xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*  $NetBSD: if_wpi.c,v 1.39 2008/07/02 03:42:55 cube Exp $    */
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.39 2008/07/02 03:42:55 cube Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include "bpfilter.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/mutex.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcidevs.h>
49 
50 #if NBPFILTER > 0
51 #include <net/bpf.h>
52 #endif
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_ether.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 
69 #include <dev/firmload.h>
70 
71 #include <dev/pci/if_wpireg.h>
72 #include <dev/pci/if_wpivar.h>
73 
74 #ifdef WPI_DEBUG
75 #define DPRINTF(x)	if (wpi_debug > 0) printf x
76 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
77 int wpi_debug = 1;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82 
83 /*
84  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
85  */
86 static const struct ieee80211_rateset wpi_rateset_11a =
87 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
88 
89 static const struct ieee80211_rateset wpi_rateset_11b =
90 	{ 4, { 2, 4, 11, 22 } };
91 
92 static const struct ieee80211_rateset wpi_rateset_11g =
93 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
94 
95 static int  wpi_match(device_t, struct cfdata *, void *);
96 static void wpi_attach(device_t, device_t, void *);
97 static int  wpi_detach(device_t , int);
98 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 	void **, bus_size_t, bus_size_t, int);
100 static void wpi_dma_contig_free(struct wpi_dma_info *);
101 static int  wpi_alloc_shared(struct wpi_softc *);
102 static void wpi_free_shared(struct wpi_softc *);
103 static int  wpi_alloc_fwmem(struct wpi_softc *);
104 static void wpi_free_fwmem(struct wpi_softc *);
105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 static int  wpi_alloc_rpool(struct wpi_softc *);
108 static void wpi_free_rpool(struct wpi_softc *);
109 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 	int);
114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 static void wpi_newassoc(struct ieee80211_node *, int);
118 static int  wpi_media_change(struct ifnet *);
119 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121 static void wpi_mem_lock(struct wpi_softc *);
122 static void wpi_mem_unlock(struct wpi_softc *);
123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126 								   const uint32_t *, int);
127 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
129 static int  wpi_load_firmware(struct wpi_softc *);
130 static void wpi_calib_timeout(void *);
131 static void wpi_iter_func(void *, struct ieee80211_node *);
132 static void wpi_power_calibration(struct wpi_softc *, int);
133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134 	struct wpi_rx_data *);
135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137 static void wpi_notif_intr(struct wpi_softc *);
138 static int  wpi_intr(void *);
139 static void wpi_read_eeprom(struct wpi_softc *);
140 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141 static void wpi_read_eeprom_group(struct wpi_softc *, int);
142 static uint8_t wpi_plcp_signal(int);
143 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
144 	struct ieee80211_node *, int);
145 static void wpi_start(struct ifnet *);
146 static void wpi_watchdog(struct ifnet *);
147 static int  wpi_ioctl(struct ifnet *, u_long, void *);
148 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149 static int  wpi_wme_update(struct ieee80211com *);
150 static int  wpi_mrr_setup(struct wpi_softc *);
151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153 static int  wpi_set_txpower(struct wpi_softc *,
154 			    struct ieee80211_channel *, int);
155 static int  wpi_get_power_index(struct wpi_softc *,
156 		struct wpi_power_group *, struct ieee80211_channel *, int);
157 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158 static int  wpi_auth(struct wpi_softc *);
159 static int  wpi_scan(struct wpi_softc *, uint16_t);
160 static int  wpi_config(struct wpi_softc *);
161 static void wpi_stop_master(struct wpi_softc *);
162 static int  wpi_power_up(struct wpi_softc *);
163 static int  wpi_reset(struct wpi_softc *);
164 static void wpi_hw_config(struct wpi_softc *);
165 static int  wpi_init(struct ifnet *);
166 static void wpi_stop(struct ifnet *, int);
167 static bool wpi_resume(device_t PMF_FN_PROTO);
168 static int	wpi_getrfkill(struct wpi_softc *);
169 static void wpi_sysctlattach(struct wpi_softc *);
170 
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 	wpi_detach, NULL);
173 
174 static int
175 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
176 {
177 	struct pci_attach_args *pa = aux;
178 
179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 		return 0;
181 
182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 		return 1;
185 
186 	return 0;
187 }
188 
189 /* Base Address Register */
190 #define WPI_PCI_BAR0	0x10
191 
192 static void
193 wpi_attach(device_t parent __unused, device_t self, void *aux)
194 {
195 	struct wpi_softc *sc = device_private(self);
196 	struct ieee80211com *ic = &sc->sc_ic;
197 	struct ifnet *ifp = &sc->sc_ec.ec_if;
198 	struct pci_attach_args *pa = aux;
199 	const char *intrstr;
200 	char devinfo[256];
201 	bus_space_tag_t memt;
202 	bus_space_handle_t memh;
203 	pci_intr_handle_t ih;
204 	pcireg_t data;
205 	int error, ac, revision;
206 
207 	sc->sc_dev = self;
208 	sc->sc_pct = pa->pa_pc;
209 	sc->sc_pcitag = pa->pa_tag;
210 
211 	callout_init(&sc->calib_to, 0);
212 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
213 
214 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
215 	revision = PCI_REVISION(pa->pa_class);
216 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
217 
218 	/* enable bus-mastering */
219 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
220 	data |= PCI_COMMAND_MASTER_ENABLE;
221 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
222 
223 	/* map the register window */
224 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
225 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
226 	if (error != 0) {
227 		aprint_error_dev(self, "could not map memory space\n");
228 		return;
229 	}
230 
231 	sc->sc_st = memt;
232 	sc->sc_sh = memh;
233 	sc->sc_dmat = pa->pa_dmat;
234 
235 	if (pci_intr_map(pa, &ih) != 0) {
236 		aprint_error_dev(self, "could not map interrupt\n");
237 		return;
238 	}
239 
240 	intrstr = pci_intr_string(sc->sc_pct, ih);
241 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
242 	if (sc->sc_ih == NULL) {
243 		aprint_error_dev(self, "could not establish interrupt");
244 		if (intrstr != NULL)
245 			aprint_error(" at %s", intrstr);
246 		aprint_error("\n");
247 		return;
248 	}
249 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
250 
251 	if (wpi_reset(sc) != 0) {
252 		aprint_error_dev(self, "could not reset adapter\n");
253 		return;
254 	}
255 
256  	/*
257 	 * Allocate DMA memory for firmware transfers.
258 	 */
259 	if ((error = wpi_alloc_fwmem(sc)) != 0)
260 		return;
261 
262 	/*
263 	 * Allocate shared page and Tx/Rx rings.
264 	 */
265 	if ((error = wpi_alloc_shared(sc)) != 0) {
266 		aprint_error_dev(self, "could not allocate shared area\n");
267 		goto fail1;
268 	}
269 
270 	if ((error = wpi_alloc_rpool(sc)) != 0) {
271 		aprint_error_dev(self, "could not allocate Rx buffers\n");
272 		goto fail2;
273 	}
274 
275 	for (ac = 0; ac < 4; ac++) {
276 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
277 		if (error != 0) {
278 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
279 			goto fail3;
280 		}
281 	}
282 
283 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
284 	if (error != 0) {
285 		aprint_error_dev(self, "could not allocate command ring\n");
286 		goto fail3;
287 	}
288 
289 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
290 		aprint_error_dev(self, "could not allocate Rx ring\n");
291 		goto fail4;
292 	}
293 
294 	ic->ic_ifp = ifp;
295 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
296 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
297 	ic->ic_state = IEEE80211_S_INIT;
298 
299 	/* set device capabilities */
300 	ic->ic_caps =
301 		IEEE80211_C_IBSS |       /* IBSS mode support */
302 		IEEE80211_C_WPA |        /* 802.11i */
303 		IEEE80211_C_MONITOR |    /* monitor mode supported */
304 		IEEE80211_C_TXPMGT |     /* tx power management */
305 		IEEE80211_C_SHSLOT |     /* short slot time supported */
306 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
307 		IEEE80211_C_WME;         /* 802.11e */
308 
309 	/* read supported channels and MAC address from EEPROM */
310 	wpi_read_eeprom(sc);
311 
312 	/* set supported .11a, .11b, .11g rates */
313 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
314 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
315 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
316 
317 	ic->ic_ibss_chan = &ic->ic_channels[0];
318 
319 	ifp->if_softc = sc;
320 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
321 	ifp->if_init = wpi_init;
322 	ifp->if_stop = wpi_stop;
323 	ifp->if_ioctl = wpi_ioctl;
324 	ifp->if_start = wpi_start;
325 	ifp->if_watchdog = wpi_watchdog;
326 	IFQ_SET_READY(&ifp->if_snd);
327 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
328 
329 	if_attach(ifp);
330 	ieee80211_ifattach(ic);
331 	/* override default methods */
332 	ic->ic_node_alloc = wpi_node_alloc;
333 	ic->ic_newassoc = wpi_newassoc;
334 	ic->ic_wme.wme_update = wpi_wme_update;
335 
336 	/* override state transition machine */
337 	sc->sc_newstate = ic->ic_newstate;
338 	ic->ic_newstate = wpi_newstate;
339 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
340 
341 	sc->amrr.amrr_min_success_threshold = 1;
342 	sc->amrr.amrr_max_success_threshold = 15;
343 
344 	wpi_sysctlattach(sc);
345 
346 	if (!pmf_device_register(self, NULL, wpi_resume))
347 		aprint_error_dev(self, "couldn't establish power handler\n");
348 	else
349 		pmf_class_network_register(self, ifp);
350 
351 #if NBPFILTER > 0
352 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
353 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
354 		&sc->sc_drvbpf);
355 
356 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
357 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
358 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
359 
360 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
361 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
362 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
363 #endif
364 
365 	ieee80211_announce(ic);
366 
367 	return;
368 
369 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
370 fail3:  while (--ac >= 0)
371 			wpi_free_tx_ring(sc, &sc->txq[ac]);
372 	wpi_free_rpool(sc);
373 fail2:	wpi_free_shared(sc);
374 fail1:	wpi_free_fwmem(sc);
375 }
376 
377 static int
378 wpi_detach(device_t self, int flags __unused)
379 {
380 	struct wpi_softc *sc = device_private(self);
381 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
382 	int ac;
383 
384 	wpi_stop(ifp, 1);
385 
386 #if NBPFILTER > 0
387 	if (ifp != NULL)
388 		bpfdetach(ifp);
389 #endif
390 	ieee80211_ifdetach(&sc->sc_ic);
391 	if (ifp != NULL)
392 		if_detach(ifp);
393 
394 	for (ac = 0; ac < 4; ac++)
395 		wpi_free_tx_ring(sc, &sc->txq[ac]);
396 	wpi_free_tx_ring(sc, &sc->cmdq);
397 	wpi_free_rx_ring(sc, &sc->rxq);
398 	wpi_free_rpool(sc);
399 	wpi_free_shared(sc);
400 
401 	if (sc->sc_ih != NULL) {
402 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
403 		sc->sc_ih = NULL;
404 	}
405 
406 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
407 
408 	return 0;
409 }
410 
411 static int
412 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
413 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
414 {
415 	int nsegs, error;
416 
417 	dma->tag = tag;
418 	dma->size = size;
419 
420 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
421 	if (error != 0)
422 		goto fail;
423 
424 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
425 	    flags);
426 	if (error != 0)
427 		goto fail;
428 
429 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
430 	if (error != 0)
431 		goto fail;
432 
433 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
434 	if (error != 0)
435 		goto fail;
436 
437 	memset(dma->vaddr, 0, size);
438 
439 	dma->paddr = dma->map->dm_segs[0].ds_addr;
440 	if (kvap != NULL)
441 		*kvap = dma->vaddr;
442 
443 	return 0;
444 
445 fail:   wpi_dma_contig_free(dma);
446 	return error;
447 }
448 
449 static void
450 wpi_dma_contig_free(struct wpi_dma_info *dma)
451 {
452 	if (dma->map != NULL) {
453 		if (dma->vaddr != NULL) {
454 			bus_dmamap_unload(dma->tag, dma->map);
455 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
456 			bus_dmamem_free(dma->tag, &dma->seg, 1);
457 			dma->vaddr = NULL;
458 		}
459 		bus_dmamap_destroy(dma->tag, dma->map);
460 		dma->map = NULL;
461 	}
462 }
463 
464 /*
465  * Allocate a shared page between host and NIC.
466  */
467 static int
468 wpi_alloc_shared(struct wpi_softc *sc)
469 {
470 	int error;
471 	/* must be aligned on a 4K-page boundary */
472 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
473 			(void **)&sc->shared, sizeof (struct wpi_shared),
474 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
475 	if (error != 0)
476 		aprint_error_dev(sc->sc_dev,
477 				"could not allocate shared area DMA memory\n");
478 
479 	return error;
480 }
481 
482 static void
483 wpi_free_shared(struct wpi_softc *sc)
484 {
485 	wpi_dma_contig_free(&sc->shared_dma);
486 }
487 
488 /*
489  * Allocate DMA-safe memory for firmware transfer.
490  */
491 static int
492 wpi_alloc_fwmem(struct wpi_softc *sc)
493 {
494 	int error;
495 	/* allocate enough contiguous space to store text and data */
496 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
497 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
498 	    BUS_DMA_NOWAIT);
499 
500 	if (error != 0)
501 		aprint_error_dev(sc->sc_dev,
502 			"could not allocate firmware transfer area"
503 			"DMA memory\n");
504 	return error;
505 }
506 
507 static void
508 wpi_free_fwmem(struct wpi_softc *sc)
509 {
510 	wpi_dma_contig_free(&sc->fw_dma);
511 }
512 
513 
514 static struct wpi_rbuf *
515 wpi_alloc_rbuf(struct wpi_softc *sc)
516 {
517 	struct wpi_rbuf *rbuf;
518 
519 	mutex_enter(&sc->rxq.freelist_mtx);
520 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
521 	if (rbuf != NULL) {
522 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
523 		sc->rxq.nb_free_entries --;
524 	}
525 	mutex_exit(&sc->rxq.freelist_mtx);
526 
527 	return rbuf;
528 }
529 
530 /*
531  * This is called automatically by the network stack when the mbuf to which our
532  * Rx buffer is attached is freed.
533  */
534 static void
535 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
536 {
537 	struct wpi_rbuf *rbuf = arg;
538 	struct wpi_softc *sc = rbuf->sc;
539 
540 	/* put the buffer back in the free list */
541 
542 	mutex_enter(&sc->rxq.freelist_mtx);
543 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
544 	mutex_exit(&sc->rxq.freelist_mtx);
545 	/* No need to protect this with a mutex, see wpi_rx_intr */
546 	sc->rxq.nb_free_entries ++;
547 
548 	if (__predict_true(m != NULL))
549 		pool_cache_put(mb_cache, m);
550 }
551 
552 static int
553 wpi_alloc_rpool(struct wpi_softc *sc)
554 {
555 	struct wpi_rx_ring *ring = &sc->rxq;
556 	struct wpi_rbuf *rbuf;
557 	int i, error;
558 
559 	/* allocate a big chunk of DMA'able memory.. */
560 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
561 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
562 	if (error != 0) {
563 		aprint_normal_dev(sc->sc_dev,
564 						  "could not allocate Rx buffers DMA memory\n");
565 		return error;
566 	}
567 
568 	/* ..and split it into 3KB chunks */
569 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
570 	SLIST_INIT(&ring->freelist);
571 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
572 		rbuf = &ring->rbuf[i];
573 		rbuf->sc = sc;	/* backpointer for callbacks */
574 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
575 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
576 
577 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
578 	}
579 
580 	ring->nb_free_entries = WPI_RBUF_COUNT;
581 	return 0;
582 }
583 
584 static void
585 wpi_free_rpool(struct wpi_softc *sc)
586 {
587 	wpi_dma_contig_free(&sc->rxq.buf_dma);
588 }
589 
590 static int
591 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
592 {
593 	struct wpi_rx_data *data;
594 	struct wpi_rbuf *rbuf;
595 	int i, error;
596 
597 	ring->cur = 0;
598 
599 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
600 		(void **)&ring->desc,
601 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
602 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
603 	if (error != 0) {
604 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
605 		goto fail;
606 	}
607 
608 	/*
609 	 * Setup Rx buffers.
610 	 */
611 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
612 		data = &ring->data[i];
613 
614 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
615 		if (data->m == NULL) {
616 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
617 			error = ENOMEM;
618 			goto fail;
619 		}
620 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
621 			m_freem(data->m);
622 			data->m = NULL;
623 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
624 			error = ENOMEM;
625 			goto fail;
626 		}
627 		/* attach Rx buffer to mbuf */
628 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
629 		    rbuf);
630 		data->m->m_flags |= M_EXT_RW;
631 
632 		ring->desc[i] = htole32(rbuf->paddr);
633 	}
634 
635 	return 0;
636 
637 fail:	wpi_free_rx_ring(sc, ring);
638 	return error;
639 }
640 
641 static void
642 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
643 {
644 	int ntries;
645 
646 	wpi_mem_lock(sc);
647 
648 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
649 	for (ntries = 0; ntries < 100; ntries++) {
650 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
651 			break;
652 		DELAY(10);
653 	}
654 #ifdef WPI_DEBUG
655 	if (ntries == 100 && wpi_debug > 0)
656 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
657 #endif
658 	wpi_mem_unlock(sc);
659 
660 	ring->cur = 0;
661 }
662 
663 static void
664 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
665 {
666 	int i;
667 
668 	wpi_dma_contig_free(&ring->desc_dma);
669 
670 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
671 		if (ring->data[i].m != NULL)
672 			m_freem(ring->data[i].m);
673 	}
674 }
675 
676 static int
677 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
678 	int qid)
679 {
680 	struct wpi_tx_data *data;
681 	int i, error;
682 
683 	ring->qid = qid;
684 	ring->count = count;
685 	ring->queued = 0;
686 	ring->cur = 0;
687 
688 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
689 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
690 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
691 	if (error != 0) {
692 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
693 		goto fail;
694 	}
695 
696 	/* update shared page with ring's base address */
697 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
698 
699 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
700 		(void **)&ring->cmd,
701 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
702 	if (error != 0) {
703 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
704 		goto fail;
705 	}
706 
707 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
708 		M_NOWAIT);
709 	if (ring->data == NULL) {
710 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
711 		goto fail;
712 	}
713 
714 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
715 
716 	for (i = 0; i < count; i++) {
717 		data = &ring->data[i];
718 
719 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
720 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
721 			&data->map);
722 		if (error != 0) {
723 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
724 			goto fail;
725 		}
726 	}
727 
728 	return 0;
729 
730 fail:	wpi_free_tx_ring(sc, ring);
731 	return error;
732 }
733 
734 static void
735 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
736 {
737 	struct wpi_tx_data *data;
738 	int i, ntries;
739 
740 	wpi_mem_lock(sc);
741 
742 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
743 	for (ntries = 0; ntries < 100; ntries++) {
744 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
745 			break;
746 		DELAY(10);
747 	}
748 #ifdef WPI_DEBUG
749 	if (ntries == 100 && wpi_debug > 0) {
750 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
751 									   ring->qid);
752 	}
753 #endif
754 	wpi_mem_unlock(sc);
755 
756 	for (i = 0; i < ring->count; i++) {
757 		data = &ring->data[i];
758 
759 		if (data->m != NULL) {
760 			bus_dmamap_unload(sc->sc_dmat, data->map);
761 			m_freem(data->m);
762 			data->m = NULL;
763 		}
764 	}
765 
766 	ring->queued = 0;
767 	ring->cur = 0;
768 }
769 
770 static void
771 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
772 {
773 	struct wpi_tx_data *data;
774 	int i;
775 
776 	wpi_dma_contig_free(&ring->desc_dma);
777 	wpi_dma_contig_free(&ring->cmd_dma);
778 
779 	if (ring->data != NULL) {
780 		for (i = 0; i < ring->count; i++) {
781 			data = &ring->data[i];
782 
783 			if (data->m != NULL) {
784 				bus_dmamap_unload(sc->sc_dmat, data->map);
785 				m_freem(data->m);
786 			}
787 		}
788 		free(ring->data, M_DEVBUF);
789 	}
790 }
791 
792 /*ARGUSED*/
793 static struct ieee80211_node *
794 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
795 {
796 	struct wpi_node *wn;
797 
798 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
799 
800 	return (struct ieee80211_node *)wn;
801 }
802 
803 static void
804 wpi_newassoc(struct ieee80211_node *ni, int isnew)
805 {
806 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
807 	int i;
808 
809 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
810 
811 	/* set rate to some reasonable initial value */
812 	for (i = ni->ni_rates.rs_nrates - 1;
813 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
814 	     i--);
815 	ni->ni_txrate = i;
816 }
817 
818 static int
819 wpi_media_change(struct ifnet *ifp)
820 {
821 	int error;
822 
823 	error = ieee80211_media_change(ifp);
824 	if (error != ENETRESET)
825 		return error;
826 
827 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
828 		wpi_init(ifp);
829 
830 	return 0;
831 }
832 
833 static int
834 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
835 {
836 	struct ifnet *ifp = ic->ic_ifp;
837 	struct wpi_softc *sc = ifp->if_softc;
838 	struct ieee80211_node *ni;
839 	int error;
840 
841 	callout_stop(&sc->calib_to);
842 
843 	switch (nstate) {
844 	case IEEE80211_S_SCAN:
845 
846 		if (sc->is_scanning)
847 			break;
848 
849 		sc->is_scanning = true;
850 		ieee80211_node_table_reset(&ic->ic_scan);
851 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
852 
853 		/* make the link LED blink while we're scanning */
854 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
855 
856 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
857 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
858 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
859 			return error;
860 		}
861 
862 		ic->ic_state = nstate;
863 		return 0;
864 
865 	case IEEE80211_S_ASSOC:
866 		if (ic->ic_state != IEEE80211_S_RUN)
867 			break;
868 		/* FALLTHROUGH */
869 	case IEEE80211_S_AUTH:
870 		sc->config.associd = 0;
871 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
872 		if ((error = wpi_auth(sc)) != 0) {
873 			aprint_error_dev(sc->sc_dev,
874 							"could not send authentication request\n");
875 			return error;
876 		}
877 		break;
878 
879 	case IEEE80211_S_RUN:
880 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
881 			/* link LED blinks while monitoring */
882 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
883 			break;
884 		}
885 
886 		ni = ic->ic_bss;
887 
888 		if (ic->ic_opmode != IEEE80211_M_STA) {
889 			(void) wpi_auth(sc);    /* XXX */
890 			wpi_setup_beacon(sc, ni);
891 		}
892 
893 		wpi_enable_tsf(sc, ni);
894 
895 		/* update adapter's configuration */
896 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
897 		/* short preamble/slot time are negotiated when associating */
898 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
899 			WPI_CONFIG_SHSLOT);
900 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
901 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
902 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
903 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
904 		sc->config.filter |= htole32(WPI_FILTER_BSS);
905 		if (ic->ic_opmode != IEEE80211_M_STA)
906 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
907 
908 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
909 
910 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
911 			sc->config.flags));
912 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
913 			sizeof (struct wpi_config), 1);
914 		if (error != 0) {
915 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
916 			return error;
917 		}
918 
919 		/* configuration has changed, set Tx power accordingly */
920 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
921 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
922 			return error;
923 		}
924 
925 		if (ic->ic_opmode == IEEE80211_M_STA) {
926 			/* fake a join to init the tx rate */
927 			wpi_newassoc(ni, 1);
928 		}
929 
930 		/* start periodic calibration timer */
931 		sc->calib_cnt = 0;
932 		callout_schedule(&sc->calib_to, hz/2);
933 
934 		/* link LED always on while associated */
935 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
936 		break;
937 
938 	case IEEE80211_S_INIT:
939 		sc->is_scanning = false;
940 		break;
941 	}
942 
943 	return sc->sc_newstate(ic, nstate, arg);
944 }
945 
946 /*
947  * XXX: Hack to set the current channel to the value advertised in beacons or
948  * probe responses. Only used during AP detection.
949  * XXX: Duplicated from if_iwi.c
950  */
951 static void
952 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
953 {
954 	struct ieee80211_frame *wh;
955 	uint8_t subtype;
956 	uint8_t *frm, *efrm;
957 
958 	wh = mtod(m, struct ieee80211_frame *);
959 
960 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
961 		return;
962 
963 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
964 
965 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
966 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
967 		return;
968 
969 	frm = (uint8_t *)(wh + 1);
970 	efrm = mtod(m, uint8_t *) + m->m_len;
971 
972 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
973 	while (frm < efrm) {
974 		if (*frm == IEEE80211_ELEMID_DSPARMS)
975 #if IEEE80211_CHAN_MAX < 255
976 		if (frm[2] <= IEEE80211_CHAN_MAX)
977 #endif
978 			ic->ic_curchan = &ic->ic_channels[frm[2]];
979 
980 		frm += frm[1] + 2;
981 	}
982 }
983 
984 /*
985  * Grab exclusive access to NIC memory.
986  */
987 static void
988 wpi_mem_lock(struct wpi_softc *sc)
989 {
990 	uint32_t tmp;
991 	int ntries;
992 
993 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
994 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
995 
996 	/* spin until we actually get the lock */
997 	for (ntries = 0; ntries < 1000; ntries++) {
998 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
999 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1000 			break;
1001 		DELAY(10);
1002 	}
1003 	if (ntries == 1000)
1004 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1005 }
1006 
1007 /*
1008  * Release lock on NIC memory.
1009  */
1010 static void
1011 wpi_mem_unlock(struct wpi_softc *sc)
1012 {
1013 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1014 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1015 }
1016 
1017 static uint32_t
1018 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1019 {
1020 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1021 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1022 }
1023 
1024 static void
1025 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1026 {
1027 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1028 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1029 }
1030 
1031 static void
1032 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1033 						const uint32_t *data, int wlen)
1034 {
1035 	for (; wlen > 0; wlen--, data++, addr += 4)
1036 		wpi_mem_write(sc, addr, *data);
1037 }
1038 
1039 
1040 /*
1041  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1042  * instead of using the traditional bit-bang method.
1043  */
1044 static int
1045 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1046 {
1047 	uint8_t *out = data;
1048 	uint32_t val;
1049 	int ntries;
1050 
1051 	wpi_mem_lock(sc);
1052 	for (; len > 0; len -= 2, addr++) {
1053 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1054 
1055 		for (ntries = 0; ntries < 10; ntries++) {
1056 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1057 			    WPI_EEPROM_READY)
1058 				break;
1059 			DELAY(5);
1060 		}
1061 		if (ntries == 10) {
1062 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1063 			return ETIMEDOUT;
1064 		}
1065 		*out++ = val >> 16;
1066 		if (len > 1)
1067 			*out++ = val >> 24;
1068 	}
1069 	wpi_mem_unlock(sc);
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  * The firmware boot code is small and is intended to be copied directly into
1076  * the NIC internal memory.
1077  */
1078 int
1079 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1080 {
1081 	int ntries;
1082 
1083 	size /= sizeof (uint32_t);
1084 
1085 	wpi_mem_lock(sc);
1086 
1087 	/* copy microcode image into NIC memory */
1088 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1089 	    (const uint32_t *)ucode, size);
1090 
1091 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1092 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1093 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1094 
1095 	/* run microcode */
1096 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1097 
1098 	/* wait for transfer to complete */
1099 	for (ntries = 0; ntries < 1000; ntries++) {
1100 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1101 			break;
1102 		DELAY(10);
1103 	}
1104 	if (ntries == 1000) {
1105 		wpi_mem_unlock(sc);
1106 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1107 		return ETIMEDOUT;
1108 	}
1109 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1110 
1111 	wpi_mem_unlock(sc);
1112 
1113 	return 0;
1114 }
1115 
1116 static int
1117 wpi_load_firmware(struct wpi_softc *sc)
1118 {
1119 	struct wpi_dma_info *dma = &sc->fw_dma;
1120 	struct wpi_firmware_hdr hdr;
1121 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1122 	const uint8_t *boot_text;
1123 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1124 	uint32_t boot_textsz;
1125 	firmware_handle_t fw;
1126 	u_char *dfw;
1127 	size_t size;
1128 	int error;
1129 
1130 	/* load firmware image from disk */
1131 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1132 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1133 		goto fail1;
1134 	}
1135 
1136 	size = firmware_get_size(fw);
1137 
1138 	/* extract firmware header information */
1139 	if (size < sizeof (struct wpi_firmware_hdr)) {
1140 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1141 		    			 size);
1142 		error = EINVAL;
1143 		goto fail2;
1144 	}
1145 
1146 	if ((error = firmware_read(fw, 0, &hdr,
1147 		sizeof (struct wpi_firmware_hdr))) != 0) {
1148 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1149 		goto fail2;
1150 	}
1151 
1152 	main_textsz = le32toh(hdr.main_textsz);
1153 	main_datasz = le32toh(hdr.main_datasz);
1154 	init_textsz = le32toh(hdr.init_textsz);
1155 	init_datasz = le32toh(hdr.init_datasz);
1156 	boot_textsz = le32toh(hdr.boot_textsz);
1157 
1158 	/* sanity-check firmware segments sizes */
1159 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1160 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1161 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1162 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1163 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1164 	    (boot_textsz & 3) != 0) {
1165 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1166 		error = EINVAL;
1167 		goto fail2;
1168 	}
1169 
1170 	/* check that all firmware segments are present */
1171 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1172 		main_datasz + init_textsz + init_datasz + boot_textsz) {
1173 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1174 		    			 size);
1175 		error = EINVAL;
1176 		goto fail2;
1177 	}
1178 
1179 	dfw = firmware_malloc(size);
1180 	if (dfw == NULL) {
1181 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1182 		error = ENOMEM;
1183 		goto fail2;
1184 	}
1185 
1186 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1187 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1188 		goto fail2;
1189 	}
1190 
1191 	/* get pointers to firmware segments */
1192 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
1193 	main_data = main_text + main_textsz;
1194 	init_text = main_data + main_datasz;
1195 	init_data = init_text + init_textsz;
1196 	boot_text = init_data + init_datasz;
1197 
1198 	/* copy initialization images into pre-allocated DMA-safe memory */
1199 	memcpy(dma->vaddr, init_data, init_datasz);
1200 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1201 
1202 	/* tell adapter where to find initialization images */
1203 	wpi_mem_lock(sc);
1204 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1205 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1206 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1207 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1208 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1209 	wpi_mem_unlock(sc);
1210 
1211 	/* load firmware boot code */
1212 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1213 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1214 		goto fail3;
1215 	}
1216 
1217 	/* now press "execute" ;-) */
1218 	WPI_WRITE(sc, WPI_RESET, 0);
1219 
1220 	/* ..and wait at most one second for adapter to initialize */
1221 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1222 		/* this isn't what was supposed to happen.. */
1223 		aprint_error_dev(sc->sc_dev,
1224 					"timeout waiting for adapter to initialize\n");
1225 	}
1226 
1227 	/* copy runtime images into pre-allocated DMA-safe memory */
1228 	memcpy(dma->vaddr, main_data, main_datasz);
1229 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1230 
1231 	/* tell adapter where to find runtime images */
1232 	wpi_mem_lock(sc);
1233 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1234 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1235 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1236 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1237 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1238 	wpi_mem_unlock(sc);
1239 
1240 	/* wait at most one second for second alive notification */
1241 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1242 		/* this isn't what was supposed to happen.. */
1243 		aprint_error_dev(sc->sc_dev,
1244 						"timeout waiting for adapter to initialize\n");
1245 	}
1246 
1247 
1248 fail3: 	firmware_free(dfw,size);
1249 fail2:	firmware_close(fw);
1250 fail1:	return error;
1251 }
1252 
1253 static void
1254 wpi_calib_timeout(void *arg)
1255 {
1256 	struct wpi_softc *sc = arg;
1257 	struct ieee80211com *ic = &sc->sc_ic;
1258 	int temp, s;
1259 
1260 	/* automatic rate control triggered every 500ms */
1261 	if (ic->ic_fixed_rate == -1) {
1262 		s = splnet();
1263 		if (ic->ic_opmode == IEEE80211_M_STA)
1264 			wpi_iter_func(sc, ic->ic_bss);
1265 		else
1266                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1267 		splx(s);
1268 	}
1269 
1270 	/* update sensor data */
1271 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1272 
1273 	/* automatic power calibration every 60s */
1274 	if (++sc->calib_cnt >= 120) {
1275 		wpi_power_calibration(sc, temp);
1276 		sc->calib_cnt = 0;
1277 	}
1278 
1279 	callout_schedule(&sc->calib_to, hz/2);
1280 }
1281 
1282 static void
1283 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1284 {
1285 	struct wpi_softc *sc = arg;
1286 	struct wpi_node *wn = (struct wpi_node *)ni;
1287 
1288 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1289 }
1290 
1291 /*
1292  * This function is called periodically (every 60 seconds) to adjust output
1293  * power to temperature changes.
1294  */
1295 void
1296 wpi_power_calibration(struct wpi_softc *sc, int temp)
1297 {
1298 	/* sanity-check read value */
1299 	if (temp < -260 || temp > 25) {
1300 		/* this can't be correct, ignore */
1301 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1302 		return;
1303 	}
1304 
1305 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1306 
1307 	/* adjust Tx power if need be */
1308 	if (abs(temp - sc->temp) <= 6)
1309 		return;
1310 
1311 	sc->temp = temp;
1312 
1313 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1314 		/* just warn, too bad for the automatic calibration... */
1315 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1316 	}
1317 }
1318 
1319 static void
1320 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1321 	struct wpi_rx_data *data)
1322 {
1323 	struct ieee80211com *ic = &sc->sc_ic;
1324 	struct ifnet *ifp = ic->ic_ifp;
1325 	struct wpi_rx_ring *ring = &sc->rxq;
1326 	struct wpi_rx_stat *stat;
1327 	struct wpi_rx_head *head;
1328 	struct wpi_rx_tail *tail;
1329 	struct wpi_rbuf *rbuf;
1330 	struct ieee80211_frame *wh;
1331 	struct ieee80211_node *ni;
1332 	struct mbuf *m, *mnew;
1333 	int data_off ;
1334 
1335 	stat = (struct wpi_rx_stat *)(desc + 1);
1336 
1337 	if (stat->len > WPI_STAT_MAXLEN) {
1338 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1339 		ifp->if_ierrors++;
1340 		return;
1341 	}
1342 
1343 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1344 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1345 
1346 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1347 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1348 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1349 		le64toh(tail->tstamp)));
1350 
1351 	/*
1352 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1353 	 * to radiotap in monitor mode).
1354 	 */
1355 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1356 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1357 		ifp->if_ierrors++;
1358 		return;
1359 	}
1360 
1361 	/* Compute where are the useful datas */
1362 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1363 
1364 	/*
1365 	 * If the number of free entry is too low
1366 	 * just dup the data->m socket and reuse the same rbuf entry
1367 	 * Note that thi test is not protected by a mutex because the
1368 	 * only path that causes nb_free_entries to decrease is through
1369 	 * this interrupt routine, which is not re-entrent.
1370 	 * What may not be obvious is that the safe path is if that test
1371 	 * evaluates as true, so nb_free_entries can grow any time.
1372 	 */
1373 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1374 
1375 		/* Prepare the mbuf for the m_dup */
1376 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1377 		data->m->m_data = (char*) data->m->m_data + data_off;
1378 
1379 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1380 
1381 		/* Restore the m_data pointer for future use */
1382 		data->m->m_data = (char*) data->m->m_data - data_off;
1383 
1384 		if (m == NULL) {
1385 			ifp->if_ierrors++;
1386 			return;
1387 		}
1388 	} else {
1389 
1390 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1391 		if (mnew == NULL) {
1392 			ifp->if_ierrors++;
1393 			return;
1394 		}
1395 
1396 		rbuf = wpi_alloc_rbuf(sc);
1397 		KASSERT(rbuf != NULL);
1398 
1399  		/* attach Rx buffer to mbuf */
1400 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1401 		 	rbuf);
1402 		mnew->m_flags |= M_EXT_RW;
1403 
1404 		m = data->m;
1405 		data->m = mnew;
1406 
1407 		/* update Rx descriptor */
1408 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1409 
1410 		m->m_data = (char*)m->m_data + data_off;
1411 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1412 	}
1413 
1414 	/* finalize mbuf */
1415 	m->m_pkthdr.rcvif = ifp;
1416 
1417 	if (ic->ic_state == IEEE80211_S_SCAN)
1418 		wpi_fix_channel(ic, m);
1419 
1420 #if NBPFILTER > 0
1421 	if (sc->sc_drvbpf != NULL) {
1422 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1423 
1424 		tap->wr_flags = 0;
1425 		tap->wr_chan_freq =
1426 			htole16(ic->ic_channels[head->chan].ic_freq);
1427 		tap->wr_chan_flags =
1428 			htole16(ic->ic_channels[head->chan].ic_flags);
1429 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1430 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1431 		tap->wr_tsft = tail->tstamp;
1432 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1433 		switch (head->rate) {
1434 		/* CCK rates */
1435 		case  10: tap->wr_rate =   2; break;
1436 		case  20: tap->wr_rate =   4; break;
1437 		case  55: tap->wr_rate =  11; break;
1438 		case 110: tap->wr_rate =  22; break;
1439 		/* OFDM rates */
1440 		case 0xd: tap->wr_rate =  12; break;
1441 		case 0xf: tap->wr_rate =  18; break;
1442 		case 0x5: tap->wr_rate =  24; break;
1443 		case 0x7: tap->wr_rate =  36; break;
1444 		case 0x9: tap->wr_rate =  48; break;
1445 		case 0xb: tap->wr_rate =  72; break;
1446 		case 0x1: tap->wr_rate =  96; break;
1447 		case 0x3: tap->wr_rate = 108; break;
1448 		/* unknown rate: should not happen */
1449 		default:  tap->wr_rate =   0;
1450 		}
1451 		if (le16toh(head->flags) & 0x4)
1452 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1453 
1454 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1455 	}
1456 #endif
1457 
1458 	/* grab a reference to the source node */
1459 	wh = mtod(m, struct ieee80211_frame *);
1460 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1461 
1462 	/* send the frame to the 802.11 layer */
1463 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1464 
1465 	/* release node reference */
1466 	ieee80211_free_node(ni);
1467 }
1468 
1469 static void
1470 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1471 {
1472 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1473 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1474 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1475 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1476 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1477 
1478 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1479 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1480 		stat->nkill, stat->rate, le32toh(stat->duration),
1481 		le32toh(stat->status)));
1482 
1483 	/*
1484 	 * Update rate control statistics for the node.
1485 	 * XXX we should not count mgmt frames since they're always sent at
1486 	 * the lowest available bit-rate.
1487 	 */
1488 	wn->amn.amn_txcnt++;
1489 	if (stat->ntries > 0) {
1490 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1491 		wn->amn.amn_retrycnt++;
1492 	}
1493 
1494 	if ((le32toh(stat->status) & 0xff) != 1)
1495 		ifp->if_oerrors++;
1496 	else
1497 		ifp->if_opackets++;
1498 
1499 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1500 	m_freem(txdata->m);
1501 	txdata->m = NULL;
1502 	ieee80211_free_node(txdata->ni);
1503 	txdata->ni = NULL;
1504 
1505 	ring->queued--;
1506 
1507 	sc->sc_tx_timer = 0;
1508 	ifp->if_flags &= ~IFF_OACTIVE;
1509 	wpi_start(ifp);
1510 }
1511 
1512 static void
1513 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1514 {
1515 	struct wpi_tx_ring *ring = &sc->cmdq;
1516 	struct wpi_tx_data *data;
1517 
1518 	if ((desc->qid & 7) != 4)
1519 		return;	/* not a command ack */
1520 
1521 	data = &ring->data[desc->idx];
1522 
1523 	/* if the command was mapped in a mbuf, free it */
1524 	if (data->m != NULL) {
1525 		bus_dmamap_unload(sc->sc_dmat, data->map);
1526 		m_freem(data->m);
1527 		data->m = NULL;
1528 	}
1529 
1530 	wakeup(&ring->cmd[desc->idx]);
1531 }
1532 
1533 static void
1534 wpi_notif_intr(struct wpi_softc *sc)
1535 {
1536 	struct ieee80211com *ic = &sc->sc_ic;
1537 	struct ifnet *ifp =  ic->ic_ifp;
1538 	struct wpi_rx_desc *desc;
1539 	struct wpi_rx_data *data;
1540 	uint32_t hw;
1541 
1542 	hw = le32toh(sc->shared->next);
1543 	while (sc->rxq.cur != hw) {
1544 		data = &sc->rxq.data[sc->rxq.cur];
1545 
1546 		desc = mtod(data->m, struct wpi_rx_desc *);
1547 
1548 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1549 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1550 			desc->type, le32toh(desc->len)));
1551 
1552 		if (!(desc->qid & 0x80))	/* reply to a command */
1553 			wpi_cmd_intr(sc, desc);
1554 
1555 		switch (desc->type) {
1556 		case WPI_RX_DONE:
1557 			/* a 802.11 frame was received */
1558 			wpi_rx_intr(sc, desc, data);
1559 			break;
1560 
1561 		case WPI_TX_DONE:
1562 			/* a 802.11 frame has been transmitted */
1563 			wpi_tx_intr(sc, desc);
1564 			break;
1565 
1566 		case WPI_UC_READY:
1567 		{
1568 			struct wpi_ucode_info *uc =
1569 				(struct wpi_ucode_info *)(desc + 1);
1570 
1571 			/* the microcontroller is ready */
1572 			DPRINTF(("microcode alive notification version %x "
1573 				"alive %x\n", le32toh(uc->version),
1574 				le32toh(uc->valid)));
1575 
1576 			if (le32toh(uc->valid) != 1) {
1577 				aprint_error_dev(sc->sc_dev,
1578 					"microcontroller initialization failed\n");
1579 			}
1580 			break;
1581 		}
1582 		case WPI_STATE_CHANGED:
1583 		{
1584 			uint32_t *status = (uint32_t *)(desc + 1);
1585 
1586 			/* enabled/disabled notification */
1587 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1588 
1589 			if (le32toh(*status) & 1) {
1590 				/* the radio button has to be pushed */
1591 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1592 				/* turn the interface down */
1593 				ifp->if_flags &= ~IFF_UP;
1594 				wpi_stop(ifp, 1);
1595 				return;	/* no further processing */
1596 			}
1597 			break;
1598 		}
1599 		case WPI_START_SCAN:
1600 		{
1601 			struct wpi_start_scan *scan =
1602 				(struct wpi_start_scan *)(desc + 1);
1603 
1604 			DPRINTFN(2, ("scanning channel %d status %x\n",
1605 				scan->chan, le32toh(scan->status)));
1606 
1607 			/* fix current channel */
1608 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1609 			break;
1610 		}
1611 		case WPI_STOP_SCAN:
1612 		{
1613 			struct wpi_stop_scan *scan =
1614 				(struct wpi_stop_scan *)(desc + 1);
1615 
1616 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1617 				scan->nchan, scan->status, scan->chan));
1618 
1619 			if (scan->status == 1 && scan->chan <= 14) {
1620 				/*
1621 				 * We just finished scanning 802.11g channels,
1622 				 * start scanning 802.11a ones.
1623 				 */
1624 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1625 					break;
1626 			}
1627 			sc->is_scanning = false;
1628 			ieee80211_end_scan(ic);
1629 			break;
1630 		}
1631 		}
1632 
1633 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1634 	}
1635 
1636 	/* tell the firmware what we have processed */
1637 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1638 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1639 }
1640 
1641 static int
1642 wpi_intr(void *arg)
1643 {
1644 	struct wpi_softc *sc = arg;
1645 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1646 	uint32_t r;
1647 
1648 	r = WPI_READ(sc, WPI_INTR);
1649 	if (r == 0 || r == 0xffffffff)
1650 		return 0;	/* not for us */
1651 
1652 	DPRINTFN(5, ("interrupt reg %x\n", r));
1653 
1654 	/* disable interrupts */
1655 	WPI_WRITE(sc, WPI_MASK, 0);
1656 	/* ack interrupts */
1657 	WPI_WRITE(sc, WPI_INTR, r);
1658 
1659 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1660 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1661 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1662 		wpi_stop(sc->sc_ic.ic_ifp, 1);
1663 		return 1;
1664 	}
1665 
1666 	if (r & WPI_RX_INTR)
1667 		wpi_notif_intr(sc);
1668 
1669 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1670 		wakeup(sc);
1671 
1672 	/* re-enable interrupts */
1673 	if (ifp->if_flags & IFF_UP)
1674 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1675 
1676 	return 1;
1677 }
1678 
1679 static uint8_t
1680 wpi_plcp_signal(int rate)
1681 {
1682 	switch (rate) {
1683 	/* CCK rates (returned values are device-dependent) */
1684 	case 2:		return 10;
1685 	case 4:		return 20;
1686 	case 11:	return 55;
1687 	case 22:	return 110;
1688 
1689 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1690 	/* R1-R4, (u)ral is R4-R1 */
1691 	case 12:	return 0xd;
1692 	case 18:	return 0xf;
1693 	case 24:	return 0x5;
1694 	case 36:	return 0x7;
1695 	case 48:	return 0x9;
1696 	case 72:	return 0xb;
1697 	case 96:	return 0x1;
1698 	case 108:	return 0x3;
1699 
1700 	/* unsupported rates (should not get there) */
1701 	default:	return 0;
1702 	}
1703 }
1704 
1705 /* quickly determine if a given rate is CCK or OFDM */
1706 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1707 
1708 static int
1709 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1710 	int ac)
1711 {
1712 	struct ieee80211com *ic = &sc->sc_ic;
1713 	struct wpi_tx_ring *ring = &sc->txq[ac];
1714 	struct wpi_tx_desc *desc;
1715 	struct wpi_tx_data *data;
1716 	struct wpi_tx_cmd *cmd;
1717 	struct wpi_cmd_data *tx;
1718 	struct ieee80211_frame *wh;
1719 	struct ieee80211_key *k;
1720 	const struct chanAccParams *cap;
1721 	struct mbuf *mnew;
1722 	int i, error, rate, hdrlen, noack = 0;
1723 
1724 	desc = &ring->desc[ring->cur];
1725 	data = &ring->data[ring->cur];
1726 
1727 	wh = mtod(m0, struct ieee80211_frame *);
1728 
1729 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1730 		cap = &ic->ic_wme.wme_chanParams;
1731 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1732 	}
1733 
1734 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1735 		k = ieee80211_crypto_encap(ic, ni, m0);
1736 		if (k == NULL) {
1737 			m_freem(m0);
1738 			return ENOBUFS;
1739 		}
1740 
1741 		/* packet header may have moved, reset our local pointer */
1742 		wh = mtod(m0, struct ieee80211_frame *);
1743 	}
1744 
1745 	hdrlen = ieee80211_anyhdrsize(wh);
1746 
1747 	/* pickup a rate */
1748 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1749 		IEEE80211_FC0_TYPE_MGT) {
1750 		/* mgmt frames are sent at the lowest available bit-rate */
1751 		rate = ni->ni_rates.rs_rates[0];
1752 	} else {
1753 		if (ic->ic_fixed_rate != -1) {
1754 			rate = ic->ic_sup_rates[ic->ic_curmode].
1755 				rs_rates[ic->ic_fixed_rate];
1756 		} else
1757 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1758 	}
1759 	rate &= IEEE80211_RATE_VAL;
1760 
1761 
1762 #if NBPFILTER > 0
1763 	if (sc->sc_drvbpf != NULL) {
1764 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1765 
1766 		tap->wt_flags = 0;
1767 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1768 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1769 		tap->wt_rate = rate;
1770 		tap->wt_hwqueue = ac;
1771 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1772 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1773 
1774 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1775 	}
1776 #endif
1777 
1778 	cmd = &ring->cmd[ring->cur];
1779 	cmd->code = WPI_CMD_TX_DATA;
1780 	cmd->flags = 0;
1781 	cmd->qid = ring->qid;
1782 	cmd->idx = ring->cur;
1783 
1784 	tx = (struct wpi_cmd_data *)cmd->data;
1785 	tx->flags = 0;
1786 
1787 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1788 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1789 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1790 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1791 
1792 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1793 
1794 	/* retrieve destination node's id */
1795 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1796 		WPI_ID_BSS;
1797 
1798 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1799 		IEEE80211_FC0_TYPE_MGT) {
1800 		/* tell h/w to set timestamp in probe responses */
1801 		if ((wh->i_fc[0] &
1802 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1803 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1804 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1805 
1806 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1807 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1808 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1809 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1810 			tx->timeout = htole16(3);
1811 		else
1812 			tx->timeout = htole16(2);
1813 	} else
1814 		tx->timeout = htole16(0);
1815 
1816 	tx->rate = wpi_plcp_signal(rate);
1817 
1818 	/* be very persistant at sending frames out */
1819 	tx->rts_ntries = 7;
1820 	tx->data_ntries = 15;
1821 
1822 	tx->ofdm_mask = 0xff;
1823 	tx->cck_mask = 0xf;
1824 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1825 
1826 	tx->len = htole16(m0->m_pkthdr.len);
1827 
1828 	/* save and trim IEEE802.11 header */
1829 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1830 	m_adj(m0, hdrlen);
1831 
1832 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1833 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1834 	if (error != 0 && error != EFBIG) {
1835 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1836 		m_freem(m0);
1837 		return error;
1838 	}
1839 	if (error != 0) {
1840 		/* too many fragments, linearize */
1841 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1842 		if (mnew == NULL) {
1843 			m_freem(m0);
1844 			return ENOMEM;
1845 		}
1846 
1847 		M_COPY_PKTHDR(mnew, m0);
1848 		if (m0->m_pkthdr.len > MHLEN) {
1849 			MCLGET(mnew, M_DONTWAIT);
1850 			if (!(mnew->m_flags & M_EXT)) {
1851 				m_freem(m0);
1852 				m_freem(mnew);
1853 				return ENOMEM;
1854 			}
1855 		}
1856 
1857 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1858 		m_freem(m0);
1859 		mnew->m_len = mnew->m_pkthdr.len;
1860 		m0 = mnew;
1861 
1862 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1863 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1864 		if (error != 0) {
1865 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1866 							 error);
1867 			m_freem(m0);
1868 			return error;
1869 		}
1870 	}
1871 
1872 	data->m = m0;
1873 	data->ni = ni;
1874 
1875 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1876 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1877 
1878 	/* first scatter/gather segment is used by the tx data command */
1879 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1880 		(1 + data->map->dm_nsegs) << 24);
1881 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1882 		ring->cur * sizeof (struct wpi_tx_cmd));
1883 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1884 						 ((hdrlen + 3) & ~3));
1885 
1886 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1887 		desc->segs[i].addr =
1888 			htole32(data->map->dm_segs[i - 1].ds_addr);
1889 		desc->segs[i].len  =
1890 			htole32(data->map->dm_segs[i - 1].ds_len);
1891 	}
1892 
1893 	ring->queued++;
1894 
1895 	/* kick ring */
1896 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1897 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1898 
1899 	return 0;
1900 }
1901 
1902 static void
1903 wpi_start(struct ifnet *ifp)
1904 {
1905 	struct wpi_softc *sc = ifp->if_softc;
1906 	struct ieee80211com *ic = &sc->sc_ic;
1907 	struct ieee80211_node *ni;
1908 	struct ether_header *eh;
1909 	struct mbuf *m0;
1910 	int ac;
1911 
1912 	/*
1913 	 * net80211 may still try to send management frames even if the
1914 	 * IFF_RUNNING flag is not set...
1915 	 */
1916 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1917 		return;
1918 
1919 	for (;;) {
1920 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1921 		if (m0 != NULL) {
1922 
1923 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1924 			m0->m_pkthdr.rcvif = NULL;
1925 
1926 			/* management frames go into ring 0 */
1927 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1928 				ifp->if_oerrors++;
1929 				continue;
1930 			}
1931 #if NBPFILTER > 0
1932 			if (ic->ic_rawbpf != NULL)
1933 				bpf_mtap(ic->ic_rawbpf, m0);
1934 #endif
1935 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1936 				ifp->if_oerrors++;
1937 				break;
1938 			}
1939 		} else {
1940 			if (ic->ic_state != IEEE80211_S_RUN)
1941 				break;
1942 			IFQ_POLL(&ifp->if_snd, m0);
1943 			if (m0 == NULL)
1944 				break;
1945 
1946 			if (m0->m_len < sizeof (*eh) &&
1947 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1948 				ifp->if_oerrors++;
1949 				continue;
1950 			}
1951 			eh = mtod(m0, struct ether_header *);
1952 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1953 			if (ni == NULL) {
1954 				m_freem(m0);
1955 				ifp->if_oerrors++;
1956 				continue;
1957 			}
1958 
1959 			/* classify mbuf so we can find which tx ring to use */
1960 			if (ieee80211_classify(ic, m0, ni) != 0) {
1961 				m_freem(m0);
1962 				ieee80211_free_node(ni);
1963 				ifp->if_oerrors++;
1964 				continue;
1965 			}
1966 
1967 			/* no QoS encapsulation for EAPOL frames */
1968 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1969 			    M_WME_GETAC(m0) : WME_AC_BE;
1970 
1971 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1972 				/* there is no place left in this ring */
1973 				ifp->if_flags |= IFF_OACTIVE;
1974 				break;
1975 			}
1976 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1977 #if NBPFILTER > 0
1978 			if (ifp->if_bpf != NULL)
1979 				bpf_mtap(ifp->if_bpf, m0);
1980 #endif
1981 			m0 = ieee80211_encap(ic, m0, ni);
1982 			if (m0 == NULL) {
1983 				ieee80211_free_node(ni);
1984 				ifp->if_oerrors++;
1985 				continue;
1986 			}
1987 #if NBPFILTER > 0
1988 			if (ic->ic_rawbpf != NULL)
1989 				bpf_mtap(ic->ic_rawbpf, m0);
1990 #endif
1991 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1992 				ieee80211_free_node(ni);
1993 				ifp->if_oerrors++;
1994 				break;
1995 			}
1996 		}
1997 
1998 		sc->sc_tx_timer = 5;
1999 		ifp->if_timer = 1;
2000 	}
2001 }
2002 
2003 static void
2004 wpi_watchdog(struct ifnet *ifp)
2005 {
2006 	struct wpi_softc *sc = ifp->if_softc;
2007 
2008 	ifp->if_timer = 0;
2009 
2010 	if (sc->sc_tx_timer > 0) {
2011 		if (--sc->sc_tx_timer == 0) {
2012 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2013 			ifp->if_oerrors++;
2014 			ifp->if_flags &= ~IFF_UP;
2015 			wpi_stop(ifp, 1);
2016 			return;
2017 		}
2018 		ifp->if_timer = 1;
2019 	}
2020 
2021 	ieee80211_watchdog(&sc->sc_ic);
2022 }
2023 
2024 static int
2025 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2026 {
2027 #define IS_RUNNING(ifp) \
2028 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2029 
2030 	struct wpi_softc *sc = ifp->if_softc;
2031 	struct ieee80211com *ic = &sc->sc_ic;
2032 	int s, error = 0;
2033 
2034 	s = splnet();
2035 
2036 	switch (cmd) {
2037 	case SIOCSIFFLAGS:
2038 		if (ifp->if_flags & IFF_UP) {
2039 			if (!(ifp->if_flags & IFF_RUNNING))
2040 				wpi_init(ifp);
2041 		} else {
2042 			if (ifp->if_flags & IFF_RUNNING)
2043 				wpi_stop(ifp, 1);
2044 		}
2045 		break;
2046 
2047 	case SIOCADDMULTI:
2048 	case SIOCDELMULTI:
2049 		/* XXX no h/w multicast filter? --dyoung */
2050 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2051 			/* setup multicast filter, etc */
2052 			error = 0;
2053 		}
2054 		break;
2055 
2056 	default:
2057 		error = ieee80211_ioctl(ic, cmd, data);
2058 	}
2059 
2060 	if (error == ENETRESET) {
2061 		if (IS_RUNNING(ifp) &&
2062 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2063 			wpi_init(ifp);
2064 		error = 0;
2065 	}
2066 
2067 	splx(s);
2068 	return error;
2069 
2070 #undef IS_RUNNING
2071 }
2072 
2073 /*
2074  * Extract various information from EEPROM.
2075  */
2076 static void
2077 wpi_read_eeprom(struct wpi_softc *sc)
2078 {
2079 	struct ieee80211com *ic = &sc->sc_ic;
2080 	char domain[4];
2081 	int i;
2082 
2083 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2084 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2085 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2086 
2087 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2088 	    sc->type));
2089 
2090 	/* read and print regulatory domain */
2091 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2092 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2093 
2094 	/* read and print MAC address */
2095 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2096 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2097 
2098 	/* read the list of authorized channels */
2099 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2100 		wpi_read_eeprom_channels(sc, i);
2101 
2102 	/* read the list of power groups */
2103 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2104 		wpi_read_eeprom_group(sc, i);
2105 }
2106 
2107 static void
2108 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2109 {
2110 	struct ieee80211com *ic = &sc->sc_ic;
2111 	const struct wpi_chan_band *band = &wpi_bands[n];
2112 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2113 	int chan, i;
2114 
2115 	wpi_read_prom_data(sc, band->addr, channels,
2116 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2117 
2118 	for (i = 0; i < band->nchan; i++) {
2119 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2120 			continue;
2121 
2122 		chan = band->chan[i];
2123 
2124 		if (n == 0) {	/* 2GHz band */
2125 			ic->ic_channels[chan].ic_freq =
2126 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2127 			ic->ic_channels[chan].ic_flags =
2128 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2129 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2130 
2131 		} else {	/* 5GHz band */
2132 			/*
2133 			 * Some 3945abg adapters support channels 7, 8, 11
2134 			 * and 12 in the 2GHz *and* 5GHz bands.
2135 			 * Because of limitations in our net80211(9) stack,
2136 			 * we can't support these channels in 5GHz band.
2137 			 */
2138 			if (chan <= 14)
2139 				continue;
2140 
2141 			ic->ic_channels[chan].ic_freq =
2142 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2143 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2144 		}
2145 
2146 		/* is active scan allowed on this channel? */
2147 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2148 			ic->ic_channels[chan].ic_flags |=
2149 			    IEEE80211_CHAN_PASSIVE;
2150 		}
2151 
2152 		/* save maximum allowed power for this channel */
2153 		sc->maxpwr[chan] = channels[i].maxpwr;
2154 
2155 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2156 		    chan, channels[i].flags, sc->maxpwr[chan]));
2157 	}
2158 }
2159 
2160 static void
2161 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2162 {
2163 	struct wpi_power_group *group = &sc->groups[n];
2164 	struct wpi_eeprom_group rgroup;
2165 	int i;
2166 
2167 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2168 	    sizeof rgroup);
2169 
2170 	/* save power group information */
2171 	group->chan   = rgroup.chan;
2172 	group->maxpwr = rgroup.maxpwr;
2173 	/* temperature at which the samples were taken */
2174 	group->temp   = (int16_t)le16toh(rgroup.temp);
2175 
2176 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2177 	    group->chan, group->maxpwr, group->temp));
2178 
2179 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2180 		group->samples[i].index = rgroup.samples[i].index;
2181 		group->samples[i].power = rgroup.samples[i].power;
2182 
2183 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2184 		    group->samples[i].index, group->samples[i].power));
2185 	}
2186 }
2187 
2188 /*
2189  * Send a command to the firmware.
2190  */
2191 static int
2192 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2193 {
2194 	struct wpi_tx_ring *ring = &sc->cmdq;
2195 	struct wpi_tx_desc *desc;
2196 	struct wpi_tx_cmd *cmd;
2197 
2198 	KASSERT(size <= sizeof cmd->data);
2199 
2200 	desc = &ring->desc[ring->cur];
2201 	cmd = &ring->cmd[ring->cur];
2202 
2203 	cmd->code = code;
2204 	cmd->flags = 0;
2205 	cmd->qid = ring->qid;
2206 	cmd->idx = ring->cur;
2207 	memcpy(cmd->data, buf, size);
2208 
2209 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2210 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2211 		ring->cur * sizeof (struct wpi_tx_cmd));
2212 	desc->segs[0].len  = htole32(4 + size);
2213 
2214 	/* kick cmd ring */
2215 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2216 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2217 
2218 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2219 }
2220 
2221 static int
2222 wpi_wme_update(struct ieee80211com *ic)
2223 {
2224 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2225 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2226 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2227 	const struct wmeParams *wmep;
2228 	struct wpi_wme_setup wme;
2229 	int ac;
2230 
2231 	/* don't override default WME values if WME is not actually enabled */
2232 	if (!(ic->ic_flags & IEEE80211_F_WME))
2233 		return 0;
2234 
2235 	wme.flags = 0;
2236 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2237 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2238 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2239 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2240 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2241 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2242 
2243 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2244 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2245 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2246 	}
2247 
2248 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2249 #undef WPI_USEC
2250 #undef WPI_EXP2
2251 }
2252 
2253 /*
2254  * Configure h/w multi-rate retries.
2255  */
2256 static int
2257 wpi_mrr_setup(struct wpi_softc *sc)
2258 {
2259 	struct ieee80211com *ic = &sc->sc_ic;
2260 	struct wpi_mrr_setup mrr;
2261 	int i, error;
2262 
2263 	/* CCK rates (not used with 802.11a) */
2264 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2265 		mrr.rates[i].flags = 0;
2266 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2267 		/* fallback to the immediate lower CCK rate (if any) */
2268 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2269 		/* try one time at this rate before falling back to "next" */
2270 		mrr.rates[i].ntries = 1;
2271 	}
2272 
2273 	/* OFDM rates (not used with 802.11b) */
2274 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2275 		mrr.rates[i].flags = 0;
2276 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2277 		/* fallback to the immediate lower rate (if any) */
2278 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2279 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2280 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2281 			WPI_OFDM6 : WPI_CCK2) :
2282 		    i - 1;
2283 		/* try one time at this rate before falling back to "next" */
2284 		mrr.rates[i].ntries = 1;
2285 	}
2286 
2287 	/* setup MRR for control frames */
2288 	mrr.which = htole32(WPI_MRR_CTL);
2289 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2290 	if (error != 0) {
2291 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2292 		return error;
2293 	}
2294 
2295 	/* setup MRR for data frames */
2296 	mrr.which = htole32(WPI_MRR_DATA);
2297 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2298 	if (error != 0) {
2299 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2300 		return error;
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 static void
2307 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2308 {
2309 	struct wpi_cmd_led led;
2310 
2311 	led.which = which;
2312 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2313 	led.off = off;
2314 	led.on = on;
2315 
2316 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2317 }
2318 
2319 static void
2320 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2321 {
2322 	struct wpi_cmd_tsf tsf;
2323 	uint64_t val, mod;
2324 
2325 	memset(&tsf, 0, sizeof tsf);
2326 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2327 	tsf.bintval = htole16(ni->ni_intval);
2328 	tsf.lintval = htole16(10);
2329 
2330 	/* compute remaining time until next beacon */
2331 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2332 	mod = le64toh(tsf.tstamp) % val;
2333 	tsf.binitval = htole32((uint32_t)(val - mod));
2334 
2335 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2336 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2337 
2338 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2339 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2340 }
2341 
2342 /*
2343  * Update Tx power to match what is defined for channel `c'.
2344  */
2345 static int
2346 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2347 {
2348 	struct ieee80211com *ic = &sc->sc_ic;
2349 	struct wpi_power_group *group;
2350 	struct wpi_cmd_txpower txpower;
2351 	u_int chan;
2352 	int i;
2353 
2354 	/* get channel number */
2355 	chan = ieee80211_chan2ieee(ic, c);
2356 
2357 	/* find the power group to which this channel belongs */
2358 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2359 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2360 			if (chan <= group->chan)
2361 				break;
2362 	} else
2363 		group = &sc->groups[0];
2364 
2365 	memset(&txpower, 0, sizeof txpower);
2366 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2367 	txpower.chan = htole16(chan);
2368 
2369 	/* set Tx power for all OFDM and CCK rates */
2370 	for (i = 0; i <= 11 ; i++) {
2371 		/* retrieve Tx power for this channel/rate combination */
2372 		int idx = wpi_get_power_index(sc, group, c,
2373 		    wpi_ridx_to_rate[i]);
2374 
2375 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2376 
2377 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2378 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2379 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2380 		} else {
2381 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2382 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2383 		}
2384 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2385 		    wpi_ridx_to_rate[i], idx));
2386 	}
2387 
2388 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2389 }
2390 
2391 /*
2392  * Determine Tx power index for a given channel/rate combination.
2393  * This takes into account the regulatory information from EEPROM and the
2394  * current temperature.
2395  */
2396 static int
2397 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2398     struct ieee80211_channel *c, int rate)
2399 {
2400 /* fixed-point arithmetic division using a n-bit fractional part */
2401 #define fdivround(a, b, n)	\
2402 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2403 
2404 /* linear interpolation */
2405 #define interpolate(x, x1, y1, x2, y2, n)	\
2406 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2407 
2408 	struct ieee80211com *ic = &sc->sc_ic;
2409 	struct wpi_power_sample *sample;
2410 	int pwr, idx;
2411 	u_int chan;
2412 
2413 	/* get channel number */
2414 	chan = ieee80211_chan2ieee(ic, c);
2415 
2416 	/* default power is group's maximum power - 3dB */
2417 	pwr = group->maxpwr / 2;
2418 
2419 	/* decrease power for highest OFDM rates to reduce distortion */
2420 	switch (rate) {
2421 	case 72:	/* 36Mb/s */
2422 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2423 		break;
2424 	case 96:	/* 48Mb/s */
2425 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2426 		break;
2427 	case 108:	/* 54Mb/s */
2428 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2429 		break;
2430 	}
2431 
2432 	/* never exceed channel's maximum allowed Tx power */
2433 	pwr = min(pwr, sc->maxpwr[chan]);
2434 
2435 	/* retrieve power index into gain tables from samples */
2436 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2437 		if (pwr > sample[1].power)
2438 			break;
2439 	/* fixed-point linear interpolation using a 19-bit fractional part */
2440 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2441 	    sample[1].power, sample[1].index, 19);
2442 
2443 	/*
2444 	 * Adjust power index based on current temperature:
2445 	 * - if cooler than factory-calibrated: decrease output power
2446 	 * - if warmer than factory-calibrated: increase output power
2447 	 */
2448 	idx -= (sc->temp - group->temp) * 11 / 100;
2449 
2450 	/* decrease power for CCK rates (-5dB) */
2451 	if (!WPI_RATE_IS_OFDM(rate))
2452 		idx += 10;
2453 
2454 	/* keep power index in a valid range */
2455 	if (idx < 0)
2456 		return 0;
2457 	if (idx > WPI_MAX_PWR_INDEX)
2458 		return WPI_MAX_PWR_INDEX;
2459 	return idx;
2460 
2461 #undef interpolate
2462 #undef fdivround
2463 }
2464 
2465 /*
2466  * Build a beacon frame that the firmware will broadcast periodically in
2467  * IBSS or HostAP modes.
2468  */
2469 static int
2470 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2471 {
2472 	struct ieee80211com *ic = &sc->sc_ic;
2473 	struct wpi_tx_ring *ring = &sc->cmdq;
2474 	struct wpi_tx_desc *desc;
2475 	struct wpi_tx_data *data;
2476 	struct wpi_tx_cmd *cmd;
2477 	struct wpi_cmd_beacon *bcn;
2478 	struct ieee80211_beacon_offsets bo;
2479 	struct mbuf *m0;
2480 	int error;
2481 
2482 	desc = &ring->desc[ring->cur];
2483 	data = &ring->data[ring->cur];
2484 
2485 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2486 	if (m0 == NULL) {
2487 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2488 		return ENOMEM;
2489 	}
2490 
2491 	cmd = &ring->cmd[ring->cur];
2492 	cmd->code = WPI_CMD_SET_BEACON;
2493 	cmd->flags = 0;
2494 	cmd->qid = ring->qid;
2495 	cmd->idx = ring->cur;
2496 
2497 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2498 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2499 	bcn->id = WPI_ID_BROADCAST;
2500 	bcn->ofdm_mask = 0xff;
2501 	bcn->cck_mask = 0x0f;
2502 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2503 	bcn->len = htole16(m0->m_pkthdr.len);
2504 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2505 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2506 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2507 
2508 	/* save and trim IEEE802.11 header */
2509 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2510 	m_adj(m0, sizeof (struct ieee80211_frame));
2511 
2512 	/* assume beacon frame is contiguous */
2513 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2514 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2515 	if (error) {
2516 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2517 		m_freem(m0);
2518 		return error;
2519 	}
2520 
2521 	data->m = m0;
2522 
2523 	/* first scatter/gather segment is used by the beacon command */
2524 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2525 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2526 		ring->cur * sizeof (struct wpi_tx_cmd));
2527 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2528 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2529 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2530 
2531 	/* kick cmd ring */
2532 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2533 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2534 
2535 	return 0;
2536 }
2537 
2538 static int
2539 wpi_auth(struct wpi_softc *sc)
2540 {
2541 	struct ieee80211com *ic = &sc->sc_ic;
2542 	struct ieee80211_node *ni = ic->ic_bss;
2543 	struct wpi_node_info node;
2544 	int error;
2545 
2546 	/* update adapter's configuration */
2547 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2548 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2549 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2550 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2551 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2552 		    WPI_CONFIG_24GHZ);
2553 	}
2554 	switch (ic->ic_curmode) {
2555 	case IEEE80211_MODE_11A:
2556 		sc->config.cck_mask  = 0;
2557 		sc->config.ofdm_mask = 0x15;
2558 		break;
2559 	case IEEE80211_MODE_11B:
2560 		sc->config.cck_mask  = 0x03;
2561 		sc->config.ofdm_mask = 0;
2562 		break;
2563 	default:	/* assume 802.11b/g */
2564 		sc->config.cck_mask  = 0x0f;
2565 		sc->config.ofdm_mask = 0x15;
2566 	}
2567 
2568 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2569 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2570 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2571 		sizeof (struct wpi_config), 1);
2572 	if (error != 0) {
2573 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2574 		return error;
2575 	}
2576 
2577 	/* configuration has changed, set Tx power accordingly */
2578 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2579 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2580 		return error;
2581 	}
2582 
2583 	/* add default node */
2584 	memset(&node, 0, sizeof node);
2585 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2586 	node.id = WPI_ID_BSS;
2587 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2588 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2589 	node.action = htole32(WPI_ACTION_SET_RATE);
2590 	node.antenna = WPI_ANTENNA_BOTH;
2591 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2592 	if (error != 0) {
2593 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2594 		return error;
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 /*
2601  * Send a scan request to the firmware.  Since this command is huge, we map it
2602  * into a mbuf instead of using the pre-allocated set of commands.
2603  */
2604 static int
2605 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2606 {
2607 	struct ieee80211com *ic = &sc->sc_ic;
2608 	struct wpi_tx_ring *ring = &sc->cmdq;
2609 	struct wpi_tx_desc *desc;
2610 	struct wpi_tx_data *data;
2611 	struct wpi_tx_cmd *cmd;
2612 	struct wpi_scan_hdr *hdr;
2613 	struct wpi_scan_chan *chan;
2614 	struct ieee80211_frame *wh;
2615 	struct ieee80211_rateset *rs;
2616 	struct ieee80211_channel *c;
2617 	enum ieee80211_phymode mode;
2618 	uint8_t *frm;
2619 	int nrates, pktlen, error;
2620 
2621 	desc = &ring->desc[ring->cur];
2622 	data = &ring->data[ring->cur];
2623 
2624 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2625 	if (data->m == NULL) {
2626 		aprint_error_dev(sc->sc_dev,
2627 						"could not allocate mbuf for scan command\n");
2628 		return ENOMEM;
2629 	}
2630 
2631 	MCLGET(data->m, M_DONTWAIT);
2632 	if (!(data->m->m_flags & M_EXT)) {
2633 		m_freem(data->m);
2634 		data->m = NULL;
2635 		aprint_error_dev(sc->sc_dev,
2636 						 "could not allocate mbuf for scan command\n");
2637 		return ENOMEM;
2638 	}
2639 
2640 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2641 	cmd->code = WPI_CMD_SCAN;
2642 	cmd->flags = 0;
2643 	cmd->qid = ring->qid;
2644 	cmd->idx = ring->cur;
2645 
2646 	hdr = (struct wpi_scan_hdr *)cmd->data;
2647 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2648 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2649 	hdr->id = WPI_ID_BROADCAST;
2650 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2651 
2652 	/*
2653 	 * Move to the next channel if no packets are received within 5 msecs
2654 	 * after sending the probe request (this helps to reduce the duration
2655 	 * of active scans).
2656 	 */
2657 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2658 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2659 
2660 	if (flags & IEEE80211_CHAN_A) {
2661 		hdr->crc_threshold = htole16(1);
2662 		/* send probe requests at 6Mbps */
2663 		hdr->rate = wpi_plcp_signal(12);
2664 	} else {
2665 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2666 		/* send probe requests at 1Mbps */
2667 		hdr->rate = wpi_plcp_signal(2);
2668 	}
2669 
2670 	/* for directed scans, firmware inserts the essid IE itself */
2671 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2672 	hdr->essid[0].len = ic->ic_des_esslen;
2673 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2674 
2675 	/*
2676 	 * Build a probe request frame.  Most of the following code is a
2677 	 * copy & paste of what is done in net80211.
2678 	 */
2679 	wh = (struct ieee80211_frame *)(hdr + 1);
2680 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2681 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2682 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2683 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2684 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2685 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2686 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2687 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2688 
2689 	frm = (uint8_t *)(wh + 1);
2690 
2691 	/* add empty essid IE (firmware generates it for directed scans) */
2692 	*frm++ = IEEE80211_ELEMID_SSID;
2693 	*frm++ = 0;
2694 
2695 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2696 	rs = &ic->ic_sup_rates[mode];
2697 
2698 	/* add supported rates IE */
2699 	*frm++ = IEEE80211_ELEMID_RATES;
2700 	nrates = rs->rs_nrates;
2701 	if (nrates > IEEE80211_RATE_SIZE)
2702 		nrates = IEEE80211_RATE_SIZE;
2703 	*frm++ = nrates;
2704 	memcpy(frm, rs->rs_rates, nrates);
2705 	frm += nrates;
2706 
2707 	/* add supported xrates IE */
2708 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2709 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2710 		*frm++ = IEEE80211_ELEMID_XRATES;
2711 		*frm++ = nrates;
2712 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2713 		frm += nrates;
2714 	}
2715 
2716 	/* setup length of probe request */
2717 	hdr->paylen = htole16(frm - (uint8_t *)wh);
2718 
2719 	chan = (struct wpi_scan_chan *)frm;
2720 	for (c  = &ic->ic_channels[1];
2721 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2722 		if ((c->ic_flags & flags) != flags)
2723 			continue;
2724 
2725 		chan->chan = ieee80211_chan2ieee(ic, c);
2726 		chan->flags = 0;
2727 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2728 			chan->flags |= WPI_CHAN_ACTIVE;
2729 			if (ic->ic_des_esslen != 0)
2730 				chan->flags |= WPI_CHAN_DIRECT;
2731 		}
2732 		chan->dsp_gain = 0x6e;
2733 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2734 			chan->rf_gain = 0x3b;
2735 			chan->active = htole16(10);
2736 			chan->passive = htole16(110);
2737 		} else {
2738 			chan->rf_gain = 0x28;
2739 			chan->active = htole16(20);
2740 			chan->passive = htole16(120);
2741 		}
2742 		hdr->nchan++;
2743 		chan++;
2744 
2745 		frm += sizeof (struct wpi_scan_chan);
2746 	}
2747 	hdr->len = htole16(frm - (uint8_t *)hdr);
2748 	pktlen = frm - (uint8_t *)cmd;
2749 
2750 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2751 		NULL, BUS_DMA_NOWAIT);
2752 	if (error) {
2753 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2754 		m_freem(data->m);
2755 		data->m = NULL;
2756 		return error;
2757 	}
2758 
2759 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2760 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2761 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2762 
2763 	/* kick cmd ring */
2764 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2765 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2766 
2767 	return 0;	/* will be notified async. of failure/success */
2768 }
2769 
2770 static int
2771 wpi_config(struct wpi_softc *sc)
2772 {
2773 	struct ieee80211com *ic = &sc->sc_ic;
2774 	struct ifnet *ifp = ic->ic_ifp;
2775 	struct wpi_power power;
2776 	struct wpi_bluetooth bluetooth;
2777 	struct wpi_node_info node;
2778 	int error;
2779 
2780 	memset(&power, 0, sizeof power);
2781 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2782 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2783 	if (error != 0) {
2784 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2785 		return error;
2786 	}
2787 
2788 	/* configure bluetooth coexistence */
2789 	memset(&bluetooth, 0, sizeof bluetooth);
2790 	bluetooth.flags = 3;
2791 	bluetooth.lead = 0xaa;
2792 	bluetooth.kill = 1;
2793 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2794 		0);
2795 	if (error != 0) {
2796 		aprint_error_dev(sc->sc_dev,
2797 			"could not configure bluetooth coexistence\n");
2798 		return error;
2799 	}
2800 
2801 	/* configure adapter */
2802 	memset(&sc->config, 0, sizeof (struct wpi_config));
2803 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2804 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2805 	/*set default channel*/
2806 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2807 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2808 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2809 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2810 		    WPI_CONFIG_24GHZ);
2811 	}
2812 	sc->config.filter = 0;
2813 	switch (ic->ic_opmode) {
2814 	case IEEE80211_M_STA:
2815 		sc->config.mode = WPI_MODE_STA;
2816 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2817 		break;
2818 	case IEEE80211_M_IBSS:
2819 	case IEEE80211_M_AHDEMO:
2820 		sc->config.mode = WPI_MODE_IBSS;
2821 		break;
2822 	case IEEE80211_M_HOSTAP:
2823 		sc->config.mode = WPI_MODE_HOSTAP;
2824 		break;
2825 	case IEEE80211_M_MONITOR:
2826 		sc->config.mode = WPI_MODE_MONITOR;
2827 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2828 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2829 		break;
2830 	}
2831 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2832 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2833 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2834 		sizeof (struct wpi_config), 0);
2835 	if (error != 0) {
2836 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2837 		return error;
2838 	}
2839 
2840 	/* configuration has changed, set Tx power accordingly */
2841 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2842 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2843 		return error;
2844 	}
2845 
2846 	/* add broadcast node */
2847 	memset(&node, 0, sizeof node);
2848 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2849 	node.id = WPI_ID_BROADCAST;
2850 	node.rate = wpi_plcp_signal(2);
2851 	node.action = htole32(WPI_ACTION_SET_RATE);
2852 	node.antenna = WPI_ANTENNA_BOTH;
2853 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2854 	if (error != 0) {
2855 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2856 		return error;
2857 	}
2858 
2859 	if ((error = wpi_mrr_setup(sc)) != 0) {
2860 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2861 		return error;
2862 	}
2863 
2864 	return 0;
2865 }
2866 
2867 static void
2868 wpi_stop_master(struct wpi_softc *sc)
2869 {
2870 	uint32_t tmp;
2871 	int ntries;
2872 
2873 	tmp = WPI_READ(sc, WPI_RESET);
2874 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2875 
2876 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2877 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2878 		return;	/* already asleep */
2879 
2880 	for (ntries = 0; ntries < 100; ntries++) {
2881 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2882 			break;
2883 		DELAY(10);
2884 	}
2885 	if (ntries == 100) {
2886 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2887 	}
2888 }
2889 
2890 static int
2891 wpi_power_up(struct wpi_softc *sc)
2892 {
2893 	uint32_t tmp;
2894 	int ntries;
2895 
2896 	wpi_mem_lock(sc);
2897 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2898 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2899 	wpi_mem_unlock(sc);
2900 
2901 	for (ntries = 0; ntries < 5000; ntries++) {
2902 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2903 			break;
2904 		DELAY(10);
2905 	}
2906 	if (ntries == 5000) {
2907 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2908 		return ETIMEDOUT;
2909 	}
2910 	return 0;
2911 }
2912 
2913 static int
2914 wpi_reset(struct wpi_softc *sc)
2915 {
2916 	uint32_t tmp;
2917 	int ntries;
2918 
2919 	/* clear any pending interrupts */
2920 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2921 
2922 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2923 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2924 
2925 	tmp = WPI_READ(sc, WPI_CHICKEN);
2926 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2927 
2928 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2929 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2930 
2931 	/* wait for clock stabilization */
2932 	for (ntries = 0; ntries < 1000; ntries++) {
2933 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2934 			break;
2935 		DELAY(10);
2936 	}
2937 	if (ntries == 1000) {
2938 		aprint_error_dev(sc->sc_dev,
2939 						 "timeout waiting for clock stabilization\n");
2940 		return ETIMEDOUT;
2941 	}
2942 
2943 	/* initialize EEPROM */
2944 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2945 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2946 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2947 		return EIO;
2948 	}
2949 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2950 
2951 	return 0;
2952 }
2953 
2954 static void
2955 wpi_hw_config(struct wpi_softc *sc)
2956 {
2957 	uint32_t rev, hw;
2958 
2959 	/* voodoo from the reference driver */
2960 	hw = WPI_READ(sc, WPI_HWCONFIG);
2961 
2962 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2963 	rev = PCI_REVISION(rev);
2964 	if ((rev & 0xc0) == 0x40)
2965 		hw |= WPI_HW_ALM_MB;
2966 	else if (!(rev & 0x80))
2967 		hw |= WPI_HW_ALM_MM;
2968 
2969 	if (sc->cap == 0x80)
2970 		hw |= WPI_HW_SKU_MRC;
2971 
2972 	hw &= ~WPI_HW_REV_D;
2973 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2974 		hw |= WPI_HW_REV_D;
2975 
2976 	if (sc->type > 1)
2977 		hw |= WPI_HW_TYPE_B;
2978 
2979 	DPRINTF(("setting h/w config %x\n", hw));
2980 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2981 }
2982 
2983 static int
2984 wpi_init(struct ifnet *ifp)
2985 {
2986 	struct wpi_softc *sc = ifp->if_softc;
2987 	struct ieee80211com *ic = &sc->sc_ic;
2988 	uint32_t tmp;
2989 	int qid, ntries, error;
2990 
2991 	wpi_stop(ifp,1);
2992 	(void)wpi_reset(sc);
2993 
2994 	wpi_mem_lock(sc);
2995 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2996 	DELAY(20);
2997 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2998 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2999 	wpi_mem_unlock(sc);
3000 
3001 	(void)wpi_power_up(sc);
3002 	wpi_hw_config(sc);
3003 
3004 	/* init Rx ring */
3005 	wpi_mem_lock(sc);
3006 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3007 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3008 	    offsetof(struct wpi_shared, next));
3009 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3010 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3011 	wpi_mem_unlock(sc);
3012 
3013 	/* init Tx rings */
3014 	wpi_mem_lock(sc);
3015 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3016 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3017 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3018 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3019 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3020 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3021 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3022 
3023 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3024 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3025 
3026 	for (qid = 0; qid < 6; qid++) {
3027 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3028 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3029 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3030 	}
3031 	wpi_mem_unlock(sc);
3032 
3033 	/* clear "radio off" and "disable command" bits (reversed logic) */
3034 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3035 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3036 
3037 	/* clear any pending interrupts */
3038 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3039 	/* enable interrupts */
3040 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3041 
3042 	/* not sure why/if this is necessary... */
3043 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3044 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3045 
3046 	if ((error = wpi_load_firmware(sc)) != 0) {
3047 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3048 		goto fail1;
3049 	}
3050 
3051 	/* Check the status of the radio switch */
3052 	if (wpi_getrfkill(sc)) {
3053 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3054 		error = EBUSY;
3055 		goto fail1;
3056 	}
3057 
3058 	/* wait for thermal sensors to calibrate */
3059 	for (ntries = 0; ntries < 1000; ntries++) {
3060 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3061 			break;
3062 		DELAY(10);
3063 	}
3064 	if (ntries == 1000) {
3065 		aprint_error_dev(sc->sc_dev,
3066 						 "timeout waiting for thermal sensors calibration\n");
3067 		error = ETIMEDOUT;
3068 		goto fail1;
3069 	}
3070 
3071 	DPRINTF(("temperature %d\n", sc->temp));
3072 
3073 	if ((error = wpi_config(sc)) != 0) {
3074 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3075 		goto fail1;
3076 	}
3077 
3078 	ifp->if_flags &= ~IFF_OACTIVE;
3079 	ifp->if_flags |= IFF_RUNNING;
3080 
3081 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3082 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3083 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3084 	}
3085 	else
3086 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3087 
3088 	return 0;
3089 
3090 fail1:	wpi_stop(ifp, 1);
3091 	return error;
3092 }
3093 
3094 
3095 static void
3096 wpi_stop(struct ifnet *ifp, int disable)
3097 {
3098 	struct wpi_softc *sc = ifp->if_softc;
3099 	struct ieee80211com *ic = &sc->sc_ic;
3100 	uint32_t tmp;
3101 	int ac;
3102 
3103 	ifp->if_timer = sc->sc_tx_timer = 0;
3104 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3105 
3106 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3107 
3108 	/* disable interrupts */
3109 	WPI_WRITE(sc, WPI_MASK, 0);
3110 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3111 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3112 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3113 
3114 	wpi_mem_lock(sc);
3115 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3116 	wpi_mem_unlock(sc);
3117 
3118 	/* reset all Tx rings */
3119 	for (ac = 0; ac < 4; ac++)
3120 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3121 	wpi_reset_tx_ring(sc, &sc->cmdq);
3122 
3123 	/* reset Rx ring */
3124 	wpi_reset_rx_ring(sc, &sc->rxq);
3125 
3126 	wpi_mem_lock(sc);
3127 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3128 	wpi_mem_unlock(sc);
3129 
3130 	DELAY(5);
3131 
3132 	wpi_stop_master(sc);
3133 
3134 	tmp = WPI_READ(sc, WPI_RESET);
3135 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3136 }
3137 
3138 static bool
3139 wpi_resume(device_t dv PMF_FN_ARGS)
3140 {
3141 	struct wpi_softc *sc = device_private(dv);
3142 
3143 	(void)wpi_reset(sc);
3144 
3145 	return true;
3146 }
3147 
3148 /*
3149  * Return whether or not the radio is enabled in hardware
3150  * (i.e. the rfkill switch is "off").
3151  */
3152 static int
3153 wpi_getrfkill(struct wpi_softc *sc)
3154 {
3155 	uint32_t tmp;
3156 
3157 	wpi_mem_lock(sc);
3158 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3159 	wpi_mem_unlock(sc);
3160 
3161 	return !(tmp & 0x01);
3162 }
3163 
3164 static int
3165 wpi_sysctl_radio(SYSCTLFN_ARGS)
3166 {
3167 	struct sysctlnode node;
3168 	struct wpi_softc *sc;
3169 	int val, error;
3170 
3171 	node = *rnode;
3172 	sc = (struct wpi_softc *)node.sysctl_data;
3173 
3174 	val = !wpi_getrfkill(sc);
3175 
3176 	node.sysctl_data = &val;
3177 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3178 
3179 	if (error || newp == NULL)
3180 		return error;
3181 
3182 	return 0;
3183 }
3184 
3185 static void
3186 wpi_sysctlattach(struct wpi_softc *sc)
3187 {
3188 	int rc;
3189 	const struct sysctlnode *rnode;
3190 	const struct sysctlnode *cnode;
3191 
3192 	struct sysctllog **clog = &sc->sc_sysctllog;
3193 
3194 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3195 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3196 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3197 		goto err;
3198 
3199 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3200 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3201 	    SYSCTL_DESCR("wpi controls and statistics"),
3202 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3203 		goto err;
3204 
3205 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3206 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3207 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3208 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3209 		goto err;
3210 
3211 #ifdef WPI_DEBUG
3212 	/* control debugging printfs */
3213 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3214 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3215 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3216 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3217 		goto err;
3218 #endif
3219 
3220 	return;
3221 err:
3222 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3223 }
3224