xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision daf6c4152fcddc27c445489775ed1f66ab4ea9a9)
1 /*  $NetBSD: if_wpi.c,v 1.48 2010/11/15 05:57:39 uebayasi Exp $    */
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.48 2010/11/15 05:57:39 uebayasi Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 
68 #include <dev/firmload.h>
69 
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72 
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /*
83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84  */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87 
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 	{ 4, { 2, 4, 11, 22 } };
90 
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93 
94 static once_t wpi_firmware_init;
95 static kmutex_t wpi_firmware_mutex;
96 static size_t wpi_firmware_users;
97 static uint8_t *wpi_firmware_image;
98 static size_t wpi_firmware_size;
99 
100 static int  wpi_match(device_t, cfdata_t, void *);
101 static void wpi_attach(device_t, device_t, void *);
102 static int  wpi_detach(device_t , int);
103 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
104 	void **, bus_size_t, bus_size_t, int);
105 static void wpi_dma_contig_free(struct wpi_dma_info *);
106 static int  wpi_alloc_shared(struct wpi_softc *);
107 static void wpi_free_shared(struct wpi_softc *);
108 static int  wpi_alloc_fwmem(struct wpi_softc *);
109 static void wpi_free_fwmem(struct wpi_softc *);
110 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
111 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
112 static int  wpi_alloc_rpool(struct wpi_softc *);
113 static void wpi_free_rpool(struct wpi_softc *);
114 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
115 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
118 	int);
119 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
120 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
121 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
122 static void wpi_newassoc(struct ieee80211_node *, int);
123 static int  wpi_media_change(struct ifnet *);
124 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
125 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
126 static void wpi_mem_lock(struct wpi_softc *);
127 static void wpi_mem_unlock(struct wpi_softc *);
128 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
129 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
130 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
131 								   const uint32_t *, int);
132 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
133 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
134 static int  wpi_load_firmware(struct wpi_softc *);
135 static void wpi_calib_timeout(void *);
136 static void wpi_iter_func(void *, struct ieee80211_node *);
137 static void wpi_power_calibration(struct wpi_softc *, int);
138 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
139 	struct wpi_rx_data *);
140 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
141 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
142 static void wpi_notif_intr(struct wpi_softc *);
143 static int  wpi_intr(void *);
144 static void wpi_read_eeprom(struct wpi_softc *);
145 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
146 static void wpi_read_eeprom_group(struct wpi_softc *, int);
147 static uint8_t wpi_plcp_signal(int);
148 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
149 	struct ieee80211_node *, int);
150 static void wpi_start(struct ifnet *);
151 static void wpi_watchdog(struct ifnet *);
152 static int  wpi_ioctl(struct ifnet *, u_long, void *);
153 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
154 static int  wpi_wme_update(struct ieee80211com *);
155 static int  wpi_mrr_setup(struct wpi_softc *);
156 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
157 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
158 static int  wpi_set_txpower(struct wpi_softc *,
159 			    struct ieee80211_channel *, int);
160 static int  wpi_get_power_index(struct wpi_softc *,
161 		struct wpi_power_group *, struct ieee80211_channel *, int);
162 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
163 static int  wpi_auth(struct wpi_softc *);
164 static int  wpi_scan(struct wpi_softc *, uint16_t);
165 static int  wpi_config(struct wpi_softc *);
166 static void wpi_stop_master(struct wpi_softc *);
167 static int  wpi_power_up(struct wpi_softc *);
168 static int  wpi_reset(struct wpi_softc *);
169 static void wpi_hw_config(struct wpi_softc *);
170 static int  wpi_init(struct ifnet *);
171 static void wpi_stop(struct ifnet *, int);
172 static bool wpi_resume(device_t, const pmf_qual_t *);
173 static int	wpi_getrfkill(struct wpi_softc *);
174 static void wpi_sysctlattach(struct wpi_softc *);
175 
176 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
177 	wpi_detach, NULL);
178 
179 static int
180 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
181 {
182 	struct pci_attach_args *pa = aux;
183 
184 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
185 		return 0;
186 
187 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
188 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
189 		return 1;
190 
191 	return 0;
192 }
193 
194 /* Base Address Register */
195 #define WPI_PCI_BAR0	0x10
196 
197 static int
198 wpi_attach_once(void)
199 {
200 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
201 	return 0;
202 }
203 
204 static void
205 wpi_attach(device_t parent __unused, device_t self, void *aux)
206 {
207 	struct wpi_softc *sc = device_private(self);
208 	struct ieee80211com *ic = &sc->sc_ic;
209 	struct ifnet *ifp = &sc->sc_ec.ec_if;
210 	struct pci_attach_args *pa = aux;
211 	const char *intrstr;
212 	char devinfo[256];
213 	bus_space_tag_t memt;
214 	bus_space_handle_t memh;
215 	pci_intr_handle_t ih;
216 	pcireg_t data;
217 	int error, ac, revision;
218 
219 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
220 	sc->fw_used = false;
221 
222 	sc->sc_dev = self;
223 	sc->sc_pct = pa->pa_pc;
224 	sc->sc_pcitag = pa->pa_tag;
225 
226 	callout_init(&sc->calib_to, 0);
227 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
228 
229 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
230 	revision = PCI_REVISION(pa->pa_class);
231 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
232 
233 	/* enable bus-mastering */
234 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
235 	data |= PCI_COMMAND_MASTER_ENABLE;
236 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
237 
238 	/* map the register window */
239 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
240 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
241 	if (error != 0) {
242 		aprint_error_dev(self, "could not map memory space\n");
243 		return;
244 	}
245 
246 	sc->sc_st = memt;
247 	sc->sc_sh = memh;
248 	sc->sc_dmat = pa->pa_dmat;
249 
250 	if (pci_intr_map(pa, &ih) != 0) {
251 		aprint_error_dev(self, "could not map interrupt\n");
252 		return;
253 	}
254 
255 	intrstr = pci_intr_string(sc->sc_pct, ih);
256 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
257 	if (sc->sc_ih == NULL) {
258 		aprint_error_dev(self, "could not establish interrupt");
259 		if (intrstr != NULL)
260 			aprint_error(" at %s", intrstr);
261 		aprint_error("\n");
262 		return;
263 	}
264 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
265 
266 	if (wpi_reset(sc) != 0) {
267 		aprint_error_dev(self, "could not reset adapter\n");
268 		return;
269 	}
270 
271  	/*
272 	 * Allocate DMA memory for firmware transfers.
273 	 */
274 	if ((error = wpi_alloc_fwmem(sc)) != 0)
275 		return;
276 
277 	/*
278 	 * Allocate shared page and Tx/Rx rings.
279 	 */
280 	if ((error = wpi_alloc_shared(sc)) != 0) {
281 		aprint_error_dev(self, "could not allocate shared area\n");
282 		goto fail1;
283 	}
284 
285 	if ((error = wpi_alloc_rpool(sc)) != 0) {
286 		aprint_error_dev(self, "could not allocate Rx buffers\n");
287 		goto fail2;
288 	}
289 
290 	for (ac = 0; ac < 4; ac++) {
291 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
292 		if (error != 0) {
293 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
294 			goto fail3;
295 		}
296 	}
297 
298 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
299 	if (error != 0) {
300 		aprint_error_dev(self, "could not allocate command ring\n");
301 		goto fail3;
302 	}
303 
304 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
305 		aprint_error_dev(self, "could not allocate Rx ring\n");
306 		goto fail4;
307 	}
308 
309 	ic->ic_ifp = ifp;
310 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
311 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
312 	ic->ic_state = IEEE80211_S_INIT;
313 
314 	/* set device capabilities */
315 	ic->ic_caps =
316 		IEEE80211_C_IBSS |       /* IBSS mode support */
317 		IEEE80211_C_WPA |        /* 802.11i */
318 		IEEE80211_C_MONITOR |    /* monitor mode supported */
319 		IEEE80211_C_TXPMGT |     /* tx power management */
320 		IEEE80211_C_SHSLOT |     /* short slot time supported */
321 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
322 		IEEE80211_C_WME;         /* 802.11e */
323 
324 	/* read supported channels and MAC address from EEPROM */
325 	wpi_read_eeprom(sc);
326 
327 	/* set supported .11a, .11b, .11g rates */
328 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
329 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
330 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
331 
332 	ic->ic_ibss_chan = &ic->ic_channels[0];
333 
334 	ifp->if_softc = sc;
335 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
336 	ifp->if_init = wpi_init;
337 	ifp->if_stop = wpi_stop;
338 	ifp->if_ioctl = wpi_ioctl;
339 	ifp->if_start = wpi_start;
340 	ifp->if_watchdog = wpi_watchdog;
341 	IFQ_SET_READY(&ifp->if_snd);
342 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
343 
344 	if_attach(ifp);
345 	ieee80211_ifattach(ic);
346 	/* override default methods */
347 	ic->ic_node_alloc = wpi_node_alloc;
348 	ic->ic_newassoc = wpi_newassoc;
349 	ic->ic_wme.wme_update = wpi_wme_update;
350 
351 	/* override state transition machine */
352 	sc->sc_newstate = ic->ic_newstate;
353 	ic->ic_newstate = wpi_newstate;
354 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
355 
356 	sc->amrr.amrr_min_success_threshold = 1;
357 	sc->amrr.amrr_max_success_threshold = 15;
358 
359 	wpi_sysctlattach(sc);
360 
361 	if (pmf_device_register(self, NULL, wpi_resume))
362 		pmf_class_network_register(self, ifp);
363 	else
364 		aprint_error_dev(self, "couldn't establish power handler\n");
365 
366 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
367 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
368 	    &sc->sc_drvbpf);
369 
370 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
371 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
372 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
373 
374 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
375 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
376 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
377 
378 	ieee80211_announce(ic);
379 
380 	return;
381 
382 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
383 fail3:  while (--ac >= 0)
384 			wpi_free_tx_ring(sc, &sc->txq[ac]);
385 	wpi_free_rpool(sc);
386 fail2:	wpi_free_shared(sc);
387 fail1:	wpi_free_fwmem(sc);
388 }
389 
390 static int
391 wpi_detach(device_t self, int flags __unused)
392 {
393 	struct wpi_softc *sc = device_private(self);
394 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
395 	int ac;
396 
397 	wpi_stop(ifp, 1);
398 
399 	if (ifp != NULL)
400 		bpf_detach(ifp);
401 	ieee80211_ifdetach(&sc->sc_ic);
402 	if (ifp != NULL)
403 		if_detach(ifp);
404 
405 	for (ac = 0; ac < 4; ac++)
406 		wpi_free_tx_ring(sc, &sc->txq[ac]);
407 	wpi_free_tx_ring(sc, &sc->cmdq);
408 	wpi_free_rx_ring(sc, &sc->rxq);
409 	wpi_free_rpool(sc);
410 	wpi_free_shared(sc);
411 
412 	if (sc->sc_ih != NULL) {
413 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
414 		sc->sc_ih = NULL;
415 	}
416 
417 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
418 
419 	if (sc->fw_used) {
420 		mutex_enter(&wpi_firmware_mutex);
421 		if (--wpi_firmware_users == 0)
422 			firmware_free(wpi_firmware_image, wpi_firmware_size);
423 		mutex_exit(&wpi_firmware_mutex);
424 	}
425 
426 	return 0;
427 }
428 
429 static int
430 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
431 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
432 {
433 	int nsegs, error;
434 
435 	dma->tag = tag;
436 	dma->size = size;
437 
438 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
439 	if (error != 0)
440 		goto fail;
441 
442 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
443 	    flags);
444 	if (error != 0)
445 		goto fail;
446 
447 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
448 	if (error != 0)
449 		goto fail;
450 
451 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
452 	if (error != 0)
453 		goto fail;
454 
455 	memset(dma->vaddr, 0, size);
456 
457 	dma->paddr = dma->map->dm_segs[0].ds_addr;
458 	if (kvap != NULL)
459 		*kvap = dma->vaddr;
460 
461 	return 0;
462 
463 fail:   wpi_dma_contig_free(dma);
464 	return error;
465 }
466 
467 static void
468 wpi_dma_contig_free(struct wpi_dma_info *dma)
469 {
470 	if (dma->map != NULL) {
471 		if (dma->vaddr != NULL) {
472 			bus_dmamap_unload(dma->tag, dma->map);
473 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
474 			bus_dmamem_free(dma->tag, &dma->seg, 1);
475 			dma->vaddr = NULL;
476 		}
477 		bus_dmamap_destroy(dma->tag, dma->map);
478 		dma->map = NULL;
479 	}
480 }
481 
482 /*
483  * Allocate a shared page between host and NIC.
484  */
485 static int
486 wpi_alloc_shared(struct wpi_softc *sc)
487 {
488 	int error;
489 	/* must be aligned on a 4K-page boundary */
490 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
491 			(void **)&sc->shared, sizeof (struct wpi_shared),
492 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
493 	if (error != 0)
494 		aprint_error_dev(sc->sc_dev,
495 				"could not allocate shared area DMA memory\n");
496 
497 	return error;
498 }
499 
500 static void
501 wpi_free_shared(struct wpi_softc *sc)
502 {
503 	wpi_dma_contig_free(&sc->shared_dma);
504 }
505 
506 /*
507  * Allocate DMA-safe memory for firmware transfer.
508  */
509 static int
510 wpi_alloc_fwmem(struct wpi_softc *sc)
511 {
512 	int error;
513 	/* allocate enough contiguous space to store text and data */
514 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
515 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
516 	    BUS_DMA_NOWAIT);
517 
518 	if (error != 0)
519 		aprint_error_dev(sc->sc_dev,
520 			"could not allocate firmware transfer area"
521 			"DMA memory\n");
522 	return error;
523 }
524 
525 static void
526 wpi_free_fwmem(struct wpi_softc *sc)
527 {
528 	wpi_dma_contig_free(&sc->fw_dma);
529 }
530 
531 
532 static struct wpi_rbuf *
533 wpi_alloc_rbuf(struct wpi_softc *sc)
534 {
535 	struct wpi_rbuf *rbuf;
536 
537 	mutex_enter(&sc->rxq.freelist_mtx);
538 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
539 	if (rbuf != NULL) {
540 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
541 		sc->rxq.nb_free_entries --;
542 	}
543 	mutex_exit(&sc->rxq.freelist_mtx);
544 
545 	return rbuf;
546 }
547 
548 /*
549  * This is called automatically by the network stack when the mbuf to which our
550  * Rx buffer is attached is freed.
551  */
552 static void
553 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
554 {
555 	struct wpi_rbuf *rbuf = arg;
556 	struct wpi_softc *sc = rbuf->sc;
557 
558 	/* put the buffer back in the free list */
559 
560 	mutex_enter(&sc->rxq.freelist_mtx);
561 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
562 	mutex_exit(&sc->rxq.freelist_mtx);
563 	/* No need to protect this with a mutex, see wpi_rx_intr */
564 	sc->rxq.nb_free_entries ++;
565 
566 	if (__predict_true(m != NULL))
567 		pool_cache_put(mb_cache, m);
568 }
569 
570 static int
571 wpi_alloc_rpool(struct wpi_softc *sc)
572 {
573 	struct wpi_rx_ring *ring = &sc->rxq;
574 	struct wpi_rbuf *rbuf;
575 	int i, error;
576 
577 	/* allocate a big chunk of DMA'able memory.. */
578 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
579 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
580 	if (error != 0) {
581 		aprint_normal_dev(sc->sc_dev,
582 						  "could not allocate Rx buffers DMA memory\n");
583 		return error;
584 	}
585 
586 	/* ..and split it into 3KB chunks */
587 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
588 	SLIST_INIT(&ring->freelist);
589 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
590 		rbuf = &ring->rbuf[i];
591 		rbuf->sc = sc;	/* backpointer for callbacks */
592 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
593 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
594 
595 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
596 	}
597 
598 	ring->nb_free_entries = WPI_RBUF_COUNT;
599 	return 0;
600 }
601 
602 static void
603 wpi_free_rpool(struct wpi_softc *sc)
604 {
605 	wpi_dma_contig_free(&sc->rxq.buf_dma);
606 }
607 
608 static int
609 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
610 {
611 	struct wpi_rx_data *data;
612 	struct wpi_rbuf *rbuf;
613 	int i, error;
614 
615 	ring->cur = 0;
616 
617 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
618 		(void **)&ring->desc,
619 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
620 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
621 	if (error != 0) {
622 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
623 		goto fail;
624 	}
625 
626 	/*
627 	 * Setup Rx buffers.
628 	 */
629 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
630 		data = &ring->data[i];
631 
632 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
633 		if (data->m == NULL) {
634 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
635 			error = ENOMEM;
636 			goto fail;
637 		}
638 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
639 			m_freem(data->m);
640 			data->m = NULL;
641 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
642 			error = ENOMEM;
643 			goto fail;
644 		}
645 		/* attach Rx buffer to mbuf */
646 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
647 		    rbuf);
648 		data->m->m_flags |= M_EXT_RW;
649 
650 		ring->desc[i] = htole32(rbuf->paddr);
651 	}
652 
653 	return 0;
654 
655 fail:	wpi_free_rx_ring(sc, ring);
656 	return error;
657 }
658 
659 static void
660 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
661 {
662 	int ntries;
663 
664 	wpi_mem_lock(sc);
665 
666 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
667 	for (ntries = 0; ntries < 100; ntries++) {
668 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
669 			break;
670 		DELAY(10);
671 	}
672 #ifdef WPI_DEBUG
673 	if (ntries == 100 && wpi_debug > 0)
674 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
675 #endif
676 	wpi_mem_unlock(sc);
677 
678 	ring->cur = 0;
679 }
680 
681 static void
682 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
683 {
684 	int i;
685 
686 	wpi_dma_contig_free(&ring->desc_dma);
687 
688 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
689 		if (ring->data[i].m != NULL)
690 			m_freem(ring->data[i].m);
691 	}
692 }
693 
694 static int
695 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
696 	int qid)
697 {
698 	struct wpi_tx_data *data;
699 	int i, error;
700 
701 	ring->qid = qid;
702 	ring->count = count;
703 	ring->queued = 0;
704 	ring->cur = 0;
705 
706 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
707 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
708 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
709 	if (error != 0) {
710 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
711 		goto fail;
712 	}
713 
714 	/* update shared page with ring's base address */
715 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
716 
717 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
718 		(void **)&ring->cmd,
719 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
720 	if (error != 0) {
721 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
722 		goto fail;
723 	}
724 
725 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
726 		M_NOWAIT);
727 	if (ring->data == NULL) {
728 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
729 		goto fail;
730 	}
731 
732 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
733 
734 	for (i = 0; i < count; i++) {
735 		data = &ring->data[i];
736 
737 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
738 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
739 			&data->map);
740 		if (error != 0) {
741 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
742 			goto fail;
743 		}
744 	}
745 
746 	return 0;
747 
748 fail:	wpi_free_tx_ring(sc, ring);
749 	return error;
750 }
751 
752 static void
753 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
754 {
755 	struct wpi_tx_data *data;
756 	int i, ntries;
757 
758 	wpi_mem_lock(sc);
759 
760 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
761 	for (ntries = 0; ntries < 100; ntries++) {
762 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
763 			break;
764 		DELAY(10);
765 	}
766 #ifdef WPI_DEBUG
767 	if (ntries == 100 && wpi_debug > 0) {
768 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
769 									   ring->qid);
770 	}
771 #endif
772 	wpi_mem_unlock(sc);
773 
774 	for (i = 0; i < ring->count; i++) {
775 		data = &ring->data[i];
776 
777 		if (data->m != NULL) {
778 			bus_dmamap_unload(sc->sc_dmat, data->map);
779 			m_freem(data->m);
780 			data->m = NULL;
781 		}
782 	}
783 
784 	ring->queued = 0;
785 	ring->cur = 0;
786 }
787 
788 static void
789 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
790 {
791 	struct wpi_tx_data *data;
792 	int i;
793 
794 	wpi_dma_contig_free(&ring->desc_dma);
795 	wpi_dma_contig_free(&ring->cmd_dma);
796 
797 	if (ring->data != NULL) {
798 		for (i = 0; i < ring->count; i++) {
799 			data = &ring->data[i];
800 
801 			if (data->m != NULL) {
802 				bus_dmamap_unload(sc->sc_dmat, data->map);
803 				m_freem(data->m);
804 			}
805 		}
806 		free(ring->data, M_DEVBUF);
807 	}
808 }
809 
810 /*ARGUSED*/
811 static struct ieee80211_node *
812 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
813 {
814 	struct wpi_node *wn;
815 
816 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
817 
818 	return (struct ieee80211_node *)wn;
819 }
820 
821 static void
822 wpi_newassoc(struct ieee80211_node *ni, int isnew)
823 {
824 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
825 	int i;
826 
827 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
828 
829 	/* set rate to some reasonable initial value */
830 	for (i = ni->ni_rates.rs_nrates - 1;
831 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
832 	     i--);
833 	ni->ni_txrate = i;
834 }
835 
836 static int
837 wpi_media_change(struct ifnet *ifp)
838 {
839 	int error;
840 
841 	error = ieee80211_media_change(ifp);
842 	if (error != ENETRESET)
843 		return error;
844 
845 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
846 		wpi_init(ifp);
847 
848 	return 0;
849 }
850 
851 static int
852 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
853 {
854 	struct ifnet *ifp = ic->ic_ifp;
855 	struct wpi_softc *sc = ifp->if_softc;
856 	struct ieee80211_node *ni;
857 	int error;
858 
859 	callout_stop(&sc->calib_to);
860 
861 	switch (nstate) {
862 	case IEEE80211_S_SCAN:
863 
864 		if (sc->is_scanning)
865 			break;
866 
867 		sc->is_scanning = true;
868 		ieee80211_node_table_reset(&ic->ic_scan);
869 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
870 
871 		/* make the link LED blink while we're scanning */
872 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
873 
874 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
875 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
876 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
877 			return error;
878 		}
879 
880 		ic->ic_state = nstate;
881 		return 0;
882 
883 	case IEEE80211_S_ASSOC:
884 		if (ic->ic_state != IEEE80211_S_RUN)
885 			break;
886 		/* FALLTHROUGH */
887 	case IEEE80211_S_AUTH:
888 		sc->config.associd = 0;
889 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
890 		if ((error = wpi_auth(sc)) != 0) {
891 			aprint_error_dev(sc->sc_dev,
892 							"could not send authentication request\n");
893 			return error;
894 		}
895 		break;
896 
897 	case IEEE80211_S_RUN:
898 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
899 			/* link LED blinks while monitoring */
900 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
901 			break;
902 		}
903 
904 		ni = ic->ic_bss;
905 
906 		if (ic->ic_opmode != IEEE80211_M_STA) {
907 			(void) wpi_auth(sc);    /* XXX */
908 			wpi_setup_beacon(sc, ni);
909 		}
910 
911 		wpi_enable_tsf(sc, ni);
912 
913 		/* update adapter's configuration */
914 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
915 		/* short preamble/slot time are negotiated when associating */
916 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
917 			WPI_CONFIG_SHSLOT);
918 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
919 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
920 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
921 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
922 		sc->config.filter |= htole32(WPI_FILTER_BSS);
923 		if (ic->ic_opmode != IEEE80211_M_STA)
924 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
925 
926 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
927 
928 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
929 			sc->config.flags));
930 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
931 			sizeof (struct wpi_config), 1);
932 		if (error != 0) {
933 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
934 			return error;
935 		}
936 
937 		/* configuration has changed, set Tx power accordingly */
938 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
939 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
940 			return error;
941 		}
942 
943 		if (ic->ic_opmode == IEEE80211_M_STA) {
944 			/* fake a join to init the tx rate */
945 			wpi_newassoc(ni, 1);
946 		}
947 
948 		/* start periodic calibration timer */
949 		sc->calib_cnt = 0;
950 		callout_schedule(&sc->calib_to, hz/2);
951 
952 		/* link LED always on while associated */
953 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
954 		break;
955 
956 	case IEEE80211_S_INIT:
957 		sc->is_scanning = false;
958 		break;
959 	}
960 
961 	return sc->sc_newstate(ic, nstate, arg);
962 }
963 
964 /*
965  * XXX: Hack to set the current channel to the value advertised in beacons or
966  * probe responses. Only used during AP detection.
967  * XXX: Duplicated from if_iwi.c
968  */
969 static void
970 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
971 {
972 	struct ieee80211_frame *wh;
973 	uint8_t subtype;
974 	uint8_t *frm, *efrm;
975 
976 	wh = mtod(m, struct ieee80211_frame *);
977 
978 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
979 		return;
980 
981 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
982 
983 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
984 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
985 		return;
986 
987 	frm = (uint8_t *)(wh + 1);
988 	efrm = mtod(m, uint8_t *) + m->m_len;
989 
990 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
991 	while (frm < efrm) {
992 		if (*frm == IEEE80211_ELEMID_DSPARMS)
993 #if IEEE80211_CHAN_MAX < 255
994 		if (frm[2] <= IEEE80211_CHAN_MAX)
995 #endif
996 			ic->ic_curchan = &ic->ic_channels[frm[2]];
997 
998 		frm += frm[1] + 2;
999 	}
1000 }
1001 
1002 /*
1003  * Grab exclusive access to NIC memory.
1004  */
1005 static void
1006 wpi_mem_lock(struct wpi_softc *sc)
1007 {
1008 	uint32_t tmp;
1009 	int ntries;
1010 
1011 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1012 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1013 
1014 	/* spin until we actually get the lock */
1015 	for (ntries = 0; ntries < 1000; ntries++) {
1016 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1017 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1018 			break;
1019 		DELAY(10);
1020 	}
1021 	if (ntries == 1000)
1022 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1023 }
1024 
1025 /*
1026  * Release lock on NIC memory.
1027  */
1028 static void
1029 wpi_mem_unlock(struct wpi_softc *sc)
1030 {
1031 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1032 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1033 }
1034 
1035 static uint32_t
1036 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1037 {
1038 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1039 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1040 }
1041 
1042 static void
1043 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1044 {
1045 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1046 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1047 }
1048 
1049 static void
1050 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1051 						const uint32_t *data, int wlen)
1052 {
1053 	for (; wlen > 0; wlen--, data++, addr += 4)
1054 		wpi_mem_write(sc, addr, *data);
1055 }
1056 
1057 
1058 /*
1059  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1060  * instead of using the traditional bit-bang method.
1061  */
1062 static int
1063 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1064 {
1065 	uint8_t *out = data;
1066 	uint32_t val;
1067 	int ntries;
1068 
1069 	wpi_mem_lock(sc);
1070 	for (; len > 0; len -= 2, addr++) {
1071 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1072 
1073 		for (ntries = 0; ntries < 10; ntries++) {
1074 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1075 			    WPI_EEPROM_READY)
1076 				break;
1077 			DELAY(5);
1078 		}
1079 		if (ntries == 10) {
1080 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1081 			return ETIMEDOUT;
1082 		}
1083 		*out++ = val >> 16;
1084 		if (len > 1)
1085 			*out++ = val >> 24;
1086 	}
1087 	wpi_mem_unlock(sc);
1088 
1089 	return 0;
1090 }
1091 
1092 /*
1093  * The firmware boot code is small and is intended to be copied directly into
1094  * the NIC internal memory.
1095  */
1096 int
1097 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1098 {
1099 	int ntries;
1100 
1101 	size /= sizeof (uint32_t);
1102 
1103 	wpi_mem_lock(sc);
1104 
1105 	/* copy microcode image into NIC memory */
1106 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1107 	    (const uint32_t *)ucode, size);
1108 
1109 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1110 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1111 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1112 
1113 	/* run microcode */
1114 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1115 
1116 	/* wait for transfer to complete */
1117 	for (ntries = 0; ntries < 1000; ntries++) {
1118 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1119 			break;
1120 		DELAY(10);
1121 	}
1122 	if (ntries == 1000) {
1123 		wpi_mem_unlock(sc);
1124 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1125 		return ETIMEDOUT;
1126 	}
1127 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1128 
1129 	wpi_mem_unlock(sc);
1130 
1131 	return 0;
1132 }
1133 
1134 static int
1135 wpi_cache_firmware(struct wpi_softc *sc)
1136 {
1137 	firmware_handle_t fw;
1138 	int error;
1139 
1140 	if (sc->fw_used)
1141 		return 0;
1142 
1143 	mutex_enter(&wpi_firmware_mutex);
1144 	if (wpi_firmware_users++) {
1145 		mutex_exit(&wpi_firmware_mutex);
1146 		return 0;
1147 	}
1148 
1149 	/* load firmware image from disk */
1150 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1151 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1152 		goto fail1;
1153 	}
1154 
1155 	wpi_firmware_size = firmware_get_size(fw);
1156 
1157 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1158 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1159 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1160 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1161 		aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1162 		error = EFBIG;
1163 		goto fail1;
1164 	}
1165 
1166 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1167 		aprint_error_dev(sc->sc_dev,
1168 		    "truncated firmware header: %zu bytes\n",
1169 		    wpi_firmware_size);
1170 		error = EINVAL;
1171 		goto fail2;
1172 	}
1173 
1174 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1175 	if (wpi_firmware_image == NULL) {
1176 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1177 		error = ENOMEM;
1178 		goto fail1;
1179 	}
1180 
1181 	if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1182 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1183 		goto fail2;
1184 	}
1185 
1186 	sc->fw_used = true;
1187 	firmware_close(fw);
1188 	mutex_exit(&wpi_firmware_mutex);
1189 
1190 	return 0;
1191 
1192 fail2:
1193 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1194 fail1:
1195 	firmware_close(fw);
1196 	if (--wpi_firmware_users == 0)
1197 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1198 	mutex_exit(&wpi_firmware_mutex);
1199 	return error;
1200 }
1201 
1202 static int
1203 wpi_load_firmware(struct wpi_softc *sc)
1204 {
1205 	struct wpi_dma_info *dma = &sc->fw_dma;
1206 	struct wpi_firmware_hdr hdr;
1207 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1208 	const uint8_t *boot_text;
1209 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1210 	uint32_t boot_textsz;
1211 	int error;
1212 
1213 	if ((error = wpi_cache_firmware(sc)) != 0)
1214 		return error;
1215 
1216 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1217 
1218 	main_textsz = le32toh(hdr.main_textsz);
1219 	main_datasz = le32toh(hdr.main_datasz);
1220 	init_textsz = le32toh(hdr.init_textsz);
1221 	init_datasz = le32toh(hdr.init_datasz);
1222 	boot_textsz = le32toh(hdr.boot_textsz);
1223 
1224 	/* sanity-check firmware segments sizes */
1225 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1226 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1227 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1228 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1229 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1230 	    (boot_textsz & 3) != 0) {
1231 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1232 		error = EINVAL;
1233 		goto free_firmware;
1234 	}
1235 
1236 	/* check that all firmware segments are present */
1237 	if (wpi_firmware_size <
1238 	    sizeof (struct wpi_firmware_hdr) + main_textsz +
1239 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1240 		aprint_error_dev(sc->sc_dev,
1241 		    "firmware file too short: %zu bytes\n", wpi_firmware_size);
1242 		error = EINVAL;
1243 		goto free_firmware;
1244 	}
1245 
1246 	/* get pointers to firmware segments */
1247 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1248 	main_data = main_text + main_textsz;
1249 	init_text = main_data + main_datasz;
1250 	init_data = init_text + init_textsz;
1251 	boot_text = init_data + init_datasz;
1252 
1253 	/* copy initialization images into pre-allocated DMA-safe memory */
1254 	memcpy(dma->vaddr, init_data, init_datasz);
1255 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1256 
1257 	/* tell adapter where to find initialization images */
1258 	wpi_mem_lock(sc);
1259 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1260 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1261 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1262 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1263 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1264 	wpi_mem_unlock(sc);
1265 
1266 	/* load firmware boot code */
1267 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1268 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1269 		return error;
1270 	}
1271 
1272 	/* now press "execute" ;-) */
1273 	WPI_WRITE(sc, WPI_RESET, 0);
1274 
1275 	/* ..and wait at most one second for adapter to initialize */
1276 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1277 		/* this isn't what was supposed to happen.. */
1278 		aprint_error_dev(sc->sc_dev,
1279 		    "timeout waiting for adapter to initialize\n");
1280 	}
1281 
1282 	/* copy runtime images into pre-allocated DMA-safe memory */
1283 	memcpy(dma->vaddr, main_data, main_datasz);
1284 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1285 
1286 	/* tell adapter where to find runtime images */
1287 	wpi_mem_lock(sc);
1288 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1289 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1290 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1291 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1292 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1293 	wpi_mem_unlock(sc);
1294 
1295 	/* wait at most one second for second alive notification */
1296 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1297 		/* this isn't what was supposed to happen.. */
1298 		aprint_error_dev(sc->sc_dev,
1299 		    "timeout waiting for adapter to initialize\n");
1300 	}
1301 
1302 	return error;
1303 
1304 free_firmware:
1305 	mutex_enter(&wpi_firmware_mutex);
1306 	sc->fw_used = false;
1307 	--wpi_firmware_users;
1308 	mutex_exit(&wpi_firmware_mutex);
1309 	return error;
1310 }
1311 
1312 static void
1313 wpi_calib_timeout(void *arg)
1314 {
1315 	struct wpi_softc *sc = arg;
1316 	struct ieee80211com *ic = &sc->sc_ic;
1317 	int temp, s;
1318 
1319 	/* automatic rate control triggered every 500ms */
1320 	if (ic->ic_fixed_rate == -1) {
1321 		s = splnet();
1322 		if (ic->ic_opmode == IEEE80211_M_STA)
1323 			wpi_iter_func(sc, ic->ic_bss);
1324 		else
1325                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1326 		splx(s);
1327 	}
1328 
1329 	/* update sensor data */
1330 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1331 
1332 	/* automatic power calibration every 60s */
1333 	if (++sc->calib_cnt >= 120) {
1334 		wpi_power_calibration(sc, temp);
1335 		sc->calib_cnt = 0;
1336 	}
1337 
1338 	callout_schedule(&sc->calib_to, hz/2);
1339 }
1340 
1341 static void
1342 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1343 {
1344 	struct wpi_softc *sc = arg;
1345 	struct wpi_node *wn = (struct wpi_node *)ni;
1346 
1347 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1348 }
1349 
1350 /*
1351  * This function is called periodically (every 60 seconds) to adjust output
1352  * power to temperature changes.
1353  */
1354 void
1355 wpi_power_calibration(struct wpi_softc *sc, int temp)
1356 {
1357 	/* sanity-check read value */
1358 	if (temp < -260 || temp > 25) {
1359 		/* this can't be correct, ignore */
1360 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1361 		return;
1362 	}
1363 
1364 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1365 
1366 	/* adjust Tx power if need be */
1367 	if (abs(temp - sc->temp) <= 6)
1368 		return;
1369 
1370 	sc->temp = temp;
1371 
1372 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1373 		/* just warn, too bad for the automatic calibration... */
1374 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1375 	}
1376 }
1377 
1378 static void
1379 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1380 	struct wpi_rx_data *data)
1381 {
1382 	struct ieee80211com *ic = &sc->sc_ic;
1383 	struct ifnet *ifp = ic->ic_ifp;
1384 	struct wpi_rx_ring *ring = &sc->rxq;
1385 	struct wpi_rx_stat *stat;
1386 	struct wpi_rx_head *head;
1387 	struct wpi_rx_tail *tail;
1388 	struct wpi_rbuf *rbuf;
1389 	struct ieee80211_frame *wh;
1390 	struct ieee80211_node *ni;
1391 	struct mbuf *m, *mnew;
1392 	int data_off ;
1393 
1394 	stat = (struct wpi_rx_stat *)(desc + 1);
1395 
1396 	if (stat->len > WPI_STAT_MAXLEN) {
1397 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1398 		ifp->if_ierrors++;
1399 		return;
1400 	}
1401 
1402 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1403 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1404 
1405 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1406 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1407 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1408 		le64toh(tail->tstamp)));
1409 
1410 	/*
1411 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1412 	 * to radiotap in monitor mode).
1413 	 */
1414 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1415 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1416 		ifp->if_ierrors++;
1417 		return;
1418 	}
1419 
1420 	/* Compute where are the useful datas */
1421 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1422 
1423 	/*
1424 	 * If the number of free entry is too low
1425 	 * just dup the data->m socket and reuse the same rbuf entry
1426 	 * Note that thi test is not protected by a mutex because the
1427 	 * only path that causes nb_free_entries to decrease is through
1428 	 * this interrupt routine, which is not re-entrent.
1429 	 * What may not be obvious is that the safe path is if that test
1430 	 * evaluates as true, so nb_free_entries can grow any time.
1431 	 */
1432 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1433 
1434 		/* Prepare the mbuf for the m_dup */
1435 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1436 		data->m->m_data = (char*) data->m->m_data + data_off;
1437 
1438 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1439 
1440 		/* Restore the m_data pointer for future use */
1441 		data->m->m_data = (char*) data->m->m_data - data_off;
1442 
1443 		if (m == NULL) {
1444 			ifp->if_ierrors++;
1445 			return;
1446 		}
1447 	} else {
1448 
1449 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1450 		if (mnew == NULL) {
1451 			ifp->if_ierrors++;
1452 			return;
1453 		}
1454 
1455 		rbuf = wpi_alloc_rbuf(sc);
1456 		KASSERT(rbuf != NULL);
1457 
1458  		/* attach Rx buffer to mbuf */
1459 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1460 		 	rbuf);
1461 		mnew->m_flags |= M_EXT_RW;
1462 
1463 		m = data->m;
1464 		data->m = mnew;
1465 
1466 		/* update Rx descriptor */
1467 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1468 
1469 		m->m_data = (char*)m->m_data + data_off;
1470 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1471 	}
1472 
1473 	/* finalize mbuf */
1474 	m->m_pkthdr.rcvif = ifp;
1475 
1476 	if (ic->ic_state == IEEE80211_S_SCAN)
1477 		wpi_fix_channel(ic, m);
1478 
1479 	if (sc->sc_drvbpf != NULL) {
1480 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1481 
1482 		tap->wr_flags = 0;
1483 		tap->wr_chan_freq =
1484 			htole16(ic->ic_channels[head->chan].ic_freq);
1485 		tap->wr_chan_flags =
1486 			htole16(ic->ic_channels[head->chan].ic_flags);
1487 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1488 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1489 		tap->wr_tsft = tail->tstamp;
1490 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1491 		switch (head->rate) {
1492 		/* CCK rates */
1493 		case  10: tap->wr_rate =   2; break;
1494 		case  20: tap->wr_rate =   4; break;
1495 		case  55: tap->wr_rate =  11; break;
1496 		case 110: tap->wr_rate =  22; break;
1497 		/* OFDM rates */
1498 		case 0xd: tap->wr_rate =  12; break;
1499 		case 0xf: tap->wr_rate =  18; break;
1500 		case 0x5: tap->wr_rate =  24; break;
1501 		case 0x7: tap->wr_rate =  36; break;
1502 		case 0x9: tap->wr_rate =  48; break;
1503 		case 0xb: tap->wr_rate =  72; break;
1504 		case 0x1: tap->wr_rate =  96; break;
1505 		case 0x3: tap->wr_rate = 108; break;
1506 		/* unknown rate: should not happen */
1507 		default:  tap->wr_rate =   0;
1508 		}
1509 		if (le16toh(head->flags) & 0x4)
1510 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1511 
1512 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1513 	}
1514 
1515 	/* grab a reference to the source node */
1516 	wh = mtod(m, struct ieee80211_frame *);
1517 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1518 
1519 	/* send the frame to the 802.11 layer */
1520 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1521 
1522 	/* release node reference */
1523 	ieee80211_free_node(ni);
1524 }
1525 
1526 static void
1527 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1528 {
1529 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1530 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1531 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1532 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1533 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1534 
1535 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1536 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1537 		stat->nkill, stat->rate, le32toh(stat->duration),
1538 		le32toh(stat->status)));
1539 
1540 	/*
1541 	 * Update rate control statistics for the node.
1542 	 * XXX we should not count mgmt frames since they're always sent at
1543 	 * the lowest available bit-rate.
1544 	 */
1545 	wn->amn.amn_txcnt++;
1546 	if (stat->ntries > 0) {
1547 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1548 		wn->amn.amn_retrycnt++;
1549 	}
1550 
1551 	if ((le32toh(stat->status) & 0xff) != 1)
1552 		ifp->if_oerrors++;
1553 	else
1554 		ifp->if_opackets++;
1555 
1556 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1557 	m_freem(txdata->m);
1558 	txdata->m = NULL;
1559 	ieee80211_free_node(txdata->ni);
1560 	txdata->ni = NULL;
1561 
1562 	ring->queued--;
1563 
1564 	sc->sc_tx_timer = 0;
1565 	ifp->if_flags &= ~IFF_OACTIVE;
1566 	wpi_start(ifp);
1567 }
1568 
1569 static void
1570 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1571 {
1572 	struct wpi_tx_ring *ring = &sc->cmdq;
1573 	struct wpi_tx_data *data;
1574 
1575 	if ((desc->qid & 7) != 4)
1576 		return;	/* not a command ack */
1577 
1578 	data = &ring->data[desc->idx];
1579 
1580 	/* if the command was mapped in a mbuf, free it */
1581 	if (data->m != NULL) {
1582 		bus_dmamap_unload(sc->sc_dmat, data->map);
1583 		m_freem(data->m);
1584 		data->m = NULL;
1585 	}
1586 
1587 	wakeup(&ring->cmd[desc->idx]);
1588 }
1589 
1590 static void
1591 wpi_notif_intr(struct wpi_softc *sc)
1592 {
1593 	struct ieee80211com *ic = &sc->sc_ic;
1594 	struct ifnet *ifp =  ic->ic_ifp;
1595 	struct wpi_rx_desc *desc;
1596 	struct wpi_rx_data *data;
1597 	uint32_t hw;
1598 
1599 	hw = le32toh(sc->shared->next);
1600 	while (sc->rxq.cur != hw) {
1601 		data = &sc->rxq.data[sc->rxq.cur];
1602 
1603 		desc = mtod(data->m, struct wpi_rx_desc *);
1604 
1605 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1606 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1607 			desc->type, le32toh(desc->len)));
1608 
1609 		if (!(desc->qid & 0x80))	/* reply to a command */
1610 			wpi_cmd_intr(sc, desc);
1611 
1612 		switch (desc->type) {
1613 		case WPI_RX_DONE:
1614 			/* a 802.11 frame was received */
1615 			wpi_rx_intr(sc, desc, data);
1616 			break;
1617 
1618 		case WPI_TX_DONE:
1619 			/* a 802.11 frame has been transmitted */
1620 			wpi_tx_intr(sc, desc);
1621 			break;
1622 
1623 		case WPI_UC_READY:
1624 		{
1625 			struct wpi_ucode_info *uc =
1626 				(struct wpi_ucode_info *)(desc + 1);
1627 
1628 			/* the microcontroller is ready */
1629 			DPRINTF(("microcode alive notification version %x "
1630 				"alive %x\n", le32toh(uc->version),
1631 				le32toh(uc->valid)));
1632 
1633 			if (le32toh(uc->valid) != 1) {
1634 				aprint_error_dev(sc->sc_dev,
1635 					"microcontroller initialization failed\n");
1636 			}
1637 			break;
1638 		}
1639 		case WPI_STATE_CHANGED:
1640 		{
1641 			uint32_t *status = (uint32_t *)(desc + 1);
1642 
1643 			/* enabled/disabled notification */
1644 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1645 
1646 			if (le32toh(*status) & 1) {
1647 				/* the radio button has to be pushed */
1648 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1649 				/* turn the interface down */
1650 				ifp->if_flags &= ~IFF_UP;
1651 				wpi_stop(ifp, 1);
1652 				return;	/* no further processing */
1653 			}
1654 			break;
1655 		}
1656 		case WPI_START_SCAN:
1657 		{
1658 			struct wpi_start_scan *scan =
1659 				(struct wpi_start_scan *)(desc + 1);
1660 
1661 			DPRINTFN(2, ("scanning channel %d status %x\n",
1662 				scan->chan, le32toh(scan->status)));
1663 
1664 			/* fix current channel */
1665 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1666 			break;
1667 		}
1668 		case WPI_STOP_SCAN:
1669 		{
1670 			struct wpi_stop_scan *scan =
1671 				(struct wpi_stop_scan *)(desc + 1);
1672 
1673 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1674 				scan->nchan, scan->status, scan->chan));
1675 
1676 			if (scan->status == 1 && scan->chan <= 14) {
1677 				/*
1678 				 * We just finished scanning 802.11g channels,
1679 				 * start scanning 802.11a ones.
1680 				 */
1681 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1682 					break;
1683 			}
1684 			sc->is_scanning = false;
1685 			ieee80211_end_scan(ic);
1686 			break;
1687 		}
1688 		}
1689 
1690 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1691 	}
1692 
1693 	/* tell the firmware what we have processed */
1694 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1695 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1696 }
1697 
1698 static int
1699 wpi_intr(void *arg)
1700 {
1701 	struct wpi_softc *sc = arg;
1702 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1703 	uint32_t r;
1704 
1705 	r = WPI_READ(sc, WPI_INTR);
1706 	if (r == 0 || r == 0xffffffff)
1707 		return 0;	/* not for us */
1708 
1709 	DPRINTFN(5, ("interrupt reg %x\n", r));
1710 
1711 	/* disable interrupts */
1712 	WPI_WRITE(sc, WPI_MASK, 0);
1713 	/* ack interrupts */
1714 	WPI_WRITE(sc, WPI_INTR, r);
1715 
1716 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1717 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1718 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1719 		wpi_stop(sc->sc_ic.ic_ifp, 1);
1720 		return 1;
1721 	}
1722 
1723 	if (r & WPI_RX_INTR)
1724 		wpi_notif_intr(sc);
1725 
1726 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1727 		wakeup(sc);
1728 
1729 	/* re-enable interrupts */
1730 	if (ifp->if_flags & IFF_UP)
1731 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1732 
1733 	return 1;
1734 }
1735 
1736 static uint8_t
1737 wpi_plcp_signal(int rate)
1738 {
1739 	switch (rate) {
1740 	/* CCK rates (returned values are device-dependent) */
1741 	case 2:		return 10;
1742 	case 4:		return 20;
1743 	case 11:	return 55;
1744 	case 22:	return 110;
1745 
1746 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1747 	/* R1-R4, (u)ral is R4-R1 */
1748 	case 12:	return 0xd;
1749 	case 18:	return 0xf;
1750 	case 24:	return 0x5;
1751 	case 36:	return 0x7;
1752 	case 48:	return 0x9;
1753 	case 72:	return 0xb;
1754 	case 96:	return 0x1;
1755 	case 108:	return 0x3;
1756 
1757 	/* unsupported rates (should not get there) */
1758 	default:	return 0;
1759 	}
1760 }
1761 
1762 /* quickly determine if a given rate is CCK or OFDM */
1763 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1764 
1765 static int
1766 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1767 	int ac)
1768 {
1769 	struct ieee80211com *ic = &sc->sc_ic;
1770 	struct wpi_tx_ring *ring = &sc->txq[ac];
1771 	struct wpi_tx_desc *desc;
1772 	struct wpi_tx_data *data;
1773 	struct wpi_tx_cmd *cmd;
1774 	struct wpi_cmd_data *tx;
1775 	struct ieee80211_frame *wh;
1776 	struct ieee80211_key *k;
1777 	const struct chanAccParams *cap;
1778 	struct mbuf *mnew;
1779 	int i, error, rate, hdrlen, noack = 0;
1780 
1781 	desc = &ring->desc[ring->cur];
1782 	data = &ring->data[ring->cur];
1783 
1784 	wh = mtod(m0, struct ieee80211_frame *);
1785 
1786 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1787 		cap = &ic->ic_wme.wme_chanParams;
1788 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1789 	}
1790 
1791 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1792 		k = ieee80211_crypto_encap(ic, ni, m0);
1793 		if (k == NULL) {
1794 			m_freem(m0);
1795 			return ENOBUFS;
1796 		}
1797 
1798 		/* packet header may have moved, reset our local pointer */
1799 		wh = mtod(m0, struct ieee80211_frame *);
1800 	}
1801 
1802 	hdrlen = ieee80211_anyhdrsize(wh);
1803 
1804 	/* pickup a rate */
1805 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1806 		IEEE80211_FC0_TYPE_MGT) {
1807 		/* mgmt frames are sent at the lowest available bit-rate */
1808 		rate = ni->ni_rates.rs_rates[0];
1809 	} else {
1810 		if (ic->ic_fixed_rate != -1) {
1811 			rate = ic->ic_sup_rates[ic->ic_curmode].
1812 				rs_rates[ic->ic_fixed_rate];
1813 		} else
1814 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1815 	}
1816 	rate &= IEEE80211_RATE_VAL;
1817 
1818 
1819 	if (sc->sc_drvbpf != NULL) {
1820 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1821 
1822 		tap->wt_flags = 0;
1823 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1824 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1825 		tap->wt_rate = rate;
1826 		tap->wt_hwqueue = ac;
1827 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1828 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1829 
1830 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1831 	}
1832 
1833 	cmd = &ring->cmd[ring->cur];
1834 	cmd->code = WPI_CMD_TX_DATA;
1835 	cmd->flags = 0;
1836 	cmd->qid = ring->qid;
1837 	cmd->idx = ring->cur;
1838 
1839 	tx = (struct wpi_cmd_data *)cmd->data;
1840 	tx->flags = 0;
1841 
1842 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1843 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1844 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1845 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1846 
1847 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1848 
1849 	/* retrieve destination node's id */
1850 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1851 		WPI_ID_BSS;
1852 
1853 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1854 		IEEE80211_FC0_TYPE_MGT) {
1855 		/* tell h/w to set timestamp in probe responses */
1856 		if ((wh->i_fc[0] &
1857 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1858 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1859 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1860 
1861 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1862 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1863 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1864 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1865 			tx->timeout = htole16(3);
1866 		else
1867 			tx->timeout = htole16(2);
1868 	} else
1869 		tx->timeout = htole16(0);
1870 
1871 	tx->rate = wpi_plcp_signal(rate);
1872 
1873 	/* be very persistant at sending frames out */
1874 	tx->rts_ntries = 7;
1875 	tx->data_ntries = 15;
1876 
1877 	tx->ofdm_mask = 0xff;
1878 	tx->cck_mask = 0xf;
1879 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1880 
1881 	tx->len = htole16(m0->m_pkthdr.len);
1882 
1883 	/* save and trim IEEE802.11 header */
1884 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1885 	m_adj(m0, hdrlen);
1886 
1887 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1888 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1889 	if (error != 0 && error != EFBIG) {
1890 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1891 		m_freem(m0);
1892 		return error;
1893 	}
1894 	if (error != 0) {
1895 		/* too many fragments, linearize */
1896 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1897 		if (mnew == NULL) {
1898 			m_freem(m0);
1899 			return ENOMEM;
1900 		}
1901 
1902 		M_COPY_PKTHDR(mnew, m0);
1903 		if (m0->m_pkthdr.len > MHLEN) {
1904 			MCLGET(mnew, M_DONTWAIT);
1905 			if (!(mnew->m_flags & M_EXT)) {
1906 				m_freem(m0);
1907 				m_freem(mnew);
1908 				return ENOMEM;
1909 			}
1910 		}
1911 
1912 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1913 		m_freem(m0);
1914 		mnew->m_len = mnew->m_pkthdr.len;
1915 		m0 = mnew;
1916 
1917 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1918 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1919 		if (error != 0) {
1920 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1921 							 error);
1922 			m_freem(m0);
1923 			return error;
1924 		}
1925 	}
1926 
1927 	data->m = m0;
1928 	data->ni = ni;
1929 
1930 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1931 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1932 
1933 	/* first scatter/gather segment is used by the tx data command */
1934 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1935 		(1 + data->map->dm_nsegs) << 24);
1936 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1937 		ring->cur * sizeof (struct wpi_tx_cmd));
1938 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1939 						 ((hdrlen + 3) & ~3));
1940 
1941 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1942 		desc->segs[i].addr =
1943 			htole32(data->map->dm_segs[i - 1].ds_addr);
1944 		desc->segs[i].len  =
1945 			htole32(data->map->dm_segs[i - 1].ds_len);
1946 	}
1947 
1948 	ring->queued++;
1949 
1950 	/* kick ring */
1951 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1952 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1953 
1954 	return 0;
1955 }
1956 
1957 static void
1958 wpi_start(struct ifnet *ifp)
1959 {
1960 	struct wpi_softc *sc = ifp->if_softc;
1961 	struct ieee80211com *ic = &sc->sc_ic;
1962 	struct ieee80211_node *ni;
1963 	struct ether_header *eh;
1964 	struct mbuf *m0;
1965 	int ac;
1966 
1967 	/*
1968 	 * net80211 may still try to send management frames even if the
1969 	 * IFF_RUNNING flag is not set...
1970 	 */
1971 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1972 		return;
1973 
1974 	for (;;) {
1975 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1976 		if (m0 != NULL) {
1977 
1978 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1979 			m0->m_pkthdr.rcvif = NULL;
1980 
1981 			/* management frames go into ring 0 */
1982 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1983 				ifp->if_oerrors++;
1984 				continue;
1985 			}
1986 			bpf_mtap3(ic->ic_rawbpf, m0);
1987 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1988 				ifp->if_oerrors++;
1989 				break;
1990 			}
1991 		} else {
1992 			if (ic->ic_state != IEEE80211_S_RUN)
1993 				break;
1994 			IFQ_POLL(&ifp->if_snd, m0);
1995 			if (m0 == NULL)
1996 				break;
1997 
1998 			if (m0->m_len < sizeof (*eh) &&
1999 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2000 				ifp->if_oerrors++;
2001 				continue;
2002 			}
2003 			eh = mtod(m0, struct ether_header *);
2004 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2005 			if (ni == NULL) {
2006 				m_freem(m0);
2007 				ifp->if_oerrors++;
2008 				continue;
2009 			}
2010 
2011 			/* classify mbuf so we can find which tx ring to use */
2012 			if (ieee80211_classify(ic, m0, ni) != 0) {
2013 				m_freem(m0);
2014 				ieee80211_free_node(ni);
2015 				ifp->if_oerrors++;
2016 				continue;
2017 			}
2018 
2019 			/* no QoS encapsulation for EAPOL frames */
2020 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2021 			    M_WME_GETAC(m0) : WME_AC_BE;
2022 
2023 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2024 				/* there is no place left in this ring */
2025 				ifp->if_flags |= IFF_OACTIVE;
2026 				break;
2027 			}
2028 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2029 			bpf_mtap(ifp, m0);
2030 			m0 = ieee80211_encap(ic, m0, ni);
2031 			if (m0 == NULL) {
2032 				ieee80211_free_node(ni);
2033 				ifp->if_oerrors++;
2034 				continue;
2035 			}
2036 			bpf_mtap3(ic->ic_rawbpf, m0);
2037 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2038 				ieee80211_free_node(ni);
2039 				ifp->if_oerrors++;
2040 				break;
2041 			}
2042 		}
2043 
2044 		sc->sc_tx_timer = 5;
2045 		ifp->if_timer = 1;
2046 	}
2047 }
2048 
2049 static void
2050 wpi_watchdog(struct ifnet *ifp)
2051 {
2052 	struct wpi_softc *sc = ifp->if_softc;
2053 
2054 	ifp->if_timer = 0;
2055 
2056 	if (sc->sc_tx_timer > 0) {
2057 		if (--sc->sc_tx_timer == 0) {
2058 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2059 			ifp->if_oerrors++;
2060 			ifp->if_flags &= ~IFF_UP;
2061 			wpi_stop(ifp, 1);
2062 			return;
2063 		}
2064 		ifp->if_timer = 1;
2065 	}
2066 
2067 	ieee80211_watchdog(&sc->sc_ic);
2068 }
2069 
2070 static int
2071 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2072 {
2073 #define IS_RUNNING(ifp) \
2074 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2075 
2076 	struct wpi_softc *sc = ifp->if_softc;
2077 	struct ieee80211com *ic = &sc->sc_ic;
2078 	int s, error = 0;
2079 
2080 	s = splnet();
2081 
2082 	switch (cmd) {
2083 	case SIOCSIFFLAGS:
2084 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2085 			break;
2086 		if (ifp->if_flags & IFF_UP) {
2087 			if (!(ifp->if_flags & IFF_RUNNING))
2088 				wpi_init(ifp);
2089 		} else {
2090 			if (ifp->if_flags & IFF_RUNNING)
2091 				wpi_stop(ifp, 1);
2092 		}
2093 		break;
2094 
2095 	case SIOCADDMULTI:
2096 	case SIOCDELMULTI:
2097 		/* XXX no h/w multicast filter? --dyoung */
2098 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2099 			/* setup multicast filter, etc */
2100 			error = 0;
2101 		}
2102 		break;
2103 
2104 	default:
2105 		error = ieee80211_ioctl(ic, cmd, data);
2106 	}
2107 
2108 	if (error == ENETRESET) {
2109 		if (IS_RUNNING(ifp) &&
2110 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2111 			wpi_init(ifp);
2112 		error = 0;
2113 	}
2114 
2115 	splx(s);
2116 	return error;
2117 
2118 #undef IS_RUNNING
2119 }
2120 
2121 /*
2122  * Extract various information from EEPROM.
2123  */
2124 static void
2125 wpi_read_eeprom(struct wpi_softc *sc)
2126 {
2127 	struct ieee80211com *ic = &sc->sc_ic;
2128 	char domain[4];
2129 	int i;
2130 
2131 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2132 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2133 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2134 
2135 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2136 	    sc->type));
2137 
2138 	/* read and print regulatory domain */
2139 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2140 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2141 
2142 	/* read and print MAC address */
2143 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2144 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2145 
2146 	/* read the list of authorized channels */
2147 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2148 		wpi_read_eeprom_channels(sc, i);
2149 
2150 	/* read the list of power groups */
2151 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2152 		wpi_read_eeprom_group(sc, i);
2153 }
2154 
2155 static void
2156 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2157 {
2158 	struct ieee80211com *ic = &sc->sc_ic;
2159 	const struct wpi_chan_band *band = &wpi_bands[n];
2160 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2161 	int chan, i;
2162 
2163 	wpi_read_prom_data(sc, band->addr, channels,
2164 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2165 
2166 	for (i = 0; i < band->nchan; i++) {
2167 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2168 			continue;
2169 
2170 		chan = band->chan[i];
2171 
2172 		if (n == 0) {	/* 2GHz band */
2173 			ic->ic_channels[chan].ic_freq =
2174 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2175 			ic->ic_channels[chan].ic_flags =
2176 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2177 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2178 
2179 		} else {	/* 5GHz band */
2180 			/*
2181 			 * Some 3945abg adapters support channels 7, 8, 11
2182 			 * and 12 in the 2GHz *and* 5GHz bands.
2183 			 * Because of limitations in our net80211(9) stack,
2184 			 * we can't support these channels in 5GHz band.
2185 			 */
2186 			if (chan <= 14)
2187 				continue;
2188 
2189 			ic->ic_channels[chan].ic_freq =
2190 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2191 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2192 		}
2193 
2194 		/* is active scan allowed on this channel? */
2195 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2196 			ic->ic_channels[chan].ic_flags |=
2197 			    IEEE80211_CHAN_PASSIVE;
2198 		}
2199 
2200 		/* save maximum allowed power for this channel */
2201 		sc->maxpwr[chan] = channels[i].maxpwr;
2202 
2203 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2204 		    chan, channels[i].flags, sc->maxpwr[chan]));
2205 	}
2206 }
2207 
2208 static void
2209 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2210 {
2211 	struct wpi_power_group *group = &sc->groups[n];
2212 	struct wpi_eeprom_group rgroup;
2213 	int i;
2214 
2215 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2216 	    sizeof rgroup);
2217 
2218 	/* save power group information */
2219 	group->chan   = rgroup.chan;
2220 	group->maxpwr = rgroup.maxpwr;
2221 	/* temperature at which the samples were taken */
2222 	group->temp   = (int16_t)le16toh(rgroup.temp);
2223 
2224 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2225 	    group->chan, group->maxpwr, group->temp));
2226 
2227 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2228 		group->samples[i].index = rgroup.samples[i].index;
2229 		group->samples[i].power = rgroup.samples[i].power;
2230 
2231 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2232 		    group->samples[i].index, group->samples[i].power));
2233 	}
2234 }
2235 
2236 /*
2237  * Send a command to the firmware.
2238  */
2239 static int
2240 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2241 {
2242 	struct wpi_tx_ring *ring = &sc->cmdq;
2243 	struct wpi_tx_desc *desc;
2244 	struct wpi_tx_cmd *cmd;
2245 
2246 	KASSERT(size <= sizeof cmd->data);
2247 
2248 	desc = &ring->desc[ring->cur];
2249 	cmd = &ring->cmd[ring->cur];
2250 
2251 	cmd->code = code;
2252 	cmd->flags = 0;
2253 	cmd->qid = ring->qid;
2254 	cmd->idx = ring->cur;
2255 	memcpy(cmd->data, buf, size);
2256 
2257 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2258 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2259 		ring->cur * sizeof (struct wpi_tx_cmd));
2260 	desc->segs[0].len  = htole32(4 + size);
2261 
2262 	/* kick cmd ring */
2263 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2264 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2265 
2266 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2267 }
2268 
2269 static int
2270 wpi_wme_update(struct ieee80211com *ic)
2271 {
2272 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2273 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2274 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2275 	const struct wmeParams *wmep;
2276 	struct wpi_wme_setup wme;
2277 	int ac;
2278 
2279 	/* don't override default WME values if WME is not actually enabled */
2280 	if (!(ic->ic_flags & IEEE80211_F_WME))
2281 		return 0;
2282 
2283 	wme.flags = 0;
2284 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2285 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2286 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2287 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2288 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2289 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2290 
2291 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2292 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2293 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2294 	}
2295 
2296 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2297 #undef WPI_USEC
2298 #undef WPI_EXP2
2299 }
2300 
2301 /*
2302  * Configure h/w multi-rate retries.
2303  */
2304 static int
2305 wpi_mrr_setup(struct wpi_softc *sc)
2306 {
2307 	struct ieee80211com *ic = &sc->sc_ic;
2308 	struct wpi_mrr_setup mrr;
2309 	int i, error;
2310 
2311 	/* CCK rates (not used with 802.11a) */
2312 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2313 		mrr.rates[i].flags = 0;
2314 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2315 		/* fallback to the immediate lower CCK rate (if any) */
2316 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2317 		/* try one time at this rate before falling back to "next" */
2318 		mrr.rates[i].ntries = 1;
2319 	}
2320 
2321 	/* OFDM rates (not used with 802.11b) */
2322 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2323 		mrr.rates[i].flags = 0;
2324 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2325 		/* fallback to the immediate lower rate (if any) */
2326 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2327 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2328 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2329 			WPI_OFDM6 : WPI_CCK2) :
2330 		    i - 1;
2331 		/* try one time at this rate before falling back to "next" */
2332 		mrr.rates[i].ntries = 1;
2333 	}
2334 
2335 	/* setup MRR for control frames */
2336 	mrr.which = htole32(WPI_MRR_CTL);
2337 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2338 	if (error != 0) {
2339 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2340 		return error;
2341 	}
2342 
2343 	/* setup MRR for data frames */
2344 	mrr.which = htole32(WPI_MRR_DATA);
2345 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2346 	if (error != 0) {
2347 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2348 		return error;
2349 	}
2350 
2351 	return 0;
2352 }
2353 
2354 static void
2355 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2356 {
2357 	struct wpi_cmd_led led;
2358 
2359 	led.which = which;
2360 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2361 	led.off = off;
2362 	led.on = on;
2363 
2364 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2365 }
2366 
2367 static void
2368 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2369 {
2370 	struct wpi_cmd_tsf tsf;
2371 	uint64_t val, mod;
2372 
2373 	memset(&tsf, 0, sizeof tsf);
2374 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2375 	tsf.bintval = htole16(ni->ni_intval);
2376 	tsf.lintval = htole16(10);
2377 
2378 	/* compute remaining time until next beacon */
2379 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2380 	mod = le64toh(tsf.tstamp) % val;
2381 	tsf.binitval = htole32((uint32_t)(val - mod));
2382 
2383 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2384 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2385 
2386 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2387 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2388 }
2389 
2390 /*
2391  * Update Tx power to match what is defined for channel `c'.
2392  */
2393 static int
2394 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2395 {
2396 	struct ieee80211com *ic = &sc->sc_ic;
2397 	struct wpi_power_group *group;
2398 	struct wpi_cmd_txpower txpower;
2399 	u_int chan;
2400 	int i;
2401 
2402 	/* get channel number */
2403 	chan = ieee80211_chan2ieee(ic, c);
2404 
2405 	/* find the power group to which this channel belongs */
2406 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2407 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2408 			if (chan <= group->chan)
2409 				break;
2410 	} else
2411 		group = &sc->groups[0];
2412 
2413 	memset(&txpower, 0, sizeof txpower);
2414 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2415 	txpower.chan = htole16(chan);
2416 
2417 	/* set Tx power for all OFDM and CCK rates */
2418 	for (i = 0; i <= 11 ; i++) {
2419 		/* retrieve Tx power for this channel/rate combination */
2420 		int idx = wpi_get_power_index(sc, group, c,
2421 		    wpi_ridx_to_rate[i]);
2422 
2423 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2424 
2425 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2426 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2427 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2428 		} else {
2429 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2430 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2431 		}
2432 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2433 		    wpi_ridx_to_rate[i], idx));
2434 	}
2435 
2436 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2437 }
2438 
2439 /*
2440  * Determine Tx power index for a given channel/rate combination.
2441  * This takes into account the regulatory information from EEPROM and the
2442  * current temperature.
2443  */
2444 static int
2445 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2446     struct ieee80211_channel *c, int rate)
2447 {
2448 /* fixed-point arithmetic division using a n-bit fractional part */
2449 #define fdivround(a, b, n)	\
2450 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2451 
2452 /* linear interpolation */
2453 #define interpolate(x, x1, y1, x2, y2, n)	\
2454 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2455 
2456 	struct ieee80211com *ic = &sc->sc_ic;
2457 	struct wpi_power_sample *sample;
2458 	int pwr, idx;
2459 	u_int chan;
2460 
2461 	/* get channel number */
2462 	chan = ieee80211_chan2ieee(ic, c);
2463 
2464 	/* default power is group's maximum power - 3dB */
2465 	pwr = group->maxpwr / 2;
2466 
2467 	/* decrease power for highest OFDM rates to reduce distortion */
2468 	switch (rate) {
2469 	case 72:	/* 36Mb/s */
2470 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2471 		break;
2472 	case 96:	/* 48Mb/s */
2473 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2474 		break;
2475 	case 108:	/* 54Mb/s */
2476 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2477 		break;
2478 	}
2479 
2480 	/* never exceed channel's maximum allowed Tx power */
2481 	pwr = min(pwr, sc->maxpwr[chan]);
2482 
2483 	/* retrieve power index into gain tables from samples */
2484 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2485 		if (pwr > sample[1].power)
2486 			break;
2487 	/* fixed-point linear interpolation using a 19-bit fractional part */
2488 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2489 	    sample[1].power, sample[1].index, 19);
2490 
2491 	/*
2492 	 * Adjust power index based on current temperature:
2493 	 * - if cooler than factory-calibrated: decrease output power
2494 	 * - if warmer than factory-calibrated: increase output power
2495 	 */
2496 	idx -= (sc->temp - group->temp) * 11 / 100;
2497 
2498 	/* decrease power for CCK rates (-5dB) */
2499 	if (!WPI_RATE_IS_OFDM(rate))
2500 		idx += 10;
2501 
2502 	/* keep power index in a valid range */
2503 	if (idx < 0)
2504 		return 0;
2505 	if (idx > WPI_MAX_PWR_INDEX)
2506 		return WPI_MAX_PWR_INDEX;
2507 	return idx;
2508 
2509 #undef interpolate
2510 #undef fdivround
2511 }
2512 
2513 /*
2514  * Build a beacon frame that the firmware will broadcast periodically in
2515  * IBSS or HostAP modes.
2516  */
2517 static int
2518 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2519 {
2520 	struct ieee80211com *ic = &sc->sc_ic;
2521 	struct wpi_tx_ring *ring = &sc->cmdq;
2522 	struct wpi_tx_desc *desc;
2523 	struct wpi_tx_data *data;
2524 	struct wpi_tx_cmd *cmd;
2525 	struct wpi_cmd_beacon *bcn;
2526 	struct ieee80211_beacon_offsets bo;
2527 	struct mbuf *m0;
2528 	int error;
2529 
2530 	desc = &ring->desc[ring->cur];
2531 	data = &ring->data[ring->cur];
2532 
2533 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2534 	if (m0 == NULL) {
2535 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2536 		return ENOMEM;
2537 	}
2538 
2539 	cmd = &ring->cmd[ring->cur];
2540 	cmd->code = WPI_CMD_SET_BEACON;
2541 	cmd->flags = 0;
2542 	cmd->qid = ring->qid;
2543 	cmd->idx = ring->cur;
2544 
2545 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2546 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2547 	bcn->id = WPI_ID_BROADCAST;
2548 	bcn->ofdm_mask = 0xff;
2549 	bcn->cck_mask = 0x0f;
2550 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2551 	bcn->len = htole16(m0->m_pkthdr.len);
2552 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2553 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2554 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2555 
2556 	/* save and trim IEEE802.11 header */
2557 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2558 	m_adj(m0, sizeof (struct ieee80211_frame));
2559 
2560 	/* assume beacon frame is contiguous */
2561 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2562 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2563 	if (error) {
2564 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2565 		m_freem(m0);
2566 		return error;
2567 	}
2568 
2569 	data->m = m0;
2570 
2571 	/* first scatter/gather segment is used by the beacon command */
2572 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2573 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2574 		ring->cur * sizeof (struct wpi_tx_cmd));
2575 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2576 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2577 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2578 
2579 	/* kick cmd ring */
2580 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2581 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2582 
2583 	return 0;
2584 }
2585 
2586 static int
2587 wpi_auth(struct wpi_softc *sc)
2588 {
2589 	struct ieee80211com *ic = &sc->sc_ic;
2590 	struct ieee80211_node *ni = ic->ic_bss;
2591 	struct wpi_node_info node;
2592 	int error;
2593 
2594 	/* update adapter's configuration */
2595 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2596 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2597 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2598 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2599 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2600 		    WPI_CONFIG_24GHZ);
2601 	}
2602 	switch (ic->ic_curmode) {
2603 	case IEEE80211_MODE_11A:
2604 		sc->config.cck_mask  = 0;
2605 		sc->config.ofdm_mask = 0x15;
2606 		break;
2607 	case IEEE80211_MODE_11B:
2608 		sc->config.cck_mask  = 0x03;
2609 		sc->config.ofdm_mask = 0;
2610 		break;
2611 	default:	/* assume 802.11b/g */
2612 		sc->config.cck_mask  = 0x0f;
2613 		sc->config.ofdm_mask = 0x15;
2614 	}
2615 
2616 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2617 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2618 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2619 		sizeof (struct wpi_config), 1);
2620 	if (error != 0) {
2621 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2622 		return error;
2623 	}
2624 
2625 	/* configuration has changed, set Tx power accordingly */
2626 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2627 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2628 		return error;
2629 	}
2630 
2631 	/* add default node */
2632 	memset(&node, 0, sizeof node);
2633 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2634 	node.id = WPI_ID_BSS;
2635 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2636 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2637 	node.action = htole32(WPI_ACTION_SET_RATE);
2638 	node.antenna = WPI_ANTENNA_BOTH;
2639 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2640 	if (error != 0) {
2641 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2642 		return error;
2643 	}
2644 
2645 	return 0;
2646 }
2647 
2648 /*
2649  * Send a scan request to the firmware.  Since this command is huge, we map it
2650  * into a mbuf instead of using the pre-allocated set of commands.
2651  */
2652 static int
2653 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2654 {
2655 	struct ieee80211com *ic = &sc->sc_ic;
2656 	struct wpi_tx_ring *ring = &sc->cmdq;
2657 	struct wpi_tx_desc *desc;
2658 	struct wpi_tx_data *data;
2659 	struct wpi_tx_cmd *cmd;
2660 	struct wpi_scan_hdr *hdr;
2661 	struct wpi_scan_chan *chan;
2662 	struct ieee80211_frame *wh;
2663 	struct ieee80211_rateset *rs;
2664 	struct ieee80211_channel *c;
2665 	enum ieee80211_phymode mode;
2666 	uint8_t *frm;
2667 	int nrates, pktlen, error;
2668 
2669 	desc = &ring->desc[ring->cur];
2670 	data = &ring->data[ring->cur];
2671 
2672 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2673 	if (data->m == NULL) {
2674 		aprint_error_dev(sc->sc_dev,
2675 						"could not allocate mbuf for scan command\n");
2676 		return ENOMEM;
2677 	}
2678 
2679 	MCLGET(data->m, M_DONTWAIT);
2680 	if (!(data->m->m_flags & M_EXT)) {
2681 		m_freem(data->m);
2682 		data->m = NULL;
2683 		aprint_error_dev(sc->sc_dev,
2684 						 "could not allocate mbuf for scan command\n");
2685 		return ENOMEM;
2686 	}
2687 
2688 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2689 	cmd->code = WPI_CMD_SCAN;
2690 	cmd->flags = 0;
2691 	cmd->qid = ring->qid;
2692 	cmd->idx = ring->cur;
2693 
2694 	hdr = (struct wpi_scan_hdr *)cmd->data;
2695 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2696 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2697 	hdr->id = WPI_ID_BROADCAST;
2698 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2699 
2700 	/*
2701 	 * Move to the next channel if no packets are received within 5 msecs
2702 	 * after sending the probe request (this helps to reduce the duration
2703 	 * of active scans).
2704 	 */
2705 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2706 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2707 
2708 	if (flags & IEEE80211_CHAN_A) {
2709 		hdr->crc_threshold = htole16(1);
2710 		/* send probe requests at 6Mbps */
2711 		hdr->rate = wpi_plcp_signal(12);
2712 	} else {
2713 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2714 		/* send probe requests at 1Mbps */
2715 		hdr->rate = wpi_plcp_signal(2);
2716 	}
2717 
2718 	/* for directed scans, firmware inserts the essid IE itself */
2719 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2720 	hdr->essid[0].len = ic->ic_des_esslen;
2721 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2722 
2723 	/*
2724 	 * Build a probe request frame.  Most of the following code is a
2725 	 * copy & paste of what is done in net80211.
2726 	 */
2727 	wh = (struct ieee80211_frame *)(hdr + 1);
2728 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2729 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2730 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2731 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2732 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2733 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2734 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2735 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2736 
2737 	frm = (uint8_t *)(wh + 1);
2738 
2739 	/* add empty essid IE (firmware generates it for directed scans) */
2740 	*frm++ = IEEE80211_ELEMID_SSID;
2741 	*frm++ = 0;
2742 
2743 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2744 	rs = &ic->ic_sup_rates[mode];
2745 
2746 	/* add supported rates IE */
2747 	*frm++ = IEEE80211_ELEMID_RATES;
2748 	nrates = rs->rs_nrates;
2749 	if (nrates > IEEE80211_RATE_SIZE)
2750 		nrates = IEEE80211_RATE_SIZE;
2751 	*frm++ = nrates;
2752 	memcpy(frm, rs->rs_rates, nrates);
2753 	frm += nrates;
2754 
2755 	/* add supported xrates IE */
2756 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2757 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2758 		*frm++ = IEEE80211_ELEMID_XRATES;
2759 		*frm++ = nrates;
2760 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2761 		frm += nrates;
2762 	}
2763 
2764 	/* setup length of probe request */
2765 	hdr->paylen = htole16(frm - (uint8_t *)wh);
2766 
2767 	chan = (struct wpi_scan_chan *)frm;
2768 	for (c  = &ic->ic_channels[1];
2769 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2770 		if ((c->ic_flags & flags) != flags)
2771 			continue;
2772 
2773 		chan->chan = ieee80211_chan2ieee(ic, c);
2774 		chan->flags = 0;
2775 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2776 			chan->flags |= WPI_CHAN_ACTIVE;
2777 			if (ic->ic_des_esslen != 0)
2778 				chan->flags |= WPI_CHAN_DIRECT;
2779 		}
2780 		chan->dsp_gain = 0x6e;
2781 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2782 			chan->rf_gain = 0x3b;
2783 			chan->active = htole16(10);
2784 			chan->passive = htole16(110);
2785 		} else {
2786 			chan->rf_gain = 0x28;
2787 			chan->active = htole16(20);
2788 			chan->passive = htole16(120);
2789 		}
2790 		hdr->nchan++;
2791 		chan++;
2792 
2793 		frm += sizeof (struct wpi_scan_chan);
2794 	}
2795 	hdr->len = htole16(frm - (uint8_t *)hdr);
2796 	pktlen = frm - (uint8_t *)cmd;
2797 
2798 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2799 		NULL, BUS_DMA_NOWAIT);
2800 	if (error) {
2801 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2802 		m_freem(data->m);
2803 		data->m = NULL;
2804 		return error;
2805 	}
2806 
2807 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2808 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2809 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2810 
2811 	/* kick cmd ring */
2812 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2813 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2814 
2815 	return 0;	/* will be notified async. of failure/success */
2816 }
2817 
2818 static int
2819 wpi_config(struct wpi_softc *sc)
2820 {
2821 	struct ieee80211com *ic = &sc->sc_ic;
2822 	struct ifnet *ifp = ic->ic_ifp;
2823 	struct wpi_power power;
2824 	struct wpi_bluetooth bluetooth;
2825 	struct wpi_node_info node;
2826 	int error;
2827 
2828 	memset(&power, 0, sizeof power);
2829 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2830 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2831 	if (error != 0) {
2832 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2833 		return error;
2834 	}
2835 
2836 	/* configure bluetooth coexistence */
2837 	memset(&bluetooth, 0, sizeof bluetooth);
2838 	bluetooth.flags = 3;
2839 	bluetooth.lead = 0xaa;
2840 	bluetooth.kill = 1;
2841 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2842 		0);
2843 	if (error != 0) {
2844 		aprint_error_dev(sc->sc_dev,
2845 			"could not configure bluetooth coexistence\n");
2846 		return error;
2847 	}
2848 
2849 	/* configure adapter */
2850 	memset(&sc->config, 0, sizeof (struct wpi_config));
2851 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2852 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2853 	/*set default channel*/
2854 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2855 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2856 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2857 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2858 		    WPI_CONFIG_24GHZ);
2859 	}
2860 	sc->config.filter = 0;
2861 	switch (ic->ic_opmode) {
2862 	case IEEE80211_M_STA:
2863 		sc->config.mode = WPI_MODE_STA;
2864 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2865 		break;
2866 	case IEEE80211_M_IBSS:
2867 	case IEEE80211_M_AHDEMO:
2868 		sc->config.mode = WPI_MODE_IBSS;
2869 		break;
2870 	case IEEE80211_M_HOSTAP:
2871 		sc->config.mode = WPI_MODE_HOSTAP;
2872 		break;
2873 	case IEEE80211_M_MONITOR:
2874 		sc->config.mode = WPI_MODE_MONITOR;
2875 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2876 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2877 		break;
2878 	}
2879 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2880 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2881 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2882 		sizeof (struct wpi_config), 0);
2883 	if (error != 0) {
2884 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2885 		return error;
2886 	}
2887 
2888 	/* configuration has changed, set Tx power accordingly */
2889 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2890 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2891 		return error;
2892 	}
2893 
2894 	/* add broadcast node */
2895 	memset(&node, 0, sizeof node);
2896 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2897 	node.id = WPI_ID_BROADCAST;
2898 	node.rate = wpi_plcp_signal(2);
2899 	node.action = htole32(WPI_ACTION_SET_RATE);
2900 	node.antenna = WPI_ANTENNA_BOTH;
2901 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2902 	if (error != 0) {
2903 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2904 		return error;
2905 	}
2906 
2907 	if ((error = wpi_mrr_setup(sc)) != 0) {
2908 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2909 		return error;
2910 	}
2911 
2912 	return 0;
2913 }
2914 
2915 static void
2916 wpi_stop_master(struct wpi_softc *sc)
2917 {
2918 	uint32_t tmp;
2919 	int ntries;
2920 
2921 	tmp = WPI_READ(sc, WPI_RESET);
2922 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2923 
2924 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2925 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2926 		return;	/* already asleep */
2927 
2928 	for (ntries = 0; ntries < 100; ntries++) {
2929 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2930 			break;
2931 		DELAY(10);
2932 	}
2933 	if (ntries == 100) {
2934 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2935 	}
2936 }
2937 
2938 static int
2939 wpi_power_up(struct wpi_softc *sc)
2940 {
2941 	uint32_t tmp;
2942 	int ntries;
2943 
2944 	wpi_mem_lock(sc);
2945 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2946 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2947 	wpi_mem_unlock(sc);
2948 
2949 	for (ntries = 0; ntries < 5000; ntries++) {
2950 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2951 			break;
2952 		DELAY(10);
2953 	}
2954 	if (ntries == 5000) {
2955 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2956 		return ETIMEDOUT;
2957 	}
2958 	return 0;
2959 }
2960 
2961 static int
2962 wpi_reset(struct wpi_softc *sc)
2963 {
2964 	uint32_t tmp;
2965 	int ntries;
2966 
2967 	/* clear any pending interrupts */
2968 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2969 
2970 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2971 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2972 
2973 	tmp = WPI_READ(sc, WPI_CHICKEN);
2974 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2975 
2976 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2977 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2978 
2979 	/* wait for clock stabilization */
2980 	for (ntries = 0; ntries < 1000; ntries++) {
2981 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2982 			break;
2983 		DELAY(10);
2984 	}
2985 	if (ntries == 1000) {
2986 		aprint_error_dev(sc->sc_dev,
2987 						 "timeout waiting for clock stabilization\n");
2988 		return ETIMEDOUT;
2989 	}
2990 
2991 	/* initialize EEPROM */
2992 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2993 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2994 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2995 		return EIO;
2996 	}
2997 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2998 
2999 	return 0;
3000 }
3001 
3002 static void
3003 wpi_hw_config(struct wpi_softc *sc)
3004 {
3005 	uint32_t rev, hw;
3006 
3007 	/* voodoo from the reference driver */
3008 	hw = WPI_READ(sc, WPI_HWCONFIG);
3009 
3010 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3011 	rev = PCI_REVISION(rev);
3012 	if ((rev & 0xc0) == 0x40)
3013 		hw |= WPI_HW_ALM_MB;
3014 	else if (!(rev & 0x80))
3015 		hw |= WPI_HW_ALM_MM;
3016 
3017 	if (sc->cap == 0x80)
3018 		hw |= WPI_HW_SKU_MRC;
3019 
3020 	hw &= ~WPI_HW_REV_D;
3021 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3022 		hw |= WPI_HW_REV_D;
3023 
3024 	if (sc->type > 1)
3025 		hw |= WPI_HW_TYPE_B;
3026 
3027 	DPRINTF(("setting h/w config %x\n", hw));
3028 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3029 }
3030 
3031 static int
3032 wpi_init(struct ifnet *ifp)
3033 {
3034 	struct wpi_softc *sc = ifp->if_softc;
3035 	struct ieee80211com *ic = &sc->sc_ic;
3036 	uint32_t tmp;
3037 	int qid, ntries, error;
3038 
3039 	wpi_stop(ifp,1);
3040 	(void)wpi_reset(sc);
3041 
3042 	wpi_mem_lock(sc);
3043 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3044 	DELAY(20);
3045 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3046 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3047 	wpi_mem_unlock(sc);
3048 
3049 	(void)wpi_power_up(sc);
3050 	wpi_hw_config(sc);
3051 
3052 	/* init Rx ring */
3053 	wpi_mem_lock(sc);
3054 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3055 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3056 	    offsetof(struct wpi_shared, next));
3057 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3058 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3059 	wpi_mem_unlock(sc);
3060 
3061 	/* init Tx rings */
3062 	wpi_mem_lock(sc);
3063 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3064 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3065 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3066 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3067 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3068 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3069 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3070 
3071 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3072 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3073 
3074 	for (qid = 0; qid < 6; qid++) {
3075 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3076 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3077 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3078 	}
3079 	wpi_mem_unlock(sc);
3080 
3081 	/* clear "radio off" and "disable command" bits (reversed logic) */
3082 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3083 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3084 
3085 	/* clear any pending interrupts */
3086 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3087 	/* enable interrupts */
3088 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3089 
3090 	/* not sure why/if this is necessary... */
3091 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3092 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3093 
3094 	if ((error = wpi_load_firmware(sc)) != 0) {
3095 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3096 		goto fail1;
3097 	}
3098 
3099 	/* Check the status of the radio switch */
3100 	if (wpi_getrfkill(sc)) {
3101 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3102 		error = EBUSY;
3103 		goto fail1;
3104 	}
3105 
3106 	/* wait for thermal sensors to calibrate */
3107 	for (ntries = 0; ntries < 1000; ntries++) {
3108 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3109 			break;
3110 		DELAY(10);
3111 	}
3112 	if (ntries == 1000) {
3113 		aprint_error_dev(sc->sc_dev,
3114 						 "timeout waiting for thermal sensors calibration\n");
3115 		error = ETIMEDOUT;
3116 		goto fail1;
3117 	}
3118 
3119 	DPRINTF(("temperature %d\n", sc->temp));
3120 
3121 	if ((error = wpi_config(sc)) != 0) {
3122 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3123 		goto fail1;
3124 	}
3125 
3126 	ifp->if_flags &= ~IFF_OACTIVE;
3127 	ifp->if_flags |= IFF_RUNNING;
3128 
3129 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3130 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3131 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3132 	}
3133 	else
3134 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3135 
3136 	return 0;
3137 
3138 fail1:	wpi_stop(ifp, 1);
3139 	return error;
3140 }
3141 
3142 
3143 static void
3144 wpi_stop(struct ifnet *ifp, int disable)
3145 {
3146 	struct wpi_softc *sc = ifp->if_softc;
3147 	struct ieee80211com *ic = &sc->sc_ic;
3148 	uint32_t tmp;
3149 	int ac;
3150 
3151 	ifp->if_timer = sc->sc_tx_timer = 0;
3152 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3153 
3154 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3155 
3156 	/* disable interrupts */
3157 	WPI_WRITE(sc, WPI_MASK, 0);
3158 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3159 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3160 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3161 
3162 	wpi_mem_lock(sc);
3163 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3164 	wpi_mem_unlock(sc);
3165 
3166 	/* reset all Tx rings */
3167 	for (ac = 0; ac < 4; ac++)
3168 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3169 	wpi_reset_tx_ring(sc, &sc->cmdq);
3170 
3171 	/* reset Rx ring */
3172 	wpi_reset_rx_ring(sc, &sc->rxq);
3173 
3174 	wpi_mem_lock(sc);
3175 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3176 	wpi_mem_unlock(sc);
3177 
3178 	DELAY(5);
3179 
3180 	wpi_stop_master(sc);
3181 
3182 	tmp = WPI_READ(sc, WPI_RESET);
3183 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3184 }
3185 
3186 static bool
3187 wpi_resume(device_t dv, const pmf_qual_t *qual)
3188 {
3189 	struct wpi_softc *sc = device_private(dv);
3190 
3191 	(void)wpi_reset(sc);
3192 
3193 	return true;
3194 }
3195 
3196 /*
3197  * Return whether or not the radio is enabled in hardware
3198  * (i.e. the rfkill switch is "off").
3199  */
3200 static int
3201 wpi_getrfkill(struct wpi_softc *sc)
3202 {
3203 	uint32_t tmp;
3204 
3205 	wpi_mem_lock(sc);
3206 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3207 	wpi_mem_unlock(sc);
3208 
3209 	return !(tmp & 0x01);
3210 }
3211 
3212 static int
3213 wpi_sysctl_radio(SYSCTLFN_ARGS)
3214 {
3215 	struct sysctlnode node;
3216 	struct wpi_softc *sc;
3217 	int val, error;
3218 
3219 	node = *rnode;
3220 	sc = (struct wpi_softc *)node.sysctl_data;
3221 
3222 	val = !wpi_getrfkill(sc);
3223 
3224 	node.sysctl_data = &val;
3225 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3226 
3227 	if (error || newp == NULL)
3228 		return error;
3229 
3230 	return 0;
3231 }
3232 
3233 static void
3234 wpi_sysctlattach(struct wpi_softc *sc)
3235 {
3236 	int rc;
3237 	const struct sysctlnode *rnode;
3238 	const struct sysctlnode *cnode;
3239 
3240 	struct sysctllog **clog = &sc->sc_sysctllog;
3241 
3242 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3243 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3244 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3245 		goto err;
3246 
3247 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3248 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3249 	    SYSCTL_DESCR("wpi controls and statistics"),
3250 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3251 		goto err;
3252 
3253 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3254 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3255 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3256 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3257 		goto err;
3258 
3259 #ifdef WPI_DEBUG
3260 	/* control debugging printfs */
3261 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3262 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3263 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3264 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3265 		goto err;
3266 #endif
3267 
3268 	return;
3269 err:
3270 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3271 }
3272