xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: if_wpi.c,v 1.77 2017/02/02 10:05:35 nonaka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.77 2017/02/02 10:05:35 nonaka Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51 
52 #include <dev/sysmon/sysmonvar.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70 
71 #include <dev/firmload.h>
72 
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75 
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82 
83 static int	wpi_match(device_t, cfdata_t, void *);
84 static void	wpi_attach(device_t, device_t, void *);
85 static int	wpi_detach(device_t , int);
86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
89 static int	wpi_alloc_shared(struct wpi_softc *);
90 static void	wpi_free_shared(struct wpi_softc *);
91 static int	wpi_alloc_fwmem(struct wpi_softc *);
92 static void	wpi_free_fwmem(struct wpi_softc *);
93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int	wpi_alloc_rpool(struct wpi_softc *);
96 static void	wpi_free_rpool(struct wpi_softc *);
97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 		    int, int);
102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void	wpi_newassoc(struct ieee80211_node *, int);
106 static int	wpi_media_change(struct ifnet *);
107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void	wpi_mem_lock(struct wpi_softc *);
109 static void	wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 		    const uint32_t *, int);
114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
116 static int	wpi_cache_firmware(struct wpi_softc *);
117 static void	wpi_release_firmware(void);
118 static int	wpi_load_firmware(struct wpi_softc *);
119 static void	wpi_calib_timeout(void *);
120 static void	wpi_iter_func(void *, struct ieee80211_node *);
121 static void	wpi_power_calibration(struct wpi_softc *, int);
122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 		    struct wpi_rx_data *);
124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void	wpi_notif_intr(struct wpi_softc *);
127 static int	wpi_intr(void *);
128 static void	wpi_softintr(void *);
129 static void	wpi_read_eeprom(struct wpi_softc *);
130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t	wpi_plcp_signal(int);
133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 		    struct ieee80211_node *, int);
135 static void	wpi_start(struct ifnet *);
136 static void	wpi_watchdog(struct ifnet *);
137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int	wpi_wme_update(struct ieee80211com *);
140 static int	wpi_mrr_setup(struct wpi_softc *);
141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int	wpi_set_txpower(struct wpi_softc *,
144 		    struct ieee80211_channel *, int);
145 static int	wpi_get_power_index(struct wpi_softc *,
146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int	wpi_auth(struct wpi_softc *);
149 static int	wpi_scan(struct wpi_softc *);
150 static int	wpi_config(struct wpi_softc *);
151 static void	wpi_stop_master(struct wpi_softc *);
152 static int	wpi_power_up(struct wpi_softc *);
153 static int	wpi_reset(struct wpi_softc *);
154 static void	wpi_hw_config(struct wpi_softc *);
155 static int	wpi_init(struct ifnet *);
156 static void	wpi_stop(struct ifnet *, int);
157 static bool	wpi_resume(device_t, const pmf_qual_t *);
158 static int	wpi_getrfkill(struct wpi_softc *);
159 static void	wpi_sysctlattach(struct wpi_softc *);
160 static void	wpi_rsw_thread(void *);
161 
162 #ifdef WPI_DEBUG
163 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
164 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
165 int wpi_debug = 1;
166 #else
167 #define DPRINTF(x)
168 #define DPRINTFN(n, x)
169 #endif
170 
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 	wpi_detach, NULL);
173 
174 static int
175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 {
177 	struct pci_attach_args *pa = aux;
178 
179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 		return 0;
181 
182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 		return 1;
185 
186 	return 0;
187 }
188 
189 /* Base Address Register */
190 #define WPI_PCI_BAR0	0x10
191 
192 static int
193 wpi_attach_once(void)
194 {
195 
196 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 	return 0;
198 }
199 
200 static void
201 wpi_attach(device_t parent __unused, device_t self, void *aux)
202 {
203 	struct wpi_softc *sc = device_private(self);
204 	struct ieee80211com *ic = &sc->sc_ic;
205 	struct ifnet *ifp = &sc->sc_ec.ec_if;
206 	struct pci_attach_args *pa = aux;
207 	const char *intrstr;
208 	bus_space_tag_t memt;
209 	bus_space_handle_t memh;
210 	pcireg_t data;
211 	int ac, error;
212 	char intrbuf[PCI_INTRSTR_LEN];
213 
214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 	sc->fw_used = false;
216 
217 	sc->sc_dev = self;
218 	sc->sc_pct = pa->pa_pc;
219 	sc->sc_pcitag = pa->pa_tag;
220 
221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 	sc->sc_rsw.smpsw_name = device_xname(self);
223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 	error = sysmon_pswitch_register(&sc->sc_rsw);
225 	if (error) {
226 		aprint_error_dev(self,
227 		    "unable to register radio switch with sysmon\n");
228 		return;
229 	}
230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
232 	if (kthread_create(PRI_NONE, 0, NULL,
233 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
234 		aprint_error_dev(self, "couldn't create switch thread\n");
235 	}
236 
237 	callout_init(&sc->calib_to, 0);
238 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
239 
240 	pci_aprint_devinfo(pa, NULL);
241 
242 	/* enable bus-mastering */
243 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
244 	data |= PCI_COMMAND_MASTER_ENABLE;
245 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
246 
247 	/* map the register window */
248 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
249 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
250 	if (error != 0) {
251 		aprint_error_dev(self, "could not map memory space\n");
252 		return;
253 	}
254 
255 	sc->sc_st = memt;
256 	sc->sc_sh = memh;
257 	sc->sc_dmat = pa->pa_dmat;
258 
259 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
260 	if (sc->sc_soft_ih == NULL) {
261 		aprint_error_dev(self, "could not establish softint\n");
262 		goto unmap;
263 	}
264 
265 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
266 		aprint_error_dev(self, "could not map interrupt\n");
267 		goto failsi;
268 	}
269 
270 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
271 	    sizeof(intrbuf));
272 	sc->sc_ih = pci_intr_establish(sc->sc_pct, sc->sc_pihp[0], IPL_NET,
273 	    wpi_intr, sc);
274 	if (sc->sc_ih == NULL) {
275 		aprint_error_dev(self, "could not establish interrupt");
276 		if (intrstr != NULL)
277 			aprint_error(" at %s", intrstr);
278 		aprint_error("\n");
279 		goto failia;
280 	}
281 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
282 
283 	/*
284 	 * Put adapter into a known state.
285 	 */
286 	if ((error = wpi_reset(sc)) != 0) {
287 		aprint_error_dev(self, "could not reset adapter\n");
288 		goto failih;
289 	}
290 
291 	/*
292 	 * Allocate DMA memory for firmware transfers.
293 	 */
294 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
295 		aprint_error_dev(self, "could not allocate firmware memory\n");
296 		goto failih;
297 	}
298 
299 	/*
300 	 * Allocate shared page and Tx/Rx rings.
301 	 */
302 	if ((error = wpi_alloc_shared(sc)) != 0) {
303 		aprint_error_dev(self, "could not allocate shared area\n");
304 		goto fail1;
305 	}
306 
307 	if ((error = wpi_alloc_rpool(sc)) != 0) {
308 		aprint_error_dev(self, "could not allocate Rx buffers\n");
309 		goto fail2;
310 	}
311 
312 	for (ac = 0; ac < 4; ac++) {
313 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
314 		    ac);
315 		if (error != 0) {
316 			aprint_error_dev(self,
317 			    "could not allocate Tx ring %d\n", ac);
318 			goto fail3;
319 		}
320 	}
321 
322 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
323 	if (error != 0) {
324 		aprint_error_dev(self, "could not allocate command ring\n");
325 		goto fail3;
326 	}
327 
328 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
329 	if (error != 0) {
330 		aprint_error_dev(self, "could not allocate Rx ring\n");
331 		goto fail4;
332 	}
333 
334 	ic->ic_ifp = ifp;
335 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
336 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
337 	ic->ic_state = IEEE80211_S_INIT;
338 
339 	/* set device capabilities */
340 	ic->ic_caps =
341 	    IEEE80211_C_WPA |		/* 802.11i */
342 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
343 	    IEEE80211_C_TXPMGT |	/* tx power management */
344 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
345 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
346 	    IEEE80211_C_WME;		/* 802.11e */
347 
348 	/* read supported channels and MAC address from EEPROM */
349 	wpi_read_eeprom(sc);
350 
351 	/* set supported .11a, .11b and .11g rates */
352 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
353 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
354 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
355 
356 	/* IBSS channel undefined for now */
357 	ic->ic_ibss_chan = &ic->ic_channels[0];
358 
359 	ifp->if_softc = sc;
360 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
361 	ifp->if_init = wpi_init;
362 	ifp->if_stop = wpi_stop;
363 	ifp->if_ioctl = wpi_ioctl;
364 	ifp->if_start = wpi_start;
365 	ifp->if_watchdog = wpi_watchdog;
366 	IFQ_SET_READY(&ifp->if_snd);
367 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
368 
369 	if_initialize(ifp);
370 	ieee80211_ifattach(ic);
371 	/* Use common softint-based if_input */
372 	ifp->if_percpuq = if_percpuq_create(ifp);
373 	if_register(ifp);
374 
375 	/* override default methods */
376 	ic->ic_node_alloc = wpi_node_alloc;
377 	ic->ic_newassoc = wpi_newassoc;
378 	ic->ic_wme.wme_update = wpi_wme_update;
379 
380 	/* override state transition machine */
381 	sc->sc_newstate = ic->ic_newstate;
382 	ic->ic_newstate = wpi_newstate;
383 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
384 
385 	sc->amrr.amrr_min_success_threshold =  1;
386 	sc->amrr.amrr_max_success_threshold = 15;
387 
388 	wpi_sysctlattach(sc);
389 
390 	if (pmf_device_register(self, NULL, wpi_resume))
391 		pmf_class_network_register(self, ifp);
392 	else
393 		aprint_error_dev(self, "couldn't establish power handler\n");
394 
395 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
396 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
397 	    &sc->sc_drvbpf);
398 
399 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
400 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
401 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
402 
403 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
404 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
405 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
406 
407 	ieee80211_announce(ic);
408 
409 	return;
410 
411 	/* free allocated memory if something failed during attachment */
412 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
413 fail3:	while (--ac >= 0)
414 		wpi_free_tx_ring(sc, &sc->txq[ac]);
415 	wpi_free_rpool(sc);
416 fail2:	wpi_free_shared(sc);
417 fail1:	wpi_free_fwmem(sc);
418 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
419 	sc->sc_ih = NULL;
420 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
421 	sc->sc_pihp = NULL;
422 failsi:	softint_disestablish(sc->sc_soft_ih);
423 	sc->sc_soft_ih = NULL;
424 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
425 }
426 
427 static int
428 wpi_detach(device_t self, int flags __unused)
429 {
430 	struct wpi_softc *sc = device_private(self);
431 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
432 	int ac;
433 
434 	wpi_stop(ifp, 1);
435 
436 	if (ifp != NULL)
437 		bpf_detach(ifp);
438 	ieee80211_ifdetach(&sc->sc_ic);
439 	if (ifp != NULL)
440 		if_detach(ifp);
441 
442 	for (ac = 0; ac < 4; ac++)
443 		wpi_free_tx_ring(sc, &sc->txq[ac]);
444 	wpi_free_tx_ring(sc, &sc->cmdq);
445 	wpi_free_rx_ring(sc, &sc->rxq);
446 	wpi_free_rpool(sc);
447 	wpi_free_shared(sc);
448 
449 	if (sc->sc_ih != NULL) {
450 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
451 		sc->sc_ih = NULL;
452 	}
453 	if (sc->sc_pihp != NULL) {
454 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
455 		sc->sc_pihp = NULL;
456 	}
457 	if (sc->sc_soft_ih != NULL) {
458 		softint_disestablish(sc->sc_soft_ih);
459 		sc->sc_soft_ih = NULL;
460 	}
461 
462 	mutex_enter(&sc->sc_rsw_mtx);
463 	sc->sc_dying = 1;
464 	cv_signal(&sc->sc_rsw_cv);
465 	while (sc->sc_rsw_lwp != NULL)
466 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
467 	mutex_exit(&sc->sc_rsw_mtx);
468 	sysmon_pswitch_unregister(&sc->sc_rsw);
469 
470 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
471 
472 	if (sc->fw_used) {
473 		sc->fw_used = false;
474 		wpi_release_firmware();
475 	}
476 	cv_destroy(&sc->sc_rsw_cv);
477 	mutex_destroy(&sc->sc_rsw_mtx);
478 	return 0;
479 }
480 
481 static int
482 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
483     bus_size_t size, bus_size_t alignment, int flags)
484 {
485 	int nsegs, error;
486 
487 	dma->tag = tag;
488 	dma->size = size;
489 
490 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
491 	if (error != 0)
492 		goto fail;
493 
494 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
495 	    flags);
496 	if (error != 0)
497 		goto fail;
498 
499 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
500 	if (error != 0)
501 		goto fail;
502 
503 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
504 	if (error != 0)
505 		goto fail;
506 
507 	memset(dma->vaddr, 0, size);
508 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
509 
510 	dma->paddr = dma->map->dm_segs[0].ds_addr;
511 	if (kvap != NULL)
512 		*kvap = dma->vaddr;
513 
514 	return 0;
515 
516 fail:	wpi_dma_contig_free(dma);
517 	return error;
518 }
519 
520 static void
521 wpi_dma_contig_free(struct wpi_dma_info *dma)
522 {
523 	if (dma->map != NULL) {
524 		if (dma->vaddr != NULL) {
525 			bus_dmamap_unload(dma->tag, dma->map);
526 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
527 			bus_dmamem_free(dma->tag, &dma->seg, 1);
528 			dma->vaddr = NULL;
529 		}
530 		bus_dmamap_destroy(dma->tag, dma->map);
531 		dma->map = NULL;
532 	}
533 }
534 
535 /*
536  * Allocate a shared page between host and NIC.
537  */
538 static int
539 wpi_alloc_shared(struct wpi_softc *sc)
540 {
541 	int error;
542 
543 	/* must be aligned on a 4K-page boundary */
544 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
545 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
546 	    BUS_DMA_NOWAIT);
547 	if (error != 0)
548 		aprint_error_dev(sc->sc_dev,
549 		    "could not allocate shared area DMA memory\n");
550 
551 	return error;
552 }
553 
554 static void
555 wpi_free_shared(struct wpi_softc *sc)
556 {
557 	wpi_dma_contig_free(&sc->shared_dma);
558 }
559 
560 /*
561  * Allocate DMA-safe memory for firmware transfer.
562  */
563 static int
564 wpi_alloc_fwmem(struct wpi_softc *sc)
565 {
566 	int error;
567 
568 	/* allocate enough contiguous space to store text and data */
569 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
570 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
571 	    BUS_DMA_NOWAIT);
572 
573 	if (error != 0)
574 		aprint_error_dev(sc->sc_dev,
575 		    "could not allocate firmware transfer area DMA memory\n");
576 	return error;
577 }
578 
579 static void
580 wpi_free_fwmem(struct wpi_softc *sc)
581 {
582 	wpi_dma_contig_free(&sc->fw_dma);
583 }
584 
585 static struct wpi_rbuf *
586 wpi_alloc_rbuf(struct wpi_softc *sc)
587 {
588 	struct wpi_rbuf *rbuf;
589 
590 	mutex_enter(&sc->rxq.freelist_mtx);
591 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
592 	if (rbuf != NULL) {
593 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
594 	}
595 	mutex_exit(&sc->rxq.freelist_mtx);
596 
597 	return rbuf;
598 }
599 
600 /*
601  * This is called automatically by the network stack when the mbuf to which our
602  * Rx buffer is attached is freed.
603  */
604 static void
605 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
606 {
607 	struct wpi_rbuf *rbuf = arg;
608 	struct wpi_softc *sc = rbuf->sc;
609 
610 	/* put the buffer back in the free list */
611 
612 	mutex_enter(&sc->rxq.freelist_mtx);
613 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
614 	mutex_exit(&sc->rxq.freelist_mtx);
615 
616 	if (__predict_true(m != NULL))
617 		pool_cache_put(mb_cache, m);
618 }
619 
620 static int
621 wpi_alloc_rpool(struct wpi_softc *sc)
622 {
623 	struct wpi_rx_ring *ring = &sc->rxq;
624 	int i, error;
625 
626 	/* allocate a big chunk of DMA'able memory.. */
627 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
628 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
629 	if (error != 0) {
630 		aprint_normal_dev(sc->sc_dev,
631 		    "could not allocate Rx buffers DMA memory\n");
632 		return error;
633 	}
634 
635 	/* ..and split it into 3KB chunks */
636 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
637 	SLIST_INIT(&ring->freelist);
638 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
639 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
640 
641 		rbuf->sc = sc;	/* backpointer for callbacks */
642 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
643 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
644 
645 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
646 	}
647 
648 	return 0;
649 }
650 
651 static void
652 wpi_free_rpool(struct wpi_softc *sc)
653 {
654 	wpi_dma_contig_free(&sc->rxq.buf_dma);
655 }
656 
657 static int
658 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
659 {
660 	bus_size_t size;
661 	int i, error;
662 
663 	ring->cur = 0;
664 
665 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
666 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
667 	    (void **)&ring->desc, size,
668 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
669 	if (error != 0) {
670 		aprint_error_dev(sc->sc_dev,
671 		    "could not allocate rx ring DMA memory\n");
672 		goto fail;
673 	}
674 
675 	/*
676 	 * Setup Rx buffers.
677 	 */
678 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
679 		struct wpi_rx_data *data = &ring->data[i];
680 		struct wpi_rbuf *rbuf;
681 
682 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
683 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
684 		if (error) {
685 			aprint_error_dev(sc->sc_dev,
686 			    "could not allocate rx dma map\n");
687 			goto fail;
688 		}
689 
690 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
691 		if (data->m == NULL) {
692 			aprint_error_dev(sc->sc_dev,
693 			    "could not allocate rx mbuf\n");
694 			error = ENOMEM;
695 			goto fail;
696 		}
697 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
698 			m_freem(data->m);
699 			data->m = NULL;
700 			aprint_error_dev(sc->sc_dev,
701 			    "could not allocate rx cluster\n");
702 			error = ENOMEM;
703 			goto fail;
704 		}
705 		/* attach Rx buffer to mbuf */
706 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
707 		    rbuf);
708 		data->m->m_flags |= M_EXT_RW;
709 
710 		error = bus_dmamap_load(sc->sc_dmat, data->map,
711 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
712 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
713 		if (error) {
714 			aprint_error_dev(sc->sc_dev,
715 			    "could not load mbuf: %d\n", error);
716 			goto fail;
717 		}
718 
719 		ring->desc[i] = htole32(rbuf->paddr);
720 	}
721 
722 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
723 	    BUS_DMASYNC_PREWRITE);
724 
725 	return 0;
726 
727 fail:	wpi_free_rx_ring(sc, ring);
728 	return error;
729 }
730 
731 static void
732 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
733 {
734 	int ntries;
735 
736 	wpi_mem_lock(sc);
737 
738 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
739 	for (ntries = 0; ntries < 100; ntries++) {
740 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
741 			break;
742 		DELAY(10);
743 	}
744 #ifdef WPI_DEBUG
745 	if (ntries == 100 && wpi_debug > 0)
746 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
747 #endif
748 	wpi_mem_unlock(sc);
749 
750 	ring->cur = 0;
751 }
752 
753 static void
754 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
755 {
756 	int i;
757 
758 	wpi_dma_contig_free(&ring->desc_dma);
759 
760 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
761 		if (ring->data[i].m != NULL) {
762 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
763 			m_freem(ring->data[i].m);
764 		}
765 		if (ring->data[i].map != NULL) {
766 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
767 		}
768 	}
769 }
770 
771 static int
772 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
773     int qid)
774 {
775 	int i, error;
776 
777 	ring->qid = qid;
778 	ring->count = count;
779 	ring->queued = 0;
780 	ring->cur = 0;
781 
782 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
783 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
784 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
785 	if (error != 0) {
786 		aprint_error_dev(sc->sc_dev,
787 		    "could not allocate tx ring DMA memory\n");
788 		goto fail;
789 	}
790 
791 	/* update shared page with ring's base address */
792 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
793 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
794 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
795 
796 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
797 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
798 	    BUS_DMA_NOWAIT);
799 	if (error != 0) {
800 		aprint_error_dev(sc->sc_dev,
801 		    "could not allocate tx cmd DMA memory\n");
802 		goto fail;
803 	}
804 
805 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
806 	    M_NOWAIT | M_ZERO);
807 	if (ring->data == NULL) {
808 		aprint_error_dev(sc->sc_dev,
809 		    "could not allocate tx data slots\n");
810 		goto fail;
811 	}
812 
813 	for (i = 0; i < count; i++) {
814 		struct wpi_tx_data *data = &ring->data[i];
815 
816 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
817 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
818 		    &data->map);
819 		if (error != 0) {
820 			aprint_error_dev(sc->sc_dev,
821 			    "could not create tx buf DMA map\n");
822 			goto fail;
823 		}
824 	}
825 
826 	return 0;
827 
828 fail:	wpi_free_tx_ring(sc, ring);
829 	return error;
830 }
831 
832 static void
833 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
834 {
835 	int i, ntries;
836 
837 	wpi_mem_lock(sc);
838 
839 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
840 	for (ntries = 0; ntries < 100; ntries++) {
841 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
842 			break;
843 		DELAY(10);
844 	}
845 #ifdef WPI_DEBUG
846 	if (ntries == 100 && wpi_debug > 0) {
847 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
848 		    ring->qid);
849 	}
850 #endif
851 	wpi_mem_unlock(sc);
852 
853 	for (i = 0; i < ring->count; i++) {
854 		struct wpi_tx_data *data = &ring->data[i];
855 
856 		if (data->m != NULL) {
857 			bus_dmamap_unload(sc->sc_dmat, data->map);
858 			m_freem(data->m);
859 			data->m = NULL;
860 		}
861 	}
862 
863 	ring->queued = 0;
864 	ring->cur = 0;
865 }
866 
867 static void
868 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
869 {
870 	int i;
871 
872 	wpi_dma_contig_free(&ring->desc_dma);
873 	wpi_dma_contig_free(&ring->cmd_dma);
874 
875 	if (ring->data != NULL) {
876 		for (i = 0; i < ring->count; i++) {
877 			struct wpi_tx_data *data = &ring->data[i];
878 
879 			if (data->m != NULL) {
880 				bus_dmamap_unload(sc->sc_dmat, data->map);
881 				m_freem(data->m);
882 			}
883 		}
884 		free(ring->data, M_DEVBUF);
885 	}
886 }
887 
888 /*ARGUSED*/
889 static struct ieee80211_node *
890 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
891 {
892 	struct wpi_node *wn;
893 
894 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
895 
896 	return (struct ieee80211_node *)wn;
897 }
898 
899 static void
900 wpi_newassoc(struct ieee80211_node *ni, int isnew)
901 {
902 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
903 	int i;
904 
905 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
906 
907 	/* set rate to some reasonable initial value */
908 	for (i = ni->ni_rates.rs_nrates - 1;
909 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
910 	     i--);
911 	ni->ni_txrate = i;
912 }
913 
914 static int
915 wpi_media_change(struct ifnet *ifp)
916 {
917 	int error;
918 
919 	error = ieee80211_media_change(ifp);
920 	if (error != ENETRESET)
921 		return error;
922 
923 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
924 		wpi_init(ifp);
925 
926 	return 0;
927 }
928 
929 static int
930 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
931 {
932 	struct ifnet *ifp = ic->ic_ifp;
933 	struct wpi_softc *sc = ifp->if_softc;
934 	struct ieee80211_node *ni;
935 	enum ieee80211_state ostate = ic->ic_state;
936 	int error;
937 
938 	callout_stop(&sc->calib_to);
939 
940 	switch (nstate) {
941 	case IEEE80211_S_SCAN:
942 
943 		if (sc->is_scanning)
944 			break;
945 
946 		sc->is_scanning = true;
947 
948 		if (ostate != IEEE80211_S_SCAN) {
949 			/* make the link LED blink while we're scanning */
950 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
951 		}
952 
953 		if ((error = wpi_scan(sc)) != 0) {
954 			aprint_error_dev(sc->sc_dev,
955 			    "could not initiate scan\n");
956 			return error;
957 		}
958 		break;
959 
960 	case IEEE80211_S_ASSOC:
961 		if (ic->ic_state != IEEE80211_S_RUN)
962 			break;
963 		/* FALLTHROUGH */
964 	case IEEE80211_S_AUTH:
965 		/* reset state to handle reassociations correctly */
966 		sc->config.associd = 0;
967 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
968 
969 		if ((error = wpi_auth(sc)) != 0) {
970 			aprint_error_dev(sc->sc_dev,
971 			    "could not send authentication request\n");
972 			return error;
973 		}
974 		break;
975 
976 	case IEEE80211_S_RUN:
977 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
978 			/* link LED blinks while monitoring */
979 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
980 			break;
981 		}
982 		ni = ic->ic_bss;
983 
984 		if (ic->ic_opmode != IEEE80211_M_STA) {
985 			(void) wpi_auth(sc);    /* XXX */
986 			wpi_setup_beacon(sc, ni);
987 		}
988 
989 		wpi_enable_tsf(sc, ni);
990 
991 		/* update adapter's configuration */
992 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
993 		/* short preamble/slot time are negotiated when associating */
994 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
995 		    WPI_CONFIG_SHSLOT);
996 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
997 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
998 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
999 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1000 		sc->config.filter |= htole32(WPI_FILTER_BSS);
1001 		if (ic->ic_opmode != IEEE80211_M_STA)
1002 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
1003 
1004 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1005 
1006 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1007 		    sc->config.flags));
1008 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1009 		    sizeof (struct wpi_config), 1);
1010 		if (error != 0) {
1011 			aprint_error_dev(sc->sc_dev,
1012 			    "could not update configuration\n");
1013 			return error;
1014 		}
1015 
1016 		/* configuration has changed, set Tx power accordingly */
1017 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1018 			aprint_error_dev(sc->sc_dev,
1019 			    "could not set Tx power\n");
1020 			return error;
1021 		}
1022 
1023 		if (ic->ic_opmode == IEEE80211_M_STA) {
1024 			/* fake a join to init the tx rate */
1025 			wpi_newassoc(ni, 1);
1026 		}
1027 
1028 		/* start periodic calibration timer */
1029 		sc->calib_cnt = 0;
1030 		callout_schedule(&sc->calib_to, hz/2);
1031 
1032 		/* link LED always on while associated */
1033 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1034 		break;
1035 
1036 	case IEEE80211_S_INIT:
1037 		sc->is_scanning = false;
1038 		break;
1039 	}
1040 
1041 	return sc->sc_newstate(ic, nstate, arg);
1042 }
1043 
1044 /*
1045  * Grab exclusive access to NIC memory.
1046  */
1047 static void
1048 wpi_mem_lock(struct wpi_softc *sc)
1049 {
1050 	uint32_t tmp;
1051 	int ntries;
1052 
1053 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1054 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1055 
1056 	/* spin until we actually get the lock */
1057 	for (ntries = 0; ntries < 1000; ntries++) {
1058 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1059 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1060 			break;
1061 		DELAY(10);
1062 	}
1063 	if (ntries == 1000)
1064 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1065 }
1066 
1067 /*
1068  * Release lock on NIC memory.
1069  */
1070 static void
1071 wpi_mem_unlock(struct wpi_softc *sc)
1072 {
1073 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1074 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1075 }
1076 
1077 static uint32_t
1078 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1079 {
1080 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1081 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1082 }
1083 
1084 static void
1085 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1086 {
1087 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1088 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1089 }
1090 
1091 static void
1092 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1093     const uint32_t *data, int wlen)
1094 {
1095 	for (; wlen > 0; wlen--, data++, addr += 4)
1096 		wpi_mem_write(sc, addr, *data);
1097 }
1098 
1099 /*
1100  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1101  * instead of using the traditional bit-bang method.
1102  */
1103 static int
1104 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1105 {
1106 	uint8_t *out = data;
1107 	uint32_t val;
1108 	int ntries;
1109 
1110 	wpi_mem_lock(sc);
1111 	for (; len > 0; len -= 2, addr++) {
1112 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1113 
1114 		for (ntries = 0; ntries < 10; ntries++) {
1115 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1116 			    WPI_EEPROM_READY)
1117 				break;
1118 			DELAY(5);
1119 		}
1120 		if (ntries == 10) {
1121 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1122 			return ETIMEDOUT;
1123 		}
1124 		*out++ = val >> 16;
1125 		if (len > 1)
1126 			*out++ = val >> 24;
1127 	}
1128 	wpi_mem_unlock(sc);
1129 
1130 	return 0;
1131 }
1132 
1133 /*
1134  * The firmware boot code is small and is intended to be copied directly into
1135  * the NIC internal memory.
1136  */
1137 int
1138 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1139 {
1140 	int ntries;
1141 
1142 	size /= sizeof (uint32_t);
1143 
1144 	wpi_mem_lock(sc);
1145 
1146 	/* copy microcode image into NIC memory */
1147 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1148 	    (const uint32_t *)ucode, size);
1149 
1150 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1151 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1152 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1153 
1154 	/* run microcode */
1155 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1156 
1157 	/* wait for transfer to complete */
1158 	for (ntries = 0; ntries < 1000; ntries++) {
1159 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1160 			break;
1161 		DELAY(10);
1162 	}
1163 	if (ntries == 1000) {
1164 		wpi_mem_unlock(sc);
1165 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1166 		return ETIMEDOUT;
1167 	}
1168 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1169 
1170 	wpi_mem_unlock(sc);
1171 
1172 	return 0;
1173 }
1174 
1175 static int
1176 wpi_cache_firmware(struct wpi_softc *sc)
1177 {
1178 	const char *const fwname = wpi_firmware_name;
1179 	firmware_handle_t fw;
1180 	int error;
1181 
1182 	/* sc is used here only to report error messages.  */
1183 
1184 	mutex_enter(&wpi_firmware_mutex);
1185 
1186 	if (wpi_firmware_users == SIZE_MAX) {
1187 		mutex_exit(&wpi_firmware_mutex);
1188 		return ENFILE;	/* Too many of something in the system...  */
1189 	}
1190 	if (wpi_firmware_users++) {
1191 		KASSERT(wpi_firmware_image != NULL);
1192 		KASSERT(wpi_firmware_size > 0);
1193 		mutex_exit(&wpi_firmware_mutex);
1194 		return 0;	/* Already good to go.  */
1195 	}
1196 
1197 	KASSERT(wpi_firmware_image == NULL);
1198 	KASSERT(wpi_firmware_size == 0);
1199 
1200 	/* load firmware image from disk */
1201 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1202 		aprint_error_dev(sc->sc_dev,
1203 		    "could not open firmware file %s: %d\n", fwname, error);
1204 		goto fail0;
1205 	}
1206 
1207 	wpi_firmware_size = firmware_get_size(fw);
1208 
1209 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1210 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1211 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1212 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1213 		aprint_error_dev(sc->sc_dev,
1214 		    "firmware file %s too large: %zu bytes\n",
1215 		    fwname, wpi_firmware_size);
1216 		error = EFBIG;
1217 		goto fail1;
1218 	}
1219 
1220 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1221 		aprint_error_dev(sc->sc_dev,
1222 		    "firmware file %s too small: %zu bytes\n",
1223 		    fwname, wpi_firmware_size);
1224 		error = EINVAL;
1225 		goto fail1;
1226 	}
1227 
1228 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1229 	if (wpi_firmware_image == NULL) {
1230 		aprint_error_dev(sc->sc_dev,
1231 		    "not enough memory for firmware file %s\n", fwname);
1232 		error = ENOMEM;
1233 		goto fail1;
1234 	}
1235 
1236 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1237 	if (error != 0) {
1238 		aprint_error_dev(sc->sc_dev,
1239 		    "error reading firmware file %s: %d\n", fwname, error);
1240 		goto fail2;
1241 	}
1242 
1243 	/* Success!  */
1244 	firmware_close(fw);
1245 	mutex_exit(&wpi_firmware_mutex);
1246 	return 0;
1247 
1248 fail2:
1249 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1250 	wpi_firmware_image = NULL;
1251 fail1:
1252 	wpi_firmware_size = 0;
1253 	firmware_close(fw);
1254 fail0:
1255 	KASSERT(wpi_firmware_users == 1);
1256 	wpi_firmware_users = 0;
1257 	KASSERT(wpi_firmware_image == NULL);
1258 	KASSERT(wpi_firmware_size == 0);
1259 
1260 	mutex_exit(&wpi_firmware_mutex);
1261 	return error;
1262 }
1263 
1264 static void
1265 wpi_release_firmware(void)
1266 {
1267 
1268 	mutex_enter(&wpi_firmware_mutex);
1269 
1270 	KASSERT(wpi_firmware_users > 0);
1271 	KASSERT(wpi_firmware_image != NULL);
1272 	KASSERT(wpi_firmware_size != 0);
1273 
1274 	if (--wpi_firmware_users == 0) {
1275 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1276 		wpi_firmware_image = NULL;
1277 		wpi_firmware_size = 0;
1278 	}
1279 
1280 	mutex_exit(&wpi_firmware_mutex);
1281 }
1282 
1283 static int
1284 wpi_load_firmware(struct wpi_softc *sc)
1285 {
1286 	struct wpi_dma_info *dma = &sc->fw_dma;
1287 	struct wpi_firmware_hdr hdr;
1288 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1289 	const uint8_t *boot_text;
1290 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1291 	uint32_t boot_textsz;
1292 	size_t size;
1293 	int error;
1294 
1295 	if (!sc->fw_used) {
1296 		if ((error = wpi_cache_firmware(sc)) != 0)
1297 			return error;
1298 		sc->fw_used = true;
1299 	}
1300 
1301 	KASSERT(sc->fw_used);
1302 	KASSERT(wpi_firmware_image != NULL);
1303 	KASSERT(wpi_firmware_size > sizeof(hdr));
1304 
1305 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1306 
1307 	main_textsz = le32toh(hdr.main_textsz);
1308 	main_datasz = le32toh(hdr.main_datasz);
1309 	init_textsz = le32toh(hdr.init_textsz);
1310 	init_datasz = le32toh(hdr.init_datasz);
1311 	boot_textsz = le32toh(hdr.boot_textsz);
1312 
1313 	/* sanity-check firmware segments sizes */
1314 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1315 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1316 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1317 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1318 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1319 	    (boot_textsz & 3) != 0) {
1320 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1321 		error = EINVAL;
1322 		goto free_firmware;
1323 	}
1324 
1325 	/* check that all firmware segments are present */
1326 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1327 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1328 	if (wpi_firmware_size < size) {
1329 		aprint_error_dev(sc->sc_dev,
1330 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1331 		    wpi_firmware_size, size);
1332 		error = EINVAL;
1333 		goto free_firmware;
1334 	}
1335 
1336 	/* get pointers to firmware segments */
1337 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1338 	main_data = main_text + main_textsz;
1339 	init_text = main_data + main_datasz;
1340 	init_data = init_text + init_textsz;
1341 	boot_text = init_data + init_datasz;
1342 
1343 	/* copy initialization images into pre-allocated DMA-safe memory */
1344 	memcpy(dma->vaddr, init_data, init_datasz);
1345 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1346 	    init_textsz);
1347 
1348 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1349 
1350 	/* tell adapter where to find initialization images */
1351 	wpi_mem_lock(sc);
1352 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1353 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1354 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1355 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1356 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1357 	wpi_mem_unlock(sc);
1358 
1359 	/* load firmware boot code */
1360 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1361 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1362 		return error;
1363 	}
1364 
1365 	/* now press "execute" ;-) */
1366 	WPI_WRITE(sc, WPI_RESET, 0);
1367 
1368 	/* wait at most one second for first alive notification */
1369 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1370 		/* this isn't what was supposed to happen.. */
1371 		aprint_error_dev(sc->sc_dev,
1372 		    "timeout waiting for adapter to initialize\n");
1373 	}
1374 
1375 	/* copy runtime images into pre-allocated DMA-safe memory */
1376 	memcpy(dma->vaddr, main_data, main_datasz);
1377 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1378 	    main_textsz);
1379 
1380 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1381 
1382 	/* tell adapter where to find runtime images */
1383 	wpi_mem_lock(sc);
1384 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1385 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1386 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1387 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1388 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1389 	wpi_mem_unlock(sc);
1390 
1391 	/* wait at most one second for second alive notification */
1392 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1393 		/* this isn't what was supposed to happen.. */
1394 		aprint_error_dev(sc->sc_dev,
1395 		    "timeout waiting for adapter to initialize\n");
1396 	}
1397 
1398 	return error;
1399 
1400 free_firmware:
1401 	sc->fw_used = false;
1402 	wpi_release_firmware();
1403 	return error;
1404 }
1405 
1406 static void
1407 wpi_calib_timeout(void *arg)
1408 {
1409 	struct wpi_softc *sc = arg;
1410 	struct ieee80211com *ic = &sc->sc_ic;
1411 	int temp, s;
1412 
1413 	/* automatic rate control triggered every 500ms */
1414 	if (ic->ic_fixed_rate == -1) {
1415 		s = splnet();
1416 		if (ic->ic_opmode == IEEE80211_M_STA)
1417 			wpi_iter_func(sc, ic->ic_bss);
1418 		else
1419 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1420 		splx(s);
1421 	}
1422 
1423 	/* update sensor data */
1424 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1425 
1426 	/* automatic power calibration every 60s */
1427 	if (++sc->calib_cnt >= 120) {
1428 		wpi_power_calibration(sc, temp);
1429 		sc->calib_cnt = 0;
1430 	}
1431 
1432 	callout_schedule(&sc->calib_to, hz/2);
1433 }
1434 
1435 static void
1436 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1437 {
1438 	struct wpi_softc *sc = arg;
1439 	struct wpi_node *wn = (struct wpi_node *)ni;
1440 
1441 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1442 }
1443 
1444 /*
1445  * This function is called periodically (every 60 seconds) to adjust output
1446  * power to temperature changes.
1447  */
1448 void
1449 wpi_power_calibration(struct wpi_softc *sc, int temp)
1450 {
1451 	/* sanity-check read value */
1452 	if (temp < -260 || temp > 25) {
1453 		/* this can't be correct, ignore */
1454 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1455 		return;
1456 	}
1457 
1458 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1459 
1460 	/* adjust Tx power if need be */
1461 	if (abs(temp - sc->temp) <= 6)
1462 		return;
1463 
1464 	sc->temp = temp;
1465 
1466 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1467 		/* just warn, too bad for the automatic calibration... */
1468 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1469 	}
1470 }
1471 
1472 static void
1473 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1474     struct wpi_rx_data *data)
1475 {
1476 	struct ieee80211com *ic = &sc->sc_ic;
1477 	struct ifnet *ifp = ic->ic_ifp;
1478 	struct wpi_rx_ring *ring = &sc->rxq;
1479 	struct wpi_rx_stat *stat;
1480 	struct wpi_rx_head *head;
1481 	struct wpi_rx_tail *tail;
1482 	struct wpi_rbuf *rbuf;
1483 	struct ieee80211_frame *wh;
1484 	struct ieee80211_node *ni;
1485 	struct mbuf *m, *mnew;
1486 	int data_off, error, s;
1487 
1488 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1489 	    BUS_DMASYNC_POSTREAD);
1490 	stat = (struct wpi_rx_stat *)(desc + 1);
1491 
1492 	if (stat->len > WPI_STAT_MAXLEN) {
1493 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1494 		ifp->if_ierrors++;
1495 		return;
1496 	}
1497 
1498 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1499 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1500 
1501 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1502 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1503 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1504 	    le64toh(tail->tstamp)));
1505 
1506 	/*
1507 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1508 	 * to radiotap in monitor mode).
1509 	 */
1510 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1511 		DPRINTF(("rx tail flags error %x\n",
1512 		    le32toh(tail->flags)));
1513 		ifp->if_ierrors++;
1514 		return;
1515 	}
1516 
1517 	/* Compute where are the useful datas */
1518 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1519 
1520 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1521 	if (mnew == NULL) {
1522 		ifp->if_ierrors++;
1523 		return;
1524 	}
1525 
1526 	rbuf = wpi_alloc_rbuf(sc);
1527 	if (rbuf == NULL) {
1528 		m_freem(mnew);
1529 		ifp->if_ierrors++;
1530 		return;
1531 	}
1532 
1533 	/* attach Rx buffer to mbuf */
1534 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1535 		rbuf);
1536 	mnew->m_flags |= M_EXT_RW;
1537 
1538 	bus_dmamap_unload(sc->sc_dmat, data->map);
1539 
1540 	error = bus_dmamap_load(sc->sc_dmat, data->map,
1541 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1542 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1543 	if (error) {
1544 		device_printf(sc->sc_dev,
1545 		    "couldn't load rx mbuf: %d\n", error);
1546 		m_freem(mnew);
1547 		ifp->if_ierrors++;
1548 
1549 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1550 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1551 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1552 		if (error)
1553 			panic("%s: bus_dmamap_load failed: %d\n",
1554 			    device_xname(sc->sc_dev), error);
1555 		return;
1556 	}
1557 
1558 	/* new mbuf loaded successfully */
1559 	m = data->m;
1560 	data->m = mnew;
1561 
1562 	/* update Rx descriptor */
1563 	ring->desc[ring->cur] = htole32(rbuf->paddr);
1564 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1565 	    ring->desc_dma.size,
1566 	    BUS_DMASYNC_PREWRITE);
1567 
1568 	m->m_data = (char*)m->m_data + data_off;
1569 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1570 
1571 	/* finalize mbuf */
1572 	m_set_rcvif(m, ifp);
1573 
1574 	s = splnet();
1575 
1576 	if (sc->sc_drvbpf != NULL) {
1577 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1578 
1579 		tap->wr_flags = 0;
1580 		tap->wr_chan_freq =
1581 		    htole16(ic->ic_channels[head->chan].ic_freq);
1582 		tap->wr_chan_flags =
1583 		    htole16(ic->ic_channels[head->chan].ic_flags);
1584 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1585 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1586 		tap->wr_tsft = tail->tstamp;
1587 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1588 		switch (head->rate) {
1589 		/* CCK rates */
1590 		case  10: tap->wr_rate =   2; break;
1591 		case  20: tap->wr_rate =   4; break;
1592 		case  55: tap->wr_rate =  11; break;
1593 		case 110: tap->wr_rate =  22; break;
1594 		/* OFDM rates */
1595 		case 0xd: tap->wr_rate =  12; break;
1596 		case 0xf: tap->wr_rate =  18; break;
1597 		case 0x5: tap->wr_rate =  24; break;
1598 		case 0x7: tap->wr_rate =  36; break;
1599 		case 0x9: tap->wr_rate =  48; break;
1600 		case 0xb: tap->wr_rate =  72; break;
1601 		case 0x1: tap->wr_rate =  96; break;
1602 		case 0x3: tap->wr_rate = 108; break;
1603 		/* unknown rate: should not happen */
1604 		default:  tap->wr_rate =   0;
1605 		}
1606 		if (le16toh(head->flags) & 0x4)
1607 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1608 
1609 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1610 	}
1611 
1612 	/* grab a reference to the source node */
1613 	wh = mtod(m, struct ieee80211_frame *);
1614 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1615 
1616 	/* send the frame to the 802.11 layer */
1617 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1618 
1619 	/* release node reference */
1620 	ieee80211_free_node(ni);
1621 
1622 	splx(s);
1623 }
1624 
1625 static void
1626 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1627 {
1628 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1629 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1630 	struct wpi_tx_data *data = &ring->data[desc->idx];
1631 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1632 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1633 	int s;
1634 
1635 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1636 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1637 	    stat->nkill, stat->rate, le32toh(stat->duration),
1638 	    le32toh(stat->status)));
1639 
1640 	s = splnet();
1641 
1642 	/*
1643 	 * Update rate control statistics for the node.
1644 	 * XXX we should not count mgmt frames since they're always sent at
1645 	 * the lowest available bit-rate.
1646 	 */
1647 	wn->amn.amn_txcnt++;
1648 	if (stat->ntries > 0) {
1649 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1650 		wn->amn.amn_retrycnt++;
1651 	}
1652 
1653 	if ((le32toh(stat->status) & 0xff) != 1)
1654 		ifp->if_oerrors++;
1655 	else
1656 		ifp->if_opackets++;
1657 
1658 	bus_dmamap_unload(sc->sc_dmat, data->map);
1659 	m_freem(data->m);
1660 	data->m = NULL;
1661 	ieee80211_free_node(data->ni);
1662 	data->ni = NULL;
1663 
1664 	ring->queued--;
1665 
1666 	sc->sc_tx_timer = 0;
1667 	ifp->if_flags &= ~IFF_OACTIVE;
1668 	wpi_start(ifp);
1669 
1670 	splx(s);
1671 }
1672 
1673 static void
1674 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1675 {
1676 	struct wpi_tx_ring *ring = &sc->cmdq;
1677 	struct wpi_tx_data *data;
1678 
1679 	if ((desc->qid & 7) != 4)
1680 		return;	/* not a command ack */
1681 
1682 	data = &ring->data[desc->idx];
1683 
1684 	/* if the command was mapped in a mbuf, free it */
1685 	if (data->m != NULL) {
1686 		bus_dmamap_unload(sc->sc_dmat, data->map);
1687 		m_freem(data->m);
1688 		data->m = NULL;
1689 	}
1690 
1691 	wakeup(&ring->cmd[desc->idx]);
1692 }
1693 
1694 static void
1695 wpi_notif_intr(struct wpi_softc *sc)
1696 {
1697 	struct ieee80211com *ic = &sc->sc_ic;
1698 	struct ifnet *ifp =  ic->ic_ifp;
1699 	uint32_t hw;
1700 	int s;
1701 
1702 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1703 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1704 
1705 	hw = le32toh(sc->shared->next);
1706 	while (sc->rxq.cur != hw) {
1707 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1708 		struct wpi_rx_desc *desc;
1709 
1710 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1711 		    BUS_DMASYNC_POSTREAD);
1712 		desc = mtod(data->m, struct wpi_rx_desc *);
1713 
1714 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1715 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1716 		    desc->type, le32toh(desc->len)));
1717 
1718 		if (!(desc->qid & 0x80))	/* reply to a command */
1719 			wpi_cmd_intr(sc, desc);
1720 
1721 		switch (desc->type) {
1722 		case WPI_RX_DONE:
1723 			/* a 802.11 frame was received */
1724 			wpi_rx_intr(sc, desc, data);
1725 			break;
1726 
1727 		case WPI_TX_DONE:
1728 			/* a 802.11 frame has been transmitted */
1729 			wpi_tx_intr(sc, desc);
1730 			break;
1731 
1732 		case WPI_UC_READY:
1733 		{
1734 			struct wpi_ucode_info *uc =
1735 			    (struct wpi_ucode_info *)(desc + 1);
1736 
1737 			/* the microcontroller is ready */
1738 			DPRINTF(("microcode alive notification version %x "
1739 			    "alive %x\n", le32toh(uc->version),
1740 			    le32toh(uc->valid)));
1741 
1742 			if (le32toh(uc->valid) != 1) {
1743 				aprint_error_dev(sc->sc_dev,
1744 				    "microcontroller initialization failed\n");
1745 			}
1746 			break;
1747 		}
1748 		case WPI_STATE_CHANGED:
1749 		{
1750 			uint32_t *status = (uint32_t *)(desc + 1);
1751 
1752 			/* enabled/disabled notification */
1753 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1754 
1755 			if (le32toh(*status) & 1) {
1756 				s = splnet();
1757 				/* the radio button has to be pushed */
1758 				/* wake up thread to signal powerd */
1759 				cv_signal(&sc->sc_rsw_cv);
1760 				aprint_error_dev(sc->sc_dev,
1761 				    "Radio transmitter is off\n");
1762 				/* turn the interface down */
1763 				ifp->if_flags &= ~IFF_UP;
1764 				wpi_stop(ifp, 1);
1765 				splx(s);
1766 				return;	/* no further processing */
1767 			}
1768 			break;
1769 		}
1770 		case WPI_START_SCAN:
1771 		{
1772 #if 0
1773 			struct wpi_start_scan *scan =
1774 			    (struct wpi_start_scan *)(desc + 1);
1775 
1776 			DPRINTFN(2, ("scanning channel %d status %x\n",
1777 			    scan->chan, le32toh(scan->status)));
1778 
1779 			/* fix current channel */
1780 			ic->ic_curchan = &ic->ic_channels[scan->chan];
1781 #endif
1782 			break;
1783 		}
1784 		case WPI_STOP_SCAN:
1785 		{
1786 #ifdef WPI_DEBUG
1787 			struct wpi_stop_scan *scan =
1788 			    (struct wpi_stop_scan *)(desc + 1);
1789 #endif
1790 
1791 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1792 			    scan->nchan, scan->status, scan->chan));
1793 
1794 			s = splnet();
1795 			sc->is_scanning = false;
1796 			if (ic->ic_state == IEEE80211_S_SCAN)
1797 				ieee80211_next_scan(ic);
1798 			splx(s);
1799 			break;
1800 		}
1801 		}
1802 
1803 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1804 	}
1805 
1806 	/* tell the firmware what we have processed */
1807 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1808 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1809 }
1810 
1811 static int
1812 wpi_intr(void *arg)
1813 {
1814 	struct wpi_softc *sc = arg;
1815 	uint32_t r;
1816 
1817 	r = WPI_READ(sc, WPI_INTR);
1818 	if (r == 0 || r == 0xffffffff)
1819 		return 0;	/* not for us */
1820 
1821 	DPRINTFN(6, ("interrupt reg %x\n", r));
1822 
1823 	/* disable interrupts */
1824 	WPI_WRITE(sc, WPI_MASK, 0);
1825 
1826 	softint_schedule(sc->sc_soft_ih);
1827 	return 1;
1828 }
1829 
1830 static void
1831 wpi_softintr(void *arg)
1832 {
1833 	struct wpi_softc *sc = arg;
1834 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1835 	uint32_t r;
1836 
1837 	r = WPI_READ(sc, WPI_INTR);
1838 	if (r == 0 || r == 0xffffffff)
1839 		goto out;
1840 
1841 	/* ack interrupts */
1842 	WPI_WRITE(sc, WPI_INTR, r);
1843 
1844 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1845 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1846 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1847 		ifp->if_flags &= ~IFF_UP;
1848 		wpi_stop(ifp, 1);
1849 		return;
1850 	}
1851 
1852 	if (r & WPI_RX_INTR)
1853 		wpi_notif_intr(sc);
1854 
1855 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1856 		wakeup(sc);
1857 
1858  out:
1859 	/* re-enable interrupts */
1860 	if (ifp->if_flags & IFF_UP)
1861 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1862 }
1863 
1864 static uint8_t
1865 wpi_plcp_signal(int rate)
1866 {
1867 	switch (rate) {
1868 	/* CCK rates (returned values are device-dependent) */
1869 	case 2:		return 10;
1870 	case 4:		return 20;
1871 	case 11:	return 55;
1872 	case 22:	return 110;
1873 
1874 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1875 	/* R1-R4, (u)ral is R4-R1 */
1876 	case 12:	return 0xd;
1877 	case 18:	return 0xf;
1878 	case 24:	return 0x5;
1879 	case 36:	return 0x7;
1880 	case 48:	return 0x9;
1881 	case 72:	return 0xb;
1882 	case 96:	return 0x1;
1883 	case 108:	return 0x3;
1884 
1885 	/* unsupported rates (should not get there) */
1886 	default:	return 0;
1887 	}
1888 }
1889 
1890 /* quickly determine if a given rate is CCK or OFDM */
1891 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1892 
1893 static int
1894 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1895     int ac)
1896 {
1897 	struct ieee80211com *ic = &sc->sc_ic;
1898 	struct wpi_tx_ring *ring = &sc->txq[ac];
1899 	struct wpi_tx_desc *desc;
1900 	struct wpi_tx_data *data;
1901 	struct wpi_tx_cmd *cmd;
1902 	struct wpi_cmd_data *tx;
1903 	struct ieee80211_frame *wh;
1904 	struct ieee80211_key *k;
1905 	const struct chanAccParams *cap;
1906 	struct mbuf *mnew;
1907 	int i, rate, error, hdrlen, noack = 0;
1908 
1909 	desc = &ring->desc[ring->cur];
1910 	data = &ring->data[ring->cur];
1911 
1912 	wh = mtod(m0, struct ieee80211_frame *);
1913 
1914 	if (ieee80211_has_qos(wh)) {
1915 		cap = &ic->ic_wme.wme_chanParams;
1916 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1917 	}
1918 
1919 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1920 		k = ieee80211_crypto_encap(ic, ni, m0);
1921 		if (k == NULL) {
1922 			m_freem(m0);
1923 			return ENOBUFS;
1924 		}
1925 
1926 		/* packet header may have moved, reset our local pointer */
1927 		wh = mtod(m0, struct ieee80211_frame *);
1928 	}
1929 
1930 	hdrlen = ieee80211_anyhdrsize(wh);
1931 
1932 	/* pickup a rate */
1933 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1934 	    IEEE80211_FC0_TYPE_MGT) {
1935 		/* mgmt frames are sent at the lowest available bit-rate */
1936 		rate = ni->ni_rates.rs_rates[0];
1937 	} else {
1938 		if (ic->ic_fixed_rate != -1) {
1939 			rate = ic->ic_sup_rates[ic->ic_curmode].
1940 			    rs_rates[ic->ic_fixed_rate];
1941 		} else
1942 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1943 	}
1944 	rate &= IEEE80211_RATE_VAL;
1945 
1946 	if (sc->sc_drvbpf != NULL) {
1947 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1948 
1949 		tap->wt_flags = 0;
1950 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1951 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1952 		tap->wt_rate = rate;
1953 		tap->wt_hwqueue = ac;
1954 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1955 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1956 
1957 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1958 	}
1959 
1960 	cmd = &ring->cmd[ring->cur];
1961 	cmd->code = WPI_CMD_TX_DATA;
1962 	cmd->flags = 0;
1963 	cmd->qid = ring->qid;
1964 	cmd->idx = ring->cur;
1965 
1966 	tx = (struct wpi_cmd_data *)cmd->data;
1967 	/* no need to zero tx, all fields are reinitialized here */
1968 	tx->flags = 0;
1969 
1970 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1971 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1972 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1973 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1974 
1975 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1976 
1977 	/* retrieve destination node's id */
1978 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1979 		WPI_ID_BSS;
1980 
1981 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1982 	    IEEE80211_FC0_TYPE_MGT) {
1983 		/* tell h/w to set timestamp in probe responses */
1984 		if ((wh->i_fc[0] &
1985 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1986 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1987 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1988 
1989 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1990 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1991 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1992 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1993 			tx->timeout = htole16(3);
1994 		else
1995 			tx->timeout = htole16(2);
1996 	} else
1997 		tx->timeout = htole16(0);
1998 
1999 	tx->rate = wpi_plcp_signal(rate);
2000 
2001 	/* be very persistant at sending frames out */
2002 	tx->rts_ntries = 7;
2003 	tx->data_ntries = 15;
2004 
2005 	tx->ofdm_mask = 0xff;
2006 	tx->cck_mask = 0x0f;
2007 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2008 
2009 	tx->len = htole16(m0->m_pkthdr.len);
2010 
2011 	/* save and trim IEEE802.11 header */
2012 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2013 	m_adj(m0, hdrlen);
2014 
2015 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2016 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2017 	if (error != 0 && error != EFBIG) {
2018 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2019 		    error);
2020 		m_freem(m0);
2021 		return error;
2022 	}
2023 	if (error != 0) {
2024 		/* too many fragments, linearize */
2025 
2026 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2027 		if (mnew == NULL) {
2028 			m_freem(m0);
2029 			return ENOMEM;
2030 		}
2031 		M_COPY_PKTHDR(mnew, m0);
2032 		if (m0->m_pkthdr.len > MHLEN) {
2033 			MCLGET(mnew, M_DONTWAIT);
2034 			if (!(mnew->m_flags & M_EXT)) {
2035 				m_freem(m0);
2036 				m_freem(mnew);
2037 				return ENOMEM;
2038 			}
2039 		}
2040 
2041 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2042 		m_freem(m0);
2043 		mnew->m_len = mnew->m_pkthdr.len;
2044 		m0 = mnew;
2045 
2046 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2047 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2048 		if (error != 0) {
2049 			aprint_error_dev(sc->sc_dev,
2050 			    "could not map mbuf (error %d)\n", error);
2051 			m_freem(m0);
2052 			return error;
2053 		}
2054 	}
2055 
2056 	data->m = m0;
2057 	data->ni = ni;
2058 
2059 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2060 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2061 
2062 	/* first scatter/gather segment is used by the tx data command */
2063 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2064 	    (1 + data->map->dm_nsegs) << 24);
2065 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2066 	    ring->cur * sizeof (struct wpi_tx_cmd));
2067 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
2068 	    ((hdrlen + 3) & ~3));
2069 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2070 		desc->segs[i].addr =
2071 		    htole32(data->map->dm_segs[i - 1].ds_addr);
2072 		desc->segs[i].len  =
2073 		    htole32(data->map->dm_segs[i - 1].ds_len);
2074 	}
2075 
2076 	ring->queued++;
2077 
2078 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2079 	    data->map->dm_mapsize,
2080 	    BUS_DMASYNC_PREWRITE);
2081 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2082 	    ring->cmd_dma.size,
2083 	    BUS_DMASYNC_PREWRITE);
2084 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2085 	    ring->desc_dma.size,
2086 	    BUS_DMASYNC_PREWRITE);
2087 
2088 	/* kick ring */
2089 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2090 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2091 
2092 	return 0;
2093 }
2094 
2095 static void
2096 wpi_start(struct ifnet *ifp)
2097 {
2098 	struct wpi_softc *sc = ifp->if_softc;
2099 	struct ieee80211com *ic = &sc->sc_ic;
2100 	struct ieee80211_node *ni;
2101 	struct ether_header *eh;
2102 	struct mbuf *m0;
2103 	int ac;
2104 
2105 	/*
2106 	 * net80211 may still try to send management frames even if the
2107 	 * IFF_RUNNING flag is not set...
2108 	 */
2109 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2110 		return;
2111 
2112 	for (;;) {
2113 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2114 		if (m0 != NULL) {
2115 
2116 			ni = M_GETCTX(m0, struct ieee80211_node *);
2117 			M_CLEARCTX(m0);
2118 
2119 			/* management frames go into ring 0 */
2120 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2121 				ifp->if_oerrors++;
2122 				continue;
2123 			}
2124 			bpf_mtap3(ic->ic_rawbpf, m0);
2125 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2126 				ifp->if_oerrors++;
2127 				break;
2128 			}
2129 		} else {
2130 			if (ic->ic_state != IEEE80211_S_RUN)
2131 				break;
2132 			IFQ_POLL(&ifp->if_snd, m0);
2133 			if (m0 == NULL)
2134 				break;
2135 
2136 			if (m0->m_len < sizeof (*eh) &&
2137 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2138 				ifp->if_oerrors++;
2139 				continue;
2140 			}
2141 			eh = mtod(m0, struct ether_header *);
2142 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2143 			if (ni == NULL) {
2144 				m_freem(m0);
2145 				ifp->if_oerrors++;
2146 				continue;
2147 			}
2148 
2149 			/* classify mbuf so we can find which tx ring to use */
2150 			if (ieee80211_classify(ic, m0, ni) != 0) {
2151 				m_freem(m0);
2152 				ieee80211_free_node(ni);
2153 				ifp->if_oerrors++;
2154 				continue;
2155 			}
2156 
2157 			/* no QoS encapsulation for EAPOL frames */
2158 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2159 			    M_WME_GETAC(m0) : WME_AC_BE;
2160 
2161 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2162 				/* there is no place left in this ring */
2163 				ifp->if_flags |= IFF_OACTIVE;
2164 				break;
2165 			}
2166 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2167 			bpf_mtap(ifp, m0);
2168 			m0 = ieee80211_encap(ic, m0, ni);
2169 			if (m0 == NULL) {
2170 				ieee80211_free_node(ni);
2171 				ifp->if_oerrors++;
2172 				continue;
2173 			}
2174 			bpf_mtap3(ic->ic_rawbpf, m0);
2175 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2176 				ieee80211_free_node(ni);
2177 				ifp->if_oerrors++;
2178 				break;
2179 			}
2180 		}
2181 
2182 		sc->sc_tx_timer = 5;
2183 		ifp->if_timer = 1;
2184 	}
2185 }
2186 
2187 static void
2188 wpi_watchdog(struct ifnet *ifp)
2189 {
2190 	struct wpi_softc *sc = ifp->if_softc;
2191 
2192 	ifp->if_timer = 0;
2193 
2194 	if (sc->sc_tx_timer > 0) {
2195 		if (--sc->sc_tx_timer == 0) {
2196 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2197 			ifp->if_flags &= ~IFF_UP;
2198 			wpi_stop(ifp, 1);
2199 			ifp->if_oerrors++;
2200 			return;
2201 		}
2202 		ifp->if_timer = 1;
2203 	}
2204 
2205 	ieee80211_watchdog(&sc->sc_ic);
2206 }
2207 
2208 static int
2209 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2210 {
2211 #define IS_RUNNING(ifp) \
2212 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2213 
2214 	struct wpi_softc *sc = ifp->if_softc;
2215 	struct ieee80211com *ic = &sc->sc_ic;
2216 	int s, error = 0;
2217 
2218 	s = splnet();
2219 
2220 	switch (cmd) {
2221 	case SIOCSIFFLAGS:
2222 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2223 			break;
2224 		if (ifp->if_flags & IFF_UP) {
2225 			if (!(ifp->if_flags & IFF_RUNNING))
2226 				wpi_init(ifp);
2227 		} else {
2228 			if (ifp->if_flags & IFF_RUNNING)
2229 				wpi_stop(ifp, 1);
2230 		}
2231 		break;
2232 
2233 	case SIOCADDMULTI:
2234 	case SIOCDELMULTI:
2235 		/* XXX no h/w multicast filter? --dyoung */
2236 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2237 			/* setup multicast filter, etc */
2238 			error = 0;
2239 		}
2240 		break;
2241 
2242 	default:
2243 		error = ieee80211_ioctl(ic, cmd, data);
2244 	}
2245 
2246 	if (error == ENETRESET) {
2247 		if (IS_RUNNING(ifp) &&
2248 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2249 			wpi_init(ifp);
2250 		error = 0;
2251 	}
2252 
2253 	splx(s);
2254 	return error;
2255 
2256 #undef IS_RUNNING
2257 }
2258 
2259 /*
2260  * Extract various information from EEPROM.
2261  */
2262 static void
2263 wpi_read_eeprom(struct wpi_softc *sc)
2264 {
2265 	struct ieee80211com *ic = &sc->sc_ic;
2266 	char domain[4];
2267 	int i;
2268 
2269 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2270 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2271 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2272 
2273 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2274 	    sc->type));
2275 
2276 	/* read and print regulatory domain */
2277 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2278 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2279 
2280 	/* read and print MAC address */
2281 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2282 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2283 
2284 	/* read the list of authorized channels */
2285 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2286 		wpi_read_eeprom_channels(sc, i);
2287 
2288 	/* read the list of power groups */
2289 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2290 		wpi_read_eeprom_group(sc, i);
2291 }
2292 
2293 static void
2294 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2295 {
2296 	struct ieee80211com *ic = &sc->sc_ic;
2297 	const struct wpi_chan_band *band = &wpi_bands[n];
2298 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2299 	int chan, i;
2300 
2301 	wpi_read_prom_data(sc, band->addr, channels,
2302 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2303 
2304 	for (i = 0; i < band->nchan; i++) {
2305 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2306 			continue;
2307 
2308 		chan = band->chan[i];
2309 
2310 		if (n == 0) {	/* 2GHz band */
2311 			ic->ic_channels[chan].ic_freq =
2312 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2313 			ic->ic_channels[chan].ic_flags =
2314 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2315 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2316 
2317 		} else {	/* 5GHz band */
2318 			/*
2319 			 * Some 3945ABG adapters support channels 7, 8, 11
2320 			 * and 12 in the 2GHz *and* 5GHz bands.
2321 			 * Because of limitations in our net80211(9) stack,
2322 			 * we can't support these channels in 5GHz band.
2323 			 */
2324 			if (chan <= 14)
2325 				continue;
2326 
2327 			ic->ic_channels[chan].ic_freq =
2328 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2329 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2330 		}
2331 
2332 		/* is active scan allowed on this channel? */
2333 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2334 			ic->ic_channels[chan].ic_flags |=
2335 			    IEEE80211_CHAN_PASSIVE;
2336 		}
2337 
2338 		/* save maximum allowed power for this channel */
2339 		sc->maxpwr[chan] = channels[i].maxpwr;
2340 
2341 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2342 		    chan, channels[i].flags, sc->maxpwr[chan]));
2343 	}
2344 }
2345 
2346 static void
2347 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2348 {
2349 	struct wpi_power_group *group = &sc->groups[n];
2350 	struct wpi_eeprom_group rgroup;
2351 	int i;
2352 
2353 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2354 	    sizeof rgroup);
2355 
2356 	/* save power group information */
2357 	group->chan   = rgroup.chan;
2358 	group->maxpwr = rgroup.maxpwr;
2359 	/* temperature at which the samples were taken */
2360 	group->temp   = (int16_t)le16toh(rgroup.temp);
2361 
2362 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2363 	    group->chan, group->maxpwr, group->temp));
2364 
2365 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2366 		group->samples[i].index = rgroup.samples[i].index;
2367 		group->samples[i].power = rgroup.samples[i].power;
2368 
2369 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2370 		    group->samples[i].index, group->samples[i].power));
2371 	}
2372 }
2373 
2374 /*
2375  * Send a command to the firmware.
2376  */
2377 static int
2378 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2379 {
2380 	struct wpi_tx_ring *ring = &sc->cmdq;
2381 	struct wpi_tx_desc *desc;
2382 	struct wpi_tx_cmd *cmd;
2383 	struct wpi_dma_info *dma;
2384 
2385 	KASSERT(size <= sizeof cmd->data);
2386 
2387 	desc = &ring->desc[ring->cur];
2388 	cmd = &ring->cmd[ring->cur];
2389 
2390 	cmd->code = code;
2391 	cmd->flags = 0;
2392 	cmd->qid = ring->qid;
2393 	cmd->idx = ring->cur;
2394 	memcpy(cmd->data, buf, size);
2395 
2396 	dma = &ring->cmd_dma;
2397 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2398 
2399 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2400 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2401 	    ring->cur * sizeof (struct wpi_tx_cmd));
2402 	desc->segs[0].len  = htole32(4 + size);
2403 
2404 	dma = &ring->desc_dma;
2405 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2406 
2407 	/* kick cmd ring */
2408 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2409 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2410 
2411 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2412 }
2413 
2414 static int
2415 wpi_wme_update(struct ieee80211com *ic)
2416 {
2417 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2418 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2419 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2420 	const struct wmeParams *wmep;
2421 	struct wpi_wme_setup wme;
2422 	int ac;
2423 
2424 	/* don't override default WME values if WME is not actually enabled */
2425 	if (!(ic->ic_flags & IEEE80211_F_WME))
2426 		return 0;
2427 
2428 	wme.flags = 0;
2429 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2430 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2431 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2432 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2433 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2434 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2435 
2436 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2437 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2438 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2439 	}
2440 
2441 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2442 #undef WPI_USEC
2443 #undef WPI_EXP2
2444 }
2445 
2446 /*
2447  * Configure h/w multi-rate retries.
2448  */
2449 static int
2450 wpi_mrr_setup(struct wpi_softc *sc)
2451 {
2452 	struct ieee80211com *ic = &sc->sc_ic;
2453 	struct wpi_mrr_setup mrr;
2454 	int i, error;
2455 
2456 	/* CCK rates (not used with 802.11a) */
2457 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2458 		mrr.rates[i].flags = 0;
2459 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2460 		/* fallback to the immediate lower CCK rate (if any) */
2461 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2462 		/* try one time at this rate before falling back to "next" */
2463 		mrr.rates[i].ntries = 1;
2464 	}
2465 
2466 	/* OFDM rates (not used with 802.11b) */
2467 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2468 		mrr.rates[i].flags = 0;
2469 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2470 		/* fallback to the immediate lower rate (if any) */
2471 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2472 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2473 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2474 			WPI_OFDM6 : WPI_CCK2) :
2475 		    i - 1;
2476 		/* try one time at this rate before falling back to "next" */
2477 		mrr.rates[i].ntries = 1;
2478 	}
2479 
2480 	/* setup MRR for control frames */
2481 	mrr.which = htole32(WPI_MRR_CTL);
2482 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2483 	if (error != 0) {
2484 		aprint_error_dev(sc->sc_dev,
2485 		    "could not setup MRR for control frames\n");
2486 		return error;
2487 	}
2488 
2489 	/* setup MRR for data frames */
2490 	mrr.which = htole32(WPI_MRR_DATA);
2491 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2492 	if (error != 0) {
2493 		aprint_error_dev(sc->sc_dev,
2494 		    "could not setup MRR for data frames\n");
2495 		return error;
2496 	}
2497 
2498 	return 0;
2499 }
2500 
2501 static void
2502 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2503 {
2504 	struct wpi_cmd_led led;
2505 
2506 	led.which = which;
2507 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2508 	led.off = off;
2509 	led.on = on;
2510 
2511 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2512 }
2513 
2514 static void
2515 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2516 {
2517 	struct wpi_cmd_tsf tsf;
2518 	uint64_t val, mod;
2519 
2520 	memset(&tsf, 0, sizeof tsf);
2521 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2522 	tsf.bintval = htole16(ni->ni_intval);
2523 	tsf.lintval = htole16(10);
2524 
2525 	/* compute remaining time until next beacon */
2526 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2527 	mod = le64toh(tsf.tstamp) % val;
2528 	tsf.binitval = htole32((uint32_t)(val - mod));
2529 
2530 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2531 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2532 
2533 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2534 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2535 }
2536 
2537 /*
2538  * Update Tx power to match what is defined for channel `c'.
2539  */
2540 static int
2541 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2542 {
2543 	struct ieee80211com *ic = &sc->sc_ic;
2544 	struct wpi_power_group *group;
2545 	struct wpi_cmd_txpower txpower;
2546 	u_int chan;
2547 	int i;
2548 
2549 	/* get channel number */
2550 	chan = ieee80211_chan2ieee(ic, c);
2551 
2552 	/* find the power group to which this channel belongs */
2553 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2554 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2555 			if (chan <= group->chan)
2556 				break;
2557 	} else
2558 		group = &sc->groups[0];
2559 
2560 	memset(&txpower, 0, sizeof txpower);
2561 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2562 	txpower.chan = htole16(chan);
2563 
2564 	/* set Tx power for all OFDM and CCK rates */
2565 	for (i = 0; i <= 11 ; i++) {
2566 		/* retrieve Tx power for this channel/rate combination */
2567 		int idx = wpi_get_power_index(sc, group, c,
2568 		    wpi_ridx_to_rate[i]);
2569 
2570 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2571 
2572 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2573 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2574 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2575 		} else {
2576 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2577 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2578 		}
2579 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2580 		    wpi_ridx_to_rate[i], idx));
2581 	}
2582 
2583 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2584 }
2585 
2586 /*
2587  * Determine Tx power index for a given channel/rate combination.
2588  * This takes into account the regulatory information from EEPROM and the
2589  * current temperature.
2590  */
2591 static int
2592 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2593     struct ieee80211_channel *c, int rate)
2594 {
2595 /* fixed-point arithmetic division using a n-bit fractional part */
2596 #define fdivround(a, b, n)	\
2597 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2598 
2599 /* linear interpolation */
2600 #define interpolate(x, x1, y1, x2, y2, n)	\
2601 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2602 
2603 	struct ieee80211com *ic = &sc->sc_ic;
2604 	struct wpi_power_sample *sample;
2605 	int pwr, idx;
2606 	u_int chan;
2607 
2608 	/* get channel number */
2609 	chan = ieee80211_chan2ieee(ic, c);
2610 
2611 	/* default power is group's maximum power - 3dB */
2612 	pwr = group->maxpwr / 2;
2613 
2614 	/* decrease power for highest OFDM rates to reduce distortion */
2615 	switch (rate) {
2616 	case 72:	/* 36Mb/s */
2617 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2618 		break;
2619 	case 96:	/* 48Mb/s */
2620 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2621 		break;
2622 	case 108:	/* 54Mb/s */
2623 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2624 		break;
2625 	}
2626 
2627 	/* never exceed channel's maximum allowed Tx power */
2628 	pwr = min(pwr, sc->maxpwr[chan]);
2629 
2630 	/* retrieve power index into gain tables from samples */
2631 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2632 		if (pwr > sample[1].power)
2633 			break;
2634 	/* fixed-point linear interpolation using a 19-bit fractional part */
2635 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2636 	    sample[1].power, sample[1].index, 19);
2637 
2638 	/*-
2639 	 * Adjust power index based on current temperature:
2640 	 * - if cooler than factory-calibrated: decrease output power
2641 	 * - if warmer than factory-calibrated: increase output power
2642 	 */
2643 	idx -= (sc->temp - group->temp) * 11 / 100;
2644 
2645 	/* decrease power for CCK rates (-5dB) */
2646 	if (!WPI_RATE_IS_OFDM(rate))
2647 		idx += 10;
2648 
2649 	/* keep power index in a valid range */
2650 	if (idx < 0)
2651 		return 0;
2652 	if (idx > WPI_MAX_PWR_INDEX)
2653 		return WPI_MAX_PWR_INDEX;
2654 	return idx;
2655 
2656 #undef interpolate
2657 #undef fdivround
2658 }
2659 
2660 /*
2661  * Build a beacon frame that the firmware will broadcast periodically in
2662  * IBSS or HostAP modes.
2663  */
2664 static int
2665 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2666 {
2667 	struct ieee80211com *ic = &sc->sc_ic;
2668 	struct wpi_tx_ring *ring = &sc->cmdq;
2669 	struct wpi_tx_desc *desc;
2670 	struct wpi_tx_data *data;
2671 	struct wpi_tx_cmd *cmd;
2672 	struct wpi_cmd_beacon *bcn;
2673 	struct ieee80211_beacon_offsets bo;
2674 	struct mbuf *m0;
2675 	int error;
2676 
2677 	desc = &ring->desc[ring->cur];
2678 	data = &ring->data[ring->cur];
2679 
2680 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2681 	if (m0 == NULL) {
2682 		aprint_error_dev(sc->sc_dev,
2683 		    "could not allocate beacon frame\n");
2684 		return ENOMEM;
2685 	}
2686 
2687 	cmd = &ring->cmd[ring->cur];
2688 	cmd->code = WPI_CMD_SET_BEACON;
2689 	cmd->flags = 0;
2690 	cmd->qid = ring->qid;
2691 	cmd->idx = ring->cur;
2692 
2693 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2694 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2695 	bcn->id = WPI_ID_BROADCAST;
2696 	bcn->ofdm_mask = 0xff;
2697 	bcn->cck_mask = 0x0f;
2698 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2699 	bcn->len = htole16(m0->m_pkthdr.len);
2700 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2701 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2702 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2703 
2704 	/* save and trim IEEE802.11 header */
2705 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2706 	m_adj(m0, sizeof (struct ieee80211_frame));
2707 
2708 	/* assume beacon frame is contiguous */
2709 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2710 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2711 	if (error != 0) {
2712 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2713 		m_freem(m0);
2714 		return error;
2715 	}
2716 
2717 	data->m = m0;
2718 
2719 	/* first scatter/gather segment is used by the beacon command */
2720 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2721 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2722 	    ring->cur * sizeof (struct wpi_tx_cmd));
2723 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2724 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2725 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2726 
2727 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2728 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2729 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2730 	    BUS_DMASYNC_PREWRITE);
2731 
2732 	/* kick cmd ring */
2733 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2734 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2735 
2736 	return 0;
2737 }
2738 
2739 static int
2740 wpi_auth(struct wpi_softc *sc)
2741 {
2742 	struct ieee80211com *ic = &sc->sc_ic;
2743 	struct ieee80211_node *ni = ic->ic_bss;
2744 	struct wpi_node_info node;
2745 	int error;
2746 
2747 	/* update adapter's configuration */
2748 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2749 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2750 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2751 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2752 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2753 		    WPI_CONFIG_24GHZ);
2754 	}
2755 	switch (ic->ic_curmode) {
2756 	case IEEE80211_MODE_11A:
2757 		sc->config.cck_mask  = 0;
2758 		sc->config.ofdm_mask = 0x15;
2759 		break;
2760 	case IEEE80211_MODE_11B:
2761 		sc->config.cck_mask  = 0x03;
2762 		sc->config.ofdm_mask = 0;
2763 		break;
2764 	default:	/* assume 802.11b/g */
2765 		sc->config.cck_mask  = 0x0f;
2766 		sc->config.ofdm_mask = 0x15;
2767 	}
2768 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2769 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2770 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2771 	    sizeof (struct wpi_config), 1);
2772 	if (error != 0) {
2773 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2774 		return error;
2775 	}
2776 
2777 	/* configuration has changed, set Tx power accordingly */
2778 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2779 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2780 		return error;
2781 	}
2782 
2783 	/* add default node */
2784 	memset(&node, 0, sizeof node);
2785 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2786 	node.id = WPI_ID_BSS;
2787 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2788 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2789 	node.action = htole32(WPI_ACTION_SET_RATE);
2790 	node.antenna = WPI_ANTENNA_BOTH;
2791 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2792 	if (error != 0) {
2793 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2794 		return error;
2795 	}
2796 
2797 	return 0;
2798 }
2799 
2800 /*
2801  * Send a scan request to the firmware.  Since this command is huge, we map it
2802  * into a mbuf instead of using the pre-allocated set of commands.
2803  */
2804 static int
2805 wpi_scan(struct wpi_softc *sc)
2806 {
2807 	struct ieee80211com *ic = &sc->sc_ic;
2808 	struct wpi_tx_ring *ring = &sc->cmdq;
2809 	struct wpi_tx_desc *desc;
2810 	struct wpi_tx_data *data;
2811 	struct wpi_tx_cmd *cmd;
2812 	struct wpi_scan_hdr *hdr;
2813 	struct wpi_scan_chan *chan;
2814 	struct ieee80211_frame *wh;
2815 	struct ieee80211_rateset *rs;
2816 	struct ieee80211_channel *c;
2817 	uint8_t *frm;
2818 	int pktlen, error, nrates;
2819 
2820 	if (ic->ic_curchan == NULL)
2821 		return EIO;
2822 
2823 	desc = &ring->desc[ring->cur];
2824 	data = &ring->data[ring->cur];
2825 
2826 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2827 	if (data->m == NULL) {
2828 		aprint_error_dev(sc->sc_dev,
2829 		    "could not allocate mbuf for scan command\n");
2830 		return ENOMEM;
2831 	}
2832 	MCLGET(data->m, M_DONTWAIT);
2833 	if (!(data->m->m_flags & M_EXT)) {
2834 		m_freem(data->m);
2835 		data->m = NULL;
2836 		aprint_error_dev(sc->sc_dev,
2837 		    "could not allocate mbuf for scan command\n");
2838 		return ENOMEM;
2839 	}
2840 
2841 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2842 	cmd->code = WPI_CMD_SCAN;
2843 	cmd->flags = 0;
2844 	cmd->qid = ring->qid;
2845 	cmd->idx = ring->cur;
2846 
2847 	hdr = (struct wpi_scan_hdr *)cmd->data;
2848 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2849 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2850 	hdr->cmd.id = WPI_ID_BROADCAST;
2851 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2852 	/*
2853 	 * Move to the next channel if no packets are received within 5 msecs
2854 	 * after sending the probe request (this helps to reduce the duration
2855 	 * of active scans).
2856 	 */
2857 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2858 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2859 
2860 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2861 		hdr->crc_threshold = htole16(1);
2862 		/* send probe requests at 6Mbps */
2863 		hdr->cmd.rate = wpi_plcp_signal(12);
2864 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2865 	} else {
2866 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2867 		/* send probe requests at 1Mbps */
2868 		hdr->cmd.rate = wpi_plcp_signal(2);
2869 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2870 	}
2871 
2872 	/* for directed scans, firmware inserts the essid IE itself */
2873 	if (ic->ic_des_esslen != 0) {
2874 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2875 		hdr->essid[0].len = ic->ic_des_esslen;
2876 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2877 	}
2878 
2879 	/*
2880 	 * Build a probe request frame.  Most of the following code is a
2881 	 * copy & paste of what is done in net80211.
2882 	 */
2883 	wh = (struct ieee80211_frame *)(hdr + 1);
2884 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2885 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2886 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2887 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2888 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2889 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2890 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2891 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2892 
2893 	frm = (uint8_t *)(wh + 1);
2894 
2895 	/* add empty essid IE (firmware generates it for directed scans) */
2896 	*frm++ = IEEE80211_ELEMID_SSID;
2897 	*frm++ = 0;
2898 
2899 	/* add supported rates IE */
2900 	*frm++ = IEEE80211_ELEMID_RATES;
2901 	nrates = rs->rs_nrates;
2902 	if (nrates > IEEE80211_RATE_SIZE)
2903 		nrates = IEEE80211_RATE_SIZE;
2904 	*frm++ = nrates;
2905 	memcpy(frm, rs->rs_rates, nrates);
2906 	frm += nrates;
2907 
2908 	/* add supported xrates IE */
2909 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2910 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2911 		*frm++ = IEEE80211_ELEMID_XRATES;
2912 		*frm++ = nrates;
2913 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2914 		frm += nrates;
2915 	}
2916 
2917 	/* setup length of probe request */
2918 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2919 
2920 	chan = (struct wpi_scan_chan *)frm;
2921 	c = ic->ic_curchan;
2922 
2923 	chan->chan = ieee80211_chan2ieee(ic, c);
2924 	chan->flags = 0;
2925 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2926 		chan->flags |= WPI_CHAN_ACTIVE;
2927 		if (ic->ic_des_esslen != 0)
2928 			chan->flags |= WPI_CHAN_DIRECT;
2929 	}
2930 	chan->dsp_gain = 0x6e;
2931 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2932 		chan->rf_gain = 0x3b;
2933 		chan->active  = htole16(10);
2934 		chan->passive = htole16(110);
2935 	} else {
2936 		chan->rf_gain = 0x28;
2937 		chan->active  = htole16(20);
2938 		chan->passive = htole16(120);
2939 	}
2940 	hdr->nchan++;
2941 	chan++;
2942 
2943 	frm += sizeof (struct wpi_scan_chan);
2944 
2945 	hdr->len = htole16(frm - (uint8_t *)hdr);
2946 	pktlen = frm - (uint8_t *)cmd;
2947 
2948 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2949 	    BUS_DMA_NOWAIT);
2950 	if (error != 0) {
2951 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2952 		m_freem(data->m);
2953 		data->m = NULL;
2954 		return error;
2955 	}
2956 
2957 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2958 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2959 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2960 
2961 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2962 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2963 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2964 	    BUS_DMASYNC_PREWRITE);
2965 
2966 	/* kick cmd ring */
2967 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2968 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2969 
2970 	return 0;	/* will be notified async. of failure/success */
2971 }
2972 
2973 static int
2974 wpi_config(struct wpi_softc *sc)
2975 {
2976 	struct ieee80211com *ic = &sc->sc_ic;
2977 	struct ifnet *ifp = ic->ic_ifp;
2978 	struct wpi_power power;
2979 	struct wpi_bluetooth bluetooth;
2980 	struct wpi_node_info node;
2981 	int error;
2982 
2983 	memset(&power, 0, sizeof power);
2984 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2985 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2986 	if (error != 0) {
2987 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2988 		return error;
2989 	}
2990 
2991 	/* configure bluetooth coexistence */
2992 	memset(&bluetooth, 0, sizeof bluetooth);
2993 	bluetooth.flags = 3;
2994 	bluetooth.lead = 0xaa;
2995 	bluetooth.kill = 1;
2996 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2997 	    0);
2998 	if (error != 0) {
2999 		aprint_error_dev(sc->sc_dev,
3000 			"could not configure bluetooth coexistence\n");
3001 		return error;
3002 	}
3003 
3004 	/* configure adapter */
3005 	memset(&sc->config, 0, sizeof (struct wpi_config));
3006 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3007 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3008 	/* set default channel */
3009 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3010 	sc->config.flags = htole32(WPI_CONFIG_TSF);
3011 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3012 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3013 		    WPI_CONFIG_24GHZ);
3014 	}
3015 	sc->config.filter = 0;
3016 	switch (ic->ic_opmode) {
3017 	case IEEE80211_M_STA:
3018 		sc->config.mode = WPI_MODE_STA;
3019 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3020 		break;
3021 	case IEEE80211_M_IBSS:
3022 	case IEEE80211_M_AHDEMO:
3023 		sc->config.mode = WPI_MODE_IBSS;
3024 		break;
3025 	case IEEE80211_M_HOSTAP:
3026 		sc->config.mode = WPI_MODE_HOSTAP;
3027 		break;
3028 	case IEEE80211_M_MONITOR:
3029 		sc->config.mode = WPI_MODE_MONITOR;
3030 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3031 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3032 		break;
3033 	}
3034 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3035 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3036 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3037 	    sizeof (struct wpi_config), 0);
3038 	if (error != 0) {
3039 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
3040 		return error;
3041 	}
3042 
3043 	/* configuration has changed, set Tx power accordingly */
3044 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3045 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3046 		return error;
3047 	}
3048 
3049 	/* add broadcast node */
3050 	memset(&node, 0, sizeof node);
3051 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3052 	node.id = WPI_ID_BROADCAST;
3053 	node.rate = wpi_plcp_signal(2);
3054 	node.action = htole32(WPI_ACTION_SET_RATE);
3055 	node.antenna = WPI_ANTENNA_BOTH;
3056 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3057 	if (error != 0) {
3058 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3059 		return error;
3060 	}
3061 
3062 	if ((error = wpi_mrr_setup(sc)) != 0) {
3063 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3064 		return error;
3065 	}
3066 
3067 	return 0;
3068 }
3069 
3070 static void
3071 wpi_stop_master(struct wpi_softc *sc)
3072 {
3073 	uint32_t tmp;
3074 	int ntries;
3075 
3076 	tmp = WPI_READ(sc, WPI_RESET);
3077 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3078 
3079 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3080 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3081 		return;	/* already asleep */
3082 
3083 	for (ntries = 0; ntries < 100; ntries++) {
3084 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3085 			break;
3086 		DELAY(10);
3087 	}
3088 	if (ntries == 100) {
3089 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3090 	}
3091 }
3092 
3093 static int
3094 wpi_power_up(struct wpi_softc *sc)
3095 {
3096 	uint32_t tmp;
3097 	int ntries;
3098 
3099 	wpi_mem_lock(sc);
3100 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3101 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3102 	wpi_mem_unlock(sc);
3103 
3104 	for (ntries = 0; ntries < 5000; ntries++) {
3105 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3106 			break;
3107 		DELAY(10);
3108 	}
3109 	if (ntries == 5000) {
3110 		aprint_error_dev(sc->sc_dev,
3111 		    "timeout waiting for NIC to power up\n");
3112 		return ETIMEDOUT;
3113 	}
3114 	return 0;
3115 }
3116 
3117 static int
3118 wpi_reset(struct wpi_softc *sc)
3119 {
3120 	uint32_t tmp;
3121 	int ntries;
3122 
3123 	/* clear any pending interrupts */
3124 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3125 
3126 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3127 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3128 
3129 	tmp = WPI_READ(sc, WPI_CHICKEN);
3130 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3131 
3132 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3133 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3134 
3135 	/* wait for clock stabilization */
3136 	for (ntries = 0; ntries < 1000; ntries++) {
3137 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3138 			break;
3139 		DELAY(10);
3140 	}
3141 	if (ntries == 1000) {
3142 		aprint_error_dev(sc->sc_dev,
3143 		    "timeout waiting for clock stabilization\n");
3144 		return ETIMEDOUT;
3145 	}
3146 
3147 	/* initialize EEPROM */
3148 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3149 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3150 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3151 		return EIO;
3152 	}
3153 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3154 
3155 	return 0;
3156 }
3157 
3158 static void
3159 wpi_hw_config(struct wpi_softc *sc)
3160 {
3161 	uint32_t rev, hw;
3162 
3163 	/* voodoo from the reference driver */
3164 	hw = WPI_READ(sc, WPI_HWCONFIG);
3165 
3166 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3167 	rev = PCI_REVISION(rev);
3168 	if ((rev & 0xc0) == 0x40)
3169 		hw |= WPI_HW_ALM_MB;
3170 	else if (!(rev & 0x80))
3171 		hw |= WPI_HW_ALM_MM;
3172 
3173 	if (sc->cap == 0x80)
3174 		hw |= WPI_HW_SKU_MRC;
3175 
3176 	hw &= ~WPI_HW_REV_D;
3177 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3178 		hw |= WPI_HW_REV_D;
3179 
3180 	if (sc->type > 1)
3181 		hw |= WPI_HW_TYPE_B;
3182 
3183 	DPRINTF(("setting h/w config %x\n", hw));
3184 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3185 }
3186 
3187 static int
3188 wpi_init(struct ifnet *ifp)
3189 {
3190 	struct wpi_softc *sc = ifp->if_softc;
3191 	struct ieee80211com *ic = &sc->sc_ic;
3192 	uint32_t tmp;
3193 	int qid, ntries, error;
3194 
3195 	wpi_stop(ifp,1);
3196 	(void)wpi_reset(sc);
3197 
3198 	wpi_mem_lock(sc);
3199 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3200 	DELAY(20);
3201 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3202 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3203 	wpi_mem_unlock(sc);
3204 
3205 	(void)wpi_power_up(sc);
3206 	wpi_hw_config(sc);
3207 
3208 	/* init Rx ring */
3209 	wpi_mem_lock(sc);
3210 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3211 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3212 	    offsetof(struct wpi_shared, next));
3213 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3214 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3215 	wpi_mem_unlock(sc);
3216 
3217 	/* init Tx rings */
3218 	wpi_mem_lock(sc);
3219 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3220 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3221 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3222 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3223 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3224 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3225 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3226 
3227 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3228 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3229 
3230 	for (qid = 0; qid < 6; qid++) {
3231 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3232 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3233 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3234 	}
3235 	wpi_mem_unlock(sc);
3236 
3237 	/* clear "radio off" and "disable command" bits (reversed logic) */
3238 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3239 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3240 
3241 	/* clear any pending interrupts */
3242 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3243 	/* enable interrupts */
3244 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3245 
3246 	/* not sure why/if this is necessary... */
3247 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3248 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3249 
3250 	if ((error = wpi_load_firmware(sc)) != 0)
3251 		/* wpi_load_firmware prints error messages for us.  */
3252 		goto fail1;
3253 
3254 	/* Check the status of the radio switch */
3255 	mutex_enter(&sc->sc_rsw_mtx);
3256 	if (wpi_getrfkill(sc)) {
3257 		mutex_exit(&sc->sc_rsw_mtx);
3258 		aprint_error_dev(sc->sc_dev,
3259 		    "radio is disabled by hardware switch\n");
3260 		ifp->if_flags &= ~IFF_UP;
3261 		error = EBUSY;
3262 		goto fail1;
3263 	}
3264 	mutex_exit(&sc->sc_rsw_mtx);
3265 
3266 	/* wait for thermal sensors to calibrate */
3267 	for (ntries = 0; ntries < 1000; ntries++) {
3268 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3269 			break;
3270 		DELAY(10);
3271 	}
3272 	if (ntries == 1000) {
3273 		aprint_error_dev(sc->sc_dev,
3274 		    "timeout waiting for thermal sensors calibration\n");
3275 		error = ETIMEDOUT;
3276 		goto fail1;
3277 	}
3278 	DPRINTF(("temperature %d\n", sc->temp));
3279 
3280 	if ((error = wpi_config(sc)) != 0) {
3281 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3282 		goto fail1;
3283 	}
3284 
3285 	ifp->if_flags &= ~IFF_OACTIVE;
3286 	ifp->if_flags |= IFF_RUNNING;
3287 
3288 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3289 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3290 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3291 	}
3292 	else
3293 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3294 
3295 	return 0;
3296 
3297 fail1:	wpi_stop(ifp, 1);
3298 	return error;
3299 }
3300 
3301 static void
3302 wpi_stop(struct ifnet *ifp, int disable)
3303 {
3304 	struct wpi_softc *sc = ifp->if_softc;
3305 	struct ieee80211com *ic = &sc->sc_ic;
3306 	uint32_t tmp;
3307 	int ac;
3308 
3309 	ifp->if_timer = sc->sc_tx_timer = 0;
3310 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3311 
3312 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3313 
3314 	/* disable interrupts */
3315 	WPI_WRITE(sc, WPI_MASK, 0);
3316 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3317 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3318 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3319 
3320 	wpi_mem_lock(sc);
3321 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3322 	wpi_mem_unlock(sc);
3323 
3324 	/* reset all Tx rings */
3325 	for (ac = 0; ac < 4; ac++)
3326 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3327 	wpi_reset_tx_ring(sc, &sc->cmdq);
3328 
3329 	/* reset Rx ring */
3330 	wpi_reset_rx_ring(sc, &sc->rxq);
3331 
3332 	wpi_mem_lock(sc);
3333 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3334 	wpi_mem_unlock(sc);
3335 
3336 	DELAY(5);
3337 
3338 	wpi_stop_master(sc);
3339 
3340 	tmp = WPI_READ(sc, WPI_RESET);
3341 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3342 }
3343 
3344 static bool
3345 wpi_resume(device_t dv, const pmf_qual_t *qual)
3346 {
3347 	struct wpi_softc *sc = device_private(dv);
3348 
3349 	(void)wpi_reset(sc);
3350 
3351 	return true;
3352 }
3353 
3354 /*
3355  * Return whether or not the radio is enabled in hardware
3356  * (i.e. the rfkill switch is "off").
3357  */
3358 static int
3359 wpi_getrfkill(struct wpi_softc *sc)
3360 {
3361 	uint32_t tmp;
3362 
3363 	wpi_mem_lock(sc);
3364 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3365 	wpi_mem_unlock(sc);
3366 
3367 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3368 	if (tmp & 0x01) {
3369 		/* switch is on */
3370 		if (sc->sc_rsw_status != WPI_RSW_ON) {
3371 			sc->sc_rsw_status = WPI_RSW_ON;
3372 			sysmon_pswitch_event(&sc->sc_rsw,
3373 			    PSWITCH_EVENT_PRESSED);
3374 		}
3375 	} else {
3376 		/* switch is off */
3377 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
3378 			sc->sc_rsw_status = WPI_RSW_OFF;
3379 			sysmon_pswitch_event(&sc->sc_rsw,
3380 			    PSWITCH_EVENT_RELEASED);
3381 		}
3382 	}
3383 
3384 	return !(tmp & 0x01);
3385 }
3386 
3387 static int
3388 wpi_sysctl_radio(SYSCTLFN_ARGS)
3389 {
3390 	struct sysctlnode node;
3391 	struct wpi_softc *sc;
3392 	int val, error;
3393 
3394 	node = *rnode;
3395 	sc = (struct wpi_softc *)node.sysctl_data;
3396 
3397 	mutex_enter(&sc->sc_rsw_mtx);
3398 	val = !wpi_getrfkill(sc);
3399 	mutex_exit(&sc->sc_rsw_mtx);
3400 
3401 	node.sysctl_data = &val;
3402 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3403 
3404 	if (error || newp == NULL)
3405 		return error;
3406 
3407 	return 0;
3408 }
3409 
3410 static void
3411 wpi_sysctlattach(struct wpi_softc *sc)
3412 {
3413 	int rc;
3414 	const struct sysctlnode *rnode;
3415 	const struct sysctlnode *cnode;
3416 
3417 	struct sysctllog **clog = &sc->sc_sysctllog;
3418 
3419 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3420 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3421 	    SYSCTL_DESCR("wpi controls and statistics"),
3422 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3423 		goto err;
3424 
3425 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3426 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3427 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3428 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3429 		goto err;
3430 
3431 #ifdef WPI_DEBUG
3432 	/* control debugging printfs */
3433 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3434 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3435 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3436 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3437 		goto err;
3438 #endif
3439 
3440 	return;
3441 err:
3442 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3443 }
3444 
3445 static void
3446 wpi_rsw_thread(void *arg)
3447 {
3448 	struct wpi_softc *sc = (struct wpi_softc *)arg;
3449 
3450 	mutex_enter(&sc->sc_rsw_mtx);
3451 	for (;;) {
3452 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3453 		if (sc->sc_dying) {
3454 			sc->sc_rsw_lwp = NULL;
3455 			cv_broadcast(&sc->sc_rsw_cv);
3456 			mutex_exit(&sc->sc_rsw_mtx);
3457 			kthread_exit(0);
3458 		}
3459 		wpi_getrfkill(sc);
3460 	}
3461 }
3462 
3463