xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_wpi.c,v 1.80 2018/06/26 06:48:01 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.80 2018/06/26 06:48:01 msaitoh Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51 
52 #include <dev/sysmon/sysmonvar.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70 
71 #include <dev/firmload.h>
72 
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75 
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82 
83 static int	wpi_match(device_t, cfdata_t, void *);
84 static void	wpi_attach(device_t, device_t, void *);
85 static int	wpi_detach(device_t , int);
86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
89 static int	wpi_alloc_shared(struct wpi_softc *);
90 static void	wpi_free_shared(struct wpi_softc *);
91 static int	wpi_alloc_fwmem(struct wpi_softc *);
92 static void	wpi_free_fwmem(struct wpi_softc *);
93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int	wpi_alloc_rpool(struct wpi_softc *);
96 static void	wpi_free_rpool(struct wpi_softc *);
97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 		    int, int);
102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void	wpi_newassoc(struct ieee80211_node *, int);
106 static int	wpi_media_change(struct ifnet *);
107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void	wpi_mem_lock(struct wpi_softc *);
109 static void	wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 		    const uint32_t *, int);
114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
116 static int	wpi_cache_firmware(struct wpi_softc *);
117 static void	wpi_release_firmware(void);
118 static int	wpi_load_firmware(struct wpi_softc *);
119 static void	wpi_calib_timeout(void *);
120 static void	wpi_iter_func(void *, struct ieee80211_node *);
121 static void	wpi_power_calibration(struct wpi_softc *, int);
122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 		    struct wpi_rx_data *);
124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void	wpi_notif_intr(struct wpi_softc *);
127 static int	wpi_intr(void *);
128 static void	wpi_softintr(void *);
129 static void	wpi_read_eeprom(struct wpi_softc *);
130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t	wpi_plcp_signal(int);
133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 		    struct ieee80211_node *, int);
135 static void	wpi_start(struct ifnet *);
136 static void	wpi_watchdog(struct ifnet *);
137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int	wpi_wme_update(struct ieee80211com *);
140 static int	wpi_mrr_setup(struct wpi_softc *);
141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int	wpi_set_txpower(struct wpi_softc *,
144 		    struct ieee80211_channel *, int);
145 static int	wpi_get_power_index(struct wpi_softc *,
146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int	wpi_auth(struct wpi_softc *);
149 static int	wpi_scan(struct wpi_softc *);
150 static int	wpi_config(struct wpi_softc *);
151 static void	wpi_stop_master(struct wpi_softc *);
152 static int	wpi_power_up(struct wpi_softc *);
153 static int	wpi_reset(struct wpi_softc *);
154 static void	wpi_hw_config(struct wpi_softc *);
155 static int	wpi_init(struct ifnet *);
156 static void	wpi_stop(struct ifnet *, int);
157 static bool	wpi_resume(device_t, const pmf_qual_t *);
158 static int	wpi_getrfkill(struct wpi_softc *);
159 static void	wpi_sysctlattach(struct wpi_softc *);
160 static void	wpi_rsw_thread(void *);
161 
162 #ifdef WPI_DEBUG
163 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
164 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
165 int wpi_debug = 1;
166 #else
167 #define DPRINTF(x)
168 #define DPRINTFN(n, x)
169 #endif
170 
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 	wpi_detach, NULL);
173 
174 static int
175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 {
177 	struct pci_attach_args *pa = aux;
178 
179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 		return 0;
181 
182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 		return 1;
185 
186 	return 0;
187 }
188 
189 /* Base Address Register */
190 #define WPI_PCI_BAR0	0x10
191 
192 static int
193 wpi_attach_once(void)
194 {
195 
196 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 	return 0;
198 }
199 
200 static void
201 wpi_attach(device_t parent __unused, device_t self, void *aux)
202 {
203 	struct wpi_softc *sc = device_private(self);
204 	struct ieee80211com *ic = &sc->sc_ic;
205 	struct ifnet *ifp = &sc->sc_ec.ec_if;
206 	struct pci_attach_args *pa = aux;
207 	const char *intrstr;
208 	bus_space_tag_t memt;
209 	bus_space_handle_t memh;
210 	pcireg_t data;
211 	int ac, error;
212 	char intrbuf[PCI_INTRSTR_LEN];
213 
214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 	sc->fw_used = false;
216 
217 	sc->sc_dev = self;
218 	sc->sc_pct = pa->pa_pc;
219 	sc->sc_pcitag = pa->pa_tag;
220 
221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 	sc->sc_rsw.smpsw_name = device_xname(self);
223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 	error = sysmon_pswitch_register(&sc->sc_rsw);
225 	if (error) {
226 		aprint_error_dev(self,
227 		    "unable to register radio switch with sysmon\n");
228 		return;
229 	}
230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
232 	if (kthread_create(PRI_NONE, 0, NULL,
233 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
234 		aprint_error_dev(self, "couldn't create switch thread\n");
235 	}
236 
237 	callout_init(&sc->calib_to, 0);
238 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
239 
240 	pci_aprint_devinfo(pa, NULL);
241 
242 	/* enable bus-mastering */
243 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
244 	data |= PCI_COMMAND_MASTER_ENABLE;
245 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
246 
247 	/* map the register window */
248 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
249 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
250 	if (error != 0) {
251 		aprint_error_dev(self, "could not map memory space\n");
252 		return;
253 	}
254 
255 	sc->sc_st = memt;
256 	sc->sc_sh = memh;
257 	sc->sc_dmat = pa->pa_dmat;
258 
259 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
260 	if (sc->sc_soft_ih == NULL) {
261 		aprint_error_dev(self, "could not establish softint\n");
262 		goto unmap;
263 	}
264 
265 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
266 		aprint_error_dev(self, "could not map interrupt\n");
267 		goto failsi;
268 	}
269 
270 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
271 	    sizeof(intrbuf));
272 	sc->sc_ih = pci_intr_establish(sc->sc_pct, sc->sc_pihp[0], IPL_NET,
273 	    wpi_intr, sc);
274 	if (sc->sc_ih == NULL) {
275 		aprint_error_dev(self, "could not establish interrupt");
276 		if (intrstr != NULL)
277 			aprint_error(" at %s", intrstr);
278 		aprint_error("\n");
279 		goto failia;
280 	}
281 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
282 
283 	/*
284 	 * Put adapter into a known state.
285 	 */
286 	if ((error = wpi_reset(sc)) != 0) {
287 		aprint_error_dev(self, "could not reset adapter\n");
288 		goto failih;
289 	}
290 
291 	/*
292 	 * Allocate DMA memory for firmware transfers.
293 	 */
294 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
295 		aprint_error_dev(self, "could not allocate firmware memory\n");
296 		goto failih;
297 	}
298 
299 	/*
300 	 * Allocate shared page and Tx/Rx rings.
301 	 */
302 	if ((error = wpi_alloc_shared(sc)) != 0) {
303 		aprint_error_dev(self, "could not allocate shared area\n");
304 		goto fail1;
305 	}
306 
307 	if ((error = wpi_alloc_rpool(sc)) != 0) {
308 		aprint_error_dev(self, "could not allocate Rx buffers\n");
309 		goto fail2;
310 	}
311 
312 	for (ac = 0; ac < 4; ac++) {
313 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
314 		    ac);
315 		if (error != 0) {
316 			aprint_error_dev(self,
317 			    "could not allocate Tx ring %d\n", ac);
318 			goto fail3;
319 		}
320 	}
321 
322 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
323 	if (error != 0) {
324 		aprint_error_dev(self, "could not allocate command ring\n");
325 		goto fail3;
326 	}
327 
328 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
329 	if (error != 0) {
330 		aprint_error_dev(self, "could not allocate Rx ring\n");
331 		goto fail4;
332 	}
333 
334 	ic->ic_ifp = ifp;
335 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
336 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
337 	ic->ic_state = IEEE80211_S_INIT;
338 
339 	/* set device capabilities */
340 	ic->ic_caps =
341 	    IEEE80211_C_WPA |		/* 802.11i */
342 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
343 	    IEEE80211_C_TXPMGT |	/* tx power management */
344 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
345 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
346 	    IEEE80211_C_WME;		/* 802.11e */
347 
348 	/* read supported channels and MAC address from EEPROM */
349 	wpi_read_eeprom(sc);
350 
351 	/* set supported .11a, .11b and .11g rates */
352 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
353 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
354 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
355 
356 	/* IBSS channel undefined for now */
357 	ic->ic_ibss_chan = &ic->ic_channels[0];
358 
359 	ifp->if_softc = sc;
360 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
361 	ifp->if_init = wpi_init;
362 	ifp->if_stop = wpi_stop;
363 	ifp->if_ioctl = wpi_ioctl;
364 	ifp->if_start = wpi_start;
365 	ifp->if_watchdog = wpi_watchdog;
366 	IFQ_SET_READY(&ifp->if_snd);
367 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
368 
369 	error = if_initialize(ifp);
370 	if (error != 0) {
371 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
372 		    error);
373 		goto fail5;
374 	}
375 	ieee80211_ifattach(ic);
376 	/* Use common softint-based if_input */
377 	ifp->if_percpuq = if_percpuq_create(ifp);
378 	if_register(ifp);
379 
380 	/* override default methods */
381 	ic->ic_node_alloc = wpi_node_alloc;
382 	ic->ic_newassoc = wpi_newassoc;
383 	ic->ic_wme.wme_update = wpi_wme_update;
384 
385 	/* override state transition machine */
386 	sc->sc_newstate = ic->ic_newstate;
387 	ic->ic_newstate = wpi_newstate;
388 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
389 
390 	sc->amrr.amrr_min_success_threshold =  1;
391 	sc->amrr.amrr_max_success_threshold = 15;
392 
393 	wpi_sysctlattach(sc);
394 
395 	if (pmf_device_register(self, NULL, wpi_resume))
396 		pmf_class_network_register(self, ifp);
397 	else
398 		aprint_error_dev(self, "couldn't establish power handler\n");
399 
400 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
401 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
402 	    &sc->sc_drvbpf);
403 
404 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
405 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
406 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
407 
408 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
409 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
410 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
411 
412 	ieee80211_announce(ic);
413 
414 	return;
415 
416 	/* free allocated memory if something failed during attachment */
417 fail5:	wpi_free_rx_ring(sc, &sc->rxq);
418 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
419 fail3:	while (--ac >= 0)
420 		wpi_free_tx_ring(sc, &sc->txq[ac]);
421 	wpi_free_rpool(sc);
422 fail2:	wpi_free_shared(sc);
423 fail1:	wpi_free_fwmem(sc);
424 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
425 	sc->sc_ih = NULL;
426 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
427 	sc->sc_pihp = NULL;
428 failsi:	softint_disestablish(sc->sc_soft_ih);
429 	sc->sc_soft_ih = NULL;
430 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
431 }
432 
433 static int
434 wpi_detach(device_t self, int flags __unused)
435 {
436 	struct wpi_softc *sc = device_private(self);
437 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
438 	int ac;
439 
440 	wpi_stop(ifp, 1);
441 
442 	if (ifp != NULL)
443 		bpf_detach(ifp);
444 	ieee80211_ifdetach(&sc->sc_ic);
445 	if (ifp != NULL)
446 		if_detach(ifp);
447 
448 	for (ac = 0; ac < 4; ac++)
449 		wpi_free_tx_ring(sc, &sc->txq[ac]);
450 	wpi_free_tx_ring(sc, &sc->cmdq);
451 	wpi_free_rx_ring(sc, &sc->rxq);
452 	wpi_free_rpool(sc);
453 	wpi_free_shared(sc);
454 
455 	if (sc->sc_ih != NULL) {
456 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
457 		sc->sc_ih = NULL;
458 	}
459 	if (sc->sc_pihp != NULL) {
460 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
461 		sc->sc_pihp = NULL;
462 	}
463 	if (sc->sc_soft_ih != NULL) {
464 		softint_disestablish(sc->sc_soft_ih);
465 		sc->sc_soft_ih = NULL;
466 	}
467 
468 	mutex_enter(&sc->sc_rsw_mtx);
469 	sc->sc_dying = 1;
470 	cv_signal(&sc->sc_rsw_cv);
471 	while (sc->sc_rsw_lwp != NULL)
472 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
473 	mutex_exit(&sc->sc_rsw_mtx);
474 	sysmon_pswitch_unregister(&sc->sc_rsw);
475 
476 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
477 
478 	if (sc->fw_used) {
479 		sc->fw_used = false;
480 		wpi_release_firmware();
481 	}
482 	cv_destroy(&sc->sc_rsw_cv);
483 	mutex_destroy(&sc->sc_rsw_mtx);
484 	return 0;
485 }
486 
487 static int
488 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
489     bus_size_t size, bus_size_t alignment, int flags)
490 {
491 	int nsegs, error;
492 
493 	dma->tag = tag;
494 	dma->size = size;
495 
496 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
497 	if (error != 0)
498 		goto fail;
499 
500 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
501 	    flags);
502 	if (error != 0)
503 		goto fail;
504 
505 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
506 	if (error != 0)
507 		goto fail;
508 
509 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
510 	if (error != 0)
511 		goto fail;
512 
513 	memset(dma->vaddr, 0, size);
514 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
515 
516 	dma->paddr = dma->map->dm_segs[0].ds_addr;
517 	if (kvap != NULL)
518 		*kvap = dma->vaddr;
519 
520 	return 0;
521 
522 fail:	wpi_dma_contig_free(dma);
523 	return error;
524 }
525 
526 static void
527 wpi_dma_contig_free(struct wpi_dma_info *dma)
528 {
529 	if (dma->map != NULL) {
530 		if (dma->vaddr != NULL) {
531 			bus_dmamap_unload(dma->tag, dma->map);
532 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
533 			bus_dmamem_free(dma->tag, &dma->seg, 1);
534 			dma->vaddr = NULL;
535 		}
536 		bus_dmamap_destroy(dma->tag, dma->map);
537 		dma->map = NULL;
538 	}
539 }
540 
541 /*
542  * Allocate a shared page between host and NIC.
543  */
544 static int
545 wpi_alloc_shared(struct wpi_softc *sc)
546 {
547 	int error;
548 
549 	/* must be aligned on a 4K-page boundary */
550 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
551 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
552 	    BUS_DMA_NOWAIT);
553 	if (error != 0)
554 		aprint_error_dev(sc->sc_dev,
555 		    "could not allocate shared area DMA memory\n");
556 
557 	return error;
558 }
559 
560 static void
561 wpi_free_shared(struct wpi_softc *sc)
562 {
563 	wpi_dma_contig_free(&sc->shared_dma);
564 }
565 
566 /*
567  * Allocate DMA-safe memory for firmware transfer.
568  */
569 static int
570 wpi_alloc_fwmem(struct wpi_softc *sc)
571 {
572 	int error;
573 
574 	/* allocate enough contiguous space to store text and data */
575 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
576 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
577 	    BUS_DMA_NOWAIT);
578 
579 	if (error != 0)
580 		aprint_error_dev(sc->sc_dev,
581 		    "could not allocate firmware transfer area DMA memory\n");
582 	return error;
583 }
584 
585 static void
586 wpi_free_fwmem(struct wpi_softc *sc)
587 {
588 	wpi_dma_contig_free(&sc->fw_dma);
589 }
590 
591 static struct wpi_rbuf *
592 wpi_alloc_rbuf(struct wpi_softc *sc)
593 {
594 	struct wpi_rbuf *rbuf;
595 
596 	mutex_enter(&sc->rxq.freelist_mtx);
597 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
598 	if (rbuf != NULL) {
599 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
600 	}
601 	mutex_exit(&sc->rxq.freelist_mtx);
602 
603 	return rbuf;
604 }
605 
606 /*
607  * This is called automatically by the network stack when the mbuf to which our
608  * Rx buffer is attached is freed.
609  */
610 static void
611 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
612 {
613 	struct wpi_rbuf *rbuf = arg;
614 	struct wpi_softc *sc = rbuf->sc;
615 
616 	/* put the buffer back in the free list */
617 
618 	mutex_enter(&sc->rxq.freelist_mtx);
619 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
620 	mutex_exit(&sc->rxq.freelist_mtx);
621 
622 	if (__predict_true(m != NULL))
623 		pool_cache_put(mb_cache, m);
624 }
625 
626 static int
627 wpi_alloc_rpool(struct wpi_softc *sc)
628 {
629 	struct wpi_rx_ring *ring = &sc->rxq;
630 	int i, error;
631 
632 	/* allocate a big chunk of DMA'able memory.. */
633 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
634 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
635 	if (error != 0) {
636 		aprint_normal_dev(sc->sc_dev,
637 		    "could not allocate Rx buffers DMA memory\n");
638 		return error;
639 	}
640 
641 	/* ..and split it into 3KB chunks */
642 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
643 	SLIST_INIT(&ring->freelist);
644 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
645 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
646 
647 		rbuf->sc = sc;	/* backpointer for callbacks */
648 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
649 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
650 
651 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
652 	}
653 
654 	return 0;
655 }
656 
657 static void
658 wpi_free_rpool(struct wpi_softc *sc)
659 {
660 	wpi_dma_contig_free(&sc->rxq.buf_dma);
661 }
662 
663 static int
664 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
665 {
666 	bus_size_t size;
667 	int i, error;
668 
669 	ring->cur = 0;
670 
671 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
672 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
673 	    (void **)&ring->desc, size,
674 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
675 	if (error != 0) {
676 		aprint_error_dev(sc->sc_dev,
677 		    "could not allocate rx ring DMA memory\n");
678 		goto fail;
679 	}
680 
681 	/*
682 	 * Setup Rx buffers.
683 	 */
684 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
685 		struct wpi_rx_data *data = &ring->data[i];
686 		struct wpi_rbuf *rbuf;
687 
688 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
689 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
690 		if (error) {
691 			aprint_error_dev(sc->sc_dev,
692 			    "could not allocate rx dma map\n");
693 			goto fail;
694 		}
695 
696 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
697 		if (data->m == NULL) {
698 			aprint_error_dev(sc->sc_dev,
699 			    "could not allocate rx mbuf\n");
700 			error = ENOMEM;
701 			goto fail;
702 		}
703 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
704 			m_freem(data->m);
705 			data->m = NULL;
706 			aprint_error_dev(sc->sc_dev,
707 			    "could not allocate rx cluster\n");
708 			error = ENOMEM;
709 			goto fail;
710 		}
711 		/* attach Rx buffer to mbuf */
712 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
713 		    rbuf);
714 		data->m->m_flags |= M_EXT_RW;
715 
716 		error = bus_dmamap_load(sc->sc_dmat, data->map,
717 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
718 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
719 		if (error) {
720 			aprint_error_dev(sc->sc_dev,
721 			    "could not load mbuf: %d\n", error);
722 			goto fail;
723 		}
724 
725 		ring->desc[i] = htole32(rbuf->paddr);
726 	}
727 
728 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
729 	    BUS_DMASYNC_PREWRITE);
730 
731 	return 0;
732 
733 fail:	wpi_free_rx_ring(sc, ring);
734 	return error;
735 }
736 
737 static void
738 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
739 {
740 	int ntries;
741 
742 	wpi_mem_lock(sc);
743 
744 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
745 	for (ntries = 0; ntries < 100; ntries++) {
746 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
747 			break;
748 		DELAY(10);
749 	}
750 #ifdef WPI_DEBUG
751 	if (ntries == 100 && wpi_debug > 0)
752 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
753 #endif
754 	wpi_mem_unlock(sc);
755 
756 	ring->cur = 0;
757 }
758 
759 static void
760 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
761 {
762 	int i;
763 
764 	wpi_dma_contig_free(&ring->desc_dma);
765 
766 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
767 		if (ring->data[i].m != NULL) {
768 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
769 			m_freem(ring->data[i].m);
770 		}
771 		if (ring->data[i].map != NULL) {
772 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
773 		}
774 	}
775 }
776 
777 static int
778 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
779     int qid)
780 {
781 	int i, error;
782 
783 	ring->qid = qid;
784 	ring->count = count;
785 	ring->queued = 0;
786 	ring->cur = 0;
787 
788 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
789 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
790 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
791 	if (error != 0) {
792 		aprint_error_dev(sc->sc_dev,
793 		    "could not allocate tx ring DMA memory\n");
794 		goto fail;
795 	}
796 
797 	/* update shared page with ring's base address */
798 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
799 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
800 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
801 
802 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
803 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
804 	    BUS_DMA_NOWAIT);
805 	if (error != 0) {
806 		aprint_error_dev(sc->sc_dev,
807 		    "could not allocate tx cmd DMA memory\n");
808 		goto fail;
809 	}
810 
811 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
812 	    M_NOWAIT | M_ZERO);
813 	if (ring->data == NULL) {
814 		aprint_error_dev(sc->sc_dev,
815 		    "could not allocate tx data slots\n");
816 		goto fail;
817 	}
818 
819 	for (i = 0; i < count; i++) {
820 		struct wpi_tx_data *data = &ring->data[i];
821 
822 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
823 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
824 		    &data->map);
825 		if (error != 0) {
826 			aprint_error_dev(sc->sc_dev,
827 			    "could not create tx buf DMA map\n");
828 			goto fail;
829 		}
830 	}
831 
832 	return 0;
833 
834 fail:	wpi_free_tx_ring(sc, ring);
835 	return error;
836 }
837 
838 static void
839 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
840 {
841 	int i, ntries;
842 
843 	wpi_mem_lock(sc);
844 
845 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
846 	for (ntries = 0; ntries < 100; ntries++) {
847 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
848 			break;
849 		DELAY(10);
850 	}
851 #ifdef WPI_DEBUG
852 	if (ntries == 100 && wpi_debug > 0) {
853 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
854 		    ring->qid);
855 	}
856 #endif
857 	wpi_mem_unlock(sc);
858 
859 	for (i = 0; i < ring->count; i++) {
860 		struct wpi_tx_data *data = &ring->data[i];
861 
862 		if (data->m != NULL) {
863 			bus_dmamap_unload(sc->sc_dmat, data->map);
864 			m_freem(data->m);
865 			data->m = NULL;
866 		}
867 	}
868 
869 	ring->queued = 0;
870 	ring->cur = 0;
871 }
872 
873 static void
874 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
875 {
876 	int i;
877 
878 	wpi_dma_contig_free(&ring->desc_dma);
879 	wpi_dma_contig_free(&ring->cmd_dma);
880 
881 	if (ring->data != NULL) {
882 		for (i = 0; i < ring->count; i++) {
883 			struct wpi_tx_data *data = &ring->data[i];
884 
885 			if (data->m != NULL) {
886 				bus_dmamap_unload(sc->sc_dmat, data->map);
887 				m_freem(data->m);
888 			}
889 		}
890 		free(ring->data, M_DEVBUF);
891 	}
892 }
893 
894 /*ARGUSED*/
895 static struct ieee80211_node *
896 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
897 {
898 	struct wpi_node *wn;
899 
900 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
901 
902 	return (struct ieee80211_node *)wn;
903 }
904 
905 static void
906 wpi_newassoc(struct ieee80211_node *ni, int isnew)
907 {
908 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
909 	int i;
910 
911 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
912 
913 	/* set rate to some reasonable initial value */
914 	for (i = ni->ni_rates.rs_nrates - 1;
915 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
916 	     i--);
917 	ni->ni_txrate = i;
918 }
919 
920 static int
921 wpi_media_change(struct ifnet *ifp)
922 {
923 	int error;
924 
925 	error = ieee80211_media_change(ifp);
926 	if (error != ENETRESET)
927 		return error;
928 
929 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
930 		wpi_init(ifp);
931 
932 	return 0;
933 }
934 
935 static int
936 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
937 {
938 	struct ifnet *ifp = ic->ic_ifp;
939 	struct wpi_softc *sc = ifp->if_softc;
940 	struct ieee80211_node *ni;
941 	enum ieee80211_state ostate = ic->ic_state;
942 	int error;
943 
944 	callout_stop(&sc->calib_to);
945 
946 	switch (nstate) {
947 	case IEEE80211_S_SCAN:
948 
949 		if (sc->is_scanning)
950 			break;
951 
952 		sc->is_scanning = true;
953 
954 		if (ostate != IEEE80211_S_SCAN) {
955 			/* make the link LED blink while we're scanning */
956 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
957 		}
958 
959 		if ((error = wpi_scan(sc)) != 0) {
960 			aprint_error_dev(sc->sc_dev,
961 			    "could not initiate scan\n");
962 			return error;
963 		}
964 		break;
965 
966 	case IEEE80211_S_ASSOC:
967 		if (ic->ic_state != IEEE80211_S_RUN)
968 			break;
969 		/* FALLTHROUGH */
970 	case IEEE80211_S_AUTH:
971 		/* reset state to handle reassociations correctly */
972 		sc->config.associd = 0;
973 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
974 
975 		if ((error = wpi_auth(sc)) != 0) {
976 			aprint_error_dev(sc->sc_dev,
977 			    "could not send authentication request\n");
978 			return error;
979 		}
980 		break;
981 
982 	case IEEE80211_S_RUN:
983 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
984 			/* link LED blinks while monitoring */
985 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
986 			break;
987 		}
988 		ni = ic->ic_bss;
989 
990 		if (ic->ic_opmode != IEEE80211_M_STA) {
991 			(void) wpi_auth(sc);    /* XXX */
992 			wpi_setup_beacon(sc, ni);
993 		}
994 
995 		wpi_enable_tsf(sc, ni);
996 
997 		/* update adapter's configuration */
998 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
999 		/* short preamble/slot time are negotiated when associating */
1000 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1001 		    WPI_CONFIG_SHSLOT);
1002 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1003 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1004 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1005 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1006 		sc->config.filter |= htole32(WPI_FILTER_BSS);
1007 		if (ic->ic_opmode != IEEE80211_M_STA)
1008 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
1009 
1010 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1011 
1012 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1013 		    sc->config.flags));
1014 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1015 		    sizeof (struct wpi_config), 1);
1016 		if (error != 0) {
1017 			aprint_error_dev(sc->sc_dev,
1018 			    "could not update configuration\n");
1019 			return error;
1020 		}
1021 
1022 		/* configuration has changed, set Tx power accordingly */
1023 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1024 			aprint_error_dev(sc->sc_dev,
1025 			    "could not set Tx power\n");
1026 			return error;
1027 		}
1028 
1029 		if (ic->ic_opmode == IEEE80211_M_STA) {
1030 			/* fake a join to init the tx rate */
1031 			wpi_newassoc(ni, 1);
1032 		}
1033 
1034 		/* start periodic calibration timer */
1035 		sc->calib_cnt = 0;
1036 		callout_schedule(&sc->calib_to, hz/2);
1037 
1038 		/* link LED always on while associated */
1039 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1040 		break;
1041 
1042 	case IEEE80211_S_INIT:
1043 		sc->is_scanning = false;
1044 		break;
1045 	}
1046 
1047 	return sc->sc_newstate(ic, nstate, arg);
1048 }
1049 
1050 /*
1051  * Grab exclusive access to NIC memory.
1052  */
1053 static void
1054 wpi_mem_lock(struct wpi_softc *sc)
1055 {
1056 	uint32_t tmp;
1057 	int ntries;
1058 
1059 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1060 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1061 
1062 	/* spin until we actually get the lock */
1063 	for (ntries = 0; ntries < 1000; ntries++) {
1064 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1065 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1066 			break;
1067 		DELAY(10);
1068 	}
1069 	if (ntries == 1000)
1070 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1071 }
1072 
1073 /*
1074  * Release lock on NIC memory.
1075  */
1076 static void
1077 wpi_mem_unlock(struct wpi_softc *sc)
1078 {
1079 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1080 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1081 }
1082 
1083 static uint32_t
1084 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1085 {
1086 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1087 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1088 }
1089 
1090 static void
1091 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1092 {
1093 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1094 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1095 }
1096 
1097 static void
1098 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1099     const uint32_t *data, int wlen)
1100 {
1101 	for (; wlen > 0; wlen--, data++, addr += 4)
1102 		wpi_mem_write(sc, addr, *data);
1103 }
1104 
1105 /*
1106  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1107  * instead of using the traditional bit-bang method.
1108  */
1109 static int
1110 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1111 {
1112 	uint8_t *out = data;
1113 	uint32_t val;
1114 	int ntries;
1115 
1116 	wpi_mem_lock(sc);
1117 	for (; len > 0; len -= 2, addr++) {
1118 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1119 
1120 		for (ntries = 0; ntries < 10; ntries++) {
1121 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1122 			    WPI_EEPROM_READY)
1123 				break;
1124 			DELAY(5);
1125 		}
1126 		if (ntries == 10) {
1127 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1128 			return ETIMEDOUT;
1129 		}
1130 		*out++ = val >> 16;
1131 		if (len > 1)
1132 			*out++ = val >> 24;
1133 	}
1134 	wpi_mem_unlock(sc);
1135 
1136 	return 0;
1137 }
1138 
1139 /*
1140  * The firmware boot code is small and is intended to be copied directly into
1141  * the NIC internal memory.
1142  */
1143 int
1144 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1145 {
1146 	int ntries;
1147 
1148 	size /= sizeof (uint32_t);
1149 
1150 	wpi_mem_lock(sc);
1151 
1152 	/* copy microcode image into NIC memory */
1153 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1154 	    (const uint32_t *)ucode, size);
1155 
1156 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1157 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1158 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1159 
1160 	/* run microcode */
1161 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1162 
1163 	/* wait for transfer to complete */
1164 	for (ntries = 0; ntries < 1000; ntries++) {
1165 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1166 			break;
1167 		DELAY(10);
1168 	}
1169 	if (ntries == 1000) {
1170 		wpi_mem_unlock(sc);
1171 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1172 		return ETIMEDOUT;
1173 	}
1174 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1175 
1176 	wpi_mem_unlock(sc);
1177 
1178 	return 0;
1179 }
1180 
1181 static int
1182 wpi_cache_firmware(struct wpi_softc *sc)
1183 {
1184 	const char *const fwname = wpi_firmware_name;
1185 	firmware_handle_t fw;
1186 	int error;
1187 
1188 	/* sc is used here only to report error messages.  */
1189 
1190 	mutex_enter(&wpi_firmware_mutex);
1191 
1192 	if (wpi_firmware_users == SIZE_MAX) {
1193 		mutex_exit(&wpi_firmware_mutex);
1194 		return ENFILE;	/* Too many of something in the system...  */
1195 	}
1196 	if (wpi_firmware_users++) {
1197 		KASSERT(wpi_firmware_image != NULL);
1198 		KASSERT(wpi_firmware_size > 0);
1199 		mutex_exit(&wpi_firmware_mutex);
1200 		return 0;	/* Already good to go.  */
1201 	}
1202 
1203 	KASSERT(wpi_firmware_image == NULL);
1204 	KASSERT(wpi_firmware_size == 0);
1205 
1206 	/* load firmware image from disk */
1207 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1208 		aprint_error_dev(sc->sc_dev,
1209 		    "could not open firmware file %s: %d\n", fwname, error);
1210 		goto fail0;
1211 	}
1212 
1213 	wpi_firmware_size = firmware_get_size(fw);
1214 
1215 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1216 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1217 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1218 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1219 		aprint_error_dev(sc->sc_dev,
1220 		    "firmware file %s too large: %zu bytes\n",
1221 		    fwname, wpi_firmware_size);
1222 		error = EFBIG;
1223 		goto fail1;
1224 	}
1225 
1226 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1227 		aprint_error_dev(sc->sc_dev,
1228 		    "firmware file %s too small: %zu bytes\n",
1229 		    fwname, wpi_firmware_size);
1230 		error = EINVAL;
1231 		goto fail1;
1232 	}
1233 
1234 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1235 	if (wpi_firmware_image == NULL) {
1236 		aprint_error_dev(sc->sc_dev,
1237 		    "not enough memory for firmware file %s\n", fwname);
1238 		error = ENOMEM;
1239 		goto fail1;
1240 	}
1241 
1242 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1243 	if (error != 0) {
1244 		aprint_error_dev(sc->sc_dev,
1245 		    "error reading firmware file %s: %d\n", fwname, error);
1246 		goto fail2;
1247 	}
1248 
1249 	/* Success!  */
1250 	firmware_close(fw);
1251 	mutex_exit(&wpi_firmware_mutex);
1252 	return 0;
1253 
1254 fail2:
1255 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1256 	wpi_firmware_image = NULL;
1257 fail1:
1258 	wpi_firmware_size = 0;
1259 	firmware_close(fw);
1260 fail0:
1261 	KASSERT(wpi_firmware_users == 1);
1262 	wpi_firmware_users = 0;
1263 	KASSERT(wpi_firmware_image == NULL);
1264 	KASSERT(wpi_firmware_size == 0);
1265 
1266 	mutex_exit(&wpi_firmware_mutex);
1267 	return error;
1268 }
1269 
1270 static void
1271 wpi_release_firmware(void)
1272 {
1273 
1274 	mutex_enter(&wpi_firmware_mutex);
1275 
1276 	KASSERT(wpi_firmware_users > 0);
1277 	KASSERT(wpi_firmware_image != NULL);
1278 	KASSERT(wpi_firmware_size != 0);
1279 
1280 	if (--wpi_firmware_users == 0) {
1281 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1282 		wpi_firmware_image = NULL;
1283 		wpi_firmware_size = 0;
1284 	}
1285 
1286 	mutex_exit(&wpi_firmware_mutex);
1287 }
1288 
1289 static int
1290 wpi_load_firmware(struct wpi_softc *sc)
1291 {
1292 	struct wpi_dma_info *dma = &sc->fw_dma;
1293 	struct wpi_firmware_hdr hdr;
1294 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1295 	const uint8_t *boot_text;
1296 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1297 	uint32_t boot_textsz;
1298 	size_t size;
1299 	int error;
1300 
1301 	if (!sc->fw_used) {
1302 		if ((error = wpi_cache_firmware(sc)) != 0)
1303 			return error;
1304 		sc->fw_used = true;
1305 	}
1306 
1307 	KASSERT(sc->fw_used);
1308 	KASSERT(wpi_firmware_image != NULL);
1309 	KASSERT(wpi_firmware_size > sizeof(hdr));
1310 
1311 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1312 
1313 	main_textsz = le32toh(hdr.main_textsz);
1314 	main_datasz = le32toh(hdr.main_datasz);
1315 	init_textsz = le32toh(hdr.init_textsz);
1316 	init_datasz = le32toh(hdr.init_datasz);
1317 	boot_textsz = le32toh(hdr.boot_textsz);
1318 
1319 	/* sanity-check firmware segments sizes */
1320 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1321 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1322 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1323 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1324 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1325 	    (boot_textsz & 3) != 0) {
1326 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1327 		error = EINVAL;
1328 		goto free_firmware;
1329 	}
1330 
1331 	/* check that all firmware segments are present */
1332 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1333 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1334 	if (wpi_firmware_size < size) {
1335 		aprint_error_dev(sc->sc_dev,
1336 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1337 		    wpi_firmware_size, size);
1338 		error = EINVAL;
1339 		goto free_firmware;
1340 	}
1341 
1342 	/* get pointers to firmware segments */
1343 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1344 	main_data = main_text + main_textsz;
1345 	init_text = main_data + main_datasz;
1346 	init_data = init_text + init_textsz;
1347 	boot_text = init_data + init_datasz;
1348 
1349 	/* copy initialization images into pre-allocated DMA-safe memory */
1350 	memcpy(dma->vaddr, init_data, init_datasz);
1351 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1352 	    init_textsz);
1353 
1354 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1355 
1356 	/* tell adapter where to find initialization images */
1357 	wpi_mem_lock(sc);
1358 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1359 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1360 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1361 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1362 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1363 	wpi_mem_unlock(sc);
1364 
1365 	/* load firmware boot code */
1366 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1367 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1368 		return error;
1369 	}
1370 
1371 	/* now press "execute" ;-) */
1372 	WPI_WRITE(sc, WPI_RESET, 0);
1373 
1374 	/* wait at most one second for first alive notification */
1375 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1376 		/* this isn't what was supposed to happen.. */
1377 		aprint_error_dev(sc->sc_dev,
1378 		    "timeout waiting for adapter to initialize\n");
1379 	}
1380 
1381 	/* copy runtime images into pre-allocated DMA-safe memory */
1382 	memcpy(dma->vaddr, main_data, main_datasz);
1383 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1384 	    main_textsz);
1385 
1386 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1387 
1388 	/* tell adapter where to find runtime images */
1389 	wpi_mem_lock(sc);
1390 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1391 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1392 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1393 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1394 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1395 	wpi_mem_unlock(sc);
1396 
1397 	/* wait at most one second for second alive notification */
1398 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1399 		/* this isn't what was supposed to happen.. */
1400 		aprint_error_dev(sc->sc_dev,
1401 		    "timeout waiting for adapter to initialize\n");
1402 	}
1403 
1404 	return error;
1405 
1406 free_firmware:
1407 	sc->fw_used = false;
1408 	wpi_release_firmware();
1409 	return error;
1410 }
1411 
1412 static void
1413 wpi_calib_timeout(void *arg)
1414 {
1415 	struct wpi_softc *sc = arg;
1416 	struct ieee80211com *ic = &sc->sc_ic;
1417 	int temp, s;
1418 
1419 	/* automatic rate control triggered every 500ms */
1420 	if (ic->ic_fixed_rate == -1) {
1421 		s = splnet();
1422 		if (ic->ic_opmode == IEEE80211_M_STA)
1423 			wpi_iter_func(sc, ic->ic_bss);
1424 		else
1425 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1426 		splx(s);
1427 	}
1428 
1429 	/* update sensor data */
1430 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1431 
1432 	/* automatic power calibration every 60s */
1433 	if (++sc->calib_cnt >= 120) {
1434 		wpi_power_calibration(sc, temp);
1435 		sc->calib_cnt = 0;
1436 	}
1437 
1438 	callout_schedule(&sc->calib_to, hz/2);
1439 }
1440 
1441 static void
1442 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1443 {
1444 	struct wpi_softc *sc = arg;
1445 	struct wpi_node *wn = (struct wpi_node *)ni;
1446 
1447 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1448 }
1449 
1450 /*
1451  * This function is called periodically (every 60 seconds) to adjust output
1452  * power to temperature changes.
1453  */
1454 void
1455 wpi_power_calibration(struct wpi_softc *sc, int temp)
1456 {
1457 	/* sanity-check read value */
1458 	if (temp < -260 || temp > 25) {
1459 		/* this can't be correct, ignore */
1460 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1461 		return;
1462 	}
1463 
1464 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1465 
1466 	/* adjust Tx power if need be */
1467 	if (abs(temp - sc->temp) <= 6)
1468 		return;
1469 
1470 	sc->temp = temp;
1471 
1472 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1473 		/* just warn, too bad for the automatic calibration... */
1474 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1475 	}
1476 }
1477 
1478 static void
1479 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1480     struct wpi_rx_data *data)
1481 {
1482 	struct ieee80211com *ic = &sc->sc_ic;
1483 	struct ifnet *ifp = ic->ic_ifp;
1484 	struct wpi_rx_ring *ring = &sc->rxq;
1485 	struct wpi_rx_stat *stat;
1486 	struct wpi_rx_head *head;
1487 	struct wpi_rx_tail *tail;
1488 	struct wpi_rbuf *rbuf;
1489 	struct ieee80211_frame *wh;
1490 	struct ieee80211_node *ni;
1491 	struct mbuf *m, *mnew;
1492 	int data_off, error, s;
1493 
1494 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1495 	    BUS_DMASYNC_POSTREAD);
1496 	stat = (struct wpi_rx_stat *)(desc + 1);
1497 
1498 	if (stat->len > WPI_STAT_MAXLEN) {
1499 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1500 		ifp->if_ierrors++;
1501 		return;
1502 	}
1503 
1504 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1505 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1506 
1507 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1508 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1509 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1510 	    le64toh(tail->tstamp)));
1511 
1512 	/*
1513 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1514 	 * to radiotap in monitor mode).
1515 	 */
1516 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1517 		DPRINTF(("rx tail flags error %x\n",
1518 		    le32toh(tail->flags)));
1519 		ifp->if_ierrors++;
1520 		return;
1521 	}
1522 
1523 	/* Compute where are the useful datas */
1524 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1525 
1526 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1527 	if (mnew == NULL) {
1528 		ifp->if_ierrors++;
1529 		return;
1530 	}
1531 
1532 	rbuf = wpi_alloc_rbuf(sc);
1533 	if (rbuf == NULL) {
1534 		m_freem(mnew);
1535 		ifp->if_ierrors++;
1536 		return;
1537 	}
1538 
1539 	/* attach Rx buffer to mbuf */
1540 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1541 		rbuf);
1542 	mnew->m_flags |= M_EXT_RW;
1543 
1544 	bus_dmamap_unload(sc->sc_dmat, data->map);
1545 
1546 	error = bus_dmamap_load(sc->sc_dmat, data->map,
1547 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1548 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1549 	if (error) {
1550 		device_printf(sc->sc_dev,
1551 		    "couldn't load rx mbuf: %d\n", error);
1552 		m_freem(mnew);
1553 		ifp->if_ierrors++;
1554 
1555 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1556 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1557 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1558 		if (error)
1559 			panic("%s: bus_dmamap_load failed: %d\n",
1560 			    device_xname(sc->sc_dev), error);
1561 		return;
1562 	}
1563 
1564 	/* new mbuf loaded successfully */
1565 	m = data->m;
1566 	data->m = mnew;
1567 
1568 	/* update Rx descriptor */
1569 	ring->desc[ring->cur] = htole32(rbuf->paddr);
1570 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1571 	    ring->desc_dma.size,
1572 	    BUS_DMASYNC_PREWRITE);
1573 
1574 	m->m_data = (char*)m->m_data + data_off;
1575 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1576 
1577 	/* finalize mbuf */
1578 	m_set_rcvif(m, ifp);
1579 
1580 	s = splnet();
1581 
1582 	if (sc->sc_drvbpf != NULL) {
1583 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1584 
1585 		tap->wr_flags = 0;
1586 		tap->wr_chan_freq =
1587 		    htole16(ic->ic_channels[head->chan].ic_freq);
1588 		tap->wr_chan_flags =
1589 		    htole16(ic->ic_channels[head->chan].ic_flags);
1590 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1591 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1592 		tap->wr_tsft = tail->tstamp;
1593 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1594 		switch (head->rate) {
1595 		/* CCK rates */
1596 		case  10: tap->wr_rate =   2; break;
1597 		case  20: tap->wr_rate =   4; break;
1598 		case  55: tap->wr_rate =  11; break;
1599 		case 110: tap->wr_rate =  22; break;
1600 		/* OFDM rates */
1601 		case 0xd: tap->wr_rate =  12; break;
1602 		case 0xf: tap->wr_rate =  18; break;
1603 		case 0x5: tap->wr_rate =  24; break;
1604 		case 0x7: tap->wr_rate =  36; break;
1605 		case 0x9: tap->wr_rate =  48; break;
1606 		case 0xb: tap->wr_rate =  72; break;
1607 		case 0x1: tap->wr_rate =  96; break;
1608 		case 0x3: tap->wr_rate = 108; break;
1609 		/* unknown rate: should not happen */
1610 		default:  tap->wr_rate =   0;
1611 		}
1612 		if (le16toh(head->flags) & 0x4)
1613 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1614 
1615 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1616 	}
1617 
1618 	/* grab a reference to the source node */
1619 	wh = mtod(m, struct ieee80211_frame *);
1620 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1621 
1622 	/* send the frame to the 802.11 layer */
1623 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1624 
1625 	/* release node reference */
1626 	ieee80211_free_node(ni);
1627 
1628 	splx(s);
1629 }
1630 
1631 static void
1632 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1633 {
1634 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1635 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1636 	struct wpi_tx_data *data = &ring->data[desc->idx];
1637 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1638 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1639 	int s;
1640 
1641 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1642 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1643 	    stat->nkill, stat->rate, le32toh(stat->duration),
1644 	    le32toh(stat->status)));
1645 
1646 	s = splnet();
1647 
1648 	/*
1649 	 * Update rate control statistics for the node.
1650 	 * XXX we should not count mgmt frames since they're always sent at
1651 	 * the lowest available bit-rate.
1652 	 */
1653 	wn->amn.amn_txcnt++;
1654 	if (stat->ntries > 0) {
1655 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1656 		wn->amn.amn_retrycnt++;
1657 	}
1658 
1659 	if ((le32toh(stat->status) & 0xff) != 1)
1660 		ifp->if_oerrors++;
1661 	else
1662 		ifp->if_opackets++;
1663 
1664 	bus_dmamap_unload(sc->sc_dmat, data->map);
1665 	m_freem(data->m);
1666 	data->m = NULL;
1667 	ieee80211_free_node(data->ni);
1668 	data->ni = NULL;
1669 
1670 	ring->queued--;
1671 
1672 	sc->sc_tx_timer = 0;
1673 	ifp->if_flags &= ~IFF_OACTIVE;
1674 	wpi_start(ifp); /* in softint */
1675 
1676 	splx(s);
1677 }
1678 
1679 static void
1680 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1681 {
1682 	struct wpi_tx_ring *ring = &sc->cmdq;
1683 	struct wpi_tx_data *data;
1684 
1685 	if ((desc->qid & 7) != 4)
1686 		return;	/* not a command ack */
1687 
1688 	data = &ring->data[desc->idx];
1689 
1690 	/* if the command was mapped in a mbuf, free it */
1691 	if (data->m != NULL) {
1692 		bus_dmamap_unload(sc->sc_dmat, data->map);
1693 		m_freem(data->m);
1694 		data->m = NULL;
1695 	}
1696 
1697 	wakeup(&ring->cmd[desc->idx]);
1698 }
1699 
1700 static void
1701 wpi_notif_intr(struct wpi_softc *sc)
1702 {
1703 	struct ieee80211com *ic = &sc->sc_ic;
1704 	struct ifnet *ifp =  ic->ic_ifp;
1705 	uint32_t hw;
1706 	int s;
1707 
1708 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1709 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1710 
1711 	hw = le32toh(sc->shared->next);
1712 	while (sc->rxq.cur != hw) {
1713 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1714 		struct wpi_rx_desc *desc;
1715 
1716 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1717 		    BUS_DMASYNC_POSTREAD);
1718 		desc = mtod(data->m, struct wpi_rx_desc *);
1719 
1720 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1721 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1722 		    desc->type, le32toh(desc->len)));
1723 
1724 		if (!(desc->qid & 0x80))	/* reply to a command */
1725 			wpi_cmd_intr(sc, desc);
1726 
1727 		switch (desc->type) {
1728 		case WPI_RX_DONE:
1729 			/* a 802.11 frame was received */
1730 			wpi_rx_intr(sc, desc, data);
1731 			break;
1732 
1733 		case WPI_TX_DONE:
1734 			/* a 802.11 frame has been transmitted */
1735 			wpi_tx_intr(sc, desc);
1736 			break;
1737 
1738 		case WPI_UC_READY:
1739 		{
1740 			struct wpi_ucode_info *uc =
1741 			    (struct wpi_ucode_info *)(desc + 1);
1742 
1743 			/* the microcontroller is ready */
1744 			DPRINTF(("microcode alive notification version %x "
1745 			    "alive %x\n", le32toh(uc->version),
1746 			    le32toh(uc->valid)));
1747 
1748 			if (le32toh(uc->valid) != 1) {
1749 				aprint_error_dev(sc->sc_dev,
1750 				    "microcontroller initialization failed\n");
1751 			}
1752 			break;
1753 		}
1754 		case WPI_STATE_CHANGED:
1755 		{
1756 			uint32_t *status = (uint32_t *)(desc + 1);
1757 
1758 			/* enabled/disabled notification */
1759 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1760 
1761 			if (le32toh(*status) & 1) {
1762 				s = splnet();
1763 				/* the radio button has to be pushed */
1764 				/* wake up thread to signal powerd */
1765 				cv_signal(&sc->sc_rsw_cv);
1766 				aprint_error_dev(sc->sc_dev,
1767 				    "Radio transmitter is off\n");
1768 				/* turn the interface down */
1769 				ifp->if_flags &= ~IFF_UP;
1770 				wpi_stop(ifp, 1);
1771 				splx(s);
1772 				return;	/* no further processing */
1773 			}
1774 			break;
1775 		}
1776 		case WPI_START_SCAN:
1777 		{
1778 #if 0
1779 			struct wpi_start_scan *scan =
1780 			    (struct wpi_start_scan *)(desc + 1);
1781 
1782 			DPRINTFN(2, ("scanning channel %d status %x\n",
1783 			    scan->chan, le32toh(scan->status)));
1784 
1785 			/* fix current channel */
1786 			ic->ic_curchan = &ic->ic_channels[scan->chan];
1787 #endif
1788 			break;
1789 		}
1790 		case WPI_STOP_SCAN:
1791 		{
1792 #ifdef WPI_DEBUG
1793 			struct wpi_stop_scan *scan =
1794 			    (struct wpi_stop_scan *)(desc + 1);
1795 #endif
1796 
1797 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1798 			    scan->nchan, scan->status, scan->chan));
1799 
1800 			s = splnet();
1801 			sc->is_scanning = false;
1802 			if (ic->ic_state == IEEE80211_S_SCAN)
1803 				ieee80211_next_scan(ic);
1804 			splx(s);
1805 			break;
1806 		}
1807 		}
1808 
1809 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1810 	}
1811 
1812 	/* tell the firmware what we have processed */
1813 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1814 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1815 }
1816 
1817 static int
1818 wpi_intr(void *arg)
1819 {
1820 	struct wpi_softc *sc = arg;
1821 	uint32_t r;
1822 
1823 	r = WPI_READ(sc, WPI_INTR);
1824 	if (r == 0 || r == 0xffffffff)
1825 		return 0;	/* not for us */
1826 
1827 	DPRINTFN(6, ("interrupt reg %x\n", r));
1828 
1829 	/* disable interrupts */
1830 	WPI_WRITE(sc, WPI_MASK, 0);
1831 
1832 	softint_schedule(sc->sc_soft_ih);
1833 	return 1;
1834 }
1835 
1836 static void
1837 wpi_softintr(void *arg)
1838 {
1839 	struct wpi_softc *sc = arg;
1840 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1841 	uint32_t r;
1842 
1843 	r = WPI_READ(sc, WPI_INTR);
1844 	if (r == 0 || r == 0xffffffff)
1845 		goto out;
1846 
1847 	/* ack interrupts */
1848 	WPI_WRITE(sc, WPI_INTR, r);
1849 
1850 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1851 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1852 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1853 		ifp->if_flags &= ~IFF_UP;
1854 		wpi_stop(ifp, 1);
1855 		return;
1856 	}
1857 
1858 	if (r & WPI_RX_INTR)
1859 		wpi_notif_intr(sc);
1860 
1861 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1862 		wakeup(sc);
1863 
1864  out:
1865 	/* re-enable interrupts */
1866 	if (ifp->if_flags & IFF_UP)
1867 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1868 }
1869 
1870 static uint8_t
1871 wpi_plcp_signal(int rate)
1872 {
1873 	switch (rate) {
1874 	/* CCK rates (returned values are device-dependent) */
1875 	case 2:		return 10;
1876 	case 4:		return 20;
1877 	case 11:	return 55;
1878 	case 22:	return 110;
1879 
1880 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1881 	/* R1-R4, (u)ral is R4-R1 */
1882 	case 12:	return 0xd;
1883 	case 18:	return 0xf;
1884 	case 24:	return 0x5;
1885 	case 36:	return 0x7;
1886 	case 48:	return 0x9;
1887 	case 72:	return 0xb;
1888 	case 96:	return 0x1;
1889 	case 108:	return 0x3;
1890 
1891 	/* unsupported rates (should not get there) */
1892 	default:	return 0;
1893 	}
1894 }
1895 
1896 /* quickly determine if a given rate is CCK or OFDM */
1897 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1898 
1899 static int
1900 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1901     int ac)
1902 {
1903 	struct ieee80211com *ic = &sc->sc_ic;
1904 	struct wpi_tx_ring *ring = &sc->txq[ac];
1905 	struct wpi_tx_desc *desc;
1906 	struct wpi_tx_data *data;
1907 	struct wpi_tx_cmd *cmd;
1908 	struct wpi_cmd_data *tx;
1909 	struct ieee80211_frame *wh;
1910 	struct ieee80211_key *k;
1911 	const struct chanAccParams *cap;
1912 	struct mbuf *mnew;
1913 	int i, rate, error, hdrlen, noack = 0;
1914 
1915 	desc = &ring->desc[ring->cur];
1916 	data = &ring->data[ring->cur];
1917 
1918 	wh = mtod(m0, struct ieee80211_frame *);
1919 
1920 	if (ieee80211_has_qos(wh)) {
1921 		cap = &ic->ic_wme.wme_chanParams;
1922 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1923 	}
1924 
1925 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1926 		k = ieee80211_crypto_encap(ic, ni, m0);
1927 		if (k == NULL) {
1928 			m_freem(m0);
1929 			return ENOBUFS;
1930 		}
1931 
1932 		/* packet header may have moved, reset our local pointer */
1933 		wh = mtod(m0, struct ieee80211_frame *);
1934 	}
1935 
1936 	hdrlen = ieee80211_anyhdrsize(wh);
1937 
1938 	/* pickup a rate */
1939 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1940 	    IEEE80211_FC0_TYPE_MGT) {
1941 		/* mgmt frames are sent at the lowest available bit-rate */
1942 		rate = ni->ni_rates.rs_rates[0];
1943 	} else {
1944 		if (ic->ic_fixed_rate != -1) {
1945 			rate = ic->ic_sup_rates[ic->ic_curmode].
1946 			    rs_rates[ic->ic_fixed_rate];
1947 		} else
1948 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1949 	}
1950 	rate &= IEEE80211_RATE_VAL;
1951 
1952 	if (sc->sc_drvbpf != NULL) {
1953 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1954 
1955 		tap->wt_flags = 0;
1956 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1957 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1958 		tap->wt_rate = rate;
1959 		tap->wt_hwqueue = ac;
1960 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1961 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1962 
1963 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1964 	}
1965 
1966 	cmd = &ring->cmd[ring->cur];
1967 	cmd->code = WPI_CMD_TX_DATA;
1968 	cmd->flags = 0;
1969 	cmd->qid = ring->qid;
1970 	cmd->idx = ring->cur;
1971 
1972 	tx = (struct wpi_cmd_data *)cmd->data;
1973 	/* no need to zero tx, all fields are reinitialized here */
1974 	tx->flags = 0;
1975 
1976 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1977 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1978 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1979 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1980 
1981 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1982 
1983 	/* retrieve destination node's id */
1984 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1985 		WPI_ID_BSS;
1986 
1987 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1988 	    IEEE80211_FC0_TYPE_MGT) {
1989 		/* tell h/w to set timestamp in probe responses */
1990 		if ((wh->i_fc[0] &
1991 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1992 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1993 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1994 
1995 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1996 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1997 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1998 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1999 			tx->timeout = htole16(3);
2000 		else
2001 			tx->timeout = htole16(2);
2002 	} else
2003 		tx->timeout = htole16(0);
2004 
2005 	tx->rate = wpi_plcp_signal(rate);
2006 
2007 	/* be very persistant at sending frames out */
2008 	tx->rts_ntries = 7;
2009 	tx->data_ntries = 15;
2010 
2011 	tx->ofdm_mask = 0xff;
2012 	tx->cck_mask = 0x0f;
2013 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2014 
2015 	tx->len = htole16(m0->m_pkthdr.len);
2016 
2017 	/* save and trim IEEE802.11 header */
2018 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2019 	m_adj(m0, hdrlen);
2020 
2021 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2022 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2023 	if (error != 0 && error != EFBIG) {
2024 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2025 		    error);
2026 		m_freem(m0);
2027 		return error;
2028 	}
2029 	if (error != 0) {
2030 		/* too many fragments, linearize */
2031 
2032 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2033 		if (mnew == NULL) {
2034 			m_freem(m0);
2035 			return ENOMEM;
2036 		}
2037 		M_COPY_PKTHDR(mnew, m0);
2038 		if (m0->m_pkthdr.len > MHLEN) {
2039 			MCLGET(mnew, M_DONTWAIT);
2040 			if (!(mnew->m_flags & M_EXT)) {
2041 				m_freem(m0);
2042 				m_freem(mnew);
2043 				return ENOMEM;
2044 			}
2045 		}
2046 
2047 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2048 		m_freem(m0);
2049 		mnew->m_len = mnew->m_pkthdr.len;
2050 		m0 = mnew;
2051 
2052 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2053 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2054 		if (error != 0) {
2055 			aprint_error_dev(sc->sc_dev,
2056 			    "could not map mbuf (error %d)\n", error);
2057 			m_freem(m0);
2058 			return error;
2059 		}
2060 	}
2061 
2062 	data->m = m0;
2063 	data->ni = ni;
2064 
2065 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2066 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2067 
2068 	/* first scatter/gather segment is used by the tx data command */
2069 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2070 	    (1 + data->map->dm_nsegs) << 24);
2071 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2072 	    ring->cur * sizeof (struct wpi_tx_cmd));
2073 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
2074 	    ((hdrlen + 3) & ~3));
2075 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2076 		desc->segs[i].addr =
2077 		    htole32(data->map->dm_segs[i - 1].ds_addr);
2078 		desc->segs[i].len  =
2079 		    htole32(data->map->dm_segs[i - 1].ds_len);
2080 	}
2081 
2082 	ring->queued++;
2083 
2084 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2085 	    data->map->dm_mapsize,
2086 	    BUS_DMASYNC_PREWRITE);
2087 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2088 	    ring->cmd_dma.size,
2089 	    BUS_DMASYNC_PREWRITE);
2090 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2091 	    ring->desc_dma.size,
2092 	    BUS_DMASYNC_PREWRITE);
2093 
2094 	/* kick ring */
2095 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2096 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2097 
2098 	return 0;
2099 }
2100 
2101 static void
2102 wpi_start(struct ifnet *ifp)
2103 {
2104 	struct wpi_softc *sc = ifp->if_softc;
2105 	struct ieee80211com *ic = &sc->sc_ic;
2106 	struct ieee80211_node *ni;
2107 	struct ether_header *eh;
2108 	struct mbuf *m0;
2109 	int ac;
2110 
2111 	/*
2112 	 * net80211 may still try to send management frames even if the
2113 	 * IFF_RUNNING flag is not set...
2114 	 */
2115 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2116 		return;
2117 
2118 	for (;;) {
2119 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2120 		if (m0 != NULL) {
2121 
2122 			ni = M_GETCTX(m0, struct ieee80211_node *);
2123 			M_CLEARCTX(m0);
2124 
2125 			/* management frames go into ring 0 */
2126 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2127 				ifp->if_oerrors++;
2128 				continue;
2129 			}
2130 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2131 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2132 				ifp->if_oerrors++;
2133 				break;
2134 			}
2135 		} else {
2136 			if (ic->ic_state != IEEE80211_S_RUN)
2137 				break;
2138 			IFQ_POLL(&ifp->if_snd, m0);
2139 			if (m0 == NULL)
2140 				break;
2141 
2142 			if (m0->m_len < sizeof (*eh) &&
2143 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2144 				ifp->if_oerrors++;
2145 				continue;
2146 			}
2147 			eh = mtod(m0, struct ether_header *);
2148 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2149 			if (ni == NULL) {
2150 				m_freem(m0);
2151 				ifp->if_oerrors++;
2152 				continue;
2153 			}
2154 
2155 			/* classify mbuf so we can find which tx ring to use */
2156 			if (ieee80211_classify(ic, m0, ni) != 0) {
2157 				m_freem(m0);
2158 				ieee80211_free_node(ni);
2159 				ifp->if_oerrors++;
2160 				continue;
2161 			}
2162 
2163 			/* no QoS encapsulation for EAPOL frames */
2164 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2165 			    M_WME_GETAC(m0) : WME_AC_BE;
2166 
2167 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2168 				/* there is no place left in this ring */
2169 				ifp->if_flags |= IFF_OACTIVE;
2170 				break;
2171 			}
2172 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2173 			bpf_mtap(ifp, m0, BPF_D_OUT);
2174 			m0 = ieee80211_encap(ic, m0, ni);
2175 			if (m0 == NULL) {
2176 				ieee80211_free_node(ni);
2177 				ifp->if_oerrors++;
2178 				continue;
2179 			}
2180 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2181 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2182 				ieee80211_free_node(ni);
2183 				ifp->if_oerrors++;
2184 				break;
2185 			}
2186 		}
2187 
2188 		sc->sc_tx_timer = 5;
2189 		ifp->if_timer = 1;
2190 	}
2191 }
2192 
2193 static void
2194 wpi_watchdog(struct ifnet *ifp)
2195 {
2196 	struct wpi_softc *sc = ifp->if_softc;
2197 
2198 	ifp->if_timer = 0;
2199 
2200 	if (sc->sc_tx_timer > 0) {
2201 		if (--sc->sc_tx_timer == 0) {
2202 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2203 			ifp->if_flags &= ~IFF_UP;
2204 			wpi_stop(ifp, 1);
2205 			ifp->if_oerrors++;
2206 			return;
2207 		}
2208 		ifp->if_timer = 1;
2209 	}
2210 
2211 	ieee80211_watchdog(&sc->sc_ic);
2212 }
2213 
2214 static int
2215 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2216 {
2217 #define IS_RUNNING(ifp) \
2218 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2219 
2220 	struct wpi_softc *sc = ifp->if_softc;
2221 	struct ieee80211com *ic = &sc->sc_ic;
2222 	int s, error = 0;
2223 
2224 	s = splnet();
2225 
2226 	switch (cmd) {
2227 	case SIOCSIFFLAGS:
2228 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2229 			break;
2230 		if (ifp->if_flags & IFF_UP) {
2231 			if (!(ifp->if_flags & IFF_RUNNING))
2232 				wpi_init(ifp);
2233 		} else {
2234 			if (ifp->if_flags & IFF_RUNNING)
2235 				wpi_stop(ifp, 1);
2236 		}
2237 		break;
2238 
2239 	case SIOCADDMULTI:
2240 	case SIOCDELMULTI:
2241 		/* XXX no h/w multicast filter? --dyoung */
2242 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2243 			/* setup multicast filter, etc */
2244 			error = 0;
2245 		}
2246 		break;
2247 
2248 	default:
2249 		error = ieee80211_ioctl(ic, cmd, data);
2250 	}
2251 
2252 	if (error == ENETRESET) {
2253 		if (IS_RUNNING(ifp) &&
2254 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2255 			wpi_init(ifp);
2256 		error = 0;
2257 	}
2258 
2259 	splx(s);
2260 	return error;
2261 
2262 #undef IS_RUNNING
2263 }
2264 
2265 /*
2266  * Extract various information from EEPROM.
2267  */
2268 static void
2269 wpi_read_eeprom(struct wpi_softc *sc)
2270 {
2271 	struct ieee80211com *ic = &sc->sc_ic;
2272 	char domain[4];
2273 	int i;
2274 
2275 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2276 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2277 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2278 
2279 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2280 	    sc->type));
2281 
2282 	/* read and print regulatory domain */
2283 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2284 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2285 
2286 	/* read and print MAC address */
2287 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2288 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2289 
2290 	/* read the list of authorized channels */
2291 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2292 		wpi_read_eeprom_channels(sc, i);
2293 
2294 	/* read the list of power groups */
2295 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2296 		wpi_read_eeprom_group(sc, i);
2297 }
2298 
2299 static void
2300 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2301 {
2302 	struct ieee80211com *ic = &sc->sc_ic;
2303 	const struct wpi_chan_band *band = &wpi_bands[n];
2304 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2305 	int chan, i;
2306 
2307 	wpi_read_prom_data(sc, band->addr, channels,
2308 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2309 
2310 	for (i = 0; i < band->nchan; i++) {
2311 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2312 			continue;
2313 
2314 		chan = band->chan[i];
2315 
2316 		if (n == 0) {	/* 2GHz band */
2317 			ic->ic_channels[chan].ic_freq =
2318 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2319 			ic->ic_channels[chan].ic_flags =
2320 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2321 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2322 
2323 		} else {	/* 5GHz band */
2324 			/*
2325 			 * Some 3945ABG adapters support channels 7, 8, 11
2326 			 * and 12 in the 2GHz *and* 5GHz bands.
2327 			 * Because of limitations in our net80211(9) stack,
2328 			 * we can't support these channels in 5GHz band.
2329 			 */
2330 			if (chan <= 14)
2331 				continue;
2332 
2333 			ic->ic_channels[chan].ic_freq =
2334 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2335 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2336 		}
2337 
2338 		/* is active scan allowed on this channel? */
2339 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2340 			ic->ic_channels[chan].ic_flags |=
2341 			    IEEE80211_CHAN_PASSIVE;
2342 		}
2343 
2344 		/* save maximum allowed power for this channel */
2345 		sc->maxpwr[chan] = channels[i].maxpwr;
2346 
2347 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2348 		    chan, channels[i].flags, sc->maxpwr[chan]));
2349 	}
2350 }
2351 
2352 static void
2353 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2354 {
2355 	struct wpi_power_group *group = &sc->groups[n];
2356 	struct wpi_eeprom_group rgroup;
2357 	int i;
2358 
2359 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2360 	    sizeof rgroup);
2361 
2362 	/* save power group information */
2363 	group->chan   = rgroup.chan;
2364 	group->maxpwr = rgroup.maxpwr;
2365 	/* temperature at which the samples were taken */
2366 	group->temp   = (int16_t)le16toh(rgroup.temp);
2367 
2368 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2369 	    group->chan, group->maxpwr, group->temp));
2370 
2371 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2372 		group->samples[i].index = rgroup.samples[i].index;
2373 		group->samples[i].power = rgroup.samples[i].power;
2374 
2375 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2376 		    group->samples[i].index, group->samples[i].power));
2377 	}
2378 }
2379 
2380 /*
2381  * Send a command to the firmware.
2382  */
2383 static int
2384 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2385 {
2386 	struct wpi_tx_ring *ring = &sc->cmdq;
2387 	struct wpi_tx_desc *desc;
2388 	struct wpi_tx_cmd *cmd;
2389 	struct wpi_dma_info *dma;
2390 
2391 	KASSERT(size <= sizeof cmd->data);
2392 
2393 	desc = &ring->desc[ring->cur];
2394 	cmd = &ring->cmd[ring->cur];
2395 
2396 	cmd->code = code;
2397 	cmd->flags = 0;
2398 	cmd->qid = ring->qid;
2399 	cmd->idx = ring->cur;
2400 	memcpy(cmd->data, buf, size);
2401 
2402 	dma = &ring->cmd_dma;
2403 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2404 
2405 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2406 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2407 	    ring->cur * sizeof (struct wpi_tx_cmd));
2408 	desc->segs[0].len  = htole32(4 + size);
2409 
2410 	dma = &ring->desc_dma;
2411 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2412 
2413 	/* kick cmd ring */
2414 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2415 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2416 
2417 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2418 }
2419 
2420 static int
2421 wpi_wme_update(struct ieee80211com *ic)
2422 {
2423 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2424 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2425 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2426 	const struct wmeParams *wmep;
2427 	struct wpi_wme_setup wme;
2428 	int ac;
2429 
2430 	/* don't override default WME values if WME is not actually enabled */
2431 	if (!(ic->ic_flags & IEEE80211_F_WME))
2432 		return 0;
2433 
2434 	wme.flags = 0;
2435 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2436 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2437 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2438 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2439 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2440 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2441 
2442 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2443 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2444 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2445 	}
2446 
2447 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2448 #undef WPI_USEC
2449 #undef WPI_EXP2
2450 }
2451 
2452 /*
2453  * Configure h/w multi-rate retries.
2454  */
2455 static int
2456 wpi_mrr_setup(struct wpi_softc *sc)
2457 {
2458 	struct ieee80211com *ic = &sc->sc_ic;
2459 	struct wpi_mrr_setup mrr;
2460 	int i, error;
2461 
2462 	/* CCK rates (not used with 802.11a) */
2463 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2464 		mrr.rates[i].flags = 0;
2465 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2466 		/* fallback to the immediate lower CCK rate (if any) */
2467 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2468 		/* try one time at this rate before falling back to "next" */
2469 		mrr.rates[i].ntries = 1;
2470 	}
2471 
2472 	/* OFDM rates (not used with 802.11b) */
2473 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2474 		mrr.rates[i].flags = 0;
2475 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2476 		/* fallback to the immediate lower rate (if any) */
2477 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2478 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2479 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2480 			WPI_OFDM6 : WPI_CCK2) :
2481 		    i - 1;
2482 		/* try one time at this rate before falling back to "next" */
2483 		mrr.rates[i].ntries = 1;
2484 	}
2485 
2486 	/* setup MRR for control frames */
2487 	mrr.which = htole32(WPI_MRR_CTL);
2488 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2489 	if (error != 0) {
2490 		aprint_error_dev(sc->sc_dev,
2491 		    "could not setup MRR for control frames\n");
2492 		return error;
2493 	}
2494 
2495 	/* setup MRR for data frames */
2496 	mrr.which = htole32(WPI_MRR_DATA);
2497 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2498 	if (error != 0) {
2499 		aprint_error_dev(sc->sc_dev,
2500 		    "could not setup MRR for data frames\n");
2501 		return error;
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 static void
2508 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2509 {
2510 	struct wpi_cmd_led led;
2511 
2512 	led.which = which;
2513 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2514 	led.off = off;
2515 	led.on = on;
2516 
2517 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2518 }
2519 
2520 static void
2521 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2522 {
2523 	struct wpi_cmd_tsf tsf;
2524 	uint64_t val, mod;
2525 
2526 	memset(&tsf, 0, sizeof tsf);
2527 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2528 	tsf.bintval = htole16(ni->ni_intval);
2529 	tsf.lintval = htole16(10);
2530 
2531 	/* compute remaining time until next beacon */
2532 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2533 	mod = le64toh(tsf.tstamp) % val;
2534 	tsf.binitval = htole32((uint32_t)(val - mod));
2535 
2536 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2537 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2538 
2539 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2540 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2541 }
2542 
2543 /*
2544  * Update Tx power to match what is defined for channel `c'.
2545  */
2546 static int
2547 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2548 {
2549 	struct ieee80211com *ic = &sc->sc_ic;
2550 	struct wpi_power_group *group;
2551 	struct wpi_cmd_txpower txpower;
2552 	u_int chan;
2553 	int i;
2554 
2555 	/* get channel number */
2556 	chan = ieee80211_chan2ieee(ic, c);
2557 
2558 	/* find the power group to which this channel belongs */
2559 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2560 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2561 			if (chan <= group->chan)
2562 				break;
2563 	} else
2564 		group = &sc->groups[0];
2565 
2566 	memset(&txpower, 0, sizeof txpower);
2567 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2568 	txpower.chan = htole16(chan);
2569 
2570 	/* set Tx power for all OFDM and CCK rates */
2571 	for (i = 0; i <= 11 ; i++) {
2572 		/* retrieve Tx power for this channel/rate combination */
2573 		int idx = wpi_get_power_index(sc, group, c,
2574 		    wpi_ridx_to_rate[i]);
2575 
2576 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2577 
2578 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2579 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2580 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2581 		} else {
2582 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2583 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2584 		}
2585 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2586 		    wpi_ridx_to_rate[i], idx));
2587 	}
2588 
2589 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2590 }
2591 
2592 /*
2593  * Determine Tx power index for a given channel/rate combination.
2594  * This takes into account the regulatory information from EEPROM and the
2595  * current temperature.
2596  */
2597 static int
2598 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2599     struct ieee80211_channel *c, int rate)
2600 {
2601 /* fixed-point arithmetic division using a n-bit fractional part */
2602 #define fdivround(a, b, n)	\
2603 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2604 
2605 /* linear interpolation */
2606 #define interpolate(x, x1, y1, x2, y2, n)	\
2607 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2608 
2609 	struct ieee80211com *ic = &sc->sc_ic;
2610 	struct wpi_power_sample *sample;
2611 	int pwr, idx;
2612 	u_int chan;
2613 
2614 	/* get channel number */
2615 	chan = ieee80211_chan2ieee(ic, c);
2616 
2617 	/* default power is group's maximum power - 3dB */
2618 	pwr = group->maxpwr / 2;
2619 
2620 	/* decrease power for highest OFDM rates to reduce distortion */
2621 	switch (rate) {
2622 	case 72:	/* 36Mb/s */
2623 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2624 		break;
2625 	case 96:	/* 48Mb/s */
2626 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2627 		break;
2628 	case 108:	/* 54Mb/s */
2629 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2630 		break;
2631 	}
2632 
2633 	/* never exceed channel's maximum allowed Tx power */
2634 	pwr = min(pwr, sc->maxpwr[chan]);
2635 
2636 	/* retrieve power index into gain tables from samples */
2637 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2638 		if (pwr > sample[1].power)
2639 			break;
2640 	/* fixed-point linear interpolation using a 19-bit fractional part */
2641 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2642 	    sample[1].power, sample[1].index, 19);
2643 
2644 	/*-
2645 	 * Adjust power index based on current temperature:
2646 	 * - if cooler than factory-calibrated: decrease output power
2647 	 * - if warmer than factory-calibrated: increase output power
2648 	 */
2649 	idx -= (sc->temp - group->temp) * 11 / 100;
2650 
2651 	/* decrease power for CCK rates (-5dB) */
2652 	if (!WPI_RATE_IS_OFDM(rate))
2653 		idx += 10;
2654 
2655 	/* keep power index in a valid range */
2656 	if (idx < 0)
2657 		return 0;
2658 	if (idx > WPI_MAX_PWR_INDEX)
2659 		return WPI_MAX_PWR_INDEX;
2660 	return idx;
2661 
2662 #undef interpolate
2663 #undef fdivround
2664 }
2665 
2666 /*
2667  * Build a beacon frame that the firmware will broadcast periodically in
2668  * IBSS or HostAP modes.
2669  */
2670 static int
2671 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2672 {
2673 	struct ieee80211com *ic = &sc->sc_ic;
2674 	struct wpi_tx_ring *ring = &sc->cmdq;
2675 	struct wpi_tx_desc *desc;
2676 	struct wpi_tx_data *data;
2677 	struct wpi_tx_cmd *cmd;
2678 	struct wpi_cmd_beacon *bcn;
2679 	struct ieee80211_beacon_offsets bo;
2680 	struct mbuf *m0;
2681 	int error;
2682 
2683 	desc = &ring->desc[ring->cur];
2684 	data = &ring->data[ring->cur];
2685 
2686 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2687 	if (m0 == NULL) {
2688 		aprint_error_dev(sc->sc_dev,
2689 		    "could not allocate beacon frame\n");
2690 		return ENOMEM;
2691 	}
2692 
2693 	cmd = &ring->cmd[ring->cur];
2694 	cmd->code = WPI_CMD_SET_BEACON;
2695 	cmd->flags = 0;
2696 	cmd->qid = ring->qid;
2697 	cmd->idx = ring->cur;
2698 
2699 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2700 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2701 	bcn->id = WPI_ID_BROADCAST;
2702 	bcn->ofdm_mask = 0xff;
2703 	bcn->cck_mask = 0x0f;
2704 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2705 	bcn->len = htole16(m0->m_pkthdr.len);
2706 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2707 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2708 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2709 
2710 	/* save and trim IEEE802.11 header */
2711 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2712 	m_adj(m0, sizeof (struct ieee80211_frame));
2713 
2714 	/* assume beacon frame is contiguous */
2715 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2716 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2717 	if (error != 0) {
2718 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2719 		m_freem(m0);
2720 		return error;
2721 	}
2722 
2723 	data->m = m0;
2724 
2725 	/* first scatter/gather segment is used by the beacon command */
2726 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2727 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2728 	    ring->cur * sizeof (struct wpi_tx_cmd));
2729 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2730 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2731 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2732 
2733 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2734 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2735 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2736 	    BUS_DMASYNC_PREWRITE);
2737 
2738 	/* kick cmd ring */
2739 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2740 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2741 
2742 	return 0;
2743 }
2744 
2745 static int
2746 wpi_auth(struct wpi_softc *sc)
2747 {
2748 	struct ieee80211com *ic = &sc->sc_ic;
2749 	struct ieee80211_node *ni = ic->ic_bss;
2750 	struct wpi_node_info node;
2751 	int error;
2752 
2753 	/* update adapter's configuration */
2754 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2755 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2756 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2757 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2758 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2759 		    WPI_CONFIG_24GHZ);
2760 	}
2761 	switch (ic->ic_curmode) {
2762 	case IEEE80211_MODE_11A:
2763 		sc->config.cck_mask  = 0;
2764 		sc->config.ofdm_mask = 0x15;
2765 		break;
2766 	case IEEE80211_MODE_11B:
2767 		sc->config.cck_mask  = 0x03;
2768 		sc->config.ofdm_mask = 0;
2769 		break;
2770 	default:	/* assume 802.11b/g */
2771 		sc->config.cck_mask  = 0x0f;
2772 		sc->config.ofdm_mask = 0x15;
2773 	}
2774 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2775 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2776 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2777 	    sizeof (struct wpi_config), 1);
2778 	if (error != 0) {
2779 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2780 		return error;
2781 	}
2782 
2783 	/* configuration has changed, set Tx power accordingly */
2784 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2785 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2786 		return error;
2787 	}
2788 
2789 	/* add default node */
2790 	memset(&node, 0, sizeof node);
2791 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2792 	node.id = WPI_ID_BSS;
2793 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2794 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2795 	node.action = htole32(WPI_ACTION_SET_RATE);
2796 	node.antenna = WPI_ANTENNA_BOTH;
2797 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2798 	if (error != 0) {
2799 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2800 		return error;
2801 	}
2802 
2803 	return 0;
2804 }
2805 
2806 /*
2807  * Send a scan request to the firmware.  Since this command is huge, we map it
2808  * into a mbuf instead of using the pre-allocated set of commands.
2809  */
2810 static int
2811 wpi_scan(struct wpi_softc *sc)
2812 {
2813 	struct ieee80211com *ic = &sc->sc_ic;
2814 	struct wpi_tx_ring *ring = &sc->cmdq;
2815 	struct wpi_tx_desc *desc;
2816 	struct wpi_tx_data *data;
2817 	struct wpi_tx_cmd *cmd;
2818 	struct wpi_scan_hdr *hdr;
2819 	struct wpi_scan_chan *chan;
2820 	struct ieee80211_frame *wh;
2821 	struct ieee80211_rateset *rs;
2822 	struct ieee80211_channel *c;
2823 	uint8_t *frm;
2824 	int pktlen, error, nrates;
2825 
2826 	if (ic->ic_curchan == NULL)
2827 		return EIO;
2828 
2829 	desc = &ring->desc[ring->cur];
2830 	data = &ring->data[ring->cur];
2831 
2832 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2833 	if (data->m == NULL) {
2834 		aprint_error_dev(sc->sc_dev,
2835 		    "could not allocate mbuf for scan command\n");
2836 		return ENOMEM;
2837 	}
2838 	MCLGET(data->m, M_DONTWAIT);
2839 	if (!(data->m->m_flags & M_EXT)) {
2840 		m_freem(data->m);
2841 		data->m = NULL;
2842 		aprint_error_dev(sc->sc_dev,
2843 		    "could not allocate mbuf for scan command\n");
2844 		return ENOMEM;
2845 	}
2846 
2847 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2848 	cmd->code = WPI_CMD_SCAN;
2849 	cmd->flags = 0;
2850 	cmd->qid = ring->qid;
2851 	cmd->idx = ring->cur;
2852 
2853 	hdr = (struct wpi_scan_hdr *)cmd->data;
2854 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2855 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2856 	hdr->cmd.id = WPI_ID_BROADCAST;
2857 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2858 	/*
2859 	 * Move to the next channel if no packets are received within 5 msecs
2860 	 * after sending the probe request (this helps to reduce the duration
2861 	 * of active scans).
2862 	 */
2863 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2864 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2865 
2866 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2867 		hdr->crc_threshold = htole16(1);
2868 		/* send probe requests at 6Mbps */
2869 		hdr->cmd.rate = wpi_plcp_signal(12);
2870 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2871 	} else {
2872 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2873 		/* send probe requests at 1Mbps */
2874 		hdr->cmd.rate = wpi_plcp_signal(2);
2875 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2876 	}
2877 
2878 	/* for directed scans, firmware inserts the essid IE itself */
2879 	if (ic->ic_des_esslen != 0) {
2880 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2881 		hdr->essid[0].len = ic->ic_des_esslen;
2882 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2883 	}
2884 
2885 	/*
2886 	 * Build a probe request frame.  Most of the following code is a
2887 	 * copy & paste of what is done in net80211.
2888 	 */
2889 	wh = (struct ieee80211_frame *)(hdr + 1);
2890 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2891 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2892 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2893 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2894 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2895 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2896 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2897 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2898 
2899 	frm = (uint8_t *)(wh + 1);
2900 
2901 	/* add empty essid IE (firmware generates it for directed scans) */
2902 	*frm++ = IEEE80211_ELEMID_SSID;
2903 	*frm++ = 0;
2904 
2905 	/* add supported rates IE */
2906 	*frm++ = IEEE80211_ELEMID_RATES;
2907 	nrates = rs->rs_nrates;
2908 	if (nrates > IEEE80211_RATE_SIZE)
2909 		nrates = IEEE80211_RATE_SIZE;
2910 	*frm++ = nrates;
2911 	memcpy(frm, rs->rs_rates, nrates);
2912 	frm += nrates;
2913 
2914 	/* add supported xrates IE */
2915 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2916 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2917 		*frm++ = IEEE80211_ELEMID_XRATES;
2918 		*frm++ = nrates;
2919 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2920 		frm += nrates;
2921 	}
2922 
2923 	/* setup length of probe request */
2924 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2925 
2926 	chan = (struct wpi_scan_chan *)frm;
2927 	c = ic->ic_curchan;
2928 
2929 	chan->chan = ieee80211_chan2ieee(ic, c);
2930 	chan->flags = 0;
2931 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2932 		chan->flags |= WPI_CHAN_ACTIVE;
2933 		if (ic->ic_des_esslen != 0)
2934 			chan->flags |= WPI_CHAN_DIRECT;
2935 	}
2936 	chan->dsp_gain = 0x6e;
2937 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2938 		chan->rf_gain = 0x3b;
2939 		chan->active  = htole16(10);
2940 		chan->passive = htole16(110);
2941 	} else {
2942 		chan->rf_gain = 0x28;
2943 		chan->active  = htole16(20);
2944 		chan->passive = htole16(120);
2945 	}
2946 	hdr->nchan++;
2947 	chan++;
2948 
2949 	frm += sizeof (struct wpi_scan_chan);
2950 
2951 	hdr->len = htole16(frm - (uint8_t *)hdr);
2952 	pktlen = frm - (uint8_t *)cmd;
2953 
2954 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2955 	    BUS_DMA_NOWAIT);
2956 	if (error != 0) {
2957 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2958 		m_freem(data->m);
2959 		data->m = NULL;
2960 		return error;
2961 	}
2962 
2963 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2964 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2965 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2966 
2967 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2968 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2969 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2970 	    BUS_DMASYNC_PREWRITE);
2971 
2972 	/* kick cmd ring */
2973 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2974 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2975 
2976 	return 0;	/* will be notified async. of failure/success */
2977 }
2978 
2979 static int
2980 wpi_config(struct wpi_softc *sc)
2981 {
2982 	struct ieee80211com *ic = &sc->sc_ic;
2983 	struct ifnet *ifp = ic->ic_ifp;
2984 	struct wpi_power power;
2985 	struct wpi_bluetooth bluetooth;
2986 	struct wpi_node_info node;
2987 	int error;
2988 
2989 	memset(&power, 0, sizeof power);
2990 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2991 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2992 	if (error != 0) {
2993 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2994 		return error;
2995 	}
2996 
2997 	/* configure bluetooth coexistence */
2998 	memset(&bluetooth, 0, sizeof bluetooth);
2999 	bluetooth.flags = 3;
3000 	bluetooth.lead = 0xaa;
3001 	bluetooth.kill = 1;
3002 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3003 	    0);
3004 	if (error != 0) {
3005 		aprint_error_dev(sc->sc_dev,
3006 			"could not configure bluetooth coexistence\n");
3007 		return error;
3008 	}
3009 
3010 	/* configure adapter */
3011 	memset(&sc->config, 0, sizeof (struct wpi_config));
3012 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3013 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3014 	/* set default channel */
3015 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3016 	sc->config.flags = htole32(WPI_CONFIG_TSF);
3017 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3018 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3019 		    WPI_CONFIG_24GHZ);
3020 	}
3021 	sc->config.filter = 0;
3022 	switch (ic->ic_opmode) {
3023 	case IEEE80211_M_STA:
3024 		sc->config.mode = WPI_MODE_STA;
3025 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3026 		break;
3027 	case IEEE80211_M_IBSS:
3028 	case IEEE80211_M_AHDEMO:
3029 		sc->config.mode = WPI_MODE_IBSS;
3030 		break;
3031 	case IEEE80211_M_HOSTAP:
3032 		sc->config.mode = WPI_MODE_HOSTAP;
3033 		break;
3034 	case IEEE80211_M_MONITOR:
3035 		sc->config.mode = WPI_MODE_MONITOR;
3036 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3037 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3038 		break;
3039 	}
3040 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3041 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3042 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3043 	    sizeof (struct wpi_config), 0);
3044 	if (error != 0) {
3045 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
3046 		return error;
3047 	}
3048 
3049 	/* configuration has changed, set Tx power accordingly */
3050 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3051 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3052 		return error;
3053 	}
3054 
3055 	/* add broadcast node */
3056 	memset(&node, 0, sizeof node);
3057 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3058 	node.id = WPI_ID_BROADCAST;
3059 	node.rate = wpi_plcp_signal(2);
3060 	node.action = htole32(WPI_ACTION_SET_RATE);
3061 	node.antenna = WPI_ANTENNA_BOTH;
3062 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3063 	if (error != 0) {
3064 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3065 		return error;
3066 	}
3067 
3068 	if ((error = wpi_mrr_setup(sc)) != 0) {
3069 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3070 		return error;
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 static void
3077 wpi_stop_master(struct wpi_softc *sc)
3078 {
3079 	uint32_t tmp;
3080 	int ntries;
3081 
3082 	tmp = WPI_READ(sc, WPI_RESET);
3083 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3084 
3085 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3086 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3087 		return;	/* already asleep */
3088 
3089 	for (ntries = 0; ntries < 100; ntries++) {
3090 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3091 			break;
3092 		DELAY(10);
3093 	}
3094 	if (ntries == 100) {
3095 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3096 	}
3097 }
3098 
3099 static int
3100 wpi_power_up(struct wpi_softc *sc)
3101 {
3102 	uint32_t tmp;
3103 	int ntries;
3104 
3105 	wpi_mem_lock(sc);
3106 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3107 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3108 	wpi_mem_unlock(sc);
3109 
3110 	for (ntries = 0; ntries < 5000; ntries++) {
3111 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3112 			break;
3113 		DELAY(10);
3114 	}
3115 	if (ntries == 5000) {
3116 		aprint_error_dev(sc->sc_dev,
3117 		    "timeout waiting for NIC to power up\n");
3118 		return ETIMEDOUT;
3119 	}
3120 	return 0;
3121 }
3122 
3123 static int
3124 wpi_reset(struct wpi_softc *sc)
3125 {
3126 	uint32_t tmp;
3127 	int ntries;
3128 
3129 	/* clear any pending interrupts */
3130 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3131 
3132 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3133 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3134 
3135 	tmp = WPI_READ(sc, WPI_CHICKEN);
3136 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3137 
3138 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3139 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3140 
3141 	/* wait for clock stabilization */
3142 	for (ntries = 0; ntries < 1000; ntries++) {
3143 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3144 			break;
3145 		DELAY(10);
3146 	}
3147 	if (ntries == 1000) {
3148 		aprint_error_dev(sc->sc_dev,
3149 		    "timeout waiting for clock stabilization\n");
3150 		return ETIMEDOUT;
3151 	}
3152 
3153 	/* initialize EEPROM */
3154 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3155 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3156 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3157 		return EIO;
3158 	}
3159 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3160 
3161 	return 0;
3162 }
3163 
3164 static void
3165 wpi_hw_config(struct wpi_softc *sc)
3166 {
3167 	uint32_t rev, hw;
3168 
3169 	/* voodoo from the reference driver */
3170 	hw = WPI_READ(sc, WPI_HWCONFIG);
3171 
3172 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3173 	rev = PCI_REVISION(rev);
3174 	if ((rev & 0xc0) == 0x40)
3175 		hw |= WPI_HW_ALM_MB;
3176 	else if (!(rev & 0x80))
3177 		hw |= WPI_HW_ALM_MM;
3178 
3179 	if (sc->cap == 0x80)
3180 		hw |= WPI_HW_SKU_MRC;
3181 
3182 	hw &= ~WPI_HW_REV_D;
3183 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3184 		hw |= WPI_HW_REV_D;
3185 
3186 	if (sc->type > 1)
3187 		hw |= WPI_HW_TYPE_B;
3188 
3189 	DPRINTF(("setting h/w config %x\n", hw));
3190 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3191 }
3192 
3193 static int
3194 wpi_init(struct ifnet *ifp)
3195 {
3196 	struct wpi_softc *sc = ifp->if_softc;
3197 	struct ieee80211com *ic = &sc->sc_ic;
3198 	uint32_t tmp;
3199 	int qid, ntries, error;
3200 
3201 	wpi_stop(ifp,1);
3202 	(void)wpi_reset(sc);
3203 
3204 	wpi_mem_lock(sc);
3205 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3206 	DELAY(20);
3207 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3208 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3209 	wpi_mem_unlock(sc);
3210 
3211 	(void)wpi_power_up(sc);
3212 	wpi_hw_config(sc);
3213 
3214 	/* init Rx ring */
3215 	wpi_mem_lock(sc);
3216 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3217 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3218 	    offsetof(struct wpi_shared, next));
3219 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3220 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3221 	wpi_mem_unlock(sc);
3222 
3223 	/* init Tx rings */
3224 	wpi_mem_lock(sc);
3225 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3226 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3227 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3228 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3229 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3230 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3231 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3232 
3233 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3234 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3235 
3236 	for (qid = 0; qid < 6; qid++) {
3237 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3238 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3239 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3240 	}
3241 	wpi_mem_unlock(sc);
3242 
3243 	/* clear "radio off" and "disable command" bits (reversed logic) */
3244 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3245 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3246 
3247 	/* clear any pending interrupts */
3248 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3249 	/* enable interrupts */
3250 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3251 
3252 	/* not sure why/if this is necessary... */
3253 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3254 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3255 
3256 	if ((error = wpi_load_firmware(sc)) != 0)
3257 		/* wpi_load_firmware prints error messages for us.  */
3258 		goto fail1;
3259 
3260 	/* Check the status of the radio switch */
3261 	mutex_enter(&sc->sc_rsw_mtx);
3262 	if (wpi_getrfkill(sc)) {
3263 		mutex_exit(&sc->sc_rsw_mtx);
3264 		aprint_error_dev(sc->sc_dev,
3265 		    "radio is disabled by hardware switch\n");
3266 		ifp->if_flags &= ~IFF_UP;
3267 		error = EBUSY;
3268 		goto fail1;
3269 	}
3270 	mutex_exit(&sc->sc_rsw_mtx);
3271 
3272 	/* wait for thermal sensors to calibrate */
3273 	for (ntries = 0; ntries < 1000; ntries++) {
3274 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3275 			break;
3276 		DELAY(10);
3277 	}
3278 	if (ntries == 1000) {
3279 		aprint_error_dev(sc->sc_dev,
3280 		    "timeout waiting for thermal sensors calibration\n");
3281 		error = ETIMEDOUT;
3282 		goto fail1;
3283 	}
3284 	DPRINTF(("temperature %d\n", sc->temp));
3285 
3286 	if ((error = wpi_config(sc)) != 0) {
3287 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3288 		goto fail1;
3289 	}
3290 
3291 	ifp->if_flags &= ~IFF_OACTIVE;
3292 	ifp->if_flags |= IFF_RUNNING;
3293 
3294 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3295 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3296 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3297 	}
3298 	else
3299 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3300 
3301 	return 0;
3302 
3303 fail1:	wpi_stop(ifp, 1);
3304 	return error;
3305 }
3306 
3307 static void
3308 wpi_stop(struct ifnet *ifp, int disable)
3309 {
3310 	struct wpi_softc *sc = ifp->if_softc;
3311 	struct ieee80211com *ic = &sc->sc_ic;
3312 	uint32_t tmp;
3313 	int ac;
3314 
3315 	ifp->if_timer = sc->sc_tx_timer = 0;
3316 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3317 
3318 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3319 
3320 	/* disable interrupts */
3321 	WPI_WRITE(sc, WPI_MASK, 0);
3322 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3323 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3324 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3325 
3326 	wpi_mem_lock(sc);
3327 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3328 	wpi_mem_unlock(sc);
3329 
3330 	/* reset all Tx rings */
3331 	for (ac = 0; ac < 4; ac++)
3332 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3333 	wpi_reset_tx_ring(sc, &sc->cmdq);
3334 
3335 	/* reset Rx ring */
3336 	wpi_reset_rx_ring(sc, &sc->rxq);
3337 
3338 	wpi_mem_lock(sc);
3339 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3340 	wpi_mem_unlock(sc);
3341 
3342 	DELAY(5);
3343 
3344 	wpi_stop_master(sc);
3345 
3346 	tmp = WPI_READ(sc, WPI_RESET);
3347 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3348 }
3349 
3350 static bool
3351 wpi_resume(device_t dv, const pmf_qual_t *qual)
3352 {
3353 	struct wpi_softc *sc = device_private(dv);
3354 
3355 	(void)wpi_reset(sc);
3356 
3357 	return true;
3358 }
3359 
3360 /*
3361  * Return whether or not the radio is enabled in hardware
3362  * (i.e. the rfkill switch is "off").
3363  */
3364 static int
3365 wpi_getrfkill(struct wpi_softc *sc)
3366 {
3367 	uint32_t tmp;
3368 
3369 	wpi_mem_lock(sc);
3370 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3371 	wpi_mem_unlock(sc);
3372 
3373 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3374 	if (tmp & 0x01) {
3375 		/* switch is on */
3376 		if (sc->sc_rsw_status != WPI_RSW_ON) {
3377 			sc->sc_rsw_status = WPI_RSW_ON;
3378 			sysmon_pswitch_event(&sc->sc_rsw,
3379 			    PSWITCH_EVENT_PRESSED);
3380 		}
3381 	} else {
3382 		/* switch is off */
3383 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
3384 			sc->sc_rsw_status = WPI_RSW_OFF;
3385 			sysmon_pswitch_event(&sc->sc_rsw,
3386 			    PSWITCH_EVENT_RELEASED);
3387 		}
3388 	}
3389 
3390 	return !(tmp & 0x01);
3391 }
3392 
3393 static int
3394 wpi_sysctl_radio(SYSCTLFN_ARGS)
3395 {
3396 	struct sysctlnode node;
3397 	struct wpi_softc *sc;
3398 	int val, error;
3399 
3400 	node = *rnode;
3401 	sc = (struct wpi_softc *)node.sysctl_data;
3402 
3403 	mutex_enter(&sc->sc_rsw_mtx);
3404 	val = !wpi_getrfkill(sc);
3405 	mutex_exit(&sc->sc_rsw_mtx);
3406 
3407 	node.sysctl_data = &val;
3408 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3409 
3410 	if (error || newp == NULL)
3411 		return error;
3412 
3413 	return 0;
3414 }
3415 
3416 static void
3417 wpi_sysctlattach(struct wpi_softc *sc)
3418 {
3419 	int rc;
3420 	const struct sysctlnode *rnode;
3421 	const struct sysctlnode *cnode;
3422 
3423 	struct sysctllog **clog = &sc->sc_sysctllog;
3424 
3425 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3426 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3427 	    SYSCTL_DESCR("wpi controls and statistics"),
3428 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3429 		goto err;
3430 
3431 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3432 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3433 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3434 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3435 		goto err;
3436 
3437 #ifdef WPI_DEBUG
3438 	/* control debugging printfs */
3439 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3440 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3441 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3442 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3443 		goto err;
3444 #endif
3445 
3446 	return;
3447 err:
3448 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3449 }
3450 
3451 static void
3452 wpi_rsw_thread(void *arg)
3453 {
3454 	struct wpi_softc *sc = (struct wpi_softc *)arg;
3455 
3456 	mutex_enter(&sc->sc_rsw_mtx);
3457 	for (;;) {
3458 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3459 		if (sc->sc_dying) {
3460 			sc->sc_rsw_lwp = NULL;
3461 			cv_broadcast(&sc->sc_rsw_cv);
3462 			mutex_exit(&sc->sc_rsw_mtx);
3463 			kthread_exit(0);
3464 		}
3465 		wpi_getrfkill(sc);
3466 	}
3467 }
3468 
3469