xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*  $NetBSD: if_wpi.c,v 1.42 2009/05/06 09:25:16 cegger Exp $    */
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.42 2009/05/06 09:25:16 cegger Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include "bpfilter.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/mutex.h>
38 #include <sys/once.h>
39 #include <sys/conf.h>
40 #include <sys/kauth.h>
41 #include <sys/callout.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50 
51 #if NBPFILTER > 0
52 #include <net/bpf.h>
53 #endif
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 
70 #include <dev/firmload.h>
71 
72 #include <dev/pci/if_wpireg.h>
73 #include <dev/pci/if_wpivar.h>
74 
75 #ifdef WPI_DEBUG
76 #define DPRINTF(x)	if (wpi_debug > 0) printf x
77 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
78 int wpi_debug = 1;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n, x)
82 #endif
83 
84 /*
85  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
86  */
87 static const struct ieee80211_rateset wpi_rateset_11a =
88 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
89 
90 static const struct ieee80211_rateset wpi_rateset_11b =
91 	{ 4, { 2, 4, 11, 22 } };
92 
93 static const struct ieee80211_rateset wpi_rateset_11g =
94 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
95 
96 static once_t wpi_firmware_init;
97 static kmutex_t wpi_firmware_mutex;
98 static size_t wpi_firmware_users;
99 static uint8_t *wpi_firmware_image;
100 static size_t wpi_firmware_size;
101 
102 static int  wpi_match(device_t, cfdata_t, void *);
103 static void wpi_attach(device_t, device_t, void *);
104 static int  wpi_detach(device_t , int);
105 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
106 	void **, bus_size_t, bus_size_t, int);
107 static void wpi_dma_contig_free(struct wpi_dma_info *);
108 static int  wpi_alloc_shared(struct wpi_softc *);
109 static void wpi_free_shared(struct wpi_softc *);
110 static int  wpi_alloc_fwmem(struct wpi_softc *);
111 static void wpi_free_fwmem(struct wpi_softc *);
112 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
113 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
114 static int  wpi_alloc_rpool(struct wpi_softc *);
115 static void wpi_free_rpool(struct wpi_softc *);
116 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
118 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
119 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
120 	int);
121 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
122 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
123 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
124 static void wpi_newassoc(struct ieee80211_node *, int);
125 static int  wpi_media_change(struct ifnet *);
126 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
127 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
128 static void wpi_mem_lock(struct wpi_softc *);
129 static void wpi_mem_unlock(struct wpi_softc *);
130 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
131 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
132 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
133 								   const uint32_t *, int);
134 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
135 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
136 static int  wpi_load_firmware(struct wpi_softc *);
137 static void wpi_calib_timeout(void *);
138 static void wpi_iter_func(void *, struct ieee80211_node *);
139 static void wpi_power_calibration(struct wpi_softc *, int);
140 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
141 	struct wpi_rx_data *);
142 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
143 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
144 static void wpi_notif_intr(struct wpi_softc *);
145 static int  wpi_intr(void *);
146 static void wpi_read_eeprom(struct wpi_softc *);
147 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
148 static void wpi_read_eeprom_group(struct wpi_softc *, int);
149 static uint8_t wpi_plcp_signal(int);
150 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
151 	struct ieee80211_node *, int);
152 static void wpi_start(struct ifnet *);
153 static void wpi_watchdog(struct ifnet *);
154 static int  wpi_ioctl(struct ifnet *, u_long, void *);
155 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
156 static int  wpi_wme_update(struct ieee80211com *);
157 static int  wpi_mrr_setup(struct wpi_softc *);
158 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
159 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
160 static int  wpi_set_txpower(struct wpi_softc *,
161 			    struct ieee80211_channel *, int);
162 static int  wpi_get_power_index(struct wpi_softc *,
163 		struct wpi_power_group *, struct ieee80211_channel *, int);
164 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
165 static int  wpi_auth(struct wpi_softc *);
166 static int  wpi_scan(struct wpi_softc *, uint16_t);
167 static int  wpi_config(struct wpi_softc *);
168 static void wpi_stop_master(struct wpi_softc *);
169 static int  wpi_power_up(struct wpi_softc *);
170 static int  wpi_reset(struct wpi_softc *);
171 static void wpi_hw_config(struct wpi_softc *);
172 static int  wpi_init(struct ifnet *);
173 static void wpi_stop(struct ifnet *, int);
174 static bool wpi_resume(device_t PMF_FN_PROTO);
175 static int	wpi_getrfkill(struct wpi_softc *);
176 static void wpi_sysctlattach(struct wpi_softc *);
177 
178 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
179 	wpi_detach, NULL);
180 
181 static int
182 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
183 {
184 	struct pci_attach_args *pa = aux;
185 
186 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
187 		return 0;
188 
189 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
190 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
191 		return 1;
192 
193 	return 0;
194 }
195 
196 /* Base Address Register */
197 #define WPI_PCI_BAR0	0x10
198 
199 static int
200 wpi_attach_once(void)
201 {
202 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
203 	return 0;
204 }
205 
206 static void
207 wpi_attach(device_t parent __unused, device_t self, void *aux)
208 {
209 	struct wpi_softc *sc = device_private(self);
210 	struct ieee80211com *ic = &sc->sc_ic;
211 	struct ifnet *ifp = &sc->sc_ec.ec_if;
212 	struct pci_attach_args *pa = aux;
213 	const char *intrstr;
214 	char devinfo[256];
215 	bus_space_tag_t memt;
216 	bus_space_handle_t memh;
217 	pci_intr_handle_t ih;
218 	pcireg_t data;
219 	int error, ac, revision;
220 
221 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
222 	sc->fw_used = false;
223 
224 	sc->sc_dev = self;
225 	sc->sc_pct = pa->pa_pc;
226 	sc->sc_pcitag = pa->pa_tag;
227 
228 	callout_init(&sc->calib_to, 0);
229 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
230 
231 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
232 	revision = PCI_REVISION(pa->pa_class);
233 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
234 
235 	/* enable bus-mastering */
236 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
237 	data |= PCI_COMMAND_MASTER_ENABLE;
238 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
239 
240 	/* map the register window */
241 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
242 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
243 	if (error != 0) {
244 		aprint_error_dev(self, "could not map memory space\n");
245 		return;
246 	}
247 
248 	sc->sc_st = memt;
249 	sc->sc_sh = memh;
250 	sc->sc_dmat = pa->pa_dmat;
251 
252 	if (pci_intr_map(pa, &ih) != 0) {
253 		aprint_error_dev(self, "could not map interrupt\n");
254 		return;
255 	}
256 
257 	intrstr = pci_intr_string(sc->sc_pct, ih);
258 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
259 	if (sc->sc_ih == NULL) {
260 		aprint_error_dev(self, "could not establish interrupt");
261 		if (intrstr != NULL)
262 			aprint_error(" at %s", intrstr);
263 		aprint_error("\n");
264 		return;
265 	}
266 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
267 
268 	if (wpi_reset(sc) != 0) {
269 		aprint_error_dev(self, "could not reset adapter\n");
270 		return;
271 	}
272 
273  	/*
274 	 * Allocate DMA memory for firmware transfers.
275 	 */
276 	if ((error = wpi_alloc_fwmem(sc)) != 0)
277 		return;
278 
279 	/*
280 	 * Allocate shared page and Tx/Rx rings.
281 	 */
282 	if ((error = wpi_alloc_shared(sc)) != 0) {
283 		aprint_error_dev(self, "could not allocate shared area\n");
284 		goto fail1;
285 	}
286 
287 	if ((error = wpi_alloc_rpool(sc)) != 0) {
288 		aprint_error_dev(self, "could not allocate Rx buffers\n");
289 		goto fail2;
290 	}
291 
292 	for (ac = 0; ac < 4; ac++) {
293 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
294 		if (error != 0) {
295 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
296 			goto fail3;
297 		}
298 	}
299 
300 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
301 	if (error != 0) {
302 		aprint_error_dev(self, "could not allocate command ring\n");
303 		goto fail3;
304 	}
305 
306 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
307 		aprint_error_dev(self, "could not allocate Rx ring\n");
308 		goto fail4;
309 	}
310 
311 	ic->ic_ifp = ifp;
312 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
313 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
314 	ic->ic_state = IEEE80211_S_INIT;
315 
316 	/* set device capabilities */
317 	ic->ic_caps =
318 		IEEE80211_C_IBSS |       /* IBSS mode support */
319 		IEEE80211_C_WPA |        /* 802.11i */
320 		IEEE80211_C_MONITOR |    /* monitor mode supported */
321 		IEEE80211_C_TXPMGT |     /* tx power management */
322 		IEEE80211_C_SHSLOT |     /* short slot time supported */
323 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
324 		IEEE80211_C_WME;         /* 802.11e */
325 
326 	/* read supported channels and MAC address from EEPROM */
327 	wpi_read_eeprom(sc);
328 
329 	/* set supported .11a, .11b, .11g rates */
330 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
331 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
332 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
333 
334 	ic->ic_ibss_chan = &ic->ic_channels[0];
335 
336 	ifp->if_softc = sc;
337 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
338 	ifp->if_init = wpi_init;
339 	ifp->if_stop = wpi_stop;
340 	ifp->if_ioctl = wpi_ioctl;
341 	ifp->if_start = wpi_start;
342 	ifp->if_watchdog = wpi_watchdog;
343 	IFQ_SET_READY(&ifp->if_snd);
344 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
345 
346 	if_attach(ifp);
347 	ieee80211_ifattach(ic);
348 	/* override default methods */
349 	ic->ic_node_alloc = wpi_node_alloc;
350 	ic->ic_newassoc = wpi_newassoc;
351 	ic->ic_wme.wme_update = wpi_wme_update;
352 
353 	/* override state transition machine */
354 	sc->sc_newstate = ic->ic_newstate;
355 	ic->ic_newstate = wpi_newstate;
356 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
357 
358 	sc->amrr.amrr_min_success_threshold = 1;
359 	sc->amrr.amrr_max_success_threshold = 15;
360 
361 	wpi_sysctlattach(sc);
362 
363 	if (!pmf_device_register(self, NULL, wpi_resume))
364 		aprint_error_dev(self, "couldn't establish power handler\n");
365 	else
366 		pmf_class_network_register(self, ifp);
367 
368 #if NBPFILTER > 0
369 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
370 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
371 		&sc->sc_drvbpf);
372 
373 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
374 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
375 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
376 
377 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
378 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
379 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
380 #endif
381 
382 	ieee80211_announce(ic);
383 
384 	return;
385 
386 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
387 fail3:  while (--ac >= 0)
388 			wpi_free_tx_ring(sc, &sc->txq[ac]);
389 	wpi_free_rpool(sc);
390 fail2:	wpi_free_shared(sc);
391 fail1:	wpi_free_fwmem(sc);
392 }
393 
394 static int
395 wpi_detach(device_t self, int flags __unused)
396 {
397 	struct wpi_softc *sc = device_private(self);
398 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
399 	int ac;
400 
401 	wpi_stop(ifp, 1);
402 
403 #if NBPFILTER > 0
404 	if (ifp != NULL)
405 		bpfdetach(ifp);
406 #endif
407 	ieee80211_ifdetach(&sc->sc_ic);
408 	if (ifp != NULL)
409 		if_detach(ifp);
410 
411 	for (ac = 0; ac < 4; ac++)
412 		wpi_free_tx_ring(sc, &sc->txq[ac]);
413 	wpi_free_tx_ring(sc, &sc->cmdq);
414 	wpi_free_rx_ring(sc, &sc->rxq);
415 	wpi_free_rpool(sc);
416 	wpi_free_shared(sc);
417 
418 	if (sc->sc_ih != NULL) {
419 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
420 		sc->sc_ih = NULL;
421 	}
422 
423 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
424 
425 	if (sc->fw_used) {
426 		mutex_enter(&wpi_firmware_mutex);
427 		if (--wpi_firmware_users == 0)
428 			firmware_free(wpi_firmware_image, wpi_firmware_size);
429 		mutex_exit(&wpi_firmware_mutex);
430 	}
431 
432 	return 0;
433 }
434 
435 static int
436 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
437 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
438 {
439 	int nsegs, error;
440 
441 	dma->tag = tag;
442 	dma->size = size;
443 
444 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
445 	if (error != 0)
446 		goto fail;
447 
448 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
449 	    flags);
450 	if (error != 0)
451 		goto fail;
452 
453 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
454 	if (error != 0)
455 		goto fail;
456 
457 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
458 	if (error != 0)
459 		goto fail;
460 
461 	memset(dma->vaddr, 0, size);
462 
463 	dma->paddr = dma->map->dm_segs[0].ds_addr;
464 	if (kvap != NULL)
465 		*kvap = dma->vaddr;
466 
467 	return 0;
468 
469 fail:   wpi_dma_contig_free(dma);
470 	return error;
471 }
472 
473 static void
474 wpi_dma_contig_free(struct wpi_dma_info *dma)
475 {
476 	if (dma->map != NULL) {
477 		if (dma->vaddr != NULL) {
478 			bus_dmamap_unload(dma->tag, dma->map);
479 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
480 			bus_dmamem_free(dma->tag, &dma->seg, 1);
481 			dma->vaddr = NULL;
482 		}
483 		bus_dmamap_destroy(dma->tag, dma->map);
484 		dma->map = NULL;
485 	}
486 }
487 
488 /*
489  * Allocate a shared page between host and NIC.
490  */
491 static int
492 wpi_alloc_shared(struct wpi_softc *sc)
493 {
494 	int error;
495 	/* must be aligned on a 4K-page boundary */
496 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
497 			(void **)&sc->shared, sizeof (struct wpi_shared),
498 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
499 	if (error != 0)
500 		aprint_error_dev(sc->sc_dev,
501 				"could not allocate shared area DMA memory\n");
502 
503 	return error;
504 }
505 
506 static void
507 wpi_free_shared(struct wpi_softc *sc)
508 {
509 	wpi_dma_contig_free(&sc->shared_dma);
510 }
511 
512 /*
513  * Allocate DMA-safe memory for firmware transfer.
514  */
515 static int
516 wpi_alloc_fwmem(struct wpi_softc *sc)
517 {
518 	int error;
519 	/* allocate enough contiguous space to store text and data */
520 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
521 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
522 	    BUS_DMA_NOWAIT);
523 
524 	if (error != 0)
525 		aprint_error_dev(sc->sc_dev,
526 			"could not allocate firmware transfer area"
527 			"DMA memory\n");
528 	return error;
529 }
530 
531 static void
532 wpi_free_fwmem(struct wpi_softc *sc)
533 {
534 	wpi_dma_contig_free(&sc->fw_dma);
535 }
536 
537 
538 static struct wpi_rbuf *
539 wpi_alloc_rbuf(struct wpi_softc *sc)
540 {
541 	struct wpi_rbuf *rbuf;
542 
543 	mutex_enter(&sc->rxq.freelist_mtx);
544 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
545 	if (rbuf != NULL) {
546 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
547 		sc->rxq.nb_free_entries --;
548 	}
549 	mutex_exit(&sc->rxq.freelist_mtx);
550 
551 	return rbuf;
552 }
553 
554 /*
555  * This is called automatically by the network stack when the mbuf to which our
556  * Rx buffer is attached is freed.
557  */
558 static void
559 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
560 {
561 	struct wpi_rbuf *rbuf = arg;
562 	struct wpi_softc *sc = rbuf->sc;
563 
564 	/* put the buffer back in the free list */
565 
566 	mutex_enter(&sc->rxq.freelist_mtx);
567 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
568 	mutex_exit(&sc->rxq.freelist_mtx);
569 	/* No need to protect this with a mutex, see wpi_rx_intr */
570 	sc->rxq.nb_free_entries ++;
571 
572 	if (__predict_true(m != NULL))
573 		pool_cache_put(mb_cache, m);
574 }
575 
576 static int
577 wpi_alloc_rpool(struct wpi_softc *sc)
578 {
579 	struct wpi_rx_ring *ring = &sc->rxq;
580 	struct wpi_rbuf *rbuf;
581 	int i, error;
582 
583 	/* allocate a big chunk of DMA'able memory.. */
584 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
585 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
586 	if (error != 0) {
587 		aprint_normal_dev(sc->sc_dev,
588 						  "could not allocate Rx buffers DMA memory\n");
589 		return error;
590 	}
591 
592 	/* ..and split it into 3KB chunks */
593 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
594 	SLIST_INIT(&ring->freelist);
595 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
596 		rbuf = &ring->rbuf[i];
597 		rbuf->sc = sc;	/* backpointer for callbacks */
598 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
599 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
600 
601 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
602 	}
603 
604 	ring->nb_free_entries = WPI_RBUF_COUNT;
605 	return 0;
606 }
607 
608 static void
609 wpi_free_rpool(struct wpi_softc *sc)
610 {
611 	wpi_dma_contig_free(&sc->rxq.buf_dma);
612 }
613 
614 static int
615 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
616 {
617 	struct wpi_rx_data *data;
618 	struct wpi_rbuf *rbuf;
619 	int i, error;
620 
621 	ring->cur = 0;
622 
623 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
624 		(void **)&ring->desc,
625 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
626 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
627 	if (error != 0) {
628 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
629 		goto fail;
630 	}
631 
632 	/*
633 	 * Setup Rx buffers.
634 	 */
635 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
636 		data = &ring->data[i];
637 
638 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
639 		if (data->m == NULL) {
640 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
641 			error = ENOMEM;
642 			goto fail;
643 		}
644 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
645 			m_freem(data->m);
646 			data->m = NULL;
647 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
648 			error = ENOMEM;
649 			goto fail;
650 		}
651 		/* attach Rx buffer to mbuf */
652 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
653 		    rbuf);
654 		data->m->m_flags |= M_EXT_RW;
655 
656 		ring->desc[i] = htole32(rbuf->paddr);
657 	}
658 
659 	return 0;
660 
661 fail:	wpi_free_rx_ring(sc, ring);
662 	return error;
663 }
664 
665 static void
666 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
667 {
668 	int ntries;
669 
670 	wpi_mem_lock(sc);
671 
672 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
673 	for (ntries = 0; ntries < 100; ntries++) {
674 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
675 			break;
676 		DELAY(10);
677 	}
678 #ifdef WPI_DEBUG
679 	if (ntries == 100 && wpi_debug > 0)
680 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
681 #endif
682 	wpi_mem_unlock(sc);
683 
684 	ring->cur = 0;
685 }
686 
687 static void
688 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
689 {
690 	int i;
691 
692 	wpi_dma_contig_free(&ring->desc_dma);
693 
694 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
695 		if (ring->data[i].m != NULL)
696 			m_freem(ring->data[i].m);
697 	}
698 }
699 
700 static int
701 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
702 	int qid)
703 {
704 	struct wpi_tx_data *data;
705 	int i, error;
706 
707 	ring->qid = qid;
708 	ring->count = count;
709 	ring->queued = 0;
710 	ring->cur = 0;
711 
712 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
713 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
714 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
715 	if (error != 0) {
716 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
717 		goto fail;
718 	}
719 
720 	/* update shared page with ring's base address */
721 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
722 
723 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
724 		(void **)&ring->cmd,
725 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
726 	if (error != 0) {
727 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
728 		goto fail;
729 	}
730 
731 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
732 		M_NOWAIT);
733 	if (ring->data == NULL) {
734 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
735 		goto fail;
736 	}
737 
738 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
739 
740 	for (i = 0; i < count; i++) {
741 		data = &ring->data[i];
742 
743 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
744 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
745 			&data->map);
746 		if (error != 0) {
747 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
748 			goto fail;
749 		}
750 	}
751 
752 	return 0;
753 
754 fail:	wpi_free_tx_ring(sc, ring);
755 	return error;
756 }
757 
758 static void
759 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
760 {
761 	struct wpi_tx_data *data;
762 	int i, ntries;
763 
764 	wpi_mem_lock(sc);
765 
766 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
767 	for (ntries = 0; ntries < 100; ntries++) {
768 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
769 			break;
770 		DELAY(10);
771 	}
772 #ifdef WPI_DEBUG
773 	if (ntries == 100 && wpi_debug > 0) {
774 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
775 									   ring->qid);
776 	}
777 #endif
778 	wpi_mem_unlock(sc);
779 
780 	for (i = 0; i < ring->count; i++) {
781 		data = &ring->data[i];
782 
783 		if (data->m != NULL) {
784 			bus_dmamap_unload(sc->sc_dmat, data->map);
785 			m_freem(data->m);
786 			data->m = NULL;
787 		}
788 	}
789 
790 	ring->queued = 0;
791 	ring->cur = 0;
792 }
793 
794 static void
795 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
796 {
797 	struct wpi_tx_data *data;
798 	int i;
799 
800 	wpi_dma_contig_free(&ring->desc_dma);
801 	wpi_dma_contig_free(&ring->cmd_dma);
802 
803 	if (ring->data != NULL) {
804 		for (i = 0; i < ring->count; i++) {
805 			data = &ring->data[i];
806 
807 			if (data->m != NULL) {
808 				bus_dmamap_unload(sc->sc_dmat, data->map);
809 				m_freem(data->m);
810 			}
811 		}
812 		free(ring->data, M_DEVBUF);
813 	}
814 }
815 
816 /*ARGUSED*/
817 static struct ieee80211_node *
818 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
819 {
820 	struct wpi_node *wn;
821 
822 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
823 
824 	return (struct ieee80211_node *)wn;
825 }
826 
827 static void
828 wpi_newassoc(struct ieee80211_node *ni, int isnew)
829 {
830 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
831 	int i;
832 
833 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
834 
835 	/* set rate to some reasonable initial value */
836 	for (i = ni->ni_rates.rs_nrates - 1;
837 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
838 	     i--);
839 	ni->ni_txrate = i;
840 }
841 
842 static int
843 wpi_media_change(struct ifnet *ifp)
844 {
845 	int error;
846 
847 	error = ieee80211_media_change(ifp);
848 	if (error != ENETRESET)
849 		return error;
850 
851 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
852 		wpi_init(ifp);
853 
854 	return 0;
855 }
856 
857 static int
858 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
859 {
860 	struct ifnet *ifp = ic->ic_ifp;
861 	struct wpi_softc *sc = ifp->if_softc;
862 	struct ieee80211_node *ni;
863 	int error;
864 
865 	callout_stop(&sc->calib_to);
866 
867 	switch (nstate) {
868 	case IEEE80211_S_SCAN:
869 
870 		if (sc->is_scanning)
871 			break;
872 
873 		sc->is_scanning = true;
874 		ieee80211_node_table_reset(&ic->ic_scan);
875 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
876 
877 		/* make the link LED blink while we're scanning */
878 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
879 
880 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
881 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
882 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
883 			return error;
884 		}
885 
886 		ic->ic_state = nstate;
887 		return 0;
888 
889 	case IEEE80211_S_ASSOC:
890 		if (ic->ic_state != IEEE80211_S_RUN)
891 			break;
892 		/* FALLTHROUGH */
893 	case IEEE80211_S_AUTH:
894 		sc->config.associd = 0;
895 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
896 		if ((error = wpi_auth(sc)) != 0) {
897 			aprint_error_dev(sc->sc_dev,
898 							"could not send authentication request\n");
899 			return error;
900 		}
901 		break;
902 
903 	case IEEE80211_S_RUN:
904 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
905 			/* link LED blinks while monitoring */
906 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
907 			break;
908 		}
909 
910 		ni = ic->ic_bss;
911 
912 		if (ic->ic_opmode != IEEE80211_M_STA) {
913 			(void) wpi_auth(sc);    /* XXX */
914 			wpi_setup_beacon(sc, ni);
915 		}
916 
917 		wpi_enable_tsf(sc, ni);
918 
919 		/* update adapter's configuration */
920 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
921 		/* short preamble/slot time are negotiated when associating */
922 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
923 			WPI_CONFIG_SHSLOT);
924 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
925 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
926 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
927 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
928 		sc->config.filter |= htole32(WPI_FILTER_BSS);
929 		if (ic->ic_opmode != IEEE80211_M_STA)
930 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
931 
932 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
933 
934 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
935 			sc->config.flags));
936 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
937 			sizeof (struct wpi_config), 1);
938 		if (error != 0) {
939 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
940 			return error;
941 		}
942 
943 		/* configuration has changed, set Tx power accordingly */
944 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
945 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
946 			return error;
947 		}
948 
949 		if (ic->ic_opmode == IEEE80211_M_STA) {
950 			/* fake a join to init the tx rate */
951 			wpi_newassoc(ni, 1);
952 		}
953 
954 		/* start periodic calibration timer */
955 		sc->calib_cnt = 0;
956 		callout_schedule(&sc->calib_to, hz/2);
957 
958 		/* link LED always on while associated */
959 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
960 		break;
961 
962 	case IEEE80211_S_INIT:
963 		sc->is_scanning = false;
964 		break;
965 	}
966 
967 	return sc->sc_newstate(ic, nstate, arg);
968 }
969 
970 /*
971  * XXX: Hack to set the current channel to the value advertised in beacons or
972  * probe responses. Only used during AP detection.
973  * XXX: Duplicated from if_iwi.c
974  */
975 static void
976 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
977 {
978 	struct ieee80211_frame *wh;
979 	uint8_t subtype;
980 	uint8_t *frm, *efrm;
981 
982 	wh = mtod(m, struct ieee80211_frame *);
983 
984 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
985 		return;
986 
987 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
988 
989 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
990 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
991 		return;
992 
993 	frm = (uint8_t *)(wh + 1);
994 	efrm = mtod(m, uint8_t *) + m->m_len;
995 
996 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
997 	while (frm < efrm) {
998 		if (*frm == IEEE80211_ELEMID_DSPARMS)
999 #if IEEE80211_CHAN_MAX < 255
1000 		if (frm[2] <= IEEE80211_CHAN_MAX)
1001 #endif
1002 			ic->ic_curchan = &ic->ic_channels[frm[2]];
1003 
1004 		frm += frm[1] + 2;
1005 	}
1006 }
1007 
1008 /*
1009  * Grab exclusive access to NIC memory.
1010  */
1011 static void
1012 wpi_mem_lock(struct wpi_softc *sc)
1013 {
1014 	uint32_t tmp;
1015 	int ntries;
1016 
1017 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1018 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1019 
1020 	/* spin until we actually get the lock */
1021 	for (ntries = 0; ntries < 1000; ntries++) {
1022 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1023 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1024 			break;
1025 		DELAY(10);
1026 	}
1027 	if (ntries == 1000)
1028 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1029 }
1030 
1031 /*
1032  * Release lock on NIC memory.
1033  */
1034 static void
1035 wpi_mem_unlock(struct wpi_softc *sc)
1036 {
1037 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1038 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1039 }
1040 
1041 static uint32_t
1042 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1043 {
1044 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1045 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1046 }
1047 
1048 static void
1049 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1050 {
1051 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1052 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1053 }
1054 
1055 static void
1056 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1057 						const uint32_t *data, int wlen)
1058 {
1059 	for (; wlen > 0; wlen--, data++, addr += 4)
1060 		wpi_mem_write(sc, addr, *data);
1061 }
1062 
1063 
1064 /*
1065  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1066  * instead of using the traditional bit-bang method.
1067  */
1068 static int
1069 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1070 {
1071 	uint8_t *out = data;
1072 	uint32_t val;
1073 	int ntries;
1074 
1075 	wpi_mem_lock(sc);
1076 	for (; len > 0; len -= 2, addr++) {
1077 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1078 
1079 		for (ntries = 0; ntries < 10; ntries++) {
1080 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1081 			    WPI_EEPROM_READY)
1082 				break;
1083 			DELAY(5);
1084 		}
1085 		if (ntries == 10) {
1086 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1087 			return ETIMEDOUT;
1088 		}
1089 		*out++ = val >> 16;
1090 		if (len > 1)
1091 			*out++ = val >> 24;
1092 	}
1093 	wpi_mem_unlock(sc);
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * The firmware boot code is small and is intended to be copied directly into
1100  * the NIC internal memory.
1101  */
1102 int
1103 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1104 {
1105 	int ntries;
1106 
1107 	size /= sizeof (uint32_t);
1108 
1109 	wpi_mem_lock(sc);
1110 
1111 	/* copy microcode image into NIC memory */
1112 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1113 	    (const uint32_t *)ucode, size);
1114 
1115 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1116 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1117 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1118 
1119 	/* run microcode */
1120 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1121 
1122 	/* wait for transfer to complete */
1123 	for (ntries = 0; ntries < 1000; ntries++) {
1124 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1125 			break;
1126 		DELAY(10);
1127 	}
1128 	if (ntries == 1000) {
1129 		wpi_mem_unlock(sc);
1130 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1131 		return ETIMEDOUT;
1132 	}
1133 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1134 
1135 	wpi_mem_unlock(sc);
1136 
1137 	return 0;
1138 }
1139 
1140 static int
1141 wpi_cache_firmware(struct wpi_softc *sc)
1142 {
1143 	firmware_handle_t fw;
1144 	int error;
1145 
1146 	if (sc->fw_used)
1147 		return 0;
1148 
1149 	mutex_enter(&wpi_firmware_mutex);
1150 	if (wpi_firmware_users++) {
1151 		mutex_exit(&wpi_firmware_mutex);
1152 		return 0;
1153 	}
1154 
1155 	/* load firmware image from disk */
1156 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1157 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1158 		goto fail1;
1159 	}
1160 
1161 	wpi_firmware_size = firmware_get_size(fw);
1162 
1163 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1164 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1165 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1166 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1167 		aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1168 		error = EFBIG;
1169 		goto fail1;
1170 	}
1171 
1172 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1173 		aprint_error_dev(sc->sc_dev,
1174 		    "truncated firmware header: %zu bytes\n",
1175 		    wpi_firmware_size);
1176 		error = EINVAL;
1177 		goto fail2;
1178 	}
1179 
1180 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1181 	if (wpi_firmware_image == NULL) {
1182 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1183 		error = ENOMEM;
1184 		goto fail1;
1185 	}
1186 
1187 	if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1188 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1189 		goto fail2;
1190 	}
1191 
1192 	sc->fw_used = true;
1193 	firmware_close(fw);
1194 	mutex_exit(&wpi_firmware_mutex);
1195 
1196 	return 0;
1197 
1198 fail2:
1199 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1200 fail1:
1201 	firmware_close(fw);
1202 	if (--wpi_firmware_users == 0)
1203 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1204 	mutex_exit(&wpi_firmware_mutex);
1205 	return error;
1206 }
1207 
1208 static int
1209 wpi_load_firmware(struct wpi_softc *sc)
1210 {
1211 	struct wpi_dma_info *dma = &sc->fw_dma;
1212 	struct wpi_firmware_hdr hdr;
1213 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1214 	const uint8_t *boot_text;
1215 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1216 	uint32_t boot_textsz;
1217 	int error;
1218 
1219 	if ((error = wpi_cache_firmware(sc)) != 0)
1220 		return error;
1221 
1222 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1223 
1224 	main_textsz = le32toh(hdr.main_textsz);
1225 	main_datasz = le32toh(hdr.main_datasz);
1226 	init_textsz = le32toh(hdr.init_textsz);
1227 	init_datasz = le32toh(hdr.init_datasz);
1228 	boot_textsz = le32toh(hdr.boot_textsz);
1229 
1230 	/* sanity-check firmware segments sizes */
1231 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1232 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1233 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1234 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1235 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1236 	    (boot_textsz & 3) != 0) {
1237 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1238 		error = EINVAL;
1239 		goto free_firmware;
1240 	}
1241 
1242 	/* check that all firmware segments are present */
1243 	if (wpi_firmware_size <
1244 	    sizeof (struct wpi_firmware_hdr) + main_textsz +
1245 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1246 		aprint_error_dev(sc->sc_dev,
1247 		    "firmware file too short: %zu bytes\n", wpi_firmware_size);
1248 		error = EINVAL;
1249 		goto free_firmware;
1250 	}
1251 
1252 	/* get pointers to firmware segments */
1253 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1254 	main_data = main_text + main_textsz;
1255 	init_text = main_data + main_datasz;
1256 	init_data = init_text + init_textsz;
1257 	boot_text = init_data + init_datasz;
1258 
1259 	/* copy initialization images into pre-allocated DMA-safe memory */
1260 	memcpy(dma->vaddr, init_data, init_datasz);
1261 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1262 
1263 	/* tell adapter where to find initialization images */
1264 	wpi_mem_lock(sc);
1265 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1266 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1267 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1268 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1269 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1270 	wpi_mem_unlock(sc);
1271 
1272 	/* load firmware boot code */
1273 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1274 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1275 		return error;
1276 	}
1277 
1278 	/* now press "execute" ;-) */
1279 	WPI_WRITE(sc, WPI_RESET, 0);
1280 
1281 	/* ..and wait at most one second for adapter to initialize */
1282 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1283 		/* this isn't what was supposed to happen.. */
1284 		aprint_error_dev(sc->sc_dev,
1285 		    "timeout waiting for adapter to initialize\n");
1286 	}
1287 
1288 	/* copy runtime images into pre-allocated DMA-safe memory */
1289 	memcpy(dma->vaddr, main_data, main_datasz);
1290 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1291 
1292 	/* tell adapter where to find runtime images */
1293 	wpi_mem_lock(sc);
1294 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1295 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1296 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1297 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1298 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1299 	wpi_mem_unlock(sc);
1300 
1301 	/* wait at most one second for second alive notification */
1302 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1303 		/* this isn't what was supposed to happen.. */
1304 		aprint_error_dev(sc->sc_dev,
1305 		    "timeout waiting for adapter to initialize\n");
1306 	}
1307 
1308 	return error;
1309 
1310 free_firmware:
1311 	mutex_enter(&wpi_firmware_mutex);
1312 	sc->fw_used = false;
1313 	--wpi_firmware_users;
1314 	mutex_exit(&wpi_firmware_mutex);
1315 	return error;
1316 }
1317 
1318 static void
1319 wpi_calib_timeout(void *arg)
1320 {
1321 	struct wpi_softc *sc = arg;
1322 	struct ieee80211com *ic = &sc->sc_ic;
1323 	int temp, s;
1324 
1325 	/* automatic rate control triggered every 500ms */
1326 	if (ic->ic_fixed_rate == -1) {
1327 		s = splnet();
1328 		if (ic->ic_opmode == IEEE80211_M_STA)
1329 			wpi_iter_func(sc, ic->ic_bss);
1330 		else
1331                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1332 		splx(s);
1333 	}
1334 
1335 	/* update sensor data */
1336 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1337 
1338 	/* automatic power calibration every 60s */
1339 	if (++sc->calib_cnt >= 120) {
1340 		wpi_power_calibration(sc, temp);
1341 		sc->calib_cnt = 0;
1342 	}
1343 
1344 	callout_schedule(&sc->calib_to, hz/2);
1345 }
1346 
1347 static void
1348 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1349 {
1350 	struct wpi_softc *sc = arg;
1351 	struct wpi_node *wn = (struct wpi_node *)ni;
1352 
1353 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1354 }
1355 
1356 /*
1357  * This function is called periodically (every 60 seconds) to adjust output
1358  * power to temperature changes.
1359  */
1360 void
1361 wpi_power_calibration(struct wpi_softc *sc, int temp)
1362 {
1363 	/* sanity-check read value */
1364 	if (temp < -260 || temp > 25) {
1365 		/* this can't be correct, ignore */
1366 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1367 		return;
1368 	}
1369 
1370 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1371 
1372 	/* adjust Tx power if need be */
1373 	if (abs(temp - sc->temp) <= 6)
1374 		return;
1375 
1376 	sc->temp = temp;
1377 
1378 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1379 		/* just warn, too bad for the automatic calibration... */
1380 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1381 	}
1382 }
1383 
1384 static void
1385 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1386 	struct wpi_rx_data *data)
1387 {
1388 	struct ieee80211com *ic = &sc->sc_ic;
1389 	struct ifnet *ifp = ic->ic_ifp;
1390 	struct wpi_rx_ring *ring = &sc->rxq;
1391 	struct wpi_rx_stat *stat;
1392 	struct wpi_rx_head *head;
1393 	struct wpi_rx_tail *tail;
1394 	struct wpi_rbuf *rbuf;
1395 	struct ieee80211_frame *wh;
1396 	struct ieee80211_node *ni;
1397 	struct mbuf *m, *mnew;
1398 	int data_off ;
1399 
1400 	stat = (struct wpi_rx_stat *)(desc + 1);
1401 
1402 	if (stat->len > WPI_STAT_MAXLEN) {
1403 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1404 		ifp->if_ierrors++;
1405 		return;
1406 	}
1407 
1408 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1409 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1410 
1411 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1412 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1413 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1414 		le64toh(tail->tstamp)));
1415 
1416 	/*
1417 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1418 	 * to radiotap in monitor mode).
1419 	 */
1420 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1421 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1422 		ifp->if_ierrors++;
1423 		return;
1424 	}
1425 
1426 	/* Compute where are the useful datas */
1427 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1428 
1429 	/*
1430 	 * If the number of free entry is too low
1431 	 * just dup the data->m socket and reuse the same rbuf entry
1432 	 * Note that thi test is not protected by a mutex because the
1433 	 * only path that causes nb_free_entries to decrease is through
1434 	 * this interrupt routine, which is not re-entrent.
1435 	 * What may not be obvious is that the safe path is if that test
1436 	 * evaluates as true, so nb_free_entries can grow any time.
1437 	 */
1438 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1439 
1440 		/* Prepare the mbuf for the m_dup */
1441 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1442 		data->m->m_data = (char*) data->m->m_data + data_off;
1443 
1444 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1445 
1446 		/* Restore the m_data pointer for future use */
1447 		data->m->m_data = (char*) data->m->m_data - data_off;
1448 
1449 		if (m == NULL) {
1450 			ifp->if_ierrors++;
1451 			return;
1452 		}
1453 	} else {
1454 
1455 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1456 		if (mnew == NULL) {
1457 			ifp->if_ierrors++;
1458 			return;
1459 		}
1460 
1461 		rbuf = wpi_alloc_rbuf(sc);
1462 		KASSERT(rbuf != NULL);
1463 
1464  		/* attach Rx buffer to mbuf */
1465 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1466 		 	rbuf);
1467 		mnew->m_flags |= M_EXT_RW;
1468 
1469 		m = data->m;
1470 		data->m = mnew;
1471 
1472 		/* update Rx descriptor */
1473 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1474 
1475 		m->m_data = (char*)m->m_data + data_off;
1476 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1477 	}
1478 
1479 	/* finalize mbuf */
1480 	m->m_pkthdr.rcvif = ifp;
1481 
1482 	if (ic->ic_state == IEEE80211_S_SCAN)
1483 		wpi_fix_channel(ic, m);
1484 
1485 #if NBPFILTER > 0
1486 	if (sc->sc_drvbpf != NULL) {
1487 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1488 
1489 		tap->wr_flags = 0;
1490 		tap->wr_chan_freq =
1491 			htole16(ic->ic_channels[head->chan].ic_freq);
1492 		tap->wr_chan_flags =
1493 			htole16(ic->ic_channels[head->chan].ic_flags);
1494 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1495 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1496 		tap->wr_tsft = tail->tstamp;
1497 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1498 		switch (head->rate) {
1499 		/* CCK rates */
1500 		case  10: tap->wr_rate =   2; break;
1501 		case  20: tap->wr_rate =   4; break;
1502 		case  55: tap->wr_rate =  11; break;
1503 		case 110: tap->wr_rate =  22; break;
1504 		/* OFDM rates */
1505 		case 0xd: tap->wr_rate =  12; break;
1506 		case 0xf: tap->wr_rate =  18; break;
1507 		case 0x5: tap->wr_rate =  24; break;
1508 		case 0x7: tap->wr_rate =  36; break;
1509 		case 0x9: tap->wr_rate =  48; break;
1510 		case 0xb: tap->wr_rate =  72; break;
1511 		case 0x1: tap->wr_rate =  96; break;
1512 		case 0x3: tap->wr_rate = 108; break;
1513 		/* unknown rate: should not happen */
1514 		default:  tap->wr_rate =   0;
1515 		}
1516 		if (le16toh(head->flags) & 0x4)
1517 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1518 
1519 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1520 	}
1521 #endif
1522 
1523 	/* grab a reference to the source node */
1524 	wh = mtod(m, struct ieee80211_frame *);
1525 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1526 
1527 	/* send the frame to the 802.11 layer */
1528 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1529 
1530 	/* release node reference */
1531 	ieee80211_free_node(ni);
1532 }
1533 
1534 static void
1535 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1536 {
1537 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1538 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1539 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1540 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1541 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1542 
1543 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1544 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1545 		stat->nkill, stat->rate, le32toh(stat->duration),
1546 		le32toh(stat->status)));
1547 
1548 	/*
1549 	 * Update rate control statistics for the node.
1550 	 * XXX we should not count mgmt frames since they're always sent at
1551 	 * the lowest available bit-rate.
1552 	 */
1553 	wn->amn.amn_txcnt++;
1554 	if (stat->ntries > 0) {
1555 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1556 		wn->amn.amn_retrycnt++;
1557 	}
1558 
1559 	if ((le32toh(stat->status) & 0xff) != 1)
1560 		ifp->if_oerrors++;
1561 	else
1562 		ifp->if_opackets++;
1563 
1564 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1565 	m_freem(txdata->m);
1566 	txdata->m = NULL;
1567 	ieee80211_free_node(txdata->ni);
1568 	txdata->ni = NULL;
1569 
1570 	ring->queued--;
1571 
1572 	sc->sc_tx_timer = 0;
1573 	ifp->if_flags &= ~IFF_OACTIVE;
1574 	wpi_start(ifp);
1575 }
1576 
1577 static void
1578 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1579 {
1580 	struct wpi_tx_ring *ring = &sc->cmdq;
1581 	struct wpi_tx_data *data;
1582 
1583 	if ((desc->qid & 7) != 4)
1584 		return;	/* not a command ack */
1585 
1586 	data = &ring->data[desc->idx];
1587 
1588 	/* if the command was mapped in a mbuf, free it */
1589 	if (data->m != NULL) {
1590 		bus_dmamap_unload(sc->sc_dmat, data->map);
1591 		m_freem(data->m);
1592 		data->m = NULL;
1593 	}
1594 
1595 	wakeup(&ring->cmd[desc->idx]);
1596 }
1597 
1598 static void
1599 wpi_notif_intr(struct wpi_softc *sc)
1600 {
1601 	struct ieee80211com *ic = &sc->sc_ic;
1602 	struct ifnet *ifp =  ic->ic_ifp;
1603 	struct wpi_rx_desc *desc;
1604 	struct wpi_rx_data *data;
1605 	uint32_t hw;
1606 
1607 	hw = le32toh(sc->shared->next);
1608 	while (sc->rxq.cur != hw) {
1609 		data = &sc->rxq.data[sc->rxq.cur];
1610 
1611 		desc = mtod(data->m, struct wpi_rx_desc *);
1612 
1613 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1614 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1615 			desc->type, le32toh(desc->len)));
1616 
1617 		if (!(desc->qid & 0x80))	/* reply to a command */
1618 			wpi_cmd_intr(sc, desc);
1619 
1620 		switch (desc->type) {
1621 		case WPI_RX_DONE:
1622 			/* a 802.11 frame was received */
1623 			wpi_rx_intr(sc, desc, data);
1624 			break;
1625 
1626 		case WPI_TX_DONE:
1627 			/* a 802.11 frame has been transmitted */
1628 			wpi_tx_intr(sc, desc);
1629 			break;
1630 
1631 		case WPI_UC_READY:
1632 		{
1633 			struct wpi_ucode_info *uc =
1634 				(struct wpi_ucode_info *)(desc + 1);
1635 
1636 			/* the microcontroller is ready */
1637 			DPRINTF(("microcode alive notification version %x "
1638 				"alive %x\n", le32toh(uc->version),
1639 				le32toh(uc->valid)));
1640 
1641 			if (le32toh(uc->valid) != 1) {
1642 				aprint_error_dev(sc->sc_dev,
1643 					"microcontroller initialization failed\n");
1644 			}
1645 			break;
1646 		}
1647 		case WPI_STATE_CHANGED:
1648 		{
1649 			uint32_t *status = (uint32_t *)(desc + 1);
1650 
1651 			/* enabled/disabled notification */
1652 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1653 
1654 			if (le32toh(*status) & 1) {
1655 				/* the radio button has to be pushed */
1656 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1657 				/* turn the interface down */
1658 				ifp->if_flags &= ~IFF_UP;
1659 				wpi_stop(ifp, 1);
1660 				return;	/* no further processing */
1661 			}
1662 			break;
1663 		}
1664 		case WPI_START_SCAN:
1665 		{
1666 			struct wpi_start_scan *scan =
1667 				(struct wpi_start_scan *)(desc + 1);
1668 
1669 			DPRINTFN(2, ("scanning channel %d status %x\n",
1670 				scan->chan, le32toh(scan->status)));
1671 
1672 			/* fix current channel */
1673 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1674 			break;
1675 		}
1676 		case WPI_STOP_SCAN:
1677 		{
1678 			struct wpi_stop_scan *scan =
1679 				(struct wpi_stop_scan *)(desc + 1);
1680 
1681 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1682 				scan->nchan, scan->status, scan->chan));
1683 
1684 			if (scan->status == 1 && scan->chan <= 14) {
1685 				/*
1686 				 * We just finished scanning 802.11g channels,
1687 				 * start scanning 802.11a ones.
1688 				 */
1689 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1690 					break;
1691 			}
1692 			sc->is_scanning = false;
1693 			ieee80211_end_scan(ic);
1694 			break;
1695 		}
1696 		}
1697 
1698 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1699 	}
1700 
1701 	/* tell the firmware what we have processed */
1702 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1703 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1704 }
1705 
1706 static int
1707 wpi_intr(void *arg)
1708 {
1709 	struct wpi_softc *sc = arg;
1710 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1711 	uint32_t r;
1712 
1713 	r = WPI_READ(sc, WPI_INTR);
1714 	if (r == 0 || r == 0xffffffff)
1715 		return 0;	/* not for us */
1716 
1717 	DPRINTFN(5, ("interrupt reg %x\n", r));
1718 
1719 	/* disable interrupts */
1720 	WPI_WRITE(sc, WPI_MASK, 0);
1721 	/* ack interrupts */
1722 	WPI_WRITE(sc, WPI_INTR, r);
1723 
1724 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1725 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1726 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1727 		wpi_stop(sc->sc_ic.ic_ifp, 1);
1728 		return 1;
1729 	}
1730 
1731 	if (r & WPI_RX_INTR)
1732 		wpi_notif_intr(sc);
1733 
1734 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1735 		wakeup(sc);
1736 
1737 	/* re-enable interrupts */
1738 	if (ifp->if_flags & IFF_UP)
1739 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1740 
1741 	return 1;
1742 }
1743 
1744 static uint8_t
1745 wpi_plcp_signal(int rate)
1746 {
1747 	switch (rate) {
1748 	/* CCK rates (returned values are device-dependent) */
1749 	case 2:		return 10;
1750 	case 4:		return 20;
1751 	case 11:	return 55;
1752 	case 22:	return 110;
1753 
1754 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1755 	/* R1-R4, (u)ral is R4-R1 */
1756 	case 12:	return 0xd;
1757 	case 18:	return 0xf;
1758 	case 24:	return 0x5;
1759 	case 36:	return 0x7;
1760 	case 48:	return 0x9;
1761 	case 72:	return 0xb;
1762 	case 96:	return 0x1;
1763 	case 108:	return 0x3;
1764 
1765 	/* unsupported rates (should not get there) */
1766 	default:	return 0;
1767 	}
1768 }
1769 
1770 /* quickly determine if a given rate is CCK or OFDM */
1771 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1772 
1773 static int
1774 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1775 	int ac)
1776 {
1777 	struct ieee80211com *ic = &sc->sc_ic;
1778 	struct wpi_tx_ring *ring = &sc->txq[ac];
1779 	struct wpi_tx_desc *desc;
1780 	struct wpi_tx_data *data;
1781 	struct wpi_tx_cmd *cmd;
1782 	struct wpi_cmd_data *tx;
1783 	struct ieee80211_frame *wh;
1784 	struct ieee80211_key *k;
1785 	const struct chanAccParams *cap;
1786 	struct mbuf *mnew;
1787 	int i, error, rate, hdrlen, noack = 0;
1788 
1789 	desc = &ring->desc[ring->cur];
1790 	data = &ring->data[ring->cur];
1791 
1792 	wh = mtod(m0, struct ieee80211_frame *);
1793 
1794 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1795 		cap = &ic->ic_wme.wme_chanParams;
1796 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1797 	}
1798 
1799 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1800 		k = ieee80211_crypto_encap(ic, ni, m0);
1801 		if (k == NULL) {
1802 			m_freem(m0);
1803 			return ENOBUFS;
1804 		}
1805 
1806 		/* packet header may have moved, reset our local pointer */
1807 		wh = mtod(m0, struct ieee80211_frame *);
1808 	}
1809 
1810 	hdrlen = ieee80211_anyhdrsize(wh);
1811 
1812 	/* pickup a rate */
1813 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1814 		IEEE80211_FC0_TYPE_MGT) {
1815 		/* mgmt frames are sent at the lowest available bit-rate */
1816 		rate = ni->ni_rates.rs_rates[0];
1817 	} else {
1818 		if (ic->ic_fixed_rate != -1) {
1819 			rate = ic->ic_sup_rates[ic->ic_curmode].
1820 				rs_rates[ic->ic_fixed_rate];
1821 		} else
1822 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1823 	}
1824 	rate &= IEEE80211_RATE_VAL;
1825 
1826 
1827 #if NBPFILTER > 0
1828 	if (sc->sc_drvbpf != NULL) {
1829 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1830 
1831 		tap->wt_flags = 0;
1832 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1833 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1834 		tap->wt_rate = rate;
1835 		tap->wt_hwqueue = ac;
1836 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1837 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1838 
1839 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1840 	}
1841 #endif
1842 
1843 	cmd = &ring->cmd[ring->cur];
1844 	cmd->code = WPI_CMD_TX_DATA;
1845 	cmd->flags = 0;
1846 	cmd->qid = ring->qid;
1847 	cmd->idx = ring->cur;
1848 
1849 	tx = (struct wpi_cmd_data *)cmd->data;
1850 	tx->flags = 0;
1851 
1852 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1853 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1854 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1855 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1856 
1857 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1858 
1859 	/* retrieve destination node's id */
1860 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1861 		WPI_ID_BSS;
1862 
1863 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1864 		IEEE80211_FC0_TYPE_MGT) {
1865 		/* tell h/w to set timestamp in probe responses */
1866 		if ((wh->i_fc[0] &
1867 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1868 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1869 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1870 
1871 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1872 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1873 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1874 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1875 			tx->timeout = htole16(3);
1876 		else
1877 			tx->timeout = htole16(2);
1878 	} else
1879 		tx->timeout = htole16(0);
1880 
1881 	tx->rate = wpi_plcp_signal(rate);
1882 
1883 	/* be very persistant at sending frames out */
1884 	tx->rts_ntries = 7;
1885 	tx->data_ntries = 15;
1886 
1887 	tx->ofdm_mask = 0xff;
1888 	tx->cck_mask = 0xf;
1889 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1890 
1891 	tx->len = htole16(m0->m_pkthdr.len);
1892 
1893 	/* save and trim IEEE802.11 header */
1894 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1895 	m_adj(m0, hdrlen);
1896 
1897 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1898 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1899 	if (error != 0 && error != EFBIG) {
1900 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1901 		m_freem(m0);
1902 		return error;
1903 	}
1904 	if (error != 0) {
1905 		/* too many fragments, linearize */
1906 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1907 		if (mnew == NULL) {
1908 			m_freem(m0);
1909 			return ENOMEM;
1910 		}
1911 
1912 		M_COPY_PKTHDR(mnew, m0);
1913 		if (m0->m_pkthdr.len > MHLEN) {
1914 			MCLGET(mnew, M_DONTWAIT);
1915 			if (!(mnew->m_flags & M_EXT)) {
1916 				m_freem(m0);
1917 				m_freem(mnew);
1918 				return ENOMEM;
1919 			}
1920 		}
1921 
1922 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1923 		m_freem(m0);
1924 		mnew->m_len = mnew->m_pkthdr.len;
1925 		m0 = mnew;
1926 
1927 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1928 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1929 		if (error != 0) {
1930 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1931 							 error);
1932 			m_freem(m0);
1933 			return error;
1934 		}
1935 	}
1936 
1937 	data->m = m0;
1938 	data->ni = ni;
1939 
1940 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1941 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1942 
1943 	/* first scatter/gather segment is used by the tx data command */
1944 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1945 		(1 + data->map->dm_nsegs) << 24);
1946 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1947 		ring->cur * sizeof (struct wpi_tx_cmd));
1948 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1949 						 ((hdrlen + 3) & ~3));
1950 
1951 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1952 		desc->segs[i].addr =
1953 			htole32(data->map->dm_segs[i - 1].ds_addr);
1954 		desc->segs[i].len  =
1955 			htole32(data->map->dm_segs[i - 1].ds_len);
1956 	}
1957 
1958 	ring->queued++;
1959 
1960 	/* kick ring */
1961 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1962 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1963 
1964 	return 0;
1965 }
1966 
1967 static void
1968 wpi_start(struct ifnet *ifp)
1969 {
1970 	struct wpi_softc *sc = ifp->if_softc;
1971 	struct ieee80211com *ic = &sc->sc_ic;
1972 	struct ieee80211_node *ni;
1973 	struct ether_header *eh;
1974 	struct mbuf *m0;
1975 	int ac;
1976 
1977 	/*
1978 	 * net80211 may still try to send management frames even if the
1979 	 * IFF_RUNNING flag is not set...
1980 	 */
1981 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1982 		return;
1983 
1984 	for (;;) {
1985 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1986 		if (m0 != NULL) {
1987 
1988 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1989 			m0->m_pkthdr.rcvif = NULL;
1990 
1991 			/* management frames go into ring 0 */
1992 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1993 				ifp->if_oerrors++;
1994 				continue;
1995 			}
1996 #if NBPFILTER > 0
1997 			if (ic->ic_rawbpf != NULL)
1998 				bpf_mtap(ic->ic_rawbpf, m0);
1999 #endif
2000 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2001 				ifp->if_oerrors++;
2002 				break;
2003 			}
2004 		} else {
2005 			if (ic->ic_state != IEEE80211_S_RUN)
2006 				break;
2007 			IFQ_POLL(&ifp->if_snd, m0);
2008 			if (m0 == NULL)
2009 				break;
2010 
2011 			if (m0->m_len < sizeof (*eh) &&
2012 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2013 				ifp->if_oerrors++;
2014 				continue;
2015 			}
2016 			eh = mtod(m0, struct ether_header *);
2017 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2018 			if (ni == NULL) {
2019 				m_freem(m0);
2020 				ifp->if_oerrors++;
2021 				continue;
2022 			}
2023 
2024 			/* classify mbuf so we can find which tx ring to use */
2025 			if (ieee80211_classify(ic, m0, ni) != 0) {
2026 				m_freem(m0);
2027 				ieee80211_free_node(ni);
2028 				ifp->if_oerrors++;
2029 				continue;
2030 			}
2031 
2032 			/* no QoS encapsulation for EAPOL frames */
2033 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2034 			    M_WME_GETAC(m0) : WME_AC_BE;
2035 
2036 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2037 				/* there is no place left in this ring */
2038 				ifp->if_flags |= IFF_OACTIVE;
2039 				break;
2040 			}
2041 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2042 #if NBPFILTER > 0
2043 			if (ifp->if_bpf != NULL)
2044 				bpf_mtap(ifp->if_bpf, m0);
2045 #endif
2046 			m0 = ieee80211_encap(ic, m0, ni);
2047 			if (m0 == NULL) {
2048 				ieee80211_free_node(ni);
2049 				ifp->if_oerrors++;
2050 				continue;
2051 			}
2052 #if NBPFILTER > 0
2053 			if (ic->ic_rawbpf != NULL)
2054 				bpf_mtap(ic->ic_rawbpf, m0);
2055 #endif
2056 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2057 				ieee80211_free_node(ni);
2058 				ifp->if_oerrors++;
2059 				break;
2060 			}
2061 		}
2062 
2063 		sc->sc_tx_timer = 5;
2064 		ifp->if_timer = 1;
2065 	}
2066 }
2067 
2068 static void
2069 wpi_watchdog(struct ifnet *ifp)
2070 {
2071 	struct wpi_softc *sc = ifp->if_softc;
2072 
2073 	ifp->if_timer = 0;
2074 
2075 	if (sc->sc_tx_timer > 0) {
2076 		if (--sc->sc_tx_timer == 0) {
2077 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2078 			ifp->if_oerrors++;
2079 			ifp->if_flags &= ~IFF_UP;
2080 			wpi_stop(ifp, 1);
2081 			return;
2082 		}
2083 		ifp->if_timer = 1;
2084 	}
2085 
2086 	ieee80211_watchdog(&sc->sc_ic);
2087 }
2088 
2089 static int
2090 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2091 {
2092 #define IS_RUNNING(ifp) \
2093 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2094 
2095 	struct wpi_softc *sc = ifp->if_softc;
2096 	struct ieee80211com *ic = &sc->sc_ic;
2097 	int s, error = 0;
2098 
2099 	s = splnet();
2100 
2101 	switch (cmd) {
2102 	case SIOCSIFFLAGS:
2103 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2104 			break;
2105 		if (ifp->if_flags & IFF_UP) {
2106 			if (!(ifp->if_flags & IFF_RUNNING))
2107 				wpi_init(ifp);
2108 		} else {
2109 			if (ifp->if_flags & IFF_RUNNING)
2110 				wpi_stop(ifp, 1);
2111 		}
2112 		break;
2113 
2114 	case SIOCADDMULTI:
2115 	case SIOCDELMULTI:
2116 		/* XXX no h/w multicast filter? --dyoung */
2117 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2118 			/* setup multicast filter, etc */
2119 			error = 0;
2120 		}
2121 		break;
2122 
2123 	default:
2124 		error = ieee80211_ioctl(ic, cmd, data);
2125 	}
2126 
2127 	if (error == ENETRESET) {
2128 		if (IS_RUNNING(ifp) &&
2129 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2130 			wpi_init(ifp);
2131 		error = 0;
2132 	}
2133 
2134 	splx(s);
2135 	return error;
2136 
2137 #undef IS_RUNNING
2138 }
2139 
2140 /*
2141  * Extract various information from EEPROM.
2142  */
2143 static void
2144 wpi_read_eeprom(struct wpi_softc *sc)
2145 {
2146 	struct ieee80211com *ic = &sc->sc_ic;
2147 	char domain[4];
2148 	int i;
2149 
2150 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2151 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2152 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2153 
2154 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2155 	    sc->type));
2156 
2157 	/* read and print regulatory domain */
2158 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2159 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2160 
2161 	/* read and print MAC address */
2162 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2163 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2164 
2165 	/* read the list of authorized channels */
2166 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2167 		wpi_read_eeprom_channels(sc, i);
2168 
2169 	/* read the list of power groups */
2170 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2171 		wpi_read_eeprom_group(sc, i);
2172 }
2173 
2174 static void
2175 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2176 {
2177 	struct ieee80211com *ic = &sc->sc_ic;
2178 	const struct wpi_chan_band *band = &wpi_bands[n];
2179 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2180 	int chan, i;
2181 
2182 	wpi_read_prom_data(sc, band->addr, channels,
2183 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2184 
2185 	for (i = 0; i < band->nchan; i++) {
2186 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2187 			continue;
2188 
2189 		chan = band->chan[i];
2190 
2191 		if (n == 0) {	/* 2GHz band */
2192 			ic->ic_channels[chan].ic_freq =
2193 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2194 			ic->ic_channels[chan].ic_flags =
2195 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2196 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2197 
2198 		} else {	/* 5GHz band */
2199 			/*
2200 			 * Some 3945abg adapters support channels 7, 8, 11
2201 			 * and 12 in the 2GHz *and* 5GHz bands.
2202 			 * Because of limitations in our net80211(9) stack,
2203 			 * we can't support these channels in 5GHz band.
2204 			 */
2205 			if (chan <= 14)
2206 				continue;
2207 
2208 			ic->ic_channels[chan].ic_freq =
2209 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2210 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2211 		}
2212 
2213 		/* is active scan allowed on this channel? */
2214 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2215 			ic->ic_channels[chan].ic_flags |=
2216 			    IEEE80211_CHAN_PASSIVE;
2217 		}
2218 
2219 		/* save maximum allowed power for this channel */
2220 		sc->maxpwr[chan] = channels[i].maxpwr;
2221 
2222 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2223 		    chan, channels[i].flags, sc->maxpwr[chan]));
2224 	}
2225 }
2226 
2227 static void
2228 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2229 {
2230 	struct wpi_power_group *group = &sc->groups[n];
2231 	struct wpi_eeprom_group rgroup;
2232 	int i;
2233 
2234 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2235 	    sizeof rgroup);
2236 
2237 	/* save power group information */
2238 	group->chan   = rgroup.chan;
2239 	group->maxpwr = rgroup.maxpwr;
2240 	/* temperature at which the samples were taken */
2241 	group->temp   = (int16_t)le16toh(rgroup.temp);
2242 
2243 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2244 	    group->chan, group->maxpwr, group->temp));
2245 
2246 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2247 		group->samples[i].index = rgroup.samples[i].index;
2248 		group->samples[i].power = rgroup.samples[i].power;
2249 
2250 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2251 		    group->samples[i].index, group->samples[i].power));
2252 	}
2253 }
2254 
2255 /*
2256  * Send a command to the firmware.
2257  */
2258 static int
2259 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2260 {
2261 	struct wpi_tx_ring *ring = &sc->cmdq;
2262 	struct wpi_tx_desc *desc;
2263 	struct wpi_tx_cmd *cmd;
2264 
2265 	KASSERT(size <= sizeof cmd->data);
2266 
2267 	desc = &ring->desc[ring->cur];
2268 	cmd = &ring->cmd[ring->cur];
2269 
2270 	cmd->code = code;
2271 	cmd->flags = 0;
2272 	cmd->qid = ring->qid;
2273 	cmd->idx = ring->cur;
2274 	memcpy(cmd->data, buf, size);
2275 
2276 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2277 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2278 		ring->cur * sizeof (struct wpi_tx_cmd));
2279 	desc->segs[0].len  = htole32(4 + size);
2280 
2281 	/* kick cmd ring */
2282 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2283 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2284 
2285 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2286 }
2287 
2288 static int
2289 wpi_wme_update(struct ieee80211com *ic)
2290 {
2291 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2292 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2293 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2294 	const struct wmeParams *wmep;
2295 	struct wpi_wme_setup wme;
2296 	int ac;
2297 
2298 	/* don't override default WME values if WME is not actually enabled */
2299 	if (!(ic->ic_flags & IEEE80211_F_WME))
2300 		return 0;
2301 
2302 	wme.flags = 0;
2303 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2304 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2305 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2306 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2307 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2308 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2309 
2310 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2311 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2312 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2313 	}
2314 
2315 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2316 #undef WPI_USEC
2317 #undef WPI_EXP2
2318 }
2319 
2320 /*
2321  * Configure h/w multi-rate retries.
2322  */
2323 static int
2324 wpi_mrr_setup(struct wpi_softc *sc)
2325 {
2326 	struct ieee80211com *ic = &sc->sc_ic;
2327 	struct wpi_mrr_setup mrr;
2328 	int i, error;
2329 
2330 	/* CCK rates (not used with 802.11a) */
2331 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2332 		mrr.rates[i].flags = 0;
2333 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2334 		/* fallback to the immediate lower CCK rate (if any) */
2335 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2336 		/* try one time at this rate before falling back to "next" */
2337 		mrr.rates[i].ntries = 1;
2338 	}
2339 
2340 	/* OFDM rates (not used with 802.11b) */
2341 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2342 		mrr.rates[i].flags = 0;
2343 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2344 		/* fallback to the immediate lower rate (if any) */
2345 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2346 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2347 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2348 			WPI_OFDM6 : WPI_CCK2) :
2349 		    i - 1;
2350 		/* try one time at this rate before falling back to "next" */
2351 		mrr.rates[i].ntries = 1;
2352 	}
2353 
2354 	/* setup MRR for control frames */
2355 	mrr.which = htole32(WPI_MRR_CTL);
2356 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2357 	if (error != 0) {
2358 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2359 		return error;
2360 	}
2361 
2362 	/* setup MRR for data frames */
2363 	mrr.which = htole32(WPI_MRR_DATA);
2364 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2365 	if (error != 0) {
2366 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2367 		return error;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 static void
2374 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2375 {
2376 	struct wpi_cmd_led led;
2377 
2378 	led.which = which;
2379 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2380 	led.off = off;
2381 	led.on = on;
2382 
2383 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2384 }
2385 
2386 static void
2387 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2388 {
2389 	struct wpi_cmd_tsf tsf;
2390 	uint64_t val, mod;
2391 
2392 	memset(&tsf, 0, sizeof tsf);
2393 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2394 	tsf.bintval = htole16(ni->ni_intval);
2395 	tsf.lintval = htole16(10);
2396 
2397 	/* compute remaining time until next beacon */
2398 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2399 	mod = le64toh(tsf.tstamp) % val;
2400 	tsf.binitval = htole32((uint32_t)(val - mod));
2401 
2402 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2403 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2404 
2405 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2406 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2407 }
2408 
2409 /*
2410  * Update Tx power to match what is defined for channel `c'.
2411  */
2412 static int
2413 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2414 {
2415 	struct ieee80211com *ic = &sc->sc_ic;
2416 	struct wpi_power_group *group;
2417 	struct wpi_cmd_txpower txpower;
2418 	u_int chan;
2419 	int i;
2420 
2421 	/* get channel number */
2422 	chan = ieee80211_chan2ieee(ic, c);
2423 
2424 	/* find the power group to which this channel belongs */
2425 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2426 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2427 			if (chan <= group->chan)
2428 				break;
2429 	} else
2430 		group = &sc->groups[0];
2431 
2432 	memset(&txpower, 0, sizeof txpower);
2433 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2434 	txpower.chan = htole16(chan);
2435 
2436 	/* set Tx power for all OFDM and CCK rates */
2437 	for (i = 0; i <= 11 ; i++) {
2438 		/* retrieve Tx power for this channel/rate combination */
2439 		int idx = wpi_get_power_index(sc, group, c,
2440 		    wpi_ridx_to_rate[i]);
2441 
2442 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2443 
2444 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2445 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2446 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2447 		} else {
2448 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2449 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2450 		}
2451 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2452 		    wpi_ridx_to_rate[i], idx));
2453 	}
2454 
2455 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2456 }
2457 
2458 /*
2459  * Determine Tx power index for a given channel/rate combination.
2460  * This takes into account the regulatory information from EEPROM and the
2461  * current temperature.
2462  */
2463 static int
2464 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2465     struct ieee80211_channel *c, int rate)
2466 {
2467 /* fixed-point arithmetic division using a n-bit fractional part */
2468 #define fdivround(a, b, n)	\
2469 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2470 
2471 /* linear interpolation */
2472 #define interpolate(x, x1, y1, x2, y2, n)	\
2473 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2474 
2475 	struct ieee80211com *ic = &sc->sc_ic;
2476 	struct wpi_power_sample *sample;
2477 	int pwr, idx;
2478 	u_int chan;
2479 
2480 	/* get channel number */
2481 	chan = ieee80211_chan2ieee(ic, c);
2482 
2483 	/* default power is group's maximum power - 3dB */
2484 	pwr = group->maxpwr / 2;
2485 
2486 	/* decrease power for highest OFDM rates to reduce distortion */
2487 	switch (rate) {
2488 	case 72:	/* 36Mb/s */
2489 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2490 		break;
2491 	case 96:	/* 48Mb/s */
2492 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2493 		break;
2494 	case 108:	/* 54Mb/s */
2495 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2496 		break;
2497 	}
2498 
2499 	/* never exceed channel's maximum allowed Tx power */
2500 	pwr = min(pwr, sc->maxpwr[chan]);
2501 
2502 	/* retrieve power index into gain tables from samples */
2503 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2504 		if (pwr > sample[1].power)
2505 			break;
2506 	/* fixed-point linear interpolation using a 19-bit fractional part */
2507 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2508 	    sample[1].power, sample[1].index, 19);
2509 
2510 	/*
2511 	 * Adjust power index based on current temperature:
2512 	 * - if cooler than factory-calibrated: decrease output power
2513 	 * - if warmer than factory-calibrated: increase output power
2514 	 */
2515 	idx -= (sc->temp - group->temp) * 11 / 100;
2516 
2517 	/* decrease power for CCK rates (-5dB) */
2518 	if (!WPI_RATE_IS_OFDM(rate))
2519 		idx += 10;
2520 
2521 	/* keep power index in a valid range */
2522 	if (idx < 0)
2523 		return 0;
2524 	if (idx > WPI_MAX_PWR_INDEX)
2525 		return WPI_MAX_PWR_INDEX;
2526 	return idx;
2527 
2528 #undef interpolate
2529 #undef fdivround
2530 }
2531 
2532 /*
2533  * Build a beacon frame that the firmware will broadcast periodically in
2534  * IBSS or HostAP modes.
2535  */
2536 static int
2537 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2538 {
2539 	struct ieee80211com *ic = &sc->sc_ic;
2540 	struct wpi_tx_ring *ring = &sc->cmdq;
2541 	struct wpi_tx_desc *desc;
2542 	struct wpi_tx_data *data;
2543 	struct wpi_tx_cmd *cmd;
2544 	struct wpi_cmd_beacon *bcn;
2545 	struct ieee80211_beacon_offsets bo;
2546 	struct mbuf *m0;
2547 	int error;
2548 
2549 	desc = &ring->desc[ring->cur];
2550 	data = &ring->data[ring->cur];
2551 
2552 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2553 	if (m0 == NULL) {
2554 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2555 		return ENOMEM;
2556 	}
2557 
2558 	cmd = &ring->cmd[ring->cur];
2559 	cmd->code = WPI_CMD_SET_BEACON;
2560 	cmd->flags = 0;
2561 	cmd->qid = ring->qid;
2562 	cmd->idx = ring->cur;
2563 
2564 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2565 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2566 	bcn->id = WPI_ID_BROADCAST;
2567 	bcn->ofdm_mask = 0xff;
2568 	bcn->cck_mask = 0x0f;
2569 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2570 	bcn->len = htole16(m0->m_pkthdr.len);
2571 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2572 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2573 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2574 
2575 	/* save and trim IEEE802.11 header */
2576 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2577 	m_adj(m0, sizeof (struct ieee80211_frame));
2578 
2579 	/* assume beacon frame is contiguous */
2580 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2581 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2582 	if (error) {
2583 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2584 		m_freem(m0);
2585 		return error;
2586 	}
2587 
2588 	data->m = m0;
2589 
2590 	/* first scatter/gather segment is used by the beacon command */
2591 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2592 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2593 		ring->cur * sizeof (struct wpi_tx_cmd));
2594 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2595 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2596 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2597 
2598 	/* kick cmd ring */
2599 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2600 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2601 
2602 	return 0;
2603 }
2604 
2605 static int
2606 wpi_auth(struct wpi_softc *sc)
2607 {
2608 	struct ieee80211com *ic = &sc->sc_ic;
2609 	struct ieee80211_node *ni = ic->ic_bss;
2610 	struct wpi_node_info node;
2611 	int error;
2612 
2613 	/* update adapter's configuration */
2614 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2615 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2616 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2617 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2618 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2619 		    WPI_CONFIG_24GHZ);
2620 	}
2621 	switch (ic->ic_curmode) {
2622 	case IEEE80211_MODE_11A:
2623 		sc->config.cck_mask  = 0;
2624 		sc->config.ofdm_mask = 0x15;
2625 		break;
2626 	case IEEE80211_MODE_11B:
2627 		sc->config.cck_mask  = 0x03;
2628 		sc->config.ofdm_mask = 0;
2629 		break;
2630 	default:	/* assume 802.11b/g */
2631 		sc->config.cck_mask  = 0x0f;
2632 		sc->config.ofdm_mask = 0x15;
2633 	}
2634 
2635 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2636 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2637 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2638 		sizeof (struct wpi_config), 1);
2639 	if (error != 0) {
2640 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2641 		return error;
2642 	}
2643 
2644 	/* configuration has changed, set Tx power accordingly */
2645 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2646 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2647 		return error;
2648 	}
2649 
2650 	/* add default node */
2651 	memset(&node, 0, sizeof node);
2652 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2653 	node.id = WPI_ID_BSS;
2654 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2655 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2656 	node.action = htole32(WPI_ACTION_SET_RATE);
2657 	node.antenna = WPI_ANTENNA_BOTH;
2658 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2659 	if (error != 0) {
2660 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2661 		return error;
2662 	}
2663 
2664 	return 0;
2665 }
2666 
2667 /*
2668  * Send a scan request to the firmware.  Since this command is huge, we map it
2669  * into a mbuf instead of using the pre-allocated set of commands.
2670  */
2671 static int
2672 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2673 {
2674 	struct ieee80211com *ic = &sc->sc_ic;
2675 	struct wpi_tx_ring *ring = &sc->cmdq;
2676 	struct wpi_tx_desc *desc;
2677 	struct wpi_tx_data *data;
2678 	struct wpi_tx_cmd *cmd;
2679 	struct wpi_scan_hdr *hdr;
2680 	struct wpi_scan_chan *chan;
2681 	struct ieee80211_frame *wh;
2682 	struct ieee80211_rateset *rs;
2683 	struct ieee80211_channel *c;
2684 	enum ieee80211_phymode mode;
2685 	uint8_t *frm;
2686 	int nrates, pktlen, error;
2687 
2688 	desc = &ring->desc[ring->cur];
2689 	data = &ring->data[ring->cur];
2690 
2691 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2692 	if (data->m == NULL) {
2693 		aprint_error_dev(sc->sc_dev,
2694 						"could not allocate mbuf for scan command\n");
2695 		return ENOMEM;
2696 	}
2697 
2698 	MCLGET(data->m, M_DONTWAIT);
2699 	if (!(data->m->m_flags & M_EXT)) {
2700 		m_freem(data->m);
2701 		data->m = NULL;
2702 		aprint_error_dev(sc->sc_dev,
2703 						 "could not allocate mbuf for scan command\n");
2704 		return ENOMEM;
2705 	}
2706 
2707 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2708 	cmd->code = WPI_CMD_SCAN;
2709 	cmd->flags = 0;
2710 	cmd->qid = ring->qid;
2711 	cmd->idx = ring->cur;
2712 
2713 	hdr = (struct wpi_scan_hdr *)cmd->data;
2714 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2715 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2716 	hdr->id = WPI_ID_BROADCAST;
2717 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2718 
2719 	/*
2720 	 * Move to the next channel if no packets are received within 5 msecs
2721 	 * after sending the probe request (this helps to reduce the duration
2722 	 * of active scans).
2723 	 */
2724 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2725 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2726 
2727 	if (flags & IEEE80211_CHAN_A) {
2728 		hdr->crc_threshold = htole16(1);
2729 		/* send probe requests at 6Mbps */
2730 		hdr->rate = wpi_plcp_signal(12);
2731 	} else {
2732 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2733 		/* send probe requests at 1Mbps */
2734 		hdr->rate = wpi_plcp_signal(2);
2735 	}
2736 
2737 	/* for directed scans, firmware inserts the essid IE itself */
2738 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2739 	hdr->essid[0].len = ic->ic_des_esslen;
2740 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2741 
2742 	/*
2743 	 * Build a probe request frame.  Most of the following code is a
2744 	 * copy & paste of what is done in net80211.
2745 	 */
2746 	wh = (struct ieee80211_frame *)(hdr + 1);
2747 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2748 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2749 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2750 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2751 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2752 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2753 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2754 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2755 
2756 	frm = (uint8_t *)(wh + 1);
2757 
2758 	/* add empty essid IE (firmware generates it for directed scans) */
2759 	*frm++ = IEEE80211_ELEMID_SSID;
2760 	*frm++ = 0;
2761 
2762 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2763 	rs = &ic->ic_sup_rates[mode];
2764 
2765 	/* add supported rates IE */
2766 	*frm++ = IEEE80211_ELEMID_RATES;
2767 	nrates = rs->rs_nrates;
2768 	if (nrates > IEEE80211_RATE_SIZE)
2769 		nrates = IEEE80211_RATE_SIZE;
2770 	*frm++ = nrates;
2771 	memcpy(frm, rs->rs_rates, nrates);
2772 	frm += nrates;
2773 
2774 	/* add supported xrates IE */
2775 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2776 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2777 		*frm++ = IEEE80211_ELEMID_XRATES;
2778 		*frm++ = nrates;
2779 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2780 		frm += nrates;
2781 	}
2782 
2783 	/* setup length of probe request */
2784 	hdr->paylen = htole16(frm - (uint8_t *)wh);
2785 
2786 	chan = (struct wpi_scan_chan *)frm;
2787 	for (c  = &ic->ic_channels[1];
2788 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2789 		if ((c->ic_flags & flags) != flags)
2790 			continue;
2791 
2792 		chan->chan = ieee80211_chan2ieee(ic, c);
2793 		chan->flags = 0;
2794 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2795 			chan->flags |= WPI_CHAN_ACTIVE;
2796 			if (ic->ic_des_esslen != 0)
2797 				chan->flags |= WPI_CHAN_DIRECT;
2798 		}
2799 		chan->dsp_gain = 0x6e;
2800 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2801 			chan->rf_gain = 0x3b;
2802 			chan->active = htole16(10);
2803 			chan->passive = htole16(110);
2804 		} else {
2805 			chan->rf_gain = 0x28;
2806 			chan->active = htole16(20);
2807 			chan->passive = htole16(120);
2808 		}
2809 		hdr->nchan++;
2810 		chan++;
2811 
2812 		frm += sizeof (struct wpi_scan_chan);
2813 	}
2814 	hdr->len = htole16(frm - (uint8_t *)hdr);
2815 	pktlen = frm - (uint8_t *)cmd;
2816 
2817 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2818 		NULL, BUS_DMA_NOWAIT);
2819 	if (error) {
2820 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2821 		m_freem(data->m);
2822 		data->m = NULL;
2823 		return error;
2824 	}
2825 
2826 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2827 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2828 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2829 
2830 	/* kick cmd ring */
2831 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2832 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2833 
2834 	return 0;	/* will be notified async. of failure/success */
2835 }
2836 
2837 static int
2838 wpi_config(struct wpi_softc *sc)
2839 {
2840 	struct ieee80211com *ic = &sc->sc_ic;
2841 	struct ifnet *ifp = ic->ic_ifp;
2842 	struct wpi_power power;
2843 	struct wpi_bluetooth bluetooth;
2844 	struct wpi_node_info node;
2845 	int error;
2846 
2847 	memset(&power, 0, sizeof power);
2848 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2849 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2850 	if (error != 0) {
2851 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2852 		return error;
2853 	}
2854 
2855 	/* configure bluetooth coexistence */
2856 	memset(&bluetooth, 0, sizeof bluetooth);
2857 	bluetooth.flags = 3;
2858 	bluetooth.lead = 0xaa;
2859 	bluetooth.kill = 1;
2860 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2861 		0);
2862 	if (error != 0) {
2863 		aprint_error_dev(sc->sc_dev,
2864 			"could not configure bluetooth coexistence\n");
2865 		return error;
2866 	}
2867 
2868 	/* configure adapter */
2869 	memset(&sc->config, 0, sizeof (struct wpi_config));
2870 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2871 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2872 	/*set default channel*/
2873 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2874 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2875 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2876 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2877 		    WPI_CONFIG_24GHZ);
2878 	}
2879 	sc->config.filter = 0;
2880 	switch (ic->ic_opmode) {
2881 	case IEEE80211_M_STA:
2882 		sc->config.mode = WPI_MODE_STA;
2883 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2884 		break;
2885 	case IEEE80211_M_IBSS:
2886 	case IEEE80211_M_AHDEMO:
2887 		sc->config.mode = WPI_MODE_IBSS;
2888 		break;
2889 	case IEEE80211_M_HOSTAP:
2890 		sc->config.mode = WPI_MODE_HOSTAP;
2891 		break;
2892 	case IEEE80211_M_MONITOR:
2893 		sc->config.mode = WPI_MODE_MONITOR;
2894 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2895 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2896 		break;
2897 	}
2898 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2899 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2900 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2901 		sizeof (struct wpi_config), 0);
2902 	if (error != 0) {
2903 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2904 		return error;
2905 	}
2906 
2907 	/* configuration has changed, set Tx power accordingly */
2908 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2909 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2910 		return error;
2911 	}
2912 
2913 	/* add broadcast node */
2914 	memset(&node, 0, sizeof node);
2915 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2916 	node.id = WPI_ID_BROADCAST;
2917 	node.rate = wpi_plcp_signal(2);
2918 	node.action = htole32(WPI_ACTION_SET_RATE);
2919 	node.antenna = WPI_ANTENNA_BOTH;
2920 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2921 	if (error != 0) {
2922 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2923 		return error;
2924 	}
2925 
2926 	if ((error = wpi_mrr_setup(sc)) != 0) {
2927 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2928 		return error;
2929 	}
2930 
2931 	return 0;
2932 }
2933 
2934 static void
2935 wpi_stop_master(struct wpi_softc *sc)
2936 {
2937 	uint32_t tmp;
2938 	int ntries;
2939 
2940 	tmp = WPI_READ(sc, WPI_RESET);
2941 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2942 
2943 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2944 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2945 		return;	/* already asleep */
2946 
2947 	for (ntries = 0; ntries < 100; ntries++) {
2948 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2949 			break;
2950 		DELAY(10);
2951 	}
2952 	if (ntries == 100) {
2953 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2954 	}
2955 }
2956 
2957 static int
2958 wpi_power_up(struct wpi_softc *sc)
2959 {
2960 	uint32_t tmp;
2961 	int ntries;
2962 
2963 	wpi_mem_lock(sc);
2964 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2965 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2966 	wpi_mem_unlock(sc);
2967 
2968 	for (ntries = 0; ntries < 5000; ntries++) {
2969 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2970 			break;
2971 		DELAY(10);
2972 	}
2973 	if (ntries == 5000) {
2974 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2975 		return ETIMEDOUT;
2976 	}
2977 	return 0;
2978 }
2979 
2980 static int
2981 wpi_reset(struct wpi_softc *sc)
2982 {
2983 	uint32_t tmp;
2984 	int ntries;
2985 
2986 	/* clear any pending interrupts */
2987 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2988 
2989 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2990 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2991 
2992 	tmp = WPI_READ(sc, WPI_CHICKEN);
2993 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2994 
2995 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2996 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2997 
2998 	/* wait for clock stabilization */
2999 	for (ntries = 0; ntries < 1000; ntries++) {
3000 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3001 			break;
3002 		DELAY(10);
3003 	}
3004 	if (ntries == 1000) {
3005 		aprint_error_dev(sc->sc_dev,
3006 						 "timeout waiting for clock stabilization\n");
3007 		return ETIMEDOUT;
3008 	}
3009 
3010 	/* initialize EEPROM */
3011 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3012 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3013 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3014 		return EIO;
3015 	}
3016 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3017 
3018 	return 0;
3019 }
3020 
3021 static void
3022 wpi_hw_config(struct wpi_softc *sc)
3023 {
3024 	uint32_t rev, hw;
3025 
3026 	/* voodoo from the reference driver */
3027 	hw = WPI_READ(sc, WPI_HWCONFIG);
3028 
3029 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3030 	rev = PCI_REVISION(rev);
3031 	if ((rev & 0xc0) == 0x40)
3032 		hw |= WPI_HW_ALM_MB;
3033 	else if (!(rev & 0x80))
3034 		hw |= WPI_HW_ALM_MM;
3035 
3036 	if (sc->cap == 0x80)
3037 		hw |= WPI_HW_SKU_MRC;
3038 
3039 	hw &= ~WPI_HW_REV_D;
3040 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3041 		hw |= WPI_HW_REV_D;
3042 
3043 	if (sc->type > 1)
3044 		hw |= WPI_HW_TYPE_B;
3045 
3046 	DPRINTF(("setting h/w config %x\n", hw));
3047 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3048 }
3049 
3050 static int
3051 wpi_init(struct ifnet *ifp)
3052 {
3053 	struct wpi_softc *sc = ifp->if_softc;
3054 	struct ieee80211com *ic = &sc->sc_ic;
3055 	uint32_t tmp;
3056 	int qid, ntries, error;
3057 
3058 	wpi_stop(ifp,1);
3059 	(void)wpi_reset(sc);
3060 
3061 	wpi_mem_lock(sc);
3062 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3063 	DELAY(20);
3064 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3065 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3066 	wpi_mem_unlock(sc);
3067 
3068 	(void)wpi_power_up(sc);
3069 	wpi_hw_config(sc);
3070 
3071 	/* init Rx ring */
3072 	wpi_mem_lock(sc);
3073 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3074 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3075 	    offsetof(struct wpi_shared, next));
3076 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3077 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3078 	wpi_mem_unlock(sc);
3079 
3080 	/* init Tx rings */
3081 	wpi_mem_lock(sc);
3082 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3083 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3084 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3085 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3086 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3087 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3088 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3089 
3090 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3091 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3092 
3093 	for (qid = 0; qid < 6; qid++) {
3094 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3095 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3096 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3097 	}
3098 	wpi_mem_unlock(sc);
3099 
3100 	/* clear "radio off" and "disable command" bits (reversed logic) */
3101 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3103 
3104 	/* clear any pending interrupts */
3105 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3106 	/* enable interrupts */
3107 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3108 
3109 	/* not sure why/if this is necessary... */
3110 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3111 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3112 
3113 	if ((error = wpi_load_firmware(sc)) != 0) {
3114 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3115 		goto fail1;
3116 	}
3117 
3118 	/* Check the status of the radio switch */
3119 	if (wpi_getrfkill(sc)) {
3120 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3121 		error = EBUSY;
3122 		goto fail1;
3123 	}
3124 
3125 	/* wait for thermal sensors to calibrate */
3126 	for (ntries = 0; ntries < 1000; ntries++) {
3127 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3128 			break;
3129 		DELAY(10);
3130 	}
3131 	if (ntries == 1000) {
3132 		aprint_error_dev(sc->sc_dev,
3133 						 "timeout waiting for thermal sensors calibration\n");
3134 		error = ETIMEDOUT;
3135 		goto fail1;
3136 	}
3137 
3138 	DPRINTF(("temperature %d\n", sc->temp));
3139 
3140 	if ((error = wpi_config(sc)) != 0) {
3141 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3142 		goto fail1;
3143 	}
3144 
3145 	ifp->if_flags &= ~IFF_OACTIVE;
3146 	ifp->if_flags |= IFF_RUNNING;
3147 
3148 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3149 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3150 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3151 	}
3152 	else
3153 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3154 
3155 	return 0;
3156 
3157 fail1:	wpi_stop(ifp, 1);
3158 	return error;
3159 }
3160 
3161 
3162 static void
3163 wpi_stop(struct ifnet *ifp, int disable)
3164 {
3165 	struct wpi_softc *sc = ifp->if_softc;
3166 	struct ieee80211com *ic = &sc->sc_ic;
3167 	uint32_t tmp;
3168 	int ac;
3169 
3170 	ifp->if_timer = sc->sc_tx_timer = 0;
3171 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3172 
3173 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3174 
3175 	/* disable interrupts */
3176 	WPI_WRITE(sc, WPI_MASK, 0);
3177 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3178 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3179 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3180 
3181 	wpi_mem_lock(sc);
3182 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3183 	wpi_mem_unlock(sc);
3184 
3185 	/* reset all Tx rings */
3186 	for (ac = 0; ac < 4; ac++)
3187 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3188 	wpi_reset_tx_ring(sc, &sc->cmdq);
3189 
3190 	/* reset Rx ring */
3191 	wpi_reset_rx_ring(sc, &sc->rxq);
3192 
3193 	wpi_mem_lock(sc);
3194 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3195 	wpi_mem_unlock(sc);
3196 
3197 	DELAY(5);
3198 
3199 	wpi_stop_master(sc);
3200 
3201 	tmp = WPI_READ(sc, WPI_RESET);
3202 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3203 }
3204 
3205 static bool
3206 wpi_resume(device_t dv PMF_FN_ARGS)
3207 {
3208 	struct wpi_softc *sc = device_private(dv);
3209 
3210 	(void)wpi_reset(sc);
3211 
3212 	return true;
3213 }
3214 
3215 /*
3216  * Return whether or not the radio is enabled in hardware
3217  * (i.e. the rfkill switch is "off").
3218  */
3219 static int
3220 wpi_getrfkill(struct wpi_softc *sc)
3221 {
3222 	uint32_t tmp;
3223 
3224 	wpi_mem_lock(sc);
3225 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3226 	wpi_mem_unlock(sc);
3227 
3228 	return !(tmp & 0x01);
3229 }
3230 
3231 static int
3232 wpi_sysctl_radio(SYSCTLFN_ARGS)
3233 {
3234 	struct sysctlnode node;
3235 	struct wpi_softc *sc;
3236 	int val, error;
3237 
3238 	node = *rnode;
3239 	sc = (struct wpi_softc *)node.sysctl_data;
3240 
3241 	val = !wpi_getrfkill(sc);
3242 
3243 	node.sysctl_data = &val;
3244 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3245 
3246 	if (error || newp == NULL)
3247 		return error;
3248 
3249 	return 0;
3250 }
3251 
3252 static void
3253 wpi_sysctlattach(struct wpi_softc *sc)
3254 {
3255 	int rc;
3256 	const struct sysctlnode *rnode;
3257 	const struct sysctlnode *cnode;
3258 
3259 	struct sysctllog **clog = &sc->sc_sysctllog;
3260 
3261 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3262 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3263 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3264 		goto err;
3265 
3266 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3267 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3268 	    SYSCTL_DESCR("wpi controls and statistics"),
3269 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3270 		goto err;
3271 
3272 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3273 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3274 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3275 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3276 		goto err;
3277 
3278 #ifdef WPI_DEBUG
3279 	/* control debugging printfs */
3280 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3281 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3282 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3283 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3284 		goto err;
3285 #endif
3286 
3287 	return;
3288 err:
3289 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3290 }
3291