3248 	u32 i, poll;
3249 	u16 value;
3250 
3251 	DEBUGFUNC("ixgbe_disable_pcie_master");
3252 
3253 	/* Always set this bit to ensure any future transactions are blocked */
3254 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3255 
3256 	/* Exit if master requests are blocked */
3257 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3258 	    IXGBE_REMOVED(hw->hw_addr))
3259 		goto out;
3260 
3261 	/* Poll for master request bit to clear */
3262 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3263 		usec_delay(100);
3264 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3265 			goto out;
3266 	}
3267 
3268 	/*
3269 	 * Two consecutive resets are required via CTRL.RST per datasheet
3270 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3271 	 * of this need.  The first reset prevents new master requests from
3272 	 * being issued by our device.  We then must wait 1usec or more for any
3273 	 * remaining completions from the PCIe bus to trickle in, and then reset
3274 	 * again to clear out any effects they may have had on our device.
3275 	 */
3276 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3277 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3278 
3279 	if (hw->mac.type >= ixgbe_mac_X550)
3280 		goto out;
3281 
3282 	/*
3283 	 * Before proceeding, make sure that the PCIe block does not have
3284 	 * transactions pending.
3285 	 */
3286 	poll = ixgbe_pcie_timeout_poll(hw);
3287 	for (i = 0; i < poll; i++) {
3288 		usec_delay(100);
3289 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3290 		if (IXGBE_REMOVED(hw->hw_addr))
3291 			goto out;
3292 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3293 			goto out;
3294 	}
3295 
3296 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3297 		     "PCIe transaction pending bit also did not clear.\n");
3298 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3299 
3300 out:
3301 	return status;
3302 }
3303 
3304 /**
3305  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3306  *  @hw: pointer to hardware structure
3307  *  @mask: Mask to specify which semaphore to acquire
3308  *
3309  *  Acquires the SWFW semaphore through the GSSR register for the specified
3310  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3311  **/
3312 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3313 {
3314 	u32 gssr = 0;
3315 	u32 swmask = mask;
3316 	u32 fwmask = mask << 5;
3317 	u32 timeout = 200;
3318 	u32 i;
3319 
3320 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3321 
3322 	for (i = 0; i < timeout; i++) {
3323 		/*
3324 		 * SW NVM semaphore bit is used for access to all
3325 		 * SW_FW_SYNC bits (not just NVM)
3326 		 */
3327 		if (ixgbe_get_eeprom_semaphore(hw))
3328 			return IXGBE_ERR_SWFW_SYNC;
3329 
3330 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3331 		if (!(gssr & (fwmask | swmask))) {
3332 			gssr |= swmask;
3333 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3334 			ixgbe_release_eeprom_semaphore(hw);
3335 			return IXGBE_SUCCESS;
3336 		} else {
3337 			/* Resource is currently in use by FW or SW */
3338 			ixgbe_release_eeprom_semaphore(hw);
3339 			msec_delay(5);
3340 		}
3341 	}
3342 
3343 	/* If time expired clear the bits holding the lock and retry */
3344 	if (gssr & (fwmask | swmask))
3345 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3346 
3347 	msec_delay(5);
3348 	return IXGBE_ERR_SWFW_SYNC;
3349 }
3350 
3351 /**
3352  *  ixgbe_release_swfw_sync - Release SWFW semaphore
3353  *  @hw: pointer to hardware structure
3354  *  @mask: Mask to specify which semaphore to release
3355  *
3356  *  Releases the SWFW semaphore through the GSSR register for the specified
3357  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3358  **/
3359 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3360 {
3361 	u32 gssr;
3362 	u32 swmask = mask;
3363 
3364 	DEBUGFUNC("ixgbe_release_swfw_sync");
3365 
3366 	ixgbe_get_eeprom_semaphore(hw);
3367 
3368 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3369 	gssr &= ~swmask;
3370 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3371 
3372 	ixgbe_release_eeprom_semaphore(hw);
3373 }
3374 
3375 /**
3376  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3377  *  @hw: pointer to hardware structure
3378  *
3379  *  Stops the receive data path and waits for the HW to internally empty
3380  *  the Rx security block
3381  **/
3382 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3383 {
3384 #define IXGBE_MAX_SECRX_POLL 4000
3385 
3386 	int i;
3387 	int secrxreg;
3388 
3389 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3390 
3391 
3392 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3393 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3394 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3395 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3396 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3397 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3398 			break;
3399 		else
3400 			/* Use interrupt-safe sleep just in case */
3401 			usec_delay(10);
3402 	}
3403 
3404 	/* For informational purposes only */
3405 	if (i >= IXGBE_MAX_SECRX_POLL)
3406 		DEBUGOUT("Rx unit being enabled before security "
3407 			 "path fully disabled.  Continuing with init.\n");
3408 
3409 	return IXGBE_SUCCESS;
3410 }
3411 
3412 /**
3413  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3414  *  @hw: pointer to hardware structure
3415  *  @locked: bool to indicate whether the SW/FW lock was taken
3416  *  @reg_val: Value we read from AUTOC
3417  *
3418  *  The default case requires no protection so just to the register read.
3419  */
3420 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3421 {
3422 	*locked = FALSE;
3423 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3424 	return IXGBE_SUCCESS;
3425 }
3426 
3427 /**
3428  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3429  * @hw: pointer to hardware structure
3430  * @reg_val: value to write to AUTOC
3431  * @locked: bool to indicate whether the SW/FW lock was already taken by
3432  *           previous read.
3433  *
3434  * The default case requires no protection so just to the register write.
3435  */
3436 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3437 {
3438 	UNREFERENCED_1PARAMETER(locked);
3439 
3440 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3441 	return IXGBE_SUCCESS;
3442 }
3443 
3444 /**
3445  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3446  *  @hw: pointer to hardware structure
3447  *
3448  *  Enables the receive data path.
3449  **/
3450 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3451 {
3452 	u32 secrxreg;
3453 
3454 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3455 
3456 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3457 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3458 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3459 	IXGBE_WRITE_FLUSH(hw);
3460 
3461 	return IXGBE_SUCCESS;
3462 }
3463 
3464 /**
3465  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3466  *  @hw: pointer to hardware structure
3467  *  @regval: register value to write to RXCTRL
3468  *
3469  *  Enables the Rx DMA unit
3470  **/
3471 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3472 {
3473 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3474 
3475 	if (regval & IXGBE_RXCTRL_RXEN)
3476 		ixgbe_enable_rx(hw);
3477 	else
3478 		ixgbe_disable_rx(hw);
3479 
3480 	return IXGBE_SUCCESS;
3481 }
3482 
3483 /**
3484  *  ixgbe_blink_led_start_generic - Blink LED based on index.
3485  *  @hw: pointer to hardware structure
3486  *  @index: led number to blink
3487  **/
3488 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3489 {
3490 	ixgbe_link_speed speed = 0;
3491 	bool link_up = 0;
3492 	u32 autoc_reg = 0;
3493 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3494 	s32 ret_val = IXGBE_SUCCESS;
3495 	bool locked = FALSE;
3496 
3497 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3498 
3499 	if (index > 3)
3500 		return IXGBE_ERR_PARAM;
3501 
3502 	/*
3503 	 * Link must be up to auto-blink the LEDs;
3504 	 * Force it if link is down.
3505 	 */
3506 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3507 
3508 	if (!link_up) {
3509 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3510 		if (ret_val != IXGBE_SUCCESS)
3511 			goto out;
3512 
3513 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3514 		autoc_reg |= IXGBE_AUTOC_FLU;
3515 
3516 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3517 		if (ret_val != IXGBE_SUCCESS)
3518 			goto out;
3519 
3520 		IXGBE_WRITE_FLUSH(hw);
3521 		msec_delay(10);
3522 	}
3523 
3524 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3525 	led_reg |= IXGBE_LED_BLINK(index);
3526 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3527 	IXGBE_WRITE_FLUSH(hw);
3528 
3529 out:
3530 	return ret_val;
3531 }
3532 
3533 /**
3534  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3535  *  @hw: pointer to hardware structure
3536  *  @index: led number to stop blinking
3537  **/
3538 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3539 {
3540 	u32 autoc_reg = 0;
3541 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3542 	s32 ret_val = IXGBE_SUCCESS;
3543 	bool locked = FALSE;
3544 
3545 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3546 
3547 	if (index > 3)
3548 		return IXGBE_ERR_PARAM;
3549 
3550 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3551 	if (ret_val != IXGBE_SUCCESS)
3552 		goto out;
3553 
3554 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3555 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3556 
3557 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3558 	if (ret_val != IXGBE_SUCCESS)
3559 		goto out;
3560 
3561 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3562 	led_reg &= ~IXGBE_LED_BLINK(index);
3563 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3564 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3565 	IXGBE_WRITE_FLUSH(hw);
3566 
3567 out:
3568 	return ret_val;
3569 }
3570 
3571 /**
3572  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3573  *  @hw: pointer to hardware structure
3574  *  @san_mac_offset: SAN MAC address offset
3575  *
3576  *  This function will read the EEPROM location for the SAN MAC address
3577  *  pointer, and returns the value at that location.  This is used in both
3578  *  get and set mac_addr routines.
3579  **/
3580 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3581 					 u16 *san_mac_offset)
3582 {
3583 	s32 ret_val;
3584 
3585 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3586 
3587 	/*
3588 	 * First read the EEPROM pointer to see if the MAC addresses are
3589 	 * available.
3590 	 */
3591 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3592 				      san_mac_offset);
3593 	if (ret_val) {
3594 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3595 			      "eeprom at offset %d failed",
3596 			      IXGBE_SAN_MAC_ADDR_PTR);
3597 	}
3598 
3599 	return ret_val;
3600 }
3601 
3602 /**
3603  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3604  *  @hw: pointer to hardware structure
3605  *  @san_mac_addr: SAN MAC address
3606  *
3607  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3608  *  per-port, so set_lan_id() must be called before reading the addresses.
3609  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3610  *  upon for non-SFP connections, so we must call it here.
3611  **/
3612 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3613 {
3614 	u16 san_mac_data, san_mac_offset;
3615 	u8 i;
3616 	s32 ret_val;
3617 
3618 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3619 
3620 	/*
3621 	 * First read the EEPROM pointer to see if the MAC addresses are
3622 	 * available.  If they're not, no point in calling set_lan_id() here.
3623 	 */
3624 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3625 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3626 		goto san_mac_addr_out;
3627 
3628 	/* make sure we know which port we need to program */
3629 	hw->mac.ops.set_lan_id(hw);
3630 	/* apply the port offset to the address offset */
3631 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3632 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3633 	for (i = 0; i < 3; i++) {
3634 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3635 					      &san_mac_data);
3636 		if (ret_val) {
3637 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3638 				      "eeprom read at offset %d failed",
3639 				      san_mac_offset);
3640 			goto san_mac_addr_out;
3641 		}
3642 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3643 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3644 		san_mac_offset++;
3645 	}
3646 	return IXGBE_SUCCESS;
3647 
3648 san_mac_addr_out:
3649 	/*
3650 	 * No addresses available in this EEPROM.  It's not an
3651 	 * error though, so just wipe the local address and return.
3652 	 */
3653 	for (i = 0; i < 6; i++)
3654 		san_mac_addr[i] = 0xFF;
3655 	return IXGBE_SUCCESS;
3656 }
3657 
3658 /**
3659  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3660  *  @hw: pointer to hardware structure
3661  *  @san_mac_addr: SAN MAC address
3662  *
3663  *  Write a SAN MAC address to the EEPROM.
3664  **/
3665 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3666 {
3667 	s32 ret_val;
3668 	u16 san_mac_data, san_mac_offset;
3669 	u8 i;
3670 
3671 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3672 
3673 	/* Look for SAN mac address pointer.  If not defined, return */
3674 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3675 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3676 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3677 
3678 	/* Make sure we know which port we need to write */
3679 	hw->mac.ops.set_lan_id(hw);
3680 	/* Apply the port offset to the address offset */
3681 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3682 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3683 
3684 	for (i = 0; i < 3; i++) {
3685 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3686 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3687 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3688 		san_mac_offset++;
3689 	}
3690 
3691 	return IXGBE_SUCCESS;
3692 }
3693 
3694 /**
3695  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3696  *  @hw: pointer to hardware structure
3697  *
3698  *  Read PCIe configuration space, and get the MSI-X vector count from
3699  *  the capabilities table.
3700  **/
3701 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3702 {
3703 	u16 msix_count = 1;
3704 	u16 max_msix_count;
3705 	u16 pcie_offset;
3706 
3707 	switch (hw->mac.type) {
3708 	case ixgbe_mac_82598EB:
3709 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3710 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3711 		break;
3712 	case ixgbe_mac_82599EB:
3713 	case ixgbe_mac_X540:
3714 	case ixgbe_mac_X550:
3715 	case ixgbe_mac_X550EM_x:
3716 	case ixgbe_mac_X550EM_a:
3717 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3718 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3719 		break;
3720 	default:
3721 		return msix_count;
3722 	}
3723 
3724 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3725 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3726 	if (IXGBE_REMOVED(hw->hw_addr))
3727 		msix_count = 0;
3728 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3729 
3730 	/* MSI-X count is zero-based in HW */
3731 	msix_count++;
3732 
3733 	if (msix_count > max_msix_count)
3734 		msix_count = max_msix_count;
3735 
3736 	return msix_count;
3737 }
3738 
3739 /**
3740  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3741  *  @hw: pointer to hardware structure
3742  *  @addr: Address to put into receive address register
3743  *  @vmdq: VMDq pool to assign
3744  *
3745  *  Puts an ethernet address into a receive address register, or
3746  *  finds the rar that it is already in; adds to the pool list
3747  **/
3748 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3749 {
3750 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3751 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3752 	u32 rar;
3753 	u32 rar_low, rar_high;
3754 	u32 addr_low, addr_high;
3755 
3756 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3757 
3758 	/* swap bytes for HW little endian */
3759 	addr_low  = addr[0] | (addr[1] << 8)
3760 			    | (addr[2] << 16)
3761 			    | (addr[3] << 24);
3762 	addr_high = addr[4] | (addr[5] << 8);
3763 
3764 	/*
3765 	 * Either find the mac_id in rar or find the first empty space.
3766 	 * rar_highwater points to just after the highest currently used
3767 	 * rar in order to shorten the search.  It grows when we add a new
3768 	 * rar to the top.
3769 	 */
3770 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3771 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3772 
3773 		if (((IXGBE_RAH_AV & rar_high) == 0)
3774 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3775 			first_empty_rar = rar;
3776 		} else if ((rar_high & 0xFFFF) == addr_high) {
3777 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3778 			if (rar_low == addr_low)
3779 				break;    /* found it already in the rars */
3780 		}
3781 	}
3782 
3783 	if (rar < hw->mac.rar_highwater) {
3784 		/* already there so just add to the pool bits */
3785 		ixgbe_set_vmdq(hw, rar, vmdq);
3786 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3787 		/* stick it into first empty RAR slot we found */
3788 		rar = first_empty_rar;
3789 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3790 	} else if (rar == hw->mac.rar_highwater) {
3791 		/* add it to the top of the list and inc the highwater mark */
3792 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3793 		hw->mac.rar_highwater++;
3794 	} else if (rar >= hw->mac.num_rar_entries) {
3795 		return IXGBE_ERR_INVALID_MAC_ADDR;
3796 	}
3797 
3798 	/*
3799 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3800 	 * remains cleared to be sure default pool packets will get delivered
3801 	 */
3802 	if (rar == 0)
3803 		ixgbe_clear_vmdq(hw, rar, 0);
3804 
3805 	return rar;
3806 }
3807 
3808 /**
3809  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3810  *  @hw: pointer to hardware struct
3811  *  @rar: receive address register index to disassociate
3812  *  @vmdq: VMDq pool index to remove from the rar
3813  **/
3814 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3815 {
3816 	u32 mpsar_lo, mpsar_hi;
3817 	u32 rar_entries = hw->mac.num_rar_entries;
3818 
3819 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3820 
3821 	/* Make sure we are using a valid rar index range */
3822 	if (rar >= rar_entries) {
3823 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3824 			     "RAR index %d is out of range.\n", rar);
3825 		return IXGBE_ERR_INVALID_ARGUMENT;
3826 	}
3827 
3828 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3829 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3830 
3831 	if (IXGBE_REMOVED(hw->hw_addr))
3832 		goto done;
3833 
3834 	if (!mpsar_lo && !mpsar_hi)
3835 		goto done;
3836 
3837 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3838 		if (mpsar_lo) {
3839 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3840 			mpsar_lo = 0;
3841 		}
3842 		if (mpsar_hi) {
3843 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3844 			mpsar_hi = 0;
3845 		}
3846 	} else if (vmdq < 32) {
3847 		mpsar_lo &= ~(1 << vmdq);
3848 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3849 	} else {
3850 		mpsar_hi &= ~(1 << (vmdq - 32));
3851 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3852 	}
3853 
3854 	/* was that the last pool using this rar? */
3855 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3856 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3857 		hw->mac.ops.clear_rar(hw, rar);
3858 done:
3859 	return IXGBE_SUCCESS;
3860 }
3861 
3862 /**
3863  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3864  *  @hw: pointer to hardware struct
3865  *  @rar: receive address register index to associate with a VMDq index
3866  *  @vmdq: VMDq pool index
3867  **/
3868 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3869 {
3870 	u32 mpsar;
3871 	u32 rar_entries = hw->mac.num_rar_entries;
3872 
3873 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3874 
3875 	/* Make sure we are using a valid rar index range */
3876 	if (rar >= rar_entries) {
3877 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3878 			     "RAR index %d is out of range.\n", rar);
3879 		return IXGBE_ERR_INVALID_ARGUMENT;
3880 	}
3881 
3882 	if (vmdq < 32) {
3883 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3884 		mpsar |= 1 << vmdq;
3885 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3886 	} else {
3887 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3888 		mpsar |= 1 << (vmdq - 32);
3889 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3890 	}
3891 	return IXGBE_SUCCESS;
3892 }
3893 
3894 /**
3895  *  This function should only be involved in the IOV mode.
3896  *  In IOV mode, Default pool is next pool after the number of
3897  *  VFs advertized and not 0.
3898  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3899  *
3900  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3901  *  @hw: pointer to hardware struct
3902  *  @vmdq: VMDq pool index
3903  **/
3904 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3905 {
3906 	u32 rar = hw->mac.san_mac_rar_index;
3907 
3908 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3909 
3910 	if (vmdq < 32) {
3911 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3912 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3913 	} else {
3914 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3915 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3916 	}
3917 
3918 	return IXGBE_SUCCESS;
3919 }
3920 
3921 /**
3922  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3923  *  @hw: pointer to hardware structure
3924  **/
3925 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3926 {
3927 	int i;
3928 
3929 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3930 	DEBUGOUT(" Clearing UTA\n");
3931 
3932 	for (i = 0; i < 128; i++)
3933 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3934 
3935 	return IXGBE_SUCCESS;
3936 }
3937 
3938 /**
3939  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3940  *  @hw: pointer to hardware structure
3941  *  @vlan: VLAN id to write to VLAN filter
3942  *  @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3943  *		  vlanid not found
3944  *
3945  *
3946  *  return the VLVF index where this VLAN id should be placed
3947  *
3948  **/
3949 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3950 {
3951 	s32 regindex, first_empty_slot;
3952 	u32 bits;
3953 
3954 	/* short cut the special case */
3955 	if (vlan == 0)
3956 		return 0;
3957 
3958 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3959 	 * will simply bypass the VLVF if there are no entries present in the
3960 	 * VLVF that contain our VLAN
3961 	 */
3962 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3963 
3964 	/* add VLAN enable bit for comparison */
3965 	vlan |= IXGBE_VLVF_VIEN;
3966 
3967 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3968 	 * slot found along the way.
3969 	 *
3970 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3971 	 */
3972 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3973 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3974 		if (bits == vlan)
3975 			return regindex;
3976 		if (!first_empty_slot && !bits)
3977 			first_empty_slot = regindex;
3978 	}
3979 
3980 	/* If we are here then we didn't find the VLAN.  Return first empty
3981 	 * slot we found during our search, else error.
3982 	 */
3983 	if (!first_empty_slot)
3984 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3985 
3986 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3987 }
3988 
3989 /**
3990  *  ixgbe_set_vfta_generic - Set VLAN filter table
3991  *  @hw: pointer to hardware structure
3992  *  @vlan: VLAN id to write to VLAN filter
3993  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
3994  *  @vlan_on: boolean flag to turn on/off VLAN
3995  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3996  *
3997  *  Turn on/off specified VLAN in the VLAN filter table.
3998  **/
3999 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4000 			   bool vlan_on, bool vlvf_bypass)
4001 {
4002 	u32 regidx, vfta_delta, vfta;
4003 	s32 ret_val;
4004 
4005 	DEBUGFUNC("ixgbe_set_vfta_generic");
4006 
4007 	if (vlan > 4095 || vind > 63)
4008 		return IXGBE_ERR_PARAM;
4009 
4010 	/*
4011 	 * this is a 2 part operation - first the VFTA, then the
4012 	 * VLVF and VLVFB if VT Mode is set
4013 	 * We don't write the VFTA until we know the VLVF part succeeded.
4014 	 */
4015 
4016 	/* Part 1
4017 	 * The VFTA is a bitstring made up of 128 32-bit registers
4018 	 * that enable the particular VLAN id, much like the MTA:
4019 	 *    bits[11-5]: which register
4020 	 *    bits[4-0]:  which bit in the register
4021 	 */
4022 	regidx = vlan / 32;
4023 	vfta_delta = (u32)1 << (vlan % 32);
4024 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4025 
4026 	/*
4027 	 * vfta_delta represents the difference between the current value
4028 	 * of vfta and the value we want in the register.  Since the diff
4029 	 * is an XOR mask we can just update the vfta using an XOR
4030 	 */
4031 	vfta_delta &= vlan_on ? ~vfta : vfta;
4032 	vfta ^= vfta_delta;
4033 
4034 	/* Part 2
4035 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4036 	 */
4037 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4038 					 vfta, vlvf_bypass);
4039 	if (ret_val != IXGBE_SUCCESS) {
4040 		if (vlvf_bypass)
4041 			goto vfta_update;
4042 		return ret_val;
4043 	}
4044 
4045 vfta_update:
4046 	/* Update VFTA now that we are ready for traffic */
4047 	if (vfta_delta)
4048 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4049 
4050 	return IXGBE_SUCCESS;
4051 }
4052 
4053 /**
4054  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4055  *  @hw: pointer to hardware structure
4056  *  @vlan: VLAN id to write to VLAN filter
4057  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
4058  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
4059  *  @vfta_delta: pointer to the difference between the current value of VFTA
4060  *		 and the desired value
4061  *  @vfta: the desired value of the VFTA
4062  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
4063  *
4064  *  Turn on/off specified bit in VLVF table.
4065  **/
4066 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4067 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4068 			   bool vlvf_bypass)
4069 {
4070 	u32 bits;
4071 	s32 vlvf_index;
4072 
4073 	DEBUGFUNC("ixgbe_set_vlvf_generic");
4074 
4075 	if (vlan > 4095 || vind > 63)
4076 		return IXGBE_ERR_PARAM;
4077 
4078 	/* If VT Mode is set
4079 	 *   Either vlan_on
4080 	 *     make sure the vlan is in VLVF
4081 	 *     set the vind bit in the matching VLVFB
4082 	 *   Or !vlan_on
4083 	 *     clear the pool bit and possibly the vind
4084 	 */
4085 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4086 		return IXGBE_SUCCESS;
4087 
4088 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4089 	if (vlvf_index < 0)
4090 		return vlvf_index;
4091 
4092 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4093 
4094 	/* set the pool bit */
4095 	bits |= 1 << (vind % 32);
4096 	if (vlan_on)
4097 		goto vlvf_update;
4098 
4099 	/* clear the pool bit */
4100 	bits ^= 1 << (vind % 32);
4101 
4102 	if (!bits &&
4103 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4104 		/* Clear VFTA first, then disable VLVF.  Otherwise
4105 		 * we run the risk of stray packets leaking into
4106 		 * the PF via the default pool
4107 		 */
4108 		if (*vfta_delta)
4109 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4110 
4111 		/* disable VLVF and clear remaining bit from pool */
4112 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4113 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4114 
4115 		return IXGBE_SUCCESS;
4116 	}
4117 
4118 	/* If there are still bits set in the VLVFB registers
4119 	 * for the VLAN ID indicated we need to see if the
4120 	 * caller is requesting that we clear the VFTA entry bit.
4121 	 * If the caller has requested that we clear the VFTA
4122 	 * entry bit but there are still pools/VFs using this VLAN
4123 	 * ID entry then ignore the request.  We're not worried
4124 	 * about the case where we're turning the VFTA VLAN ID
4125 	 * entry bit on, only when requested to turn it off as
4126 	 * there may be multiple pools and/or VFs using the
4127 	 * VLAN ID entry.  In that case we cannot clear the
4128 	 * VFTA bit until all pools/VFs using that VLAN ID have also
4129 	 * been cleared.  This will be indicated by "bits" being
4130 	 * zero.
4131 	 */
4132 	*vfta_delta = 0;
4133 
4134 vlvf_update:
4135 	/* record pool change and enable VLAN ID if not already enabled */
4136 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4137 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4138 
4139 	return IXGBE_SUCCESS;
4140 }
4141 
4142 /**
4143  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4144  *  @hw: pointer to hardware structure
4145  *
4146  *  Clears the VLAN filer table, and the VMDq index associated with the filter
4147  **/
4148 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4149 {
4150 	u32 offset;
4151 
4152 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4153 
4154 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4155 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4156 
4157 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4158 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4159 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4160 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4161 	}
4162 
4163 	return IXGBE_SUCCESS;
4164 }
4165 
4166 /**
4167  *  ixgbe_toggle_txdctl_generic - Toggle VF's queues
4168  *  @hw: pointer to hardware structure
4169  *  @vf_number: VF index
4170  *
4171  *  Enable and disable each queue in VF.
4172  */
4173 s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4174 {
4175 	u8  queue_count, i;
4176 	u32 offset, reg;
4177 
4178 	if (vf_number > 63)
4179 		return IXGBE_ERR_PARAM;
4180 
4181 	/*
4182 	 * Determine number of queues by checking
4183 	 * number of virtual functions
4184 	 */
4185 	reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4186 	switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4187 	case IXGBE_GCR_EXT_VT_MODE_64:
4188 		queue_count = 2;
4189 		break;
4190 	case IXGBE_GCR_EXT_VT_MODE_32:
4191 		queue_count = 4;
4192 		break;
4193 	case IXGBE_GCR_EXT_VT_MODE_16:
4194 		queue_count = 8;
4195 		break;
4196 	default:
4197 		return IXGBE_ERR_CONFIG;
4198 	}
4199 
4200 	/* Toggle queues */
4201 	for (i = 0; i < queue_count; ++i) {
4202 		/* Calculate offset of current queue */
4203 		offset = queue_count * vf_number + i;
4204 
4205 		/* Enable queue */
4206 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4207 		reg |= IXGBE_TXDCTL_ENABLE;
4208 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4209 		IXGBE_WRITE_FLUSH(hw);
4210 
4211 		/* Disable queue */
4212 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4213 		reg &= ~IXGBE_TXDCTL_ENABLE;
4214 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4215 		IXGBE_WRITE_FLUSH(hw);
4216 	}
4217 
4218 	return IXGBE_SUCCESS;
4219 }
4220 
4221 /**
4222  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4223  *  @hw: pointer to hardware structure
4224  *
4225  *  Contains the logic to identify if we need to verify link for the
4226  *  crosstalk fix
4227  **/
4228 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4229 {
4230 
4231 	/* Does FW say we need the fix */
4232 	if (!hw->need_crosstalk_fix)
4233 		return FALSE;
4234 
4235 	/* Only consider SFP+ PHYs i.e. media type fiber */
4236 	switch (hw->mac.ops.get_media_type(hw)) {
4237 	case ixgbe_media_type_fiber:
4238 	case ixgbe_media_type_fiber_qsfp:
4239 		break;
4240 	default:
4241 		return FALSE;
4242 	}
4243 
4244 	return TRUE;
4245 }
4246 
4247 /**
4248  *  ixgbe_check_mac_link_generic - Determine link and speed status
4249  *  @hw: pointer to hardware structure
4250  *  @speed: pointer to link speed
4251  *  @link_up: TRUE when link is up
4252  *  @link_up_wait_to_complete: bool used to wait for link up or not
4253  *
4254  *  Reads the links register to determine if link is up and the current speed
4255  **/
4256 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4257 				 bool *link_up, bool link_up_wait_to_complete)
4258 {
4259 	u32 links_reg, links_orig;
4260 	u32 i;
4261 
4262 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4263 
4264 	/* If Crosstalk fix enabled do the sanity check of making sure
4265 	 * the SFP+ cage is full.
4266 	 */
4267 	if (ixgbe_need_crosstalk_fix(hw)) {
4268 		u32 sfp_cage_full;
4269 
4270 		switch (hw->mac.type) {
4271 		case ixgbe_mac_82599EB:
4272 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4273 					IXGBE_ESDP_SDP2;
4274 			break;
4275 		case ixgbe_mac_X550EM_x:
4276 		case ixgbe_mac_X550EM_a:
4277 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4278 					IXGBE_ESDP_SDP0;
4279 			break;
4280 		default:
4281 			/* sanity check - No SFP+ devices here */
4282 			sfp_cage_full = FALSE;
4283 			break;
4284 		}
4285 
4286 		if (!sfp_cage_full) {
4287 			*link_up = FALSE;
4288 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4289 			return IXGBE_SUCCESS;
4290 		}
4291 	}
4292 
4293 	/* clear the old state */
4294 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4295 
4296 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4297 
4298 	if (links_orig != links_reg) {
4299 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4300 			  links_orig, links_reg);
4301 	}
4302 
4303 	if (link_up_wait_to_complete) {
4304 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4305 			if (links_reg & IXGBE_LINKS_UP) {
4306 				*link_up = TRUE;
4307 				break;
4308 			} else {
4309 				*link_up = FALSE;
4310 			}
4311 			msec_delay(100);
4312 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4313 		}
4314 	} else {
4315 		if (links_reg & IXGBE_LINKS_UP)
4316 			*link_up = TRUE;
4317 		else
4318 			*link_up = FALSE;
4319 	}
4320 
4321 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4322 	case IXGBE_LINKS_SPEED_10G_82599:
4323 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4324 		if (hw->mac.type >= ixgbe_mac_X550) {
4325 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4326 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4327 		}
4328 		break;
4329 	case IXGBE_LINKS_SPEED_1G_82599:
4330 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4331 		break;
4332 	case IXGBE_LINKS_SPEED_100_82599:
4333 		*speed = IXGBE_LINK_SPEED_100_FULL;
4334 		if (hw->mac.type >= ixgbe_mac_X550) {
4335 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4336 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4337 		}
4338 		break;
4339 	case IXGBE_LINKS_SPEED_10_X550EM_A:
4340 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4341 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4342 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4343 			*speed = IXGBE_LINK_SPEED_10_FULL;
4344 		break;
4345 	default:
4346 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4347 	}
4348 
4349 	return IXGBE_SUCCESS;
4350 }
4351 
4352 /**
4353  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4354  *  the EEPROM
4355  *  @hw: pointer to hardware structure
4356  *  @wwnn_prefix: the alternative WWNN prefix
4357  *  @wwpn_prefix: the alternative WWPN prefix
4358  *
4359  *  This function will read the EEPROM from the alternative SAN MAC address
4360  *  block to check the support for the alternative WWNN/WWPN prefix support.
4361  **/
4362 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4363 				 u16 *wwpn_prefix)
4364 {
4365 	u16 offset, caps;
4366 	u16 alt_san_mac_blk_offset;
4367 
4368 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4369 
4370 	/* clear output first */
4371 	*wwnn_prefix = 0xFFFF;
4372 	*wwpn_prefix = 0xFFFF;
4373 
4374 	/* check if alternative SAN MAC is supported */
4375 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4376 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4377 		goto wwn_prefix_err;
4378 
4379 	if ((alt_san_mac_blk_offset == 0) ||
4380 	    (alt_san_mac_blk_offset == 0xFFFF))
4381 		goto wwn_prefix_out;
4382 
4383 	/* check capability in alternative san mac address block */
4384 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4385 	if (hw->eeprom.ops.read(hw, offset, &caps))
4386 		goto wwn_prefix_err;
4387 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4388 		goto wwn_prefix_out;
4389 
4390 	/* get the corresponding prefix for WWNN/WWPN */
4391 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4392 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4393 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4394 			      "eeprom read at offset %d failed", offset);
4395 	}
4396 
4397 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4398 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4399 		goto wwn_prefix_err;
4400 
4401 wwn_prefix_out:
4402 	return IXGBE_SUCCESS;
4403 
4404 wwn_prefix_err:
4405 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4406 		      "eeprom read at offset %d failed", offset);
4407 	return IXGBE_SUCCESS;
4408 }
4409 
4410 /**
4411  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4412  *  @hw: pointer to hardware structure
4413  *  @bs: the fcoe boot status
4414  *
4415  *  This function will read the FCOE boot status from the iSCSI FCOE block
4416  **/
4417 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4418 {
4419 	u16 offset, caps, flags;
4420 	s32 status;
4421 
4422 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4423 
4424 	/* clear output first */
4425 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4426 
4427 	/* check if FCOE IBA block is present */
4428 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4429 	status = hw->eeprom.ops.read(hw, offset, &caps);
4430 	if (status != IXGBE_SUCCESS)
4431 		goto out;
4432 
4433 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4434 		goto out;
4435 
4436 	/* check if iSCSI FCOE block is populated */
4437 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4438 	if (status != IXGBE_SUCCESS)
4439 		goto out;
4440 
4441 	if ((offset == 0) || (offset == 0xFFFF))
4442 		goto out;
4443 
4444 	/* read fcoe flags in iSCSI FCOE block */
4445 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4446 	status = hw->eeprom.ops.read(hw, offset, &flags);
4447 	if (status != IXGBE_SUCCESS)
4448 		goto out;
4449 
4450 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4451 		*bs = ixgbe_fcoe_bootstatus_enabled;
4452 	else
4453 		*bs = ixgbe_fcoe_bootstatus_disabled;
4454 
4455 out:
4456 	return status;
4457 }
4458 
4459 /**
4460  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4461  *  @hw: pointer to hardware structure
4462  *  @enable: enable or disable switch for MAC anti-spoofing
4463  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4464  *
4465  **/
4466 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4467 {
4468 	int vf_target_reg = vf >> 3;
4469 	int vf_target_shift = vf % 8;
4470 	u32 pfvfspoof;
4471 
4472 	if (hw->mac.type == ixgbe_mac_82598EB)
4473 		return;
4474 
4475 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4476 	if (enable)
4477 		pfvfspoof |= (1 << vf_target_shift);
4478 	else
4479 		pfvfspoof &= ~(1 << vf_target_shift);
4480 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4481 }
4482 
4483 /**
4484  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4485  *  @hw: pointer to hardware structure
4486  *  @enable: enable or disable switch for VLAN anti-spoofing
4487  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4488  *
4489  **/
4490 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4491 {
4492 	int vf_target_reg = vf >> 3;
4493 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4494 	u32 pfvfspoof;
4495 
4496 	if (hw->mac.type == ixgbe_mac_82598EB)
4497 		return;
4498 
4499 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4500 	if (enable)
4501 		pfvfspoof |= (1 << vf_target_shift);
4502 	else
4503 		pfvfspoof &= ~(1 << vf_target_shift);
4504 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4505 }
4506 
4507 /**
4508  *  ixgbe_get_device_caps_generic - Get additional device capabilities
4509  *  @hw: pointer to hardware structure
4510  *  @device_caps: the EEPROM word with the extra device capabilities
4511  *
4512  *  This function will read the EEPROM location for the device capabilities,
4513  *  and return the word through device_caps.
4514  **/
4515 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4516 {
4517 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4518 
4519 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4520 
4521 	return IXGBE_SUCCESS;
4522 }
4523 
4524 /**
4525  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4526  *  @hw: pointer to hardware structure
4527  *
4528  **/
4529 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4530 {
4531 	u32 regval;
4532 	u32 i;
4533 
4534 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4535 
4536 	/* Enable relaxed ordering */
4537 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4538 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4539 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4540 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4541 	}
4542 
4543 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4544 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4545 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4546 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4547 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4548 	}
4549 
4550 }
4551 
4552 /**
4553  *  ixgbe_calculate_checksum - Calculate checksum for buffer
4554  *  @buffer: pointer to EEPROM
4555  *  @length: size of EEPROM to calculate a checksum for
4556  *  Calculates the checksum for some buffer on a specified length.  The
4557  *  checksum calculated is returned.
4558  **/
4559 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4560 {
4561 	u32 i;
4562 	u8 sum = 0;
4563 
4564 	DEBUGFUNC("ixgbe_calculate_checksum");
4565 
4566 	if (!buffer)
4567 		return 0;
4568 
4569 	for (i = 0; i < length; i++)
4570 		sum += buffer[i];
4571 
4572 	return (u8) (0 - sum);
4573 }
4574 
4575 /**
4576  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
4577  *  @hw: pointer to the HW structure
4578  *  @buffer: command to write and where the return status will be placed
4579  *  @length: length of buffer, must be multiple of 4 bytes
4580  *  @timeout: time in ms to wait for command completion
4581  *
4582  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4583  *  else returns semaphore error when encountering an error acquiring
4584  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4585  *
4586  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4587  *  by the caller.
4588  **/
4589 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4590 		       u32 timeout)
4591 {
4592 	u32 hicr, i, fwsts;
4593 	u16 dword_len;
4594 
4595 	DEBUGFUNC("ixgbe_hic_unlocked");
4596 
4597 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4598 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4599 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4600 	}
4601 
4602 	/* Set bit 9 of FWSTS clearing FW reset indication */
4603 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4604 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4605 
4606 	/* Check that the host interface is enabled. */
4607 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4608 	if (!(hicr & IXGBE_HICR_EN)) {
4609 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4610 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4611 	}
4612 
4613 	/* Calculate length in DWORDs. We must be DWORD aligned */
4614 	if (length % sizeof(u32)) {
4615 		DEBUGOUT("Buffer length failure, not aligned to dword");
4616 		return IXGBE_ERR_INVALID_ARGUMENT;
4617 	}
4618 
4619 	dword_len = length >> 2;
4620 
4621 	/* The device driver writes the relevant command block
4622 	 * into the ram area.
4623 	 */
4624 	for (i = 0; i < dword_len; i++)
4625 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4626 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4627 
4628 	/* Setting this bit tells the ARC that a new command is pending. */
4629 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4630 
4631 	for (i = 0; i < timeout; i++) {
4632 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4633 		if (!(hicr & IXGBE_HICR_C))
4634 			break;
4635 		msec_delay(1);
4636 	}
4637 
4638 	/* For each command except "Apply Update" perform
4639 	 * status checks in the HICR registry.
4640 	 */
4641 	if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4642 	    IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4643 		return IXGBE_SUCCESS;
4644 
4645 	/* Check command completion */
4646 	if ((timeout && i == timeout) ||
4647 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4648 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4649 			      "Command has failed with no status valid.\n");
4650 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4651 	}
4652 
4653 	return IXGBE_SUCCESS;
4654 }
4655 
4656 /**
4657  *  ixgbe_host_interface_command - Issue command to manageability block
4658  *  @hw: pointer to the HW structure
4659  *  @buffer: contains the command to write and where the return status will
4660  *   be placed
4661  *  @length: length of buffer, must be multiple of 4 bytes
4662  *  @timeout: time in ms to wait for command completion
4663  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4664  *   Needed because FW structures are big endian and decoding of
4665  *   these fields can be 8 bit or 16 bit based on command. Decoding
4666  *   is not easily understood without making a table of commands.
4667  *   So we will leave this up to the caller to read back the data
4668  *   in these cases.
4669  *
4670  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4671  *  else returns semaphore error when encountering an error acquiring
4672  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4673  **/
4674 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4675 				 u32 length, u32 timeout, bool return_data)
4676 {
4677 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4678 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4679 	u16 buf_len;
4680 	s32 status;
4681 	u32 bi;
4682 	u32 dword_len;
4683 
4684 	DEBUGFUNC("ixgbe_host_interface_command");
4685 
4686 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4687 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4688 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4689 	}
4690 
4691 	/* Take management host interface semaphore */
4692 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4693 	if (status)
4694 		return status;
4695 
4696 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4697 	if (status)
4698 		goto rel_out;
4699 
4700 	if (!return_data)
4701 		goto rel_out;
4702 
4703 	/* Calculate length in DWORDs */
4704 	dword_len = hdr_size >> 2;
4705 
4706 	/* first pull in the header so we know the buffer length */
4707 	for (bi = 0; bi < dword_len; bi++) {
4708 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4709 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4710 	}
4711 
4712 	/*
4713 	 * If there is any thing in data position pull it in
4714 	 * Read Flash command requires reading buffer length from
4715 	 * two byes instead of one byte
4716 	 */
4717 	if (resp->cmd == 0x30 || resp->cmd == 0x31) {
4718 		for (; bi < dword_len + 2; bi++) {
4719 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4720 							  bi);
4721 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
4722 		}
4723 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4724 				  & 0xF00) | resp->buf_len;
4725 		hdr_size += (2 << 2);
4726 	} else {
4727 		buf_len = resp->buf_len;
4728 	}
4729 	if (!buf_len)
4730 		goto rel_out;
4731 
4732 	if (length < buf_len + hdr_size) {
4733 		DEBUGOUT("Buffer not large enough for reply message.\n");
4734 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4735 		goto rel_out;
4736 	}
4737 
4738 	/* Calculate length in DWORDs, add 3 for odd lengths */
4739 	dword_len = (buf_len + 3) >> 2;
4740 
4741 	/* Pull in the rest of the buffer (bi is where we left off) */
4742 	for (; bi <= dword_len; bi++) {
4743 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4744 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4745 	}
4746 
4747 rel_out:
4748 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4749 
4750 	return status;
4751 }
4752 
4753 /**
4754  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4755  *  @hw: pointer to the HW structure
4756  *  @maj: driver version major number
4757  *  @minr: driver version minor number
4758  *  @build: driver version build number
4759  *  @sub: driver version sub build number
4760  *  @len: unused
4761  *  @driver_ver: unused
4762  *
4763  *  Sends driver version number to firmware through the manageability
4764  *  block.  On success return IXGBE_SUCCESS
4765  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4766  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4767  **/
4768 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4769 				 u8 build, u8 sub, u16 len,
4770 				 const char *driver_ver)
4771 {
4772 	struct ixgbe_hic_drv_info fw_cmd;
4773 	int i;
4774 	s32 ret_val = IXGBE_SUCCESS;
4775 
4776 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4777 	UNREFERENCED_2PARAMETER(len, driver_ver);
4778 
4779 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4780 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4781 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4782 	fw_cmd.port_num = (u8)hw->bus.func;
4783 	fw_cmd.ver_maj = maj;
4784 	fw_cmd.ver_min = minr;
4785 	fw_cmd.ver_build = build;
4786 	fw_cmd.ver_sub = sub;
4787 	fw_cmd.hdr.checksum = 0;
4788 	fw_cmd.pad = 0;
4789 	fw_cmd.pad2 = 0;
4790 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4791 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4792 
4793 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4794 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4795 						       sizeof(fw_cmd),
4796 						       IXGBE_HI_COMMAND_TIMEOUT,
4797 						       TRUE);
4798 		if (ret_val != IXGBE_SUCCESS)
4799 			continue;
4800 
4801 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4802 		    FW_CEM_RESP_STATUS_SUCCESS)
4803 			ret_val = IXGBE_SUCCESS;
4804 		else
4805 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4806 
4807 		break;
4808 	}
4809 
4810 	return ret_val;
4811 }
4812 
4813 /**
4814  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4815  * @hw: pointer to hardware structure
4816  * @num_pb: number of packet buffers to allocate
4817  * @headroom: reserve n KB of headroom
4818  * @strategy: packet buffer allocation strategy
4819  **/
4820 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4821 			     int strategy)
4822 {
4823 	u32 pbsize = hw->mac.rx_pb_size;
4824 	int i = 0;
4825 	u32 rxpktsize, txpktsize, txpbthresh;
4826 
4827 	/* Reserve headroom */
4828 	pbsize -= headroom;
4829 
4830 	if (!num_pb)
4831 		num_pb = 1;
4832 
4833 	/* Divide remaining packet buffer space amongst the number of packet
4834 	 * buffers requested using supplied strategy.
4835 	 */
4836 	switch (strategy) {
4837 	case PBA_STRATEGY_WEIGHTED:
4838 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4839 		 * buffer with 5/8 of the packet buffer space.
4840 		 */
4841 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4842 		pbsize -= rxpktsize * (num_pb / 2);
4843 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4844 		for (; i < (num_pb / 2); i++)
4845 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4846 		/* fall through - configure remaining packet buffers */
4847 	case PBA_STRATEGY_EQUAL:
4848 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4849 		for (; i < num_pb; i++)
4850 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4851 		break;
4852 	default:
4853 		break;
4854 	}
4855 
4856 	/* Only support an equally distributed Tx packet buffer strategy. */
4857 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4858 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4859 	for (i = 0; i < num_pb; i++) {
4860 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4861 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4862 	}
4863 
4864 	/* Clear unused TCs, if any, to zero buffer size*/
4865 	for (; i < IXGBE_MAX_PB; i++) {
4866 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4867 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4868 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4869 	}
4870 }
4871 
4872 /**
4873  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4874  * @hw: pointer to the hardware structure
4875  *
4876  * The 82599 and x540 MACs can experience issues if TX work is still pending
4877  * when a reset occurs.  This function prevents this by flushing the PCIe
4878  * buffers on the system.
4879  **/
4880 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4881 {
4882 	u32 gcr_ext, hlreg0, i, poll;
4883 	u16 value;
4884 
4885 	/*
4886 	 * If double reset is not requested then all transactions should
4887 	 * already be clear and as such there is no work to do
4888 	 */
4889 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4890 		return;
4891 
4892 	/*
4893 	 * Set loopback enable to prevent any transmits from being sent
4894 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4895 	 * has already been cleared.
4896 	 */
4897 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4898 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4899 
4900 	/* Wait for a last completion before clearing buffers */
4901 	IXGBE_WRITE_FLUSH(hw);
4902 	msec_delay(3);
4903 
4904 	/*
4905 	 * Before proceeding, make sure that the PCIe block does not have
4906 	 * transactions pending.
4907 	 */
4908 	poll = ixgbe_pcie_timeout_poll(hw);
4909 	for (i = 0; i < poll; i++) {
4910 		usec_delay(100);
4911 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4912 		if (IXGBE_REMOVED(hw->hw_addr))
4913 			goto out;
4914 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4915 			goto out;
4916 	}
4917 
4918 out:
4919 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4920 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4921 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4922 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4923 
4924 	/* Flush all writes and allow 20usec for all transactions to clear */
4925 	IXGBE_WRITE_FLUSH(hw);
4926 	usec_delay(20);
4927 
4928 	/* restore previous register values */
4929 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4930 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4931 }
4932 
4933 /**
4934  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4935  *
4936  *  @hw: pointer to hardware structure
4937  *  @cmd: Command we send to the FW
4938  *  @status: The reply from the FW
4939  *
4940  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
4941  **/
4942 #define IXGBE_BYPASS_BB_WAIT 1
4943 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4944 {
4945 	int i;
4946 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4947 	u32 esdp;
4948 
4949 	if (!status)
4950 		return IXGBE_ERR_PARAM;
4951 
4952 	*status = 0;
4953 
4954 	/* SDP vary by MAC type */
4955 	switch (hw->mac.type) {
4956 	case ixgbe_mac_82599EB:
4957 		sck = IXGBE_ESDP_SDP7;
4958 		sdi = IXGBE_ESDP_SDP0;
4959 		sdo = IXGBE_ESDP_SDP6;
4960 		dir_sck = IXGBE_ESDP_SDP7_DIR;
4961 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4962 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4963 		break;
4964 	case ixgbe_mac_X540:
4965 		sck = IXGBE_ESDP_SDP2;
4966 		sdi = IXGBE_ESDP_SDP0;
4967 		sdo = IXGBE_ESDP_SDP1;
4968 		dir_sck = IXGBE_ESDP_SDP2_DIR;
4969 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4970 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4971 		break;
4972 	default:
4973 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4974 	}
4975 
4976 	/* Set SDP pins direction */
4977 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4978 	esdp |= dir_sck;	/* SCK as output */
4979 	esdp |= dir_sdi;	/* SDI as output */
4980 	esdp &= ~dir_sdo;	/* SDO as input */
4981 	esdp |= sck;
4982 	esdp |= sdi;
4983 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4984 	IXGBE_WRITE_FLUSH(hw);
4985 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4986 
4987 	/* Generate start condition */
4988 	esdp &= ~sdi;
4989 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4990 	IXGBE_WRITE_FLUSH(hw);
4991 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4992 
4993 	esdp &= ~sck;
4994 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4995 	IXGBE_WRITE_FLUSH(hw);
4996 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4997 
4998 	/* Clock out the new control word and clock in the status */
4999 	for (i = 0; i < 32; i++) {
5000 		if ((cmd >> (31 - i)) & 0x01) {
5001 			esdp |= sdi;
5002 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5003 		} else {
5004 			esdp &= ~sdi;
5005 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5006 		}
5007 		IXGBE_WRITE_FLUSH(hw);
5008 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5009 
5010 		esdp |= sck;
5011 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5012 		IXGBE_WRITE_FLUSH(hw);
5013 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5014 
5015 		esdp &= ~sck;
5016 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5017 		IXGBE_WRITE_FLUSH(hw);
5018 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5019 
5020 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5021 		if (esdp & sdo)
5022 			*status = (*status << 1) | 0x01;
5023 		else
5024 			*status = (*status << 1) | 0x00;
5025 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5026 	}
5027 
5028 	/* stop condition */
5029 	esdp |= sck;
5030 	esdp &= ~sdi;
5031 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5032 	IXGBE_WRITE_FLUSH(hw);
5033 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5034 
5035 	esdp |= sdi;
5036 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5037 	IXGBE_WRITE_FLUSH(hw);
5038 
5039 	/* set the page bits to match the cmd that the status it belongs to */
5040 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5041 
5042 	return IXGBE_SUCCESS;
5043 }
5044 
5045 /**
5046  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5047  *
5048  * If we send a write we can't be sure it took until we can read back
5049  * that same register.  It can be a problem as some of the feilds may
5050  * for valid reasons change inbetween the time wrote the register and
5051  * we read it again to verify.  So this function check everything we
5052  * can check and then assumes it worked.
5053  *
5054  * @u32 in_reg - The register cmd for the bit-bang read.
5055  * @u32 out_reg - The register returned from a bit-bang read.
5056  **/
5057 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5058 {
5059 	u32 mask;
5060 
5061 	/* Page must match for all control pages */
5062 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5063 		return FALSE;
5064 
5065 	switch (in_reg & BYPASS_PAGE_M) {
5066 	case BYPASS_PAGE_CTL0:
5067 		/* All the following can't change since the last write
5068 		 *  - All the event actions
5069 		 *  - The timeout value
5070 		 */
5071 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5072 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5073 		       BYPASS_WDTIMEOUT_M |
5074 		       BYPASS_WDT_VALUE_M;
5075 		if ((out_reg & mask) != (in_reg & mask))
5076 			return FALSE;
5077 
5078 		/* 0x0 is never a valid value for bypass status */
5079 		if (!(out_reg & BYPASS_STATUS_OFF_M))
5080 			return FALSE;
5081 		break;
5082 	case BYPASS_PAGE_CTL1:
5083 		/* All the following can't change since the last write
5084 		 *  - time valid bit
5085 		 *  - time we last sent
5086 		 */
5087 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5088 		if ((out_reg & mask) != (in_reg & mask))
5089 			return FALSE;
5090 		break;
5091 	case BYPASS_PAGE_CTL2:
5092 		/* All we can check in this page is control number
5093 		 * which is already done above.
5094 		 */
5095 		break;
5096 	}
5097 
5098 	/* We are as sure as we can be return TRUE */
5099 	return TRUE;
5100 }
5101 
5102 /**
5103  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
5104  *
5105  *  @hw: pointer to hardware structure
5106  *  @cmd: The control word we are setting.
5107  *  @event: The event we are setting in the FW.  This also happens to
5108  *	    be the mask for the event we are setting (handy)
5109  *  @action: The action we set the event to in the FW. This is in a
5110  *	     bit field that happens to be what we want to put in
5111  *	     the event spot (also handy)
5112  **/
5113 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5114 			     u32 action)
5115 {
5116 	u32 by_ctl = 0;
5117 	u32 cmd, verify;
5118 	u32 count = 0;
5119 
5120 	/* Get current values */
5121 	cmd = ctrl;	/* just reading only need control number */
5122 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5123 		return IXGBE_ERR_INVALID_ARGUMENT;
5124 
5125 	/* Set to new action */
5126 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5127 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5128 		return IXGBE_ERR_INVALID_ARGUMENT;
5129 
5130 	/* Page 0 force a FW eeprom write which is slow so verify */
5131 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5132 		verify = BYPASS_PAGE_CTL0;
5133 		do {
5134 			if (count++ > 5)
5135 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5136 
5137 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5138 				return IXGBE_ERR_INVALID_ARGUMENT;
5139 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5140 	} else {
5141 		/* We have give the FW time for the write to stick */
5142 		msec_delay(100);
5143 	}
5144 
5145 	return IXGBE_SUCCESS;
5146 }
5147 
5148 /**
5149  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5150  *
5151  *  @hw: pointer to hardware structure
5152  *  @addr: The bypass eeprom address to read.
5153  *  @value: The 8b of data at the address above.
5154  **/
5155 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5156 {
5157 	u32 cmd;
5158 	u32 status;
5159 
5160 
5161 	/* send the request */
5162 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5163 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5164 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5165 		return IXGBE_ERR_INVALID_ARGUMENT;
5166 
5167 	/* We have give the FW time for the write to stick */
5168 	msec_delay(100);
5169 
5170 	/* now read the results */
5171 	cmd &= ~BYPASS_WE;
5172 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5173 		return IXGBE_ERR_INVALID_ARGUMENT;
5174 
5175 	*value = status & BYPASS_CTL2_DATA_M;
5176 
5177 	return IXGBE_SUCCESS;
5178 }
5179 
5180 /**
5181  *  ixgbe_get_orom_version - Return option ROM from EEPROM
5182  *
5183  *  @hw: pointer to hardware structure
5184  *  @nvm_ver: pointer to output structure
5185  *
5186  *  if valid option ROM version, nvm_ver->or_valid set to TRUE
5187  *  else nvm_ver->or_valid is FALSE.
5188  **/
5189 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5190 			    struct ixgbe_nvm_version *nvm_ver)
5191 {
5192 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5193 
5194 	nvm_ver->or_valid = FALSE;
5195 	/* Option Rom may or may not be present.  Start with pointer */
5196 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5197 
5198 	/* make sure offset is valid */
5199 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5200 		return;
5201 
5202 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5203 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5204 
5205 	/* option rom exists and is valid */
5206 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5207 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
5208 	    eeprom_cfg_blkh == NVM_VER_INVALID)
5209 		return;
5210 
5211 	nvm_ver->or_valid = TRUE;
5212 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5213 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5214 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5215 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5216 }
5217 
5218 /**
5219  *  ixgbe_get_oem_prod_version - Return OEM Product version
5220  *
5221  *  @hw: pointer to hardware structure
5222  *  @nvm_ver: pointer to output structure
5223  *
5224  *  if valid OEM product version, nvm_ver->oem_valid set to TRUE
5225  *  else nvm_ver->oem_valid is FALSE.
5226  **/
5227 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5228 				struct ixgbe_nvm_version *nvm_ver)
5229 {
5230 	u16 rel_num, prod_ver, mod_len, cap, offset;
5231 
5232 	nvm_ver->oem_valid = FALSE;
5233 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5234 
5235 	/* Return is offset to OEM Product Version block is invalid */
5236 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
5237 		return;
5238 
5239 	/* Read product version block */
5240 	hw->eeprom.ops.read(hw, offset, &mod_len);
5241 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5242 
5243 	/* Return if OEM product version block is invalid */
5244 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5245 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5246 		return;
5247 
5248 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5249 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5250 
5251 	/* Return if version is invalid */
5252 	if ((rel_num | prod_ver) == 0x0 ||
5253 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5254 		return;
5255 
5256 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5257 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5258 	nvm_ver->oem_release = rel_num;
5259 	nvm_ver->oem_valid = TRUE;
5260 }
5261 
5262 /**
5263  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
5264  *
5265  *  @hw: pointer to hardware structure
5266  *  @nvm_ver: pointer to output structure
5267  *
5268  *  word read errors will return 0xFFFF
5269  **/
5270 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5271 {
5272 	u16 etk_id_l, etk_id_h;
5273 
5274 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5275 		etk_id_l = NVM_VER_INVALID;
5276 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5277 		etk_id_h = NVM_VER_INVALID;
5278 
5279 	/* The word order for the version format is determined by high order
5280 	 * word bit 15.
5281 	 */
5282 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
5283 		nvm_ver->etk_id = etk_id_h;
5284 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5285 	} else {
5286 		nvm_ver->etk_id = etk_id_l;
5287 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5288 	}
5289 }
5290 
5291 
5292 /**
5293  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5294  * @hw: pointer to hardware structure
5295  * @map: pointer to u8 arr for returning map
5296  *
5297  * Read the rtrup2tc HW register and resolve its content into map
5298  **/
5299 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5300 {
5301 	u32 reg, i;
5302 
5303 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5304 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5305 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5306 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5307 	return;
5308 }
5309 
5310 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5311 {
5312 	u32 pfdtxgswc;
5313 	u32 rxctrl;
5314 
5315 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5316 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5317 		if (hw->mac.type != ixgbe_mac_82598EB) {
5318 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5319 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5320 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5321 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5322 				hw->mac.set_lben = TRUE;
5323 			} else {
5324 				hw->mac.set_lben = FALSE;
5325 			}
5326 		}
5327 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5328 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5329 	}
5330 }
5331 
5332 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5333 {
5334 	u32 pfdtxgswc;
5335 	u32 rxctrl;
5336 
5337 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5338 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5339 
5340 	if (hw->mac.type != ixgbe_mac_82598EB) {
5341 		if (hw->mac.set_lben) {
5342 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5343 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5344 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5345 			hw->mac.set_lben = FALSE;
5346 		}
5347 	}
5348 }
5349 
5350 /**
5351  * ixgbe_mng_present - returns TRUE when management capability is present
5352  * @hw: pointer to hardware structure
5353  */
5354 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5355 {
5356 	u32 fwsm;
5357 
5358 	if (hw->mac.type < ixgbe_mac_82599EB)
5359 		return FALSE;
5360 
5361 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5362 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5363 }
5364 
5365 /**
5366  * ixgbe_mng_enabled - Is the manageability engine enabled?
5367  * @hw: pointer to hardware structure
5368  *
5369  * Returns TRUE if the manageability engine is enabled.
5370  **/
5371 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5372 {
5373 	u32 fwsm, manc, factps;
5374 
5375 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5376 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5377 		return FALSE;
5378 
5379 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5380 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5381 		return FALSE;
5382 
5383 	if (hw->mac.type <= ixgbe_mac_X540) {
5384 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5385 		if (factps & IXGBE_FACTPS_MNGCG)
5386 			return FALSE;
5387 	}
5388 
5389 	return TRUE;
5390 }
5391 
5392 /**
5393  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5394  *  @hw: pointer to hardware structure
5395  *  @speed: new link speed
5396  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5397  *
5398  *  Set the link speed in the MAC and/or PHY register and restarts link.
5399  **/
5400 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5401 					  ixgbe_link_speed speed,
5402 					  bool autoneg_wait_to_complete)
5403 {
5404 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5405 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5406 	s32 status = IXGBE_SUCCESS;
5407 	u32 speedcnt = 0;
5408 	u32 i = 0;
5409 	bool autoneg, link_up = FALSE;
5410 
5411 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5412 
5413 	/* Mask off requested but non-supported speeds */
5414 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5415 	if (status != IXGBE_SUCCESS)
5416 		return status;
5417 
5418 	speed &= link_speed;
5419 
5420 	/* Try each speed one by one, highest priority first.  We do this in
5421 	 * software because 10Gb fiber doesn't support speed autonegotiation.
5422 	 */
5423 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5424 		speedcnt++;
5425 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5426 
5427 		/* Set the module link speed */
5428 		switch (hw->phy.media_type) {
5429 		case ixgbe_media_type_fiber_fixed:
5430 		case ixgbe_media_type_fiber:
5431 			ixgbe_set_rate_select_speed(hw,
5432 						    IXGBE_LINK_SPEED_10GB_FULL);
5433 			break;
5434 		case ixgbe_media_type_fiber_qsfp:
5435 			/* QSFP module automatically detects MAC link speed */
5436 			break;
5437 		default:
5438 			DEBUGOUT("Unexpected media type.\n");
5439 			break;
5440 		}
5441 
5442 		/* Allow module to change analog characteristics (1G->10G) */
5443 		msec_delay(40);
5444 
5445 		status = ixgbe_setup_mac_link(hw,
5446 					      IXGBE_LINK_SPEED_10GB_FULL,
5447 					      autoneg_wait_to_complete);
5448 		if (status != IXGBE_SUCCESS)
5449 			return status;
5450 
5451 		/* Flap the Tx laser if it has not already been done */
5452 		ixgbe_flap_tx_laser(hw);
5453 
5454 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5455 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
5456 		 * attempted.  82599 uses the same timing for 10g SFI.
5457 		 */
5458 		for (i = 0; i < 5; i++) {
5459 			/* Wait for the link partner to also set speed */
5460 			msec_delay(100);
5461 
5462 			/* If we have link, just jump out */
5463 			status = ixgbe_check_link(hw, &link_speed,
5464 						  &link_up, FALSE);
5465 			if (status != IXGBE_SUCCESS)
5466 				return status;
5467 
5468 			if (link_up)
5469 				goto out;
5470 		}
5471 	}
5472 
5473 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5474 		speedcnt++;
5475 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5476 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5477 
5478 		/* Set the module link speed */
5479 		switch (hw->phy.media_type) {
5480 		case ixgbe_media_type_fiber_fixed:
5481 		case ixgbe_media_type_fiber:
5482 			ixgbe_set_rate_select_speed(hw,
5483 						    IXGBE_LINK_SPEED_1GB_FULL);
5484 			break;
5485 		case ixgbe_media_type_fiber_qsfp:
5486 			/* QSFP module automatically detects link speed */
5487 			break;
5488 		default:
5489 			DEBUGOUT("Unexpected media type.\n");
5490 			break;
5491 		}
5492 
5493 		/* Allow module to change analog characteristics (10G->1G) */
5494 		msec_delay(40);
5495 
5496 		status = ixgbe_setup_mac_link(hw,
5497 					      IXGBE_LINK_SPEED_1GB_FULL,
5498 					      autoneg_wait_to_complete);
5499 		if (status != IXGBE_SUCCESS)
5500 			return status;
5501 
5502 		/* Flap the Tx laser if it has not already been done */
5503 		ixgbe_flap_tx_laser(hw);
5504 
5505 		/* Wait for the link partner to also set speed */
5506 		msec_delay(100);
5507 
5508 		/* If we have link, just jump out */
5509 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5510 		if (status != IXGBE_SUCCESS)
5511 			return status;
5512 
5513 		if (link_up)
5514 			goto out;
5515 	}
5516 
5517 	if (speed == 0) {
5518 		/* Disable the Tx laser for media none */
5519 		ixgbe_disable_tx_laser(hw);
5520 
5521 		goto out;
5522 	}
5523 
5524 	/* We didn't get link.  Configure back to the highest speed we tried,
5525 	 * (if there was more than one).  We call ourselves back with just the
5526 	 * single highest speed that the user requested.
5527 	 */
5528 	if (speedcnt > 1)
5529 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5530 						      highest_link_speed,
5531 						      autoneg_wait_to_complete);
5532 
5533 out:
5534 	/* Set autoneg_advertised value based on input link speed */
5535 	hw->phy.autoneg_advertised = 0;
5536 
5537 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5538 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5539 
5540 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5541 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5542 
5543 	return status;
5544 }
5545 
5546 /**
5547  *  ixgbe_set_soft_rate_select_speed - Set module link speed
5548  *  @hw: pointer to hardware structure
5549  *  @speed: link speed to set
5550  *
5551  *  Set module link speed via the soft rate select.
5552  */
5553 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5554 					ixgbe_link_speed speed)
5555 {
5556 	s32 status;
5557 	u8 rs, eeprom_data;
5558 
5559 	switch (speed) {
5560 	case IXGBE_LINK_SPEED_10GB_FULL:
5561 		/* one bit mask same as setting on */
5562 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5563 		break;
5564 	case IXGBE_LINK_SPEED_1GB_FULL:
5565 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5566 		break;
5567 	default:
5568 		DEBUGOUT("Invalid fixed module speed\n");
5569 		return;
5570 	}
5571 
5572 	/* Set RS0 */
5573 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5574 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5575 					   &eeprom_data);
5576 	if (status) {
5577 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5578 		goto out;
5579 	}
5580 
5581 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5582 
5583 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5584 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5585 					    eeprom_data);
5586 	if (status) {
5587 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5588 		goto out;
5589 	}
5590 
5591 	/* Set RS1 */
5592 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5593 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5594 					   &eeprom_data);
5595 	if (status) {
5596 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5597 		goto out;
5598 	}
5599 
5600 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5601 
5602 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5603 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5604 					    eeprom_data);
5605 	if (status) {
5606 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5607 		goto out;
5608 	}
5609 out:
5610 	return;
5611 }
5612