xref: /netbsd-src/sys/dev/pci/igc/if_igc.c (revision e5014a45d857e6639905eec7f40943a207fed007)
1 /*	$NetBSD: if_igc.c,v 1.9 2023/12/20 18:09:19 skrll Exp $	*/
2 /*	$OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $	*/
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
7  * All rights reserved.
8  * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.9 2023/12/20 18:09:19 skrll Exp $");
34 
35 #ifdef _KERNEL_OPT
36 #include "opt_if_igc.h"
37 #if 0 /* notyet */
38 #include "vlan.h"
39 #endif
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/cpu.h>
46 #include <sys/device.h>
47 #include <sys/endian.h>
48 #include <sys/intr.h>
49 #include <sys/interrupt.h>
50 #include <sys/kernel.h>
51 #include <sys/kmem.h>
52 #include <sys/mbuf.h>
53 #include <sys/mutex.h>
54 #include <sys/socket.h>
55 #include <sys/workqueue.h>
56 #include <sys/xcall.h>
57 
58 #include <net/bpf.h>
59 #include <net/if.h>
60 #include <net/if_ether.h>
61 #include <net/if_media.h>
62 #include <net/if_vlanvar.h>
63 #include <net/rss_config.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip6.h>
68 #include <netinet/tcp.h>
69 
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcidevs.h>
73 
74 #include <dev/pci/igc/if_igc.h>
75 #include <dev/pci/igc/igc_evcnt.h>
76 #include <dev/pci/igc/igc_hw.h>
77 #include <dev/mii/miivar.h>
78 
79 #define IGC_WORKQUEUE_PRI	PRI_SOFTNET
80 
81 #ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
82 #define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT	0
83 #endif
84 #ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
85 #define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT	0
86 #endif
87 
88 #ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
89 #define IGC_RX_PROCESS_LIMIT_DEFAULT		256
90 #endif
91 #ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
92 #define IGC_TX_PROCESS_LIMIT_DEFAULT		256
93 #endif
94 
95 #define	htolem32(p, x)	(*((uint32_t *)(p)) = htole32(x))
96 #define	htolem64(p, x)	(*((uint64_t *)(p)) = htole64(x))
97 
98 static const struct igc_product {
99 	pci_vendor_id_t		igcp_vendor;
100 	pci_product_id_t	igcp_product;
101 	const char		*igcp_name;
102 } igc_products[] = {
103 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
104 	    "Intel(R) Ethernet Controller I225-IT(2)" },
105 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
106 	    "Intel(R) Ethernet Controller I226-LM" },
107 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
108 	    "Intel(R) Ethernet Controller I226-V" },
109 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
110 	    "Intel(R) Ethernet Controller I226-IT" },
111 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
112 	    "Intel(R) Ethernet Controller I221-V" },
113 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
114 	    "Intel(R) Ethernet Controller I226(blankNVM)" },
115 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
116 	    "Intel(R) Ethernet Controller I225-LM" },
117 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
118 	    "Intel(R) Ethernet Controller I225-V" },
119 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
120 	    "Intel(R) Ethernet Controller I220-V" },
121 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
122 	    "Intel(R) Ethernet Controller I225-I" },
123 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
124 	    "Intel(R) Ethernet Controller I225(blankNVM)" },
125 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
126 	    "Intel(R) Ethernet Controller I225-K" },
127 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
128 	    "Intel(R) Ethernet Controller I225-K(2)" },
129 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
130 	    "Intel(R) Ethernet Controller I226-K" },
131 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
132 	    "Intel(R) Ethernet Controller I225-LMvP(2)" },
133 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
134 	    "Intel(R) Ethernet Controller I226-LMvP" },
135 	{ 0, 0, NULL },
136 };
137 
138 #define	IGC_DF_CFG	0x1
139 #define	IGC_DF_TX	0x2
140 #define	IGC_DF_RX	0x4
141 #define	IGC_DF_MISC	0x8
142 
143 #ifdef IGC_DEBUG_FLAGS
144 int igc_debug_flags = IGC_DEBUG_FLAGS;
145 #else
146 int igc_debug_flags = 0;
147 #endif
148 
149 #define	DPRINTF(flag, fmt, args...)		do {			\
150 	if (igc_debug_flags & (IGC_DF_ ## flag))			\
151 		printf("%s: %d: " fmt, __func__, __LINE__, ##args);	\
152     } while (0)
153 
154 /*********************************************************************
155  *  Function Prototypes
156  *********************************************************************/
157 static int	igc_match(device_t, cfdata_t, void *);
158 static void	igc_attach(device_t, device_t, void *);
159 static int	igc_detach(device_t, int);
160 
161 static void	igc_identify_hardware(struct igc_softc *);
162 static int	igc_adjust_nqueues(struct igc_softc *);
163 static int	igc_allocate_pci_resources(struct igc_softc *);
164 static int	igc_allocate_interrupts(struct igc_softc *);
165 static int	igc_allocate_queues(struct igc_softc *);
166 static void	igc_free_pci_resources(struct igc_softc *);
167 static void	igc_free_interrupts(struct igc_softc *);
168 static void	igc_free_queues(struct igc_softc *);
169 static void	igc_reset(struct igc_softc *);
170 static void	igc_init_dmac(struct igc_softc *, uint32_t);
171 static int	igc_setup_interrupts(struct igc_softc *);
172 static void	igc_attach_counters(struct igc_softc *sc);
173 static void	igc_detach_counters(struct igc_softc *sc);
174 static void	igc_update_counters(struct igc_softc *sc);
175 static void	igc_clear_counters(struct igc_softc *sc);
176 static int	igc_setup_msix(struct igc_softc *);
177 static int	igc_setup_msi(struct igc_softc *);
178 static int	igc_setup_intx(struct igc_softc *);
179 static int	igc_dma_malloc(struct igc_softc *, bus_size_t,
180 		    struct igc_dma_alloc *);
181 static void	igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
182 static void	igc_setup_interface(struct igc_softc *);
183 
184 static int	igc_init(struct ifnet *);
185 static int	igc_init_locked(struct igc_softc *);
186 static void	igc_start(struct ifnet *);
187 static int	igc_transmit(struct ifnet *, struct mbuf *);
188 static void	igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
189 static bool	igc_txeof(struct tx_ring *, u_int);
190 static void	igc_intr_barrier(struct igc_softc *);
191 static void	igc_stop(struct ifnet *, int);
192 static void	igc_stop_locked(struct igc_softc *);
193 static int	igc_ioctl(struct ifnet *, u_long, void *);
194 #ifdef IF_RXR
195 static int	igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
196 #endif
197 static void	igc_rxfill(struct rx_ring *);
198 static void	igc_rxrefill(struct rx_ring *, int);
199 static bool	igc_rxeof(struct rx_ring *, u_int);
200 static int	igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
201 		    uint32_t);
202 static void	igc_watchdog(struct ifnet *);
203 static void	igc_tick(void *);
204 static void	igc_media_status(struct ifnet *, struct ifmediareq *);
205 static int	igc_media_change(struct ifnet *);
206 static int	igc_ifflags_cb(struct ethercom *);
207 static void	igc_set_filter(struct igc_softc *);
208 static void	igc_update_link_status(struct igc_softc *);
209 static int	igc_get_buf(struct rx_ring *, int, bool);
210 static int	igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
211 		    uint32_t *, uint32_t *);
212 static int	igc_tso_setup(struct tx_ring *, struct mbuf *, int,
213 		    uint32_t *, uint32_t *);
214 
215 static void	igc_configure_queues(struct igc_softc *);
216 static void	igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
217 static void	igc_enable_queue(struct igc_softc *, uint32_t);
218 static void	igc_enable_intr(struct igc_softc *);
219 static void	igc_disable_intr(struct igc_softc *);
220 static int	igc_intr_link(void *);
221 static int	igc_intr_queue(void *);
222 static int	igc_intr(void *);
223 static void	igc_handle_queue(void *);
224 static void	igc_handle_queue_work(struct work *, void *);
225 static void	igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
226 static void	igc_barrier_handle_queue(struct igc_softc *);
227 
228 static int	igc_allocate_transmit_buffers(struct tx_ring *);
229 static int	igc_setup_transmit_structures(struct igc_softc *);
230 static int	igc_setup_transmit_ring(struct tx_ring *);
231 static void	igc_initialize_transmit_unit(struct igc_softc *);
232 static void	igc_free_transmit_structures(struct igc_softc *);
233 static void	igc_free_transmit_buffers(struct tx_ring *);
234 static void	igc_withdraw_transmit_packets(struct tx_ring *, bool);
235 static int	igc_allocate_receive_buffers(struct rx_ring *);
236 static int	igc_setup_receive_structures(struct igc_softc *);
237 static int	igc_setup_receive_ring(struct rx_ring *);
238 static void	igc_initialize_receive_unit(struct igc_softc *);
239 static void	igc_free_receive_structures(struct igc_softc *);
240 static void	igc_free_receive_buffers(struct rx_ring *);
241 static void	igc_clear_receive_status(struct rx_ring *);
242 static void	igc_initialize_rss_mapping(struct igc_softc *);
243 
244 static void	igc_get_hw_control(struct igc_softc *);
245 static void	igc_release_hw_control(struct igc_softc *);
246 static int	igc_is_valid_ether_addr(uint8_t *);
247 static void	igc_print_devinfo(struct igc_softc *);
248 
249 CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
250     igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
251 
252 static inline int
253 igc_txdesc_incr(struct igc_softc *sc, int id)
254 {
255 
256 	if (++id == sc->num_tx_desc)
257 		id = 0;
258 	return id;
259 }
260 
261 static inline int __unused
262 igc_txdesc_decr(struct igc_softc *sc, int id)
263 {
264 
265 	if (--id < 0)
266 		id = sc->num_tx_desc - 1;
267 	return id;
268 }
269 
270 static inline void
271 igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
272 {
273 
274 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
275 	    id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
276 	    ops);
277 }
278 
279 static inline int
280 igc_rxdesc_incr(struct igc_softc *sc, int id)
281 {
282 
283 	if (++id == sc->num_rx_desc)
284 		id = 0;
285 	return id;
286 }
287 
288 static inline int
289 igc_rxdesc_decr(struct igc_softc *sc, int id)
290 {
291 
292 	if (--id < 0)
293 		id = sc->num_rx_desc - 1;
294 	return id;
295 }
296 
297 static inline void
298 igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
299 {
300 
301 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
302 	    id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
303 	    ops);
304 }
305 
306 static const struct igc_product *
307 igc_lookup(const struct pci_attach_args *pa)
308 {
309 	const struct igc_product *igcp;
310 
311 	for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
312 		if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
313 		    PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
314 			return igcp;
315 	}
316 	return NULL;
317 }
318 
319 /*********************************************************************
320  *  Device identification routine
321  *
322  *  igc_match determines if the driver should be loaded on
323  *  adapter based on PCI vendor/device id of the adapter.
324  *
325  *  return 0 on success, positive on failure
326  *********************************************************************/
327 static int
328 igc_match(device_t parent, cfdata_t match, void *aux)
329 {
330 	struct pci_attach_args *pa = aux;
331 
332 	if (igc_lookup(pa) != NULL)
333 		return 1;
334 
335 	return 0;
336 }
337 
338 /*********************************************************************
339  *  Device initialization routine
340  *
341  *  The attach entry point is called when the driver is being loaded.
342  *  This routine identifies the type of hardware, allocates all resources
343  *  and initializes the hardware.
344  *
345  *  return 0 on success, positive on failure
346  *********************************************************************/
347 static void
348 igc_attach(device_t parent, device_t self, void *aux)
349 {
350 	struct pci_attach_args *pa = aux;
351 	struct igc_softc *sc = device_private(self);
352 	struct igc_hw *hw = &sc->hw;
353 
354 	const struct igc_product *igcp = igc_lookup(pa);
355 	KASSERT(igcp != NULL);
356 
357 	sc->sc_dev = self;
358 	callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
359 	callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
360 	sc->sc_core_stopping = false;
361 
362 	sc->osdep.os_sc = sc;
363 	sc->osdep.os_pa = *pa;
364 #ifndef __aarch64__
365 	/*
366 	 * XXX PR port-arm/57643
367 	 * 64-bit DMA does not work at least for LX2K with 32/64GB memory.
368 	 * smmu(4) support may be required.
369 	 */
370 	if (pci_dma64_available(pa)) {
371 		aprint_verbose(", 64-bit DMA");
372 		sc->osdep.os_dmat = pa->pa_dmat64;
373 	} else
374 #endif
375 	{
376 		aprint_verbose(", 32-bit DMA");
377 		sc->osdep.os_dmat = pa->pa_dmat;
378 	}
379 
380 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
381 
382 	/* Determine hardware and mac info */
383 	igc_identify_hardware(sc);
384 
385 	sc->num_tx_desc = IGC_DEFAULT_TXD;
386 	sc->num_rx_desc = IGC_DEFAULT_RXD;
387 
388 	 /* Setup PCI resources */
389 	if (igc_allocate_pci_resources(sc)) {
390 		aprint_error_dev(sc->sc_dev,
391 		    "unable to allocate PCI resources\n");
392 		goto err_pci;
393 	}
394 
395 	if (igc_allocate_interrupts(sc)) {
396 		aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
397 		goto err_pci;
398 	}
399 
400 	/* Allocate TX/RX queues */
401 	if (igc_allocate_queues(sc)) {
402 		aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
403 		goto err_alloc_intr;
404 	}
405 
406 	/* Do shared code initialization */
407 	if (igc_setup_init_funcs(hw, true)) {
408 		aprint_error_dev(sc->sc_dev, "unable to initialize\n");
409 		goto err_alloc_intr;
410 	}
411 
412 	hw->mac.autoneg = DO_AUTO_NEG;
413 	hw->phy.autoneg_wait_to_complete = false;
414 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
415 
416 	/* Copper options. */
417 	if (hw->phy.media_type == igc_media_type_copper)
418 		hw->phy.mdix = AUTO_ALL_MODES;
419 
420 	/* Set the max frame size. */
421 	sc->hw.mac.max_frame_size = 9234;
422 
423 	/* Allocate multicast array memory. */
424 	sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
425 
426 	/* Check SOL/IDER usage. */
427 	if (igc_check_reset_block(hw)) {
428 		aprint_error_dev(sc->sc_dev,
429 		    "PHY reset is blocked due to SOL/IDER session\n");
430 	}
431 
432 	/* Disable Energy Efficient Ethernet. */
433 	sc->hw.dev_spec._i225.eee_disable = true;
434 
435 	igc_reset_hw(hw);
436 
437 	/* Make sure we have a good EEPROM before we read from it. */
438 	if (igc_validate_nvm_checksum(hw) < 0) {
439 		/*
440 		 * Some PCI-E parts fail the first check due to
441 		 * the link being in sleep state, call it again,
442 		 * if it fails a second time its a real issue.
443 		 */
444 		if (igc_validate_nvm_checksum(hw) < 0) {
445 			aprint_error_dev(sc->sc_dev,
446 			    "EEPROM checksum invalid\n");
447 			goto err_late;
448 		}
449 	}
450 
451 	/* Copy the permanent MAC address out of the EEPROM. */
452 	if (igc_read_mac_addr(hw) < 0) {
453 		aprint_error_dev(sc->sc_dev,
454 		    "unable to read MAC address from EEPROM\n");
455 		goto err_late;
456 	}
457 
458 	if (!igc_is_valid_ether_addr(hw->mac.addr)) {
459 		aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
460 		goto err_late;
461 	}
462 
463 	if (igc_setup_interrupts(sc))
464 		goto err_late;
465 
466 	/* Attach counters. */
467 	igc_attach_counters(sc);
468 
469 	/* Setup OS specific network interface. */
470 	igc_setup_interface(sc);
471 
472 	igc_print_devinfo(sc);
473 
474 	igc_reset(sc);
475 	hw->mac.get_link_status = true;
476 	igc_update_link_status(sc);
477 
478 	/* The driver can now take control from firmware. */
479 	igc_get_hw_control(sc);
480 
481 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
482 	    ether_sprintf(sc->hw.mac.addr));
483 
484 	if (pmf_device_register(self, NULL, NULL))
485 		pmf_class_network_register(self, &sc->sc_ec.ec_if);
486 	else
487 		aprint_error_dev(self, "couldn't establish power handler\n");
488 
489 	return;
490 
491  err_late:
492 	igc_release_hw_control(sc);
493  err_alloc_intr:
494 	igc_free_interrupts(sc);
495  err_pci:
496 	igc_free_pci_resources(sc);
497 	kmem_free(sc->mta, IGC_MTA_LEN);
498 }
499 
500 /*********************************************************************
501  *  Device removal routine
502  *
503  *  The detach entry point is called when the driver is being removed.
504  *  This routine stops the adapter and deallocates all the resources
505  *  that were allocated for driver operation.
506  *
507  *  return 0 on success, positive on failure
508  *********************************************************************/
509 static int
510 igc_detach(device_t self, int flags)
511 {
512 	struct igc_softc *sc = device_private(self);
513 	struct ifnet *ifp = &sc->sc_ec.ec_if;
514 
515 	mutex_enter(&sc->sc_core_lock);
516 	igc_stop_locked(sc);
517 	mutex_exit(&sc->sc_core_lock);
518 
519 	igc_detach_counters(sc);
520 
521 	igc_free_queues(sc);
522 
523 	igc_phy_hw_reset(&sc->hw);
524 	igc_release_hw_control(sc);
525 
526 	ether_ifdetach(ifp);
527 	if_detach(ifp);
528 	ifmedia_fini(&sc->media);
529 
530 	igc_free_interrupts(sc);
531 	igc_free_pci_resources(sc);
532 	kmem_free(sc->mta, IGC_MTA_LEN);
533 
534 	mutex_destroy(&sc->sc_core_lock);
535 
536 	return 0;
537 }
538 
539 static void
540 igc_identify_hardware(struct igc_softc *sc)
541 {
542 	struct igc_osdep *os = &sc->osdep;
543 	struct pci_attach_args *pa = &os->os_pa;
544 
545 	/* Save off the information about this board. */
546 	sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
547 
548 	/* Do shared code init and setup. */
549 	if (igc_set_mac_type(&sc->hw)) {
550 		aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
551 		return;
552 	}
553 }
554 
555 static int
556 igc_allocate_pci_resources(struct igc_softc *sc)
557 {
558 	struct igc_osdep *os = &sc->osdep;
559 	struct pci_attach_args *pa = &os->os_pa;
560 
561 	/*
562 	 * Enable bus mastering and memory-mapped I/O for sure.
563 	 */
564 	pcireg_t csr =
565 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
566 	csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
567 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
568 
569 	const pcireg_t memtype =
570 	    pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
571 	if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
572 	    &os->os_memh, &os->os_membase, &os->os_memsize)) {
573 		aprint_error_dev(sc->sc_dev, "unable to map registers\n");
574 		return ENXIO;
575 	}
576 
577 	sc->hw.hw_addr = os->os_membase;
578 	sc->hw.back = os;
579 
580 	return 0;
581 }
582 
583 static int __unused
584 igc_adjust_nqueues(struct igc_softc *sc)
585 {
586 	struct pci_attach_args *pa = &sc->osdep.os_pa;
587 	int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
588 
589 	const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
590 	if (nmsix <= 1)
591 		nqueues = 1;
592 	else if (nmsix < nqueues + 1)
593 		nqueues = nmsix - 1;
594 
595 	return nqueues;
596 }
597 
598 static int
599 igc_allocate_interrupts(struct igc_softc *sc)
600 {
601 	struct pci_attach_args *pa = &sc->osdep.os_pa;
602 	int error;
603 
604 #ifndef IGC_DISABLE_MSIX
605 	const int nqueues = igc_adjust_nqueues(sc);
606 	if (nqueues > 1) {
607 		sc->sc_nintrs = nqueues + 1;
608 		error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
609 		if (!error) {
610 			sc->sc_nqueues = nqueues;
611 			sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
612 			return 0;
613 		}
614 	}
615 #endif
616 
617 	/* fallback to MSI */
618 	sc->sc_nintrs = sc->sc_nqueues = 1;
619 
620 #ifndef IGC_DISABLE_MSI
621 	error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
622 	if (!error) {
623 		sc->sc_intr_type = PCI_INTR_TYPE_MSI;
624 		return 0;
625 	}
626 #endif
627 
628 	/* fallback to INTx */
629 
630 	error = pci_intx_alloc(pa, &sc->sc_intrs);
631 	if (!error) {
632 		sc->sc_intr_type = PCI_INTR_TYPE_INTX;
633 		return 0;
634 	}
635 
636 	return error;
637 }
638 
639 static int
640 igc_allocate_queues(struct igc_softc *sc)
641 {
642 	device_t dev = sc->sc_dev;
643 	int rxconf = 0, txconf = 0;
644 
645 	/* Allocate the top level queue structs. */
646 	sc->queues =
647 	    kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
648 
649 	/* Allocate the TX ring. */
650 	sc->tx_rings =
651 	    kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
652 
653 	/* Allocate the RX ring. */
654 	sc->rx_rings =
655 	    kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
656 
657 	/* Set up the TX queues. */
658 	for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
659 		struct tx_ring *txr = &sc->tx_rings[iq];
660 		const int tsize = roundup2(
661 		    sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
662 		    IGC_DBA_ALIGN);
663 
664 		txr->sc = sc;
665 		txr->txr_igcq = &sc->queues[iq];
666 		txr->me = iq;
667 		if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
668 			aprint_error_dev(dev,
669 			    "unable to allocate TX descriptor\n");
670 			goto fail;
671 		}
672 		txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
673 		memset(txr->tx_base, 0, tsize);
674 	}
675 
676 	/* Prepare transmit descriptors and buffers. */
677 	if (igc_setup_transmit_structures(sc)) {
678 		aprint_error_dev(dev, "unable to setup transmit structures\n");
679 		goto fail;
680 	}
681 
682 	/* Set up the RX queues. */
683 	for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
684 		struct rx_ring *rxr = &sc->rx_rings[iq];
685 		const int rsize = roundup2(
686 		    sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
687 		    IGC_DBA_ALIGN);
688 
689 		rxr->sc = sc;
690 		rxr->rxr_igcq = &sc->queues[iq];
691 		rxr->me = iq;
692 #ifdef OPENBSD
693 		timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
694 #endif
695 		if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
696 			aprint_error_dev(dev,
697 			    "unable to allocate RX descriptor\n");
698 			goto fail;
699 		}
700 		rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
701 		memset(rxr->rx_base, 0, rsize);
702 	}
703 
704 	sc->rx_mbuf_sz = MCLBYTES;
705 	/* Prepare receive descriptors and buffers. */
706 	if (igc_setup_receive_structures(sc)) {
707 		aprint_error_dev(sc->sc_dev,
708 		    "unable to setup receive structures\n");
709 		goto fail;
710 	}
711 
712 	/* Set up the queue holding structs. */
713 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
714 		struct igc_queue *q = &sc->queues[iq];
715 
716 		q->sc = sc;
717 		q->txr = &sc->tx_rings[iq];
718 		q->rxr = &sc->rx_rings[iq];
719 	}
720 
721 	return 0;
722 
723  fail:
724 	for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
725 		igc_dma_free(sc, &rxr->rxdma);
726 	for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
727 		igc_dma_free(sc, &txr->txdma);
728 
729 	kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
730 	sc->rx_rings = NULL;
731 	kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
732 	sc->tx_rings = NULL;
733 	kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
734 	sc->queues = NULL;
735 
736 	return ENOMEM;
737 }
738 
739 static void
740 igc_free_pci_resources(struct igc_softc *sc)
741 {
742 	struct igc_osdep *os = &sc->osdep;
743 
744 	if (os->os_membase != 0)
745 		bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
746 	os->os_membase = 0;
747 }
748 
749 static void
750 igc_free_interrupts(struct igc_softc *sc)
751 {
752 	struct pci_attach_args *pa = &sc->osdep.os_pa;
753 	pci_chipset_tag_t pc = pa->pa_pc;
754 
755 	for (int i = 0; i < sc->sc_nintrs; i++) {
756 		if (sc->sc_ihs[i] != NULL) {
757 			pci_intr_disestablish(pc, sc->sc_ihs[i]);
758 			sc->sc_ihs[i] = NULL;
759 		}
760 	}
761 	pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
762 }
763 
764 static void
765 igc_free_queues(struct igc_softc *sc)
766 {
767 
768 	igc_free_receive_structures(sc);
769 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
770 		struct rx_ring *rxr = &sc->rx_rings[iq];
771 
772 		igc_dma_free(sc, &rxr->rxdma);
773 	}
774 
775 	igc_free_transmit_structures(sc);
776 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
777 		struct tx_ring *txr = &sc->tx_rings[iq];
778 
779 		igc_dma_free(sc, &txr->txdma);
780 	}
781 
782 	kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
783 	kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
784 	kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
785 }
786 
787 /*********************************************************************
788  *
789  *  Initialize the hardware to a configuration as specified by the
790  *  adapter structure.
791  *
792  **********************************************************************/
793 static void
794 igc_reset(struct igc_softc *sc)
795 {
796 	struct igc_hw *hw = &sc->hw;
797 
798 	/* Let the firmware know the OS is in control */
799 	igc_get_hw_control(sc);
800 
801 	/*
802 	 * Packet Buffer Allocation (PBA)
803 	 * Writing PBA sets the receive portion of the buffer
804 	 * the remainder is used for the transmit buffer.
805 	 */
806 	const uint32_t pba = IGC_PBA_34K;
807 
808 	/*
809 	 * These parameters control the automatic generation (Tx) and
810 	 * response (Rx) to Ethernet PAUSE frames.
811 	 * - High water mark should allow for at least two frames to be
812 	 *   received after sending an XOFF.
813 	 * - Low water mark works best when it is very near the high water mark.
814 	 *   This allows the receiver to restart by sending XON when it has
815 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
816 	 *   restart after one full frame is pulled from the buffer. There
817 	 *   could be several smaller frames in the buffer and if so they will
818 	 *   not trigger the XON until their total number reduces the buffer
819 	 *   by 1500.
820 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
821 	 */
822 	const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
823 
824 	hw->fc.high_water = rx_buffer_size -
825 	    roundup2(sc->hw.mac.max_frame_size, 1024);
826 	/* 16-byte granularity */
827 	hw->fc.low_water = hw->fc.high_water - 16;
828 
829 	if (sc->fc) /* locally set flow control value? */
830 		hw->fc.requested_mode = sc->fc;
831 	else
832 		hw->fc.requested_mode = igc_fc_full;
833 
834 	hw->fc.pause_time = IGC_FC_PAUSE_TIME;
835 
836 	hw->fc.send_xon = true;
837 
838 	/* Issue a global reset */
839 	igc_reset_hw(hw);
840 	IGC_WRITE_REG(hw, IGC_WUC, 0);
841 
842 	/* and a re-init */
843 	if (igc_init_hw(hw) < 0) {
844 		aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
845 		return;
846 	}
847 
848 	/* Setup DMA Coalescing */
849 	igc_init_dmac(sc, pba);
850 
851 	IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
852 	igc_get_phy_info(hw);
853 	igc_check_for_link(hw);
854 }
855 
856 /*********************************************************************
857  *
858  *  Initialize the DMA Coalescing feature
859  *
860  **********************************************************************/
861 static void
862 igc_init_dmac(struct igc_softc *sc, uint32_t pba)
863 {
864 	struct igc_hw *hw = &sc->hw;
865 	const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
866 	uint32_t reg, status;
867 
868 	if (sc->dmac == 0) { /* Disabling it */
869 		reg = ~IGC_DMACR_DMAC_EN;	/* XXXRO */
870 		IGC_WRITE_REG(hw, IGC_DMACR, reg);
871 		DPRINTF(MISC, "DMA coalescing disabled\n");
872 		return;
873 	} else {
874 		device_printf(sc->sc_dev, "DMA coalescing enabled\n");
875 	}
876 
877 	/* Set starting threshold */
878 	IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
879 
880 	uint16_t hwm = 64 * pba - max_frame_size / 16;
881 	if (hwm < 64 * (pba - 6))
882 		hwm = 64 * (pba - 6);
883 	reg = IGC_READ_REG(hw, IGC_FCRTC);
884 	reg &= ~IGC_FCRTC_RTH_COAL_MASK;
885 	reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
886 	IGC_WRITE_REG(hw, IGC_FCRTC, reg);
887 
888 	uint32_t dmac = pba - max_frame_size / 512;
889 	if (dmac < pba - 10)
890 		dmac = pba - 10;
891 	reg = IGC_READ_REG(hw, IGC_DMACR);
892 	reg &= ~IGC_DMACR_DMACTHR_MASK;
893 	reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
894 
895 	/* transition to L0x or L1 if available..*/
896 	reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
897 
898 	/* Check if status is 2.5Gb backplane connection
899 	 * before configuration of watchdog timer, which is
900 	 * in msec values in 12.8usec intervals
901 	 * watchdog timer= msec values in 32usec intervals
902 	 * for non 2.5Gb connection
903 	 */
904 	status = IGC_READ_REG(hw, IGC_STATUS);
905 	if ((status & IGC_STATUS_2P5_SKU) &&
906 	    !(status & IGC_STATUS_2P5_SKU_OVER))
907 		reg |= (sc->dmac * 5) >> 6;
908 	else
909 		reg |= sc->dmac >> 5;
910 
911 	IGC_WRITE_REG(hw, IGC_DMACR, reg);
912 
913 	IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
914 
915 	/* Set the interval before transition */
916 	reg = IGC_READ_REG(hw, IGC_DMCTLX);
917 	reg |= IGC_DMCTLX_DCFLUSH_DIS;
918 
919 	/*
920 	 * in 2.5Gb connection, TTLX unit is 0.4 usec
921 	 * which is 0x4*2 = 0xA. But delay is still 4 usec
922 	 */
923 	status = IGC_READ_REG(hw, IGC_STATUS);
924 	if ((status & IGC_STATUS_2P5_SKU) &&
925 	    !(status & IGC_STATUS_2P5_SKU_OVER))
926 		reg |= 0xA;
927 	else
928 		reg |= 0x4;
929 
930 	IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
931 
932 	/* free space in tx packet buffer to wake from DMA coal */
933 	IGC_WRITE_REG(hw, IGC_DMCTXTH,
934 	    (IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
935 
936 	/* make low power state decision controlled by DMA coal */
937 	reg = IGC_READ_REG(hw, IGC_PCIEMISC);
938 	reg &= ~IGC_PCIEMISC_LX_DECISION;
939 	IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
940 }
941 
942 static int
943 igc_setup_interrupts(struct igc_softc *sc)
944 {
945 	int error;
946 
947 	switch (sc->sc_intr_type) {
948 	case PCI_INTR_TYPE_MSIX:
949 		error = igc_setup_msix(sc);
950 		break;
951 	case PCI_INTR_TYPE_MSI:
952 		error = igc_setup_msi(sc);
953 		break;
954 	case PCI_INTR_TYPE_INTX:
955 		error = igc_setup_intx(sc);
956 		break;
957 	default:
958 		panic("%s: invalid interrupt type: %d",
959 		    device_xname(sc->sc_dev), sc->sc_intr_type);
960 	}
961 
962 	return error;
963 }
964 
965 static void
966 igc_attach_counters(struct igc_softc *sc)
967 {
968 #ifdef IGC_EVENT_COUNTERS
969 
970 	/* Global counters */
971 	sc->sc_global_evcnts = kmem_zalloc(
972 	    IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
973 
974 	for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
975 		evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
976 		    igc_global_counters[cnt].type, NULL,
977 		    device_xname(sc->sc_dev), igc_global_counters[cnt].name);
978 	}
979 
980 	/* Driver counters */
981 	sc->sc_driver_evcnts = kmem_zalloc(
982 	    IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
983 
984 	for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
985 		evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
986 		    igc_driver_counters[cnt].type, NULL,
987 		    device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
988 	}
989 
990 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
991 		struct igc_queue *q = &sc->queues[iq];
992 
993 		q->igcq_driver_counters = kmem_zalloc(
994 		    IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
995 		    KM_SLEEP);
996 	}
997 
998 	/* Queue counters */
999 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1000 		struct igc_queue *q = &sc->queues[iq];
1001 
1002 		snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
1003 		    "%s q%d", device_xname(sc->sc_dev), iq);
1004 
1005 		q->igcq_queue_evcnts = kmem_zalloc(
1006 		    IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
1007 		    KM_SLEEP);
1008 
1009 		for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
1010 			evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
1011 			    igc_queue_counters[cnt].type, NULL,
1012 			    q->igcq_queue_evname, igc_queue_counters[cnt].name);
1013 		}
1014 	}
1015 
1016 	/* MAC counters */
1017 	snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
1018 	    "%s Mac Statistics", device_xname(sc->sc_dev));
1019 
1020 	sc->sc_mac_evcnts = kmem_zalloc(
1021 	    IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
1022 
1023 	for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1024 		evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
1025 		    NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
1026 	}
1027 #endif
1028 }
1029 
1030 static void
1031 igc_detach_counters(struct igc_softc *sc)
1032 {
1033 #ifdef IGC_EVENT_COUNTERS
1034 
1035 	/* Global counters */
1036 	for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1037 		evcnt_detach(&sc->sc_global_evcnts[cnt]);
1038 
1039 	kmem_free(sc->sc_global_evcnts,
1040 	    IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts));
1041 
1042 	/* Driver counters */
1043 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1044 		struct igc_queue *q = &sc->queues[iq];
1045 
1046 		kmem_free(q->igcq_driver_counters,
1047 		    IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
1048 	}
1049 
1050 	for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1051 		evcnt_detach(&sc->sc_driver_evcnts[cnt]);
1052 
1053 	kmem_free(sc->sc_driver_evcnts,
1054 	    IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts));
1055 
1056 	/* Queue counters */
1057 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1058 		struct igc_queue *q = &sc->queues[iq];
1059 
1060 		for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1061 			evcnt_detach(&q->igcq_queue_evcnts[cnt]);
1062 
1063 		kmem_free(q->igcq_queue_evcnts,
1064 		    IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
1065 	}
1066 
1067 	/* MAC statistics */
1068 	for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
1069 		evcnt_detach(&sc->sc_mac_evcnts[cnt]);
1070 
1071 	kmem_free(sc->sc_mac_evcnts,
1072 	    IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
1073 #endif
1074 }
1075 
1076 /*
1077  * XXX
1078  * FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
1079  * drops hi words.
1080  */
1081 static inline uint64_t __unused
1082 igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
1083 {
1084 	uint64_t val;
1085 
1086 	val = IGC_READ_REG(hw, reg);
1087 	if (is64)
1088 		val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
1089 	return val;
1090 }
1091 
1092 static void
1093 igc_update_counters(struct igc_softc *sc)
1094 {
1095 #ifdef IGC_EVENT_COUNTERS
1096 
1097 	/* Global counters: nop */
1098 
1099 	/* Driver counters */
1100 	uint64_t sum[IGC_DRIVER_COUNTERS];
1101 
1102 	memset(sum, 0, sizeof(sum));
1103 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1104 		struct igc_queue *q = &sc->queues[iq];
1105 
1106 		for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
1107 			sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
1108 			IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1109 		}
1110 	}
1111 
1112 	for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1113 		IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
1114 
1115 	/* Queue counters: nop */
1116 
1117 	/* Mac statistics */
1118 	struct igc_hw *hw = &sc->hw;
1119 
1120 	for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1121 		IGC_MAC_COUNTER_ADD(sc, cnt, igc_read_mac_counter(hw,
1122 		    igc_mac_counters[cnt].reg, igc_mac_counters[cnt].is64));
1123 	}
1124 #endif
1125 }
1126 
1127 static void
1128 igc_clear_counters(struct igc_softc *sc)
1129 {
1130 #ifdef IGC_EVENT_COUNTERS
1131 
1132 	/* Global counters */
1133 	for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1134 		IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
1135 
1136 	/* Driver counters */
1137 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1138 		struct igc_queue *q = &sc->queues[iq];
1139 
1140 		for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1141 			IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1142 	}
1143 
1144 	for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1145 		IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
1146 
1147 	/* Queue counters */
1148 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1149 		struct igc_queue *q = &sc->queues[iq];
1150 
1151 		for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1152 			IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
1153 	}
1154 
1155 	/* Mac statistics */
1156 	struct igc_hw *hw = &sc->hw;
1157 
1158 	for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1159 		(void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
1160 		    igc_mac_counters[cnt].is64);
1161 		IGC_MAC_COUNTER_STORE(sc, cnt, 0);
1162 	}
1163 #endif
1164 }
1165 
1166 static int
1167 igc_setup_msix(struct igc_softc *sc)
1168 {
1169 	pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1170 	device_t dev = sc->sc_dev;
1171 	pci_intr_handle_t *intrs;
1172 	void **ihs;
1173 	const char *intrstr;
1174 	char intrbuf[PCI_INTRSTR_LEN];
1175 	char xnamebuf[MAX(32, MAXCOMLEN)];
1176 	int iq, error;
1177 
1178 	for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
1179 	    iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
1180 		struct igc_queue *q = &sc->queues[iq];
1181 
1182 		snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
1183 		    device_xname(dev), iq);
1184 
1185 		intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1186 
1187 		pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1188 		*ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1189 		    igc_intr_queue, q, xnamebuf);
1190 		if (*ihs == NULL) {
1191 			aprint_error_dev(dev,
1192 			    "unable to establish txrx interrupt at %s\n",
1193 			    intrstr);
1194 			return ENOBUFS;
1195 		}
1196 		aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
1197 
1198 		kcpuset_t *affinity;
1199 		kcpuset_create(&affinity, true);
1200 		kcpuset_set(affinity, iq % ncpu);
1201 		error = interrupt_distribute(*ihs, affinity, NULL);
1202 		if (error) {
1203 			aprint_normal_dev(dev,
1204 			    "%s: unable to change affinity, use default CPU\n",
1205 			    intrstr);
1206 		}
1207 		kcpuset_destroy(affinity);
1208 
1209 		q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1210 		    igc_handle_queue, q);
1211 		if (q->igcq_si == NULL) {
1212 			aprint_error_dev(dev,
1213 			    "%s: unable to establish softint\n", intrstr);
1214 			return ENOBUFS;
1215 		}
1216 
1217 		q->msix = iq;
1218 		q->eims = 1 << iq;
1219 	}
1220 
1221 	snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1222 	error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1223 	    igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1224 	    WQ_PERCPU | WQ_MPSAFE);
1225 	if (error) {
1226 		aprint_error_dev(dev, "workqueue_create failed\n");
1227 		return ENOBUFS;
1228 	}
1229 	sc->sc_txrx_workqueue = false;
1230 
1231 	intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1232 	snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
1233 	pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1234 	*ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1235 	    igc_intr_link, sc, xnamebuf);
1236 	if (*ihs == NULL) {
1237 		aprint_error_dev(dev,
1238 		    "unable to establish link interrupt at %s\n", intrstr);
1239 		return ENOBUFS;
1240 	}
1241 	aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
1242 	/* use later in igc_configure_queues() */
1243 	sc->linkvec = iq;
1244 
1245 	return 0;
1246 }
1247 
1248 static int
1249 igc_setup_msi(struct igc_softc *sc)
1250 {
1251 	pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1252 	device_t dev = sc->sc_dev;
1253 	pci_intr_handle_t *intr = sc->sc_intrs;
1254 	void **ihs = sc->sc_ihs;
1255 	const char *intrstr;
1256 	char intrbuf[PCI_INTRSTR_LEN];
1257 	char xnamebuf[MAX(32, MAXCOMLEN)];
1258 	int error;
1259 
1260 	intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1261 
1262 	snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
1263 	pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1264 	*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1265 	    igc_intr, sc, xnamebuf);
1266 	if (*ihs == NULL) {
1267 		aprint_error_dev(dev,
1268 		    "unable to establish interrupt at %s\n", intrstr);
1269 		return ENOBUFS;
1270 	}
1271 	aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1272 
1273 	struct igc_queue *iq = sc->queues;
1274 	iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1275 	    igc_handle_queue, iq);
1276 	if (iq->igcq_si == NULL) {
1277 		aprint_error_dev(dev,
1278 		    "%s: unable to establish softint\n", intrstr);
1279 		return ENOBUFS;
1280 	}
1281 
1282 	snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1283 	error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1284 	    igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1285 	    WQ_PERCPU | WQ_MPSAFE);
1286 	if (error) {
1287 		aprint_error_dev(dev, "workqueue_create failed\n");
1288 		return ENOBUFS;
1289 	}
1290 	sc->sc_txrx_workqueue = false;
1291 
1292 	sc->queues[0].msix = 0;
1293 	sc->linkvec = 0;
1294 
1295 	return 0;
1296 }
1297 
1298 static int
1299 igc_setup_intx(struct igc_softc *sc)
1300 {
1301 	pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1302 	device_t dev = sc->sc_dev;
1303 	pci_intr_handle_t *intr = sc->sc_intrs;
1304 	void **ihs = sc->sc_ihs;
1305 	const char *intrstr;
1306 	char intrbuf[PCI_INTRSTR_LEN];
1307 	char xnamebuf[32];
1308 
1309 	intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1310 
1311 	snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
1312 	pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1313 	*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1314 	    igc_intr, sc, xnamebuf);
1315 	if (*ihs == NULL) {
1316 		aprint_error_dev(dev,
1317 		    "unable to establish interrupt at %s\n", intrstr);
1318 		return ENOBUFS;
1319 	}
1320 	aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1321 
1322 	struct igc_queue *iq = sc->queues;
1323 	iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1324 	    igc_handle_queue, iq);
1325 	if (iq->igcq_si == NULL) {
1326 		aprint_error_dev(dev,
1327 		    "%s: unable to establish softint\n", intrstr);
1328 		return ENOBUFS;
1329 	}
1330 
1331 	/* create workqueue? */
1332 	sc->sc_txrx_workqueue = false;
1333 
1334 	sc->queues[0].msix = 0;
1335 	sc->linkvec = 0;
1336 
1337 	return 0;
1338 }
1339 
1340 static int
1341 igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
1342 {
1343 	struct igc_osdep *os = &sc->osdep;
1344 
1345 	dma->dma_tag = os->os_dmat;
1346 
1347 	if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
1348 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
1349 		return 1;
1350 	if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1351 	    1, &dma->dma_nseg, BUS_DMA_WAITOK))
1352 		goto destroy;
1353 	/*
1354 	 * XXXRO
1355 	 *
1356 	 * Coherent mapping for descriptors is required for now.
1357 	 *
1358 	 * Both TX and RX descriptors are 16-byte length, which is shorter
1359 	 * than dcache lines on modern CPUs. Therefore, sync for a descriptor
1360 	 * may overwrite DMA read for descriptors in the same cache line.
1361 	 *
1362 	 * Can't we avoid this by use cache-line-aligned descriptors at once?
1363 	 */
1364 	if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
1365 	    &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
1366 		goto free;
1367 	if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
1368 	    NULL, BUS_DMA_WAITOK))
1369 		goto unmap;
1370 
1371 	dma->dma_size = size;
1372 
1373 	return 0;
1374  unmap:
1375 	bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
1376  free:
1377 	bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1378  destroy:
1379 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1380 	dma->dma_map = NULL;
1381 	dma->dma_tag = NULL;
1382 	return 1;
1383 }
1384 
1385 static void
1386 igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
1387 {
1388 
1389 	if (dma->dma_tag == NULL)
1390 		return;
1391 
1392 	if (dma->dma_map != NULL) {
1393 		bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
1394 		    dma->dma_map->dm_mapsize,
1395 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1396 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1397 		bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
1398 		bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1399 		bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1400 		dma->dma_map = NULL;
1401 	}
1402 }
1403 
1404 /*********************************************************************
1405  *
1406  *  Setup networking device structure and register an interface.
1407  *
1408  **********************************************************************/
1409 static void
1410 igc_setup_interface(struct igc_softc *sc)
1411 {
1412 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1413 
1414 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
1415 	ifp->if_softc = sc;
1416 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1417 	ifp->if_extflags = IFEF_MPSAFE;
1418 	ifp->if_ioctl = igc_ioctl;
1419 	ifp->if_start = igc_start;
1420 	if (sc->sc_nqueues > 1)
1421 		ifp->if_transmit = igc_transmit;
1422 	ifp->if_watchdog = igc_watchdog;
1423 	ifp->if_init = igc_init;
1424 	ifp->if_stop = igc_stop;
1425 
1426 #if 0 /* notyet */
1427 	ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
1428 #endif
1429 
1430 	ifp->if_capabilities |=
1431 	    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
1432 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1433 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1434 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
1435 	    IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
1436 
1437 	ifp->if_capenable = 0;
1438 
1439 	sc->sc_ec.ec_capabilities |=
1440 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
1441 
1442 	IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
1443 	IFQ_SET_READY(&ifp->if_snd);
1444 
1445 #if NVLAN > 0
1446 	sc->sc_ec.ec_capabilities |=  ETHERCAP_VLAN_HWTAGGING;
1447 #endif
1448 
1449 	mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
1450 
1451 	/* Initialize ifmedia structures. */
1452 	sc->sc_ec.ec_ifmedia = &sc->media;
1453 	ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
1454 	    igc_media_status, &sc->sc_core_lock);
1455 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1456 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1457 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1458 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1459 	ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1460 	ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1461 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1462 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1463 
1464 	sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
1465 	sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
1466 	sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
1467 	sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
1468 
1469 	if_initialize(ifp);
1470 	sc->sc_ipq = if_percpuq_create(ifp);
1471 	if_deferred_start_init(ifp, NULL);
1472 	ether_ifattach(ifp, sc->hw.mac.addr);
1473 	ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
1474 	if_register(ifp);
1475 }
1476 
1477 static int
1478 igc_init(struct ifnet *ifp)
1479 {
1480 	struct igc_softc *sc = ifp->if_softc;
1481 	int error;
1482 
1483 	mutex_enter(&sc->sc_core_lock);
1484 	error = igc_init_locked(sc);
1485 	mutex_exit(&sc->sc_core_lock);
1486 
1487 	return error;
1488 }
1489 
1490 static int
1491 igc_init_locked(struct igc_softc *sc)
1492 {
1493 	struct ethercom *ec = &sc->sc_ec;
1494 	struct ifnet *ifp = &ec->ec_if;
1495 
1496 	DPRINTF(CFG, "called\n");
1497 
1498 	KASSERT(mutex_owned(&sc->sc_core_lock));
1499 
1500 	if (ISSET(ifp->if_flags, IFF_RUNNING))
1501 		igc_stop_locked(sc);
1502 
1503 	/* Put the address into the receive address array. */
1504 	igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1505 
1506 	/* Initialize the hardware. */
1507 	igc_reset(sc);
1508 	igc_update_link_status(sc);
1509 
1510 	/* Setup VLAN support, basic and offload if available. */
1511 	IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
1512 
1513 	igc_initialize_transmit_unit(sc);
1514 	igc_initialize_receive_unit(sc);
1515 
1516 	if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1517 		uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
1518 		ctrl |= IGC_CTRL_VME;
1519 		IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
1520 	}
1521 
1522 	/* Setup multicast table. */
1523 	igc_set_filter(sc);
1524 
1525 	igc_clear_hw_cntrs_base_generic(&sc->hw);
1526 
1527 	if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
1528 		igc_configure_queues(sc);
1529 
1530 	/* This clears any pending interrupts */
1531 	IGC_READ_REG(&sc->hw, IGC_ICR);
1532 	IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
1533 
1534 	/* The driver can now take control from firmware. */
1535 	igc_get_hw_control(sc);
1536 
1537 	/* Set Energy Efficient Ethernet. */
1538 	igc_set_eee_i225(&sc->hw, true, true, true);
1539 
1540 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1541 		struct rx_ring *rxr = &sc->rx_rings[iq];
1542 
1543 		mutex_enter(&rxr->rxr_lock);
1544 		igc_rxfill(rxr);
1545 		mutex_exit(&rxr->rxr_lock);
1546 	}
1547 
1548 	sc->sc_core_stopping = false;
1549 
1550 	ifp->if_flags |= IFF_RUNNING;
1551 
1552 	/* Save last flags for the callback */
1553 	sc->sc_if_flags = ifp->if_flags;
1554 
1555 	callout_schedule(&sc->sc_tick_ch, hz);
1556 
1557 	igc_enable_intr(sc);
1558 
1559 	return 0;
1560 }
1561 
1562 static inline int
1563 igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
1564     struct mbuf *m)
1565 {
1566 	int error;
1567 
1568 	error = bus_dmamap_load_mbuf(dmat, map, m,
1569 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1570 
1571 	if (__predict_false(error == EFBIG)) {
1572 		IGC_DRIVER_EVENT(q, txdma_efbig, 1);
1573 		m = m_defrag(m, M_NOWAIT);
1574 		if (__predict_false(m == NULL)) {
1575 			IGC_DRIVER_EVENT(q, txdma_defrag, 1);
1576 			return ENOBUFS;
1577 		}
1578 		error = bus_dmamap_load_mbuf(dmat, map, m,
1579 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1580 	}
1581 
1582 	switch (error) {
1583 	case 0:
1584 		break;
1585 	case ENOMEM:
1586 		IGC_DRIVER_EVENT(q, txdma_enomem, 1);
1587 		break;
1588 	case EINVAL:
1589 		IGC_DRIVER_EVENT(q, txdma_einval, 1);
1590 		break;
1591 	case EAGAIN:
1592 		IGC_DRIVER_EVENT(q, txdma_eagain, 1);
1593 		break;
1594 	default:
1595 		IGC_DRIVER_EVENT(q, txdma_other, 1);
1596 		break;
1597 	}
1598 
1599 	return error;
1600 }
1601 
1602 #define IGC_TX_START	1
1603 #define IGC_TX_TRANSMIT	2
1604 
1605 static void
1606 igc_start(struct ifnet *ifp)
1607 {
1608 	struct igc_softc *sc = ifp->if_softc;
1609 
1610 	if (__predict_false(!sc->link_active)) {
1611 		IFQ_PURGE(&ifp->if_snd);
1612 		return;
1613 	}
1614 
1615 	struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
1616 	mutex_enter(&txr->txr_lock);
1617 	igc_tx_common_locked(ifp, txr, IGC_TX_START);
1618 	mutex_exit(&txr->txr_lock);
1619 }
1620 
1621 static inline u_int
1622 igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
1623 {
1624 	const u_int cpuid = cpu_index(curcpu());
1625 
1626 	return cpuid % sc->sc_nqueues;
1627 }
1628 
1629 static int
1630 igc_transmit(struct ifnet *ifp, struct mbuf *m)
1631 {
1632 	struct igc_softc *sc = ifp->if_softc;
1633 	const u_int qid = igc_select_txqueue(sc, m);
1634 	struct tx_ring *txr = &sc->tx_rings[qid];
1635 	struct igc_queue *q = txr->txr_igcq;
1636 
1637 	if (__predict_false(!pcq_put(txr->txr_interq, m))) {
1638 		IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1639 		m_freem(m);
1640 		return ENOBUFS;
1641 	}
1642 
1643 	mutex_enter(&txr->txr_lock);
1644 	igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
1645 	mutex_exit(&txr->txr_lock);
1646 
1647 	return 0;
1648 }
1649 
1650 static void
1651 igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
1652 {
1653 	struct igc_softc *sc = ifp->if_softc;
1654 	struct igc_queue *q = txr->txr_igcq;
1655 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1656 	int prod, free, last = -1;
1657 	bool post = false;
1658 
1659 	prod = txr->next_avail_desc;
1660 	free = txr->next_to_clean;
1661 	if (free <= prod)
1662 		free += sc->num_tx_desc;
1663 	free -= prod;
1664 
1665 	DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
1666 	    caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1667 	    txr->me, prod, txr->next_to_clean, free);
1668 
1669 	for (;;) {
1670 		struct mbuf *m;
1671 
1672 		if (__predict_false(free <= IGC_MAX_SCATTER)) {
1673 			IGC_QUEUE_EVENT(q, tx_no_desc, 1);
1674 			break;
1675 		}
1676 
1677 		if (caller == IGC_TX_TRANSMIT)
1678 			m = pcq_get(txr->txr_interq);
1679 		else
1680 			IFQ_DEQUEUE(&ifp->if_snd, m);
1681 		if (__predict_false(m == NULL))
1682 			break;
1683 
1684 		struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
1685 		bus_dmamap_t map = txbuf->map;
1686 
1687 		if (__predict_false(
1688 		    igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
1689 			if (caller == IGC_TX_TRANSMIT)
1690 				IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1691 			m_freem(m);
1692 			if_statinc_ref(nsr, if_oerrors);
1693 			continue;
1694 		}
1695 
1696 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1697 		    map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1698 
1699 		uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
1700 		if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
1701 		    &olinfo_status)) {
1702 			IGC_QUEUE_EVENT(q, tx_ctx, 1);
1703 			/* Consume the first descriptor */
1704 			prod = igc_txdesc_incr(sc, prod);
1705 			free--;
1706 		}
1707 		for (int i = 0; i < map->dm_nsegs; i++) {
1708 			union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
1709 
1710 			uint32_t cmd_type_len = ctx_cmd_type_len |
1711 			    IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1712 			    IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1713 			if (i == map->dm_nsegs - 1) {
1714 				cmd_type_len |=
1715 				    IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
1716 			}
1717 
1718 			igc_txdesc_sync(txr, prod,
1719 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1720 			htolem64(&txdesc->read.buffer_addr,
1721 			    map->dm_segs[i].ds_addr);
1722 			htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1723 			htolem32(&txdesc->read.olinfo_status, olinfo_status);
1724 			igc_txdesc_sync(txr, prod,
1725 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1726 
1727 			last = prod;
1728 			prod = igc_txdesc_incr(sc, prod);
1729 		}
1730 
1731 		txbuf->m_head = m;
1732 		txbuf->eop_index = last;
1733 
1734 		bpf_mtap(ifp, m, BPF_D_OUT);
1735 
1736 		if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
1737 		if (m->m_flags & M_MCAST)
1738 			if_statinc_ref(nsr, if_omcasts);
1739 		IGC_QUEUE_EVENT(q, tx_packets, 1);
1740 		IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
1741 
1742 		free -= map->dm_nsegs;
1743 		post = true;
1744 	}
1745 
1746 	if (post) {
1747 		txr->next_avail_desc = prod;
1748 		IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1749 	}
1750 
1751 	DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
1752 	    caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1753 	    txr->me, prod, txr->next_to_clean, free);
1754 
1755 	IF_STAT_PUTREF(ifp);
1756 }
1757 
1758 static bool
1759 igc_txeof(struct tx_ring *txr, u_int limit)
1760 {
1761 	struct igc_softc *sc = txr->sc;
1762 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1763 	int cons, prod;
1764 	bool more = false;
1765 
1766 	prod = txr->next_avail_desc;
1767 	cons = txr->next_to_clean;
1768 
1769 	if (cons == prod) {
1770 		DPRINTF(TX, "false: msix %d cons %d prod %d\n",
1771 		    txr->me, cons, prod);
1772 		return false;
1773 	}
1774 
1775 	do {
1776 		struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
1777 		const int last = txbuf->eop_index;
1778 
1779 		membar_consumer();	/* XXXRO necessary? */
1780 
1781 		KASSERT(last != -1);
1782 		union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
1783 		igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
1784 		const uint32_t status = le32toh(txdesc->wb.status);
1785 		igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
1786 
1787 		if (!(status & IGC_TXD_STAT_DD))
1788 			break;
1789 
1790 		if (limit-- == 0) {
1791 			more = true;
1792 			DPRINTF(TX, "pending TX "
1793 			    "msix %d cons %d last %d prod %d "
1794 			    "status 0x%08x\n",
1795 			    txr->me, cons, last, prod, status);
1796 			break;
1797 		}
1798 
1799 		DPRINTF(TX, "handled TX "
1800 		    "msix %d cons %d last %d prod %d "
1801 		    "status 0x%08x\n",
1802 		    txr->me, cons, last, prod, status);
1803 
1804 		if_statinc(ifp, if_opackets);
1805 
1806 		bus_dmamap_t map = txbuf->map;
1807 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1808 		    BUS_DMASYNC_POSTWRITE);
1809 		bus_dmamap_unload(txr->txdma.dma_tag, map);
1810 		m_freem(txbuf->m_head);
1811 
1812 		txbuf->m_head = NULL;
1813 		txbuf->eop_index = -1;
1814 
1815 		cons = igc_txdesc_incr(sc, last);
1816 	} while (cons != prod);
1817 
1818 	txr->next_to_clean = cons;
1819 
1820 	return more;
1821 }
1822 
1823 static void
1824 igc_intr_barrier(struct igc_softc *sc __unused)
1825 {
1826 
1827 	xc_barrier(0);
1828 }
1829 
1830 static void
1831 igc_stop(struct ifnet *ifp, int disable)
1832 {
1833 	struct igc_softc *sc = ifp->if_softc;
1834 
1835 	mutex_enter(&sc->sc_core_lock);
1836 	igc_stop_locked(sc);
1837 	mutex_exit(&sc->sc_core_lock);
1838 }
1839 
1840 /*********************************************************************
1841  *
1842  *  This routine disables all traffic on the adapter by issuing a
1843  *  global reset on the MAC.
1844  *
1845  **********************************************************************/
1846 static void
1847 igc_stop_locked(struct igc_softc *sc)
1848 {
1849 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1850 
1851 	DPRINTF(CFG, "called\n");
1852 
1853 	KASSERT(mutex_owned(&sc->sc_core_lock));
1854 
1855 	/*
1856 	 * If stopping processing has already started, do nothing.
1857 	 */
1858 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1859 		return;
1860 
1861 	/* Tell the stack that the interface is no longer active. */
1862 	ifp->if_flags &= ~IFF_RUNNING;
1863 
1864 	/*
1865 	 * igc_handle_queue() can enable interrupts, so wait for completion of
1866 	 * last igc_handle_queue() after unset IFF_RUNNING.
1867 	 */
1868 	mutex_exit(&sc->sc_core_lock);
1869 	igc_barrier_handle_queue(sc);
1870 	mutex_enter(&sc->sc_core_lock);
1871 
1872 	sc->sc_core_stopping = true;
1873 
1874 	igc_disable_intr(sc);
1875 
1876 	callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
1877 
1878 	igc_reset_hw(&sc->hw);
1879 	IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1880 
1881 	/*
1882 	 * Wait for completion of interrupt handlers.
1883 	 */
1884 	mutex_exit(&sc->sc_core_lock);
1885 	igc_intr_barrier(sc);
1886 	mutex_enter(&sc->sc_core_lock);
1887 
1888 	igc_update_link_status(sc);
1889 
1890 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1891 		struct tx_ring *txr = &sc->tx_rings[iq];
1892 
1893 		igc_withdraw_transmit_packets(txr, false);
1894 	}
1895 
1896 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1897 		struct rx_ring *rxr = &sc->rx_rings[iq];
1898 
1899 		igc_clear_receive_status(rxr);
1900 	}
1901 
1902 	/* Save last flags for the callback */
1903 	sc->sc_if_flags = ifp->if_flags;
1904 }
1905 
1906 /*********************************************************************
1907  *  Ioctl entry point
1908  *
1909  *  igc_ioctl is called when the user wants to configure the
1910  *  interface.
1911  *
1912  *  return 0 on success, positive on failure
1913  **********************************************************************/
1914 static int
1915 igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
1916 {
1917 	struct igc_softc *sc __unused = ifp->if_softc;
1918 	int s;
1919 	int error;
1920 
1921 	DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
1922 
1923 	switch (cmd) {
1924 	case SIOCADDMULTI:
1925 	case SIOCDELMULTI:
1926 		break;
1927 	default:
1928 		KASSERT(IFNET_LOCKED(ifp));
1929 	}
1930 
1931 	if (cmd == SIOCZIFDATA) {
1932 		mutex_enter(&sc->sc_core_lock);
1933 		igc_clear_counters(sc);
1934 		mutex_exit(&sc->sc_core_lock);
1935 	}
1936 
1937 	switch (cmd) {
1938 #ifdef IF_RXR
1939 	case SIOCGIFRXR:
1940 		s = splnet();
1941 		error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1942 		splx(s);
1943 		break;
1944 #endif
1945 	default:
1946 		s = splnet();
1947 		error = ether_ioctl(ifp, cmd, data);
1948 		splx(s);
1949 		break;
1950 	}
1951 
1952 	if (error != ENETRESET)
1953 		return error;
1954 
1955 	error = 0;
1956 
1957 	if (cmd == SIOCSIFCAP)
1958 		error = if_init(ifp);
1959 	else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
1960 		mutex_enter(&sc->sc_core_lock);
1961 		if (sc->sc_if_flags & IFF_RUNNING) {
1962 			/*
1963 			 * Multicast list has changed; set the hardware filter
1964 			 * accordingly.
1965 			 */
1966 			igc_disable_intr(sc);
1967 			igc_set_filter(sc);
1968 			igc_enable_intr(sc);
1969 		}
1970 		mutex_exit(&sc->sc_core_lock);
1971 	}
1972 
1973 	return error;
1974 }
1975 
1976 #ifdef IF_RXR
1977 static int
1978 igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
1979 {
1980 	struct if_rxring_info *ifr, ifr1;
1981 	int error;
1982 
1983 	if (sc->sc_nqueues > 1) {
1984 		ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
1985 	} else {
1986 		ifr = &ifr1;
1987 		memset(ifr, 0, sizeof(*ifr));
1988 	}
1989 
1990 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1991 		struct rx_ring *rxr = &sc->rx_rings[iq];
1992 
1993 		ifr[iq].ifr_size = MCLBYTES;
1994 		snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
1995 		ifr[iq].ifr_info = rxr->rx_ring;
1996 	}
1997 
1998 	error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
1999 	if (sc->sc_nqueues > 1)
2000 		kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
2001 
2002 	return error;
2003 }
2004 #endif
2005 
2006 static void
2007 igc_rxfill(struct rx_ring *rxr)
2008 {
2009 	struct igc_softc *sc = rxr->sc;
2010 	int id;
2011 
2012 	for (id = 0; id < sc->num_rx_desc; id++) {
2013 		if (igc_get_buf(rxr, id, false)) {
2014 			panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
2015 		}
2016 	}
2017 
2018 	id = sc->num_rx_desc - 1;
2019 	rxr->last_desc_filled = id;
2020 	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2021 	rxr->next_to_check = 0;
2022 }
2023 
2024 static void
2025 igc_rxrefill(struct rx_ring *rxr, int end)
2026 {
2027 	struct igc_softc *sc = rxr->sc;
2028 	int id;
2029 
2030 	for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
2031 		if (igc_get_buf(rxr, id, true)) {
2032 			/* XXXRO */
2033 			panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
2034 		}
2035 	}
2036 
2037 	id = igc_rxdesc_decr(sc, id);
2038 	DPRINTF(RX, "%s RDT %d id %d\n",
2039 	    rxr->last_desc_filled == id ? "same" : "diff",
2040 	    rxr->last_desc_filled, id);
2041 	rxr->last_desc_filled = id;
2042 	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2043 }
2044 
2045 /*********************************************************************
2046  *
2047  *  This routine executes in interrupt context. It replenishes
2048  *  the mbufs in the descriptor and sends data which has been
2049  *  dma'ed into host memory to upper layer.
2050  *
2051  *********************************************************************/
2052 static bool
2053 igc_rxeof(struct rx_ring *rxr, u_int limit)
2054 {
2055 	struct igc_softc *sc = rxr->sc;
2056 	struct igc_queue *q = rxr->rxr_igcq;
2057 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2058 	int id;
2059 	bool more = false;
2060 
2061 	id = rxr->next_to_check;
2062 	for (;;) {
2063 		union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2064 		struct igc_rx_buf *rxbuf, *nxbuf;
2065 		struct mbuf *mp, *m;
2066 
2067 		igc_rxdesc_sync(rxr, id,
2068 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2069 
2070 		const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
2071 
2072 		if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
2073 			igc_rxdesc_sync(rxr, id,
2074 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2075 			break;
2076 		}
2077 
2078 		if (limit-- == 0) {
2079 			igc_rxdesc_sync(rxr, id,
2080 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2081 			DPRINTF(RX, "more=true\n");
2082 			more = true;
2083 			break;
2084 		}
2085 
2086 		/* Zero out the receive descriptors status. */
2087 		rxdesc->wb.upper.status_error = 0;
2088 
2089 		/* Pull the mbuf off the ring. */
2090 		rxbuf = &rxr->rx_buffers[id];
2091 		bus_dmamap_t map = rxbuf->map;
2092 		bus_dmamap_sync(rxr->rxdma.dma_tag, map,
2093 		    0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2094 		bus_dmamap_unload(rxr->rxdma.dma_tag, map);
2095 
2096 		mp = rxbuf->buf;
2097 		rxbuf->buf = NULL;
2098 
2099 		const bool eop = staterr & IGC_RXD_STAT_EOP;
2100 		const uint16_t len = le16toh(rxdesc->wb.upper.length);
2101 
2102 #if NVLAN > 0
2103 		const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
2104 #endif
2105 
2106 		const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
2107 		    IGC_PKTTYPE_MASK;
2108 
2109 		const uint32_t hash __unused =
2110 		    le32toh(rxdesc->wb.lower.hi_dword.rss);
2111 		const uint16_t hashtype __unused =
2112 		    le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
2113 		    IGC_RXDADV_RSSTYPE_MASK;
2114 
2115 		igc_rxdesc_sync(rxr, id,
2116 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2117 
2118 		if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
2119 			if (rxbuf->fmp) {
2120 				m_freem(rxbuf->fmp);
2121 				rxbuf->fmp = NULL;
2122 			}
2123 
2124 			m_freem(mp);
2125 			m = NULL;
2126 
2127 			if_statinc(ifp, if_ierrors);
2128 			IGC_QUEUE_EVENT(q, rx_discard, 1);
2129 
2130 			DPRINTF(RX, "ierrors++\n");
2131 
2132 			goto next_desc;
2133 		}
2134 
2135 		if (__predict_false(mp == NULL)) {
2136 			panic("%s: igc_rxeof: NULL mbuf in slot %d "
2137 			    "(filled %d)", device_xname(sc->sc_dev),
2138 			    id, rxr->last_desc_filled);
2139 		}
2140 
2141 		if (!eop) {
2142 			/*
2143 			 * Figure out the next descriptor of this frame.
2144 			 */
2145 			int nextp = igc_rxdesc_incr(sc, id);
2146 
2147 			nxbuf = &rxr->rx_buffers[nextp];
2148 			/*
2149 			 * TODO prefetch(nxbuf);
2150 			 */
2151 		}
2152 
2153 		mp->m_len = len;
2154 
2155 		m = rxbuf->fmp;
2156 		rxbuf->fmp = NULL;
2157 
2158 		if (m != NULL) {
2159 			m->m_pkthdr.len += mp->m_len;
2160 		} else {
2161 			m = mp;
2162 			m->m_pkthdr.len = mp->m_len;
2163 #if NVLAN > 0
2164 			if (staterr & IGC_RXD_STAT_VP)
2165 				vlan_set_tag(m, vtag);
2166 #endif
2167 		}
2168 
2169 		/* Pass the head pointer on */
2170 		if (!eop) {
2171 			nxbuf->fmp = m;
2172 			m = NULL;
2173 			mp->m_next = nxbuf->buf;
2174 		} else {
2175 			m_set_rcvif(m, ifp);
2176 
2177 			m->m_pkthdr.csum_flags = igc_rx_checksum(q,
2178 			    ifp->if_capenable, staterr, ptype);
2179 
2180 #ifdef notyet
2181 			if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
2182 				m->m_pkthdr.ph_flowid = hash;
2183 				SET(m->m_pkthdr.csum_flags, M_FLOWID);
2184 			}
2185 			ml_enqueue(&ml, m);
2186 #endif
2187 
2188 			if_percpuq_enqueue(sc->sc_ipq, m);
2189 
2190 			if_statinc(ifp, if_ipackets);
2191 			IGC_QUEUE_EVENT(q, rx_packets, 1);
2192 			IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
2193 		}
2194  next_desc:
2195 		/* Advance our pointers to the next descriptor. */
2196 		id = igc_rxdesc_incr(sc, id);
2197 	}
2198 
2199 	DPRINTF(RX, "fill queue[%d]\n", rxr->me);
2200 	igc_rxrefill(rxr, id);
2201 
2202 	DPRINTF(RX, "%s n2c %d id %d\n",
2203 	    rxr->next_to_check == id ? "same" : "diff",
2204 	    rxr->next_to_check, id);
2205 	rxr->next_to_check = id;
2206 
2207 #ifdef OPENBSD
2208 	if (!(staterr & IGC_RXD_STAT_DD))
2209 		return 0;
2210 #endif
2211 
2212 	return more;
2213 }
2214 
2215 /*********************************************************************
2216  *
2217  *  Verify that the hardware indicated that the checksum is valid.
2218  *  Inform the stack about the status of checksum so that stack
2219  *  doesn't spend time verifying the checksum.
2220  *
2221  *********************************************************************/
2222 static int
2223 igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
2224     uint32_t ptype)
2225 {
2226 	const uint16_t status = (uint16_t)staterr;
2227 	const uint8_t errors = (uint8_t)(staterr >> 24);
2228 	int flags = 0;
2229 
2230 	if ((status & IGC_RXD_STAT_IPCS) != 0 &&
2231 	    (capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
2232 		IGC_DRIVER_EVENT(q, rx_ipcs, 1);
2233 		flags |= M_CSUM_IPv4;
2234 		if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
2235 			IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
2236 			flags |= M_CSUM_IPv4_BAD;
2237 		}
2238 	}
2239 
2240 	if ((status & IGC_RXD_STAT_TCPCS) != 0) {
2241 		IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
2242 		if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
2243 			flags |= M_CSUM_TCPv4;
2244 		if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
2245 			flags |= M_CSUM_TCPv6;
2246 	}
2247 
2248 	if ((status & IGC_RXD_STAT_UDPCS) != 0) {
2249 		IGC_DRIVER_EVENT(q, rx_udpcs, 1);
2250 		if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
2251 			flags |= M_CSUM_UDPv4;
2252 		if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
2253 			flags |= M_CSUM_UDPv6;
2254 	}
2255 
2256 	if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
2257 		IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
2258 		if ((flags & ~M_CSUM_IPv4) != 0)
2259 			flags |= M_CSUM_TCP_UDP_BAD;
2260 	}
2261 
2262 	return flags;
2263 }
2264 
2265 static void
2266 igc_watchdog(struct ifnet * ifp)
2267 {
2268 }
2269 
2270 static void
2271 igc_tick(void *arg)
2272 {
2273 	struct igc_softc *sc = arg;
2274 
2275 	mutex_enter(&sc->sc_core_lock);
2276 
2277 	if (__predict_false(sc->sc_core_stopping)) {
2278 		mutex_exit(&sc->sc_core_lock);
2279 		return;
2280 	}
2281 
2282 	/* XXX watchdog */
2283 	if (0) {
2284 		IGC_GLOBAL_EVENT(sc, watchdog, 1);
2285 	}
2286 
2287 	igc_update_counters(sc);
2288 
2289 	mutex_exit(&sc->sc_core_lock);
2290 
2291 	callout_schedule(&sc->sc_tick_ch, hz);
2292 }
2293 
2294 /*********************************************************************
2295  *
2296  *  Media Ioctl callback
2297  *
2298  *  This routine is called whenever the user queries the status of
2299  *  the interface using ifconfig.
2300  *
2301  **********************************************************************/
2302 static void
2303 igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2304 {
2305 	struct igc_softc *sc = ifp->if_softc;
2306 	struct igc_hw *hw = &sc->hw;
2307 
2308 	igc_update_link_status(sc);
2309 
2310 	ifmr->ifm_status = IFM_AVALID;
2311 	ifmr->ifm_active = IFM_ETHER;
2312 
2313 	if (!sc->link_active) {
2314 		ifmr->ifm_active |= IFM_NONE;
2315 		return;
2316 	}
2317 
2318 	ifmr->ifm_status |= IFM_ACTIVE;
2319 
2320 	switch (sc->link_speed) {
2321 	case 10:
2322 		ifmr->ifm_active |= IFM_10_T;
2323 		break;
2324 	case 100:
2325 		ifmr->ifm_active |= IFM_100_TX;
2326 		break;
2327 	case 1000:
2328 		ifmr->ifm_active |= IFM_1000_T;
2329 		break;
2330 	case 2500:
2331 		ifmr->ifm_active |= IFM_2500_T;
2332 		break;
2333 	}
2334 
2335 	if (sc->link_duplex == FULL_DUPLEX)
2336 		ifmr->ifm_active |= IFM_FDX;
2337 	else
2338 		ifmr->ifm_active |= IFM_HDX;
2339 
2340 	switch (hw->fc.current_mode) {
2341 	case igc_fc_tx_pause:
2342 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
2343 		break;
2344 	case igc_fc_rx_pause:
2345 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
2346 		break;
2347 	case igc_fc_full:
2348 		ifmr->ifm_active |= IFM_FLOW |
2349 		    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2350 		break;
2351 	case igc_fc_none:
2352 	default:
2353 		break;
2354 	}
2355 }
2356 
2357 /*********************************************************************
2358  *
2359  *  Media Ioctl callback
2360  *
2361  *  This routine is called when the user changes speed/duplex using
2362  *  media/mediopt option with ifconfig.
2363  *
2364  **********************************************************************/
2365 static int
2366 igc_media_change(struct ifnet *ifp)
2367 {
2368 	struct igc_softc *sc = ifp->if_softc;
2369 	struct ifmedia *ifm = &sc->media;
2370 
2371 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2372 		return EINVAL;
2373 
2374 	sc->hw.mac.autoneg = DO_AUTO_NEG;
2375 
2376 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2377 	case IFM_AUTO:
2378 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2379 		break;
2380 	case IFM_2500_T:
2381 		sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
2382 		break;
2383 	case IFM_1000_T:
2384 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2385 		break;
2386 	case IFM_100_TX:
2387 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2388 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2389 		else
2390 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2391 		break;
2392 	case IFM_10_T:
2393 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2394 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2395 		else
2396 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2397 		break;
2398 	default:
2399 		return EINVAL;
2400 	}
2401 
2402 	igc_init_locked(sc);
2403 
2404 	return 0;
2405 }
2406 
2407 static int
2408 igc_ifflags_cb(struct ethercom *ec)
2409 {
2410 	struct ifnet *ifp = &ec->ec_if;
2411 	struct igc_softc *sc = ifp->if_softc;
2412 	int rc = 0;
2413 	u_short iffchange;
2414 	bool needreset = false;
2415 
2416 	DPRINTF(CFG, "called\n");
2417 
2418 	KASSERT(IFNET_LOCKED(ifp));
2419 
2420 	mutex_enter(&sc->sc_core_lock);
2421 
2422 	/*
2423 	 * Check for if_flags.
2424 	 * Main usage is to prevent linkdown when opening bpf.
2425 	 */
2426 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
2427 	sc->sc_if_flags = ifp->if_flags;
2428 	if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2429 		needreset = true;
2430 		goto ec;
2431 	}
2432 
2433 	/* iff related updates */
2434 	if ((iffchange & IFF_PROMISC) != 0)
2435 		igc_set_filter(sc);
2436 
2437 #ifdef notyet
2438 	igc_set_vlan(sc);
2439 #endif
2440 
2441 ec:
2442 #ifdef notyet
2443 	/* Check for ec_capenable. */
2444 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
2445 	sc->sc_ec_capenable = ec->ec_capenable;
2446 	if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
2447 		needreset = true;
2448 		goto out;
2449 	}
2450 #endif
2451 	if (needreset)
2452 		rc = ENETRESET;
2453 
2454 	mutex_exit(&sc->sc_core_lock);
2455 
2456 	return rc;
2457 }
2458 
2459 static void
2460 igc_set_filter(struct igc_softc *sc)
2461 {
2462 	struct ethercom *ec = &sc->sc_ec;
2463 	uint32_t rctl;
2464 
2465 	rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2466 	rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
2467 
2468 	if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
2469 		rctl |= IGC_RCTL_BAM;
2470 	if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
2471 		DPRINTF(CFG, "promisc\n");
2472 		rctl |= IGC_RCTL_UPE;
2473 		ETHER_LOCK(ec);
2474  allmulti:
2475 		ec->ec_flags |= ETHER_F_ALLMULTI;
2476 		ETHER_UNLOCK(ec);
2477 		rctl |= IGC_RCTL_MPE;
2478 	} else {
2479 		struct ether_multistep step;
2480 		struct ether_multi *enm;
2481 		int mcnt = 0;
2482 
2483 		memset(sc->mta, 0, IGC_MTA_LEN);
2484 
2485 		ETHER_LOCK(ec);
2486 		ETHER_FIRST_MULTI(step, ec, enm);
2487 		while (enm != NULL) {
2488 			if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
2489 					ETHER_ADDR_LEN)) != 0) ||
2490 			    (mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
2491 				/*
2492 				 * We must listen to a range of multicast
2493 				 * addresses. For now, just accept all
2494 				 * multicasts, rather than trying to set only
2495 				 * those filter bits needed to match the range.
2496 				 * (At this time, the only use of address
2497 				 * ranges is for IP multicast routing, for
2498 				 * which the range is big enough to require all
2499 				 * bits set.)
2500 				 */
2501 				goto allmulti;
2502 			}
2503 			DPRINTF(CFG, "%d: %s\n", mcnt,
2504 			    ether_sprintf(enm->enm_addrlo));
2505 			memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
2506 			    enm->enm_addrlo, ETHER_ADDR_LEN);
2507 
2508 			mcnt++;
2509 			ETHER_NEXT_MULTI(step, enm);
2510 		}
2511 		ec->ec_flags &= ~ETHER_F_ALLMULTI;
2512 		ETHER_UNLOCK(ec);
2513 
2514 		DPRINTF(CFG, "hw filter\n");
2515 		igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
2516 	}
2517 
2518 	IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2519 }
2520 
2521 static void
2522 igc_update_link_status(struct igc_softc *sc)
2523 {
2524 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2525 	struct igc_hw *hw = &sc->hw;
2526 
2527 	if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
2528 		if (sc->link_active == 0) {
2529 			igc_get_speed_and_duplex(hw, &sc->link_speed,
2530 			    &sc->link_duplex);
2531 			sc->link_active = 1;
2532 			ifp->if_baudrate = IF_Mbps(sc->link_speed);
2533 			if_link_state_change(ifp, LINK_STATE_UP);
2534 		}
2535 	} else {
2536 		if (sc->link_active == 1) {
2537 			ifp->if_baudrate = sc->link_speed = 0;
2538 			sc->link_duplex = 0;
2539 			sc->link_active = 0;
2540 			if_link_state_change(ifp, LINK_STATE_DOWN);
2541 		}
2542 	}
2543 }
2544 
2545 /*********************************************************************
2546  *
2547  *  Get a buffer from system mbuf buffer pool.
2548  *
2549  **********************************************************************/
2550 static int
2551 igc_get_buf(struct rx_ring *rxr, int id, bool strict)
2552 {
2553 	struct igc_softc *sc = rxr->sc;
2554 	struct igc_queue *q = rxr->rxr_igcq;
2555 	struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
2556 	bus_dmamap_t map = rxbuf->map;
2557 	struct mbuf *m;
2558 	int error;
2559 
2560 	if (__predict_false(rxbuf->buf)) {
2561 		if (strict) {
2562 			DPRINTF(RX, "slot %d already has an mbuf\n", id);
2563 			return EINVAL;
2564 		}
2565 		return 0;
2566 	}
2567 
2568 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2569 	if (__predict_false(m == NULL)) {
2570  enobuf:
2571 		IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
2572 		return ENOBUFS;
2573 	}
2574 
2575 	MCLGET(m, M_DONTWAIT);
2576 	if (__predict_false(!(m->m_flags & M_EXT))) {
2577 		m_freem(m);
2578 		goto enobuf;
2579 	}
2580 
2581 	m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
2582 
2583 	error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
2584 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2585 	if (error) {
2586 		m_freem(m);
2587 		return error;
2588 	}
2589 
2590 	bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
2591 	    map->dm_mapsize, BUS_DMASYNC_PREREAD);
2592 	rxbuf->buf = m;
2593 
2594 	union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2595 	igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
2596 	rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
2597 	igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2598 
2599 	return 0;
2600 }
2601 
2602 static void
2603 igc_configure_queues(struct igc_softc *sc)
2604 {
2605 	struct igc_hw *hw = &sc->hw;
2606 	uint32_t ivar;
2607 
2608 	/* First turn on RSS capability */
2609 	IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
2610 	    IGC_GPIE_PBA | IGC_GPIE_NSICR);
2611 
2612 	/* Set the starting interrupt rate */
2613 	uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
2614 	newitr |= IGC_EITR_CNT_IGNR;
2615 
2616 	/* Turn on MSI-X */
2617 	uint32_t newmask = 0;
2618 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2619 		struct igc_queue *q = &sc->queues[iq];
2620 
2621 		/* RX entries */
2622 		igc_set_queues(sc, iq, q->msix, 0);
2623 		/* TX entries */
2624 		igc_set_queues(sc, iq, q->msix, 1);
2625 		newmask |= q->eims;
2626 		IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
2627 	}
2628 	sc->msix_queuesmask = newmask;
2629 
2630 #if 1
2631 	ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
2632 	DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
2633 	ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
2634 	DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
2635 #endif
2636 
2637 	/* And for the link interrupt */
2638 	ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
2639 	sc->msix_linkmask = 1 << sc->linkvec;
2640 	IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
2641 }
2642 
2643 static void
2644 igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
2645 {
2646 	struct igc_hw *hw = &sc->hw;
2647 	const uint32_t index = entry >> 1;
2648 	uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
2649 
2650 	if (type) {
2651 		if (entry & 1) {
2652 			ivar &= 0x00FFFFFF;
2653 			ivar |= (vector | IGC_IVAR_VALID) << 24;
2654 		} else {
2655 			ivar &= 0xFFFF00FF;
2656 			ivar |= (vector | IGC_IVAR_VALID) << 8;
2657 		}
2658 	} else {
2659 		if (entry & 1) {
2660 			ivar &= 0xFF00FFFF;
2661 			ivar |= (vector | IGC_IVAR_VALID) << 16;
2662 		} else {
2663 			ivar &= 0xFFFFFF00;
2664 			ivar |= vector | IGC_IVAR_VALID;
2665 		}
2666 	}
2667 	IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
2668 }
2669 
2670 static void
2671 igc_enable_queue(struct igc_softc *sc, uint32_t eims)
2672 {
2673 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
2674 }
2675 
2676 static void
2677 igc_enable_intr(struct igc_softc *sc)
2678 {
2679 	struct igc_hw *hw = &sc->hw;
2680 
2681 	if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2682 		const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
2683 
2684 		IGC_WRITE_REG(hw, IGC_EIAC, mask);
2685 		IGC_WRITE_REG(hw, IGC_EIAM, mask);
2686 		IGC_WRITE_REG(hw, IGC_EIMS, mask);
2687 		IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2688 	} else {
2689 		IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2690 	}
2691 	IGC_WRITE_FLUSH(hw);
2692 }
2693 
2694 static void
2695 igc_disable_intr(struct igc_softc *sc)
2696 {
2697 	struct igc_hw *hw = &sc->hw;
2698 
2699 	if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2700 		IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2701 		IGC_WRITE_REG(hw, IGC_EIAC, 0);
2702 	}
2703 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2704 	IGC_WRITE_FLUSH(hw);
2705 }
2706 
2707 static int
2708 igc_intr_link(void *arg)
2709 {
2710 	struct igc_softc *sc = (struct igc_softc *)arg;
2711 	const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2712 
2713 	IGC_GLOBAL_EVENT(sc, link, 1);
2714 
2715 	if (reg_icr & IGC_ICR_LSC) {
2716 		mutex_enter(&sc->sc_core_lock);
2717 		sc->hw.mac.get_link_status = true;
2718 		igc_update_link_status(sc);
2719 		mutex_exit(&sc->sc_core_lock);
2720 	}
2721 
2722 	IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
2723 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
2724 
2725 	return 1;
2726 }
2727 
2728 static int
2729 igc_intr_queue(void *arg)
2730 {
2731 	struct igc_queue *iq = arg;
2732 	struct igc_softc *sc = iq->sc;
2733 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2734 	struct rx_ring *rxr = iq->rxr;
2735 	struct tx_ring *txr = iq->txr;
2736 	const u_int txlimit = sc->sc_tx_intr_process_limit,
2737 		    rxlimit = sc->sc_rx_intr_process_limit;
2738 	bool txmore, rxmore;
2739 
2740 	IGC_QUEUE_EVENT(iq, irqs, 1);
2741 
2742 	if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2743 		return 0;
2744 
2745 	mutex_enter(&txr->txr_lock);
2746 	txmore = igc_txeof(txr, txlimit);
2747 	mutex_exit(&txr->txr_lock);
2748 	mutex_enter(&rxr->rxr_lock);
2749 	rxmore = igc_rxeof(rxr, rxlimit);
2750 	mutex_exit(&rxr->rxr_lock);
2751 
2752 	if (txmore || rxmore) {
2753 		IGC_QUEUE_EVENT(iq, req, 1);
2754 		igc_sched_handle_queue(sc, iq);
2755 	} else {
2756 		igc_enable_queue(sc, iq->eims);
2757 	}
2758 
2759 	return 1;
2760 }
2761 
2762 static int
2763 igc_intr(void *arg)
2764 {
2765 	struct igc_softc *sc = arg;
2766 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2767 	struct igc_queue *iq = &sc->queues[0];
2768 	struct rx_ring *rxr = iq->rxr;
2769 	struct tx_ring *txr = iq->txr;
2770 	const u_int txlimit = sc->sc_tx_intr_process_limit,
2771 		    rxlimit = sc->sc_rx_intr_process_limit;
2772 	bool txmore, rxmore;
2773 
2774 	if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2775 		return 0;
2776 
2777 	const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2778 	DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
2779 
2780 	/* Definitely not our interrupt. */
2781 	if (reg_icr == 0x0) {
2782 		DPRINTF(MISC, "not for me");
2783 		return 0;
2784 	}
2785 
2786 	IGC_QUEUE_EVENT(iq, irqs, 1);
2787 
2788 	/* Hot eject? */
2789 	if (__predict_false(reg_icr == 0xffffffff)) {
2790 		DPRINTF(MISC, "hot eject\n");
2791 		return 0;
2792 	}
2793 
2794 	if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
2795 		DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
2796 		return 0;
2797 	}
2798 
2799 	/*
2800 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
2801 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
2802 	 * also works around the MSI message reordering errata on certain
2803 	 * systems.
2804 	 */
2805 	igc_disable_intr(sc);
2806 
2807 	mutex_enter(&txr->txr_lock);
2808 	txmore = igc_txeof(txr, txlimit);
2809 	mutex_exit(&txr->txr_lock);
2810 	mutex_enter(&rxr->rxr_lock);
2811 	rxmore = igc_rxeof(rxr, rxlimit);
2812 	mutex_exit(&rxr->rxr_lock);
2813 
2814 	/* Link status change */
2815 	// XXXX FreeBSD checks IGC_ICR_RXSEQ
2816 	if (__predict_false(reg_icr & IGC_ICR_LSC)) {
2817 		IGC_GLOBAL_EVENT(sc, link, 1);
2818 		mutex_enter(&sc->sc_core_lock);
2819 		sc->hw.mac.get_link_status = true;
2820 		igc_update_link_status(sc);
2821 		mutex_exit(&sc->sc_core_lock);
2822 	}
2823 
2824 	if (txmore || rxmore) {
2825 		IGC_QUEUE_EVENT(iq, req, 1);
2826 		igc_sched_handle_queue(sc, iq);
2827 	} else {
2828 		igc_enable_intr(sc);
2829 	}
2830 
2831 	return 1;
2832 }
2833 
2834 static void
2835 igc_handle_queue(void *arg)
2836 {
2837 	struct igc_queue *iq = arg;
2838 	struct igc_softc *sc = iq->sc;
2839 	struct tx_ring *txr = iq->txr;
2840 	struct rx_ring *rxr = iq->rxr;
2841 	const u_int txlimit = sc->sc_tx_process_limit,
2842 		    rxlimit = sc->sc_rx_process_limit;
2843 	bool txmore, rxmore;
2844 
2845 	IGC_QUEUE_EVENT(iq, handleq, 1);
2846 
2847 	mutex_enter(&txr->txr_lock);
2848 	txmore = igc_txeof(txr, txlimit);
2849 	/* for ALTQ, dequeue from if_snd */
2850 	if (txr->me == 0) {
2851 		struct ifnet *ifp = &sc->sc_ec.ec_if;
2852 
2853 		igc_tx_common_locked(ifp, txr, IGC_TX_START);
2854 	}
2855 	mutex_exit(&txr->txr_lock);
2856 
2857 	mutex_enter(&rxr->rxr_lock);
2858 	rxmore = igc_rxeof(rxr, rxlimit);
2859 	mutex_exit(&rxr->rxr_lock);
2860 
2861 	if (txmore || rxmore) {
2862 		igc_sched_handle_queue(sc, iq);
2863 	} else {
2864 		if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
2865 			igc_enable_queue(sc, iq->eims);
2866 		else
2867 			igc_enable_intr(sc);
2868 	}
2869 }
2870 
2871 static void
2872 igc_handle_queue_work(struct work *wk, void *context)
2873 {
2874 	struct igc_queue *iq =
2875 	    container_of(wk, struct igc_queue, igcq_wq_cookie);
2876 
2877 	igc_handle_queue(iq);
2878 }
2879 
2880 static void
2881 igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
2882 {
2883 
2884 	if (iq->igcq_workqueue) {
2885 		/* XXXRO notyet */
2886 		workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
2887 		    curcpu());
2888 	} else {
2889 		softint_schedule(iq->igcq_si);
2890 	}
2891 }
2892 
2893 static void
2894 igc_barrier_handle_queue(struct igc_softc *sc)
2895 {
2896 
2897 	if (sc->sc_txrx_workqueue) {
2898 		for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2899 			struct igc_queue *q = &sc->queues[iq];
2900 
2901 			workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
2902 		}
2903 	} else {
2904 		xc_barrier(0);
2905 	}
2906 }
2907 
2908 /*********************************************************************
2909  *
2910  *  Allocate memory for tx_buffer structures. The tx_buffer stores all
2911  *  the information needed to transmit a packet on the wire.
2912  *
2913  **********************************************************************/
2914 static int
2915 igc_allocate_transmit_buffers(struct tx_ring *txr)
2916 {
2917 	struct igc_softc *sc = txr->sc;
2918 	int error;
2919 
2920 	txr->tx_buffers =
2921 	    kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
2922 	txr->txtag = txr->txdma.dma_tag;
2923 
2924 	/* Create the descriptor buffer dma maps. */
2925 	for (int id = 0; id < sc->num_tx_desc; id++) {
2926 		struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
2927 
2928 		error = bus_dmamap_create(txr->txdma.dma_tag,
2929 		    round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
2930 		    IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
2931 		if (error != 0) {
2932 			aprint_error_dev(sc->sc_dev,
2933 			    "unable to create TX DMA map\n");
2934 			goto fail;
2935 		}
2936 
2937 		txbuf->eop_index = -1;
2938 	}
2939 
2940 	return 0;
2941  fail:
2942 	return error;
2943 }
2944 
2945 
2946 /*********************************************************************
2947  *
2948  *  Allocate and initialize transmit structures.
2949  *
2950  **********************************************************************/
2951 static int
2952 igc_setup_transmit_structures(struct igc_softc *sc)
2953 {
2954 
2955 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2956 		struct tx_ring *txr = &sc->tx_rings[iq];
2957 
2958 		if (igc_setup_transmit_ring(txr))
2959 			goto fail;
2960 	}
2961 
2962 	return 0;
2963  fail:
2964 	igc_free_transmit_structures(sc);
2965 	return ENOBUFS;
2966 }
2967 
2968 /*********************************************************************
2969  *
2970  *  Initialize a transmit ring.
2971  *
2972  **********************************************************************/
2973 static int
2974 igc_setup_transmit_ring(struct tx_ring *txr)
2975 {
2976 	struct igc_softc *sc = txr->sc;
2977 
2978 	/* Now allocate transmit buffers for the ring. */
2979 	if (igc_allocate_transmit_buffers(txr))
2980 		return ENOMEM;
2981 
2982 	/* Clear the old ring contents */
2983 	memset(txr->tx_base, 0,
2984 	    sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
2985 
2986 	/* Reset indices. */
2987 	txr->next_avail_desc = 0;
2988 	txr->next_to_clean = 0;
2989 
2990 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
2991 	    txr->txdma.dma_map->dm_mapsize,
2992 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2993 
2994 	txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
2995 
2996 	mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
2997 
2998 	return 0;
2999 }
3000 
3001 /*********************************************************************
3002  *
3003  *  Enable transmit unit.
3004  *
3005  **********************************************************************/
3006 static void
3007 igc_initialize_transmit_unit(struct igc_softc *sc)
3008 {
3009 	struct ifnet *ifp = &sc->sc_ec.ec_if;
3010 	struct igc_hw *hw = &sc->hw;
3011 
3012 	/* Setup the Base and Length of the TX descriptor ring. */
3013 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3014 		struct tx_ring *txr = &sc->tx_rings[iq];
3015 		const uint64_t bus_addr =
3016 		    txr->txdma.dma_map->dm_segs[0].ds_addr;
3017 
3018 		/* Base and len of TX ring */
3019 		IGC_WRITE_REG(hw, IGC_TDLEN(iq),
3020 		    sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
3021 		IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
3022 		IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
3023 
3024 		/* Init the HEAD/TAIL indices */
3025 		IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
3026 		IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
3027 
3028 		txr->watchdog_timer = 0;
3029 
3030 		uint32_t txdctl = 0;	/* Clear txdctl */
3031 		txdctl |= 0x1f;		/* PTHRESH */
3032 		txdctl |= 1 << 8;	/* HTHRESH */
3033 		txdctl |= 1 << 16;	/* WTHRESH */
3034 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
3035 		txdctl |= IGC_TXDCTL_GRAN;
3036 		txdctl |= 1 << 25;	/* LWTHRESH */
3037 
3038 		IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
3039 	}
3040 	ifp->if_timer = 0;
3041 
3042 	/* Program the Transmit Control Register */
3043 	uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
3044 	tctl &= ~IGC_TCTL_CT;
3045 	tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
3046 	    (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
3047 
3048 	/* This write will effectively turn on the transmit unit. */
3049 	IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
3050 }
3051 
3052 /*********************************************************************
3053  *
3054  *  Free all transmit rings.
3055  *
3056  **********************************************************************/
3057 static void
3058 igc_free_transmit_structures(struct igc_softc *sc)
3059 {
3060 
3061 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3062 		struct tx_ring *txr = &sc->tx_rings[iq];
3063 
3064 		igc_free_transmit_buffers(txr);
3065 	}
3066 }
3067 
3068 /*********************************************************************
3069  *
3070  *  Free transmit ring related data structures.
3071  *
3072  **********************************************************************/
3073 static void
3074 igc_free_transmit_buffers(struct tx_ring *txr)
3075 {
3076 	struct igc_softc *sc = txr->sc;
3077 
3078 	if (txr->tx_buffers == NULL)
3079 		return;
3080 
3081 	igc_withdraw_transmit_packets(txr, true);
3082 
3083 	kmem_free(txr->tx_buffers,
3084 	    sc->num_tx_desc * sizeof(struct igc_tx_buf));
3085 	txr->tx_buffers = NULL;
3086 	txr->txtag = NULL;
3087 
3088 	pcq_destroy(txr->txr_interq);
3089 	mutex_destroy(&txr->txr_lock);
3090 }
3091 
3092 /*********************************************************************
3093  *
3094  *  Withdraw transmit packets.
3095  *
3096  **********************************************************************/
3097 static void
3098 igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
3099 {
3100 	struct igc_softc *sc = txr->sc;
3101 	struct igc_queue *q = txr->txr_igcq;
3102 
3103 	mutex_enter(&txr->txr_lock);
3104 
3105 	for (int id = 0; id < sc->num_tx_desc; id++) {
3106 		union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
3107 
3108 		igc_txdesc_sync(txr, id,
3109 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3110 		txdesc->read.buffer_addr = 0;
3111 		txdesc->read.cmd_type_len = 0;
3112 		txdesc->read.olinfo_status = 0;
3113 		igc_txdesc_sync(txr, id,
3114 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3115 
3116 		struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
3117 		bus_dmamap_t map = txbuf->map;
3118 
3119 		if (map != NULL && map->dm_nsegs > 0) {
3120 			bus_dmamap_sync(txr->txdma.dma_tag, map,
3121 			    0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3122 			bus_dmamap_unload(txr->txdma.dma_tag, map);
3123 		}
3124 		if (txbuf->m_head != NULL) {
3125 			m_freem(txbuf->m_head);
3126 			txbuf->m_head = NULL;
3127 		}
3128 		if (map != NULL && destroy) {
3129 			bus_dmamap_destroy(txr->txdma.dma_tag, map);
3130 			txbuf->map = NULL;
3131 		}
3132 		txbuf->eop_index = -1;
3133 
3134 		txr->next_avail_desc = 0;
3135 		txr->next_to_clean = 0;
3136 	}
3137 
3138 	struct mbuf *m;
3139 	while ((m = pcq_get(txr->txr_interq)) != NULL) {
3140 		IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
3141 		m_freem(m);
3142 	}
3143 
3144 	mutex_exit(&txr->txr_lock);
3145 }
3146 
3147 
3148 /*********************************************************************
3149  *
3150  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
3151  *
3152  **********************************************************************/
3153 
3154 static int
3155 igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3156     uint32_t *cmd_type_len, uint32_t *olinfo_status)
3157 {
3158 	struct ether_vlan_header *evl;
3159 	uint32_t type_tucmd_mlhl = 0;
3160 	uint32_t vlan_macip_lens = 0;
3161 	uint32_t ehlen, iphlen;
3162 	uint16_t ehtype;
3163 	int off = 0;
3164 
3165 	const int csum_flags = mp->m_pkthdr.csum_flags;
3166 
3167 	/* First check if TSO is to be used */
3168 	if ((csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
3169 		return igc_tso_setup(txr, mp, prod, cmd_type_len,
3170 		    olinfo_status);
3171 	}
3172 
3173 	const bool v4 = (csum_flags &
3174 	    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0;
3175 	const bool v6 = (csum_flags & (M_CSUM_UDPv6 | M_CSUM_TCPv6)) != 0;
3176 
3177 	/* Indicate the whole packet as payload when not doing TSO */
3178 	*olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
3179 
3180 	/*
3181 	 * In advanced descriptors the vlan tag must
3182 	 * be placed into the context descriptor. Hence
3183 	 * we need to make one even if not doing offloads.
3184 	 */
3185 #if NVLAN > 0
3186 	if (vlan_has_tag(mp)) {
3187 		vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3188 		    << IGC_ADVTXD_VLAN_SHIFT;
3189 		off = 1;
3190 	} else
3191 #endif
3192 	if (!v4 && !v6)
3193 		return 0;
3194 
3195 	KASSERT(mp->m_len >= sizeof(struct ether_header));
3196 	evl = mtod(mp, struct ether_vlan_header *);
3197 	if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3198 		KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3199 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3200 		ehtype = evl->evl_proto;
3201 	} else {
3202 		ehlen = ETHER_HDR_LEN;
3203 		ehtype = evl->evl_encap_proto;
3204 	}
3205 
3206 	vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3207 
3208 #ifdef IGC_DEBUG
3209 	/*
3210 	 * For checksum offloading, L3 headers are not mandatory.
3211 	 * We use these only for consistency checks.
3212 	 */
3213 	struct ip *ip;
3214 	struct ip6_hdr *ip6;
3215 	uint8_t ipproto;
3216 	char *l3d;
3217 
3218 	if (mp->m_len == ehlen && mp->m_next != NULL)
3219 		l3d = mtod(mp->m_next, char *);
3220 	else
3221 		l3d = mtod(mp, char *) + ehlen;
3222 #endif
3223 
3224 	switch (ntohs(ehtype)) {
3225 	case ETHERTYPE_IP:
3226 		iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3227 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3228 
3229 		if ((csum_flags & M_CSUM_IPv4) != 0) {
3230 			*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3231 			off = 1;
3232 		}
3233 #ifdef IGC_DEBUG
3234 		KASSERT(!v6);
3235 		ip = (void *)l3d;
3236 		ipproto = ip->ip_p;
3237 		KASSERT(iphlen == ip->ip_hl << 2);
3238 		KASSERT((mp->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0 ||
3239 		    ip->ip_sum == 0);
3240 #endif
3241 		break;
3242 	case ETHERTYPE_IPV6:
3243 		iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3244 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3245 #ifdef IGC_DEBUG
3246 		KASSERT(!v4);
3247 		ip6 = (void *)l3d;
3248 		ipproto = ip6->ip6_nxt;	/* XXX */
3249 		KASSERT(iphlen == sizeof(struct ip6_hdr));
3250 #endif
3251 		break;
3252 	default:
3253 		/*
3254 		 * Unknown L3 protocol. Clear L3 header length and proceed for
3255 		 * LAN as done by Linux driver.
3256 		 */
3257 		iphlen = 0;
3258 #ifdef IGC_DEBUG
3259 		KASSERT(!v4 && !v6);
3260 		ipproto = 0;
3261 #endif
3262 		break;
3263 	}
3264 
3265 	vlan_macip_lens |= iphlen;
3266 
3267 	const bool tcp = (csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
3268 	const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
3269 
3270 	if (tcp) {
3271 #ifdef IGC_DEBUG
3272 		KASSERTMSG(ipproto == IPPROTO_TCP, "ipproto = %d", ipproto);
3273 #endif
3274 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3275 		*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3276 		off = 1;
3277 	} else if (udp) {
3278 #ifdef IGC_DEBUG
3279 		KASSERTMSG(ipproto == IPPROTO_UDP, "ipproto = %d", ipproto);
3280 #endif
3281 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
3282 		*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3283 		off = 1;
3284 	}
3285 
3286 	if (off == 0)
3287 		return 0;
3288 
3289 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3290 
3291 	/* Now ready a context descriptor */
3292 	struct igc_adv_tx_context_desc *txdesc =
3293 	    (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3294 
3295 	/* Now copy bits into descriptor */
3296 	igc_txdesc_sync(txr, prod,
3297 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3298 	htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3299 	htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3300 	htolem32(&txdesc->seqnum_seed, 0);
3301 	htolem32(&txdesc->mss_l4len_idx, 0);
3302 	igc_txdesc_sync(txr, prod,
3303 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3304 
3305 	return 1;
3306 }
3307 
3308 /*********************************************************************
3309  *
3310  *  Advanced Context Descriptor setup for TSO
3311  *
3312  *  XXX XXXRO
3313  *	Not working. Some packets are sent with correct csums, but
3314  *	others aren't. th->th_sum may be adjusted.
3315  *
3316  **********************************************************************/
3317 
3318 static int
3319 igc_tso_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3320     uint32_t *cmd_type_len, uint32_t *olinfo_status)
3321 {
3322 #if 1 /* notyet */
3323 	return 0;
3324 #else
3325 	struct ether_vlan_header *evl;
3326 	struct ip *ip;
3327 	struct ip6_hdr *ip6;
3328 	struct tcphdr *th;
3329 	uint32_t type_tucmd_mlhl = 0;
3330 	uint32_t vlan_macip_lens = 0;
3331 	uint32_t mss_l4len_idx = 0;
3332 	uint32_t ehlen, iphlen, tcphlen, paylen;
3333 	uint16_t ehtype;
3334 
3335 	/*
3336 	 * In advanced descriptors the vlan tag must
3337 	 * be placed into the context descriptor. Hence
3338 	 * we need to make one even if not doing offloads.
3339 	 */
3340 #if NVLAN > 0
3341 	if (vlan_has_tag(mp)) {
3342 		vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3343 		    << IGC_ADVTXD_VLAN_SHIFT;
3344 	}
3345 #endif
3346 
3347 	KASSERT(mp->m_len >= sizeof(struct ether_header));
3348 	evl = mtod(mp, struct ether_vlan_header *);
3349 	if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3350 		KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3351 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3352 		ehtype = evl->evl_proto;
3353 	} else {
3354 		ehlen = ETHER_HDR_LEN;
3355 		ehtype = evl->evl_encap_proto;
3356 	}
3357 
3358 	vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3359 
3360 	switch (ntohs(ehtype)) {
3361 	case ETHERTYPE_IP:
3362 		iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3363 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3364 		*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3365 
3366 		KASSERT(mp->m_len >= ehlen + sizeof(*ip));
3367 		ip = (void *)(mtod(mp, char *) + ehlen);
3368 		ip->ip_len = 0;
3369 		KASSERT(iphlen == ip->ip_hl << 2);
3370 		KASSERT(ip->ip_sum == 0);
3371 		KASSERT(ip->ip_p == IPPROTO_TCP);
3372 
3373 		KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3374 		th = (void *)((char *)ip + iphlen);
3375 		th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr,
3376 		    htons(IPPROTO_TCP));
3377 		break;
3378 	case ETHERTYPE_IPV6:
3379 		iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3380 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3381 
3382 		KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
3383 		ip6 = (void *)(mtod(mp, char *) + ehlen);
3384 		ip6->ip6_plen = 0;
3385 		KASSERT(iphlen == sizeof(struct ip6_hdr));
3386 		KASSERT(ip6->ip6_nxt == IPPROTO_TCP);
3387 
3388 		KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3389 		th = (void *)((char *)ip6 + iphlen);
3390 		tcphlen = th->th_off << 2;
3391 		paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3392 		th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
3393 		    htonl(IPPROTO_TCP));
3394 		break;
3395 	default:
3396 		panic("%s", __func__);
3397 	}
3398 
3399 	tcphlen = th->th_off << 2;
3400 	paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3401 
3402 	vlan_macip_lens |= iphlen;
3403 
3404 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3405 	type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3406 
3407 	mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
3408 	mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
3409 
3410 	/* Now ready a context descriptor */
3411 	struct igc_adv_tx_context_desc *txdesc =
3412 	    (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3413 
3414 	/* Now copy bits into descriptor */
3415 	igc_txdesc_sync(txr, prod,
3416 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3417 	htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3418 	htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3419 	htolem32(&txdesc->seqnum_seed, 0);
3420 	htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
3421 	igc_txdesc_sync(txr, prod,
3422 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3423 
3424 	*cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
3425 	*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3426 	*olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
3427 
3428 	return 1;
3429 #endif /* notyet */
3430 }
3431 
3432 /*********************************************************************
3433  *
3434  *  Allocate memory for rx_buffer structures. Since we use one
3435  *  rx_buffer per received packet, the maximum number of rx_buffer's
3436  *  that we'll need is equal to the number of receive descriptors
3437  *  that we've allocated.
3438  *
3439  **********************************************************************/
3440 static int
3441 igc_allocate_receive_buffers(struct rx_ring *rxr)
3442 {
3443 	struct igc_softc *sc = rxr->sc;
3444 	int error;
3445 
3446 	rxr->rx_buffers =
3447 	    kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
3448 
3449 	for (int id = 0; id < sc->num_rx_desc; id++) {
3450 		struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3451 
3452 		error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
3453 		    MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
3454 		if (error) {
3455 			aprint_error_dev(sc->sc_dev,
3456 			    "unable to create RX DMA map\n");
3457 			goto fail;
3458 		}
3459 	}
3460 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
3461 	    rxr->rxdma.dma_map->dm_mapsize,
3462 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3463 
3464 	return 0;
3465  fail:
3466 	return error;
3467 }
3468 
3469 /*********************************************************************
3470  *
3471  *  Allocate and initialize receive structures.
3472  *
3473  **********************************************************************/
3474 static int
3475 igc_setup_receive_structures(struct igc_softc *sc)
3476 {
3477 
3478 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3479 		struct rx_ring *rxr = &sc->rx_rings[iq];
3480 
3481 		if (igc_setup_receive_ring(rxr))
3482 			goto fail;
3483 	}
3484 
3485 	return 0;
3486  fail:
3487 	igc_free_receive_structures(sc);
3488 	return ENOBUFS;
3489 }
3490 
3491 /*********************************************************************
3492  *
3493  *  Initialize a receive ring and its buffers.
3494  *
3495  **********************************************************************/
3496 static int
3497 igc_setup_receive_ring(struct rx_ring *rxr)
3498 {
3499 	struct igc_softc *sc = rxr->sc;
3500 	const int rsize = roundup2(
3501 	    sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
3502 
3503 	/* Clear the ring contents. */
3504 	memset(rxr->rx_base, 0, rsize);
3505 
3506 	if (igc_allocate_receive_buffers(rxr))
3507 		return ENOMEM;
3508 
3509 	/* Setup our descriptor indices. */
3510 	rxr->next_to_check = 0;
3511 	rxr->last_desc_filled = 0;
3512 
3513 	mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
3514 
3515 	return 0;
3516 }
3517 
3518 /*********************************************************************
3519  *
3520  *  Enable receive unit.
3521  *
3522  **********************************************************************/
3523 static void
3524 igc_initialize_receive_unit(struct igc_softc *sc)
3525 {
3526 	struct ifnet *ifp = &sc->sc_ec.ec_if;
3527 	struct igc_hw *hw = &sc->hw;
3528 	uint32_t rctl, rxcsum, srrctl;
3529 
3530 	DPRINTF(RX, "called\n");
3531 
3532 	/*
3533 	 * Make sure receives are disabled while setting
3534 	 * up the descriptor ring.
3535 	 */
3536 	rctl = IGC_READ_REG(hw, IGC_RCTL);
3537 	IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
3538 
3539 	/* Setup the Receive Control Register */
3540 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
3541 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
3542 	    IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
3543 
3544 #if 1
3545 	/* Do not store bad packets */
3546 	rctl &= ~IGC_RCTL_SBP;
3547 #else
3548 	/* for debug */
3549 	rctl |= IGC_RCTL_SBP;
3550 #endif
3551 
3552 	/* Enable Long Packet receive */
3553 	if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
3554 		rctl |= IGC_RCTL_LPE;
3555 	else
3556 		rctl &= ~IGC_RCTL_LPE;
3557 
3558 	/* Strip the CRC */
3559 	rctl |= IGC_RCTL_SECRC;
3560 
3561 	/*
3562 	 * Set the interrupt throttling rate. Value is calculated
3563 	 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3564 	 *
3565 	 * XXX Sync with Linux, especially for jumbo MTU or TSO.
3566 	 * XXX Shouldn't be here?
3567 	 */
3568 	IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
3569 
3570 	rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
3571 	rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
3572 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3573 		rxcsum |= IGC_RXCSUM_IPOFL;
3574 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
3575 				 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3576 		rxcsum |= IGC_RXCSUM_TUOFL;
3577 	if (sc->sc_nqueues > 1)
3578 		rxcsum |= IGC_RXCSUM_PCSD;
3579 	IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
3580 
3581 	if (sc->sc_nqueues > 1)
3582 		igc_initialize_rss_mapping(sc);
3583 
3584 	srrctl = 0;
3585 #if 0
3586 	srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3587 	rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
3588 #else
3589 	srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3590 	rctl |= IGC_RCTL_SZ_2048;
3591 #endif
3592 
3593 	/*
3594 	 * If TX flow control is disabled and there's > 1 queue defined,
3595 	 * enable DROP.
3596 	 *
3597 	 * This drops frames rather than hanging the RX MAC for all queues.
3598 	 */
3599 	if (sc->sc_nqueues > 1 &&
3600 	    (sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
3601 		srrctl |= IGC_SRRCTL_DROP_EN;
3602 
3603 	/* Setup the Base and Length of the RX descriptor rings. */
3604 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3605 		struct rx_ring *rxr = &sc->rx_rings[iq];
3606 		const uint64_t bus_addr =
3607 		    rxr->rxdma.dma_map->dm_segs[0].ds_addr;
3608 
3609 		IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
3610 
3611 		srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
3612 
3613 		IGC_WRITE_REG(hw, IGC_RDLEN(iq),
3614 		    sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
3615 		IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
3616 		IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
3617 		IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
3618 
3619 		/* Setup the Head and Tail Descriptor Pointers */
3620 		IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
3621 		IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
3622 
3623 		/* Enable this Queue */
3624 		uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
3625 		rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
3626 		rxdctl &= 0xFFF00000;
3627 		rxdctl |= IGC_RX_PTHRESH;
3628 		rxdctl |= IGC_RX_HTHRESH << 8;
3629 		rxdctl |= IGC_RX_WTHRESH << 16;
3630 		IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
3631 	}
3632 
3633 	/* Make sure VLAN Filters are off */
3634 	rctl &= ~IGC_RCTL_VFE;
3635 
3636 	/* Write out the settings */
3637 	IGC_WRITE_REG(hw, IGC_RCTL, rctl);
3638 }
3639 
3640 /*********************************************************************
3641  *
3642  *  Free all receive rings.
3643  *
3644  **********************************************************************/
3645 static void
3646 igc_free_receive_structures(struct igc_softc *sc)
3647 {
3648 
3649 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3650 		struct rx_ring *rxr = &sc->rx_rings[iq];
3651 
3652 		igc_free_receive_buffers(rxr);
3653 	}
3654 }
3655 
3656 /*********************************************************************
3657  *
3658  *  Free receive ring data structures
3659  *
3660  **********************************************************************/
3661 static void
3662 igc_free_receive_buffers(struct rx_ring *rxr)
3663 {
3664 	struct igc_softc *sc = rxr->sc;
3665 
3666 	if (rxr->rx_buffers != NULL) {
3667 		for (int id = 0; id < sc->num_rx_desc; id++) {
3668 			struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3669 			bus_dmamap_t map = rxbuf->map;
3670 
3671 			if (rxbuf->buf != NULL) {
3672 				bus_dmamap_sync(rxr->rxdma.dma_tag, map,
3673 				    0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
3674 				bus_dmamap_unload(rxr->rxdma.dma_tag, map);
3675 				m_freem(rxbuf->buf);
3676 				rxbuf->buf = NULL;
3677 			}
3678 			bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
3679 			rxbuf->map = NULL;
3680 		}
3681 		kmem_free(rxr->rx_buffers,
3682 		    sc->num_rx_desc * sizeof(struct igc_rx_buf));
3683 		rxr->rx_buffers = NULL;
3684 	}
3685 
3686 	mutex_destroy(&rxr->rxr_lock);
3687 }
3688 
3689 /*********************************************************************
3690  *
3691  * Clear status registers in all RX descriptors.
3692  *
3693  **********************************************************************/
3694 static void
3695 igc_clear_receive_status(struct rx_ring *rxr)
3696 {
3697 	struct igc_softc *sc = rxr->sc;
3698 
3699 	mutex_enter(&rxr->rxr_lock);
3700 
3701 	for (int id = 0; id < sc->num_rx_desc; id++) {
3702 		union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
3703 
3704 		igc_rxdesc_sync(rxr, id,
3705 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3706 		rxdesc->wb.upper.status_error = 0;
3707 		igc_rxdesc_sync(rxr, id,
3708 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3709 	}
3710 
3711 	mutex_exit(&rxr->rxr_lock);
3712 }
3713 
3714 /*
3715  * Initialise the RSS mapping for NICs that support multiple transmit/
3716  * receive rings.
3717  */
3718 static void
3719 igc_initialize_rss_mapping(struct igc_softc *sc)
3720 {
3721 	struct igc_hw *hw = &sc->hw;
3722 
3723 	/*
3724 	 * The redirection table controls which destination
3725 	 * queue each bucket redirects traffic to.
3726 	 * Each DWORD represents four queues, with the LSB
3727 	 * being the first queue in the DWORD.
3728 	 *
3729 	 * This just allocates buckets to queues using round-robin
3730 	 * allocation.
3731 	 *
3732 	 * NOTE: It Just Happens to line up with the default
3733 	 * RSS allocation method.
3734 	 */
3735 
3736 	/* Warning FM follows */
3737 	uint32_t reta = 0;
3738 	for (int i = 0; i < 128; i++) {
3739 		const int shift = 0; /* XXXRO */
3740 		int queue_id = i % sc->sc_nqueues;
3741 		/* Adjust if required */
3742 		queue_id <<= shift;
3743 
3744 		/*
3745 		 * The low 8 bits are for hash value (n+0);
3746 		 * The next 8 bits are for hash value (n+1), etc.
3747 		 */
3748 		reta >>= 8;
3749 		reta |= ((uint32_t)queue_id) << 24;
3750 		if ((i & 3) == 3) {
3751 			IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
3752 			reta = 0;
3753 		}
3754 	}
3755 
3756 	/*
3757 	 * MRQC: Multiple Receive Queues Command
3758 	 * Set queuing to RSS control, number depends on the device.
3759 	 */
3760 
3761 	/* Set up random bits */
3762 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3763 	rss_getkey((uint8_t *)rss_key);
3764 
3765 	/* Now fill our hash function seeds */
3766 	for (int i = 0; i < __arraycount(rss_key); i++)
3767 		IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
3768 
3769 	/*
3770 	 * Configure the RSS fields to hash upon.
3771 	 */
3772 	uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
3773 	mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
3774 	mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
3775 	mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
3776 
3777 	IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
3778 }
3779 
3780 /*
3781  * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3782  * For ASF and Pass Through versions of f/w this means
3783  * that the driver is loaded. For AMT version type f/w
3784  * this means that the network i/f is open.
3785  */
3786 static void
3787 igc_get_hw_control(struct igc_softc *sc)
3788 {
3789 	const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3790 
3791 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
3792 }
3793 
3794 /*
3795  * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3796  * For ASF and Pass Through versions of f/w this means that
3797  * the driver is no longer loaded. For AMT versions of the
3798  * f/w this means that the network i/f is closed.
3799  */
3800 static void
3801 igc_release_hw_control(struct igc_softc *sc)
3802 {
3803 	const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3804 
3805 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
3806 }
3807 
3808 static int
3809 igc_is_valid_ether_addr(uint8_t *addr)
3810 {
3811 	const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3812 
3813 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3814 		return 0;
3815 
3816 	return 1;
3817 }
3818 
3819 static void
3820 igc_print_devinfo(struct igc_softc *sc)
3821 {
3822 	device_t dev = sc->sc_dev;
3823 	struct igc_hw *hw = &sc->hw;
3824 	struct igc_phy_info *phy = &hw->phy;
3825 	u_int oui, model, rev;
3826 	uint16_t id1, id2, nvm_ver, phy_ver;
3827 	char descr[MII_MAX_DESCR_LEN];
3828 
3829 	/* Print PHY Info */
3830 	id1 = phy->id >> 16;
3831 	/* The revision field in phy->id is cleard and it's in phy->revision */
3832 	id2 = (phy->id & 0xfff0) | phy->revision;
3833 	oui = MII_OUI(id1, id2);
3834 	model = MII_MODEL(id2);
3835 	rev = MII_REV(id2);
3836 	mii_get_descr(descr, sizeof(descr), oui, model);
3837 	if (descr[0])
3838 		aprint_normal_dev(dev, "PHY: %s, rev. %d\n",
3839 		    descr, rev);
3840 	else
3841 		aprint_normal_dev(dev,
3842 		    "PHY OUI 0x%06x, model 0x%04x, rev. %d\n",
3843 		    oui, model, rev);
3844 
3845 	/* Get NVM version */
3846 	hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
3847 
3848 	/* Get PHY FW version */
3849 	phy->ops.read_reg(hw, 0x1e, &phy_ver);
3850 
3851 	aprint_normal_dev(dev, "ROM image version %x.%02x",
3852 	    (nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
3853 	    (nvm_ver & NVM_VERSION_MINOR));
3854 	aprint_debug("(0x%04hx)", nvm_ver);
3855 
3856 	aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
3857 }
3858