1 /* $NetBSD: if_wpi.c,v 1.4 2006/10/12 01:31:31 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.4 2006/10/12 01:31:31 christos Exp $"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 */ 26 27 #include "bpfilter.h" 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/conf.h> 38 #include <sys/kauth.h> 39 40 #include <machine/bus.h> 41 #include <machine/endian.h> 42 #include <machine/intr.h> 43 44 #include <dev/pci/pcireg.h> 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcidevs.h> 47 48 #if NBPFILTER > 0 49 #include <net/bpf.h> 50 #endif 51 #include <net/if.h> 52 #include <net/if_arp.h> 53 #include <net/if_dl.h> 54 #include <net/if_ether.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #include <net80211/ieee80211_var.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/in_var.h> 64 #include <netinet/ip.h> 65 66 #include <dev/firmload.h> 67 68 #include <dev/pci/if_wpireg.h> 69 #include <dev/pci/if_wpivar.h> 70 71 #ifdef WPI_DEBUG 72 #define DPRINTF(x) if (wpi_debug > 0) printf x 73 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x 74 int wpi_debug = 1; 75 #else 76 #define DPRINTF(x) 77 #define DPRINTFN(n, x) 78 #endif 79 80 /* 81 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 82 */ 83 static const struct ieee80211_rateset wpi_rateset_11a = 84 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 85 86 static const struct ieee80211_rateset wpi_rateset_11b = 87 { 4, { 2, 4, 11, 22 } }; 88 89 static const struct ieee80211_rateset wpi_rateset_11g = 90 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 91 92 static const uint8_t wpi_ridx_to_plcp[] = { 93 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, /* OFDM R1-R4 */ 94 10, 20, 55, 110 /* CCK */ 95 }; 96 97 static int wpi_match(struct device *, struct cfdata *, void *); 98 static void wpi_attach(struct device *, struct device *, void *); 99 static int wpi_detach(struct device*, int); 100 static void wpi_power(int, void *); 101 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 102 void **, bus_size_t, bus_size_t, int); 103 static void wpi_dma_contig_free(struct wpi_softc *, struct wpi_dma_info *); 104 static int wpi_alloc_shared(struct wpi_softc *); 105 static void wpi_free_shared(struct wpi_softc *); 106 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 107 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 108 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 109 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int, 110 int); 111 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 112 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 113 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *); 114 static int wpi_media_change(struct ifnet *); 115 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 116 static void wpi_mem_lock(struct wpi_softc *); 117 static void wpi_mem_unlock(struct wpi_softc *); 118 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 119 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 120 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 121 const uint32_t *, int); 122 static uint16_t wpi_read_prom_word(struct wpi_softc *, uint32_t); 123 static int wpi_load_firmware(struct wpi_softc *, uint32_t, const char *, 124 int); 125 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 126 struct wpi_rx_data *); 127 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 128 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 129 static void wpi_notif_intr(struct wpi_softc *); 130 static int wpi_intr(void *); 131 static uint8_t wpi_plcp_signal(int); 132 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 133 struct ieee80211_node *, int); 134 static void wpi_start(struct ifnet *); 135 static void wpi_watchdog(struct ifnet *); 136 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 137 static void wpi_read_eeprom(struct wpi_softc *); 138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 139 static int wpi_wme_update(struct ieee80211com *); 140 static int wpi_mrr_setup(struct wpi_softc *); 141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 143 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 144 static int wpi_auth(struct wpi_softc *); 145 static int wpi_scan(struct wpi_softc *, uint16_t); 146 static int wpi_config(struct wpi_softc *); 147 static void wpi_stop_master(struct wpi_softc *); 148 static int wpi_power_up(struct wpi_softc *); 149 static int wpi_reset(struct wpi_softc *); 150 static void wpi_hw_config(struct wpi_softc *); 151 static int wpi_init(struct ifnet *); 152 static void wpi_stop(struct ifnet *, int); 153 154 /* rate control algorithm: should be moved to net80211 */ 155 static void wpi_amrr_init(struct wpi_amrr *); 156 static void wpi_amrr_timeout(void *); 157 static void wpi_amrr_ratectl(void *, struct ieee80211_node *); 158 159 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach, 160 wpi_detach, NULL); 161 162 static int 163 wpi_match(struct device *parent __unused, struct cfdata *match __unused, 164 void *aux) 165 { 166 struct pci_attach_args *pa = aux; 167 168 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 169 return 0; 170 171 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 || 172 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2) 173 return 1; 174 175 return 0; 176 } 177 178 /* Base Address Register */ 179 #define WPI_PCI_BAR0 0x10 180 181 static void 182 wpi_attach(struct device *parent __unused, struct device *self, void *aux) 183 { 184 struct wpi_softc *sc = (struct wpi_softc *)self; 185 struct ieee80211com *ic = &sc->sc_ic; 186 struct ifnet *ifp = &sc->sc_ec.ec_if; 187 struct pci_attach_args *pa = aux; 188 const char *intrstr; 189 char devinfo[256]; 190 bus_space_tag_t memt; 191 bus_space_handle_t memh; 192 bus_addr_t base; 193 pci_intr_handle_t ih; 194 pcireg_t data; 195 int error, ac, revision, i; 196 197 sc->sc_pct = pa->pa_pc; 198 sc->sc_pcitag = pa->pa_tag; 199 200 callout_init(&sc->amrr_ch); 201 202 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); 203 revision = PCI_REVISION(pa->pa_class); 204 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision); 205 206 /* clear device specific PCI configuration register 0x41 */ 207 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 208 data &= ~0x0000ff00; 209 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); 210 211 /* enable bus-mastering */ 212 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 213 data |= PCI_COMMAND_MASTER_ENABLE; 214 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data); 215 216 /* map the register window */ 217 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | 218 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz); 219 if (error != 0) { 220 aprint_error("%s: could not map memory space\n", 221 sc->sc_dev.dv_xname); 222 return; 223 } 224 225 sc->sc_st = memt; 226 sc->sc_sh = memh; 227 sc->sc_dmat = pa->pa_dmat; 228 229 if (pci_intr_map(pa, &ih) != 0) { 230 aprint_error("%s: could not map interrupt\n", 231 sc->sc_dev.dv_xname); 232 return; 233 } 234 235 intrstr = pci_intr_string(sc->sc_pct, ih); 236 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc); 237 if (sc->sc_ih == NULL) { 238 aprint_error("%s: could not establish interrupt", 239 sc->sc_dev.dv_xname); 240 if (intrstr != NULL) 241 aprint_error(" at %s", intrstr); 242 aprint_error("\n"); 243 return; 244 } 245 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 246 247 if (wpi_reset(sc) != 0) { 248 aprint_error("%s: could not reset adapter\n", 249 sc->sc_dev.dv_xname); 250 return; 251 } 252 253 /* 254 * Allocate shared page and Tx/Rx rings. 255 */ 256 if ((error = wpi_alloc_shared(sc)) != 0) { 257 aprint_error("%s: could not allocate shared area\n", 258 sc->sc_dev.dv_xname); 259 return; 260 } 261 262 for (ac = 0; ac < 4; ac++) { 263 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 264 if (error != 0) { 265 aprint_error("%s: could not allocate Tx ring %d\n", 266 sc->sc_dev.dv_xname, ac); 267 goto fail1; 268 } 269 } 270 271 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 272 if (error != 0) { 273 aprint_error("%s: could not allocate command ring\n", 274 sc->sc_dev.dv_xname); 275 goto fail1; 276 } 277 278 error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5); 279 if (error != 0) { 280 aprint_error("%s: could not allocate service ring\n", 281 sc->sc_dev.dv_xname); 282 goto fail2; 283 } 284 285 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) { 286 aprint_error("%s: could not allocate Rx ring\n", 287 sc->sc_dev.dv_xname); 288 goto fail3; 289 } 290 291 292 ic->ic_ifp = ifp; 293 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 294 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 295 ic->ic_state = IEEE80211_S_INIT; 296 297 /* set device capabilities */ 298 ic->ic_caps = 299 IEEE80211_C_IBSS | /* IBSS mode support */ 300 IEEE80211_C_WPA | /* 802.11i */ 301 IEEE80211_C_MONITOR | /* monitor mode supported */ 302 IEEE80211_C_TXPMGT | /* tx power management */ 303 IEEE80211_C_SHSLOT | /* short slot time supported */ 304 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 305 IEEE80211_C_WME; /* 802.11e */ 306 307 wpi_read_eeprom(sc); 308 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname, 309 ether_sprintf(ic->ic_myaddr)); 310 311 /* set supported .11a rates */ 312 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a; 313 314 /* set supported .11a channels */ 315 for (i = 36; i <= 64; i += 4) { 316 ic->ic_channels[i].ic_freq = 317 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 318 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 319 } 320 for (i = 100; i <= 140; i += 4) { 321 ic->ic_channels[i].ic_freq = 322 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 323 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 324 } 325 for (i = 149; i <= 165; i += 4) { 326 ic->ic_channels[i].ic_freq = 327 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 328 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 329 } 330 331 /* set supported .11b and .11g rates */ 332 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b; 333 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g; 334 335 /* set supported .11b and .11g channels (1 through 14) */ 336 for (i = 1; i <= 14; i++) { 337 ic->ic_channels[i].ic_freq = 338 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 339 ic->ic_channels[i].ic_flags = 340 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 341 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 342 } 343 344 ic->ic_ibss_chan = &ic->ic_channels[0]; 345 346 ifp->if_softc = sc; 347 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 348 ifp->if_init = wpi_init; 349 ifp->if_stop = wpi_stop; 350 ifp->if_ioctl = wpi_ioctl; 351 ifp->if_start = wpi_start; 352 ifp->if_watchdog = wpi_watchdog; 353 IFQ_SET_READY(&ifp->if_snd); 354 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 355 356 if_attach(ifp); 357 ieee80211_ifattach(ic); 358 /* override default methods */ 359 ic->ic_node_alloc = wpi_node_alloc; 360 ic->ic_wme.wme_update = wpi_wme_update; 361 362 /* override state transition machine */ 363 sc->sc_newstate = ic->ic_newstate; 364 ic->ic_newstate = wpi_newstate; 365 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status); 366 367 /* set powerhook */ 368 sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc); 369 370 #if NBPFILTER > 0 371 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 372 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 373 &sc->sc_drvbpf); 374 375 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 376 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 377 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 378 379 sc->sc_txtap_len = sizeof sc->sc_txtapu; 380 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 381 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 382 #endif 383 384 ieee80211_announce(ic); 385 386 return; 387 388 fail3: wpi_free_tx_ring(sc, &sc->svcq); 389 fail2: wpi_free_tx_ring(sc, &sc->cmdq); 390 fail1: while (--ac >= 0) 391 wpi_free_tx_ring(sc, &sc->txq[ac]); 392 wpi_free_shared(sc); 393 } 394 395 static int 396 wpi_detach(struct device* self, int flags __unused) 397 { 398 struct wpi_softc *sc = (struct wpi_softc *)self; 399 struct ifnet *ifp = &sc->sc_ec.ec_if; 400 int ac; 401 402 wpi_stop(ifp, 1); 403 404 #if NBPFILTER > 0 405 if (ifp != NULL) 406 bpfdetach(ifp); 407 #endif 408 ieee80211_ifdetach(&sc->sc_ic); 409 if (ifp != NULL) 410 if_detach(ifp); 411 412 for (ac = 0; ac < 4; ac++) 413 wpi_free_tx_ring(sc, &sc->txq[ac]); 414 wpi_free_tx_ring(sc, &sc->cmdq); 415 wpi_free_tx_ring(sc, &sc->svcq); 416 wpi_free_rx_ring(sc, &sc->rxq); 417 wpi_free_shared(sc); 418 419 if (sc->sc_ih != NULL) { 420 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 421 sc->sc_ih = NULL; 422 } 423 424 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 425 426 return 0; 427 } 428 429 static void 430 wpi_power(int why, void *arg) 431 { 432 struct wpi_softc *sc = arg; 433 struct ifnet *ifp; 434 pcireg_t data; 435 int s; 436 437 if (why != PWR_RESUME) 438 return; 439 440 /* clear device specific PCI configuration register 0x41 */ 441 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 442 data &= ~0x0000ff00; 443 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); 444 445 s = splnet(); 446 ifp = sc->sc_ic.ic_ifp; 447 if (ifp->if_flags & IFF_UP) { 448 ifp->if_init(ifp); 449 if (ifp->if_flags & IFF_RUNNING) 450 ifp->if_start(ifp); 451 } 452 splx(s); 453 } 454 455 static int 456 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 457 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 458 { 459 int nsegs, error; 460 461 dma->size = size; 462 463 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 464 flags, &dma->map); 465 if (error != 0) { 466 aprint_error("%s: could not create DMA map\n", 467 sc->sc_dev.dv_xname); 468 goto fail; 469 } 470 471 error = bus_dmamem_alloc(sc->sc_dmat, size, alignment, 0, &dma->seg, 472 1, &nsegs, flags); 473 if (error != 0) { 474 aprint_error("%s: could not allocate DMA memory\n", 475 sc->sc_dev.dv_xname); 476 goto fail; 477 } 478 479 error = bus_dmamem_map(sc->sc_dmat, &dma->seg, 1, size, 480 &dma->vaddr, flags); 481 if (error != 0) { 482 aprint_error("%s: could not map DMA memory\n", 483 sc->sc_dev.dv_xname); 484 goto fail; 485 } 486 487 error = bus_dmamap_load(sc->sc_dmat, dma->map, dma->vaddr, 488 size, NULL, flags); 489 if (error != 0) { 490 aprint_error("%s: could not load DMA memory\n", 491 sc->sc_dev.dv_xname); 492 goto fail; 493 } 494 495 memset(dma->vaddr, 0, size); 496 497 dma->paddr = dma->map->dm_segs[0].ds_addr; 498 *kvap = dma->vaddr; 499 500 return 0; 501 502 fail: wpi_dma_contig_free(sc, dma); 503 return error; 504 } 505 506 static void 507 wpi_dma_contig_free(struct wpi_softc *sc, struct wpi_dma_info *dma) 508 { 509 if (dma->map != NULL) { 510 if (dma->vaddr != NULL) { 511 bus_dmamap_unload(sc->sc_dmat, dma->map); 512 bus_dmamem_unmap(sc->sc_dmat, dma->vaddr, dma->size); 513 bus_dmamem_free(sc->sc_dmat, &dma->seg, 1); 514 dma->vaddr = NULL; 515 } 516 bus_dmamap_destroy(sc->sc_dmat, dma->map); 517 dma->map = NULL; 518 } 519 } 520 521 /* 522 * Allocate a shared page between host and NIC. 523 */ 524 static int 525 wpi_alloc_shared(struct wpi_softc *sc) 526 { 527 int error; 528 /* must be aligned on a 4K-page boundary */ 529 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 530 (void **)&sc->shared, sizeof (struct wpi_shared), PAGE_SIZE, 531 BUS_DMA_NOWAIT); 532 if (error != 0) 533 aprint_error("%s: could not allocate shared area DMA memory\n", 534 sc->sc_dev.dv_xname); 535 536 return error; 537 } 538 539 static void 540 wpi_free_shared(struct wpi_softc *sc) 541 { 542 wpi_dma_contig_free(sc, &sc->shared_dma); 543 } 544 545 static int 546 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 547 { 548 struct wpi_rx_data *data; 549 int i, error; 550 551 ring->cur = 0; 552 553 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 554 (void **)&ring->desc, 555 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc), 556 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 557 if (error != 0) { 558 aprint_error("%s: could not allocate rx ring DMA memory\n", 559 sc->sc_dev.dv_xname); 560 goto fail; 561 } 562 563 /* 564 * Allocate Rx buffers. 565 */ 566 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 567 data = &ring->data[i]; 568 569 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 570 0, BUS_DMA_NOWAIT, &data->map); 571 if (error != 0) { 572 aprint_error("%s: could not create rx buf DMA map\n", 573 sc->sc_dev.dv_xname); 574 goto fail; 575 } 576 577 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 578 if (data->m == NULL) { 579 aprint_error("%s: could not allocate rx mbuf\n", 580 sc->sc_dev.dv_xname); 581 error = ENOMEM; 582 goto fail; 583 } 584 585 MCLGET(data->m, M_DONTWAIT); 586 if (!(data->m->m_flags & M_EXT)) { 587 m_freem(data->m); 588 data->m = NULL; 589 aprint_error("%s: could not allocate rx mbuf cluster\n", 590 sc->sc_dev.dv_xname); 591 error = ENOMEM; 592 goto fail; 593 } 594 595 error = bus_dmamap_load(sc->sc_dmat, data->map, 596 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT | 597 BUS_DMA_READ); 598 if (error != 0) { 599 aprint_error("%s: could not load rx buf DMA map\n", 600 sc->sc_dev.dv_xname); 601 goto fail; 602 } 603 604 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr); 605 } 606 607 return 0; 608 609 fail: wpi_free_rx_ring(sc, ring); 610 return error; 611 } 612 613 static void 614 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 615 { 616 int ntries; 617 618 wpi_mem_lock(sc); 619 620 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 621 for (ntries = 0; ntries < 100; ntries++) { 622 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 623 break; 624 DELAY(10); 625 } 626 #ifdef WPI_DEBUG 627 if (ntries == 100 && wpi_debug > 0) 628 aprint_error("%s: timeout resetting Rx ring\n", 629 sc->sc_dev.dv_xname); 630 #endif 631 wpi_mem_unlock(sc); 632 633 ring->cur = 0; 634 } 635 636 static void 637 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 638 { 639 struct wpi_rx_data *data; 640 int i; 641 642 wpi_dma_contig_free(sc, &ring->desc_dma); 643 644 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 645 data = &ring->data[i]; 646 647 if (data->m != NULL) { 648 bus_dmamap_unload(sc->sc_dmat, data->map); 649 m_freem(data->m); 650 } 651 bus_dmamap_destroy(sc->sc_dmat, data->map); 652 } 653 } 654 655 static int 656 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 657 int qid) 658 { 659 struct wpi_tx_data *data; 660 int i, error; 661 662 ring->qid = qid; 663 ring->count = count; 664 ring->queued = 0; 665 ring->cur = 0; 666 667 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 668 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 669 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 670 if (error != 0) { 671 aprint_error("%s: could not allocate tx ring DMA memory\n", 672 sc->sc_dev.dv_xname); 673 goto fail; 674 } 675 676 /* update shared page with ring's base address */ 677 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 678 679 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 680 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT); 681 if (error != 0) { 682 aprint_error("%s: could not allocate tx cmd DMA memory\n", 683 sc->sc_dev.dv_xname); 684 goto fail; 685 } 686 687 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 688 M_NOWAIT); 689 if (ring->data == NULL) { 690 aprint_error("%s: could not allocate tx data slots\n", 691 sc->sc_dev.dv_xname); 692 goto fail; 693 } 694 695 memset(ring->data, 0, count * sizeof (struct wpi_tx_data)); 696 697 for (i = 0; i < count; i++) { 698 data = &ring->data[i]; 699 700 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 701 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 702 &data->map); 703 if (error != 0) { 704 aprint_error("%s: could not create tx buf DMA map\n", 705 sc->sc_dev.dv_xname); 706 goto fail; 707 } 708 } 709 710 return 0; 711 712 fail: wpi_free_tx_ring(sc, ring); 713 return error; 714 } 715 716 static void 717 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 718 { 719 struct wpi_tx_data *data; 720 int i, ntries; 721 722 wpi_mem_lock(sc); 723 724 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 725 for (ntries = 0; ntries < 100; ntries++) { 726 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 727 break; 728 DELAY(10); 729 } 730 #ifdef WPI_DEBUG 731 if (ntries == 100 && wpi_debug > 0) { 732 aprint_error("%s: timeout resetting Tx ring %d\n", 733 sc->sc_dev.dv_xname, ring->qid); 734 } 735 #endif 736 wpi_mem_unlock(sc); 737 738 for (i = 0; i < ring->count; i++) { 739 data = &ring->data[i]; 740 741 if (data->m != NULL) { 742 bus_dmamap_unload(sc->sc_dmat, data->map); 743 m_freem(data->m); 744 data->m = NULL; 745 } 746 } 747 748 ring->queued = 0; 749 ring->cur = 0; 750 } 751 752 static void 753 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 754 { 755 struct wpi_tx_data *data; 756 int i; 757 758 wpi_dma_contig_free(sc, &ring->desc_dma); 759 wpi_dma_contig_free(sc, &ring->cmd_dma); 760 761 if (ring->data != NULL) { 762 for (i = 0; i < ring->count; i++) { 763 data = &ring->data[i]; 764 765 if (data->m != NULL) { 766 bus_dmamap_unload(sc->sc_dmat, data->map); 767 m_freem(data->m); 768 } 769 } 770 free(ring->data, M_DEVBUF); 771 } 772 } 773 774 /*ARGUSED*/ 775 static struct ieee80211_node * 776 wpi_node_alloc(struct ieee80211_node_table *ic __unused) 777 { 778 struct wpi_amrr *amrr; 779 780 amrr = malloc(sizeof (struct wpi_amrr), M_80211_NODE, M_NOWAIT); 781 if (amrr != NULL) { 782 memset(amrr, 0, sizeof (struct wpi_amrr)); 783 wpi_amrr_init(amrr); 784 } 785 return (struct ieee80211_node *)amrr; 786 } 787 788 static int 789 wpi_media_change(struct ifnet *ifp) 790 { 791 int error; 792 793 error = ieee80211_media_change(ifp); 794 if (error != ENETRESET) 795 return error; 796 797 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 798 wpi_init(ifp); 799 800 return 0; 801 } 802 803 static int 804 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 805 { 806 struct ifnet *ifp = ic->ic_ifp; 807 struct wpi_softc *sc = ifp->if_softc; 808 int error; 809 810 callout_stop(&sc->amrr_ch); 811 812 switch (nstate) { 813 case IEEE80211_S_SCAN: 814 ieee80211_node_table_reset(&ic->ic_scan); 815 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 816 817 /* make the link LED blink while we're scanning */ 818 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 819 820 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) { 821 aprint_error("%s: could not initiate scan\n", 822 sc->sc_dev.dv_xname); 823 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN); 824 return error; 825 } 826 827 ic->ic_state = nstate; 828 return 0; 829 830 case IEEE80211_S_AUTH: 831 sc->config.state &= ~htole16(WPI_STATE_ASSOCIATED); 832 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 833 if ((error = wpi_auth(sc)) != 0) { 834 aprint_error("%s: could not send authentication request\n", 835 sc->sc_dev.dv_xname); 836 return error; 837 } 838 break; 839 840 case IEEE80211_S_RUN: 841 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 842 /* link LED blinks while monitoring */ 843 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 844 break; 845 } 846 847 if (ic->ic_opmode != IEEE80211_M_STA) { 848 (void) wpi_auth(sc); /* XXX */ 849 wpi_setup_beacon(sc, ic->ic_bss); 850 } 851 852 wpi_enable_tsf(sc, ic->ic_bss); 853 854 /* update adapter's configuration */ 855 sc->config.state = htole16(WPI_STATE_ASSOCIATED); 856 /* short preamble/slot time are negotiated when associating */ 857 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 858 WPI_CONFIG_SHSLOT); 859 if (ic->ic_flags & IEEE80211_F_SHSLOT) 860 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 861 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 862 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 863 sc->config.filter |= htole32(WPI_FILTER_BSS); 864 if (ic->ic_opmode != IEEE80211_M_STA) 865 sc->config.filter |= htole32(WPI_FILTER_BEACON); 866 867 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 868 869 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 870 sc->config.flags)); 871 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 872 sizeof (struct wpi_config), 1); 873 if (error != 0) { 874 aprint_error("%s: could not update configuration\n", 875 sc->sc_dev.dv_xname); 876 return error; 877 } 878 879 /* enable automatic rate adaptation in STA mode */ 880 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 881 callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc); 882 883 /* link LED always on while associated */ 884 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 885 break; 886 887 case IEEE80211_S_ASSOC: 888 case IEEE80211_S_INIT: 889 break; 890 } 891 892 return sc->sc_newstate(ic, nstate, arg); 893 } 894 895 /* 896 * Grab exclusive access to NIC memory. 897 */ 898 static void 899 wpi_mem_lock(struct wpi_softc *sc) 900 { 901 uint32_t tmp; 902 int ntries; 903 904 tmp = WPI_READ(sc, WPI_GPIO_CTL); 905 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 906 907 /* spin until we actually get the lock */ 908 for (ntries = 0; ntries < 1000; ntries++) { 909 if ((WPI_READ(sc, WPI_GPIO_CTL) & 910 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 911 break; 912 DELAY(10); 913 } 914 if (ntries == 1000) 915 aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname); 916 } 917 918 /* 919 * Release lock on NIC memory. 920 */ 921 static void 922 wpi_mem_unlock(struct wpi_softc *sc) 923 { 924 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 925 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 926 } 927 928 static uint32_t 929 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 930 { 931 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 932 return WPI_READ(sc, WPI_READ_MEM_DATA); 933 } 934 935 static void 936 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 937 { 938 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 939 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 940 } 941 942 static void 943 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 944 const uint32_t *data, int wlen) 945 { 946 for (; wlen > 0; wlen--, data++, addr += 4) 947 wpi_mem_write(sc, addr, *data); 948 } 949 950 /* 951 * Read 16 bits from the EEPROM. We access EEPROM through the MAC instead of 952 * using the traditional bit-bang method. 953 */ 954 static uint16_t 955 wpi_read_prom_word(struct wpi_softc *sc, uint32_t addr) 956 { 957 int ntries; 958 uint32_t val; 959 960 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 961 962 wpi_mem_lock(sc); 963 for (ntries = 0; ntries < 10; ntries++) { 964 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 965 break; 966 DELAY(10); 967 } 968 wpi_mem_unlock(sc); 969 970 if (ntries == 10) { 971 aprint_error("%s: could not read EEPROM\n", sc->sc_dev.dv_xname); 972 return 0xdead; 973 } 974 return val >> 16; 975 } 976 977 /* 978 * The firmware boot code is small and is intended to be copied directly into 979 * the NIC internal memory. 980 */ 981 static int 982 wpi_load_microcode(struct wpi_softc *sc, const char *ucode, int size) 983 { 984 /* check that microcode size is a multiple of 4 */ 985 if (size & 3) 986 return EINVAL; 987 988 size /= sizeof (uint32_t); 989 990 wpi_mem_lock(sc); 991 992 /* copy microcode image into NIC memory */ 993 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode, 994 size); 995 996 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 997 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 998 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 999 1000 /* run microcode */ 1001 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1002 1003 wpi_mem_unlock(sc); 1004 1005 return 0; 1006 } 1007 1008 /* 1009 * The firmware text and data segments are transferred to the NIC using DMA. 1010 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1011 * where to find it. Once the NIC has copied the firmware into its internal 1012 * memory, we can free our local copy in the driver. 1013 */ 1014 static int 1015 wpi_load_firmware(struct wpi_softc *sc, uint32_t target, const char *fw, 1016 int size) 1017 { 1018 bus_dmamap_t map; 1019 bus_dma_segment_t seg; 1020 caddr_t virtaddr; 1021 struct wpi_tx_desc desc; 1022 int i, ntries, nsegs, error; 1023 1024 /* 1025 * Allocate DMA-safe memory to store the firmware. 1026 */ 1027 error = bus_dmamap_create(sc->sc_dmat, size, WPI_MAX_SCATTER, 1028 WPI_MAX_SEG_LEN, 0, BUS_DMA_NOWAIT, &map); 1029 if (error != 0) { 1030 aprint_error("%s: could not create firmware DMA map\n", 1031 sc->sc_dev.dv_xname); 1032 goto fail1; 1033 } 1034 1035 error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, 1036 &nsegs, BUS_DMA_NOWAIT); 1037 if (error != 0) { 1038 aprint_error("%s: could not allocate firmware DMA memory\n", 1039 sc->sc_dev.dv_xname); 1040 goto fail2; 1041 } 1042 1043 error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr, 1044 BUS_DMA_NOWAIT); 1045 if (error != 0) { 1046 aprint_error("%s: could not map firmware DMA memory\n", 1047 sc->sc_dev.dv_xname); 1048 goto fail3; 1049 } 1050 1051 error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL, 1052 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1053 if (error != 0) { 1054 aprint_error("%s: could not load firmware DMA map\n", 1055 sc->sc_dev.dv_xname); 1056 goto fail4; 1057 } 1058 1059 /* copy firmware image to DMA-safe memory */ 1060 bcopy(fw, virtaddr, size); 1061 1062 /* make sure the adapter will get up-to-date values */ 1063 bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE); 1064 1065 bzero(&desc, sizeof desc); 1066 desc.flags = htole32(WPI_PAD32(size) << 28 | map->dm_nsegs << 24); 1067 for (i = 0; i < map->dm_nsegs; i++) { 1068 desc.segs[i].addr = htole32(map->dm_segs[i].ds_addr); 1069 desc.segs[i].len = htole32(map->dm_segs[i].ds_len); 1070 } 1071 1072 wpi_mem_lock(sc); 1073 1074 /* tell adapter where to copy image in its internal memory */ 1075 WPI_WRITE(sc, WPI_FW_TARGET, target); 1076 1077 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0); 1078 1079 /* copy firmware descriptor into NIC memory */ 1080 WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc, 1081 sizeof desc / sizeof (uint32_t)); 1082 1083 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff); 1084 WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001); 1085 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001); 1086 1087 /* wait while the adapter is busy copying the firmware */ 1088 for (ntries = 0; ntries < 100; ntries++) { 1089 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6)) 1090 break; 1091 DELAY(1000); 1092 } 1093 if (ntries == 100) { 1094 aprint_error("%s: timeout transferring firmware\n", 1095 sc->sc_dev.dv_xname); 1096 error = ETIMEDOUT; 1097 } 1098 1099 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0); 1100 1101 wpi_mem_unlock(sc); 1102 1103 bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE); 1104 bus_dmamap_unload(sc->sc_dmat, map); 1105 fail4: bus_dmamem_unmap(sc->sc_dmat, virtaddr, size); 1106 fail3: bus_dmamem_free(sc->sc_dmat, &seg, 1); 1107 fail2: bus_dmamap_destroy(sc->sc_dmat, map); 1108 fail1: return error; 1109 } 1110 1111 static void 1112 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1113 struct wpi_rx_data *data) 1114 { 1115 struct ieee80211com *ic = &sc->sc_ic; 1116 struct ifnet *ifp = ic->ic_ifp; 1117 struct wpi_rx_ring *ring = &sc->rxq; 1118 struct wpi_rx_stat *stat; 1119 struct wpi_rx_head *head; 1120 struct wpi_rx_tail *tail; 1121 struct ieee80211_frame *wh; 1122 struct ieee80211_node *ni; 1123 struct mbuf *m, *mnew; 1124 int error; 1125 1126 stat = (struct wpi_rx_stat *)(desc + 1); 1127 1128 if (stat->len > WPI_STAT_MAXLEN) { 1129 aprint_error("%s: invalid rx statistic header\n", 1130 sc->sc_dev.dv_xname); 1131 ifp->if_ierrors++; 1132 return; 1133 } 1134 1135 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1136 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1137 1138 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x " 1139 "chan=%d tstamp=%llu\n", ring->cur, le32toh(desc->len), 1140 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1141 le64toh(tail->tstamp))); 1142 1143 /* 1144 * Discard Rx frames with bad CRC early (XXX we may want to pass them 1145 * to radiotap in monitor mode). 1146 */ 1147 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1148 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags))); 1149 ifp->if_ierrors++; 1150 return; 1151 } 1152 1153 1154 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1155 if (mnew == NULL) { 1156 ifp->if_ierrors++; 1157 return; 1158 } 1159 1160 MCLGET(mnew, M_DONTWAIT); 1161 if (!(mnew->m_flags & M_EXT)) { 1162 m_freem(mnew); 1163 ifp->if_ierrors++; 1164 return; 1165 } 1166 1167 bus_dmamap_unload(sc->sc_dmat, data->map); 1168 1169 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *), 1170 MCLBYTES, NULL, BUS_DMA_NOWAIT); 1171 if (error != 0) { 1172 m_freem(mnew); 1173 1174 /* try to reload the old mbuf */ 1175 error = bus_dmamap_load(sc->sc_dmat, data->map, 1176 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 1177 if (error != 0) { 1178 /* very unlikely that it will fail... */ 1179 panic("%s: could not load old rx mbuf", 1180 sc->sc_dev.dv_xname); 1181 } 1182 ifp->if_ierrors++; 1183 return; 1184 } 1185 1186 m = data->m; 1187 data->m = mnew; 1188 1189 /* update Rx descriptor */ 1190 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr); 1191 1192 /* finalize mbuf */ 1193 m->m_pkthdr.rcvif = ifp; 1194 m->m_data = (caddr_t)(head + 1); 1195 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1196 1197 #if NBPFILTER > 0 1198 if (sc->sc_drvbpf != NULL) { 1199 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1200 1201 tap->wr_flags = 0; 1202 tap->wr_chan_freq = 1203 htole16(ic->ic_channels[head->chan].ic_freq); 1204 tap->wr_chan_flags = 1205 htole16(ic->ic_channels[head->chan].ic_flags); 1206 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1207 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1208 tap->wr_tsft = tail->tstamp; 1209 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1210 switch (head->rate) { 1211 /* CCK rates */ 1212 case 10: tap->wr_rate = 2; break; 1213 case 20: tap->wr_rate = 4; break; 1214 case 55: tap->wr_rate = 11; break; 1215 case 110: tap->wr_rate = 22; break; 1216 /* OFDM rates */ 1217 case 0xd: tap->wr_rate = 12; break; 1218 case 0xf: tap->wr_rate = 18; break; 1219 case 0x5: tap->wr_rate = 24; break; 1220 case 0x7: tap->wr_rate = 36; break; 1221 case 0x9: tap->wr_rate = 48; break; 1222 case 0xb: tap->wr_rate = 72; break; 1223 case 0x1: tap->wr_rate = 96; break; 1224 case 0x3: tap->wr_rate = 108; break; 1225 /* unknown rate: should not happen */ 1226 default: tap->wr_rate = 0; 1227 } 1228 if (le16toh(head->flags) & 0x4) 1229 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1230 1231 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1232 } 1233 #endif 1234 1235 /* grab a reference to the source node */ 1236 wh = mtod(m, struct ieee80211_frame *); 1237 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1238 1239 /* send the frame to the 802.11 layer */ 1240 ieee80211_input(ic, m, ni, stat->rssi, 0); 1241 1242 /* release node reference */ 1243 ieee80211_free_node(ni); 1244 } 1245 1246 static void 1247 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1248 { 1249 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1250 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1251 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1252 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1253 struct wpi_amrr *amrr = (struct wpi_amrr *)txdata->ni; 1254 1255 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x " 1256 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries, 1257 stat->nkill, stat->rate, le32toh(stat->duration), 1258 le32toh(stat->status))); 1259 1260 /* 1261 * Update rate control statistics for the node. 1262 * XXX we should not count mgmt frames since they're always sent at 1263 * the lowest available bit-rate. 1264 */ 1265 amrr->txcnt++; 1266 if (stat->ntries > 0) { 1267 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries)); 1268 amrr->retrycnt++; 1269 } 1270 1271 if ((le32toh(stat->status) & 0xff) != 1) 1272 ifp->if_oerrors++; 1273 else 1274 ifp->if_opackets++; 1275 1276 bus_dmamap_unload(sc->sc_dmat, txdata->map); 1277 m_freem(txdata->m); 1278 txdata->m = NULL; 1279 ieee80211_free_node(txdata->ni); 1280 txdata->ni = NULL; 1281 1282 ring->queued--; 1283 1284 sc->sc_tx_timer = 0; 1285 ifp->if_flags &= ~IFF_OACTIVE; 1286 wpi_start(ifp); 1287 } 1288 1289 static void 1290 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1291 { 1292 struct wpi_tx_ring *ring = &sc->cmdq; 1293 struct wpi_tx_data *data; 1294 1295 if ((desc->qid & 7) != 4) 1296 return; /* not a command ack */ 1297 1298 data = &ring->data[desc->idx]; 1299 1300 /* if the command was mapped in a mbuf, free it */ 1301 if (data->m != NULL) { 1302 bus_dmamap_unload(sc->sc_dmat, data->map); 1303 m_freem(data->m); 1304 data->m = NULL; 1305 } 1306 1307 wakeup(&ring->cmd[desc->idx]); 1308 } 1309 1310 static void 1311 wpi_notif_intr(struct wpi_softc *sc) 1312 { 1313 struct ieee80211com *ic = &sc->sc_ic; 1314 struct wpi_rx_desc *desc; 1315 struct wpi_rx_data *data; 1316 uint32_t hw; 1317 1318 hw = le32toh(sc->shared->next); 1319 while (sc->rxq.cur != hw) { 1320 data = &sc->rxq.data[sc->rxq.cur]; 1321 1322 desc = mtod(data->m, struct wpi_rx_desc *); 1323 1324 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1325 "len=%d\n", desc->qid, desc->idx, desc->flags, 1326 desc->type, le32toh(desc->len))); 1327 1328 if (!(desc->qid & 0x80)) /* reply to a command */ 1329 wpi_cmd_intr(sc, desc); 1330 1331 switch (desc->type) { 1332 case WPI_RX_DONE: 1333 /* a 802.11 frame was received */ 1334 wpi_rx_intr(sc, desc, data); 1335 break; 1336 1337 case WPI_TX_DONE: 1338 /* a 802.11 frame has been transmitted */ 1339 wpi_tx_intr(sc, desc); 1340 break; 1341 1342 case WPI_UC_READY: 1343 { 1344 struct wpi_ucode_info *uc = 1345 (struct wpi_ucode_info *)(desc + 1); 1346 1347 /* the microcontroller is ready */ 1348 DPRINTF(("microcode alive notification version %x " 1349 "alive %x\n", le32toh(uc->version), 1350 le32toh(uc->valid))); 1351 1352 if (le32toh(uc->valid) != 1) { 1353 aprint_error("%s: microcontroller " 1354 "initialization failed\n", 1355 sc->sc_dev.dv_xname); 1356 } 1357 break; 1358 } 1359 case WPI_STATE_CHANGED: 1360 { 1361 uint32_t *status = (uint32_t *)(desc + 1); 1362 1363 /* enabled/disabled notification */ 1364 DPRINTF(("state changed to %x\n", le32toh(*status))); 1365 1366 if (le32toh(*status) & 1) { 1367 /* the radio button has to be pushed */ 1368 aprint_error("%s: Radio transmitter is off\n", 1369 sc->sc_dev.dv_xname); 1370 } 1371 break; 1372 } 1373 case WPI_START_SCAN: 1374 { 1375 struct wpi_start_scan *scan = 1376 (struct wpi_start_scan *)(desc + 1); 1377 1378 DPRINTFN(2, ("scanning channel %d status %x\n", 1379 scan->chan, le32toh(scan->status))); 1380 1381 /* fix current channel */ 1382 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 1383 break; 1384 } 1385 case WPI_STOP_SCAN: 1386 { 1387 struct wpi_stop_scan *scan = 1388 (struct wpi_stop_scan *)(desc + 1); 1389 1390 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1391 scan->nchan, scan->status, scan->chan)); 1392 1393 if (scan->status == 1 && scan->chan <= 14) { 1394 /* 1395 * We just finished scanning 802.11g channels, 1396 * start scanning 802.11a ones. 1397 */ 1398 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0) 1399 break; 1400 } 1401 ieee80211_end_scan(ic); 1402 break; 1403 } 1404 } 1405 1406 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1407 } 1408 1409 /* tell the firmware what we have processed */ 1410 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1411 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1412 } 1413 1414 static int 1415 wpi_intr(void *arg) 1416 { 1417 struct wpi_softc *sc = arg; 1418 uint32_t r; 1419 1420 r = WPI_READ(sc, WPI_INTR); 1421 if (r == 0 || r == 0xffffffff) 1422 return 0; /* not for us */ 1423 1424 DPRINTFN(5, ("interrupt reg %x\n", r)); 1425 1426 /* disable interrupts */ 1427 WPI_WRITE(sc, WPI_MASK, 0); 1428 /* ack interrupts */ 1429 WPI_WRITE(sc, WPI_INTR, r); 1430 1431 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1432 /* SYSTEM FAILURE, SYSTEM FAILURE */ 1433 aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname); 1434 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; 1435 wpi_stop(&sc->sc_ec.ec_if, 1); 1436 return 1; 1437 } 1438 1439 if (r & WPI_RX_INTR) 1440 wpi_notif_intr(sc); 1441 1442 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1443 wakeup(sc); 1444 1445 /* re-enable interrupts */ 1446 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1447 1448 return 1; 1449 } 1450 1451 static uint8_t 1452 wpi_plcp_signal(int rate) 1453 { 1454 switch (rate) { 1455 /* CCK rates (returned values are device-dependent) */ 1456 case 2: return 10; 1457 case 4: return 20; 1458 case 11: return 55; 1459 case 22: return 110; 1460 1461 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1462 /* R1-R4, (u)ral is R4-R1 */ 1463 case 12: return 0xd; 1464 case 18: return 0xf; 1465 case 24: return 0x5; 1466 case 36: return 0x7; 1467 case 48: return 0x9; 1468 case 72: return 0xb; 1469 case 96: return 0x1; 1470 case 108: return 0x3; 1471 1472 /* unsupported rates (should not get there) */ 1473 default: return 0; 1474 } 1475 } 1476 1477 /* quickly determine if a given rate is CCK or OFDM */ 1478 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1479 1480 static int 1481 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1482 int ac) 1483 { 1484 struct ieee80211com *ic = &sc->sc_ic; 1485 struct wpi_tx_ring *ring = &sc->txq[ac]; 1486 struct wpi_tx_desc *desc; 1487 struct wpi_tx_data *data; 1488 struct wpi_tx_cmd *cmd; 1489 struct wpi_cmd_data *tx; 1490 struct ieee80211_frame *wh; 1491 struct ieee80211_key *k; 1492 const struct chanAccParams *cap; 1493 struct mbuf *mnew; 1494 int i, error, rate, hdrlen, noack = 0; 1495 1496 desc = &ring->desc[ring->cur]; 1497 data = &ring->data[ring->cur]; 1498 1499 wh = mtod(m0, struct ieee80211_frame *); 1500 1501 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1502 hdrlen = sizeof (struct ieee80211_qosframe); 1503 cap = &ic->ic_wme.wme_chanParams; 1504 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1505 } else 1506 hdrlen = sizeof (struct ieee80211_frame); 1507 1508 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1509 k = ieee80211_crypto_encap(ic, ni, m0); 1510 if (k == NULL) { 1511 m_freem(m0); 1512 return ENOBUFS; 1513 } 1514 1515 /* packet header may have moved, reset our local pointer */ 1516 wh = mtod(m0, struct ieee80211_frame *); 1517 } 1518 1519 /* pickup a rate */ 1520 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1521 IEEE80211_FC0_TYPE_MGT) { 1522 /* mgmt frames are sent at the lowest available bit-rate */ 1523 rate = ni->ni_rates.rs_rates[0]; 1524 } else { 1525 if (ic->ic_fixed_rate != -1) { 1526 rate = ic->ic_sup_rates[ic->ic_curmode]. 1527 rs_rates[ic->ic_fixed_rate]; 1528 } else 1529 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1530 } 1531 rate &= IEEE80211_RATE_VAL; 1532 1533 1534 #if NBPFILTER > 0 1535 if (sc->sc_drvbpf != NULL) { 1536 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1537 1538 tap->wt_flags = 0; 1539 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1540 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1541 tap->wt_rate = rate; 1542 tap->wt_hwqueue = ac; 1543 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1544 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1545 1546 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1547 } 1548 #endif 1549 1550 cmd = &ring->cmd[ring->cur]; 1551 cmd->code = WPI_CMD_TX_DATA; 1552 cmd->flags = 0; 1553 cmd->qid = ring->qid; 1554 cmd->idx = ring->cur; 1555 1556 tx = (struct wpi_cmd_data *)cmd->data; 1557 tx->flags = 0; 1558 1559 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1560 tx->id = WPI_ID_BSS; 1561 tx->flags |= htole32(WPI_TX_NEED_ACK); 1562 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > 1563 ic->ic_rtsthreshold || (WPI_RATE_IS_OFDM(rate) && 1564 (ic->ic_flags & IEEE80211_F_USEPROT))) 1565 tx->flags |= htole32(WPI_TX_NEED_RTS | 1566 WPI_TX_FULL_TXOP); 1567 } else 1568 tx->id = WPI_ID_BROADCAST; 1569 1570 tx->flags |= htole32(WPI_TX_AUTO_SEQ); 1571 1572 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1573 IEEE80211_FC0_TYPE_MGT) { 1574 /* tell h/w to set timestamp in probe responses */ 1575 if ((wh->i_fc[0] & 1576 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1577 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1578 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1579 1580 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1581 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) || 1582 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1583 IEEE80211_FC0_SUBTYPE_REASSOC_REQ)) 1584 tx->timeout = htole16(3); 1585 else 1586 tx->timeout = htole16(2); 1587 } else 1588 tx->timeout = htole16(0); 1589 1590 tx->rate = wpi_plcp_signal(rate); 1591 1592 /* be very persistant at sending frames out */ 1593 tx->rts_ntries = 7; 1594 tx->data_ntries = 15; 1595 1596 tx->ofdm_mask = 0xff; 1597 tx->cck_mask = 0xf; 1598 tx->lifetime = htole32(0xffffffff); 1599 1600 tx->len = htole16(m0->m_pkthdr.len); 1601 1602 /* save and trim IEEE802.11 header */ 1603 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1604 m_adj(m0, hdrlen); 1605 1606 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1607 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1608 if (error != 0 && error != EFBIG) { 1609 aprint_error("%s: could not map mbuf (error %d)\n", 1610 sc->sc_dev.dv_xname, error); 1611 m_freem(m0); 1612 return error; 1613 } 1614 if (error != 0) { 1615 /* too many fragments, linearize */ 1616 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1617 if (mnew == NULL) { 1618 m_freem(m0); 1619 return ENOMEM; 1620 } 1621 1622 M_COPY_PKTHDR(mnew, m0); 1623 if (m0->m_pkthdr.len > MHLEN) { 1624 MCLGET(mnew, M_DONTWAIT); 1625 if (!(mnew->m_flags & M_EXT)) { 1626 m_freem(m0); 1627 m_freem(mnew); 1628 return ENOMEM; 1629 } 1630 } 1631 1632 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t)); 1633 m_freem(m0); 1634 mnew->m_len = mnew->m_pkthdr.len; 1635 m0 = mnew; 1636 1637 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1638 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1639 if (error != 0) { 1640 aprint_error("%s: could not map mbuf (error %d)\n", 1641 sc->sc_dev.dv_xname, error); 1642 m_freem(m0); 1643 return error; 1644 } 1645 } 1646 1647 data->m = m0; 1648 data->ni = ni; 1649 1650 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1651 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs)); 1652 1653 /* first scatter/gather segment is used by the tx data command */ 1654 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1655 (1 + data->map->dm_nsegs) << 24); 1656 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1657 ring->cur * sizeof (struct wpi_tx_cmd)); 1658 /*XXX The next line might be wrong. I don't use hdrlen*/ 1659 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1660 1661 for (i = 1; i <= data->map->dm_nsegs; i++) { 1662 desc->segs[i].addr = 1663 htole32(data->map->dm_segs[i - 1].ds_addr); 1664 desc->segs[i].len = 1665 htole32(data->map->dm_segs[i - 1].ds_len); 1666 } 1667 1668 ring->queued++; 1669 1670 /* kick ring */ 1671 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1672 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1673 1674 return 0; 1675 } 1676 1677 static void 1678 wpi_start(struct ifnet *ifp) 1679 { 1680 struct wpi_softc *sc = ifp->if_softc; 1681 struct ieee80211com *ic = &sc->sc_ic; 1682 struct ieee80211_node *ni; 1683 struct ether_header *eh; 1684 struct mbuf *m0; 1685 int ac; 1686 1687 /* 1688 * net80211 may still try to send management frames even if the 1689 * IFF_RUNNING flag is not set... 1690 */ 1691 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1692 return; 1693 1694 for (;;) { 1695 IF_POLL(&ic->ic_mgtq, m0); 1696 if (m0 != NULL) { 1697 IF_DEQUEUE(&ic->ic_mgtq, m0); 1698 1699 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1700 m0->m_pkthdr.rcvif = NULL; 1701 1702 /* management frames go into ring 0 */ 1703 if (sc->txq[0].queued > sc->txq[0].count - 8) { 1704 ifp->if_oerrors++; 1705 continue; 1706 } 1707 #if NBPFILTER > 0 1708 if (ic->ic_rawbpf != NULL) 1709 bpf_mtap(ic->ic_rawbpf, m0); 1710 #endif 1711 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 1712 ifp->if_oerrors++; 1713 break; 1714 } 1715 } else { 1716 if (ic->ic_state != IEEE80211_S_RUN) 1717 break; 1718 IF_DEQUEUE(&ifp->if_snd, m0); 1719 if (m0 == NULL) 1720 break; 1721 1722 if (m0->m_len < sizeof (*eh) && 1723 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) { 1724 ifp->if_oerrors++; 1725 continue; 1726 } 1727 eh = mtod(m0, struct ether_header *); 1728 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1729 if (ni == NULL) { 1730 m_freem(m0); 1731 ifp->if_oerrors++; 1732 continue; 1733 } 1734 1735 /* classify mbuf so we can find which tx ring to use */ 1736 if (ieee80211_classify(ic, m0, ni) != 0) { 1737 m_freem(m0); 1738 ieee80211_free_node(ni); 1739 ifp->if_oerrors++; 1740 continue; 1741 } 1742 1743 /* no QoS encapsulation for EAPOL frames */ 1744 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 1745 M_WME_GETAC(m0) : WME_AC_BE; 1746 1747 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 1748 /* there is no place left in this ring */ 1749 IF_PREPEND(&ifp->if_snd, m0); 1750 ifp->if_flags |= IFF_OACTIVE; 1751 break; 1752 } 1753 #if NBPFILTER > 0 1754 if (ifp->if_bpf != NULL) 1755 bpf_mtap(ifp->if_bpf, m0); 1756 #endif 1757 m0 = ieee80211_encap(ic, m0, ni); 1758 if (m0 == NULL) { 1759 ieee80211_free_node(ni); 1760 ifp->if_oerrors++; 1761 continue; 1762 } 1763 #if NBPFILTER > 0 1764 if (ic->ic_rawbpf != NULL) 1765 bpf_mtap(ic->ic_rawbpf, m0); 1766 #endif 1767 if (wpi_tx_data(sc, m0, ni, ac) != 0) { 1768 ieee80211_free_node(ni); 1769 ifp->if_oerrors++; 1770 break; 1771 } 1772 } 1773 1774 sc->sc_tx_timer = 5; 1775 ifp->if_timer = 1; 1776 } 1777 } 1778 1779 static void 1780 wpi_watchdog(struct ifnet *ifp) 1781 { 1782 struct wpi_softc *sc = ifp->if_softc; 1783 1784 ifp->if_timer = 0; 1785 1786 if (sc->sc_tx_timer > 0) { 1787 if (--sc->sc_tx_timer == 0) { 1788 aprint_error("%s: device timeout\n", 1789 sc->sc_dev.dv_xname); 1790 ifp->if_oerrors++; 1791 ifp->if_flags &= ~IFF_UP; 1792 wpi_stop(ifp, 1); 1793 return; 1794 } 1795 ifp->if_timer = 1; 1796 } 1797 1798 ieee80211_watchdog(&sc->sc_ic); 1799 } 1800 1801 static int 1802 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1803 { 1804 #define IS_RUNNING(ifp) \ 1805 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1806 1807 struct wpi_softc *sc = ifp->if_softc; 1808 struct ieee80211com *ic = &sc->sc_ic; 1809 struct ifreq *ifr = (struct ifreq *)data; 1810 int s, error = 0; 1811 1812 s = splnet(); 1813 1814 switch (cmd) { 1815 case SIOCSIFFLAGS: 1816 if (ifp->if_flags & IFF_UP) { 1817 if (!(ifp->if_flags & IFF_RUNNING)) 1818 wpi_init(ifp); 1819 } else { 1820 if (ifp->if_flags & IFF_RUNNING) 1821 wpi_stop(ifp, 1); 1822 } 1823 break; 1824 1825 case SIOCADDMULTI: 1826 case SIOCDELMULTI: 1827 error = (cmd == SIOCADDMULTI) ? 1828 ether_addmulti(ifr, &sc->sc_ec) : 1829 ether_delmulti(ifr, &sc->sc_ec); 1830 if (error == ENETRESET) { 1831 /* setup multicast filter, etc */ 1832 error = 0; 1833 } 1834 break; 1835 1836 default: 1837 error = ieee80211_ioctl(&sc->sc_ic, cmd, data); 1838 } 1839 1840 if (error == ENETRESET) { 1841 if (IS_RUNNING(ifp) && 1842 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1843 wpi_init(ifp); 1844 error = 0; 1845 } 1846 1847 splx(s); 1848 return error; 1849 1850 #undef IS_RUNNING 1851 } 1852 1853 /* 1854 * Extract various information from EEPROM. 1855 */ 1856 static void 1857 wpi_read_eeprom(struct wpi_softc *sc) 1858 { 1859 struct ieee80211com *ic = &sc->sc_ic; 1860 uint16_t val; 1861 int i; 1862 1863 /* read MAC address */ 1864 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0); 1865 ic->ic_myaddr[0] = val & 0xff; 1866 ic->ic_myaddr[1] = val >> 8; 1867 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1); 1868 ic->ic_myaddr[2] = val & 0xff; 1869 ic->ic_myaddr[3] = val >> 8; 1870 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2); 1871 ic->ic_myaddr[4] = val & 0xff; 1872 ic->ic_myaddr[5] = val >> 8; 1873 1874 /* read power settings for 2.4GHz channels */ 1875 for (i = 0; i < 14; i++) { 1876 sc->pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i); 1877 sc->pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i); 1878 DPRINTFN(2, ("channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1, 1879 sc->pwr1[i], sc->pwr2[i])); 1880 } 1881 } 1882 1883 /* 1884 * Send a command to the firmware. 1885 */ 1886 static int 1887 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 1888 { 1889 struct wpi_tx_ring *ring = &sc->cmdq; 1890 struct wpi_tx_desc *desc; 1891 struct wpi_tx_cmd *cmd; 1892 1893 KASSERT(size <= sizeof cmd->data); 1894 1895 desc = &ring->desc[ring->cur]; 1896 cmd = &ring->cmd[ring->cur]; 1897 1898 cmd->code = code; 1899 cmd->flags = 0; 1900 cmd->qid = ring->qid; 1901 cmd->idx = ring->cur; 1902 memcpy(cmd->data, buf, size); 1903 1904 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 1905 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1906 ring->cur * sizeof (struct wpi_tx_cmd)); 1907 desc->segs[0].len = htole32(4 + size); 1908 1909 /* kick cmd ring */ 1910 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 1911 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1912 1913 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz); 1914 } 1915 1916 static int 1917 wpi_wme_update(struct ieee80211com *ic) 1918 { 1919 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 1920 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1921 struct wpi_softc *sc = ic->ic_ifp->if_softc; 1922 const struct wmeParams *wmep; 1923 struct wpi_wme_setup wme; 1924 int ac; 1925 1926 /* don't override default WME values if WME is not actually enabled */ 1927 if (!(ic->ic_flags & IEEE80211_F_WME)) 1928 return 0; 1929 1930 wme.flags = 0; 1931 for (ac = 0; ac < WME_NUM_AC; ac++) { 1932 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1933 wme.ac[ac].aifsn = wmep->wmep_aifsn; 1934 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 1935 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 1936 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 1937 1938 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 1939 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 1940 wme.ac[ac].cwmax, wme.ac[ac].txop)); 1941 } 1942 1943 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 1944 #undef WPI_USEC 1945 #undef WPI_EXP2 1946 } 1947 1948 /* 1949 * Configure h/w multi-rate retries. 1950 */ 1951 static int 1952 wpi_mrr_setup(struct wpi_softc *sc) 1953 { 1954 struct ieee80211com *ic = &sc->sc_ic; 1955 struct wpi_mrr_setup mrr; 1956 int i, error; 1957 1958 /* CCK rates (not used with 802.11a) */ 1959 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 1960 mrr.rates[i].flags = 0; 1961 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 1962 /* fallback to the immediate lower CCK rate (if any) */ 1963 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 1964 /* try one time at this rate before falling back to "next" */ 1965 mrr.rates[i].ntries = 1; 1966 } 1967 1968 /* OFDM rates (not used with 802.11b) */ 1969 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 1970 mrr.rates[i].flags = 0; 1971 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 1972 /* fallback to the immediate lower rate (if any) */ 1973 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 1974 mrr.rates[i].next = (i == WPI_OFDM6) ? 1975 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 1976 WPI_OFDM6 : WPI_CCK2) : 1977 i - 1; 1978 /* try one time at this rate before falling back to "next" */ 1979 mrr.rates[i].ntries = 1; 1980 } 1981 1982 /* setup MRR for control frames */ 1983 mrr.which = htole32(WPI_MRR_CTL); 1984 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1); 1985 if (error != 0) { 1986 aprint_error("%s: could not setup MRR for control frames\n", 1987 sc->sc_dev.dv_xname); 1988 return error; 1989 } 1990 1991 /* setup MRR for data frames */ 1992 mrr.which = htole32(WPI_MRR_DATA); 1993 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1); 1994 if (error != 0) { 1995 aprint_error("%s: could not setup MRR for data frames\n", 1996 sc->sc_dev.dv_xname); 1997 return error; 1998 } 1999 2000 return 0; 2001 } 2002 2003 static void 2004 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2005 { 2006 struct wpi_cmd_led led; 2007 2008 led.which = which; 2009 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2010 led.off = off; 2011 led.on = on; 2012 2013 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2014 } 2015 2016 static void 2017 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2018 { 2019 struct wpi_cmd_tsf tsf; 2020 uint64_t val, mod; 2021 2022 memset(&tsf, 0, sizeof tsf); 2023 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2024 tsf.bintval = htole16(ni->ni_intval); 2025 tsf.lintval = htole16(10); 2026 2027 /* compute remaining time until next beacon */ 2028 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2029 mod = le64toh(tsf.tstamp) % val; 2030 tsf.binitval = htole32((uint32_t)(val - mod)); 2031 2032 DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n", 2033 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod))); 2034 2035 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2036 aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname); 2037 } 2038 2039 /* 2040 * Build a beacon frame that the firmware will broadcast periodically in 2041 * IBSS or HostAP modes. 2042 */ 2043 static int 2044 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2045 { 2046 struct ieee80211com *ic = &sc->sc_ic; 2047 struct wpi_tx_ring *ring = &sc->cmdq; 2048 struct wpi_tx_desc *desc; 2049 struct wpi_tx_data *data; 2050 struct wpi_tx_cmd *cmd; 2051 struct wpi_cmd_beacon *bcn; 2052 struct ieee80211_beacon_offsets bo; 2053 struct mbuf *m0; 2054 int error; 2055 2056 desc = &ring->desc[ring->cur]; 2057 data = &ring->data[ring->cur]; 2058 2059 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2060 if (m0 == NULL) { 2061 aprint_error("%s: could not allocate beacon frame\n", 2062 sc->sc_dev.dv_xname); 2063 return ENOMEM; 2064 } 2065 2066 cmd = &ring->cmd[ring->cur]; 2067 cmd->code = WPI_CMD_SET_BEACON; 2068 cmd->flags = 0; 2069 cmd->qid = ring->qid; 2070 cmd->idx = ring->cur; 2071 2072 bcn = (struct wpi_cmd_beacon *)cmd->data; 2073 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2074 bcn->id = WPI_ID_BROADCAST; 2075 bcn->ofdm_mask = 0xff; 2076 bcn->cck_mask = 0x0f; 2077 bcn->lifetime = htole32(0xffffffff); 2078 bcn->len = htole16(m0->m_pkthdr.len); 2079 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2080 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2081 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2082 2083 /* save and trim IEEE802.11 header */ 2084 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2085 m_adj(m0, sizeof (struct ieee80211_frame)); 2086 2087 /* assume beacon frame is contiguous */ 2088 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2089 BUS_DMA_READ | BUS_DMA_NOWAIT); 2090 if (error) { 2091 aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname); 2092 m_freem(m0); 2093 return error; 2094 } 2095 2096 data->m = m0; 2097 2098 /* first scatter/gather segment is used by the beacon command */ 2099 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2100 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2101 ring->cur * sizeof (struct wpi_tx_cmd)); 2102 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2103 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr); 2104 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len); 2105 2106 /* kick cmd ring */ 2107 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2108 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2109 2110 return 0; 2111 } 2112 2113 static int 2114 wpi_auth(struct wpi_softc *sc) 2115 { 2116 struct ieee80211com *ic = &sc->sc_ic; 2117 struct ieee80211_node *ni = ic->ic_bss; 2118 struct wpi_node node; 2119 int error; 2120 2121 /* update adapter's configuration */ 2122 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2123 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2124 sc->config.flags = htole32(WPI_CONFIG_TSF); 2125 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2126 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2127 WPI_CONFIG_24GHZ); 2128 } 2129 switch (ic->ic_curmode) { 2130 case IEEE80211_MODE_11A: 2131 sc->config.cck_mask = 0; 2132 sc->config.ofdm_mask = 0x15; 2133 break; 2134 case IEEE80211_MODE_11B: 2135 sc->config.cck_mask = 0x03; 2136 sc->config.ofdm_mask = 0; 2137 break; 2138 default: /* assume 802.11b/g */ 2139 sc->config.cck_mask = 0x0f; 2140 sc->config.ofdm_mask = 0x15; 2141 } 2142 2143 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2144 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2145 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2146 sizeof (struct wpi_config), 1); 2147 if (error != 0) { 2148 aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname); 2149 return error; 2150 } 2151 2152 /* add default node */ 2153 memset(&node, 0, sizeof node); 2154 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2155 node.id = WPI_ID_BSS; 2156 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2157 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2158 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2159 if (error != 0) { 2160 aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname); 2161 return error; 2162 } 2163 2164 error = wpi_mrr_setup(sc); 2165 if (error != 0) { 2166 aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname); 2167 return error; 2168 } 2169 2170 return 0; 2171 } 2172 2173 /* 2174 * Send a scan request to the firmware. Since this command is huge, we map it 2175 * into a mbuf instead of using the pre-allocated set of commands. 2176 */ 2177 static int 2178 wpi_scan(struct wpi_softc *sc, uint16_t flags) 2179 { 2180 struct ieee80211com *ic = &sc->sc_ic; 2181 struct wpi_tx_ring *ring = &sc->cmdq; 2182 struct wpi_tx_desc *desc; 2183 struct wpi_tx_data *data; 2184 struct wpi_tx_cmd *cmd; 2185 struct wpi_scan_hdr *hdr; 2186 struct wpi_scan_chan *chan; 2187 struct ieee80211_frame *wh; 2188 struct ieee80211_rateset *rs; 2189 struct ieee80211_channel *c; 2190 enum ieee80211_phymode mode; 2191 uint8_t *frm; 2192 int nrates, pktlen, error; 2193 2194 desc = &ring->desc[ring->cur]; 2195 data = &ring->data[ring->cur]; 2196 2197 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 2198 if (data->m == NULL) { 2199 aprint_error("%s: could not allocate mbuf for scan command\n", 2200 sc->sc_dev.dv_xname); 2201 return ENOMEM; 2202 } 2203 2204 MCLGET(data->m, M_DONTWAIT); 2205 if (!(data->m->m_flags & M_EXT)) { 2206 m_freem(data->m); 2207 data->m = NULL; 2208 aprint_error("%s: could not allocate mbuf for scan command\n", 2209 sc->sc_dev.dv_xname); 2210 return ENOMEM; 2211 } 2212 2213 cmd = mtod(data->m, struct wpi_tx_cmd *); 2214 cmd->code = WPI_CMD_SCAN; 2215 cmd->flags = 0; 2216 cmd->qid = ring->qid; 2217 cmd->idx = ring->cur; 2218 2219 hdr = (struct wpi_scan_hdr *)cmd->data; 2220 memset(hdr, 0, sizeof (struct wpi_scan_hdr)); 2221 hdr->first = 1; 2222 /* 2223 * Move to the next channel if no packets are received within 5 msecs 2224 * after sending the probe request (this helps to reduce the duration 2225 * of active scans). 2226 */ 2227 hdr->quiet = htole16(5); /* timeout in milliseconds */ 2228 hdr->threshold = htole16(1); /* min # of packets */ 2229 2230 if (flags & IEEE80211_CHAN_A) { 2231 hdr->band = htole16(WPI_SCAN_5GHZ); 2232 /* send probe requests at 6Mbps */ 2233 hdr->rate = wpi_plcp_signal(12); 2234 } else { 2235 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2236 /* send probe requests at 1Mbps */ 2237 hdr->rate = wpi_plcp_signal(2); 2238 } 2239 hdr->id = WPI_ID_BROADCAST; 2240 hdr->mask = htole32(0xffffffff); 2241 hdr->magic1 = htole32(1 << 13); 2242 2243 hdr->esslen = ic->ic_des_esslen; 2244 memcpy(hdr->essid, ic->ic_des_essid, ic->ic_des_esslen); 2245 2246 /* 2247 * Build a probe request frame. Most of the following code is a 2248 * copy & paste of what is done in net80211. 2249 */ 2250 wh = (struct ieee80211_frame *)(hdr + 1); 2251 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2252 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2253 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2254 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2255 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2256 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2257 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2258 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2259 2260 frm = (uint8_t *)(wh + 1); 2261 2262 /* add essid IE */ 2263 *frm++ = IEEE80211_ELEMID_SSID; 2264 *frm++ = ic->ic_des_esslen; 2265 memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen); 2266 frm += ic->ic_des_esslen; 2267 2268 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan); 2269 rs = &ic->ic_sup_rates[mode]; 2270 2271 /* add supported rates IE */ 2272 *frm++ = IEEE80211_ELEMID_RATES; 2273 nrates = rs->rs_nrates; 2274 if (nrates > IEEE80211_RATE_SIZE) 2275 nrates = IEEE80211_RATE_SIZE; 2276 *frm++ = nrates; 2277 memcpy(frm, rs->rs_rates, nrates); 2278 frm += nrates; 2279 2280 /* add supported xrates IE */ 2281 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2282 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2283 *frm++ = IEEE80211_ELEMID_XRATES; 2284 *frm++ = nrates; 2285 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2286 frm += nrates; 2287 } 2288 2289 /* add optionnal IE (usually an RSN IE) */ 2290 if (ic->ic_opt_ie != NULL) { 2291 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 2292 frm += ic->ic_opt_ie_len; 2293 } 2294 2295 /* setup length of probe request */ 2296 hdr->pbrlen = htole16(frm - (uint8_t *)wh); 2297 2298 chan = (struct wpi_scan_chan *)frm; 2299 for (c = &ic->ic_channels[1]; 2300 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2301 if ((c->ic_flags & flags) != flags) 2302 continue; 2303 2304 chan->chan = ieee80211_chan2ieee(ic, c); 2305 chan->flags = (c->ic_flags & IEEE80211_CHAN_PASSIVE) ? 2306 0 : WPI_CHAN_ACTIVE; 2307 chan->magic = htole16(0x62ab); 2308 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2309 chan->active = htole16(10); 2310 chan->passive = htole16(110); 2311 } else { 2312 chan->active = htole16(20); 2313 chan->passive = htole16(120); 2314 } 2315 hdr->nchan++; 2316 chan++; 2317 2318 frm += sizeof (struct wpi_scan_chan); 2319 } 2320 2321 hdr->len = hdr->nchan * sizeof (struct wpi_scan_chan); 2322 pktlen = frm - mtod(data->m, uint8_t *); 2323 2324 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, 2325 NULL, BUS_DMA_NOWAIT); 2326 if (error) { 2327 aprint_error("%s: could not map scan command\n", 2328 sc->sc_dev.dv_xname); 2329 m_freem(data->m); 2330 data->m = NULL; 2331 return error; 2332 } 2333 2334 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2335 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr); 2336 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len); 2337 2338 /* kick cmd ring */ 2339 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2340 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2341 2342 return 0; /* will be notified async. of failure/success */ 2343 } 2344 2345 static int 2346 wpi_config(struct wpi_softc *sc) 2347 { 2348 struct ieee80211com *ic = &sc->sc_ic; 2349 struct ifnet *ifp = ic->ic_ifp; 2350 struct wpi_txpower txpower; 2351 struct wpi_power power; 2352 struct wpi_bluetooth bluetooth; 2353 struct wpi_node node; 2354 int error; 2355 2356 /* set Tx power for 2.4GHz channels (values read from EEPROM) */ 2357 memset(&txpower, 0, sizeof txpower); 2358 memcpy(txpower.pwr1, sc->pwr1, 14 * sizeof (uint16_t)); 2359 memcpy(txpower.pwr2, sc->pwr2, 14 * sizeof (uint16_t)); 2360 error = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, 0); 2361 if (error != 0) { 2362 aprint_error("%s: could not set txpower\n", 2363 sc->sc_dev.dv_xname); 2364 return error; 2365 } 2366 2367 /* set power mode */ 2368 memset(&power, 0, sizeof power); 2369 power.flags = htole32(0x8); /* XXX */ 2370 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2371 if (error != 0) { 2372 aprint_error("%s: could not set power mode\n", 2373 sc->sc_dev.dv_xname); 2374 return error; 2375 } 2376 2377 /* configure bluetooth coexistence */ 2378 memset(&bluetooth, 0, sizeof bluetooth); 2379 bluetooth.flags = 3; 2380 bluetooth.lead = 0xaa; 2381 bluetooth.kill = 1; 2382 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2383 0); 2384 if (error != 0) { 2385 aprint_error( 2386 "%s: could not configure bluetooth coexistence\n", 2387 sc->sc_dev.dv_xname); 2388 return error; 2389 } 2390 2391 /* configure adapter */ 2392 memset(&sc->config, 0, sizeof (struct wpi_config)); 2393 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2394 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2395 /*set default channel*/ 2396 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 2397 sc->config.flags = htole32(WPI_CONFIG_TSF); 2398 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) { 2399 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2400 WPI_CONFIG_24GHZ); 2401 } 2402 sc->config.filter = 0; 2403 switch (ic->ic_opmode) { 2404 case IEEE80211_M_STA: 2405 sc->config.mode = WPI_MODE_STA; 2406 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2407 break; 2408 case IEEE80211_M_IBSS: 2409 case IEEE80211_M_AHDEMO: 2410 sc->config.mode = WPI_MODE_IBSS; 2411 break; 2412 case IEEE80211_M_HOSTAP: 2413 sc->config.mode = WPI_MODE_HOSTAP; 2414 break; 2415 case IEEE80211_M_MONITOR: 2416 sc->config.mode = WPI_MODE_MONITOR; 2417 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2418 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2419 break; 2420 } 2421 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2422 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2423 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2424 sizeof (struct wpi_config), 0); 2425 if (error != 0) { 2426 aprint_error("%s: configure command failed\n", 2427 sc->sc_dev.dv_xname); 2428 return error; 2429 } 2430 2431 /* add broadcast node */ 2432 memset(&node, 0, sizeof node); 2433 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr); 2434 node.id = WPI_ID_BROADCAST; 2435 node.rate = wpi_plcp_signal(2); 2436 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2437 if (error != 0) { 2438 aprint_error("%s: could not add broadcast node\n", 2439 sc->sc_dev.dv_xname); 2440 return error; 2441 } 2442 2443 return 0; 2444 } 2445 2446 static void 2447 wpi_stop_master(struct wpi_softc *sc) 2448 { 2449 uint32_t tmp; 2450 int ntries; 2451 2452 tmp = WPI_READ(sc, WPI_RESET); 2453 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER); 2454 2455 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2456 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2457 return; /* already asleep */ 2458 2459 for (ntries = 0; ntries < 100; ntries++) { 2460 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2461 break; 2462 DELAY(10); 2463 } 2464 if (ntries == 100) { 2465 aprint_error("%s: timeout waiting for master\n", 2466 sc->sc_dev.dv_xname); 2467 } 2468 } 2469 2470 static int 2471 wpi_power_up(struct wpi_softc *sc) 2472 { 2473 uint32_t tmp; 2474 int ntries; 2475 2476 wpi_mem_lock(sc); 2477 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2478 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2479 wpi_mem_unlock(sc); 2480 2481 for (ntries = 0; ntries < 5000; ntries++) { 2482 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2483 break; 2484 DELAY(10); 2485 } 2486 if (ntries == 5000) { 2487 aprint_error("%s: timeout waiting for NIC to power up\n", 2488 sc->sc_dev.dv_xname); 2489 return ETIMEDOUT; 2490 } 2491 return 0; 2492 } 2493 2494 static int 2495 wpi_reset(struct wpi_softc *sc) 2496 { 2497 uint32_t tmp; 2498 int ntries; 2499 2500 /* clear any pending interrupts */ 2501 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2502 2503 tmp = WPI_READ(sc, WPI_PLL_CTL); 2504 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2505 2506 tmp = WPI_READ(sc, WPI_CHICKEN); 2507 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2508 2509 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2510 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2511 2512 /* wait for clock stabilization */ 2513 for (ntries = 0; ntries < 1000; ntries++) { 2514 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2515 break; 2516 DELAY(10); 2517 } 2518 if (ntries == 1000) { 2519 aprint_error("%s: timeout waiting for clock stabilization\n", 2520 sc->sc_dev.dv_xname); 2521 return ETIMEDOUT; 2522 } 2523 2524 /* initialize EEPROM */ 2525 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2526 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2527 aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname); 2528 return EIO; 2529 } 2530 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2531 2532 return 0; 2533 } 2534 2535 static void 2536 wpi_hw_config(struct wpi_softc *sc) 2537 { 2538 uint16_t val; 2539 uint32_t rev, hw; 2540 2541 /* voodoo from the Linux "driver".. */ 2542 hw = WPI_READ(sc, WPI_HWCONFIG); 2543 2544 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 2545 rev = PCI_REVISION(rev); 2546 if ((rev & 0xc0) == 0x40) 2547 hw |= WPI_HW_ALM_MB; 2548 else if (!(rev & 0x80)) 2549 hw |= WPI_HW_ALM_MM; 2550 2551 val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES); 2552 if ((val & 0xff) == 0x80) 2553 hw |= WPI_HW_SKU_MRC; 2554 2555 val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION); 2556 hw &= ~WPI_HW_REV_D; 2557 if ((val & 0xf0) == 0xd0) 2558 hw |= WPI_HW_REV_D; 2559 2560 val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE); 2561 if ((val & 0xff) > 1) 2562 hw |= WPI_HW_TYPE_B; 2563 2564 DPRINTF(("setting h/w config %x\n", hw)); 2565 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2566 } 2567 2568 static int 2569 wpi_init(struct ifnet *ifp) 2570 { 2571 struct wpi_softc *sc = ifp->if_softc; 2572 struct ieee80211com *ic = &sc->sc_ic; 2573 struct wpi_firmware_hdr hdr; 2574 const char *boot, *text, *data; 2575 firmware_handle_t fw; 2576 u_char *dfw; 2577 off_t size; 2578 size_t wsize; 2579 uint32_t tmp; 2580 int qid, ntries, error; 2581 2582 (void)wpi_reset(sc); 2583 2584 wpi_mem_lock(sc); 2585 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 2586 DELAY(20); 2587 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 2588 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 2589 wpi_mem_unlock(sc); 2590 2591 (void)wpi_power_up(sc); 2592 wpi_hw_config(sc); 2593 2594 /* init Rx ring */ 2595 wpi_mem_lock(sc); 2596 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 2597 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 2598 offsetof(struct wpi_shared, next)); 2599 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 2600 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 2601 wpi_mem_unlock(sc); 2602 2603 /* init Tx rings */ 2604 wpi_mem_lock(sc); 2605 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 2606 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 2607 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 2608 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 2609 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 2610 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 2611 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 2612 2613 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 2614 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 2615 2616 for (qid = 0; qid < 6; qid++) { 2617 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 2618 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 2619 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 2620 } 2621 wpi_mem_unlock(sc); 2622 2623 /* clear "radio off" and "disable command" bits (reversed logic) */ 2624 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2625 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2626 2627 /* clear any pending interrupts */ 2628 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2629 /* enable interrupts */ 2630 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 2631 2632 if ((error = firmware_open("if_wpi", "ipw3945.ucode", &fw)) != 0) { 2633 aprint_error("%s: could not read firmware file\n", 2634 sc->sc_dev.dv_xname); 2635 goto fail1; 2636 } 2637 2638 size = firmware_get_size(fw); 2639 2640 if (size < sizeof (struct wpi_firmware_hdr)) { 2641 aprint_error("%s: firmware file too short\n", 2642 sc->sc_dev.dv_xname); 2643 error = EINVAL; 2644 goto fail2; 2645 } 2646 2647 if ((error = firmware_read(fw, 0, &hdr, 2648 sizeof (struct wpi_firmware_hdr))) != 0) { 2649 aprint_error("%s: can't get firmware header\n", 2650 sc->sc_dev.dv_xname); 2651 goto fail2; 2652 } 2653 2654 wsize = sizeof (struct wpi_firmware_hdr) + le32toh(hdr.textsz) + 2655 le32toh(hdr.datasz) + le32toh(hdr.bootsz); 2656 2657 if (size < wsize) { 2658 aprint_error("%s: fw file too short: should be %d bytes\n", 2659 sc->sc_dev.dv_xname, wsize); 2660 error = EINVAL; 2661 goto fail2; 2662 } 2663 2664 dfw = firmware_malloc(size); 2665 if (dfw == NULL) { 2666 aprint_error("%s: not enough memory to stock firmware\n", 2667 sc->sc_dev.dv_xname); 2668 error = ENOMEM; 2669 goto fail2; 2670 } 2671 2672 if ((error = firmware_read(fw, 0, dfw, size)) != 0) { 2673 aprint_error("%s: can't get firmware\n", 2674 sc->sc_dev.dv_xname); 2675 goto fail2; 2676 } 2677 2678 /* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */ 2679 text = dfw + sizeof (struct wpi_firmware_hdr); 2680 data = text + le32toh(hdr.textsz); 2681 boot = data + le32toh(hdr.datasz); 2682 2683 /* load firmware boot code into NIC */ 2684 error = wpi_load_microcode(sc, boot, le32toh(hdr.bootsz)); 2685 if (error != 0) { 2686 aprint_error("%s: could not load microcode\n", sc->sc_dev.dv_xname); 2687 goto fail3; 2688 } 2689 2690 /* load firmware .text segment into NIC */ 2691 error = wpi_load_firmware(sc, WPI_FW_TEXT, text, le32toh(hdr.textsz)); 2692 if (error != 0) { 2693 aprint_error("%s: could not load firmware\n", 2694 sc->sc_dev.dv_xname); 2695 goto fail3; 2696 } 2697 2698 /* load firmware .data segment into NIC */ 2699 error = wpi_load_firmware(sc, WPI_FW_DATA, data, le32toh(hdr.datasz)); 2700 if (error != 0) { 2701 aprint_error("%s: could not load firmware\n", 2702 sc->sc_dev.dv_xname); 2703 goto fail3; 2704 } 2705 2706 firmware_free(dfw, 0); 2707 firmware_close(fw); 2708 2709 /* now press "execute" ;-) */ 2710 tmp = WPI_READ(sc, WPI_RESET); 2711 tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET); 2712 WPI_WRITE(sc, WPI_RESET, tmp); 2713 2714 /* ..and wait at most one second for adapter to initialize */ 2715 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 2716 /* this isn't what was supposed to happen.. */ 2717 aprint_error("%s: timeout waiting for adapter to initialize\n", 2718 sc->sc_dev.dv_xname); 2719 goto fail1; 2720 } 2721 2722 /* wait for thermal sensors to calibrate */ 2723 for (ntries = 0; ntries < 1000; ntries++) { 2724 if (WPI_READ(sc, WPI_TEMPERATURE) != 0) 2725 break; 2726 DELAY(10); 2727 } 2728 if (ntries == 1000) { 2729 aprint_error("%s: timeout waiting for thermal sensors calibration\n", 2730 sc->sc_dev.dv_xname); 2731 error = ETIMEDOUT; 2732 goto fail1; 2733 } 2734 DPRINTF(("temperature %d\n", (int)WPI_READ(sc, WPI_TEMPERATURE))); 2735 2736 if ((error = wpi_config(sc)) != 0) { 2737 aprint_error("%s: could not configure device\n", 2738 sc->sc_dev.dv_xname); 2739 goto fail1; 2740 } 2741 2742 ifp->if_flags &= ~IFF_OACTIVE; 2743 ifp->if_flags |= IFF_RUNNING; 2744 2745 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2746 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2747 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2748 } 2749 else 2750 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2751 2752 return 0; 2753 2754 fail3: firmware_free(dfw, 0); 2755 fail2: firmware_close(fw); 2756 fail1: wpi_stop(ifp, 1); 2757 return error; 2758 } 2759 2760 2761 static void 2762 wpi_stop(struct ifnet *ifp, int disable __unused) 2763 { 2764 struct wpi_softc *sc = ifp->if_softc; 2765 struct ieee80211com *ic = &sc->sc_ic; 2766 uint32_t tmp; 2767 int ac; 2768 2769 ifp->if_timer = sc->sc_tx_timer = 0; 2770 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2771 2772 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2773 2774 /* disable interrupts */ 2775 WPI_WRITE(sc, WPI_MASK, 0); 2776 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 2777 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 2778 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 2779 2780 wpi_mem_lock(sc); 2781 wpi_mem_write(sc, WPI_MEM_MODE, 0); 2782 wpi_mem_unlock(sc); 2783 2784 /* reset all Tx rings */ 2785 for (ac = 0; ac < 4; ac++) 2786 wpi_reset_tx_ring(sc, &sc->txq[ac]); 2787 wpi_reset_tx_ring(sc, &sc->cmdq); 2788 wpi_reset_tx_ring(sc, &sc->svcq); 2789 2790 /* reset Rx ring */ 2791 wpi_reset_rx_ring(sc, &sc->rxq); 2792 2793 wpi_mem_lock(sc); 2794 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 2795 wpi_mem_unlock(sc); 2796 2797 DELAY(5); 2798 2799 wpi_stop_master(sc); 2800 2801 tmp = WPI_READ(sc, WPI_RESET); 2802 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 2803 } 2804 2805 /*- 2806 * Naive implementation of the Adaptive Multi Rate Retry algorithm: 2807 * "IEEE 802.11 Rate Adaptation: A Practical Approach" 2808 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti 2809 * INRIA Sophia - Projet Planete 2810 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html 2811 */ 2812 #define is_success(amrr) \ 2813 ((amrr)->retrycnt < (amrr)->txcnt / 10) 2814 #define is_failure(amrr) \ 2815 ((amrr)->retrycnt > (amrr)->txcnt / 3) 2816 #define is_enough(amrr) \ 2817 ((amrr)->txcnt > 10) 2818 #define is_min_rate(ni) \ 2819 ((ni)->ni_txrate == 0) 2820 #define is_max_rate(ni) \ 2821 ((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1) 2822 #define increase_rate(ni) \ 2823 ((ni)->ni_txrate++) 2824 #define decrease_rate(ni) \ 2825 ((ni)->ni_txrate--) 2826 #define reset_cnt(amrr) \ 2827 do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0) 2828 2829 #define WPI_AMRR_MIN_SUCCESS_THRESHOLD 1 2830 #define WPI_AMRR_MAX_SUCCESS_THRESHOLD 15 2831 2832 /* XXX should reset all nodes on S_INIT */ 2833 static void 2834 wpi_amrr_init(struct wpi_amrr *amrr) 2835 { 2836 struct ieee80211_node *ni = &amrr->ni; 2837 int i; 2838 2839 amrr->success = 0; 2840 amrr->recovery = 0; 2841 amrr->txcnt = amrr->retrycnt = 0; 2842 amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD; 2843 2844 /* set rate to some reasonable initial value */ 2845 ni = &amrr->ni; 2846 for (i = ni->ni_rates.rs_nrates - 1; 2847 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2848 i--); 2849 2850 ni->ni_txrate = i; 2851 } 2852 2853 static void 2854 wpi_amrr_timeout(void *arg) 2855 { 2856 struct wpi_softc *sc = arg; 2857 struct ieee80211com *ic = &sc->sc_ic; 2858 2859 if (ic->ic_opmode == IEEE80211_M_STA) 2860 wpi_amrr_ratectl(NULL, ic->ic_bss); 2861 else 2862 ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL); 2863 2864 callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc); 2865 } 2866 2867 /* ARGSUSED */ 2868 static void 2869 wpi_amrr_ratectl(void *arg __unused, struct ieee80211_node *ni) 2870 { 2871 struct wpi_amrr *amrr = (struct wpi_amrr *)ni; 2872 int need_change = 0; 2873 2874 if (is_success(amrr) && is_enough(amrr)) { 2875 amrr->success++; 2876 if (amrr->success >= amrr->success_threshold && 2877 !is_max_rate(ni)) { 2878 amrr->recovery = 1; 2879 amrr->success = 0; 2880 increase_rate(ni); 2881 DPRINTFN(2, ("AMRR increasing rate %d (txcnt=%d " 2882 "retrycnt=%d)\n", ni->ni_txrate, amrr->txcnt, 2883 amrr->retrycnt)); 2884 need_change = 1; 2885 } else { 2886 amrr->recovery = 0; 2887 } 2888 } else if (is_failure(amrr)) { 2889 amrr->success = 0; 2890 if (!is_min_rate(ni)) { 2891 if (amrr->recovery) { 2892 amrr->success_threshold *= 2; 2893 if (amrr->success_threshold > 2894 WPI_AMRR_MAX_SUCCESS_THRESHOLD) 2895 amrr->success_threshold = 2896 WPI_AMRR_MAX_SUCCESS_THRESHOLD; 2897 } else { 2898 amrr->success_threshold = 2899 WPI_AMRR_MIN_SUCCESS_THRESHOLD; 2900 } 2901 decrease_rate(ni); 2902 DPRINTFN(2, ("AMRR decreasing rate %d (txcnt=%d " 2903 "retrycnt=%d)\n", ni->ni_txrate, amrr->txcnt, 2904 amrr->retrycnt)); 2905 need_change = 1; 2906 } 2907 amrr->recovery = 0; /* paper is incorrect */ 2908 } 2909 2910 if (is_enough(amrr) || need_change) 2911 reset_cnt(amrr); 2912 } 2913