xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision e7ac2a8b5bd66fa2e050809de09a075c36a7014d)
1 /*	$NetBSD: if_wpi.c,v 1.89 2020/03/20 17:19:25 sevan Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.89 2020/03/20 17:19:25 sevan Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51 
52 #include <dev/sysmon/sysmonvar.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70 
71 #include <dev/firmload.h>
72 
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75 
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82 
83 static int	wpi_match(device_t, cfdata_t, void *);
84 static void	wpi_attach(device_t, device_t, void *);
85 static int	wpi_detach(device_t , int);
86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
89 static int	wpi_alloc_shared(struct wpi_softc *);
90 static void	wpi_free_shared(struct wpi_softc *);
91 static int	wpi_alloc_fwmem(struct wpi_softc *);
92 static void	wpi_free_fwmem(struct wpi_softc *);
93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int	wpi_alloc_rpool(struct wpi_softc *);
96 static void	wpi_free_rpool(struct wpi_softc *);
97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 		    int, int);
102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void	wpi_newassoc(struct ieee80211_node *, int);
106 static int	wpi_media_change(struct ifnet *);
107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void	wpi_mem_lock(struct wpi_softc *);
109 static void	wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 		    const uint32_t *, int);
114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
116 static int	wpi_cache_firmware(struct wpi_softc *);
117 static void	wpi_release_firmware(void);
118 static int	wpi_load_firmware(struct wpi_softc *);
119 static void	wpi_calib_timeout(void *);
120 static void	wpi_iter_func(void *, struct ieee80211_node *);
121 static void	wpi_power_calibration(struct wpi_softc *, int);
122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 		    struct wpi_rx_data *);
124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void	wpi_notif_intr(struct wpi_softc *);
127 static int	wpi_intr(void *);
128 static void	wpi_softintr(void *);
129 static void	wpi_read_eeprom(struct wpi_softc *);
130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t	wpi_plcp_signal(int);
133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 		    struct ieee80211_node *, int);
135 static void	wpi_start(struct ifnet *);
136 static void	wpi_watchdog(struct ifnet *);
137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int	wpi_wme_update(struct ieee80211com *);
140 static int	wpi_mrr_setup(struct wpi_softc *);
141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int	wpi_set_txpower(struct wpi_softc *,
144 		    struct ieee80211_channel *, int);
145 static int	wpi_get_power_index(struct wpi_softc *,
146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int	wpi_auth(struct wpi_softc *);
149 static int	wpi_scan(struct wpi_softc *);
150 static int	wpi_config(struct wpi_softc *);
151 static void	wpi_stop_master(struct wpi_softc *);
152 static int	wpi_power_up(struct wpi_softc *);
153 static int	wpi_reset(struct wpi_softc *);
154 static void	wpi_hw_config(struct wpi_softc *);
155 static int	wpi_init(struct ifnet *);
156 static void	wpi_stop(struct ifnet *, int);
157 static bool	wpi_resume(device_t, const pmf_qual_t *);
158 static int	wpi_getrfkill(struct wpi_softc *);
159 static void	wpi_sysctlattach(struct wpi_softc *);
160 static void	wpi_rsw_thread(void *);
161 
162 #ifdef WPI_DEBUG
163 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
164 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
165 int wpi_debug = 1;
166 #else
167 #define DPRINTF(x)
168 #define DPRINTFN(n, x)
169 #endif
170 
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 	wpi_detach, NULL);
173 
174 static int
175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 {
177 	struct pci_attach_args *pa = aux;
178 
179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 		return 0;
181 
182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 		return 1;
185 
186 	return 0;
187 }
188 
189 /* Base Address Register */
190 #define WPI_PCI_BAR0	0x10
191 
192 static int
193 wpi_attach_once(void)
194 {
195 
196 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 	return 0;
198 }
199 
200 static void
201 wpi_attach(device_t parent __unused, device_t self, void *aux)
202 {
203 	struct wpi_softc *sc = device_private(self);
204 	struct ieee80211com *ic = &sc->sc_ic;
205 	struct ifnet *ifp = &sc->sc_ec.ec_if;
206 	struct pci_attach_args *pa = aux;
207 	const char *intrstr;
208 	bus_space_tag_t memt;
209 	bus_space_handle_t memh;
210 	pcireg_t data;
211 	int ac, error;
212 	char intrbuf[PCI_INTRSTR_LEN];
213 
214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 	sc->fw_used = false;
216 
217 	sc->sc_dev = self;
218 	sc->sc_pct = pa->pa_pc;
219 	sc->sc_pcitag = pa->pa_tag;
220 
221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 	sc->sc_rsw.smpsw_name = device_xname(self);
223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 	error = sysmon_pswitch_register(&sc->sc_rsw);
225 	if (error) {
226 		aprint_error_dev(self,
227 		    "unable to register radio switch with sysmon\n");
228 		return;
229 	}
230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
232 	sc->sc_rsw_suspend = false;
233 	sc->sc_rsw_suspended = false;
234 	if (kthread_create(PRI_NONE, 0, NULL,
235 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
236 		aprint_error_dev(self, "couldn't create switch thread\n");
237 	}
238 
239 	callout_init(&sc->calib_to, 0);
240 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
241 
242 	pci_aprint_devinfo(pa, NULL);
243 
244 	/* enable bus-mastering */
245 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
246 	data |= PCI_COMMAND_MASTER_ENABLE;
247 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
248 
249 	/* map the register window */
250 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
251 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
252 	if (error != 0) {
253 		aprint_error_dev(self, "could not map memory space\n");
254 		return;
255 	}
256 
257 	sc->sc_st = memt;
258 	sc->sc_sh = memh;
259 	sc->sc_dmat = pa->pa_dmat;
260 
261 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
262 	if (sc->sc_soft_ih == NULL) {
263 		aprint_error_dev(self, "could not establish softint\n");
264 		goto unmap;
265 	}
266 
267 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
268 		aprint_error_dev(self, "could not map interrupt\n");
269 		goto failsi;
270 	}
271 
272 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
273 	    sizeof(intrbuf));
274 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
275 	    IPL_NET, wpi_intr, sc, device_xname(self));
276 	if (sc->sc_ih == NULL) {
277 		aprint_error_dev(self, "could not establish interrupt");
278 		if (intrstr != NULL)
279 			aprint_error(" at %s", intrstr);
280 		aprint_error("\n");
281 		goto failia;
282 	}
283 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
284 
285 	/*
286 	 * Put adapter into a known state.
287 	 */
288 	if ((error = wpi_reset(sc)) != 0) {
289 		aprint_error_dev(self, "could not reset adapter\n");
290 		goto failih;
291 	}
292 
293 	/*
294 	 * Allocate DMA memory for firmware transfers.
295 	 */
296 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
297 		aprint_error_dev(self, "could not allocate firmware memory\n");
298 		goto failih;
299 	}
300 
301 	/*
302 	 * Allocate shared page and Tx/Rx rings.
303 	 */
304 	if ((error = wpi_alloc_shared(sc)) != 0) {
305 		aprint_error_dev(self, "could not allocate shared area\n");
306 		goto fail1;
307 	}
308 
309 	if ((error = wpi_alloc_rpool(sc)) != 0) {
310 		aprint_error_dev(self, "could not allocate Rx buffers\n");
311 		goto fail2;
312 	}
313 
314 	for (ac = 0; ac < 4; ac++) {
315 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
316 		    ac);
317 		if (error != 0) {
318 			aprint_error_dev(self,
319 			    "could not allocate Tx ring %d\n", ac);
320 			goto fail3;
321 		}
322 	}
323 
324 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
325 	if (error != 0) {
326 		aprint_error_dev(self, "could not allocate command ring\n");
327 		goto fail3;
328 	}
329 
330 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
331 	if (error != 0) {
332 		aprint_error_dev(self, "could not allocate Rx ring\n");
333 		goto fail4;
334 	}
335 
336 	ic->ic_ifp = ifp;
337 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
338 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
339 	ic->ic_state = IEEE80211_S_INIT;
340 
341 	/* set device capabilities */
342 	ic->ic_caps =
343 	    IEEE80211_C_WPA |		/* 802.11i */
344 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
345 	    IEEE80211_C_TXPMGT |	/* tx power management */
346 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
347 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
348 	    IEEE80211_C_WME;		/* 802.11e */
349 
350 	/* read supported channels and MAC address from EEPROM */
351 	wpi_read_eeprom(sc);
352 
353 	/* set supported .11a, .11b and .11g rates */
354 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
355 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
356 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
357 
358 	/* IBSS channel undefined for now */
359 	ic->ic_ibss_chan = &ic->ic_channels[0];
360 
361 	ifp->if_softc = sc;
362 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 	ifp->if_init = wpi_init;
364 	ifp->if_stop = wpi_stop;
365 	ifp->if_ioctl = wpi_ioctl;
366 	ifp->if_start = wpi_start;
367 	ifp->if_watchdog = wpi_watchdog;
368 	IFQ_SET_READY(&ifp->if_snd);
369 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
370 
371 	error = if_initialize(ifp);
372 	if (error != 0) {
373 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
374 		    error);
375 		goto fail5;
376 	}
377 	ieee80211_ifattach(ic);
378 	/* Use common softint-based if_input */
379 	ifp->if_percpuq = if_percpuq_create(ifp);
380 	if_register(ifp);
381 
382 	/* override default methods */
383 	ic->ic_node_alloc = wpi_node_alloc;
384 	ic->ic_newassoc = wpi_newassoc;
385 	ic->ic_wme.wme_update = wpi_wme_update;
386 
387 	/* override state transition machine */
388 	sc->sc_newstate = ic->ic_newstate;
389 	ic->ic_newstate = wpi_newstate;
390 
391 	/* XXX media locking needs revisiting */
392 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
393 	ieee80211_media_init_with_lock(ic,
394 	    wpi_media_change, ieee80211_media_status, &sc->sc_media_mtx);
395 
396 	sc->amrr.amrr_min_success_threshold =  1;
397 	sc->amrr.amrr_max_success_threshold = 15;
398 
399 	wpi_sysctlattach(sc);
400 
401 	if (pmf_device_register(self, NULL, wpi_resume))
402 		pmf_class_network_register(self, ifp);
403 	else
404 		aprint_error_dev(self, "couldn't establish power handler\n");
405 
406 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
407 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
408 	    &sc->sc_drvbpf);
409 
410 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
411 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
412 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
413 
414 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
415 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
416 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
417 
418 	ieee80211_announce(ic);
419 
420 	return;
421 
422 	/* free allocated memory if something failed during attachment */
423 fail5:	wpi_free_rx_ring(sc, &sc->rxq);
424 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
425 fail3:	while (--ac >= 0)
426 		wpi_free_tx_ring(sc, &sc->txq[ac]);
427 	wpi_free_rpool(sc);
428 fail2:	wpi_free_shared(sc);
429 fail1:	wpi_free_fwmem(sc);
430 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
431 	sc->sc_ih = NULL;
432 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
433 	sc->sc_pihp = NULL;
434 failsi:	softint_disestablish(sc->sc_soft_ih);
435 	sc->sc_soft_ih = NULL;
436 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
437 }
438 
439 static int
440 wpi_detach(device_t self, int flags __unused)
441 {
442 	struct wpi_softc *sc = device_private(self);
443 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
444 	int ac;
445 
446 	wpi_stop(ifp, 1);
447 
448 	if (ifp != NULL)
449 		bpf_detach(ifp);
450 	ieee80211_ifdetach(&sc->sc_ic);
451 	if (ifp != NULL)
452 		if_detach(ifp);
453 
454 	for (ac = 0; ac < 4; ac++)
455 		wpi_free_tx_ring(sc, &sc->txq[ac]);
456 	wpi_free_tx_ring(sc, &sc->cmdq);
457 	wpi_free_rx_ring(sc, &sc->rxq);
458 	wpi_free_rpool(sc);
459 	wpi_free_shared(sc);
460 
461 	if (sc->sc_ih != NULL) {
462 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
463 		sc->sc_ih = NULL;
464 	}
465 	if (sc->sc_pihp != NULL) {
466 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
467 		sc->sc_pihp = NULL;
468 	}
469 	if (sc->sc_soft_ih != NULL) {
470 		softint_disestablish(sc->sc_soft_ih);
471 		sc->sc_soft_ih = NULL;
472 	}
473 
474 	mutex_enter(&sc->sc_rsw_mtx);
475 	sc->sc_dying = 1;
476 	cv_signal(&sc->sc_rsw_cv);
477 	while (sc->sc_rsw_lwp != NULL)
478 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
479 	mutex_exit(&sc->sc_rsw_mtx);
480 	sysmon_pswitch_unregister(&sc->sc_rsw);
481 
482 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
483 
484 	if (sc->fw_used) {
485 		sc->fw_used = false;
486 		wpi_release_firmware();
487 	}
488 	cv_destroy(&sc->sc_rsw_cv);
489 	mutex_destroy(&sc->sc_rsw_mtx);
490 	return 0;
491 }
492 
493 static int
494 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
495     bus_size_t size, bus_size_t alignment, int flags)
496 {
497 	int nsegs, error;
498 
499 	dma->tag = tag;
500 	dma->size = size;
501 
502 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
503 	if (error != 0)
504 		goto fail;
505 
506 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
507 	    flags);
508 	if (error != 0)
509 		goto fail;
510 
511 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
512 	if (error != 0)
513 		goto fail;
514 
515 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
516 	if (error != 0)
517 		goto fail;
518 
519 	memset(dma->vaddr, 0, size);
520 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
521 
522 	dma->paddr = dma->map->dm_segs[0].ds_addr;
523 	if (kvap != NULL)
524 		*kvap = dma->vaddr;
525 
526 	return 0;
527 
528 fail:	wpi_dma_contig_free(dma);
529 	return error;
530 }
531 
532 static void
533 wpi_dma_contig_free(struct wpi_dma_info *dma)
534 {
535 	if (dma->map != NULL) {
536 		if (dma->vaddr != NULL) {
537 			bus_dmamap_unload(dma->tag, dma->map);
538 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
539 			bus_dmamem_free(dma->tag, &dma->seg, 1);
540 			dma->vaddr = NULL;
541 		}
542 		bus_dmamap_destroy(dma->tag, dma->map);
543 		dma->map = NULL;
544 	}
545 }
546 
547 /*
548  * Allocate a shared page between host and NIC.
549  */
550 static int
551 wpi_alloc_shared(struct wpi_softc *sc)
552 {
553 	int error;
554 
555 	/* must be aligned on a 4K-page boundary */
556 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
557 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
558 	    BUS_DMA_NOWAIT);
559 	if (error != 0)
560 		aprint_error_dev(sc->sc_dev,
561 		    "could not allocate shared area DMA memory\n");
562 
563 	return error;
564 }
565 
566 static void
567 wpi_free_shared(struct wpi_softc *sc)
568 {
569 	wpi_dma_contig_free(&sc->shared_dma);
570 }
571 
572 /*
573  * Allocate DMA-safe memory for firmware transfer.
574  */
575 static int
576 wpi_alloc_fwmem(struct wpi_softc *sc)
577 {
578 	int error;
579 
580 	/* allocate enough contiguous space to store text and data */
581 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
582 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
583 	    BUS_DMA_NOWAIT);
584 
585 	if (error != 0)
586 		aprint_error_dev(sc->sc_dev,
587 		    "could not allocate firmware transfer area DMA memory\n");
588 	return error;
589 }
590 
591 static void
592 wpi_free_fwmem(struct wpi_softc *sc)
593 {
594 	wpi_dma_contig_free(&sc->fw_dma);
595 }
596 
597 static struct wpi_rbuf *
598 wpi_alloc_rbuf(struct wpi_softc *sc)
599 {
600 	struct wpi_rbuf *rbuf;
601 
602 	mutex_enter(&sc->rxq.freelist_mtx);
603 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
604 	if (rbuf != NULL) {
605 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
606 	}
607 	mutex_exit(&sc->rxq.freelist_mtx);
608 
609 	return rbuf;
610 }
611 
612 /*
613  * This is called automatically by the network stack when the mbuf to which our
614  * Rx buffer is attached is freed.
615  */
616 static void
617 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
618 {
619 	struct wpi_rbuf *rbuf = arg;
620 	struct wpi_softc *sc = rbuf->sc;
621 
622 	/* put the buffer back in the free list */
623 
624 	mutex_enter(&sc->rxq.freelist_mtx);
625 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
626 	mutex_exit(&sc->rxq.freelist_mtx);
627 
628 	if (__predict_true(m != NULL))
629 		pool_cache_put(mb_cache, m);
630 }
631 
632 static int
633 wpi_alloc_rpool(struct wpi_softc *sc)
634 {
635 	struct wpi_rx_ring *ring = &sc->rxq;
636 	int i, error;
637 
638 	/* allocate a big chunk of DMA'able memory.. */
639 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
640 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
641 	if (error != 0) {
642 		aprint_normal_dev(sc->sc_dev,
643 		    "could not allocate Rx buffers DMA memory\n");
644 		return error;
645 	}
646 
647 	/* ..and split it into 3KB chunks */
648 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
649 	SLIST_INIT(&ring->freelist);
650 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
651 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
652 
653 		rbuf->sc = sc;	/* backpointer for callbacks */
654 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
655 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
656 
657 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
658 	}
659 
660 	return 0;
661 }
662 
663 static void
664 wpi_free_rpool(struct wpi_softc *sc)
665 {
666 	mutex_destroy(&sc->rxq.freelist_mtx);
667 	wpi_dma_contig_free(&sc->rxq.buf_dma);
668 }
669 
670 static int
671 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
672 {
673 	bus_size_t size;
674 	int i, error;
675 
676 	ring->cur = 0;
677 
678 	size = WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc);
679 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
680 	    (void **)&ring->desc, size,
681 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
682 	if (error != 0) {
683 		aprint_error_dev(sc->sc_dev,
684 		    "could not allocate rx ring DMA memory\n");
685 		goto fail;
686 	}
687 
688 	/*
689 	 * Setup Rx buffers.
690 	 */
691 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
692 		struct wpi_rx_data *data = &ring->data[i];
693 		struct wpi_rbuf *rbuf;
694 
695 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
696 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
697 		if (error) {
698 			aprint_error_dev(sc->sc_dev,
699 			    "could not allocate rx dma map\n");
700 			goto fail;
701 		}
702 
703 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
704 		if (data->m == NULL) {
705 			aprint_error_dev(sc->sc_dev,
706 			    "could not allocate rx mbuf\n");
707 			error = ENOMEM;
708 			goto fail;
709 		}
710 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
711 			m_freem(data->m);
712 			data->m = NULL;
713 			aprint_error_dev(sc->sc_dev,
714 			    "could not allocate rx cluster\n");
715 			error = ENOMEM;
716 			goto fail;
717 		}
718 		/* attach Rx buffer to mbuf */
719 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
720 		    rbuf);
721 		data->m->m_flags |= M_EXT_RW;
722 
723 		error = bus_dmamap_load(sc->sc_dmat, data->map,
724 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
725 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
726 		if (error) {
727 			aprint_error_dev(sc->sc_dev,
728 			    "could not load mbuf: %d\n", error);
729 			goto fail;
730 		}
731 
732 		ring->desc[i] = htole32(rbuf->paddr);
733 	}
734 
735 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
736 	    BUS_DMASYNC_PREWRITE);
737 
738 	return 0;
739 
740 fail:	wpi_free_rx_ring(sc, ring);
741 	return error;
742 }
743 
744 static void
745 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
746 {
747 	int ntries;
748 
749 	wpi_mem_lock(sc);
750 
751 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
752 	for (ntries = 0; ntries < 100; ntries++) {
753 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
754 			break;
755 		DELAY(10);
756 	}
757 #ifdef WPI_DEBUG
758 	if (ntries == 100 && wpi_debug > 0)
759 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
760 #endif
761 	wpi_mem_unlock(sc);
762 
763 	ring->cur = 0;
764 }
765 
766 static void
767 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
768 {
769 	int i;
770 
771 	wpi_dma_contig_free(&ring->desc_dma);
772 
773 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
774 		if (ring->data[i].m != NULL) {
775 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
776 			m_freem(ring->data[i].m);
777 		}
778 		if (ring->data[i].map != NULL) {
779 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
780 		}
781 	}
782 }
783 
784 static int
785 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
786     int qid)
787 {
788 	int i, error;
789 
790 	ring->qid = qid;
791 	ring->count = count;
792 	ring->queued = 0;
793 	ring->cur = 0;
794 
795 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
796 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
797 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
798 	if (error != 0) {
799 		aprint_error_dev(sc->sc_dev,
800 		    "could not allocate tx ring DMA memory\n");
801 		goto fail;
802 	}
803 
804 	/* update shared page with ring's base address */
805 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
806 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
807 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
808 
809 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
810 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
811 	    BUS_DMA_NOWAIT);
812 	if (error != 0) {
813 		aprint_error_dev(sc->sc_dev,
814 		    "could not allocate tx cmd DMA memory\n");
815 		goto fail;
816 	}
817 
818 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
819 	    M_WAITOK | M_ZERO);
820 
821 	for (i = 0; i < count; i++) {
822 		struct wpi_tx_data *data = &ring->data[i];
823 
824 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
825 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
826 		    &data->map);
827 		if (error != 0) {
828 			aprint_error_dev(sc->sc_dev,
829 			    "could not create tx buf DMA map\n");
830 			goto fail;
831 		}
832 	}
833 
834 	return 0;
835 
836 fail:	wpi_free_tx_ring(sc, ring);
837 	return error;
838 }
839 
840 static void
841 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
842 {
843 	int i, ntries;
844 
845 	wpi_mem_lock(sc);
846 
847 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
848 	for (ntries = 0; ntries < 100; ntries++) {
849 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
850 			break;
851 		DELAY(10);
852 	}
853 #ifdef WPI_DEBUG
854 	if (ntries == 100 && wpi_debug > 0) {
855 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
856 		    ring->qid);
857 	}
858 #endif
859 	wpi_mem_unlock(sc);
860 
861 	for (i = 0; i < ring->count; i++) {
862 		struct wpi_tx_data *data = &ring->data[i];
863 
864 		if (data->m != NULL) {
865 			bus_dmamap_unload(sc->sc_dmat, data->map);
866 			m_freem(data->m);
867 			data->m = NULL;
868 		}
869 	}
870 
871 	ring->queued = 0;
872 	ring->cur = 0;
873 }
874 
875 static void
876 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
877 {
878 	int i;
879 
880 	wpi_dma_contig_free(&ring->desc_dma);
881 	wpi_dma_contig_free(&ring->cmd_dma);
882 
883 	if (ring->data != NULL) {
884 		for (i = 0; i < ring->count; i++) {
885 			struct wpi_tx_data *data = &ring->data[i];
886 
887 			if (data->m != NULL) {
888 				bus_dmamap_unload(sc->sc_dmat, data->map);
889 				m_freem(data->m);
890 			}
891 		}
892 		free(ring->data, M_DEVBUF);
893 	}
894 }
895 
896 /*ARGUSED*/
897 static struct ieee80211_node *
898 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
899 {
900 	struct wpi_node *wn;
901 
902 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
903 
904 	return (struct ieee80211_node *)wn;
905 }
906 
907 static void
908 wpi_newassoc(struct ieee80211_node *ni, int isnew)
909 {
910 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
911 	int i;
912 
913 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
914 
915 	/* set rate to some reasonable initial value */
916 	for (i = ni->ni_rates.rs_nrates - 1;
917 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
918 	     i--);
919 	ni->ni_txrate = i;
920 }
921 
922 static int
923 wpi_media_change(struct ifnet *ifp)
924 {
925 	int error;
926 
927 	error = ieee80211_media_change(ifp);
928 	if (error != ENETRESET)
929 		return error;
930 
931 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
932 		wpi_init(ifp);
933 
934 	return 0;
935 }
936 
937 static int
938 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
939 {
940 	struct ifnet *ifp = ic->ic_ifp;
941 	struct wpi_softc *sc = ifp->if_softc;
942 	struct ieee80211_node *ni;
943 	enum ieee80211_state ostate = ic->ic_state;
944 	int error;
945 
946 	callout_stop(&sc->calib_to);
947 
948 	switch (nstate) {
949 	case IEEE80211_S_SCAN:
950 
951 		if (sc->is_scanning)
952 			break;
953 
954 		sc->is_scanning = true;
955 
956 		if (ostate != IEEE80211_S_SCAN) {
957 			/* make the link LED blink while we're scanning */
958 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
959 		}
960 
961 		if ((error = wpi_scan(sc)) != 0) {
962 			aprint_error_dev(sc->sc_dev,
963 			    "could not initiate scan\n");
964 			return error;
965 		}
966 		break;
967 
968 	case IEEE80211_S_ASSOC:
969 		if (ic->ic_state != IEEE80211_S_RUN)
970 			break;
971 		/* FALLTHROUGH */
972 	case IEEE80211_S_AUTH:
973 		/* reset state to handle reassociations correctly */
974 		sc->config.associd = 0;
975 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
976 
977 		if ((error = wpi_auth(sc)) != 0) {
978 			aprint_error_dev(sc->sc_dev,
979 			    "could not send authentication request\n");
980 			return error;
981 		}
982 		break;
983 
984 	case IEEE80211_S_RUN:
985 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
986 			/* link LED blinks while monitoring */
987 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
988 			break;
989 		}
990 		ni = ic->ic_bss;
991 
992 		if (ic->ic_opmode != IEEE80211_M_STA) {
993 			(void) wpi_auth(sc);    /* XXX */
994 			wpi_setup_beacon(sc, ni);
995 		}
996 
997 		wpi_enable_tsf(sc, ni);
998 
999 		/* update adapter's configuration */
1000 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1001 		/* short preamble/slot time are negotiated when associating */
1002 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1003 		    WPI_CONFIG_SHSLOT);
1004 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1005 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1006 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1007 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1008 		sc->config.filter |= htole32(WPI_FILTER_BSS);
1009 		if (ic->ic_opmode != IEEE80211_M_STA)
1010 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
1011 
1012 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1013 
1014 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1015 		    sc->config.flags));
1016 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1017 		    sizeof (struct wpi_config), 1);
1018 		if (error != 0) {
1019 			aprint_error_dev(sc->sc_dev,
1020 			    "could not update configuration\n");
1021 			return error;
1022 		}
1023 
1024 		/* configuration has changed, set Tx power accordingly */
1025 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1026 			aprint_error_dev(sc->sc_dev,
1027 			    "could not set Tx power\n");
1028 			return error;
1029 		}
1030 
1031 		if (ic->ic_opmode == IEEE80211_M_STA) {
1032 			/* fake a join to init the tx rate */
1033 			wpi_newassoc(ni, 1);
1034 		}
1035 
1036 		/* start periodic calibration timer */
1037 		sc->calib_cnt = 0;
1038 		callout_schedule(&sc->calib_to, hz/2);
1039 
1040 		/* link LED always on while associated */
1041 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1042 		break;
1043 
1044 	case IEEE80211_S_INIT:
1045 		sc->is_scanning = false;
1046 		break;
1047 	}
1048 
1049 	return sc->sc_newstate(ic, nstate, arg);
1050 }
1051 
1052 /*
1053  * Grab exclusive access to NIC memory.
1054  */
1055 static void
1056 wpi_mem_lock(struct wpi_softc *sc)
1057 {
1058 	uint32_t tmp;
1059 	int ntries;
1060 
1061 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1062 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1063 
1064 	/* spin until we actually get the lock */
1065 	for (ntries = 0; ntries < 1000; ntries++) {
1066 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1067 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1068 			break;
1069 		DELAY(10);
1070 	}
1071 	if (ntries == 1000)
1072 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1073 }
1074 
1075 /*
1076  * Release lock on NIC memory.
1077  */
1078 static void
1079 wpi_mem_unlock(struct wpi_softc *sc)
1080 {
1081 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1082 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1083 }
1084 
1085 static uint32_t
1086 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1087 {
1088 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1089 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1090 }
1091 
1092 static void
1093 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1094 {
1095 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1096 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1097 }
1098 
1099 static void
1100 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1101     const uint32_t *data, int wlen)
1102 {
1103 	for (; wlen > 0; wlen--, data++, addr += 4)
1104 		wpi_mem_write(sc, addr, *data);
1105 }
1106 
1107 /*
1108  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1109  * instead of using the traditional bit-bang method.
1110  */
1111 static int
1112 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1113 {
1114 	uint8_t *out = data;
1115 	uint32_t val;
1116 	int ntries;
1117 
1118 	wpi_mem_lock(sc);
1119 	for (; len > 0; len -= 2, addr++) {
1120 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1121 
1122 		for (ntries = 0; ntries < 10; ntries++) {
1123 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1124 			    WPI_EEPROM_READY)
1125 				break;
1126 			DELAY(5);
1127 		}
1128 		if (ntries == 10) {
1129 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1130 			return ETIMEDOUT;
1131 		}
1132 		*out++ = val >> 16;
1133 		if (len > 1)
1134 			*out++ = val >> 24;
1135 	}
1136 	wpi_mem_unlock(sc);
1137 
1138 	return 0;
1139 }
1140 
1141 /*
1142  * The firmware boot code is small and is intended to be copied directly into
1143  * the NIC internal memory.
1144  */
1145 int
1146 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1147 {
1148 	int ntries;
1149 
1150 	size /= sizeof (uint32_t);
1151 
1152 	wpi_mem_lock(sc);
1153 
1154 	/* copy microcode image into NIC memory */
1155 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1156 	    (const uint32_t *)ucode, size);
1157 
1158 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1159 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1160 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1161 
1162 	/* run microcode */
1163 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1164 
1165 	/* wait for transfer to complete */
1166 	for (ntries = 0; ntries < 1000; ntries++) {
1167 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1168 			break;
1169 		DELAY(10);
1170 	}
1171 	if (ntries == 1000) {
1172 		wpi_mem_unlock(sc);
1173 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1174 		return ETIMEDOUT;
1175 	}
1176 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1177 
1178 	wpi_mem_unlock(sc);
1179 
1180 	return 0;
1181 }
1182 
1183 static int
1184 wpi_cache_firmware(struct wpi_softc *sc)
1185 {
1186 	const char *const fwname = wpi_firmware_name;
1187 	firmware_handle_t fw;
1188 	int error;
1189 
1190 	/* sc is used here only to report error messages.  */
1191 
1192 	mutex_enter(&wpi_firmware_mutex);
1193 
1194 	if (wpi_firmware_users == SIZE_MAX) {
1195 		mutex_exit(&wpi_firmware_mutex);
1196 		return ENFILE;	/* Too many of something in the system...  */
1197 	}
1198 	if (wpi_firmware_users++) {
1199 		KASSERT(wpi_firmware_image != NULL);
1200 		KASSERT(wpi_firmware_size > 0);
1201 		mutex_exit(&wpi_firmware_mutex);
1202 		return 0;	/* Already good to go.  */
1203 	}
1204 
1205 	KASSERT(wpi_firmware_image == NULL);
1206 	KASSERT(wpi_firmware_size == 0);
1207 
1208 	/* load firmware image from disk */
1209 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1210 		aprint_error_dev(sc->sc_dev,
1211 		    "could not open firmware file %s: %d\n", fwname, error);
1212 		goto fail0;
1213 	}
1214 
1215 	wpi_firmware_size = firmware_get_size(fw);
1216 
1217 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1218 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1219 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1220 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1221 		aprint_error_dev(sc->sc_dev,
1222 		    "firmware file %s too large: %zu bytes\n",
1223 		    fwname, wpi_firmware_size);
1224 		error = EFBIG;
1225 		goto fail1;
1226 	}
1227 
1228 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1229 		aprint_error_dev(sc->sc_dev,
1230 		    "firmware file %s too small: %zu bytes\n",
1231 		    fwname, wpi_firmware_size);
1232 		error = EINVAL;
1233 		goto fail1;
1234 	}
1235 
1236 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1237 	if (wpi_firmware_image == NULL) {
1238 		aprint_error_dev(sc->sc_dev,
1239 		    "not enough memory for firmware file %s\n", fwname);
1240 		error = ENOMEM;
1241 		goto fail1;
1242 	}
1243 
1244 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1245 	if (error != 0) {
1246 		aprint_error_dev(sc->sc_dev,
1247 		    "error reading firmware file %s: %d\n", fwname, error);
1248 		goto fail2;
1249 	}
1250 
1251 	/* Success!  */
1252 	firmware_close(fw);
1253 	mutex_exit(&wpi_firmware_mutex);
1254 	return 0;
1255 
1256 fail2:
1257 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1258 	wpi_firmware_image = NULL;
1259 fail1:
1260 	wpi_firmware_size = 0;
1261 	firmware_close(fw);
1262 fail0:
1263 	KASSERT(wpi_firmware_users == 1);
1264 	wpi_firmware_users = 0;
1265 	KASSERT(wpi_firmware_image == NULL);
1266 	KASSERT(wpi_firmware_size == 0);
1267 
1268 	mutex_exit(&wpi_firmware_mutex);
1269 	return error;
1270 }
1271 
1272 static void
1273 wpi_release_firmware(void)
1274 {
1275 
1276 	mutex_enter(&wpi_firmware_mutex);
1277 
1278 	KASSERT(wpi_firmware_users > 0);
1279 	KASSERT(wpi_firmware_image != NULL);
1280 	KASSERT(wpi_firmware_size != 0);
1281 
1282 	if (--wpi_firmware_users == 0) {
1283 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1284 		wpi_firmware_image = NULL;
1285 		wpi_firmware_size = 0;
1286 	}
1287 
1288 	mutex_exit(&wpi_firmware_mutex);
1289 }
1290 
1291 static int
1292 wpi_load_firmware(struct wpi_softc *sc)
1293 {
1294 	struct wpi_dma_info *dma = &sc->fw_dma;
1295 	struct wpi_firmware_hdr hdr;
1296 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1297 	const uint8_t *boot_text;
1298 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1299 	uint32_t boot_textsz;
1300 	size_t size;
1301 	int error;
1302 
1303 	if (!sc->fw_used) {
1304 		if ((error = wpi_cache_firmware(sc)) != 0)
1305 			return error;
1306 		sc->fw_used = true;
1307 	}
1308 
1309 	KASSERT(sc->fw_used);
1310 	KASSERT(wpi_firmware_image != NULL);
1311 	KASSERT(wpi_firmware_size > sizeof(hdr));
1312 
1313 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1314 
1315 	main_textsz = le32toh(hdr.main_textsz);
1316 	main_datasz = le32toh(hdr.main_datasz);
1317 	init_textsz = le32toh(hdr.init_textsz);
1318 	init_datasz = le32toh(hdr.init_datasz);
1319 	boot_textsz = le32toh(hdr.boot_textsz);
1320 
1321 	/* sanity-check firmware segments sizes */
1322 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1323 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1324 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1325 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1326 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1327 	    (boot_textsz & 3) != 0) {
1328 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1329 		error = EINVAL;
1330 		goto free_firmware;
1331 	}
1332 
1333 	/* check that all firmware segments are present */
1334 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1335 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1336 	if (wpi_firmware_size < size) {
1337 		aprint_error_dev(sc->sc_dev,
1338 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1339 		    wpi_firmware_size, size);
1340 		error = EINVAL;
1341 		goto free_firmware;
1342 	}
1343 
1344 	/* get pointers to firmware segments */
1345 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1346 	main_data = main_text + main_textsz;
1347 	init_text = main_data + main_datasz;
1348 	init_data = init_text + init_textsz;
1349 	boot_text = init_data + init_datasz;
1350 
1351 	/* copy initialization images into pre-allocated DMA-safe memory */
1352 	memcpy(dma->vaddr, init_data, init_datasz);
1353 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1354 	    init_textsz);
1355 
1356 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1357 
1358 	/* tell adapter where to find initialization images */
1359 	wpi_mem_lock(sc);
1360 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1361 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1362 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1363 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1364 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1365 	wpi_mem_unlock(sc);
1366 
1367 	/* load firmware boot code */
1368 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1369 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1370 		return error;
1371 	}
1372 
1373 	/* now press "execute" ;-) */
1374 	WPI_WRITE(sc, WPI_RESET, 0);
1375 
1376 	/* wait at most one second for first alive notification */
1377 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1378 		/* this isn't what was supposed to happen.. */
1379 		aprint_error_dev(sc->sc_dev,
1380 		    "timeout waiting for adapter to initialize\n");
1381 	}
1382 
1383 	/* copy runtime images into pre-allocated DMA-safe memory */
1384 	memcpy(dma->vaddr, main_data, main_datasz);
1385 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1386 	    main_textsz);
1387 
1388 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1389 
1390 	/* tell adapter where to find runtime images */
1391 	wpi_mem_lock(sc);
1392 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1393 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1394 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1395 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1396 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1397 	wpi_mem_unlock(sc);
1398 
1399 	/* wait at most one second for second alive notification */
1400 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1401 		/* this isn't what was supposed to happen.. */
1402 		aprint_error_dev(sc->sc_dev,
1403 		    "timeout waiting for adapter to initialize\n");
1404 	}
1405 
1406 	return error;
1407 
1408 free_firmware:
1409 	sc->fw_used = false;
1410 	wpi_release_firmware();
1411 	return error;
1412 }
1413 
1414 static void
1415 wpi_calib_timeout(void *arg)
1416 {
1417 	struct wpi_softc *sc = arg;
1418 	struct ieee80211com *ic = &sc->sc_ic;
1419 	int temp, s;
1420 
1421 	/* automatic rate control triggered every 500ms */
1422 	if (ic->ic_fixed_rate == -1) {
1423 		s = splnet();
1424 		if (ic->ic_opmode == IEEE80211_M_STA)
1425 			wpi_iter_func(sc, ic->ic_bss);
1426 		else
1427 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1428 		splx(s);
1429 	}
1430 
1431 	/* update sensor data */
1432 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1433 
1434 	/* automatic power calibration every 60s */
1435 	if (++sc->calib_cnt >= 120) {
1436 		wpi_power_calibration(sc, temp);
1437 		sc->calib_cnt = 0;
1438 	}
1439 
1440 	callout_schedule(&sc->calib_to, hz/2);
1441 }
1442 
1443 static void
1444 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1445 {
1446 	struct wpi_softc *sc = arg;
1447 	struct wpi_node *wn = (struct wpi_node *)ni;
1448 
1449 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1450 }
1451 
1452 /*
1453  * This function is called periodically (every 60 seconds) to adjust output
1454  * power to temperature changes.
1455  */
1456 void
1457 wpi_power_calibration(struct wpi_softc *sc, int temp)
1458 {
1459 	/* sanity-check read value */
1460 	if (temp < -260 || temp > 25) {
1461 		/* this can't be correct, ignore */
1462 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1463 		return;
1464 	}
1465 
1466 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1467 
1468 	/* adjust Tx power if need be */
1469 	if (abs(temp - sc->temp) <= 6)
1470 		return;
1471 
1472 	sc->temp = temp;
1473 
1474 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1475 		/* just warn, too bad for the automatic calibration... */
1476 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1477 	}
1478 }
1479 
1480 static void
1481 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1482     struct wpi_rx_data *data)
1483 {
1484 	struct ieee80211com *ic = &sc->sc_ic;
1485 	struct ifnet *ifp = ic->ic_ifp;
1486 	struct wpi_rx_ring *ring = &sc->rxq;
1487 	struct wpi_rx_stat *stat;
1488 	struct wpi_rx_head *head;
1489 	struct wpi_rx_tail *tail;
1490 	struct wpi_rbuf *rbuf;
1491 	struct ieee80211_frame *wh;
1492 	struct ieee80211_node *ni;
1493 	struct mbuf *m, *mnew;
1494 	int data_off, error, s;
1495 
1496 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1497 	    BUS_DMASYNC_POSTREAD);
1498 	stat = (struct wpi_rx_stat *)(desc + 1);
1499 
1500 	if (stat->len > WPI_STAT_MAXLEN) {
1501 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1502 		if_statinc(ifp, if_ierrors);
1503 		return;
1504 	}
1505 
1506 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1507 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1508 
1509 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1510 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1511 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1512 	    le64toh(tail->tstamp)));
1513 
1514 	/*
1515 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1516 	 * to radiotap in monitor mode).
1517 	 */
1518 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1519 		DPRINTF(("rx tail flags error %x\n",
1520 		    le32toh(tail->flags)));
1521 		if_statinc(ifp, if_ierrors);
1522 		return;
1523 	}
1524 
1525 	/* Compute where are the useful datas */
1526 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1527 
1528 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1529 	if (mnew == NULL) {
1530 		if_statinc(ifp, if_ierrors);
1531 		return;
1532 	}
1533 
1534 	rbuf = wpi_alloc_rbuf(sc);
1535 	if (rbuf == NULL) {
1536 		m_freem(mnew);
1537 		if_statinc(ifp, if_ierrors);
1538 		return;
1539 	}
1540 
1541 	/* attach Rx buffer to mbuf */
1542 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1543 		rbuf);
1544 	mnew->m_flags |= M_EXT_RW;
1545 
1546 	bus_dmamap_unload(sc->sc_dmat, data->map);
1547 
1548 	error = bus_dmamap_load(sc->sc_dmat, data->map,
1549 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1550 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1551 	if (error) {
1552 		device_printf(sc->sc_dev,
1553 		    "couldn't load rx mbuf: %d\n", error);
1554 		m_freem(mnew);
1555 		if_statinc(ifp, if_ierrors);
1556 
1557 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1558 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1559 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1560 		if (error)
1561 			panic("%s: bus_dmamap_load failed: %d\n",
1562 			    device_xname(sc->sc_dev), error);
1563 		return;
1564 	}
1565 
1566 	/* new mbuf loaded successfully */
1567 	m = data->m;
1568 	data->m = mnew;
1569 
1570 	/* update Rx descriptor */
1571 	ring->desc[ring->cur] = htole32(rbuf->paddr);
1572 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1573 	    ring->desc_dma.size,
1574 	    BUS_DMASYNC_PREWRITE);
1575 
1576 	m->m_data = (char*)m->m_data + data_off;
1577 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1578 
1579 	/* finalize mbuf */
1580 	m_set_rcvif(m, ifp);
1581 
1582 	s = splnet();
1583 
1584 	if (sc->sc_drvbpf != NULL) {
1585 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1586 
1587 		tap->wr_flags = 0;
1588 		tap->wr_chan_freq =
1589 		    htole16(ic->ic_channels[head->chan].ic_freq);
1590 		tap->wr_chan_flags =
1591 		    htole16(ic->ic_channels[head->chan].ic_flags);
1592 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1593 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1594 		tap->wr_tsft = tail->tstamp;
1595 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1596 		switch (head->rate) {
1597 		/* CCK rates */
1598 		case  10: tap->wr_rate =   2; break;
1599 		case  20: tap->wr_rate =   4; break;
1600 		case  55: tap->wr_rate =  11; break;
1601 		case 110: tap->wr_rate =  22; break;
1602 		/* OFDM rates */
1603 		case 0xd: tap->wr_rate =  12; break;
1604 		case 0xf: tap->wr_rate =  18; break;
1605 		case 0x5: tap->wr_rate =  24; break;
1606 		case 0x7: tap->wr_rate =  36; break;
1607 		case 0x9: tap->wr_rate =  48; break;
1608 		case 0xb: tap->wr_rate =  72; break;
1609 		case 0x1: tap->wr_rate =  96; break;
1610 		case 0x3: tap->wr_rate = 108; break;
1611 		/* unknown rate: should not happen */
1612 		default:  tap->wr_rate =   0;
1613 		}
1614 		if (le16toh(head->flags) & 0x4)
1615 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1616 
1617 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1618 	}
1619 
1620 	/* grab a reference to the source node */
1621 	wh = mtod(m, struct ieee80211_frame *);
1622 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1623 
1624 	/* send the frame to the 802.11 layer */
1625 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1626 
1627 	/* release node reference */
1628 	ieee80211_free_node(ni);
1629 
1630 	splx(s);
1631 }
1632 
1633 static void
1634 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1635 {
1636 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1637 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1638 	struct wpi_tx_data *data = &ring->data[desc->idx];
1639 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1640 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1641 	int s;
1642 
1643 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1644 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1645 	    stat->nkill, stat->rate, le32toh(stat->duration),
1646 	    le32toh(stat->status)));
1647 
1648 	s = splnet();
1649 
1650 	/*
1651 	 * Update rate control statistics for the node.
1652 	 * XXX we should not count mgmt frames since they're always sent at
1653 	 * the lowest available bit-rate.
1654 	 */
1655 	wn->amn.amn_txcnt++;
1656 	if (stat->ntries > 0) {
1657 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1658 		wn->amn.amn_retrycnt++;
1659 	}
1660 
1661 	if ((le32toh(stat->status) & 0xff) != 1)
1662 		if_statinc(ifp, if_oerrors);
1663 	else
1664 		if_statinc(ifp, if_opackets);
1665 
1666 	bus_dmamap_unload(sc->sc_dmat, data->map);
1667 	m_freem(data->m);
1668 	data->m = NULL;
1669 	ieee80211_free_node(data->ni);
1670 	data->ni = NULL;
1671 
1672 	ring->queued--;
1673 
1674 	sc->sc_tx_timer = 0;
1675 	ifp->if_flags &= ~IFF_OACTIVE;
1676 	wpi_start(ifp); /* in softint */
1677 
1678 	splx(s);
1679 }
1680 
1681 static void
1682 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1683 {
1684 	struct wpi_tx_ring *ring = &sc->cmdq;
1685 	struct wpi_tx_data *data;
1686 
1687 	if ((desc->qid & 7) != 4)
1688 		return;	/* not a command ack */
1689 
1690 	data = &ring->data[desc->idx];
1691 
1692 	/* if the command was mapped in a mbuf, free it */
1693 	if (data->m != NULL) {
1694 		bus_dmamap_unload(sc->sc_dmat, data->map);
1695 		m_freem(data->m);
1696 		data->m = NULL;
1697 	}
1698 
1699 	wakeup(&ring->cmd[desc->idx]);
1700 }
1701 
1702 static void
1703 wpi_notif_intr(struct wpi_softc *sc)
1704 {
1705 	struct ieee80211com *ic = &sc->sc_ic;
1706 	struct ifnet *ifp =  ic->ic_ifp;
1707 	uint32_t hw;
1708 	int s;
1709 
1710 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1711 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1712 
1713 	hw = le32toh(sc->shared->next);
1714 	while (sc->rxq.cur != hw) {
1715 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1716 		struct wpi_rx_desc *desc;
1717 
1718 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1719 		    BUS_DMASYNC_POSTREAD);
1720 		desc = mtod(data->m, struct wpi_rx_desc *);
1721 
1722 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1723 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1724 		    desc->type, le32toh(desc->len)));
1725 
1726 		if (!(desc->qid & 0x80))	/* reply to a command */
1727 			wpi_cmd_intr(sc, desc);
1728 
1729 		switch (desc->type) {
1730 		case WPI_RX_DONE:
1731 			/* a 802.11 frame was received */
1732 			wpi_rx_intr(sc, desc, data);
1733 			break;
1734 
1735 		case WPI_TX_DONE:
1736 			/* a 802.11 frame has been transmitted */
1737 			wpi_tx_intr(sc, desc);
1738 			break;
1739 
1740 		case WPI_UC_READY:
1741 		{
1742 			struct wpi_ucode_info *uc =
1743 			    (struct wpi_ucode_info *)(desc + 1);
1744 
1745 			/* the microcontroller is ready */
1746 			DPRINTF(("microcode alive notification version %x "
1747 			    "alive %x\n", le32toh(uc->version),
1748 			    le32toh(uc->valid)));
1749 
1750 			if (le32toh(uc->valid) != 1) {
1751 				aprint_error_dev(sc->sc_dev,
1752 				    "microcontroller initialization failed\n");
1753 			}
1754 			break;
1755 		}
1756 		case WPI_STATE_CHANGED:
1757 		{
1758 			uint32_t *status = (uint32_t *)(desc + 1);
1759 
1760 			/* enabled/disabled notification */
1761 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1762 
1763 			if (le32toh(*status) & 1) {
1764 				s = splnet();
1765 				/* the radio button has to be pushed */
1766 				/* wake up thread to signal powerd */
1767 				cv_signal(&sc->sc_rsw_cv);
1768 				aprint_error_dev(sc->sc_dev,
1769 				    "Radio transmitter is off\n");
1770 				/* turn the interface down */
1771 				ifp->if_flags &= ~IFF_UP;
1772 				wpi_stop(ifp, 1);
1773 				splx(s);
1774 				return;	/* no further processing */
1775 			}
1776 			break;
1777 		}
1778 		case WPI_START_SCAN:
1779 		{
1780 #if 0
1781 			struct wpi_start_scan *scan =
1782 			    (struct wpi_start_scan *)(desc + 1);
1783 
1784 			DPRINTFN(2, ("scanning channel %d status %x\n",
1785 			    scan->chan, le32toh(scan->status)));
1786 
1787 			/* fix current channel */
1788 			ic->ic_curchan = &ic->ic_channels[scan->chan];
1789 #endif
1790 			break;
1791 		}
1792 		case WPI_STOP_SCAN:
1793 		{
1794 #ifdef WPI_DEBUG
1795 			struct wpi_stop_scan *scan =
1796 			    (struct wpi_stop_scan *)(desc + 1);
1797 #endif
1798 
1799 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1800 			    scan->nchan, scan->status, scan->chan));
1801 
1802 			s = splnet();
1803 			sc->is_scanning = false;
1804 			if (ic->ic_state == IEEE80211_S_SCAN)
1805 				ieee80211_next_scan(ic);
1806 			splx(s);
1807 			break;
1808 		}
1809 		}
1810 
1811 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1812 	}
1813 
1814 	/* tell the firmware what we have processed */
1815 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1816 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1817 }
1818 
1819 static int
1820 wpi_intr(void *arg)
1821 {
1822 	struct wpi_softc *sc = arg;
1823 	uint32_t r;
1824 
1825 	r = WPI_READ(sc, WPI_INTR);
1826 	if (r == 0 || r == 0xffffffff)
1827 		return 0;	/* not for us */
1828 
1829 	DPRINTFN(6, ("interrupt reg %x\n", r));
1830 
1831 	/* disable interrupts */
1832 	WPI_WRITE(sc, WPI_MASK, 0);
1833 
1834 	softint_schedule(sc->sc_soft_ih);
1835 	return 1;
1836 }
1837 
1838 static void
1839 wpi_softintr(void *arg)
1840 {
1841 	struct wpi_softc *sc = arg;
1842 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1843 	uint32_t r;
1844 
1845 	r = WPI_READ(sc, WPI_INTR);
1846 	if (r == 0 || r == 0xffffffff)
1847 		goto out;
1848 
1849 	/* ack interrupts */
1850 	WPI_WRITE(sc, WPI_INTR, r);
1851 
1852 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1853 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1854 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1855 		ifp->if_flags &= ~IFF_UP;
1856 		wpi_stop(ifp, 1);
1857 		return;
1858 	}
1859 
1860 	if (r & WPI_RX_INTR)
1861 		wpi_notif_intr(sc);
1862 
1863 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1864 		wakeup(sc);
1865 
1866  out:
1867 	/* re-enable interrupts */
1868 	if (ifp->if_flags & IFF_UP)
1869 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1870 }
1871 
1872 static uint8_t
1873 wpi_plcp_signal(int rate)
1874 {
1875 	switch (rate) {
1876 	/* CCK rates (returned values are device-dependent) */
1877 	case 2:		return 10;
1878 	case 4:		return 20;
1879 	case 11:	return 55;
1880 	case 22:	return 110;
1881 
1882 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1883 	/* R1-R4, (u)ral is R4-R1 */
1884 	case 12:	return 0xd;
1885 	case 18:	return 0xf;
1886 	case 24:	return 0x5;
1887 	case 36:	return 0x7;
1888 	case 48:	return 0x9;
1889 	case 72:	return 0xb;
1890 	case 96:	return 0x1;
1891 	case 108:	return 0x3;
1892 
1893 	/* unsupported rates (should not get there) */
1894 	default:	return 0;
1895 	}
1896 }
1897 
1898 /* quickly determine if a given rate is CCK or OFDM */
1899 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1900 
1901 static int
1902 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1903     int ac)
1904 {
1905 	struct ieee80211com *ic = &sc->sc_ic;
1906 	struct wpi_tx_ring *ring = &sc->txq[ac];
1907 	struct wpi_tx_desc *desc;
1908 	struct wpi_tx_data *data;
1909 	struct wpi_tx_cmd *cmd;
1910 	struct wpi_cmd_data *tx;
1911 	struct ieee80211_frame *wh;
1912 	struct ieee80211_key *k;
1913 	const struct chanAccParams *cap;
1914 	struct mbuf *mnew;
1915 	int i, rate, error, hdrlen, noack = 0;
1916 
1917 	desc = &ring->desc[ring->cur];
1918 	data = &ring->data[ring->cur];
1919 
1920 	wh = mtod(m0, struct ieee80211_frame *);
1921 
1922 	if (ieee80211_has_qos(wh)) {
1923 		cap = &ic->ic_wme.wme_chanParams;
1924 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1925 	}
1926 
1927 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1928 		k = ieee80211_crypto_encap(ic, ni, m0);
1929 		if (k == NULL) {
1930 			m_freem(m0);
1931 			return ENOBUFS;
1932 		}
1933 
1934 		/* packet header may have moved, reset our local pointer */
1935 		wh = mtod(m0, struct ieee80211_frame *);
1936 	}
1937 
1938 	hdrlen = ieee80211_anyhdrsize(wh);
1939 
1940 	/* pickup a rate */
1941 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1942 	    IEEE80211_FC0_TYPE_MGT) {
1943 		/* mgmt frames are sent at the lowest available bit-rate */
1944 		rate = ni->ni_rates.rs_rates[0];
1945 	} else {
1946 		if (ic->ic_fixed_rate != -1) {
1947 			rate = ic->ic_sup_rates[ic->ic_curmode].
1948 			    rs_rates[ic->ic_fixed_rate];
1949 		} else
1950 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1951 	}
1952 	rate &= IEEE80211_RATE_VAL;
1953 
1954 	if (sc->sc_drvbpf != NULL) {
1955 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1956 
1957 		tap->wt_flags = 0;
1958 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1959 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1960 		tap->wt_rate = rate;
1961 		tap->wt_hwqueue = ac;
1962 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1963 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1964 
1965 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1966 	}
1967 
1968 	cmd = &ring->cmd[ring->cur];
1969 	cmd->code = WPI_CMD_TX_DATA;
1970 	cmd->flags = 0;
1971 	cmd->qid = ring->qid;
1972 	cmd->idx = ring->cur;
1973 
1974 	tx = (struct wpi_cmd_data *)cmd->data;
1975 	/* no need to zero tx, all fields are reinitialized here */
1976 	tx->flags = 0;
1977 
1978 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1979 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1980 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1981 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1982 
1983 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1984 
1985 	/* retrieve destination node's id */
1986 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1987 		WPI_ID_BSS;
1988 
1989 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1990 	    IEEE80211_FC0_TYPE_MGT) {
1991 		/* tell h/w to set timestamp in probe responses */
1992 		if ((wh->i_fc[0] &
1993 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1994 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1995 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1996 
1997 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1998 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1999 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2000 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2001 			tx->timeout = htole16(3);
2002 		else
2003 			tx->timeout = htole16(2);
2004 	} else
2005 		tx->timeout = htole16(0);
2006 
2007 	tx->rate = wpi_plcp_signal(rate);
2008 
2009 	/* be very persistant at sending frames out */
2010 	tx->rts_ntries = 7;
2011 	tx->data_ntries = 15;
2012 
2013 	tx->ofdm_mask = 0xff;
2014 	tx->cck_mask = 0x0f;
2015 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2016 
2017 	tx->len = htole16(m0->m_pkthdr.len);
2018 
2019 	/* save and trim IEEE802.11 header */
2020 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2021 	m_adj(m0, hdrlen);
2022 
2023 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2024 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2025 	if (error != 0 && error != EFBIG) {
2026 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2027 		    error);
2028 		m_freem(m0);
2029 		return error;
2030 	}
2031 	if (error != 0) {
2032 		/* too many fragments, linearize */
2033 
2034 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2035 		if (mnew == NULL) {
2036 			m_freem(m0);
2037 			return ENOMEM;
2038 		}
2039 		m_copy_pkthdr(mnew, m0);
2040 		if (m0->m_pkthdr.len > MHLEN) {
2041 			MCLGET(mnew, M_DONTWAIT);
2042 			if (!(mnew->m_flags & M_EXT)) {
2043 				m_freem(m0);
2044 				m_freem(mnew);
2045 				return ENOMEM;
2046 			}
2047 		}
2048 
2049 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2050 		m_freem(m0);
2051 		mnew->m_len = mnew->m_pkthdr.len;
2052 		m0 = mnew;
2053 
2054 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2055 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2056 		if (error != 0) {
2057 			aprint_error_dev(sc->sc_dev,
2058 			    "could not map mbuf (error %d)\n", error);
2059 			m_freem(m0);
2060 			return error;
2061 		}
2062 	}
2063 
2064 	data->m = m0;
2065 	data->ni = ni;
2066 
2067 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2068 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2069 
2070 	/* first scatter/gather segment is used by the tx data command */
2071 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2072 	    (1 + data->map->dm_nsegs) << 24);
2073 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2074 	    ring->cur * sizeof (struct wpi_tx_cmd));
2075 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
2076 	    ((hdrlen + 3) & ~3));
2077 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2078 		desc->segs[i].addr =
2079 		    htole32(data->map->dm_segs[i - 1].ds_addr);
2080 		desc->segs[i].len  =
2081 		    htole32(data->map->dm_segs[i - 1].ds_len);
2082 	}
2083 
2084 	ring->queued++;
2085 
2086 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2087 	    data->map->dm_mapsize,
2088 	    BUS_DMASYNC_PREWRITE);
2089 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2090 	    ring->cmd_dma.size,
2091 	    BUS_DMASYNC_PREWRITE);
2092 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2093 	    ring->desc_dma.size,
2094 	    BUS_DMASYNC_PREWRITE);
2095 
2096 	/* kick ring */
2097 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2098 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2099 
2100 	return 0;
2101 }
2102 
2103 static void
2104 wpi_start(struct ifnet *ifp)
2105 {
2106 	struct wpi_softc *sc = ifp->if_softc;
2107 	struct ieee80211com *ic = &sc->sc_ic;
2108 	struct ieee80211_node *ni;
2109 	struct ether_header *eh;
2110 	struct mbuf *m0;
2111 	int ac;
2112 
2113 	/*
2114 	 * net80211 may still try to send management frames even if the
2115 	 * IFF_RUNNING flag is not set...
2116 	 */
2117 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2118 		return;
2119 
2120 	for (;;) {
2121 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2122 		if (m0 != NULL) {
2123 
2124 			ni = M_GETCTX(m0, struct ieee80211_node *);
2125 			M_CLEARCTX(m0);
2126 
2127 			/* management frames go into ring 0 */
2128 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2129 				if_statinc(ifp, if_oerrors);
2130 				continue;
2131 			}
2132 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2133 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2134 				if_statinc(ifp, if_oerrors);
2135 				break;
2136 			}
2137 		} else {
2138 			if (ic->ic_state != IEEE80211_S_RUN)
2139 				break;
2140 			IFQ_POLL(&ifp->if_snd, m0);
2141 			if (m0 == NULL)
2142 				break;
2143 
2144 			if (m0->m_len < sizeof (*eh) &&
2145 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2146 				if_statinc(ifp, if_oerrors);
2147 				continue;
2148 			}
2149 			eh = mtod(m0, struct ether_header *);
2150 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2151 			if (ni == NULL) {
2152 				m_freem(m0);
2153 				if_statinc(ifp, if_oerrors);
2154 				continue;
2155 			}
2156 
2157 			/* classify mbuf so we can find which tx ring to use */
2158 			if (ieee80211_classify(ic, m0, ni) != 0) {
2159 				m_freem(m0);
2160 				ieee80211_free_node(ni);
2161 				if_statinc(ifp, if_oerrors);
2162 				continue;
2163 			}
2164 
2165 			/* no QoS encapsulation for EAPOL frames */
2166 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2167 			    M_WME_GETAC(m0) : WME_AC_BE;
2168 
2169 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2170 				/* there is no place left in this ring */
2171 				ifp->if_flags |= IFF_OACTIVE;
2172 				break;
2173 			}
2174 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2175 			bpf_mtap(ifp, m0, BPF_D_OUT);
2176 			m0 = ieee80211_encap(ic, m0, ni);
2177 			if (m0 == NULL) {
2178 				ieee80211_free_node(ni);
2179 				if_statinc(ifp, if_oerrors);
2180 				continue;
2181 			}
2182 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2183 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2184 				ieee80211_free_node(ni);
2185 				if_statinc(ifp, if_oerrors);
2186 				break;
2187 			}
2188 		}
2189 
2190 		sc->sc_tx_timer = 5;
2191 		ifp->if_timer = 1;
2192 	}
2193 }
2194 
2195 static void
2196 wpi_watchdog(struct ifnet *ifp)
2197 {
2198 	struct wpi_softc *sc = ifp->if_softc;
2199 
2200 	ifp->if_timer = 0;
2201 
2202 	if (sc->sc_tx_timer > 0) {
2203 		if (--sc->sc_tx_timer == 0) {
2204 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2205 			ifp->if_flags &= ~IFF_UP;
2206 			wpi_stop(ifp, 1);
2207 			if_statinc(ifp, if_oerrors);
2208 			return;
2209 		}
2210 		ifp->if_timer = 1;
2211 	}
2212 
2213 	ieee80211_watchdog(&sc->sc_ic);
2214 }
2215 
2216 static int
2217 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2218 {
2219 #define IS_RUNNING(ifp) \
2220 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2221 
2222 	struct wpi_softc *sc = ifp->if_softc;
2223 	struct ieee80211com *ic = &sc->sc_ic;
2224 	int s, error = 0;
2225 
2226 	s = splnet();
2227 
2228 	switch (cmd) {
2229 	case SIOCSIFFLAGS:
2230 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2231 			break;
2232 		if (ifp->if_flags & IFF_UP) {
2233 			if (!(ifp->if_flags & IFF_RUNNING))
2234 				wpi_init(ifp);
2235 		} else {
2236 			if (ifp->if_flags & IFF_RUNNING)
2237 				wpi_stop(ifp, 1);
2238 		}
2239 		break;
2240 
2241 	case SIOCADDMULTI:
2242 	case SIOCDELMULTI:
2243 		/* XXX no h/w multicast filter? --dyoung */
2244 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2245 			/* setup multicast filter, etc */
2246 			error = 0;
2247 		}
2248 		break;
2249 
2250 	default:
2251 		error = ieee80211_ioctl(ic, cmd, data);
2252 	}
2253 
2254 	if (error == ENETRESET) {
2255 		if (IS_RUNNING(ifp) &&
2256 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2257 			wpi_init(ifp);
2258 		error = 0;
2259 	}
2260 
2261 	splx(s);
2262 	return error;
2263 
2264 #undef IS_RUNNING
2265 }
2266 
2267 /*
2268  * Extract various information from EEPROM.
2269  */
2270 static void
2271 wpi_read_eeprom(struct wpi_softc *sc)
2272 {
2273 	struct ieee80211com *ic = &sc->sc_ic;
2274 	char domain[4];
2275 	int i;
2276 
2277 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2278 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2279 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2280 
2281 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2282 	    sc->type));
2283 
2284 	/* read and print regulatory domain */
2285 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2286 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2287 
2288 	/* read and print MAC address */
2289 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2290 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2291 
2292 	/* read the list of authorized channels */
2293 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2294 		wpi_read_eeprom_channels(sc, i);
2295 
2296 	/* read the list of power groups */
2297 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2298 		wpi_read_eeprom_group(sc, i);
2299 }
2300 
2301 static void
2302 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2303 {
2304 	struct ieee80211com *ic = &sc->sc_ic;
2305 	const struct wpi_chan_band *band = &wpi_bands[n];
2306 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2307 	int chan, i;
2308 
2309 	wpi_read_prom_data(sc, band->addr, channels,
2310 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2311 
2312 	for (i = 0; i < band->nchan; i++) {
2313 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2314 			continue;
2315 
2316 		chan = band->chan[i];
2317 
2318 		if (n == 0) {	/* 2GHz band */
2319 			ic->ic_channels[chan].ic_freq =
2320 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2321 			ic->ic_channels[chan].ic_flags =
2322 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2323 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2324 
2325 		} else {	/* 5GHz band */
2326 			/*
2327 			 * Some 3945ABG adapters support channels 7, 8, 11
2328 			 * and 12 in the 2GHz *and* 5GHz bands.
2329 			 * Because of limitations in our net80211(9) stack,
2330 			 * we can't support these channels in 5GHz band.
2331 			 */
2332 			if (chan <= 14)
2333 				continue;
2334 
2335 			ic->ic_channels[chan].ic_freq =
2336 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2337 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2338 		}
2339 
2340 		/* is active scan allowed on this channel? */
2341 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2342 			ic->ic_channels[chan].ic_flags |=
2343 			    IEEE80211_CHAN_PASSIVE;
2344 		}
2345 
2346 		/* save maximum allowed power for this channel */
2347 		sc->maxpwr[chan] = channels[i].maxpwr;
2348 
2349 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2350 		    chan, channels[i].flags, sc->maxpwr[chan]));
2351 	}
2352 }
2353 
2354 static void
2355 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2356 {
2357 	struct wpi_power_group *group = &sc->groups[n];
2358 	struct wpi_eeprom_group rgroup;
2359 	int i;
2360 
2361 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2362 	    sizeof rgroup);
2363 
2364 	/* save power group information */
2365 	group->chan   = rgroup.chan;
2366 	group->maxpwr = rgroup.maxpwr;
2367 	/* temperature at which the samples were taken */
2368 	group->temp   = (int16_t)le16toh(rgroup.temp);
2369 
2370 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2371 	    group->chan, group->maxpwr, group->temp));
2372 
2373 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2374 		group->samples[i].index = rgroup.samples[i].index;
2375 		group->samples[i].power = rgroup.samples[i].power;
2376 
2377 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2378 		    group->samples[i].index, group->samples[i].power));
2379 	}
2380 }
2381 
2382 /*
2383  * Send a command to the firmware.
2384  */
2385 static int
2386 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2387 {
2388 	struct wpi_tx_ring *ring = &sc->cmdq;
2389 	struct wpi_tx_desc *desc;
2390 	struct wpi_tx_cmd *cmd;
2391 	struct wpi_dma_info *dma;
2392 
2393 	KASSERT(size <= sizeof cmd->data);
2394 
2395 	desc = &ring->desc[ring->cur];
2396 	cmd = &ring->cmd[ring->cur];
2397 
2398 	cmd->code = code;
2399 	cmd->flags = 0;
2400 	cmd->qid = ring->qid;
2401 	cmd->idx = ring->cur;
2402 	memcpy(cmd->data, buf, size);
2403 
2404 	dma = &ring->cmd_dma;
2405 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2406 
2407 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2408 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2409 	    ring->cur * sizeof (struct wpi_tx_cmd));
2410 	desc->segs[0].len  = htole32(4 + size);
2411 
2412 	dma = &ring->desc_dma;
2413 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2414 
2415 	/* kick cmd ring */
2416 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2417 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2418 
2419 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2420 }
2421 
2422 static int
2423 wpi_wme_update(struct ieee80211com *ic)
2424 {
2425 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2426 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2427 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2428 	const struct wmeParams *wmep;
2429 	struct wpi_wme_setup wme;
2430 	int ac;
2431 
2432 	/* don't override default WME values if WME is not actually enabled */
2433 	if (!(ic->ic_flags & IEEE80211_F_WME))
2434 		return 0;
2435 
2436 	wme.flags = 0;
2437 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2438 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2439 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2440 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2441 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2442 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2443 
2444 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2445 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2446 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2447 	}
2448 
2449 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2450 #undef WPI_USEC
2451 #undef WPI_EXP2
2452 }
2453 
2454 /*
2455  * Configure h/w multi-rate retries.
2456  */
2457 static int
2458 wpi_mrr_setup(struct wpi_softc *sc)
2459 {
2460 	struct ieee80211com *ic = &sc->sc_ic;
2461 	struct wpi_mrr_setup mrr;
2462 	int i, error;
2463 
2464 	/* CCK rates (not used with 802.11a) */
2465 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2466 		mrr.rates[i].flags = 0;
2467 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2468 		/* fallback to the immediate lower CCK rate (if any) */
2469 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2470 		/* try one time at this rate before falling back to "next" */
2471 		mrr.rates[i].ntries = 1;
2472 	}
2473 
2474 	/* OFDM rates (not used with 802.11b) */
2475 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2476 		mrr.rates[i].flags = 0;
2477 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2478 		/* fallback to the immediate lower rate (if any) */
2479 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2480 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2481 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2482 			WPI_OFDM6 : WPI_CCK2) :
2483 		    i - 1;
2484 		/* try one time at this rate before falling back to "next" */
2485 		mrr.rates[i].ntries = 1;
2486 	}
2487 
2488 	/* setup MRR for control frames */
2489 	mrr.which = htole32(WPI_MRR_CTL);
2490 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2491 	if (error != 0) {
2492 		aprint_error_dev(sc->sc_dev,
2493 		    "could not setup MRR for control frames\n");
2494 		return error;
2495 	}
2496 
2497 	/* setup MRR for data frames */
2498 	mrr.which = htole32(WPI_MRR_DATA);
2499 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2500 	if (error != 0) {
2501 		aprint_error_dev(sc->sc_dev,
2502 		    "could not setup MRR for data frames\n");
2503 		return error;
2504 	}
2505 
2506 	return 0;
2507 }
2508 
2509 static void
2510 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2511 {
2512 	struct wpi_cmd_led led;
2513 
2514 	led.which = which;
2515 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2516 	led.off = off;
2517 	led.on = on;
2518 
2519 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2520 }
2521 
2522 static void
2523 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2524 {
2525 	struct wpi_cmd_tsf tsf;
2526 	uint64_t val, mod;
2527 
2528 	memset(&tsf, 0, sizeof tsf);
2529 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2530 	tsf.bintval = htole16(ni->ni_intval);
2531 	tsf.lintval = htole16(10);
2532 
2533 	/* compute remaining time until next beacon */
2534 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2535 	mod = le64toh(tsf.tstamp) % val;
2536 	tsf.binitval = htole32((uint32_t)(val - mod));
2537 
2538 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2539 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2540 
2541 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2542 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2543 }
2544 
2545 /*
2546  * Update Tx power to match what is defined for channel `c'.
2547  */
2548 static int
2549 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2550 {
2551 	struct ieee80211com *ic = &sc->sc_ic;
2552 	struct wpi_power_group *group;
2553 	struct wpi_cmd_txpower txpower;
2554 	u_int chan;
2555 	int i;
2556 
2557 	/* get channel number */
2558 	chan = ieee80211_chan2ieee(ic, c);
2559 
2560 	/* find the power group to which this channel belongs */
2561 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2562 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2563 			if (chan <= group->chan)
2564 				break;
2565 	} else
2566 		group = &sc->groups[0];
2567 
2568 	memset(&txpower, 0, sizeof txpower);
2569 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2570 	txpower.chan = htole16(chan);
2571 
2572 	/* set Tx power for all OFDM and CCK rates */
2573 	for (i = 0; i <= 11 ; i++) {
2574 		/* retrieve Tx power for this channel/rate combination */
2575 		int idx = wpi_get_power_index(sc, group, c,
2576 		    wpi_ridx_to_rate[i]);
2577 
2578 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2579 
2580 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2581 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2582 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2583 		} else {
2584 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2585 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2586 		}
2587 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2588 		    wpi_ridx_to_rate[i], idx));
2589 	}
2590 
2591 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2592 }
2593 
2594 /*
2595  * Determine Tx power index for a given channel/rate combination.
2596  * This takes into account the regulatory information from EEPROM and the
2597  * current temperature.
2598  */
2599 static int
2600 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2601     struct ieee80211_channel *c, int rate)
2602 {
2603 /* fixed-point arithmetic division using a n-bit fractional part */
2604 #define fdivround(a, b, n)	\
2605 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2606 
2607 /* linear interpolation */
2608 #define interpolate(x, x1, y1, x2, y2, n)	\
2609 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2610 
2611 	struct ieee80211com *ic = &sc->sc_ic;
2612 	struct wpi_power_sample *sample;
2613 	int pwr, idx;
2614 	u_int chan;
2615 
2616 	/* get channel number */
2617 	chan = ieee80211_chan2ieee(ic, c);
2618 
2619 	/* default power is group's maximum power - 3dB */
2620 	pwr = group->maxpwr / 2;
2621 
2622 	/* decrease power for highest OFDM rates to reduce distortion */
2623 	switch (rate) {
2624 	case 72:	/* 36Mb/s */
2625 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2626 		break;
2627 	case 96:	/* 48Mb/s */
2628 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2629 		break;
2630 	case 108:	/* 54Mb/s */
2631 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2632 		break;
2633 	}
2634 
2635 	/* never exceed channel's maximum allowed Tx power */
2636 	pwr = uimin(pwr, sc->maxpwr[chan]);
2637 
2638 	/* retrieve power index into gain tables from samples */
2639 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2640 		if (pwr > sample[1].power)
2641 			break;
2642 	/* fixed-point linear interpolation using a 19-bit fractional part */
2643 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2644 	    sample[1].power, sample[1].index, 19);
2645 
2646 	/*-
2647 	 * Adjust power index based on current temperature:
2648 	 * - if cooler than factory-calibrated: decrease output power
2649 	 * - if warmer than factory-calibrated: increase output power
2650 	 */
2651 	idx -= (sc->temp - group->temp) * 11 / 100;
2652 
2653 	/* decrease power for CCK rates (-5dB) */
2654 	if (!WPI_RATE_IS_OFDM(rate))
2655 		idx += 10;
2656 
2657 	/* keep power index in a valid range */
2658 	if (idx < 0)
2659 		return 0;
2660 	if (idx > WPI_MAX_PWR_INDEX)
2661 		return WPI_MAX_PWR_INDEX;
2662 	return idx;
2663 
2664 #undef interpolate
2665 #undef fdivround
2666 }
2667 
2668 /*
2669  * Build a beacon frame that the firmware will broadcast periodically in
2670  * IBSS or HostAP modes.
2671  */
2672 static int
2673 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2674 {
2675 	struct ieee80211com *ic = &sc->sc_ic;
2676 	struct wpi_tx_ring *ring = &sc->cmdq;
2677 	struct wpi_tx_desc *desc;
2678 	struct wpi_tx_data *data;
2679 	struct wpi_tx_cmd *cmd;
2680 	struct wpi_cmd_beacon *bcn;
2681 	struct ieee80211_beacon_offsets bo;
2682 	struct mbuf *m0;
2683 	int error;
2684 
2685 	desc = &ring->desc[ring->cur];
2686 	data = &ring->data[ring->cur];
2687 
2688 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2689 	if (m0 == NULL) {
2690 		aprint_error_dev(sc->sc_dev,
2691 		    "could not allocate beacon frame\n");
2692 		return ENOMEM;
2693 	}
2694 
2695 	cmd = &ring->cmd[ring->cur];
2696 	cmd->code = WPI_CMD_SET_BEACON;
2697 	cmd->flags = 0;
2698 	cmd->qid = ring->qid;
2699 	cmd->idx = ring->cur;
2700 
2701 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2702 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2703 	bcn->id = WPI_ID_BROADCAST;
2704 	bcn->ofdm_mask = 0xff;
2705 	bcn->cck_mask = 0x0f;
2706 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2707 	bcn->len = htole16(m0->m_pkthdr.len);
2708 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2709 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2710 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2711 
2712 	/* save and trim IEEE802.11 header */
2713 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2714 	m_adj(m0, sizeof (struct ieee80211_frame));
2715 
2716 	/* assume beacon frame is contiguous */
2717 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2718 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2719 	if (error != 0) {
2720 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2721 		m_freem(m0);
2722 		return error;
2723 	}
2724 
2725 	data->m = m0;
2726 
2727 	/* first scatter/gather segment is used by the beacon command */
2728 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2729 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2730 	    ring->cur * sizeof (struct wpi_tx_cmd));
2731 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2732 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2733 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2734 
2735 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2736 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2737 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2738 	    BUS_DMASYNC_PREWRITE);
2739 
2740 	/* kick cmd ring */
2741 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2742 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2743 
2744 	return 0;
2745 }
2746 
2747 static int
2748 wpi_auth(struct wpi_softc *sc)
2749 {
2750 	struct ieee80211com *ic = &sc->sc_ic;
2751 	struct ieee80211_node *ni = ic->ic_bss;
2752 	struct wpi_node_info node;
2753 	int error;
2754 
2755 	/* update adapter's configuration */
2756 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2757 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2758 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2759 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2760 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2761 		    WPI_CONFIG_24GHZ);
2762 	}
2763 	switch (ic->ic_curmode) {
2764 	case IEEE80211_MODE_11A:
2765 		sc->config.cck_mask  = 0;
2766 		sc->config.ofdm_mask = 0x15;
2767 		break;
2768 	case IEEE80211_MODE_11B:
2769 		sc->config.cck_mask  = 0x03;
2770 		sc->config.ofdm_mask = 0;
2771 		break;
2772 	default:	/* assume 802.11b/g */
2773 		sc->config.cck_mask  = 0x0f;
2774 		sc->config.ofdm_mask = 0x15;
2775 	}
2776 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2777 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2778 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2779 	    sizeof (struct wpi_config), 1);
2780 	if (error != 0) {
2781 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2782 		return error;
2783 	}
2784 
2785 	/* configuration has changed, set Tx power accordingly */
2786 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2787 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2788 		return error;
2789 	}
2790 
2791 	/* add default node */
2792 	memset(&node, 0, sizeof node);
2793 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2794 	node.id = WPI_ID_BSS;
2795 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2796 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2797 	node.action = htole32(WPI_ACTION_SET_RATE);
2798 	node.antenna = WPI_ANTENNA_BOTH;
2799 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2800 	if (error != 0) {
2801 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2802 		return error;
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 /*
2809  * Send a scan request to the firmware.  Since this command is huge, we map it
2810  * into a mbuf instead of using the pre-allocated set of commands.
2811  */
2812 static int
2813 wpi_scan(struct wpi_softc *sc)
2814 {
2815 	struct ieee80211com *ic = &sc->sc_ic;
2816 	struct wpi_tx_ring *ring = &sc->cmdq;
2817 	struct wpi_tx_desc *desc;
2818 	struct wpi_tx_data *data;
2819 	struct wpi_tx_cmd *cmd;
2820 	struct wpi_scan_hdr *hdr;
2821 	struct wpi_scan_chan *chan;
2822 	struct ieee80211_frame *wh;
2823 	struct ieee80211_rateset *rs;
2824 	struct ieee80211_channel *c;
2825 	uint8_t *frm;
2826 	int pktlen, error, nrates;
2827 
2828 	if (ic->ic_curchan == NULL)
2829 		return EIO;
2830 
2831 	desc = &ring->desc[ring->cur];
2832 	data = &ring->data[ring->cur];
2833 
2834 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2835 	if (data->m == NULL) {
2836 		aprint_error_dev(sc->sc_dev,
2837 		    "could not allocate mbuf for scan command\n");
2838 		return ENOMEM;
2839 	}
2840 	MCLGET(data->m, M_DONTWAIT);
2841 	if (!(data->m->m_flags & M_EXT)) {
2842 		m_freem(data->m);
2843 		data->m = NULL;
2844 		aprint_error_dev(sc->sc_dev,
2845 		    "could not allocate mbuf for scan command\n");
2846 		return ENOMEM;
2847 	}
2848 
2849 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2850 	cmd->code = WPI_CMD_SCAN;
2851 	cmd->flags = 0;
2852 	cmd->qid = ring->qid;
2853 	cmd->idx = ring->cur;
2854 
2855 	hdr = (struct wpi_scan_hdr *)cmd->data;
2856 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2857 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2858 	hdr->cmd.id = WPI_ID_BROADCAST;
2859 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2860 	/*
2861 	 * Move to the next channel if no packets are received within 5 msecs
2862 	 * after sending the probe request (this helps to reduce the duration
2863 	 * of active scans).
2864 	 */
2865 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2866 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2867 
2868 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2869 		hdr->crc_threshold = htole16(1);
2870 		/* send probe requests at 6Mbps */
2871 		hdr->cmd.rate = wpi_plcp_signal(12);
2872 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2873 	} else {
2874 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2875 		/* send probe requests at 1Mbps */
2876 		hdr->cmd.rate = wpi_plcp_signal(2);
2877 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2878 	}
2879 
2880 	/* for directed scans, firmware inserts the essid IE itself */
2881 	if (ic->ic_des_esslen != 0) {
2882 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2883 		hdr->essid[0].len = ic->ic_des_esslen;
2884 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2885 	}
2886 
2887 	/*
2888 	 * Build a probe request frame.  Most of the following code is a
2889 	 * copy & paste of what is done in net80211.
2890 	 */
2891 	wh = (struct ieee80211_frame *)(hdr + 1);
2892 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2893 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2894 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2895 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2896 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2897 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2898 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2899 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2900 
2901 	frm = (uint8_t *)(wh + 1);
2902 
2903 	/* add empty essid IE (firmware generates it for directed scans) */
2904 	*frm++ = IEEE80211_ELEMID_SSID;
2905 	*frm++ = 0;
2906 
2907 	/* add supported rates IE */
2908 	*frm++ = IEEE80211_ELEMID_RATES;
2909 	nrates = rs->rs_nrates;
2910 	if (nrates > IEEE80211_RATE_SIZE)
2911 		nrates = IEEE80211_RATE_SIZE;
2912 	*frm++ = nrates;
2913 	memcpy(frm, rs->rs_rates, nrates);
2914 	frm += nrates;
2915 
2916 	/* add supported xrates IE */
2917 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2918 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2919 		*frm++ = IEEE80211_ELEMID_XRATES;
2920 		*frm++ = nrates;
2921 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2922 		frm += nrates;
2923 	}
2924 
2925 	/* setup length of probe request */
2926 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2927 
2928 	chan = (struct wpi_scan_chan *)frm;
2929 	c = ic->ic_curchan;
2930 
2931 	chan->chan = ieee80211_chan2ieee(ic, c);
2932 	chan->flags = 0;
2933 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2934 		chan->flags |= WPI_CHAN_ACTIVE;
2935 		if (ic->ic_des_esslen != 0)
2936 			chan->flags |= WPI_CHAN_DIRECT;
2937 	}
2938 	chan->dsp_gain = 0x6e;
2939 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2940 		chan->rf_gain = 0x3b;
2941 		chan->active  = htole16(10);
2942 		chan->passive = htole16(110);
2943 	} else {
2944 		chan->rf_gain = 0x28;
2945 		chan->active  = htole16(20);
2946 		chan->passive = htole16(120);
2947 	}
2948 	hdr->nchan++;
2949 	chan++;
2950 
2951 	frm += sizeof (struct wpi_scan_chan);
2952 
2953 	hdr->len = htole16(frm - (uint8_t *)hdr);
2954 	pktlen = frm - (uint8_t *)cmd;
2955 
2956 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2957 	    BUS_DMA_NOWAIT);
2958 	if (error != 0) {
2959 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2960 		m_freem(data->m);
2961 		data->m = NULL;
2962 		return error;
2963 	}
2964 
2965 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2966 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2967 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2968 
2969 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2970 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2971 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2972 	    BUS_DMASYNC_PREWRITE);
2973 
2974 	/* kick cmd ring */
2975 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2976 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2977 
2978 	return 0;	/* will be notified async. of failure/success */
2979 }
2980 
2981 static int
2982 wpi_config(struct wpi_softc *sc)
2983 {
2984 	struct ieee80211com *ic = &sc->sc_ic;
2985 	struct ifnet *ifp = ic->ic_ifp;
2986 	struct wpi_power power;
2987 	struct wpi_bluetooth bluetooth;
2988 	struct wpi_node_info node;
2989 	int error;
2990 
2991 	memset(&power, 0, sizeof power);
2992 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2993 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2994 	if (error != 0) {
2995 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2996 		return error;
2997 	}
2998 
2999 	/* configure bluetooth coexistence */
3000 	memset(&bluetooth, 0, sizeof bluetooth);
3001 	bluetooth.flags = 3;
3002 	bluetooth.lead = 0xaa;
3003 	bluetooth.kill = 1;
3004 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3005 	    0);
3006 	if (error != 0) {
3007 		aprint_error_dev(sc->sc_dev,
3008 			"could not configure bluetooth coexistence\n");
3009 		return error;
3010 	}
3011 
3012 	/* configure adapter */
3013 	memset(&sc->config, 0, sizeof (struct wpi_config));
3014 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3015 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3016 	/* set default channel */
3017 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3018 	sc->config.flags = htole32(WPI_CONFIG_TSF);
3019 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3020 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3021 		    WPI_CONFIG_24GHZ);
3022 	}
3023 	sc->config.filter = 0;
3024 	switch (ic->ic_opmode) {
3025 	case IEEE80211_M_STA:
3026 		sc->config.mode = WPI_MODE_STA;
3027 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3028 		break;
3029 	case IEEE80211_M_IBSS:
3030 	case IEEE80211_M_AHDEMO:
3031 		sc->config.mode = WPI_MODE_IBSS;
3032 		break;
3033 	case IEEE80211_M_HOSTAP:
3034 		sc->config.mode = WPI_MODE_HOSTAP;
3035 		break;
3036 	case IEEE80211_M_MONITOR:
3037 		sc->config.mode = WPI_MODE_MONITOR;
3038 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3039 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3040 		break;
3041 	}
3042 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3043 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3044 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3045 	    sizeof (struct wpi_config), 0);
3046 	if (error != 0) {
3047 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
3048 		return error;
3049 	}
3050 
3051 	/* configuration has changed, set Tx power accordingly */
3052 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3053 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3054 		return error;
3055 	}
3056 
3057 	/* add broadcast node */
3058 	memset(&node, 0, sizeof node);
3059 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3060 	node.id = WPI_ID_BROADCAST;
3061 	node.rate = wpi_plcp_signal(2);
3062 	node.action = htole32(WPI_ACTION_SET_RATE);
3063 	node.antenna = WPI_ANTENNA_BOTH;
3064 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3065 	if (error != 0) {
3066 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3067 		return error;
3068 	}
3069 
3070 	if ((error = wpi_mrr_setup(sc)) != 0) {
3071 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3072 		return error;
3073 	}
3074 
3075 	return 0;
3076 }
3077 
3078 static void
3079 wpi_stop_master(struct wpi_softc *sc)
3080 {
3081 	uint32_t tmp;
3082 	int ntries;
3083 
3084 	tmp = WPI_READ(sc, WPI_RESET);
3085 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3086 
3087 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3088 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3089 		return;	/* already asleep */
3090 
3091 	for (ntries = 0; ntries < 100; ntries++) {
3092 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3093 			break;
3094 		DELAY(10);
3095 	}
3096 	if (ntries == 100) {
3097 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3098 	}
3099 }
3100 
3101 static int
3102 wpi_power_up(struct wpi_softc *sc)
3103 {
3104 	uint32_t tmp;
3105 	int ntries;
3106 
3107 	wpi_mem_lock(sc);
3108 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3109 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3110 	wpi_mem_unlock(sc);
3111 
3112 	for (ntries = 0; ntries < 5000; ntries++) {
3113 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3114 			break;
3115 		DELAY(10);
3116 	}
3117 	if (ntries == 5000) {
3118 		aprint_error_dev(sc->sc_dev,
3119 		    "timeout waiting for NIC to power up\n");
3120 		return ETIMEDOUT;
3121 	}
3122 	return 0;
3123 }
3124 
3125 static int
3126 wpi_reset(struct wpi_softc *sc)
3127 {
3128 	uint32_t tmp;
3129 	int ntries;
3130 
3131 	/* clear any pending interrupts */
3132 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3133 
3134 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3135 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3136 
3137 	tmp = WPI_READ(sc, WPI_CHICKEN);
3138 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3139 
3140 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3141 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3142 
3143 	/* wait for clock stabilization */
3144 	for (ntries = 0; ntries < 1000; ntries++) {
3145 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3146 			break;
3147 		DELAY(10);
3148 	}
3149 	if (ntries == 1000) {
3150 		aprint_error_dev(sc->sc_dev,
3151 		    "timeout waiting for clock stabilization\n");
3152 		return ETIMEDOUT;
3153 	}
3154 
3155 	/* initialize EEPROM */
3156 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3157 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3158 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3159 		return EIO;
3160 	}
3161 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3162 
3163 	return 0;
3164 }
3165 
3166 static void
3167 wpi_hw_config(struct wpi_softc *sc)
3168 {
3169 	uint32_t rev, hw;
3170 
3171 	/* voodoo from the reference driver */
3172 	hw = WPI_READ(sc, WPI_HWCONFIG);
3173 
3174 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3175 	rev = PCI_REVISION(rev);
3176 	if ((rev & 0xc0) == 0x40)
3177 		hw |= WPI_HW_ALM_MB;
3178 	else if (!(rev & 0x80))
3179 		hw |= WPI_HW_ALM_MM;
3180 
3181 	if (sc->cap == 0x80)
3182 		hw |= WPI_HW_SKU_MRC;
3183 
3184 	hw &= ~WPI_HW_REV_D;
3185 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3186 		hw |= WPI_HW_REV_D;
3187 
3188 	if (sc->type > 1)
3189 		hw |= WPI_HW_TYPE_B;
3190 
3191 	DPRINTF(("setting h/w config %x\n", hw));
3192 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3193 }
3194 
3195 static int
3196 wpi_init(struct ifnet *ifp)
3197 {
3198 	struct wpi_softc *sc = ifp->if_softc;
3199 	struct ieee80211com *ic = &sc->sc_ic;
3200 	uint32_t tmp;
3201 	int qid, ntries, error;
3202 
3203 	wpi_stop(ifp,1);
3204 	(void)wpi_reset(sc);
3205 
3206 	wpi_mem_lock(sc);
3207 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3208 	DELAY(20);
3209 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3210 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3211 	wpi_mem_unlock(sc);
3212 
3213 	(void)wpi_power_up(sc);
3214 	wpi_hw_config(sc);
3215 
3216 	/* init Rx ring */
3217 	wpi_mem_lock(sc);
3218 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3219 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3220 	    offsetof(struct wpi_shared, next));
3221 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3222 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3223 	wpi_mem_unlock(sc);
3224 
3225 	/* init Tx rings */
3226 	wpi_mem_lock(sc);
3227 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3228 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3229 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3230 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3231 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3232 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3233 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3234 
3235 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3236 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3237 
3238 	for (qid = 0; qid < 6; qid++) {
3239 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3240 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3241 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3242 	}
3243 	wpi_mem_unlock(sc);
3244 
3245 	/* clear "radio off" and "disable command" bits (reversed logic) */
3246 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3247 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3248 
3249 	/* clear any pending interrupts */
3250 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3251 	/* enable interrupts */
3252 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3253 
3254 	/* not sure why/if this is necessary... */
3255 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3256 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3257 
3258 	if ((error = wpi_load_firmware(sc)) != 0)
3259 		/* wpi_load_firmware prints error messages for us.  */
3260 		goto fail1;
3261 
3262 	/* Check the status of the radio switch */
3263 	mutex_enter(&sc->sc_rsw_mtx);
3264 	if (wpi_getrfkill(sc)) {
3265 		mutex_exit(&sc->sc_rsw_mtx);
3266 		aprint_error_dev(sc->sc_dev,
3267 		    "radio is disabled by hardware switch\n");
3268 		ifp->if_flags &= ~IFF_UP;
3269 		error = EBUSY;
3270 		goto fail1;
3271 	}
3272 	sc->sc_rsw_suspend = false;
3273 	cv_broadcast(&sc->sc_rsw_cv);
3274 	while (sc->sc_rsw_suspend)
3275 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3276 	mutex_exit(&sc->sc_rsw_mtx);
3277 
3278 	/* wait for thermal sensors to calibrate */
3279 	for (ntries = 0; ntries < 1000; ntries++) {
3280 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3281 			break;
3282 		DELAY(10);
3283 	}
3284 	if (ntries == 1000) {
3285 		aprint_error_dev(sc->sc_dev,
3286 		    "timeout waiting for thermal sensors calibration\n");
3287 		error = ETIMEDOUT;
3288 		goto fail1;
3289 	}
3290 	DPRINTF(("temperature %d\n", sc->temp));
3291 
3292 	if ((error = wpi_config(sc)) != 0) {
3293 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3294 		goto fail1;
3295 	}
3296 
3297 	ifp->if_flags &= ~IFF_OACTIVE;
3298 	ifp->if_flags |= IFF_RUNNING;
3299 
3300 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3301 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3302 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3303 	}
3304 	else
3305 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3306 
3307 	return 0;
3308 
3309 fail1:	wpi_stop(ifp, 1);
3310 	return error;
3311 }
3312 
3313 static void
3314 wpi_stop(struct ifnet *ifp, int disable)
3315 {
3316 	struct wpi_softc *sc = ifp->if_softc;
3317 	struct ieee80211com *ic = &sc->sc_ic;
3318 	uint32_t tmp;
3319 	int ac;
3320 
3321 	ifp->if_timer = sc->sc_tx_timer = 0;
3322 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3323 
3324 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3325 
3326 	/* suspend rfkill test thread */
3327 	mutex_enter(&sc->sc_rsw_mtx);
3328 	sc->sc_rsw_suspend = true;
3329 	cv_broadcast(&sc->sc_rsw_cv);
3330 	while (!sc->sc_rsw_suspended)
3331 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3332 	mutex_exit(&sc->sc_rsw_mtx);
3333 
3334 	/* disable interrupts */
3335 	WPI_WRITE(sc, WPI_MASK, 0);
3336 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3337 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3338 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3339 
3340 	wpi_mem_lock(sc);
3341 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3342 	wpi_mem_unlock(sc);
3343 
3344 	/* reset all Tx rings */
3345 	for (ac = 0; ac < 4; ac++)
3346 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3347 	wpi_reset_tx_ring(sc, &sc->cmdq);
3348 
3349 	/* reset Rx ring */
3350 	wpi_reset_rx_ring(sc, &sc->rxq);
3351 
3352 	wpi_mem_lock(sc);
3353 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3354 	wpi_mem_unlock(sc);
3355 
3356 	DELAY(5);
3357 
3358 	wpi_stop_master(sc);
3359 
3360 	tmp = WPI_READ(sc, WPI_RESET);
3361 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3362 }
3363 
3364 static bool
3365 wpi_resume(device_t dv, const pmf_qual_t *qual)
3366 {
3367 	struct wpi_softc *sc = device_private(dv);
3368 
3369 	(void)wpi_reset(sc);
3370 
3371 	return true;
3372 }
3373 
3374 /*
3375  * Return whether or not the radio is enabled in hardware
3376  * (i.e. the rfkill switch is "off").
3377  */
3378 static int
3379 wpi_getrfkill(struct wpi_softc *sc)
3380 {
3381 	uint32_t tmp;
3382 
3383 	wpi_mem_lock(sc);
3384 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3385 	wpi_mem_unlock(sc);
3386 
3387 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3388 	if (tmp & 0x01) {
3389 		/* switch is on */
3390 		if (sc->sc_rsw_status != WPI_RSW_ON) {
3391 			sc->sc_rsw_status = WPI_RSW_ON;
3392 			sysmon_pswitch_event(&sc->sc_rsw,
3393 			    PSWITCH_EVENT_PRESSED);
3394 		}
3395 	} else {
3396 		/* switch is off */
3397 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
3398 			sc->sc_rsw_status = WPI_RSW_OFF;
3399 			sysmon_pswitch_event(&sc->sc_rsw,
3400 			    PSWITCH_EVENT_RELEASED);
3401 		}
3402 	}
3403 
3404 	return !(tmp & 0x01);
3405 }
3406 
3407 static int
3408 wpi_sysctl_radio(SYSCTLFN_ARGS)
3409 {
3410 	struct sysctlnode node;
3411 	struct wpi_softc *sc;
3412 	int val, error;
3413 
3414 	node = *rnode;
3415 	sc = (struct wpi_softc *)node.sysctl_data;
3416 
3417 	mutex_enter(&sc->sc_rsw_mtx);
3418 	val = !wpi_getrfkill(sc);
3419 	mutex_exit(&sc->sc_rsw_mtx);
3420 
3421 	node.sysctl_data = &val;
3422 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3423 
3424 	if (error || newp == NULL)
3425 		return error;
3426 
3427 	return 0;
3428 }
3429 
3430 static void
3431 wpi_sysctlattach(struct wpi_softc *sc)
3432 {
3433 	int rc;
3434 	const struct sysctlnode *rnode;
3435 	const struct sysctlnode *cnode;
3436 
3437 	struct sysctllog **clog = &sc->sc_sysctllog;
3438 
3439 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3440 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3441 	    SYSCTL_DESCR("wpi controls and statistics"),
3442 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3443 		goto err;
3444 
3445 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3446 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3447 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3448 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3449 		goto err;
3450 
3451 #ifdef WPI_DEBUG
3452 	/* control debugging printfs */
3453 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3454 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3455 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3456 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3457 		goto err;
3458 #endif
3459 
3460 	return;
3461 err:
3462 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3463 }
3464 
3465 static void
3466 wpi_rsw_thread(void *arg)
3467 {
3468 	struct wpi_softc *sc = (struct wpi_softc *)arg;
3469 
3470 	mutex_enter(&sc->sc_rsw_mtx);
3471 	for (;;) {
3472 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3473 		if (sc->sc_dying) {
3474 			sc->sc_rsw_lwp = NULL;
3475 			cv_broadcast(&sc->sc_rsw_cv);
3476 			mutex_exit(&sc->sc_rsw_mtx);
3477 			kthread_exit(0);
3478 		}
3479 		if (sc->sc_rsw_suspend) {
3480 			sc->sc_rsw_suspended = true;
3481 			cv_broadcast(&sc->sc_rsw_cv);
3482 			while (sc->sc_rsw_suspend || sc->sc_dying)
3483 				cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3484 			sc->sc_rsw_suspended = false;
3485 			cv_broadcast(&sc->sc_rsw_cv);
3486 		}
3487 		wpi_getrfkill(sc);
3488 	}
3489 }
3490