xref: /netbsd-src/sys/dev/pci/igc/igc_i225.c (revision fb38d839b48b9b6204dbbee1672454d6e719ba01)
1*fb38d839Srin /*	$NetBSD: igc_i225.c,v 1.2 2023/10/04 07:35:27 rin Exp $	*/
2d0d8f2a5Srin /*	$OpenBSD: igc_i225.c,v 1.4 2023/02/03 11:31:52 mbuhl Exp $	*/
3d0d8f2a5Srin /*-
4d0d8f2a5Srin  * Copyright 2021 Intel Corp
5d0d8f2a5Srin  * Copyright 2021 Rubicon Communications, LLC (Netgate)
6d0d8f2a5Srin  * SPDX-License-Identifier: BSD-3-Clause
7d0d8f2a5Srin  */
8d0d8f2a5Srin 
9*fb38d839Srin #include <sys/cdefs.h>
10*fb38d839Srin __KERNEL_RCSID(0, "$NetBSD: igc_i225.c,v 1.2 2023/10/04 07:35:27 rin Exp $");
11*fb38d839Srin 
12*fb38d839Srin #include <dev/pci/igc/igc_api.h>
13d0d8f2a5Srin 
14d0d8f2a5Srin int	igc_init_nvm_params_i225(struct igc_hw *);
15d0d8f2a5Srin int	igc_init_mac_params_i225(struct igc_hw *);
16d0d8f2a5Srin int	igc_init_phy_params_i225(struct igc_hw *);
17d0d8f2a5Srin int	igc_reset_hw_i225(struct igc_hw *);
18d0d8f2a5Srin int	igc_acquire_nvm_i225(struct igc_hw *);
19d0d8f2a5Srin void	igc_release_nvm_i225(struct igc_hw *);
20d0d8f2a5Srin int	igc_get_hw_semaphore_i225(struct igc_hw *);
21d0d8f2a5Srin int	__igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
22d0d8f2a5Srin int	igc_pool_flash_update_done_i225(struct igc_hw *);
23d0d8f2a5Srin 
24d0d8f2a5Srin /**
25d0d8f2a5Srin  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
26d0d8f2a5Srin  *  @hw: pointer to the HW structure
27d0d8f2a5Srin  **/
28d0d8f2a5Srin int
igc_init_nvm_params_i225(struct igc_hw * hw)29d0d8f2a5Srin igc_init_nvm_params_i225(struct igc_hw *hw)
30d0d8f2a5Srin {
31d0d8f2a5Srin 	struct igc_nvm_info *nvm = &hw->nvm;
32d0d8f2a5Srin 	uint32_t eecd = IGC_READ_REG(hw, IGC_EECD);
33d0d8f2a5Srin 	uint16_t size;
34d0d8f2a5Srin 
35d0d8f2a5Srin 	DEBUGFUNC("igc_init_nvm_params_i225");
36d0d8f2a5Srin 
37d0d8f2a5Srin 	size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK) >>
38d0d8f2a5Srin 	    IGC_EECD_SIZE_EX_SHIFT);
39d0d8f2a5Srin 	/*
40d0d8f2a5Srin 	 * Added to a constant, "size" becomes the left-shift value
41d0d8f2a5Srin 	 * for setting word_size.
42d0d8f2a5Srin 	 */
43d0d8f2a5Srin 	size += NVM_WORD_SIZE_BASE_SHIFT;
44d0d8f2a5Srin 
45d0d8f2a5Srin 	/* Just in case size is out of range, cap it to the largest
46d0d8f2a5Srin 	 * EEPROM size supported.
47d0d8f2a5Srin 	 */
48d0d8f2a5Srin 	if (size > 15)
49d0d8f2a5Srin 		size = 15;
50d0d8f2a5Srin 
51d0d8f2a5Srin 	nvm->word_size = 1 << size;
52d0d8f2a5Srin 	nvm->opcode_bits = 8;
53d0d8f2a5Srin 	nvm->delay_usec = 1;
54d0d8f2a5Srin 	nvm->type = igc_nvm_eeprom_spi;
55d0d8f2a5Srin 
56d0d8f2a5Srin 	nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
57d0d8f2a5Srin 	nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 16 : 8;
58d0d8f2a5Srin 
59d0d8f2a5Srin 	if (nvm->word_size == (1 << 15))
60d0d8f2a5Srin 		nvm->page_size = 128;
61d0d8f2a5Srin 
62d0d8f2a5Srin 	nvm->ops.acquire = igc_acquire_nvm_i225;
63d0d8f2a5Srin 	nvm->ops.release = igc_release_nvm_i225;
64d0d8f2a5Srin 	if (igc_get_flash_presence_i225(hw)) {
65d0d8f2a5Srin 		hw->nvm.type = igc_nvm_flash_hw;
66d0d8f2a5Srin 		nvm->ops.read = igc_read_nvm_srrd_i225;
67d0d8f2a5Srin 		nvm->ops.write = igc_write_nvm_srwr_i225;
68d0d8f2a5Srin 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
69d0d8f2a5Srin 		nvm->ops.update = igc_update_nvm_checksum_i225;
70d0d8f2a5Srin 	} else {
71d0d8f2a5Srin 		hw->nvm.type = igc_nvm_invm;
72d0d8f2a5Srin 		nvm->ops.write = igc_null_write_nvm;
73d0d8f2a5Srin 		nvm->ops.validate = igc_null_ops_generic;
74d0d8f2a5Srin 		nvm->ops.update = igc_null_ops_generic;
75d0d8f2a5Srin 	}
76d0d8f2a5Srin 
77d0d8f2a5Srin 	return IGC_SUCCESS;
78d0d8f2a5Srin }
79d0d8f2a5Srin 
80d0d8f2a5Srin /**
81d0d8f2a5Srin  *  igc_init_mac_params_i225 - Init MAC func ptrs.
82d0d8f2a5Srin  *  @hw: pointer to the HW structure
83d0d8f2a5Srin  **/
84d0d8f2a5Srin int
igc_init_mac_params_i225(struct igc_hw * hw)85d0d8f2a5Srin igc_init_mac_params_i225(struct igc_hw *hw)
86d0d8f2a5Srin {
87d0d8f2a5Srin 	struct igc_mac_info *mac = &hw->mac;
88d0d8f2a5Srin 	struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
89d0d8f2a5Srin 
90d0d8f2a5Srin 	DEBUGFUNC("igc_init_mac_params_i225");
91d0d8f2a5Srin 
92d0d8f2a5Srin 	/* Initialize function pointer */
93d0d8f2a5Srin 	igc_init_mac_ops_generic(hw);
94d0d8f2a5Srin 
95d0d8f2a5Srin 	/* Set media type */
96d0d8f2a5Srin 	hw->phy.media_type = igc_media_type_copper;
97d0d8f2a5Srin 	/* Set mta register count */
98d0d8f2a5Srin 	mac->mta_reg_count = 128;
99d0d8f2a5Srin 	/* Set rar entry count */
100d0d8f2a5Srin 	mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
101d0d8f2a5Srin 
102d0d8f2a5Srin 	/* reset */
103d0d8f2a5Srin 	mac->ops.reset_hw = igc_reset_hw_i225;
104d0d8f2a5Srin 	/* hw initialization */
105d0d8f2a5Srin 	mac->ops.init_hw = igc_init_hw_i225;
106d0d8f2a5Srin 	/* link setup */
107d0d8f2a5Srin 	mac->ops.setup_link = igc_setup_link_generic;
108d0d8f2a5Srin 	/* check for link */
109d0d8f2a5Srin 	mac->ops.check_for_link = igc_check_for_link_i225;
110d0d8f2a5Srin 	/* link info */
111d0d8f2a5Srin 	mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
112d0d8f2a5Srin 	/* acquire SW_FW sync */
113d0d8f2a5Srin 	mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
114d0d8f2a5Srin 	/* release SW_FW sync */
115d0d8f2a5Srin 	mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
116d0d8f2a5Srin 
117d0d8f2a5Srin 	/* Allow a single clear of the SW semaphore on I225 */
118d0d8f2a5Srin 	dev_spec->clear_semaphore_once = true;
119d0d8f2a5Srin 	mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
120d0d8f2a5Srin 
121d0d8f2a5Srin 	/* Set if part includes ASF firmware */
122d0d8f2a5Srin 	mac->asf_firmware_present = true;
123d0d8f2a5Srin 
124d0d8f2a5Srin 	/* multicast address update */
125d0d8f2a5Srin 	mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
126d0d8f2a5Srin 
127d0d8f2a5Srin 	mac->ops.write_vfta = igc_write_vfta_generic;
128d0d8f2a5Srin 
129d0d8f2a5Srin 	return IGC_SUCCESS;
130d0d8f2a5Srin }
131d0d8f2a5Srin 
132d0d8f2a5Srin /**
133d0d8f2a5Srin  *  igc_init_phy_params_i225 - Init PHY func ptrs.
134d0d8f2a5Srin  *  @hw: pointer to the HW structure
135d0d8f2a5Srin  **/
136d0d8f2a5Srin int
igc_init_phy_params_i225(struct igc_hw * hw)137d0d8f2a5Srin igc_init_phy_params_i225(struct igc_hw *hw)
138d0d8f2a5Srin {
139d0d8f2a5Srin 	struct igc_phy_info *phy = &hw->phy;
140d0d8f2a5Srin 	int ret_val = IGC_SUCCESS;
141d0d8f2a5Srin 
142d0d8f2a5Srin 	DEBUGFUNC("igc_init_phy_params_i225");
143d0d8f2a5Srin 
144d0d8f2a5Srin 	if (hw->phy.media_type != igc_media_type_copper) {
145d0d8f2a5Srin 		phy->type = igc_phy_none;
146d0d8f2a5Srin 		goto out;
147d0d8f2a5Srin 	}
148d0d8f2a5Srin 
149d0d8f2a5Srin 	phy->ops.power_up = igc_power_up_phy_copper;
150d0d8f2a5Srin 	phy->ops.power_down = igc_power_down_phy_copper_base;
151d0d8f2a5Srin 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
152d0d8f2a5Srin 	phy->reset_delay_us = 100;
153d0d8f2a5Srin 	phy->ops.acquire = igc_acquire_phy_base;
154d0d8f2a5Srin 	phy->ops.check_reset_block = igc_check_reset_block_generic;
155d0d8f2a5Srin 	phy->ops.release = igc_release_phy_base;
156d0d8f2a5Srin 	phy->ops.reset = igc_phy_hw_reset_generic;
157d0d8f2a5Srin 	phy->ops.read_reg = igc_read_phy_reg_gpy;
158d0d8f2a5Srin 	phy->ops.write_reg = igc_write_phy_reg_gpy;
159d0d8f2a5Srin 
160d0d8f2a5Srin 	/* Make sure the PHY is in a good state. Several people have reported
161d0d8f2a5Srin 	 * firmware leaving the PHY's page select register set to something
162d0d8f2a5Srin 	 * other than the default of zero, which causes the PHY ID read to
163d0d8f2a5Srin 	 * access something other than the intended register.
164d0d8f2a5Srin 	 */
165d0d8f2a5Srin 	ret_val = hw->phy.ops.reset(hw);
166d0d8f2a5Srin 	if (ret_val)
167d0d8f2a5Srin 		goto out;
168d0d8f2a5Srin 
169d0d8f2a5Srin 	ret_val = igc_get_phy_id(hw);
170d0d8f2a5Srin 	phy->type = igc_phy_i225;
171d0d8f2a5Srin 
172d0d8f2a5Srin out:
173d0d8f2a5Srin 	return ret_val;
174d0d8f2a5Srin }
175d0d8f2a5Srin 
176d0d8f2a5Srin /**
177d0d8f2a5Srin  *  igc_reset_hw_i225 - Reset hardware
178d0d8f2a5Srin  *  @hw: pointer to the HW structure
179d0d8f2a5Srin  *
180d0d8f2a5Srin  *  This resets the hardware into a known state.
181d0d8f2a5Srin  **/
182d0d8f2a5Srin int
igc_reset_hw_i225(struct igc_hw * hw)183d0d8f2a5Srin igc_reset_hw_i225(struct igc_hw *hw)
184d0d8f2a5Srin {
185d0d8f2a5Srin 	uint32_t ctrl;
186d0d8f2a5Srin 	int ret_val;
187d0d8f2a5Srin 
188d0d8f2a5Srin 	DEBUGFUNC("igc_reset_hw_i225");
189d0d8f2a5Srin 
190d0d8f2a5Srin 	/*
191d0d8f2a5Srin 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
192d0d8f2a5Srin 	 * on the last TLP read/write transaction when MAC is reset.
193d0d8f2a5Srin 	 */
194d0d8f2a5Srin 	ret_val = igc_disable_pcie_master_generic(hw);
195d0d8f2a5Srin 	if (ret_val)
196d0d8f2a5Srin 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
197d0d8f2a5Srin 
198d0d8f2a5Srin 	DEBUGOUT("Masking off all interrupts\n");
199d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
200d0d8f2a5Srin 
201d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_RCTL, 0);
202d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
203d0d8f2a5Srin 	IGC_WRITE_FLUSH(hw);
204d0d8f2a5Srin 
205d0d8f2a5Srin 	msec_delay(10);
206d0d8f2a5Srin 
207d0d8f2a5Srin 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
208d0d8f2a5Srin 
209d0d8f2a5Srin 	DEBUGOUT("Issuing a global reset to MAC\n");
210d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
211d0d8f2a5Srin 
212d0d8f2a5Srin 	ret_val = igc_get_auto_rd_done_generic(hw);
213d0d8f2a5Srin 	if (ret_val) {
214d0d8f2a5Srin 		/*
215d0d8f2a5Srin 		 * When auto config read does not complete, do not
216d0d8f2a5Srin 		 * return with an error. This can happen in situations
217d0d8f2a5Srin 		 * where there is no eeprom and prevents getting link.
218d0d8f2a5Srin 		 */
219d0d8f2a5Srin 		DEBUGOUT("Auto Read Done did not complete\n");
220d0d8f2a5Srin 	}
221d0d8f2a5Srin 
222d0d8f2a5Srin 	/* Clear any pending interrupt events. */
223d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
224d0d8f2a5Srin 	IGC_READ_REG(hw, IGC_ICR);
225d0d8f2a5Srin 
226d0d8f2a5Srin 	/* Install any alternate MAC address into RAR0 */
227d0d8f2a5Srin 	ret_val = igc_check_alt_mac_addr_generic(hw);
228d0d8f2a5Srin 
229d0d8f2a5Srin 	return ret_val;
230d0d8f2a5Srin }
231d0d8f2a5Srin 
232d0d8f2a5Srin /* igc_acquire_nvm_i225 - Request for access to EEPROM
233d0d8f2a5Srin  * @hw: pointer to the HW structure
234d0d8f2a5Srin  *
235d0d8f2a5Srin  * Acquire the necessary semaphores for exclusive access to the EEPROM.
236d0d8f2a5Srin  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
237d0d8f2a5Srin  * Return successful if access grant bit set, else clear the request for
238d0d8f2a5Srin  * EEPROM access and return -IGC_ERR_NVM (-1).
239d0d8f2a5Srin  */
240d0d8f2a5Srin int
igc_acquire_nvm_i225(struct igc_hw * hw)241d0d8f2a5Srin igc_acquire_nvm_i225(struct igc_hw *hw)
242d0d8f2a5Srin {
243d0d8f2a5Srin 	int ret_val;
244d0d8f2a5Srin 
245d0d8f2a5Srin 	DEBUGFUNC("igc_acquire_nvm_i225");
246d0d8f2a5Srin 
247d0d8f2a5Srin 	ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
248d0d8f2a5Srin 
249d0d8f2a5Srin 	return ret_val;
250d0d8f2a5Srin }
251d0d8f2a5Srin 
252d0d8f2a5Srin /* igc_release_nvm_i225 - Release exclusive access to EEPROM
253d0d8f2a5Srin  * @hw: pointer to the HW structure
254d0d8f2a5Srin  *
255d0d8f2a5Srin  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
256d0d8f2a5Srin  * then release the semaphores acquired.
257d0d8f2a5Srin  */
258d0d8f2a5Srin void
igc_release_nvm_i225(struct igc_hw * hw)259d0d8f2a5Srin igc_release_nvm_i225(struct igc_hw *hw)
260d0d8f2a5Srin {
261d0d8f2a5Srin 	DEBUGFUNC("igc_release_nvm_i225");
262d0d8f2a5Srin 
263d0d8f2a5Srin 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
264d0d8f2a5Srin }
265d0d8f2a5Srin 
266d0d8f2a5Srin /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
267d0d8f2a5Srin  * @hw: pointer to the HW structure
268d0d8f2a5Srin  * @mask: specifies which semaphore to acquire
269d0d8f2a5Srin  *
270d0d8f2a5Srin  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
271d0d8f2a5Srin  * will also specify which port we're acquiring the lock for.
272d0d8f2a5Srin  */
273d0d8f2a5Srin int
igc_acquire_swfw_sync_i225(struct igc_hw * hw,uint16_t mask)274d0d8f2a5Srin igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
275d0d8f2a5Srin {
276d0d8f2a5Srin 	uint32_t swfw_sync;
277d0d8f2a5Srin 	uint32_t swmask = mask;
278d0d8f2a5Srin 	uint32_t fwmask = mask << 16;
279d0d8f2a5Srin 	int ret_val = IGC_SUCCESS;
280d0d8f2a5Srin 	int i = 0, timeout = 200;	/* FIXME: find real value to use here */
281d0d8f2a5Srin 
282d0d8f2a5Srin 	DEBUGFUNC("igc_acquire_swfw_sync_i225");
283d0d8f2a5Srin 
284d0d8f2a5Srin 	while (i < timeout) {
285d0d8f2a5Srin 		if (igc_get_hw_semaphore_i225(hw)) {
286d0d8f2a5Srin 			ret_val = -IGC_ERR_SWFW_SYNC;
287d0d8f2a5Srin 			goto out;
288d0d8f2a5Srin 		}
289d0d8f2a5Srin 
290d0d8f2a5Srin 		swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
291d0d8f2a5Srin 		if (!(swfw_sync & (fwmask | swmask)))
292d0d8f2a5Srin 			break;
293d0d8f2a5Srin 
294d0d8f2a5Srin 		/* Firmware currently using resource (fwmask)
295d0d8f2a5Srin 		 * or other software thread using resource (swmask)
296d0d8f2a5Srin 		 */
297d0d8f2a5Srin 		igc_put_hw_semaphore_generic(hw);
298d0d8f2a5Srin 		msec_delay(5);
299d0d8f2a5Srin 		i++;
300d0d8f2a5Srin 	}
301d0d8f2a5Srin 
302d0d8f2a5Srin 	if (i == timeout) {
303d0d8f2a5Srin 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
304d0d8f2a5Srin 		ret_val = -IGC_ERR_SWFW_SYNC;
305d0d8f2a5Srin 		goto out;
306d0d8f2a5Srin 	}
307d0d8f2a5Srin 
308d0d8f2a5Srin 	swfw_sync |= swmask;
309d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
310d0d8f2a5Srin 
311d0d8f2a5Srin 	igc_put_hw_semaphore_generic(hw);
312d0d8f2a5Srin 
313d0d8f2a5Srin out:
314d0d8f2a5Srin 	return ret_val;
315d0d8f2a5Srin }
316d0d8f2a5Srin 
317d0d8f2a5Srin /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
318d0d8f2a5Srin  * @hw: pointer to the HW structure
319d0d8f2a5Srin  * @mask: specifies which semaphore to acquire
320d0d8f2a5Srin  *
321d0d8f2a5Srin  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
322d0d8f2a5Srin  * will also specify which port we're releasing the lock for.
323d0d8f2a5Srin  */
324d0d8f2a5Srin void
igc_release_swfw_sync_i225(struct igc_hw * hw,uint16_t mask)325d0d8f2a5Srin igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
326d0d8f2a5Srin {
327d0d8f2a5Srin 	uint32_t swfw_sync;
328d0d8f2a5Srin 
329d0d8f2a5Srin 	DEBUGFUNC("igc_release_swfw_sync_i225");
330d0d8f2a5Srin 
331d0d8f2a5Srin 	while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
332d0d8f2a5Srin 		; /* Empty */
333d0d8f2a5Srin 
334d0d8f2a5Srin 	swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
335d0d8f2a5Srin 	swfw_sync &= ~mask;
336d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
337d0d8f2a5Srin 
338d0d8f2a5Srin 	igc_put_hw_semaphore_generic(hw);
339d0d8f2a5Srin }
340d0d8f2a5Srin 
341d0d8f2a5Srin /*
342d0d8f2a5Srin  * igc_setup_copper_link_i225 - Configure copper link settings
343d0d8f2a5Srin  * @hw: pointer to the HW structure
344d0d8f2a5Srin  *
345d0d8f2a5Srin  * Configures the link for auto-neg or forced speed and duplex.  Then we check
346d0d8f2a5Srin  * for link, once link is established calls to configure collision distance
347d0d8f2a5Srin  * and flow control are called.
348d0d8f2a5Srin  */
349d0d8f2a5Srin int
igc_setup_copper_link_i225(struct igc_hw * hw)350d0d8f2a5Srin igc_setup_copper_link_i225(struct igc_hw *hw)
351d0d8f2a5Srin {
352d0d8f2a5Srin 	uint32_t ctrl, phpm_reg;
353d0d8f2a5Srin 	int ret_val;
354d0d8f2a5Srin 
355d0d8f2a5Srin 	DEBUGFUNC("igc_setup_copper_link_i225");
356d0d8f2a5Srin 
357d0d8f2a5Srin 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
358d0d8f2a5Srin 	ctrl |= IGC_CTRL_SLU;
359d0d8f2a5Srin 	ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
360d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
361d0d8f2a5Srin 
362d0d8f2a5Srin 	phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
363d0d8f2a5Srin 	phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
364d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
365d0d8f2a5Srin 
366d0d8f2a5Srin 	ret_val = igc_setup_copper_link_generic(hw);
367d0d8f2a5Srin 
368d0d8f2a5Srin 	return ret_val;
369d0d8f2a5Srin }
370d0d8f2a5Srin 
371d0d8f2a5Srin /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
372d0d8f2a5Srin  * @hw: pointer to the HW structure
373d0d8f2a5Srin  *
374d0d8f2a5Srin  * Acquire the HW semaphore to access the PHY or NVM
375d0d8f2a5Srin  */
376d0d8f2a5Srin int
igc_get_hw_semaphore_i225(struct igc_hw * hw)377d0d8f2a5Srin igc_get_hw_semaphore_i225(struct igc_hw *hw)
378d0d8f2a5Srin {
379d0d8f2a5Srin 	uint32_t swsm;
380d0d8f2a5Srin 	int timeout = hw->nvm.word_size + 1;
381d0d8f2a5Srin 	int i = 0;
382d0d8f2a5Srin 
383d0d8f2a5Srin 	DEBUGFUNC("igc_get_hw_semaphore_i225");
384d0d8f2a5Srin 
385d0d8f2a5Srin 	/* Get the SW semaphore */
386d0d8f2a5Srin 	while (i < timeout) {
387d0d8f2a5Srin 		swsm = IGC_READ_REG(hw, IGC_SWSM);
388d0d8f2a5Srin 		if (!(swsm & IGC_SWSM_SMBI))
389d0d8f2a5Srin 			break;
390d0d8f2a5Srin 
391d0d8f2a5Srin 		DELAY(50);
392d0d8f2a5Srin 		i++;
393d0d8f2a5Srin 	}
394d0d8f2a5Srin 
395d0d8f2a5Srin 	if (i == timeout) {
396d0d8f2a5Srin 		/* In rare circumstances, the SW semaphore may already be held
397d0d8f2a5Srin 		 * unintentionally. Clear the semaphore once before giving up.
398d0d8f2a5Srin 		 */
399d0d8f2a5Srin 		if (hw->dev_spec._i225.clear_semaphore_once) {
400d0d8f2a5Srin 			hw->dev_spec._i225.clear_semaphore_once = false;
401d0d8f2a5Srin 			igc_put_hw_semaphore_generic(hw);
402d0d8f2a5Srin 			for (i = 0; i < timeout; i++) {
403d0d8f2a5Srin 				swsm = IGC_READ_REG(hw, IGC_SWSM);
404d0d8f2a5Srin 				if (!(swsm & IGC_SWSM_SMBI))
405d0d8f2a5Srin 					break;
406d0d8f2a5Srin 
407d0d8f2a5Srin 				DELAY(50);
408d0d8f2a5Srin 			}
409d0d8f2a5Srin 		}
410d0d8f2a5Srin 
411d0d8f2a5Srin 		/* If we do not have the semaphore here, we have to give up. */
412d0d8f2a5Srin 		if (i == timeout) {
413d0d8f2a5Srin 			DEBUGOUT("Driver can't access device -\n");
414d0d8f2a5Srin 			DEBUGOUT("SMBI bit is set.\n");
415d0d8f2a5Srin 			return -IGC_ERR_NVM;
416d0d8f2a5Srin 		}
417d0d8f2a5Srin 	}
418d0d8f2a5Srin 
419d0d8f2a5Srin 	/* Get the FW semaphore. */
420d0d8f2a5Srin 	for (i = 0; i < timeout; i++) {
421d0d8f2a5Srin 		swsm = IGC_READ_REG(hw, IGC_SWSM);
422d0d8f2a5Srin 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
423d0d8f2a5Srin 
424d0d8f2a5Srin 		/* Semaphore acquired if bit latched */
425d0d8f2a5Srin 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
426d0d8f2a5Srin 			break;
427d0d8f2a5Srin 
428d0d8f2a5Srin 		DELAY(50);
429d0d8f2a5Srin 	}
430d0d8f2a5Srin 
431d0d8f2a5Srin 	if (i == timeout) {
432d0d8f2a5Srin 		/* Release semaphores */
433d0d8f2a5Srin 		igc_put_hw_semaphore_generic(hw);
434d0d8f2a5Srin 		DEBUGOUT("Driver can't access the NVM\n");
435d0d8f2a5Srin 		return -IGC_ERR_NVM;
436d0d8f2a5Srin 	}
437d0d8f2a5Srin 
438d0d8f2a5Srin 	return IGC_SUCCESS;
439d0d8f2a5Srin }
440d0d8f2a5Srin 
441d0d8f2a5Srin /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
442d0d8f2a5Srin  * @hw: pointer to the HW structure
443d0d8f2a5Srin  * @offset: offset of word in the Shadow Ram to read
444d0d8f2a5Srin  * @words: number of words to read
445d0d8f2a5Srin  * @data: word read from the Shadow Ram
446d0d8f2a5Srin  *
447d0d8f2a5Srin  * Reads a 16 bit word from the Shadow Ram using the EERD register.
448d0d8f2a5Srin  * Uses necessary synchronization semaphores.
449d0d8f2a5Srin  */
450d0d8f2a5Srin int
igc_read_nvm_srrd_i225(struct igc_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)451d0d8f2a5Srin igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
452d0d8f2a5Srin     uint16_t *data)
453d0d8f2a5Srin {
454d0d8f2a5Srin 	uint16_t i, count;
455d0d8f2a5Srin 	int status = IGC_SUCCESS;
456d0d8f2a5Srin 
457d0d8f2a5Srin 	DEBUGFUNC("igc_read_nvm_srrd_i225");
458d0d8f2a5Srin 
459d0d8f2a5Srin 	/* We cannot hold synchronization semaphores for too long,
460d0d8f2a5Srin 	 * because of forceful takeover procedure. However it is more efficient
461d0d8f2a5Srin 	 * to read in bursts than synchronizing access for each word.
462d0d8f2a5Srin 	 */
463d0d8f2a5Srin 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
464d0d8f2a5Srin 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
465d0d8f2a5Srin 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
466d0d8f2a5Srin 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
467d0d8f2a5Srin 			status = igc_read_nvm_eerd(hw, offset, count, data + i);
468d0d8f2a5Srin 			hw->nvm.ops.release(hw);
469d0d8f2a5Srin 		} else {
470d0d8f2a5Srin 			status = IGC_ERR_SWFW_SYNC;
471d0d8f2a5Srin 		}
472d0d8f2a5Srin 
473d0d8f2a5Srin 		if (status != IGC_SUCCESS)
474d0d8f2a5Srin 			break;
475d0d8f2a5Srin 	}
476d0d8f2a5Srin 
477d0d8f2a5Srin 	return status;
478d0d8f2a5Srin }
479d0d8f2a5Srin 
480d0d8f2a5Srin /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
481d0d8f2a5Srin  * @hw: pointer to the HW structure
482d0d8f2a5Srin  * @offset: offset within the Shadow RAM to be written to
483d0d8f2a5Srin  * @words: number of words to write
484d0d8f2a5Srin  * @data: 16 bit word(s) to be written to the Shadow RAM
485d0d8f2a5Srin  *
486d0d8f2a5Srin  * Writes data to Shadow RAM at offset using EEWR register.
487d0d8f2a5Srin  *
488d0d8f2a5Srin  * If igc_update_nvm_checksum is not called after this function , the
489d0d8f2a5Srin  * data will not be committed to FLASH and also Shadow RAM will most likely
490d0d8f2a5Srin  * contain an invalid checksum.
491d0d8f2a5Srin  *
492d0d8f2a5Srin  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
493d0d8f2a5Srin  * partially written.
494d0d8f2a5Srin  */
495d0d8f2a5Srin int
igc_write_nvm_srwr_i225(struct igc_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)496d0d8f2a5Srin igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
497d0d8f2a5Srin     uint16_t *data)
498d0d8f2a5Srin {
499d0d8f2a5Srin 	uint16_t i, count;
500d0d8f2a5Srin 	int status = IGC_SUCCESS;
501d0d8f2a5Srin 
502d0d8f2a5Srin 	DEBUGFUNC("igc_write_nvm_srwr_i225");
503d0d8f2a5Srin 
504d0d8f2a5Srin 	/* We cannot hold synchronization semaphores for too long,
505d0d8f2a5Srin 	 * because of forceful takeover procedure. However it is more efficient
506d0d8f2a5Srin 	 * to write in bursts than synchronizing access for each word.
507d0d8f2a5Srin 	 */
508d0d8f2a5Srin 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
509d0d8f2a5Srin 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
510d0d8f2a5Srin 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
511d0d8f2a5Srin 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
512d0d8f2a5Srin 			status = __igc_write_nvm_srwr(hw, offset, count,
513d0d8f2a5Srin 			    data + i);
514d0d8f2a5Srin 			hw->nvm.ops.release(hw);
515d0d8f2a5Srin 		} else
516d0d8f2a5Srin 			status = IGC_ERR_SWFW_SYNC;
517d0d8f2a5Srin 
518d0d8f2a5Srin 		if (status != IGC_SUCCESS)
519d0d8f2a5Srin 			break;
520d0d8f2a5Srin 	}
521d0d8f2a5Srin 
522d0d8f2a5Srin 	return status;
523d0d8f2a5Srin }
524d0d8f2a5Srin 
525d0d8f2a5Srin /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
526d0d8f2a5Srin  * @hw: pointer to the HW structure
527d0d8f2a5Srin  * @offset: offset within the Shadow Ram to be written to
528d0d8f2a5Srin  * @words: number of words to write
529d0d8f2a5Srin  * @data: 16 bit word(s) to be written to the Shadow Ram
530d0d8f2a5Srin  *
531d0d8f2a5Srin  * Writes data to Shadow Ram at offset using EEWR register.
532d0d8f2a5Srin  *
533d0d8f2a5Srin  * If igc_update_nvm_checksum is not called after this function , the
534d0d8f2a5Srin  * Shadow Ram will most likely contain an invalid checksum.
535d0d8f2a5Srin  */
536d0d8f2a5Srin int
__igc_write_nvm_srwr(struct igc_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)537d0d8f2a5Srin __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words,
538d0d8f2a5Srin     uint16_t *data)
539d0d8f2a5Srin {
540d0d8f2a5Srin 	struct igc_nvm_info *nvm = &hw->nvm;
541d0d8f2a5Srin 	uint32_t i, k, eewr = 0;
542d0d8f2a5Srin 	uint32_t attempts = 100000;
543d0d8f2a5Srin 	int ret_val = IGC_SUCCESS;
544d0d8f2a5Srin 
545d0d8f2a5Srin 	DEBUGFUNC("__igc_write_nvm_srwr");
546d0d8f2a5Srin 
547d0d8f2a5Srin 	/* A check for invalid values:  offset too large, too many words,
548d0d8f2a5Srin 	 * too many words for the offset, and not enough words.
549d0d8f2a5Srin 	 */
550d0d8f2a5Srin 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
551d0d8f2a5Srin 	    (words == 0)) {
552d0d8f2a5Srin 		DEBUGOUT("nvm parameter(s) out of bounds\n");
553d0d8f2a5Srin 		ret_val = -IGC_ERR_NVM;
554d0d8f2a5Srin 		goto out;
555d0d8f2a5Srin 	}
556d0d8f2a5Srin 
557d0d8f2a5Srin 	for (i = 0; i < words; i++) {
558d0d8f2a5Srin 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
559d0d8f2a5Srin 		    (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START;
560d0d8f2a5Srin 
561d0d8f2a5Srin 		IGC_WRITE_REG(hw, IGC_SRWR, eewr);
562d0d8f2a5Srin 
563d0d8f2a5Srin 		for (k = 0; k < attempts; k++) {
564d0d8f2a5Srin 			if (IGC_NVM_RW_REG_DONE & IGC_READ_REG(hw, IGC_SRWR)) {
565d0d8f2a5Srin 				ret_val = IGC_SUCCESS;
566d0d8f2a5Srin 				break;
567d0d8f2a5Srin 			}
568d0d8f2a5Srin 			DELAY(5);
569d0d8f2a5Srin 		}
570d0d8f2a5Srin 
571d0d8f2a5Srin 		if (ret_val != IGC_SUCCESS) {
572d0d8f2a5Srin 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
573d0d8f2a5Srin 			break;
574d0d8f2a5Srin 		}
575d0d8f2a5Srin 	}
576d0d8f2a5Srin 
577d0d8f2a5Srin out:
578d0d8f2a5Srin 	return ret_val;
579d0d8f2a5Srin }
580d0d8f2a5Srin 
581d0d8f2a5Srin /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
582d0d8f2a5Srin  * @hw: pointer to the HW structure
583d0d8f2a5Srin  *
584d0d8f2a5Srin  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
585d0d8f2a5Srin  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
586d0d8f2a5Srin  */
587d0d8f2a5Srin int
igc_validate_nvm_checksum_i225(struct igc_hw * hw)588d0d8f2a5Srin igc_validate_nvm_checksum_i225(struct igc_hw *hw)
589d0d8f2a5Srin {
590d0d8f2a5Srin 	int status = IGC_SUCCESS;
591d0d8f2a5Srin 	int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
592d0d8f2a5Srin 
593d0d8f2a5Srin 	DEBUGFUNC("igc_validate_nvm_checksum_i225");
594d0d8f2a5Srin 
595d0d8f2a5Srin 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
596d0d8f2a5Srin 		/* Replace the read function with semaphore grabbing with
597d0d8f2a5Srin 		 * the one that skips this for a while.
598d0d8f2a5Srin 		 * We have semaphore taken already here.
599d0d8f2a5Srin 		 */
600d0d8f2a5Srin 		read_op_ptr = hw->nvm.ops.read;
601d0d8f2a5Srin 		hw->nvm.ops.read = igc_read_nvm_eerd;
602d0d8f2a5Srin 
603d0d8f2a5Srin 		status = igc_validate_nvm_checksum_generic(hw);
604d0d8f2a5Srin 
605d0d8f2a5Srin 		/* Revert original read operation. */
606d0d8f2a5Srin 		hw->nvm.ops.read = read_op_ptr;
607d0d8f2a5Srin 
608d0d8f2a5Srin 		hw->nvm.ops.release(hw);
609d0d8f2a5Srin 	} else {
610d0d8f2a5Srin 		status = IGC_ERR_SWFW_SYNC;
611d0d8f2a5Srin 	}
612d0d8f2a5Srin 
613d0d8f2a5Srin 	return status;
614d0d8f2a5Srin }
615d0d8f2a5Srin 
616d0d8f2a5Srin /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
617d0d8f2a5Srin  * @hw: pointer to the HW structure
618d0d8f2a5Srin  *
619d0d8f2a5Srin  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
620d0d8f2a5Srin  * up to the checksum.  Then calculates the EEPROM checksum and writes the
621d0d8f2a5Srin  * value to the EEPROM. Next commit EEPROM data onto the Flash.
622d0d8f2a5Srin  */
623d0d8f2a5Srin int
igc_update_nvm_checksum_i225(struct igc_hw * hw)624d0d8f2a5Srin igc_update_nvm_checksum_i225(struct igc_hw *hw)
625d0d8f2a5Srin {
626d0d8f2a5Srin 	uint16_t checksum = 0;
627d0d8f2a5Srin 	uint16_t i, nvm_data;
628d0d8f2a5Srin 	int ret_val;
629d0d8f2a5Srin 
630d0d8f2a5Srin 	DEBUGFUNC("igc_update_nvm_checksum_i225");
631d0d8f2a5Srin 
632d0d8f2a5Srin 	/* Read the first word from the EEPROM. If this times out or fails, do
633d0d8f2a5Srin 	 * not continue or we could be in for a very long wait while every
634d0d8f2a5Srin 	 * EEPROM read fails
635d0d8f2a5Srin 	 */
636d0d8f2a5Srin 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
637d0d8f2a5Srin 	if (ret_val != IGC_SUCCESS) {
638d0d8f2a5Srin 		DEBUGOUT("EEPROM read failed\n");
639d0d8f2a5Srin 		goto out;
640d0d8f2a5Srin 	}
641d0d8f2a5Srin 
642d0d8f2a5Srin 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
643d0d8f2a5Srin 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
644d0d8f2a5Srin 		 * because we do not want to take the synchronization
645d0d8f2a5Srin 		 * semaphores twice here.
646d0d8f2a5Srin 		 */
647d0d8f2a5Srin 
648d0d8f2a5Srin 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
649d0d8f2a5Srin 			ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
650d0d8f2a5Srin 			if (ret_val) {
651d0d8f2a5Srin 				hw->nvm.ops.release(hw);
652d0d8f2a5Srin 				DEBUGOUT("NVM Read Error while updating\n");
653d0d8f2a5Srin 				DEBUGOUT("checksum.\n");
654d0d8f2a5Srin 				goto out;
655d0d8f2a5Srin 			}
656d0d8f2a5Srin 			checksum += nvm_data;
657d0d8f2a5Srin 		}
658d0d8f2a5Srin 		checksum = (uint16_t)NVM_SUM - checksum;
659d0d8f2a5Srin 		ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
660d0d8f2a5Srin 		    &checksum);
661d0d8f2a5Srin 		if (ret_val != IGC_SUCCESS) {
662d0d8f2a5Srin 			hw->nvm.ops.release(hw);
663d0d8f2a5Srin 			DEBUGOUT("NVM Write Error while updating checksum.\n");
664d0d8f2a5Srin 			goto out;
665d0d8f2a5Srin 		}
666d0d8f2a5Srin 
667d0d8f2a5Srin 		hw->nvm.ops.release(hw);
668d0d8f2a5Srin 
669d0d8f2a5Srin 		ret_val = igc_update_flash_i225(hw);
670d0d8f2a5Srin 	} else {
671d0d8f2a5Srin 		ret_val = IGC_ERR_SWFW_SYNC;
672d0d8f2a5Srin 	}
673d0d8f2a5Srin out:
674d0d8f2a5Srin 	return ret_val;
675d0d8f2a5Srin }
676d0d8f2a5Srin 
677d0d8f2a5Srin /* igc_get_flash_presence_i225 - Check if flash device is detected.
678d0d8f2a5Srin  * @hw: pointer to the HW structure
679d0d8f2a5Srin  */
680d0d8f2a5Srin bool
igc_get_flash_presence_i225(struct igc_hw * hw)681d0d8f2a5Srin igc_get_flash_presence_i225(struct igc_hw *hw)
682d0d8f2a5Srin {
683d0d8f2a5Srin 	uint32_t eec = 0;
684d0d8f2a5Srin 	bool ret_val = false;
685d0d8f2a5Srin 
686d0d8f2a5Srin 	DEBUGFUNC("igc_get_flash_presence_i225");
687d0d8f2a5Srin 
688d0d8f2a5Srin 	eec = IGC_READ_REG(hw, IGC_EECD);
689d0d8f2a5Srin 
690d0d8f2a5Srin 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
691d0d8f2a5Srin 		ret_val = true;
692d0d8f2a5Srin 
693d0d8f2a5Srin 	return ret_val;
694d0d8f2a5Srin }
695d0d8f2a5Srin 
696d0d8f2a5Srin /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
697d0d8f2a5Srin  * Counter in FLSWCNT register.
698d0d8f2a5Srin  *
699d0d8f2a5Srin  * @hw: pointer to the HW structure
700d0d8f2a5Srin  * @burst_counter: size in bytes of the Flash burst to read or write
701d0d8f2a5Srin  */
702d0d8f2a5Srin int
igc_set_flsw_flash_burst_counter_i225(struct igc_hw * hw,uint32_t burst_counter)703d0d8f2a5Srin igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter)
704d0d8f2a5Srin {
705d0d8f2a5Srin 	int ret_val = IGC_SUCCESS;
706d0d8f2a5Srin 
707d0d8f2a5Srin 	DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
708d0d8f2a5Srin 
709d0d8f2a5Srin 	/* Validate input data */
710d0d8f2a5Srin 	if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
711d0d8f2a5Srin 		/* Write FLSWCNT - burst counter */
712d0d8f2a5Srin 		IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
713d0d8f2a5Srin 	} else {
714d0d8f2a5Srin 		ret_val = IGC_ERR_INVALID_ARGUMENT;
715d0d8f2a5Srin 	}
716d0d8f2a5Srin 
717d0d8f2a5Srin 	return ret_val;
718d0d8f2a5Srin }
719d0d8f2a5Srin 
720d0d8f2a5Srin 
721d0d8f2a5Srin /* igc_write_erase_flash_command_i225 - write/erase to a sector
722d0d8f2a5Srin  * region on a given address.
723d0d8f2a5Srin  *
724d0d8f2a5Srin  * @hw: pointer to the HW structure
725d0d8f2a5Srin  * @opcode: opcode to be used for the write command
726d0d8f2a5Srin  * @address: the offset to write into the FLASH image
727d0d8f2a5Srin  */
728d0d8f2a5Srin int
igc_write_erase_flash_command_i225(struct igc_hw * hw,uint32_t opcode,uint32_t address)729d0d8f2a5Srin igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode,
730d0d8f2a5Srin     uint32_t address)
731d0d8f2a5Srin {
732d0d8f2a5Srin 	uint32_t flswctl = 0;
733d0d8f2a5Srin 	int timeout = IGC_NVM_GRANT_ATTEMPTS;
734d0d8f2a5Srin 	int ret_val = IGC_SUCCESS;
735d0d8f2a5Srin 
736d0d8f2a5Srin 	DEBUGFUNC("igc_write_erase_flash_command_i225");
737d0d8f2a5Srin 
738d0d8f2a5Srin 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
739d0d8f2a5Srin 	/* Polling done bit on FLSWCTL register */
740d0d8f2a5Srin 	while (timeout) {
741d0d8f2a5Srin 		if (flswctl & IGC_FLSWCTL_DONE)
742d0d8f2a5Srin 			break;
743d0d8f2a5Srin 		DELAY(5);
744d0d8f2a5Srin 		flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
745d0d8f2a5Srin 		timeout--;
746d0d8f2a5Srin 	}
747d0d8f2a5Srin 
748d0d8f2a5Srin 	if (!timeout) {
749d0d8f2a5Srin 		DEBUGOUT("Flash transaction was not done\n");
750d0d8f2a5Srin 		return -IGC_ERR_NVM;
751d0d8f2a5Srin 	}
752d0d8f2a5Srin 
753d0d8f2a5Srin 	/* Build and issue command on FLSWCTL register */
754d0d8f2a5Srin 	flswctl = address | opcode;
755d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
756d0d8f2a5Srin 
757d0d8f2a5Srin 	/* Check if issued command is valid on FLSWCTL register */
758d0d8f2a5Srin 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
759d0d8f2a5Srin 	if (!(flswctl & IGC_FLSWCTL_CMDV)) {
760d0d8f2a5Srin 		DEBUGOUT("Write flash command failed\n");
761d0d8f2a5Srin 		ret_val = IGC_ERR_INVALID_ARGUMENT;
762d0d8f2a5Srin 	}
763d0d8f2a5Srin 
764d0d8f2a5Srin 	return ret_val;
765d0d8f2a5Srin }
766d0d8f2a5Srin 
767d0d8f2a5Srin /* igc_update_flash_i225 - Commit EEPROM to the flash
768d0d8f2a5Srin  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
769d0d8f2a5Srin  * register makes the FW load the internal shadow RAM into the flash.
770d0d8f2a5Srin  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
771d0d8f2a5Srin  * then FW is not active so the SW is responsible shadow RAM dump.
772d0d8f2a5Srin  *
773d0d8f2a5Srin  * @hw: pointer to the HW structure
774d0d8f2a5Srin  */
775d0d8f2a5Srin int
igc_update_flash_i225(struct igc_hw * hw)776d0d8f2a5Srin igc_update_flash_i225(struct igc_hw *hw)
777d0d8f2a5Srin {
778d0d8f2a5Srin 	uint32_t block_sw_protect = 1;
779d0d8f2a5Srin 	uint32_t i, flup, fw_valid_bit;
780d0d8f2a5Srin 	uint16_t current_offset;
781d0d8f2a5Srin 	uint16_t base_address = 0x0;
782d0d8f2a5Srin 	uint16_t current_offset_data = 0;
783d0d8f2a5Srin 	int ret_val = 0;
784d0d8f2a5Srin 
785d0d8f2a5Srin 	DEBUGFUNC("igc_update_flash_i225");
786d0d8f2a5Srin 
787d0d8f2a5Srin 	block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
788d0d8f2a5Srin 	    IGC_FLSECU_BLK_SW_ACCESS_I225;
789d0d8f2a5Srin 
790d0d8f2a5Srin 	fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & IGC_FWSM_FW_VALID_I225;
791d0d8f2a5Srin 	if (fw_valid_bit) {
792d0d8f2a5Srin 		ret_val = igc_pool_flash_update_done_i225(hw);
793d0d8f2a5Srin 		if (ret_val == -IGC_ERR_NVM) {
794d0d8f2a5Srin 			DEBUGOUT("Flash update time out\n");
795d0d8f2a5Srin 			goto out;
796d0d8f2a5Srin 		}
797d0d8f2a5Srin 
798d0d8f2a5Srin 		flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
799d0d8f2a5Srin 		IGC_WRITE_REG(hw, IGC_EECD, flup);
800d0d8f2a5Srin 
801d0d8f2a5Srin 		ret_val = igc_pool_flash_update_done_i225(hw);
802d0d8f2a5Srin 		if (ret_val == IGC_SUCCESS)
803d0d8f2a5Srin 			DEBUGOUT("Flash update complete\n");
804d0d8f2a5Srin 		else
805d0d8f2a5Srin 			DEBUGOUT("Flash update time out\n");
806d0d8f2a5Srin 	} else if (!block_sw_protect) {
807d0d8f2a5Srin 		/* FW is not active and security protection is disabled.
808d0d8f2a5Srin 		 * therefore, SW is in charge of shadow RAM dump.
809d0d8f2a5Srin 		 * Check which sector is valid. if sector 0 is valid,
810d0d8f2a5Srin 		 * base address remains 0x0. otherwise, sector 1 is
811d0d8f2a5Srin 		 * valid and its base address is 0x1000
812d0d8f2a5Srin 		 */
813d0d8f2a5Srin 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
814d0d8f2a5Srin 			base_address = 0x1000;
815d0d8f2a5Srin 
816d0d8f2a5Srin 		/* Valid sector erase */
817d0d8f2a5Srin 		ret_val = igc_write_erase_flash_command_i225(hw,
818d0d8f2a5Srin 		    IGC_I225_ERASE_CMD_OPCODE, base_address);
819d0d8f2a5Srin 		if (!ret_val) {
820d0d8f2a5Srin 			DEBUGOUT("Sector erase failed\n");
821d0d8f2a5Srin 			goto out;
822d0d8f2a5Srin 		}
823d0d8f2a5Srin 
824d0d8f2a5Srin 		current_offset = base_address;
825d0d8f2a5Srin 
826d0d8f2a5Srin 		/* Write */
827d0d8f2a5Srin 		for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
828d0d8f2a5Srin 			/* Set burst write length */
829d0d8f2a5Srin 			ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
830d0d8f2a5Srin 			    0x2);
831d0d8f2a5Srin 			if (ret_val != IGC_SUCCESS)
832d0d8f2a5Srin 				break;
833d0d8f2a5Srin 
834d0d8f2a5Srin 			/* Set address and opcode */
835d0d8f2a5Srin 			ret_val = igc_write_erase_flash_command_i225(hw,
836d0d8f2a5Srin 			    IGC_I225_WRITE_CMD_OPCODE, 2 * current_offset);
837d0d8f2a5Srin 			if (ret_val != IGC_SUCCESS)
838d0d8f2a5Srin 				break;
839d0d8f2a5Srin 
840d0d8f2a5Srin 			ret_val = igc_read_nvm_eerd(hw, current_offset, 1,
841d0d8f2a5Srin 			    &current_offset_data);
842d0d8f2a5Srin 			if (ret_val) {
843d0d8f2a5Srin 				DEBUGOUT("Failed to read from EEPROM\n");
844d0d8f2a5Srin 				goto out;
845d0d8f2a5Srin 			}
846d0d8f2a5Srin 
847d0d8f2a5Srin 			/* Write CurrentOffseData to FLSWDATA register */
848d0d8f2a5Srin 			IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
849d0d8f2a5Srin 			    current_offset_data);
850d0d8f2a5Srin 			current_offset++;
851d0d8f2a5Srin 
852d0d8f2a5Srin 			/* Wait till operation has finished */
853d0d8f2a5Srin 			ret_val = igc_poll_eerd_eewr_done(hw,
854d0d8f2a5Srin 			    IGC_NVM_POLL_READ);
855d0d8f2a5Srin 			if (ret_val)
856d0d8f2a5Srin 				break;
857d0d8f2a5Srin 
858d0d8f2a5Srin 			DELAY(1000);
859d0d8f2a5Srin 		}
860d0d8f2a5Srin 	}
861d0d8f2a5Srin out:
862d0d8f2a5Srin 	return ret_val;
863d0d8f2a5Srin }
864d0d8f2a5Srin 
865d0d8f2a5Srin /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
866d0d8f2a5Srin  * @hw: pointer to the HW structure
867d0d8f2a5Srin  */
868d0d8f2a5Srin int
igc_pool_flash_update_done_i225(struct igc_hw * hw)869d0d8f2a5Srin igc_pool_flash_update_done_i225(struct igc_hw *hw)
870d0d8f2a5Srin {
871d0d8f2a5Srin 	uint32_t i, reg;
872d0d8f2a5Srin 	int ret_val = -IGC_ERR_NVM;
873d0d8f2a5Srin 
874d0d8f2a5Srin 	DEBUGFUNC("igc_pool_flash_update_done_i225");
875d0d8f2a5Srin 
876d0d8f2a5Srin 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
877d0d8f2a5Srin 		reg = IGC_READ_REG(hw, IGC_EECD);
878d0d8f2a5Srin 		if (reg & IGC_EECD_FLUDONE_I225) {
879d0d8f2a5Srin 			ret_val = IGC_SUCCESS;
880d0d8f2a5Srin 			break;
881d0d8f2a5Srin 		}
882d0d8f2a5Srin 		DELAY(5);
883d0d8f2a5Srin 	}
884d0d8f2a5Srin 
885d0d8f2a5Srin 	return ret_val;
886d0d8f2a5Srin }
887d0d8f2a5Srin 
888d0d8f2a5Srin /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
889d0d8f2a5Srin  * @hw: pointer to the HW structure
890d0d8f2a5Srin  * @link: bool indicating link status
891d0d8f2a5Srin  *
892d0d8f2a5Srin  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
893d0d8f2a5Srin  * settings, otherwise specify that there is no LTR requirement.
894d0d8f2a5Srin  */
895d0d8f2a5Srin int
igc_set_ltr_i225(struct igc_hw * hw,bool link)896d0d8f2a5Srin igc_set_ltr_i225(struct igc_hw *hw, bool link)
897d0d8f2a5Srin {
898d0d8f2a5Srin 	uint16_t speed, duplex;
899d0d8f2a5Srin 	uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
900d0d8f2a5Srin 	int size;
901d0d8f2a5Srin 
902d0d8f2a5Srin 	DEBUGFUNC("igc_set_ltr_i225");
903d0d8f2a5Srin 
904d0d8f2a5Srin 	/* If we do not have link, LTR thresholds are zero. */
905d0d8f2a5Srin 	if (link) {
906d0d8f2a5Srin 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
907d0d8f2a5Srin 
908d0d8f2a5Srin 		/* Check if using copper interface with EEE enabled or if the
909d0d8f2a5Srin 		 * link speed is 10 Mbps.
910d0d8f2a5Srin 		 */
911d0d8f2a5Srin 		if ((hw->phy.media_type == igc_media_type_copper) &&
912d0d8f2a5Srin 		    !(hw->dev_spec._i225.eee_disable) &&
913d0d8f2a5Srin 		     (speed != SPEED_10)) {
914d0d8f2a5Srin 			/* EEE enabled, so send LTRMAX threshold. */
915d0d8f2a5Srin 			ltrc = IGC_READ_REG(hw, IGC_LTRC) | IGC_LTRC_EEEMS_EN;
916d0d8f2a5Srin 			IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
917d0d8f2a5Srin 
918d0d8f2a5Srin 			/* Calculate tw_system (nsec). */
919d0d8f2a5Srin 			if (speed == SPEED_100) {
920d0d8f2a5Srin 				tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
921d0d8f2a5Srin 				    IGC_TW_SYSTEM_100_MASK) >>
922d0d8f2a5Srin 				    IGC_TW_SYSTEM_100_SHIFT) * 500;
923d0d8f2a5Srin 			} else {
924d0d8f2a5Srin 				tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
925d0d8f2a5Srin 				    IGC_TW_SYSTEM_1000_MASK) * 500;
926d0d8f2a5Srin 				}
927d0d8f2a5Srin 		} else {
928d0d8f2a5Srin 			tw_system = 0;
929d0d8f2a5Srin 			}
930d0d8f2a5Srin 
931d0d8f2a5Srin 		/* Get the Rx packet buffer size. */
932d0d8f2a5Srin 		size = IGC_READ_REG(hw, IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK;
933d0d8f2a5Srin 
934d0d8f2a5Srin 		/* Calculations vary based on DMAC settings. */
935d0d8f2a5Srin 		if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
936d0d8f2a5Srin 			size -= (IGC_READ_REG(hw, IGC_DMACR) &
937d0d8f2a5Srin 			    IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT;
938d0d8f2a5Srin 			/* Convert size to bits. */
939d0d8f2a5Srin 			size *= 1024 * 8;
940d0d8f2a5Srin 		} else {
941d0d8f2a5Srin 			/* Convert size to bytes, subtract the MTU, and then
942d0d8f2a5Srin 			 * convert the size to bits.
943d0d8f2a5Srin 			 */
944d0d8f2a5Srin 			size *= 1024;
945d0d8f2a5Srin 			size -= hw->dev_spec._i225.mtu;
946d0d8f2a5Srin 			size *= 8;
947d0d8f2a5Srin 		}
948d0d8f2a5Srin 
949d0d8f2a5Srin 		if (size < 0) {
950d0d8f2a5Srin 			DEBUGOUT1("Invalid effective Rx buffer size %d\n",
951d0d8f2a5Srin 			    size);
952d0d8f2a5Srin 			return -IGC_ERR_CONFIG;
953d0d8f2a5Srin 		}
954d0d8f2a5Srin 
955d0d8f2a5Srin 		/* Calculate the thresholds. Since speed is in Mbps, simplify
956d0d8f2a5Srin 		 * the calculation by multiplying size/speed by 1000 for result
957d0d8f2a5Srin 		 * to be in nsec before dividing by the scale in nsec. Set the
958d0d8f2a5Srin 		 * scale such that the LTR threshold fits in the register.
959d0d8f2a5Srin 		 */
960d0d8f2a5Srin 		ltr_min = (1000 * size) / speed;
961d0d8f2a5Srin 		ltr_max = ltr_min + tw_system;
962d0d8f2a5Srin 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
963d0d8f2a5Srin 		    IGC_LTRMINV_SCALE_32768;
964d0d8f2a5Srin 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
965d0d8f2a5Srin 		    IGC_LTRMAXV_SCALE_32768;
966d0d8f2a5Srin 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
967d0d8f2a5Srin 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
968d0d8f2a5Srin 
969d0d8f2a5Srin 		/* Only write the LTR thresholds if they differ from before. */
970d0d8f2a5Srin 		ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
971d0d8f2a5Srin 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
972d0d8f2a5Srin 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
973d0d8f2a5Srin 			    (scale_min << IGC_LTRMINV_SCALE_SHIFT);
974d0d8f2a5Srin 			IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
975d0d8f2a5Srin 		}
976d0d8f2a5Srin 
977d0d8f2a5Srin 		ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
978d0d8f2a5Srin 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
979d0d8f2a5Srin 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
980d0d8f2a5Srin 			    (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
981d0d8f2a5Srin 			IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
982d0d8f2a5Srin 		}
983d0d8f2a5Srin 	}
984d0d8f2a5Srin 
985d0d8f2a5Srin 	return IGC_SUCCESS;
986d0d8f2a5Srin }
987d0d8f2a5Srin 
988d0d8f2a5Srin /* igc_check_for_link_i225 - Check for link
989d0d8f2a5Srin  * @hw: pointer to the HW structure
990d0d8f2a5Srin  *
991d0d8f2a5Srin  * Checks to see of the link status of the hardware has changed.  If a
992d0d8f2a5Srin  * change in link status has been detected, then we read the PHY registers
993d0d8f2a5Srin  * to get the current speed/duplex if link exists.
994d0d8f2a5Srin  */
995d0d8f2a5Srin int
igc_check_for_link_i225(struct igc_hw * hw)996d0d8f2a5Srin igc_check_for_link_i225(struct igc_hw *hw)
997d0d8f2a5Srin {
998d0d8f2a5Srin 	struct igc_mac_info *mac = &hw->mac;
999d0d8f2a5Srin 	int ret_val;
1000d0d8f2a5Srin 	bool link = false;
1001d0d8f2a5Srin 
1002d0d8f2a5Srin 	DEBUGFUNC("igc_check_for_link_i225");
1003d0d8f2a5Srin 
1004d0d8f2a5Srin 	/* We only want to go out to the PHY registers to see if
1005d0d8f2a5Srin 	 * Auto-Neg has completed and/or if our link status has
1006d0d8f2a5Srin 	 * changed.  The get_link_status flag is set upon receiving
1007d0d8f2a5Srin 	 * a Link Status Change or Rx Sequence Error interrupt.
1008d0d8f2a5Srin 	 */
1009d0d8f2a5Srin 	if (!mac->get_link_status) {
1010d0d8f2a5Srin 		ret_val = IGC_SUCCESS;
1011d0d8f2a5Srin 		goto out;
1012d0d8f2a5Srin 	}
1013d0d8f2a5Srin 
1014d0d8f2a5Srin 	/* First we want to see if the MII Status Register reports
1015d0d8f2a5Srin 	 * link.  If so, then we want to get the current speed/duplex
1016d0d8f2a5Srin 	 * of the PHY.
1017d0d8f2a5Srin 	 */
1018d0d8f2a5Srin 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1019d0d8f2a5Srin 	if (ret_val)
1020d0d8f2a5Srin 		goto out;
1021d0d8f2a5Srin 
1022d0d8f2a5Srin 	if (!link)
1023d0d8f2a5Srin 		goto out; /* No link detected */
1024d0d8f2a5Srin 
1025d0d8f2a5Srin 	/* First we want to see if the MII Status Register reports
1026d0d8f2a5Srin 	 * link.  If so, then we want to get the current speed/duplex
1027d0d8f2a5Srin 	 * of the PHY.
1028d0d8f2a5Srin 	 */
1029d0d8f2a5Srin 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1030d0d8f2a5Srin 	if (ret_val)
1031d0d8f2a5Srin 		goto out;
1032d0d8f2a5Srin 
1033d0d8f2a5Srin 	if (!link)
1034d0d8f2a5Srin 		goto out; /* No link detected */
1035d0d8f2a5Srin 
1036d0d8f2a5Srin 	mac->get_link_status = false;
1037d0d8f2a5Srin 
1038d0d8f2a5Srin 	/* Check if there was DownShift, must be checked
1039d0d8f2a5Srin 	 * immediately after link-up
1040d0d8f2a5Srin 	 */
1041d0d8f2a5Srin 	igc_check_downshift_generic(hw);
1042d0d8f2a5Srin 
1043d0d8f2a5Srin 	/* If we are forcing speed/duplex, then we simply return since
1044d0d8f2a5Srin 	 * we have already determined whether we have link or not.
1045d0d8f2a5Srin 	 */
1046d0d8f2a5Srin 	if (!mac->autoneg)
1047d0d8f2a5Srin 		goto out;
1048d0d8f2a5Srin 
1049d0d8f2a5Srin 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1050d0d8f2a5Srin 	 * of MAC speed/duplex configuration.  So we only need to
1051d0d8f2a5Srin 	 * configure Collision Distance in the MAC.
1052d0d8f2a5Srin 	 */
1053d0d8f2a5Srin 	mac->ops.config_collision_dist(hw);
1054d0d8f2a5Srin 
1055d0d8f2a5Srin 	/* Configure Flow Control now that Auto-Neg has completed.
1056d0d8f2a5Srin 	 * First, we need to restore the desired flow control
1057d0d8f2a5Srin 	 * settings because we may have had to re-autoneg with a
1058d0d8f2a5Srin 	 * different link partner.
1059d0d8f2a5Srin 	 */
1060d0d8f2a5Srin 	ret_val = igc_config_fc_after_link_up_generic(hw);
1061d0d8f2a5Srin 	if (ret_val)
1062d0d8f2a5Srin 		DEBUGOUT("Error configuring flow control\n");
1063d0d8f2a5Srin out:
1064d0d8f2a5Srin 	/* Now that we are aware of our link settings, we can set the LTR
1065d0d8f2a5Srin 	 * thresholds.
1066d0d8f2a5Srin 	 */
1067d0d8f2a5Srin 	ret_val = igc_set_ltr_i225(hw, link);
1068d0d8f2a5Srin 
1069d0d8f2a5Srin 	return ret_val;
1070d0d8f2a5Srin }
1071d0d8f2a5Srin 
1072d0d8f2a5Srin /* igc_init_function_pointers_i225 - Init func ptrs.
1073d0d8f2a5Srin  * @hw: pointer to the HW structure
1074d0d8f2a5Srin  *
1075d0d8f2a5Srin  * Called to initialize all function pointers and parameters.
1076d0d8f2a5Srin  */
1077d0d8f2a5Srin void
igc_init_function_pointers_i225(struct igc_hw * hw)1078d0d8f2a5Srin igc_init_function_pointers_i225(struct igc_hw *hw)
1079d0d8f2a5Srin {
1080d0d8f2a5Srin 	igc_init_mac_ops_generic(hw);
1081d0d8f2a5Srin 	igc_init_phy_ops_generic(hw);
1082d0d8f2a5Srin 	igc_init_nvm_ops_generic(hw);
1083d0d8f2a5Srin 	hw->mac.ops.init_params = igc_init_mac_params_i225;
1084d0d8f2a5Srin 	hw->nvm.ops.init_params = igc_init_nvm_params_i225;
1085d0d8f2a5Srin 	hw->phy.ops.init_params = igc_init_phy_params_i225;
1086d0d8f2a5Srin }
1087d0d8f2a5Srin 
1088d0d8f2a5Srin /* igc_init_hw_i225 - Init hw for I225
1089d0d8f2a5Srin  * @hw: pointer to the HW structure
1090d0d8f2a5Srin  *
1091d0d8f2a5Srin  * Called to initialize hw for i225 hw family.
1092d0d8f2a5Srin  */
1093d0d8f2a5Srin int
igc_init_hw_i225(struct igc_hw * hw)1094d0d8f2a5Srin igc_init_hw_i225(struct igc_hw *hw)
1095d0d8f2a5Srin {
1096d0d8f2a5Srin 	int ret_val;
1097d0d8f2a5Srin 
1098d0d8f2a5Srin 	DEBUGFUNC("igc_init_hw_i225");
1099d0d8f2a5Srin 
1100d0d8f2a5Srin 	ret_val = igc_init_hw_base(hw);
1101d0d8f2a5Srin 	return ret_val;
1102d0d8f2a5Srin }
1103d0d8f2a5Srin 
1104d0d8f2a5Srin /**
1105d0d8f2a5Srin  *  igc_set_eee_i225 - Enable/disable EEE support
1106d0d8f2a5Srin  *  @hw: pointer to the HW structure
1107d0d8f2a5Srin  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
1108d0d8f2a5Srin  *  @adv1G: boolean flag enabling 1G EEE advertisement
1109d0d8f2a5Srin  *  @adv100M: boolean flag enabling 100M EEE advertisement
1110d0d8f2a5Srin  *
1111d0d8f2a5Srin  *  Enable/disable EEE based on setting in dev_spec structure.
1112d0d8f2a5Srin  *
1113d0d8f2a5Srin  **/
1114d0d8f2a5Srin int
igc_set_eee_i225(struct igc_hw * hw,bool adv2p5G,bool adv1G,bool adv100M)1115d0d8f2a5Srin igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
1116d0d8f2a5Srin     bool adv100M)
1117d0d8f2a5Srin {
1118d0d8f2a5Srin 	uint32_t ipcnfg, eeer;
1119d0d8f2a5Srin 
1120d0d8f2a5Srin 	DEBUGFUNC("igc_set_eee_i225");
1121d0d8f2a5Srin 
1122d0d8f2a5Srin 	if (hw->mac.type != igc_i225 ||
1123d0d8f2a5Srin 	    hw->phy.media_type != igc_media_type_copper)
1124d0d8f2a5Srin 		goto out;
1125d0d8f2a5Srin 	ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
1126d0d8f2a5Srin 	eeer = IGC_READ_REG(hw, IGC_EEER);
1127d0d8f2a5Srin 
1128d0d8f2a5Srin 	/* enable or disable per user setting */
1129d0d8f2a5Srin 	if (!(hw->dev_spec._i225.eee_disable)) {
1130d0d8f2a5Srin 		uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
1131d0d8f2a5Srin 
1132d0d8f2a5Srin 		if (adv100M)
1133d0d8f2a5Srin 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
1134d0d8f2a5Srin 		else
1135d0d8f2a5Srin 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
1136d0d8f2a5Srin 
1137d0d8f2a5Srin 		if (adv1G)
1138d0d8f2a5Srin 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
1139d0d8f2a5Srin 		else
1140d0d8f2a5Srin 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
1141d0d8f2a5Srin 
1142d0d8f2a5Srin 		if (adv2p5G)
1143d0d8f2a5Srin 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
1144d0d8f2a5Srin 		else
1145d0d8f2a5Srin 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
1146d0d8f2a5Srin 
1147d0d8f2a5Srin 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1148d0d8f2a5Srin 			IGC_EEER_LPI_FC);
1149d0d8f2a5Srin 
1150d0d8f2a5Srin 		/* This bit should not be set in normal operation. */
1151d0d8f2a5Srin 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
1152d0d8f2a5Srin 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
1153d0d8f2a5Srin 	} else {
1154d0d8f2a5Srin 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
1155d0d8f2a5Srin 			IGC_IPCNFG_EEE_100M_AN);
1156d0d8f2a5Srin 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1157d0d8f2a5Srin 			IGC_EEER_LPI_FC);
1158d0d8f2a5Srin 	}
1159d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
1160d0d8f2a5Srin 	IGC_WRITE_REG(hw, IGC_EEER, eeer);
1161d0d8f2a5Srin 	IGC_READ_REG(hw, IGC_IPCNFG);
1162d0d8f2a5Srin 	IGC_READ_REG(hw, IGC_EEER);
1163d0d8f2a5Srin out:
1164d0d8f2a5Srin 
1165d0d8f2a5Srin 	return IGC_SUCCESS;
1166d0d8f2a5Srin }
1167