xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*  $NetBSD: if_wpi.c,v 1.4 2006/10/12 01:31:31 christos Exp $    */
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.4 2006/10/12 01:31:31 christos Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include "bpfilter.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 
40 #include <machine/bus.h>
41 #include <machine/endian.h>
42 #include <machine/intr.h>
43 
44 #include <dev/pci/pcireg.h>
45 #include <dev/pci/pcivar.h>
46 #include <dev/pci/pcidevs.h>
47 
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_radiotap.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 
66 #include <dev/firmload.h>
67 
68 #include <dev/pci/if_wpireg.h>
69 #include <dev/pci/if_wpivar.h>
70 
71 #ifdef WPI_DEBUG
72 #define DPRINTF(x)	if (wpi_debug > 0) printf x
73 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
74 int wpi_debug = 1;
75 #else
76 #define DPRINTF(x)
77 #define DPRINTFN(n, x)
78 #endif
79 
80 /*
81  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
82  */
83 static const struct ieee80211_rateset wpi_rateset_11a =
84 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
85 
86 static const struct ieee80211_rateset wpi_rateset_11b =
87 	{ 4, { 2, 4, 11, 22 } };
88 
89 static const struct ieee80211_rateset wpi_rateset_11g =
90 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
91 
92 static const uint8_t wpi_ridx_to_plcp[] = {
93 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,	/* OFDM R1-R4 */
94 	10, 20, 55, 110	/* CCK */
95 };
96 
97 static int  wpi_match(struct device *, struct cfdata *, void *);
98 static void wpi_attach(struct device *, struct device *, void *);
99 static int  wpi_detach(struct device*, int);
100 static void wpi_power(int, void *);
101 static int  wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
102 	void **, bus_size_t, bus_size_t, int);
103 static void wpi_dma_contig_free(struct wpi_softc *, struct wpi_dma_info *);
104 static int  wpi_alloc_shared(struct wpi_softc *);
105 static void wpi_free_shared(struct wpi_softc *);
106 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
107 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
108 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
110 	int);
111 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
112 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
113 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
114 static int  wpi_media_change(struct ifnet *);
115 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
116 static void wpi_mem_lock(struct wpi_softc *);
117 static void wpi_mem_unlock(struct wpi_softc *);
118 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
119 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
120 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
121 	const uint32_t *, int);
122 static uint16_t wpi_read_prom_word(struct wpi_softc *, uint32_t);
123 static int  wpi_load_firmware(struct wpi_softc *, uint32_t, const char *,
124 	int);
125 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
126 	struct wpi_rx_data *);
127 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
128 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
129 static void wpi_notif_intr(struct wpi_softc *);
130 static int  wpi_intr(void *);
131 static uint8_t wpi_plcp_signal(int);
132 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
133 	struct ieee80211_node *, int);
134 static void wpi_start(struct ifnet *);
135 static void wpi_watchdog(struct ifnet *);
136 static int  wpi_ioctl(struct ifnet *, u_long, caddr_t);
137 static void wpi_read_eeprom(struct wpi_softc *);
138 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int  wpi_wme_update(struct ieee80211com *);
140 static int  wpi_mrr_setup(struct wpi_softc *);
141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
144 static int  wpi_auth(struct wpi_softc *);
145 static int  wpi_scan(struct wpi_softc *, uint16_t);
146 static int  wpi_config(struct wpi_softc *);
147 static void wpi_stop_master(struct wpi_softc *);
148 static int  wpi_power_up(struct wpi_softc *);
149 static int  wpi_reset(struct wpi_softc *);
150 static void wpi_hw_config(struct wpi_softc *);
151 static int  wpi_init(struct ifnet *);
152 static void wpi_stop(struct ifnet *, int);
153 
154 /* rate control algorithm: should be moved to net80211 */
155 static void wpi_amrr_init(struct wpi_amrr *);
156 static void wpi_amrr_timeout(void *);
157 static void wpi_amrr_ratectl(void *, struct ieee80211_node *);
158 
159 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
160 	wpi_detach, NULL);
161 
162 static int
163 wpi_match(struct device *parent __unused, struct cfdata *match __unused,
164     void *aux)
165 {
166 	struct pci_attach_args *pa = aux;
167 
168 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
169 		return 0;
170 
171 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
172 		PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
173 		return 1;
174 
175 	return 0;
176 }
177 
178 /* Base Address Register */
179 #define WPI_PCI_BAR0	0x10
180 
181 static void
182 wpi_attach(struct device *parent __unused, struct device *self, void *aux)
183 {
184 	struct wpi_softc *sc = (struct wpi_softc *)self;
185 	struct ieee80211com *ic = &sc->sc_ic;
186 	struct ifnet *ifp = &sc->sc_ec.ec_if;
187 	struct pci_attach_args *pa = aux;
188 	const char *intrstr;
189 	char devinfo[256];
190 	bus_space_tag_t memt;
191 	bus_space_handle_t memh;
192 	bus_addr_t base;
193 	pci_intr_handle_t ih;
194 	pcireg_t data;
195 	int error, ac, revision, i;
196 
197 	sc->sc_pct = pa->pa_pc;
198 	sc->sc_pcitag = pa->pa_tag;
199 
200 	callout_init(&sc->amrr_ch);
201 
202 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
203 	revision = PCI_REVISION(pa->pa_class);
204 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
205 
206 	/* clear device specific PCI configuration register 0x41 */
207 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
208 	data &= ~0x0000ff00;
209 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
210 
211 	/* enable bus-mastering */
212 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
213 	data |= PCI_COMMAND_MASTER_ENABLE;
214 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
215 
216 	/* map the register window */
217 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
218 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
219 	if (error != 0) {
220 		aprint_error("%s: could not map memory space\n",
221 			sc->sc_dev.dv_xname);
222 		return;
223 	}
224 
225 	sc->sc_st = memt;
226 	sc->sc_sh = memh;
227 	sc->sc_dmat = pa->pa_dmat;
228 
229 	if (pci_intr_map(pa, &ih) != 0) {
230 		aprint_error("%s: could not map interrupt\n",
231 			sc->sc_dev.dv_xname);
232 		return;
233 	}
234 
235 	intrstr = pci_intr_string(sc->sc_pct, ih);
236 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
237 	if (sc->sc_ih == NULL) {
238 		aprint_error("%s: could not establish interrupt",
239 			sc->sc_dev.dv_xname);
240 		if (intrstr != NULL)
241 			aprint_error(" at %s", intrstr);
242 		aprint_error("\n");
243 		return;
244 	}
245 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
246 
247 	if (wpi_reset(sc) != 0) {
248 		aprint_error("%s: could not reset adapter\n",
249 			sc->sc_dev.dv_xname);
250 		return;
251 	}
252 
253 	/*
254 	 * Allocate shared page and Tx/Rx rings.
255 	 */
256 	if ((error = wpi_alloc_shared(sc)) != 0) {
257 		aprint_error("%s: could not allocate shared area\n",
258 			sc->sc_dev.dv_xname);
259 		return;
260 	}
261 
262 	for (ac = 0; ac < 4; ac++) {
263 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
264 		if (error != 0) {
265 			aprint_error("%s: could not allocate Tx ring %d\n",
266 					sc->sc_dev.dv_xname, ac);
267 			goto fail1;
268 		}
269 	}
270 
271 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
272 	if (error != 0) {
273 		aprint_error("%s: could not allocate command ring\n",
274 			sc->sc_dev.dv_xname);
275 		goto fail1;
276 	}
277 
278 	error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
279 	if (error != 0) {
280 		aprint_error("%s: could not allocate service ring\n",
281 			sc->sc_dev.dv_xname);
282 		goto fail2;
283 	}
284 
285 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
286 		aprint_error("%s: could not allocate Rx ring\n",
287 			sc->sc_dev.dv_xname);
288 		goto fail3;
289 	}
290 
291 
292 	ic->ic_ifp = ifp;
293 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
294 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
295 	ic->ic_state = IEEE80211_S_INIT;
296 
297 	/* set device capabilities */
298 	ic->ic_caps =
299 		IEEE80211_C_IBSS |       /* IBSS mode support */
300 		IEEE80211_C_WPA |        /* 802.11i */
301 		IEEE80211_C_MONITOR |    /* monitor mode supported */
302 		IEEE80211_C_TXPMGT |     /* tx power management */
303 		IEEE80211_C_SHSLOT |     /* short slot time supported */
304 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
305 		IEEE80211_C_WME;         /* 802.11e */
306 
307 	wpi_read_eeprom(sc);
308 	aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
309 		ether_sprintf(ic->ic_myaddr));
310 
311 		/* set supported .11a rates */
312 		ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
313 
314 		/* set supported .11a channels */
315 		for (i = 36; i <= 64; i += 4) {
316 			ic->ic_channels[i].ic_freq =
317 				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
318 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
319 		}
320 		for (i = 100; i <= 140; i += 4) {
321 			ic->ic_channels[i].ic_freq =
322 				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
323 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
324 		}
325 		for (i = 149; i <= 165; i += 4) {
326 			ic->ic_channels[i].ic_freq =
327 				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
328 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
329 		}
330 
331 	/* set supported .11b and .11g rates */
332 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
333 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
334 
335 	/* set supported .11b and .11g channels (1 through 14) */
336 	for (i = 1; i <= 14; i++) {
337 		ic->ic_channels[i].ic_freq =
338 			ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
339 		ic->ic_channels[i].ic_flags =
340 			IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
341 			IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
342 	}
343 
344 	ic->ic_ibss_chan = &ic->ic_channels[0];
345 
346 	ifp->if_softc = sc;
347 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
348 	ifp->if_init = wpi_init;
349 	ifp->if_stop = wpi_stop;
350 	ifp->if_ioctl = wpi_ioctl;
351 	ifp->if_start = wpi_start;
352 	ifp->if_watchdog = wpi_watchdog;
353 	IFQ_SET_READY(&ifp->if_snd);
354 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
355 
356 	if_attach(ifp);
357 	ieee80211_ifattach(ic);
358 	/* override default methods */
359 	ic->ic_node_alloc = wpi_node_alloc;
360 	ic->ic_wme.wme_update = wpi_wme_update;
361 
362 	/* override state transition machine */
363 	sc->sc_newstate = ic->ic_newstate;
364 	ic->ic_newstate = wpi_newstate;
365 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
366 
367 	/* set powerhook */
368 	sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc);
369 
370 #if NBPFILTER > 0
371 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
372 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
373 		&sc->sc_drvbpf);
374 
375 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
376 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
377 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
378 
379 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
380 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
381 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
382 #endif
383 
384 	ieee80211_announce(ic);
385 
386 	return;
387 
388 fail3:  wpi_free_tx_ring(sc, &sc->svcq);
389 fail2:  wpi_free_tx_ring(sc, &sc->cmdq);
390 fail1:  while (--ac >= 0)
391 			wpi_free_tx_ring(sc, &sc->txq[ac]);
392 		wpi_free_shared(sc);
393 }
394 
395 static int
396 wpi_detach(struct device* self, int flags __unused)
397 {
398 	struct wpi_softc *sc = (struct wpi_softc *)self;
399 	struct ifnet *ifp = &sc->sc_ec.ec_if;
400 	int ac;
401 
402 	wpi_stop(ifp, 1);
403 
404 #if NBPFILTER > 0
405 	if (ifp != NULL)
406 		bpfdetach(ifp);
407 #endif
408 	ieee80211_ifdetach(&sc->sc_ic);
409 	if (ifp != NULL)
410 		if_detach(ifp);
411 
412 	for (ac = 0; ac < 4; ac++)
413 		wpi_free_tx_ring(sc, &sc->txq[ac]);
414 	wpi_free_tx_ring(sc, &sc->cmdq);
415 	wpi_free_tx_ring(sc, &sc->svcq);
416 	wpi_free_rx_ring(sc, &sc->rxq);
417 	wpi_free_shared(sc);
418 
419 	if (sc->sc_ih != NULL) {
420 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
421 		sc->sc_ih = NULL;
422 	}
423 
424 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
425 
426 	return 0;
427 }
428 
429 static void
430 wpi_power(int why, void *arg)
431 {
432 	struct wpi_softc *sc = arg;
433 	struct ifnet *ifp;
434 	pcireg_t data;
435 	int s;
436 
437 	if (why != PWR_RESUME)
438 		return;
439 
440 	/* clear device specific PCI configuration register 0x41 */
441 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
442 	data &= ~0x0000ff00;
443 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
444 
445 	s = splnet();
446 	ifp = sc->sc_ic.ic_ifp;
447 	if (ifp->if_flags & IFF_UP) {
448 		ifp->if_init(ifp);
449 		if (ifp->if_flags & IFF_RUNNING)
450 			ifp->if_start(ifp);
451 	}
452 	splx(s);
453 }
454 
455 static int
456 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
457 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
458 {
459 	int nsegs, error;
460 
461 	dma->size = size;
462 
463 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
464 		flags, &dma->map);
465 	if (error != 0) {
466 		aprint_error("%s: could not create DMA map\n",
467 			sc->sc_dev.dv_xname);
468 		goto fail;
469 	}
470 
471 	error = bus_dmamem_alloc(sc->sc_dmat, size, alignment, 0, &dma->seg,
472 		1, &nsegs, flags);
473 	if (error != 0) {
474 		aprint_error("%s: could not allocate DMA memory\n",
475 			sc->sc_dev.dv_xname);
476 		goto fail;
477 	}
478 
479 	error = bus_dmamem_map(sc->sc_dmat, &dma->seg, 1, size,
480 			&dma->vaddr, flags);
481 	if (error != 0) {
482 		aprint_error("%s: could not map DMA memory\n",
483 			sc->sc_dev.dv_xname);
484 		goto fail;
485 	}
486 
487 	error = bus_dmamap_load(sc->sc_dmat, dma->map, dma->vaddr,
488 		size, NULL, flags);
489 	if (error != 0) {
490 		aprint_error("%s: could not load DMA memory\n",
491 			sc->sc_dev.dv_xname);
492 		goto fail;
493 	}
494 
495 	memset(dma->vaddr, 0, size);
496 
497 	dma->paddr = dma->map->dm_segs[0].ds_addr;
498 	*kvap = dma->vaddr;
499 
500 	return 0;
501 
502 fail:   wpi_dma_contig_free(sc, dma);
503 	return error;
504 }
505 
506 static void
507 wpi_dma_contig_free(struct wpi_softc *sc, struct wpi_dma_info *dma)
508 {
509 	if (dma->map != NULL) {
510 		if (dma->vaddr != NULL) {
511 			bus_dmamap_unload(sc->sc_dmat, dma->map);
512 			bus_dmamem_unmap(sc->sc_dmat, dma->vaddr, dma->size);
513 			bus_dmamem_free(sc->sc_dmat, &dma->seg, 1);
514 			dma->vaddr = NULL;
515 		}
516 		bus_dmamap_destroy(sc->sc_dmat, dma->map);
517 		dma->map = NULL;
518 	}
519 }
520 
521 /*
522  * Allocate a shared page between host and NIC.
523  */
524 static int
525 wpi_alloc_shared(struct wpi_softc *sc)
526 {
527 	int error;
528 	/* must be aligned on a 4K-page boundary */
529 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
530 			(void **)&sc->shared, sizeof (struct wpi_shared), PAGE_SIZE,
531 			BUS_DMA_NOWAIT);
532 	if (error != 0)
533 		aprint_error("%s: could not allocate shared area DMA memory\n",
534 			sc->sc_dev.dv_xname);
535 
536 	return error;
537 }
538 
539 static void
540 wpi_free_shared(struct wpi_softc *sc)
541 {
542 	wpi_dma_contig_free(sc, &sc->shared_dma);
543 }
544 
545 static int
546 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
547 {
548 	struct wpi_rx_data *data;
549 	int i, error;
550 
551 	ring->cur = 0;
552 
553 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
554 		(void **)&ring->desc,
555 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
556 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
557 	if (error != 0) {
558 		aprint_error("%s: could not allocate rx ring DMA memory\n",
559 			sc->sc_dev.dv_xname);
560 		goto fail;
561 	}
562 
563 	/*
564 	 * Allocate Rx buffers.
565 	 */
566 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
567 		data = &ring->data[i];
568 
569 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
570 			0, BUS_DMA_NOWAIT, &data->map);
571 		if (error != 0) {
572 			aprint_error("%s: could not create rx buf DMA map\n",
573 				sc->sc_dev.dv_xname);
574 			goto fail;
575 		}
576 
577 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
578 		if (data->m == NULL) {
579 			aprint_error("%s: could not allocate rx mbuf\n",
580 				sc->sc_dev.dv_xname);
581 			error = ENOMEM;
582 			goto fail;
583 		}
584 
585 		MCLGET(data->m, M_DONTWAIT);
586 		if (!(data->m->m_flags & M_EXT)) {
587 			m_freem(data->m);
588 			data->m = NULL;
589 			aprint_error("%s: could not allocate rx mbuf cluster\n",
590 				sc->sc_dev.dv_xname);
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 
595 		error = bus_dmamap_load(sc->sc_dmat, data->map,
596 			mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT |
597 			BUS_DMA_READ);
598 		if (error != 0) {
599 			aprint_error("%s: could not load rx buf DMA map\n",
600 				sc->sc_dev.dv_xname);
601 			goto fail;
602 		}
603 
604 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
605 	}
606 
607 	return 0;
608 
609 fail:	wpi_free_rx_ring(sc, ring);
610 	return error;
611 }
612 
613 static void
614 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
615 {
616 	int ntries;
617 
618 	wpi_mem_lock(sc);
619 
620 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
621 	for (ntries = 0; ntries < 100; ntries++) {
622 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
623 			break;
624 		DELAY(10);
625 	}
626 #ifdef WPI_DEBUG
627 	if (ntries == 100 && wpi_debug > 0)
628 		aprint_error("%s: timeout resetting Rx ring\n",
629 			sc->sc_dev.dv_xname);
630 #endif
631 	wpi_mem_unlock(sc);
632 
633 	ring->cur = 0;
634 }
635 
636 static void
637 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
638 {
639 	struct wpi_rx_data *data;
640 	int i;
641 
642 	wpi_dma_contig_free(sc, &ring->desc_dma);
643 
644 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
645 		data = &ring->data[i];
646 
647 		if (data->m != NULL) {
648 			bus_dmamap_unload(sc->sc_dmat, data->map);
649 			m_freem(data->m);
650 		}
651 		bus_dmamap_destroy(sc->sc_dmat, data->map);
652 	}
653 }
654 
655 static int
656 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
657 	int qid)
658 {
659 	struct wpi_tx_data *data;
660 	int i, error;
661 
662 	ring->qid = qid;
663 	ring->count = count;
664 	ring->queued = 0;
665 	ring->cur = 0;
666 
667 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
668 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
669 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
670 	if (error != 0) {
671 		aprint_error("%s: could not allocate tx ring DMA memory\n",
672 			sc->sc_dev.dv_xname);
673 		goto fail;
674 	}
675 
676 	/* update shared page with ring's base address */
677 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
678 
679 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
680 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
681 	if (error != 0) {
682 		aprint_error("%s: could not allocate tx cmd DMA memory\n",
683 			sc->sc_dev.dv_xname);
684 		goto fail;
685 	}
686 
687 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
688 		M_NOWAIT);
689 	if (ring->data == NULL) {
690 		aprint_error("%s: could not allocate tx data slots\n",
691 			sc->sc_dev.dv_xname);
692 		goto fail;
693 	}
694 
695 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
696 
697 	for (i = 0; i < count; i++) {
698 		data = &ring->data[i];
699 
700 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
701 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
702 			&data->map);
703 		if (error != 0) {
704 			aprint_error("%s: could not create tx buf DMA map\n",
705 				sc->sc_dev.dv_xname);
706 			goto fail;
707 		}
708 	}
709 
710 	return 0;
711 
712 fail:	wpi_free_tx_ring(sc, ring);
713 	return error;
714 }
715 
716 static void
717 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
718 {
719 	struct wpi_tx_data *data;
720 	int i, ntries;
721 
722 	wpi_mem_lock(sc);
723 
724 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
725 	for (ntries = 0; ntries < 100; ntries++) {
726 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
727 			break;
728 		DELAY(10);
729 	}
730 #ifdef WPI_DEBUG
731 	if (ntries == 100 && wpi_debug > 0) {
732 		aprint_error("%s: timeout resetting Tx ring %d\n",
733 			sc->sc_dev.dv_xname, ring->qid);
734 	}
735 #endif
736 	wpi_mem_unlock(sc);
737 
738 	for (i = 0; i < ring->count; i++) {
739 		data = &ring->data[i];
740 
741 		if (data->m != NULL) {
742 			bus_dmamap_unload(sc->sc_dmat, data->map);
743 			m_freem(data->m);
744 			data->m = NULL;
745 		}
746 	}
747 
748 	ring->queued = 0;
749 	ring->cur = 0;
750 }
751 
752 static void
753 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
754 {
755 	struct wpi_tx_data *data;
756 	int i;
757 
758 	wpi_dma_contig_free(sc, &ring->desc_dma);
759 	wpi_dma_contig_free(sc, &ring->cmd_dma);
760 
761 	if (ring->data != NULL) {
762 		for (i = 0; i < ring->count; i++) {
763 			data = &ring->data[i];
764 
765 			if (data->m != NULL) {
766 				bus_dmamap_unload(sc->sc_dmat, data->map);
767 				m_freem(data->m);
768 			}
769 		}
770 		free(ring->data, M_DEVBUF);
771 	}
772 }
773 
774 /*ARGUSED*/
775 static struct ieee80211_node *
776 wpi_node_alloc(struct ieee80211_node_table *ic __unused)
777 {
778 	struct wpi_amrr *amrr;
779 
780 	amrr = malloc(sizeof (struct wpi_amrr), M_80211_NODE, M_NOWAIT);
781 	if (amrr != NULL) {
782 		memset(amrr, 0, sizeof (struct wpi_amrr));
783 		wpi_amrr_init(amrr);
784 	}
785 	return (struct ieee80211_node *)amrr;
786 }
787 
788 static int
789 wpi_media_change(struct ifnet *ifp)
790 {
791 	int error;
792 
793 	error = ieee80211_media_change(ifp);
794 	if (error != ENETRESET)
795 		return error;
796 
797 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
798 		wpi_init(ifp);
799 
800 	return 0;
801 }
802 
803 static int
804 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
805 {
806 	struct ifnet *ifp = ic->ic_ifp;
807 	struct wpi_softc *sc = ifp->if_softc;
808 	int error;
809 
810 	callout_stop(&sc->amrr_ch);
811 
812 	switch (nstate) {
813 	case IEEE80211_S_SCAN:
814 		ieee80211_node_table_reset(&ic->ic_scan);
815 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
816 
817 		/* make the link LED blink while we're scanning */
818 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
819 
820 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
821 			aprint_error("%s: could not initiate scan\n",
822 				sc->sc_dev.dv_xname);
823 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
824 			return error;
825 		}
826 
827 		ic->ic_state = nstate;
828 		return 0;
829 
830 	case IEEE80211_S_AUTH:
831 		sc->config.state &= ~htole16(WPI_STATE_ASSOCIATED);
832 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
833 		if ((error = wpi_auth(sc)) != 0) {
834 			aprint_error("%s: could not send authentication request\n",
835 				sc->sc_dev.dv_xname);
836 			return error;
837 		}
838 		break;
839 
840 	case IEEE80211_S_RUN:
841 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
842 			/* link LED blinks while monitoring */
843 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
844 			break;
845 		}
846 
847 		if (ic->ic_opmode != IEEE80211_M_STA) {
848 			(void) wpi_auth(sc);    /* XXX */
849 			wpi_setup_beacon(sc, ic->ic_bss);
850 		}
851 
852 		wpi_enable_tsf(sc, ic->ic_bss);
853 
854 		/* update adapter's configuration */
855 		sc->config.state = htole16(WPI_STATE_ASSOCIATED);
856 		/* short preamble/slot time are negotiated when associating */
857 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
858 			WPI_CONFIG_SHSLOT);
859 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
860 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
861 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
862 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
863 		sc->config.filter |= htole32(WPI_FILTER_BSS);
864 		if (ic->ic_opmode != IEEE80211_M_STA)
865 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
866 
867 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
868 
869 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
870 			sc->config.flags));
871 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
872 			sizeof (struct wpi_config), 1);
873 		if (error != 0) {
874 			aprint_error("%s: could not update configuration\n",
875 				sc->sc_dev.dv_xname);
876 			return error;
877 		}
878 
879 		/* enable automatic rate adaptation in STA mode */
880 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
881 			callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc);
882 
883 		/* link LED always on while associated */
884 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
885 		break;
886 
887 	case IEEE80211_S_ASSOC:
888 	case IEEE80211_S_INIT:
889 		break;
890 	}
891 
892 	return sc->sc_newstate(ic, nstate, arg);
893 }
894 
895 /*
896  * Grab exclusive access to NIC memory.
897  */
898 static void
899 wpi_mem_lock(struct wpi_softc *sc)
900 {
901 	uint32_t tmp;
902 	int ntries;
903 
904 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
905 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
906 
907 	/* spin until we actually get the lock */
908 	for (ntries = 0; ntries < 1000; ntries++) {
909 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
910 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
911 			break;
912 		DELAY(10);
913 	}
914 	if (ntries == 1000)
915 		aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
916 }
917 
918 /*
919  * Release lock on NIC memory.
920  */
921 static void
922 wpi_mem_unlock(struct wpi_softc *sc)
923 {
924 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
925 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
926 }
927 
928 static uint32_t
929 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
930 {
931 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
932 	return WPI_READ(sc, WPI_READ_MEM_DATA);
933 }
934 
935 static void
936 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
937 {
938 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
939 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
940 }
941 
942 static void
943 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
944 	const uint32_t *data, int wlen)
945 {
946 	for (; wlen > 0; wlen--, data++, addr += 4)
947 		wpi_mem_write(sc, addr, *data);
948 }
949 
950 /*
951  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
952  * using the traditional bit-bang method.
953  */
954 static uint16_t
955 wpi_read_prom_word(struct wpi_softc *sc, uint32_t addr)
956 {
957 	int ntries;
958 	uint32_t val;
959 
960 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
961 
962 	wpi_mem_lock(sc);
963 	for (ntries = 0; ntries < 10; ntries++) {
964 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
965 			break;
966 		DELAY(10);
967 	}
968 	wpi_mem_unlock(sc);
969 
970 	if (ntries == 10) {
971 		aprint_error("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
972 		return 0xdead;
973 	}
974 	return val >> 16;
975 }
976 
977 /*
978  * The firmware boot code is small and is intended to be copied directly into
979  * the NIC internal memory.
980  */
981 static int
982 wpi_load_microcode(struct wpi_softc *sc, const char *ucode, int size)
983 {
984 	/* check that microcode size is a multiple of 4 */
985 	if (size & 3)
986 		return EINVAL;
987 
988 	size /= sizeof (uint32_t);
989 
990 	wpi_mem_lock(sc);
991 
992 	/* copy microcode image into NIC memory */
993 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
994 		size);
995 
996 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
997 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
998 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
999 
1000 	/* run microcode */
1001 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1002 
1003 	wpi_mem_unlock(sc);
1004 
1005 	return 0;
1006 }
1007 
1008 /*
1009  * The firmware text and data segments are transferred to the NIC using DMA.
1010  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1011  * where to find it.  Once the NIC has copied the firmware into its internal
1012  * memory, we can free our local copy in the driver.
1013  */
1014 static int
1015 wpi_load_firmware(struct wpi_softc *sc, uint32_t target, const char *fw,
1016 	int size)
1017 {
1018 	bus_dmamap_t map;
1019 	bus_dma_segment_t seg;
1020 	caddr_t virtaddr;
1021 	struct wpi_tx_desc desc;
1022 	int i, ntries, nsegs, error;
1023 
1024 	/*
1025 	 * Allocate DMA-safe memory to store the firmware.
1026 	 */
1027 	error = bus_dmamap_create(sc->sc_dmat, size, WPI_MAX_SCATTER,
1028 		WPI_MAX_SEG_LEN, 0, BUS_DMA_NOWAIT, &map);
1029 	if (error != 0) {
1030 		aprint_error("%s: could not create firmware DMA map\n",
1031 			sc->sc_dev.dv_xname);
1032 		goto fail1;
1033 	}
1034 
1035 	error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
1036 		&nsegs, BUS_DMA_NOWAIT);
1037 	if (error != 0) {
1038 		aprint_error("%s: could not allocate firmware DMA memory\n",
1039 			sc->sc_dev.dv_xname);
1040 		goto fail2;
1041 	}
1042 
1043 	error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr,
1044 		BUS_DMA_NOWAIT);
1045 	if (error != 0) {
1046 		aprint_error("%s: could not map firmware DMA memory\n",
1047 			sc->sc_dev.dv_xname);
1048 		goto fail3;
1049 	}
1050 
1051 	error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL,
1052 		BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1053 	if (error != 0) {
1054 		aprint_error("%s: could not load firmware DMA map\n",
1055 			sc->sc_dev.dv_xname);
1056 		goto fail4;
1057 	}
1058 
1059 	/* copy firmware image to DMA-safe memory */
1060 	bcopy(fw, virtaddr, size);
1061 
1062 	/* make sure the adapter will get up-to-date values */
1063 	bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
1064 
1065 	bzero(&desc, sizeof desc);
1066 	desc.flags = htole32(WPI_PAD32(size) << 28 | map->dm_nsegs << 24);
1067 	for (i = 0; i < map->dm_nsegs; i++) {
1068 		desc.segs[i].addr = htole32(map->dm_segs[i].ds_addr);
1069 		desc.segs[i].len  = htole32(map->dm_segs[i].ds_len);
1070 	}
1071 
1072 	wpi_mem_lock(sc);
1073 
1074 	/* tell adapter where to copy image in its internal memory */
1075 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1076 
1077 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1078 
1079 	/* copy firmware descriptor into NIC memory */
1080 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1081 		sizeof desc / sizeof (uint32_t));
1082 
1083 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1084 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1085 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1086 
1087 	/* wait while the adapter is busy copying the firmware */
1088 	for (ntries = 0; ntries < 100; ntries++) {
1089 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1090 			break;
1091 		DELAY(1000);
1092 	}
1093 	if (ntries == 100) {
1094 		aprint_error("%s: timeout transferring firmware\n",
1095 			sc->sc_dev.dv_xname);
1096 		error = ETIMEDOUT;
1097 	}
1098 
1099 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1100 
1101 	wpi_mem_unlock(sc);
1102 
1103 	bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
1104 	bus_dmamap_unload(sc->sc_dmat, map);
1105 fail4:	bus_dmamem_unmap(sc->sc_dmat, virtaddr, size);
1106 fail3:	bus_dmamem_free(sc->sc_dmat, &seg, 1);
1107 fail2:	bus_dmamap_destroy(sc->sc_dmat, map);
1108 fail1:	return error;
1109 }
1110 
1111 static void
1112 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1113 	struct wpi_rx_data *data)
1114 {
1115 	struct ieee80211com *ic = &sc->sc_ic;
1116 	struct ifnet *ifp = ic->ic_ifp;
1117 	struct wpi_rx_ring *ring = &sc->rxq;
1118 	struct wpi_rx_stat *stat;
1119 	struct wpi_rx_head *head;
1120 	struct wpi_rx_tail *tail;
1121 	struct ieee80211_frame *wh;
1122 	struct ieee80211_node *ni;
1123 	struct mbuf *m, *mnew;
1124 	int error;
1125 
1126 	stat = (struct wpi_rx_stat *)(desc + 1);
1127 
1128 	if (stat->len > WPI_STAT_MAXLEN) {
1129 		aprint_error("%s: invalid rx statistic header\n",
1130 			sc->sc_dev.dv_xname);
1131 		ifp->if_ierrors++;
1132 		return;
1133 	}
1134 
1135 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1136 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1137 
1138 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1139 		"chan=%d tstamp=%llu\n", ring->cur, le32toh(desc->len),
1140 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1141 		le64toh(tail->tstamp)));
1142 
1143 	/*
1144 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1145 	 * to radiotap in monitor mode).
1146 	 */
1147 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1148 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1149 		ifp->if_ierrors++;
1150 		return;
1151 	}
1152 
1153 
1154 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1155 	if (mnew == NULL) {
1156 		ifp->if_ierrors++;
1157 		return;
1158 	}
1159 
1160 	MCLGET(mnew, M_DONTWAIT);
1161 	if (!(mnew->m_flags & M_EXT)) {
1162 		m_freem(mnew);
1163 		ifp->if_ierrors++;
1164 		return;
1165 	}
1166 
1167 	bus_dmamap_unload(sc->sc_dmat, data->map);
1168 
1169 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *),
1170 		MCLBYTES, NULL, BUS_DMA_NOWAIT);
1171 	if (error != 0) {
1172 		m_freem(mnew);
1173 
1174 		/* try to reload the old mbuf */
1175 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1176 			mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1177 		if (error != 0) {
1178 			/* very unlikely that it will fail... */
1179 			panic("%s: could not load old rx mbuf",
1180 				sc->sc_dev.dv_xname);
1181 		}
1182 		ifp->if_ierrors++;
1183 		return;
1184 	}
1185 
1186 	m = data->m;
1187 	data->m = mnew;
1188 
1189 	/* update Rx descriptor */
1190 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1191 
1192 	/* finalize mbuf */
1193 	m->m_pkthdr.rcvif = ifp;
1194 	m->m_data = (caddr_t)(head + 1);
1195 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1196 
1197 #if NBPFILTER > 0
1198 	if (sc->sc_drvbpf != NULL) {
1199 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1200 
1201 		tap->wr_flags = 0;
1202 		tap->wr_chan_freq =
1203 			htole16(ic->ic_channels[head->chan].ic_freq);
1204 		tap->wr_chan_flags =
1205 			htole16(ic->ic_channels[head->chan].ic_flags);
1206 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1207 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1208 		tap->wr_tsft = tail->tstamp;
1209 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1210 		switch (head->rate) {
1211 		/* CCK rates */
1212 		case  10: tap->wr_rate =   2; break;
1213 		case  20: tap->wr_rate =   4; break;
1214 		case  55: tap->wr_rate =  11; break;
1215 		case 110: tap->wr_rate =  22; break;
1216 		/* OFDM rates */
1217 		case 0xd: tap->wr_rate =  12; break;
1218 		case 0xf: tap->wr_rate =  18; break;
1219 		case 0x5: tap->wr_rate =  24; break;
1220 		case 0x7: tap->wr_rate =  36; break;
1221 		case 0x9: tap->wr_rate =  48; break;
1222 		case 0xb: tap->wr_rate =  72; break;
1223 		case 0x1: tap->wr_rate =  96; break;
1224 		case 0x3: tap->wr_rate = 108; break;
1225 		/* unknown rate: should not happen */
1226 		default:  tap->wr_rate =   0;
1227 		}
1228 		if (le16toh(head->flags) & 0x4)
1229 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1230 
1231 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1232 	}
1233 #endif
1234 
1235 	/* grab a reference to the source node */
1236 	wh = mtod(m, struct ieee80211_frame *);
1237 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1238 
1239 	/* send the frame to the 802.11 layer */
1240 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1241 
1242 	/* release node reference */
1243 	ieee80211_free_node(ni);
1244 }
1245 
1246 static void
1247 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1248 {
1249 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1250 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1251 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1252 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1253 	struct wpi_amrr *amrr = (struct wpi_amrr *)txdata->ni;
1254 
1255 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1256 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1257 		stat->nkill, stat->rate, le32toh(stat->duration),
1258 		le32toh(stat->status)));
1259 
1260 	/*
1261 	 * Update rate control statistics for the node.
1262 	 * XXX we should not count mgmt frames since they're always sent at
1263 	 * the lowest available bit-rate.
1264 	 */
1265 	amrr->txcnt++;
1266 	if (stat->ntries > 0) {
1267 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1268 		amrr->retrycnt++;
1269 	}
1270 
1271 	if ((le32toh(stat->status) & 0xff) != 1)
1272 		ifp->if_oerrors++;
1273 	else
1274 		ifp->if_opackets++;
1275 
1276 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1277 	m_freem(txdata->m);
1278 	txdata->m = NULL;
1279 	ieee80211_free_node(txdata->ni);
1280 	txdata->ni = NULL;
1281 
1282 	ring->queued--;
1283 
1284 	sc->sc_tx_timer = 0;
1285 	ifp->if_flags &= ~IFF_OACTIVE;
1286 	wpi_start(ifp);
1287 }
1288 
1289 static void
1290 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1291 {
1292 	struct wpi_tx_ring *ring = &sc->cmdq;
1293 	struct wpi_tx_data *data;
1294 
1295 	if ((desc->qid & 7) != 4)
1296 		return;	/* not a command ack */
1297 
1298 	data = &ring->data[desc->idx];
1299 
1300 	/* if the command was mapped in a mbuf, free it */
1301 	if (data->m != NULL) {
1302 		bus_dmamap_unload(sc->sc_dmat, data->map);
1303 		m_freem(data->m);
1304 		data->m = NULL;
1305 	}
1306 
1307 	wakeup(&ring->cmd[desc->idx]);
1308 }
1309 
1310 static void
1311 wpi_notif_intr(struct wpi_softc *sc)
1312 {
1313 	struct ieee80211com *ic = &sc->sc_ic;
1314 	struct wpi_rx_desc *desc;
1315 	struct wpi_rx_data *data;
1316 	uint32_t hw;
1317 
1318 	hw = le32toh(sc->shared->next);
1319 	while (sc->rxq.cur != hw) {
1320 		data = &sc->rxq.data[sc->rxq.cur];
1321 
1322 		desc = mtod(data->m, struct wpi_rx_desc *);
1323 
1324 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1325 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1326 			desc->type, le32toh(desc->len)));
1327 
1328 		if (!(desc->qid & 0x80))	/* reply to a command */
1329 			wpi_cmd_intr(sc, desc);
1330 
1331 		switch (desc->type) {
1332 		case WPI_RX_DONE:
1333 			/* a 802.11 frame was received */
1334 			wpi_rx_intr(sc, desc, data);
1335 			break;
1336 
1337 		case WPI_TX_DONE:
1338 			/* a 802.11 frame has been transmitted */
1339 			wpi_tx_intr(sc, desc);
1340 			break;
1341 
1342 		case WPI_UC_READY:
1343 		{
1344 			struct wpi_ucode_info *uc =
1345 				(struct wpi_ucode_info *)(desc + 1);
1346 
1347 			/* the microcontroller is ready */
1348 			DPRINTF(("microcode alive notification version %x "
1349 				"alive %x\n", le32toh(uc->version),
1350 				le32toh(uc->valid)));
1351 
1352 			if (le32toh(uc->valid) != 1) {
1353 				aprint_error("%s: microcontroller "
1354 					"initialization failed\n",
1355 					sc->sc_dev.dv_xname);
1356 			}
1357 			break;
1358 		}
1359 		case WPI_STATE_CHANGED:
1360 		{
1361 			uint32_t *status = (uint32_t *)(desc + 1);
1362 
1363 			/* enabled/disabled notification */
1364 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1365 
1366 			if (le32toh(*status) & 1) {
1367 				/* the radio button has to be pushed */
1368 				aprint_error("%s: Radio transmitter is off\n",
1369 					sc->sc_dev.dv_xname);
1370 			}
1371 			break;
1372 		}
1373 		case WPI_START_SCAN:
1374 		{
1375 			struct wpi_start_scan *scan =
1376 				(struct wpi_start_scan *)(desc + 1);
1377 
1378 			DPRINTFN(2, ("scanning channel %d status %x\n",
1379 				scan->chan, le32toh(scan->status)));
1380 
1381 			/* fix current channel */
1382 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1383 			break;
1384 		}
1385 		case WPI_STOP_SCAN:
1386 		{
1387 			struct wpi_stop_scan *scan =
1388 				(struct wpi_stop_scan *)(desc + 1);
1389 
1390 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1391 				scan->nchan, scan->status, scan->chan));
1392 
1393 			if (scan->status == 1 && scan->chan <= 14) {
1394 				/*
1395 				 * We just finished scanning 802.11g channels,
1396 				 * start scanning 802.11a ones.
1397 				 */
1398 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1399 					break;
1400 			}
1401 			ieee80211_end_scan(ic);
1402 			break;
1403 		}
1404 		}
1405 
1406 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1407 	}
1408 
1409 	/* tell the firmware what we have processed */
1410 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1411 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1412 }
1413 
1414 static int
1415 wpi_intr(void *arg)
1416 {
1417 	struct wpi_softc *sc = arg;
1418 	uint32_t r;
1419 
1420 	r = WPI_READ(sc, WPI_INTR);
1421 	if (r == 0 || r == 0xffffffff)
1422 		return 0;	/* not for us */
1423 
1424 	DPRINTFN(5, ("interrupt reg %x\n", r));
1425 
1426 	/* disable interrupts */
1427 	WPI_WRITE(sc, WPI_MASK, 0);
1428 	/* ack interrupts */
1429 	WPI_WRITE(sc, WPI_INTR, r);
1430 
1431 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1432 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1433 		aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1434 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1435 		wpi_stop(&sc->sc_ec.ec_if, 1);
1436 		return 1;
1437 	}
1438 
1439 	if (r & WPI_RX_INTR)
1440 		wpi_notif_intr(sc);
1441 
1442 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1443 		wakeup(sc);
1444 
1445 	/* re-enable interrupts */
1446 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1447 
1448 	return 1;
1449 }
1450 
1451 static uint8_t
1452 wpi_plcp_signal(int rate)
1453 {
1454 	switch (rate) {
1455 	/* CCK rates (returned values are device-dependent) */
1456 	case 2:		return 10;
1457 	case 4:		return 20;
1458 	case 11:	return 55;
1459 	case 22:	return 110;
1460 
1461 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1462 	/* R1-R4, (u)ral is R4-R1 */
1463 	case 12:	return 0xd;
1464 	case 18:	return 0xf;
1465 	case 24:	return 0x5;
1466 	case 36:	return 0x7;
1467 	case 48:	return 0x9;
1468 	case 72:	return 0xb;
1469 	case 96:	return 0x1;
1470 	case 108:	return 0x3;
1471 
1472 	/* unsupported rates (should not get there) */
1473 	default:	return 0;
1474 	}
1475 }
1476 
1477 /* quickly determine if a given rate is CCK or OFDM */
1478 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1479 
1480 static int
1481 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1482 	int ac)
1483 {
1484 	struct ieee80211com *ic = &sc->sc_ic;
1485 	struct wpi_tx_ring *ring = &sc->txq[ac];
1486 	struct wpi_tx_desc *desc;
1487 	struct wpi_tx_data *data;
1488 	struct wpi_tx_cmd *cmd;
1489 	struct wpi_cmd_data *tx;
1490 	struct ieee80211_frame *wh;
1491 	struct ieee80211_key *k;
1492 	const struct chanAccParams *cap;
1493 	struct mbuf *mnew;
1494 	int i, error, rate, hdrlen, noack = 0;
1495 
1496 	desc = &ring->desc[ring->cur];
1497 	data = &ring->data[ring->cur];
1498 
1499 	wh = mtod(m0, struct ieee80211_frame *);
1500 
1501 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1502 		hdrlen = sizeof (struct ieee80211_qosframe);
1503 		cap = &ic->ic_wme.wme_chanParams;
1504 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1505 	} else
1506 		hdrlen = sizeof (struct ieee80211_frame);
1507 
1508 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1509 		k = ieee80211_crypto_encap(ic, ni, m0);
1510 		if (k == NULL) {
1511 			m_freem(m0);
1512 			return ENOBUFS;
1513 		}
1514 
1515 		/* packet header may have moved, reset our local pointer */
1516 		wh = mtod(m0, struct ieee80211_frame *);
1517 	}
1518 
1519 	/* pickup a rate */
1520 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1521 		IEEE80211_FC0_TYPE_MGT) {
1522 		/* mgmt frames are sent at the lowest available bit-rate */
1523 		rate = ni->ni_rates.rs_rates[0];
1524 	} else {
1525 		if (ic->ic_fixed_rate != -1) {
1526 			rate = ic->ic_sup_rates[ic->ic_curmode].
1527 				rs_rates[ic->ic_fixed_rate];
1528 		} else
1529 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1530 	}
1531 	rate &= IEEE80211_RATE_VAL;
1532 
1533 
1534 #if NBPFILTER > 0
1535 	if (sc->sc_drvbpf != NULL) {
1536 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1537 
1538 		tap->wt_flags = 0;
1539 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1540 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1541 		tap->wt_rate = rate;
1542 		tap->wt_hwqueue = ac;
1543 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1544 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1545 
1546 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1547 	}
1548 #endif
1549 
1550 	cmd = &ring->cmd[ring->cur];
1551 	cmd->code = WPI_CMD_TX_DATA;
1552 	cmd->flags = 0;
1553 	cmd->qid = ring->qid;
1554 	cmd->idx = ring->cur;
1555 
1556 	tx = (struct wpi_cmd_data *)cmd->data;
1557 	tx->flags = 0;
1558 
1559 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1560 		tx->id = WPI_ID_BSS;
1561 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1562 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >
1563 		    ic->ic_rtsthreshold || (WPI_RATE_IS_OFDM(rate) &&
1564 		    (ic->ic_flags & IEEE80211_F_USEPROT)))
1565 			tx->flags |= htole32(WPI_TX_NEED_RTS |
1566 				WPI_TX_FULL_TXOP);
1567 	} else
1568 		tx->id = WPI_ID_BROADCAST;
1569 
1570 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1571 
1572 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1573 		IEEE80211_FC0_TYPE_MGT) {
1574 		/* tell h/w to set timestamp in probe responses */
1575 		if ((wh->i_fc[0] &
1576 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1577 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1578 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1579 
1580 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1581 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1582 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1583 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1584 			tx->timeout = htole16(3);
1585 		else
1586 			tx->timeout = htole16(2);
1587 	} else
1588 		tx->timeout = htole16(0);
1589 
1590 	tx->rate = wpi_plcp_signal(rate);
1591 
1592 	/* be very persistant at sending frames out */
1593 	tx->rts_ntries = 7;
1594 	tx->data_ntries = 15;
1595 
1596 	tx->ofdm_mask = 0xff;
1597 	tx->cck_mask = 0xf;
1598 	tx->lifetime = htole32(0xffffffff);
1599 
1600 	tx->len = htole16(m0->m_pkthdr.len);
1601 
1602 	/* save and trim IEEE802.11 header */
1603 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1604 	m_adj(m0, hdrlen);
1605 
1606 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1607 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1608 	if (error != 0 && error != EFBIG) {
1609 		aprint_error("%s: could not map mbuf (error %d)\n",
1610 			sc->sc_dev.dv_xname, error);
1611 		m_freem(m0);
1612 		return error;
1613 	}
1614 	if (error != 0) {
1615 		/* too many fragments, linearize */
1616 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1617 		if (mnew == NULL) {
1618 			m_freem(m0);
1619 			return ENOMEM;
1620 		}
1621 
1622 		M_COPY_PKTHDR(mnew, m0);
1623 		if (m0->m_pkthdr.len > MHLEN) {
1624 			MCLGET(mnew, M_DONTWAIT);
1625 			if (!(mnew->m_flags & M_EXT)) {
1626 				m_freem(m0);
1627 				m_freem(mnew);
1628 				return ENOMEM;
1629 			}
1630 		}
1631 
1632 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1633 		m_freem(m0);
1634 		mnew->m_len = mnew->m_pkthdr.len;
1635 		m0 = mnew;
1636 
1637 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1638 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1639 		if (error != 0) {
1640 			aprint_error("%s: could not map mbuf (error %d)\n",
1641 				sc->sc_dev.dv_xname, error);
1642 			m_freem(m0);
1643 			return error;
1644 		}
1645 	}
1646 
1647 	data->m = m0;
1648 	data->ni = ni;
1649 
1650 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1651 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1652 
1653 	/* first scatter/gather segment is used by the tx data command */
1654 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1655 		(1 + data->map->dm_nsegs) << 24);
1656 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1657 		ring->cur * sizeof (struct wpi_tx_cmd));
1658 	/*XXX The next line might be wrong. I don't use hdrlen*/
1659 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1660 
1661 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1662 		desc->segs[i].addr =
1663 			htole32(data->map->dm_segs[i - 1].ds_addr);
1664 		desc->segs[i].len  =
1665 			htole32(data->map->dm_segs[i - 1].ds_len);
1666 	}
1667 
1668 	ring->queued++;
1669 
1670 	/* kick ring */
1671 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1672 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1673 
1674 	return 0;
1675 }
1676 
1677 static void
1678 wpi_start(struct ifnet *ifp)
1679 {
1680 	struct wpi_softc *sc = ifp->if_softc;
1681 	struct ieee80211com *ic = &sc->sc_ic;
1682 	struct ieee80211_node *ni;
1683 	struct ether_header *eh;
1684 	struct mbuf *m0;
1685 	int ac;
1686 
1687 	/*
1688 	 * net80211 may still try to send management frames even if the
1689 	 * IFF_RUNNING flag is not set...
1690 	 */
1691 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1692 		return;
1693 
1694 	for (;;) {
1695 		IF_POLL(&ic->ic_mgtq, m0);
1696 		if (m0 != NULL) {
1697 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1698 
1699 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1700 			m0->m_pkthdr.rcvif = NULL;
1701 
1702 			/* management frames go into ring 0 */
1703 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1704 				ifp->if_oerrors++;
1705 				continue;
1706 			}
1707 #if NBPFILTER > 0
1708 			if (ic->ic_rawbpf != NULL)
1709 				bpf_mtap(ic->ic_rawbpf, m0);
1710 #endif
1711 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1712 				ifp->if_oerrors++;
1713 				break;
1714 			}
1715 		} else {
1716 			if (ic->ic_state != IEEE80211_S_RUN)
1717 				break;
1718 			IF_DEQUEUE(&ifp->if_snd, m0);
1719 			if (m0 == NULL)
1720 				break;
1721 
1722 			if (m0->m_len < sizeof (*eh) &&
1723 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1724 				ifp->if_oerrors++;
1725 				continue;
1726 			}
1727 			eh = mtod(m0, struct ether_header *);
1728 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1729 			if (ni == NULL) {
1730 				m_freem(m0);
1731 				ifp->if_oerrors++;
1732 				continue;
1733 			}
1734 
1735 			/* classify mbuf so we can find which tx ring to use */
1736 			if (ieee80211_classify(ic, m0, ni) != 0) {
1737 				m_freem(m0);
1738 				ieee80211_free_node(ni);
1739 				ifp->if_oerrors++;
1740 				continue;
1741 			}
1742 
1743 			/* no QoS encapsulation for EAPOL frames */
1744 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1745 			    M_WME_GETAC(m0) : WME_AC_BE;
1746 
1747 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1748 				/* there is no place left in this ring */
1749 				IF_PREPEND(&ifp->if_snd, m0);
1750 				ifp->if_flags |= IFF_OACTIVE;
1751 				break;
1752 			}
1753 #if NBPFILTER > 0
1754 			if (ifp->if_bpf != NULL)
1755 				bpf_mtap(ifp->if_bpf, m0);
1756 #endif
1757 			m0 = ieee80211_encap(ic, m0, ni);
1758 			if (m0 == NULL) {
1759 				ieee80211_free_node(ni);
1760 				ifp->if_oerrors++;
1761 				continue;
1762 			}
1763 #if NBPFILTER > 0
1764 			if (ic->ic_rawbpf != NULL)
1765 				bpf_mtap(ic->ic_rawbpf, m0);
1766 #endif
1767 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1768 				ieee80211_free_node(ni);
1769 				ifp->if_oerrors++;
1770 				break;
1771 			}
1772 		}
1773 
1774 		sc->sc_tx_timer = 5;
1775 		ifp->if_timer = 1;
1776 	}
1777 }
1778 
1779 static void
1780 wpi_watchdog(struct ifnet *ifp)
1781 {
1782 	struct wpi_softc *sc = ifp->if_softc;
1783 
1784 	ifp->if_timer = 0;
1785 
1786 	if (sc->sc_tx_timer > 0) {
1787 		if (--sc->sc_tx_timer == 0) {
1788 			aprint_error("%s: device timeout\n",
1789 				sc->sc_dev.dv_xname);
1790 			ifp->if_oerrors++;
1791 			ifp->if_flags &= ~IFF_UP;
1792 			wpi_stop(ifp, 1);
1793 			return;
1794 		}
1795 		ifp->if_timer = 1;
1796 	}
1797 
1798 	ieee80211_watchdog(&sc->sc_ic);
1799 }
1800 
1801 static int
1802 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1803 {
1804 #define IS_RUNNING(ifp) \
1805 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1806 
1807 	struct wpi_softc *sc = ifp->if_softc;
1808 	struct ieee80211com *ic = &sc->sc_ic;
1809 	struct ifreq *ifr = (struct ifreq *)data;
1810 	int s, error = 0;
1811 
1812 	s = splnet();
1813 
1814 	switch (cmd) {
1815 	case SIOCSIFFLAGS:
1816 		if (ifp->if_flags & IFF_UP) {
1817 			if (!(ifp->if_flags & IFF_RUNNING))
1818 				wpi_init(ifp);
1819 		} else {
1820 			if (ifp->if_flags & IFF_RUNNING)
1821 				wpi_stop(ifp, 1);
1822 		}
1823 		break;
1824 
1825 	case SIOCADDMULTI:
1826 	case SIOCDELMULTI:
1827 		error = (cmd == SIOCADDMULTI) ?
1828 			ether_addmulti(ifr, &sc->sc_ec) :
1829 			ether_delmulti(ifr, &sc->sc_ec);
1830 		if (error == ENETRESET) {
1831 			/* setup multicast filter, etc */
1832 			error = 0;
1833 		}
1834 		break;
1835 
1836 	default:
1837 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1838 	}
1839 
1840 	if (error == ENETRESET) {
1841 		if (IS_RUNNING(ifp) &&
1842 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1843 			wpi_init(ifp);
1844 		error = 0;
1845 	}
1846 
1847 	splx(s);
1848 	return error;
1849 
1850 #undef IS_RUNNING
1851 }
1852 
1853 /*
1854  * Extract various information from EEPROM.
1855  */
1856 static void
1857 wpi_read_eeprom(struct wpi_softc *sc)
1858 {
1859 	struct ieee80211com *ic = &sc->sc_ic;
1860 	uint16_t val;
1861 	int i;
1862 
1863 	/* read MAC address */
1864 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
1865 	ic->ic_myaddr[0] = val & 0xff;
1866 	ic->ic_myaddr[1] = val >> 8;
1867 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
1868 	ic->ic_myaddr[2] = val & 0xff;
1869 	ic->ic_myaddr[3] = val >> 8;
1870 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
1871 	ic->ic_myaddr[4] = val & 0xff;
1872 	ic->ic_myaddr[5] = val >> 8;
1873 
1874 	/* read power settings for 2.4GHz channels */
1875 	for (i = 0; i < 14; i++) {
1876 		sc->pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
1877 		sc->pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
1878 		DPRINTFN(2, ("channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
1879 			sc->pwr1[i], sc->pwr2[i]));
1880 	}
1881 }
1882 
1883 /*
1884  * Send a command to the firmware.
1885  */
1886 static int
1887 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
1888 {
1889 	struct wpi_tx_ring *ring = &sc->cmdq;
1890 	struct wpi_tx_desc *desc;
1891 	struct wpi_tx_cmd *cmd;
1892 
1893 	KASSERT(size <= sizeof cmd->data);
1894 
1895 	desc = &ring->desc[ring->cur];
1896 	cmd = &ring->cmd[ring->cur];
1897 
1898 	cmd->code = code;
1899 	cmd->flags = 0;
1900 	cmd->qid = ring->qid;
1901 	cmd->idx = ring->cur;
1902 	memcpy(cmd->data, buf, size);
1903 
1904 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
1905 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1906 		ring->cur * sizeof (struct wpi_tx_cmd));
1907 	desc->segs[0].len  = htole32(4 + size);
1908 
1909 	/* kick cmd ring */
1910 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
1911 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1912 
1913 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
1914 }
1915 
1916 static int
1917 wpi_wme_update(struct ieee80211com *ic)
1918 {
1919 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
1920 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1921 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1922 	const struct wmeParams *wmep;
1923 	struct wpi_wme_setup wme;
1924 	int ac;
1925 
1926 	/* don't override default WME values if WME is not actually enabled */
1927 	if (!(ic->ic_flags & IEEE80211_F_WME))
1928 		return 0;
1929 
1930 	wme.flags = 0;
1931 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1932 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1933 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
1934 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
1935 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
1936 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
1937 
1938 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
1939 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
1940 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
1941 	}
1942 
1943 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
1944 #undef WPI_USEC
1945 #undef WPI_EXP2
1946 }
1947 
1948 /*
1949  * Configure h/w multi-rate retries.
1950  */
1951 static int
1952 wpi_mrr_setup(struct wpi_softc *sc)
1953 {
1954 	struct ieee80211com *ic = &sc->sc_ic;
1955 	struct wpi_mrr_setup mrr;
1956 	int i, error;
1957 
1958 	/* CCK rates (not used with 802.11a) */
1959 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
1960 		mrr.rates[i].flags = 0;
1961 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
1962 		/* fallback to the immediate lower CCK rate (if any) */
1963 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
1964 		/* try one time at this rate before falling back to "next" */
1965 		mrr.rates[i].ntries = 1;
1966 	}
1967 
1968 	/* OFDM rates (not used with 802.11b) */
1969 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
1970 		mrr.rates[i].flags = 0;
1971 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
1972 		/* fallback to the immediate lower rate (if any) */
1973 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
1974 		mrr.rates[i].next = (i == WPI_OFDM6) ?
1975 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
1976 			WPI_OFDM6 : WPI_CCK2) :
1977 		    i - 1;
1978 		/* try one time at this rate before falling back to "next" */
1979 		mrr.rates[i].ntries = 1;
1980 	}
1981 
1982 	/* setup MRR for control frames */
1983 	mrr.which = htole32(WPI_MRR_CTL);
1984 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
1985 	if (error != 0) {
1986 		aprint_error("%s: could not setup MRR for control frames\n",
1987 			sc->sc_dev.dv_xname);
1988 		return error;
1989 	}
1990 
1991 	/* setup MRR for data frames */
1992 	mrr.which = htole32(WPI_MRR_DATA);
1993 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
1994 	if (error != 0) {
1995 		aprint_error("%s: could not setup MRR for data frames\n",
1996 			sc->sc_dev.dv_xname);
1997 		return error;
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 static void
2004 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2005 {
2006 	struct wpi_cmd_led led;
2007 
2008 	led.which = which;
2009 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2010 	led.off = off;
2011 	led.on = on;
2012 
2013 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2014 }
2015 
2016 static void
2017 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2018 {
2019 	struct wpi_cmd_tsf tsf;
2020 	uint64_t val, mod;
2021 
2022 	memset(&tsf, 0, sizeof tsf);
2023 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2024 	tsf.bintval = htole16(ni->ni_intval);
2025 	tsf.lintval = htole16(10);
2026 
2027 	/* compute remaining time until next beacon */
2028 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2029 	mod = le64toh(tsf.tstamp) % val;
2030 	tsf.binitval = htole32((uint32_t)(val - mod));
2031 
2032 	DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n",
2033 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2034 
2035 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2036 		aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2037 }
2038 
2039 /*
2040  * Build a beacon frame that the firmware will broadcast periodically in
2041  * IBSS or HostAP modes.
2042  */
2043 static int
2044 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2045 {
2046 	struct ieee80211com *ic = &sc->sc_ic;
2047 	struct wpi_tx_ring *ring = &sc->cmdq;
2048 	struct wpi_tx_desc *desc;
2049 	struct wpi_tx_data *data;
2050 	struct wpi_tx_cmd *cmd;
2051 	struct wpi_cmd_beacon *bcn;
2052 	struct ieee80211_beacon_offsets bo;
2053 	struct mbuf *m0;
2054 	int error;
2055 
2056 	desc = &ring->desc[ring->cur];
2057 	data = &ring->data[ring->cur];
2058 
2059 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2060 	if (m0 == NULL) {
2061 		aprint_error("%s: could not allocate beacon frame\n",
2062 			sc->sc_dev.dv_xname);
2063 		return ENOMEM;
2064 	}
2065 
2066 	cmd = &ring->cmd[ring->cur];
2067 	cmd->code = WPI_CMD_SET_BEACON;
2068 	cmd->flags = 0;
2069 	cmd->qid = ring->qid;
2070 	cmd->idx = ring->cur;
2071 
2072 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2073 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2074 	bcn->id = WPI_ID_BROADCAST;
2075 	bcn->ofdm_mask = 0xff;
2076 	bcn->cck_mask = 0x0f;
2077 	bcn->lifetime = htole32(0xffffffff);
2078 	bcn->len = htole16(m0->m_pkthdr.len);
2079 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2080 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2081 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2082 
2083 	/* save and trim IEEE802.11 header */
2084 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2085 	m_adj(m0, sizeof (struct ieee80211_frame));
2086 
2087 	/* assume beacon frame is contiguous */
2088 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2089 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2090 	if (error) {
2091 		aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2092 		m_freem(m0);
2093 		return error;
2094 	}
2095 
2096 	data->m = m0;
2097 
2098 	/* first scatter/gather segment is used by the beacon command */
2099 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2100 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2101 		ring->cur * sizeof (struct wpi_tx_cmd));
2102 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2103 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2104 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2105 
2106 	/* kick cmd ring */
2107 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2108 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2109 
2110 	return 0;
2111 }
2112 
2113 static int
2114 wpi_auth(struct wpi_softc *sc)
2115 {
2116 	struct ieee80211com *ic = &sc->sc_ic;
2117 	struct ieee80211_node *ni = ic->ic_bss;
2118 	struct wpi_node node;
2119 	int error;
2120 
2121 	/* update adapter's configuration */
2122 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2123 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2124 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2125 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2126 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2127 		    WPI_CONFIG_24GHZ);
2128 	}
2129 	switch (ic->ic_curmode) {
2130 	case IEEE80211_MODE_11A:
2131 		sc->config.cck_mask  = 0;
2132 		sc->config.ofdm_mask = 0x15;
2133 		break;
2134 	case IEEE80211_MODE_11B:
2135 		sc->config.cck_mask  = 0x03;
2136 		sc->config.ofdm_mask = 0;
2137 		break;
2138 	default:	/* assume 802.11b/g */
2139 		sc->config.cck_mask  = 0x0f;
2140 		sc->config.ofdm_mask = 0x15;
2141 	}
2142 
2143 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2144 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2145 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2146 		sizeof (struct wpi_config), 1);
2147 	if (error != 0) {
2148 		aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2149 		return error;
2150 	}
2151 
2152 	/* add default node */
2153 	memset(&node, 0, sizeof node);
2154 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2155 	node.id = WPI_ID_BSS;
2156 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2157 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2158 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2159 	if (error != 0) {
2160 		aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2161 		return error;
2162 	}
2163 
2164 	error = wpi_mrr_setup(sc);
2165 	if (error != 0) {
2166 		aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2167 		return error;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 /*
2174  * Send a scan request to the firmware.  Since this command is huge, we map it
2175  * into a mbuf instead of using the pre-allocated set of commands.
2176  */
2177 static int
2178 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2179 {
2180 	struct ieee80211com *ic = &sc->sc_ic;
2181 	struct wpi_tx_ring *ring = &sc->cmdq;
2182 	struct wpi_tx_desc *desc;
2183 	struct wpi_tx_data *data;
2184 	struct wpi_tx_cmd *cmd;
2185 	struct wpi_scan_hdr *hdr;
2186 	struct wpi_scan_chan *chan;
2187 	struct ieee80211_frame *wh;
2188 	struct ieee80211_rateset *rs;
2189 	struct ieee80211_channel *c;
2190 	enum ieee80211_phymode mode;
2191 	uint8_t *frm;
2192 	int nrates, pktlen, error;
2193 
2194 	desc = &ring->desc[ring->cur];
2195 	data = &ring->data[ring->cur];
2196 
2197 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2198 	if (data->m == NULL) {
2199 		aprint_error("%s: could not allocate mbuf for scan command\n",
2200 			sc->sc_dev.dv_xname);
2201 		return ENOMEM;
2202 	}
2203 
2204 	MCLGET(data->m, M_DONTWAIT);
2205 	if (!(data->m->m_flags & M_EXT)) {
2206 		m_freem(data->m);
2207 		data->m = NULL;
2208 		aprint_error("%s: could not allocate mbuf for scan command\n",
2209 			sc->sc_dev.dv_xname);
2210 		return ENOMEM;
2211 	}
2212 
2213 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2214 	cmd->code = WPI_CMD_SCAN;
2215 	cmd->flags = 0;
2216 	cmd->qid = ring->qid;
2217 	cmd->idx = ring->cur;
2218 
2219 	hdr = (struct wpi_scan_hdr *)cmd->data;
2220 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2221 	hdr->first = 1;
2222 	/*
2223 	 * Move to the next channel if no packets are received within 5 msecs
2224 	 * after sending the probe request (this helps to reduce the duration
2225 	 * of active scans).
2226 	 */
2227 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2228 	hdr->threshold = htole16(1);    /* min # of packets */
2229 
2230 	if (flags & IEEE80211_CHAN_A) {
2231 		hdr->band = htole16(WPI_SCAN_5GHZ);
2232 		/* send probe requests at 6Mbps */
2233 		hdr->rate = wpi_plcp_signal(12);
2234 	} else {
2235 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2236 		/* send probe requests at 1Mbps */
2237 		hdr->rate = wpi_plcp_signal(2);
2238 	}
2239 	hdr->id = WPI_ID_BROADCAST;
2240 	hdr->mask = htole32(0xffffffff);
2241 	hdr->magic1 = htole32(1 << 13);
2242 
2243 	hdr->esslen = ic->ic_des_esslen;
2244 	memcpy(hdr->essid, ic->ic_des_essid, ic->ic_des_esslen);
2245 
2246 	/*
2247 	 * Build a probe request frame.  Most of the following code is a
2248 	 * copy & paste of what is done in net80211.
2249 	 */
2250 	wh = (struct ieee80211_frame *)(hdr + 1);
2251 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2252 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2253 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2254 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2255 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2256 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2257 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2258 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2259 
2260 	frm = (uint8_t *)(wh + 1);
2261 
2262 	/* add essid IE */
2263 	*frm++ = IEEE80211_ELEMID_SSID;
2264 	*frm++ = ic->ic_des_esslen;
2265 	memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen);
2266 	frm += ic->ic_des_esslen;
2267 
2268 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2269 	rs = &ic->ic_sup_rates[mode];
2270 
2271 	/* add supported rates IE */
2272 	*frm++ = IEEE80211_ELEMID_RATES;
2273 	nrates = rs->rs_nrates;
2274 	if (nrates > IEEE80211_RATE_SIZE)
2275 		nrates = IEEE80211_RATE_SIZE;
2276 	*frm++ = nrates;
2277 	memcpy(frm, rs->rs_rates, nrates);
2278 	frm += nrates;
2279 
2280 	/* add supported xrates IE */
2281 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2282 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2283 		*frm++ = IEEE80211_ELEMID_XRATES;
2284 		*frm++ = nrates;
2285 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2286 		frm += nrates;
2287 	}
2288 
2289 	/* add optionnal IE (usually an RSN IE) */
2290 	if (ic->ic_opt_ie != NULL) {
2291 		memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2292 		frm += ic->ic_opt_ie_len;
2293 	}
2294 
2295 	/* setup length of probe request */
2296 	hdr->pbrlen = htole16(frm - (uint8_t *)wh);
2297 
2298 	chan = (struct wpi_scan_chan *)frm;
2299 	for (c  = &ic->ic_channels[1];
2300 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2301 		if ((c->ic_flags & flags) != flags)
2302 			continue;
2303 
2304 		chan->chan = ieee80211_chan2ieee(ic, c);
2305 		chan->flags = (c->ic_flags & IEEE80211_CHAN_PASSIVE) ?
2306 			0 : WPI_CHAN_ACTIVE;
2307 		chan->magic = htole16(0x62ab);
2308 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2309 			chan->active = htole16(10);
2310 			chan->passive = htole16(110);
2311 		} else {
2312 			chan->active = htole16(20);
2313 			chan->passive = htole16(120);
2314 		}
2315 		hdr->nchan++;
2316 		chan++;
2317 
2318 		frm += sizeof (struct wpi_scan_chan);
2319 	}
2320 
2321 	hdr->len = hdr->nchan * sizeof (struct wpi_scan_chan);
2322 	pktlen = frm - mtod(data->m, uint8_t *);
2323 
2324 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2325 		NULL, BUS_DMA_NOWAIT);
2326 	if (error) {
2327 		aprint_error("%s: could not map scan command\n",
2328 			sc->sc_dev.dv_xname);
2329 		m_freem(data->m);
2330 		data->m = NULL;
2331 		return error;
2332 	}
2333 
2334 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2335 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2336 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2337 
2338 	/* kick cmd ring */
2339 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2340 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2341 
2342 	return 0;	/* will be notified async. of failure/success */
2343 }
2344 
2345 static int
2346 wpi_config(struct wpi_softc *sc)
2347 {
2348 	struct ieee80211com *ic = &sc->sc_ic;
2349 	struct ifnet *ifp = ic->ic_ifp;
2350 	struct wpi_txpower txpower;
2351 	struct wpi_power power;
2352 	struct wpi_bluetooth bluetooth;
2353 	struct wpi_node node;
2354 	int error;
2355 
2356 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2357 	memset(&txpower, 0, sizeof txpower);
2358 	memcpy(txpower.pwr1, sc->pwr1, 14 * sizeof (uint16_t));
2359 	memcpy(txpower.pwr2, sc->pwr2, 14 * sizeof (uint16_t));
2360 	error = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, 0);
2361 	if (error != 0) {
2362 		aprint_error("%s: could not set txpower\n",
2363 			sc->sc_dev.dv_xname);
2364 		return error;
2365 	}
2366 
2367 	/* set power mode */
2368 	memset(&power, 0, sizeof power);
2369 	power.flags = htole32(0x8);	/* XXX */
2370 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2371 	if (error != 0) {
2372 		aprint_error("%s: could not set power mode\n",
2373 			sc->sc_dev.dv_xname);
2374 		return error;
2375 	}
2376 
2377 	/* configure bluetooth coexistence */
2378 	memset(&bluetooth, 0, sizeof bluetooth);
2379 	bluetooth.flags = 3;
2380 	bluetooth.lead = 0xaa;
2381 	bluetooth.kill = 1;
2382 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2383 		0);
2384 	if (error != 0) {
2385 		aprint_error(
2386 			"%s: could not configure bluetooth coexistence\n",
2387 			sc->sc_dev.dv_xname);
2388 		return error;
2389 	}
2390 
2391 	/* configure adapter */
2392 	memset(&sc->config, 0, sizeof (struct wpi_config));
2393 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2394 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2395 	/*set default channel*/
2396 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2397 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2398 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2399 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2400 		    WPI_CONFIG_24GHZ);
2401 	}
2402 	sc->config.filter = 0;
2403 	switch (ic->ic_opmode) {
2404 	case IEEE80211_M_STA:
2405 		sc->config.mode = WPI_MODE_STA;
2406 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2407 		break;
2408 	case IEEE80211_M_IBSS:
2409 	case IEEE80211_M_AHDEMO:
2410 		sc->config.mode = WPI_MODE_IBSS;
2411 		break;
2412 	case IEEE80211_M_HOSTAP:
2413 		sc->config.mode = WPI_MODE_HOSTAP;
2414 		break;
2415 	case IEEE80211_M_MONITOR:
2416 		sc->config.mode = WPI_MODE_MONITOR;
2417 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2418 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2419 		break;
2420 	}
2421 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2422 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2423 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2424 		sizeof (struct wpi_config), 0);
2425 	if (error != 0) {
2426 		aprint_error("%s: configure command failed\n",
2427 			sc->sc_dev.dv_xname);
2428 		return error;
2429 	}
2430 
2431 	/* add broadcast node */
2432 	memset(&node, 0, sizeof node);
2433 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2434 	node.id = WPI_ID_BROADCAST;
2435 	node.rate = wpi_plcp_signal(2);
2436 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2437 	if (error != 0) {
2438 		aprint_error("%s: could not add broadcast node\n",
2439 			sc->sc_dev.dv_xname);
2440 		return error;
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 static void
2447 wpi_stop_master(struct wpi_softc *sc)
2448 {
2449 	uint32_t tmp;
2450 	int ntries;
2451 
2452 	tmp = WPI_READ(sc, WPI_RESET);
2453 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2454 
2455 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2456 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2457 		return;	/* already asleep */
2458 
2459 	for (ntries = 0; ntries < 100; ntries++) {
2460 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2461 			break;
2462 		DELAY(10);
2463 	}
2464 	if (ntries == 100) {
2465 		aprint_error("%s: timeout waiting for master\n",
2466 			sc->sc_dev.dv_xname);
2467 	}
2468 }
2469 
2470 static int
2471 wpi_power_up(struct wpi_softc *sc)
2472 {
2473 	uint32_t tmp;
2474 	int ntries;
2475 
2476 	wpi_mem_lock(sc);
2477 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2478 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2479 	wpi_mem_unlock(sc);
2480 
2481 	for (ntries = 0; ntries < 5000; ntries++) {
2482 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2483 			break;
2484 		DELAY(10);
2485 	}
2486 	if (ntries == 5000) {
2487 		aprint_error("%s: timeout waiting for NIC to power up\n",
2488 			sc->sc_dev.dv_xname);
2489 		return ETIMEDOUT;
2490 	}
2491 	return 0;
2492 }
2493 
2494 static int
2495 wpi_reset(struct wpi_softc *sc)
2496 {
2497 	uint32_t tmp;
2498 	int ntries;
2499 
2500 	/* clear any pending interrupts */
2501 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2502 
2503 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2504 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2505 
2506 	tmp = WPI_READ(sc, WPI_CHICKEN);
2507 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2508 
2509 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2510 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2511 
2512 	/* wait for clock stabilization */
2513 	for (ntries = 0; ntries < 1000; ntries++) {
2514 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2515 			break;
2516 		DELAY(10);
2517 	}
2518 	if (ntries == 1000) {
2519 		aprint_error("%s: timeout waiting for clock stabilization\n",
2520 			sc->sc_dev.dv_xname);
2521 		return ETIMEDOUT;
2522 	}
2523 
2524 	/* initialize EEPROM */
2525 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2526 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2527 		aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
2528 		return EIO;
2529 	}
2530 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2531 
2532 	return 0;
2533 }
2534 
2535 static void
2536 wpi_hw_config(struct wpi_softc *sc)
2537 {
2538 	uint16_t val;
2539 	uint32_t rev, hw;
2540 
2541 	/* voodoo from the Linux "driver".. */
2542 	hw = WPI_READ(sc, WPI_HWCONFIG);
2543 
2544 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2545 	rev = PCI_REVISION(rev);
2546 	if ((rev & 0xc0) == 0x40)
2547 		hw |= WPI_HW_ALM_MB;
2548 	else if (!(rev & 0x80))
2549 		hw |= WPI_HW_ALM_MM;
2550 
2551 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
2552 	if ((val & 0xff) == 0x80)
2553 		hw |= WPI_HW_SKU_MRC;
2554 
2555 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
2556 	hw &= ~WPI_HW_REV_D;
2557 	if ((val & 0xf0) == 0xd0)
2558 		hw |= WPI_HW_REV_D;
2559 
2560 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
2561 	if ((val & 0xff) > 1)
2562 		hw |= WPI_HW_TYPE_B;
2563 
2564 	DPRINTF(("setting h/w config %x\n", hw));
2565 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2566 }
2567 
2568 static int
2569 wpi_init(struct ifnet *ifp)
2570 {
2571 	struct wpi_softc *sc = ifp->if_softc;
2572 	struct ieee80211com *ic = &sc->sc_ic;
2573 	struct wpi_firmware_hdr hdr;
2574 	const char *boot, *text, *data;
2575 	firmware_handle_t fw;
2576 	u_char *dfw;
2577 	off_t size;
2578 	size_t wsize;
2579 	uint32_t tmp;
2580 	int qid, ntries, error;
2581 
2582 	(void)wpi_reset(sc);
2583 
2584 	wpi_mem_lock(sc);
2585 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2586 	DELAY(20);
2587 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2588 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2589 	wpi_mem_unlock(sc);
2590 
2591 	(void)wpi_power_up(sc);
2592 	wpi_hw_config(sc);
2593 
2594 	/* init Rx ring */
2595 	wpi_mem_lock(sc);
2596 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2597 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2598 	    offsetof(struct wpi_shared, next));
2599 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2600 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2601 	wpi_mem_unlock(sc);
2602 
2603 	/* init Tx rings */
2604 	wpi_mem_lock(sc);
2605 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
2606 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
2607 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
2608 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
2609 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
2610 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
2611 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
2612 
2613 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
2614 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
2615 
2616 	for (qid = 0; qid < 6; qid++) {
2617 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
2618 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
2619 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
2620 	}
2621 	wpi_mem_unlock(sc);
2622 
2623 	/* clear "radio off" and "disable command" bits (reversed logic) */
2624 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2625 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2626 
2627 	/* clear any pending interrupts */
2628 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2629 	/* enable interrupts */
2630 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2631 
2632 	if ((error = firmware_open("if_wpi", "ipw3945.ucode", &fw)) != 0) {
2633 		aprint_error("%s: could not read firmware file\n",
2634 			sc->sc_dev.dv_xname);
2635 		goto fail1;
2636 	}
2637 
2638 	size = firmware_get_size(fw);
2639 
2640 	if (size < sizeof (struct wpi_firmware_hdr)) {
2641 		aprint_error("%s: firmware file too short\n",
2642 			sc->sc_dev.dv_xname);
2643 		error = EINVAL;
2644 		goto fail2;
2645 	}
2646 
2647 	if ((error = firmware_read(fw, 0, &hdr,
2648 		sizeof (struct wpi_firmware_hdr))) != 0) {
2649 		aprint_error("%s: can't get firmware header\n",
2650 			sc->sc_dev.dv_xname);
2651 		goto fail2;
2652 	}
2653 
2654 	wsize = sizeof (struct wpi_firmware_hdr) + le32toh(hdr.textsz) +
2655 		le32toh(hdr.datasz) + le32toh(hdr.bootsz);
2656 
2657 	if (size < wsize) {
2658 		aprint_error("%s: fw file too short: should be %d bytes\n",
2659 			sc->sc_dev.dv_xname, wsize);
2660 		error = EINVAL;
2661 		goto fail2;
2662 	}
2663 
2664 	dfw = firmware_malloc(size);
2665 	if (dfw == NULL) {
2666 		aprint_error("%s: not enough memory to stock firmware\n",
2667 			sc->sc_dev.dv_xname);
2668 		error = ENOMEM;
2669 		goto fail2;
2670 	}
2671 
2672 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
2673 		aprint_error("%s: can't get firmware\n",
2674 			sc->sc_dev.dv_xname);
2675 		goto fail2;
2676 	}
2677 
2678 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
2679 	text = dfw + sizeof (struct wpi_firmware_hdr);
2680 	data = text + le32toh(hdr.textsz);
2681 	boot = data + le32toh(hdr.datasz);
2682 
2683 	/* load firmware boot code into NIC */
2684 	error = wpi_load_microcode(sc, boot, le32toh(hdr.bootsz));
2685 	if (error != 0) {
2686 		aprint_error("%s: could not load microcode\n", sc->sc_dev.dv_xname);
2687 		goto fail3;
2688 	}
2689 
2690 	/* load firmware .text segment into NIC */
2691 	error = wpi_load_firmware(sc, WPI_FW_TEXT, text, le32toh(hdr.textsz));
2692 	if (error != 0) {
2693 		aprint_error("%s: could not load firmware\n",
2694 			sc->sc_dev.dv_xname);
2695 		goto fail3;
2696 	}
2697 
2698 	/* load firmware .data segment into NIC */
2699 	error = wpi_load_firmware(sc, WPI_FW_DATA, data, le32toh(hdr.datasz));
2700 	if (error != 0) {
2701 		aprint_error("%s: could not load firmware\n",
2702 			sc->sc_dev.dv_xname);
2703 		goto fail3;
2704 	}
2705 
2706 	firmware_free(dfw, 0);
2707 	firmware_close(fw);
2708 
2709 	/* now press "execute" ;-) */
2710 	tmp = WPI_READ(sc, WPI_RESET);
2711 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
2712 	WPI_WRITE(sc, WPI_RESET, tmp);
2713 
2714 	/* ..and wait at most one second for adapter to initialize */
2715 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
2716 		/* this isn't what was supposed to happen.. */
2717 		aprint_error("%s: timeout waiting for adapter to initialize\n",
2718 			sc->sc_dev.dv_xname);
2719 		goto fail1;
2720 	}
2721 
2722 	/* wait for thermal sensors to calibrate */
2723 	for (ntries = 0; ntries < 1000; ntries++) {
2724 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
2725 			break;
2726 		DELAY(10);
2727 	}
2728 	if (ntries == 1000) {
2729 		aprint_error("%s: timeout waiting for thermal sensors calibration\n",
2730 			sc->sc_dev.dv_xname);
2731 		error = ETIMEDOUT;
2732 		goto fail1;
2733 	}
2734 	DPRINTF(("temperature %d\n", (int)WPI_READ(sc, WPI_TEMPERATURE)));
2735 
2736 	if ((error = wpi_config(sc)) != 0) {
2737 		aprint_error("%s: could not configure device\n",
2738 			sc->sc_dev.dv_xname);
2739 		goto fail1;
2740 	}
2741 
2742 	ifp->if_flags &= ~IFF_OACTIVE;
2743 	ifp->if_flags |= IFF_RUNNING;
2744 
2745 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2746 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2747 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2748 	}
2749 	else
2750 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2751 
2752 	return 0;
2753 
2754 fail3:	firmware_free(dfw, 0);
2755 fail2:	firmware_close(fw);
2756 fail1:	wpi_stop(ifp, 1);
2757 	return error;
2758 }
2759 
2760 
2761 static void
2762 wpi_stop(struct ifnet *ifp, int disable __unused)
2763 {
2764 	struct wpi_softc *sc = ifp->if_softc;
2765 	struct ieee80211com *ic = &sc->sc_ic;
2766 	uint32_t tmp;
2767 	int ac;
2768 
2769 	ifp->if_timer = sc->sc_tx_timer = 0;
2770 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2771 
2772 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2773 
2774 	/* disable interrupts */
2775 	WPI_WRITE(sc, WPI_MASK, 0);
2776 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
2777 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
2778 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
2779 
2780 	wpi_mem_lock(sc);
2781 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
2782 	wpi_mem_unlock(sc);
2783 
2784 	/* reset all Tx rings */
2785 	for (ac = 0; ac < 4; ac++)
2786 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
2787 	wpi_reset_tx_ring(sc, &sc->cmdq);
2788 	wpi_reset_tx_ring(sc, &sc->svcq);
2789 
2790 	/* reset Rx ring */
2791 	wpi_reset_rx_ring(sc, &sc->rxq);
2792 
2793 	wpi_mem_lock(sc);
2794 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
2795 	wpi_mem_unlock(sc);
2796 
2797 	DELAY(5);
2798 
2799 	wpi_stop_master(sc);
2800 
2801 	tmp = WPI_READ(sc, WPI_RESET);
2802 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
2803 }
2804 
2805 /*-
2806  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
2807  *	 "IEEE 802.11 Rate Adaptation: A Practical Approach"
2808  *	 Mathieu Lacage, Hossein Manshaei, Thierry Turletti
2809  *	 INRIA Sophia - Projet Planete
2810  *	 http://www-sop.inria.fr/rapports/sophia/RR-5208.html
2811  */
2812 #define is_success(amrr)	\
2813 	((amrr)->retrycnt < (amrr)->txcnt / 10)
2814 #define is_failure(amrr)	\
2815 	((amrr)->retrycnt > (amrr)->txcnt / 3)
2816 #define is_enough(amrr)		\
2817 	((amrr)->txcnt > 10)
2818 #define is_min_rate(ni)		\
2819 	((ni)->ni_txrate == 0)
2820 #define is_max_rate(ni)		\
2821 	((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1)
2822 #define increase_rate(ni)	\
2823 	((ni)->ni_txrate++)
2824 #define decrease_rate(ni)	\
2825 	((ni)->ni_txrate--)
2826 #define reset_cnt(amrr)		\
2827 	do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0)
2828 
2829 #define WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
2830 #define WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
2831 
2832 /* XXX should reset all nodes on S_INIT */
2833 static void
2834 wpi_amrr_init(struct wpi_amrr *amrr)
2835 {
2836 	struct ieee80211_node *ni = &amrr->ni;
2837 	int i;
2838 
2839 	amrr->success = 0;
2840 	amrr->recovery = 0;
2841 	amrr->txcnt = amrr->retrycnt = 0;
2842 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
2843 
2844 	/* set rate to some reasonable initial value */
2845 	ni = &amrr->ni;
2846 	for (i = ni->ni_rates.rs_nrates - 1;
2847 		 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2848 		 i--);
2849 
2850 	ni->ni_txrate = i;
2851 }
2852 
2853 static void
2854 wpi_amrr_timeout(void *arg)
2855 {
2856 	struct wpi_softc *sc = arg;
2857 	struct ieee80211com *ic = &sc->sc_ic;
2858 
2859 	if (ic->ic_opmode == IEEE80211_M_STA)
2860 		wpi_amrr_ratectl(NULL, ic->ic_bss);
2861 	else
2862 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
2863 
2864 	callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc);
2865 }
2866 
2867 /* ARGSUSED */
2868 static void
2869 wpi_amrr_ratectl(void *arg __unused, struct ieee80211_node *ni)
2870 {
2871 	struct wpi_amrr *amrr = (struct wpi_amrr *)ni;
2872 	int need_change = 0;
2873 
2874 	if (is_success(amrr) && is_enough(amrr)) {
2875 		amrr->success++;
2876 		if (amrr->success >= amrr->success_threshold &&
2877 			!is_max_rate(ni)) {
2878 			amrr->recovery = 1;
2879 			amrr->success = 0;
2880 			increase_rate(ni);
2881 			DPRINTFN(2, ("AMRR increasing rate %d (txcnt=%d "
2882 				"retrycnt=%d)\n", ni->ni_txrate, amrr->txcnt,
2883 				amrr->retrycnt));
2884 			need_change = 1;
2885 		} else {
2886 			amrr->recovery = 0;
2887 		}
2888 	} else if (is_failure(amrr)) {
2889 		amrr->success = 0;
2890 		if (!is_min_rate(ni)) {
2891 			if (amrr->recovery) {
2892 				amrr->success_threshold *= 2;
2893 				if (amrr->success_threshold >
2894 					WPI_AMRR_MAX_SUCCESS_THRESHOLD)
2895 					amrr->success_threshold =
2896 						WPI_AMRR_MAX_SUCCESS_THRESHOLD;
2897 			} else {
2898 				amrr->success_threshold =
2899 					WPI_AMRR_MIN_SUCCESS_THRESHOLD;
2900 			}
2901 			decrease_rate(ni);
2902 			DPRINTFN(2, ("AMRR decreasing rate %d (txcnt=%d "
2903 				"retrycnt=%d)\n", ni->ni_txrate, amrr->txcnt,
2904 				amrr->retrycnt));
2905 			need_change = 1;
2906 		}
2907 		amrr->recovery = 0;	/* paper is incorrect */
2908 	}
2909 
2910 	if (is_enough(amrr) || need_change)
2911 		reset_cnt(amrr);
2912 }
2913