1 /* $NetBSD: if_wpi.c,v 1.80 2018/06/26 06:48:01 msaitoh Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.80 2018/06/26 06:48:01 msaitoh Exp $"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 */ 26 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/sysctl.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/mutex.h> 37 #include <sys/once.h> 38 #include <sys/conf.h> 39 #include <sys/kauth.h> 40 #include <sys/callout.h> 41 #include <sys/proc.h> 42 #include <sys/kthread.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #include <dev/pci/pcireg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcidevs.h> 51 52 #include <dev/sysmon/sysmonvar.h> 53 54 #include <net/bpf.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_dl.h> 58 #include <net/if_ether.h> 59 #include <net/if_media.h> 60 #include <net/if_types.h> 61 62 #include <netinet/in.h> 63 #include <netinet/in_systm.h> 64 #include <netinet/in_var.h> 65 #include <netinet/ip.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_amrr.h> 69 #include <net80211/ieee80211_radiotap.h> 70 71 #include <dev/firmload.h> 72 73 #include <dev/pci/if_wpireg.h> 74 #include <dev/pci/if_wpivar.h> 75 76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode"; 77 static once_t wpi_firmware_init; 78 static kmutex_t wpi_firmware_mutex; 79 static size_t wpi_firmware_users; 80 static uint8_t *wpi_firmware_image; 81 static size_t wpi_firmware_size; 82 83 static int wpi_match(device_t, cfdata_t, void *); 84 static void wpi_attach(device_t, device_t, void *); 85 static int wpi_detach(device_t , int); 86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *, 87 void **, bus_size_t, bus_size_t, int); 88 static void wpi_dma_contig_free(struct wpi_dma_info *); 89 static int wpi_alloc_shared(struct wpi_softc *); 90 static void wpi_free_shared(struct wpi_softc *); 91 static int wpi_alloc_fwmem(struct wpi_softc *); 92 static void wpi_free_fwmem(struct wpi_softc *); 93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *); 94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *); 95 static int wpi_alloc_rpool(struct wpi_softc *); 96 static void wpi_free_rpool(struct wpi_softc *); 97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 101 int, int); 102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *); 105 static void wpi_newassoc(struct ieee80211_node *, int); 106 static int wpi_media_change(struct ifnet *); 107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 108 static void wpi_mem_lock(struct wpi_softc *); 109 static void wpi_mem_unlock(struct wpi_softc *); 110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 113 const uint32_t *, int); 114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 116 static int wpi_cache_firmware(struct wpi_softc *); 117 static void wpi_release_firmware(void); 118 static int wpi_load_firmware(struct wpi_softc *); 119 static void wpi_calib_timeout(void *); 120 static void wpi_iter_func(void *, struct ieee80211_node *); 121 static void wpi_power_calibration(struct wpi_softc *, int); 122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 123 struct wpi_rx_data *); 124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 126 static void wpi_notif_intr(struct wpi_softc *); 127 static int wpi_intr(void *); 128 static void wpi_softintr(void *); 129 static void wpi_read_eeprom(struct wpi_softc *); 130 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 131 static void wpi_read_eeprom_group(struct wpi_softc *, int); 132 static uint8_t wpi_plcp_signal(int); 133 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 134 struct ieee80211_node *, int); 135 static void wpi_start(struct ifnet *); 136 static void wpi_watchdog(struct ifnet *); 137 static int wpi_ioctl(struct ifnet *, u_long, void *); 138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 139 static int wpi_wme_update(struct ieee80211com *); 140 static int wpi_mrr_setup(struct wpi_softc *); 141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 143 static int wpi_set_txpower(struct wpi_softc *, 144 struct ieee80211_channel *, int); 145 static int wpi_get_power_index(struct wpi_softc *, 146 struct wpi_power_group *, struct ieee80211_channel *, int); 147 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 148 static int wpi_auth(struct wpi_softc *); 149 static int wpi_scan(struct wpi_softc *); 150 static int wpi_config(struct wpi_softc *); 151 static void wpi_stop_master(struct wpi_softc *); 152 static int wpi_power_up(struct wpi_softc *); 153 static int wpi_reset(struct wpi_softc *); 154 static void wpi_hw_config(struct wpi_softc *); 155 static int wpi_init(struct ifnet *); 156 static void wpi_stop(struct ifnet *, int); 157 static bool wpi_resume(device_t, const pmf_qual_t *); 158 static int wpi_getrfkill(struct wpi_softc *); 159 static void wpi_sysctlattach(struct wpi_softc *); 160 static void wpi_rsw_thread(void *); 161 162 #ifdef WPI_DEBUG 163 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0) 164 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0) 165 int wpi_debug = 1; 166 #else 167 #define DPRINTF(x) 168 #define DPRINTFN(n, x) 169 #endif 170 171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach, 172 wpi_detach, NULL); 173 174 static int 175 wpi_match(device_t parent, cfdata_t match __unused, void *aux) 176 { 177 struct pci_attach_args *pa = aux; 178 179 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 180 return 0; 181 182 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 || 183 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2) 184 return 1; 185 186 return 0; 187 } 188 189 /* Base Address Register */ 190 #define WPI_PCI_BAR0 0x10 191 192 static int 193 wpi_attach_once(void) 194 { 195 196 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE); 197 return 0; 198 } 199 200 static void 201 wpi_attach(device_t parent __unused, device_t self, void *aux) 202 { 203 struct wpi_softc *sc = device_private(self); 204 struct ieee80211com *ic = &sc->sc_ic; 205 struct ifnet *ifp = &sc->sc_ec.ec_if; 206 struct pci_attach_args *pa = aux; 207 const char *intrstr; 208 bus_space_tag_t memt; 209 bus_space_handle_t memh; 210 pcireg_t data; 211 int ac, error; 212 char intrbuf[PCI_INTRSTR_LEN]; 213 214 RUN_ONCE(&wpi_firmware_init, wpi_attach_once); 215 sc->fw_used = false; 216 217 sc->sc_dev = self; 218 sc->sc_pct = pa->pa_pc; 219 sc->sc_pcitag = pa->pa_tag; 220 221 sc->sc_rsw_status = WPI_RSW_UNKNOWN; 222 sc->sc_rsw.smpsw_name = device_xname(self); 223 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO; 224 error = sysmon_pswitch_register(&sc->sc_rsw); 225 if (error) { 226 aprint_error_dev(self, 227 "unable to register radio switch with sysmon\n"); 228 return; 229 } 230 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE); 231 cv_init(&sc->sc_rsw_cv, "wpirsw"); 232 if (kthread_create(PRI_NONE, 0, NULL, 233 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) { 234 aprint_error_dev(self, "couldn't create switch thread\n"); 235 } 236 237 callout_init(&sc->calib_to, 0); 238 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc); 239 240 pci_aprint_devinfo(pa, NULL); 241 242 /* enable bus-mastering */ 243 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 244 data |= PCI_COMMAND_MASTER_ENABLE; 245 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data); 246 247 /* map the register window */ 248 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | 249 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz); 250 if (error != 0) { 251 aprint_error_dev(self, "could not map memory space\n"); 252 return; 253 } 254 255 sc->sc_st = memt; 256 sc->sc_sh = memh; 257 sc->sc_dmat = pa->pa_dmat; 258 259 sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc); 260 if (sc->sc_soft_ih == NULL) { 261 aprint_error_dev(self, "could not establish softint\n"); 262 goto unmap; 263 } 264 265 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) { 266 aprint_error_dev(self, "could not map interrupt\n"); 267 goto failsi; 268 } 269 270 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf, 271 sizeof(intrbuf)); 272 sc->sc_ih = pci_intr_establish(sc->sc_pct, sc->sc_pihp[0], IPL_NET, 273 wpi_intr, sc); 274 if (sc->sc_ih == NULL) { 275 aprint_error_dev(self, "could not establish interrupt"); 276 if (intrstr != NULL) 277 aprint_error(" at %s", intrstr); 278 aprint_error("\n"); 279 goto failia; 280 } 281 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 282 283 /* 284 * Put adapter into a known state. 285 */ 286 if ((error = wpi_reset(sc)) != 0) { 287 aprint_error_dev(self, "could not reset adapter\n"); 288 goto failih; 289 } 290 291 /* 292 * Allocate DMA memory for firmware transfers. 293 */ 294 if ((error = wpi_alloc_fwmem(sc)) != 0) { 295 aprint_error_dev(self, "could not allocate firmware memory\n"); 296 goto failih; 297 } 298 299 /* 300 * Allocate shared page and Tx/Rx rings. 301 */ 302 if ((error = wpi_alloc_shared(sc)) != 0) { 303 aprint_error_dev(self, "could not allocate shared area\n"); 304 goto fail1; 305 } 306 307 if ((error = wpi_alloc_rpool(sc)) != 0) { 308 aprint_error_dev(self, "could not allocate Rx buffers\n"); 309 goto fail2; 310 } 311 312 for (ac = 0; ac < 4; ac++) { 313 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, 314 ac); 315 if (error != 0) { 316 aprint_error_dev(self, 317 "could not allocate Tx ring %d\n", ac); 318 goto fail3; 319 } 320 } 321 322 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 323 if (error != 0) { 324 aprint_error_dev(self, "could not allocate command ring\n"); 325 goto fail3; 326 } 327 328 error = wpi_alloc_rx_ring(sc, &sc->rxq); 329 if (error != 0) { 330 aprint_error_dev(self, "could not allocate Rx ring\n"); 331 goto fail4; 332 } 333 334 ic->ic_ifp = ifp; 335 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 336 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 337 ic->ic_state = IEEE80211_S_INIT; 338 339 /* set device capabilities */ 340 ic->ic_caps = 341 IEEE80211_C_WPA | /* 802.11i */ 342 IEEE80211_C_MONITOR | /* monitor mode supported */ 343 IEEE80211_C_TXPMGT | /* tx power management */ 344 IEEE80211_C_SHSLOT | /* short slot time supported */ 345 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 346 IEEE80211_C_WME; /* 802.11e */ 347 348 /* read supported channels and MAC address from EEPROM */ 349 wpi_read_eeprom(sc); 350 351 /* set supported .11a, .11b and .11g rates */ 352 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 353 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 354 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 355 356 /* IBSS channel undefined for now */ 357 ic->ic_ibss_chan = &ic->ic_channels[0]; 358 359 ifp->if_softc = sc; 360 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 361 ifp->if_init = wpi_init; 362 ifp->if_stop = wpi_stop; 363 ifp->if_ioctl = wpi_ioctl; 364 ifp->if_start = wpi_start; 365 ifp->if_watchdog = wpi_watchdog; 366 IFQ_SET_READY(&ifp->if_snd); 367 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 368 369 error = if_initialize(ifp); 370 if (error != 0) { 371 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", 372 error); 373 goto fail5; 374 } 375 ieee80211_ifattach(ic); 376 /* Use common softint-based if_input */ 377 ifp->if_percpuq = if_percpuq_create(ifp); 378 if_register(ifp); 379 380 /* override default methods */ 381 ic->ic_node_alloc = wpi_node_alloc; 382 ic->ic_newassoc = wpi_newassoc; 383 ic->ic_wme.wme_update = wpi_wme_update; 384 385 /* override state transition machine */ 386 sc->sc_newstate = ic->ic_newstate; 387 ic->ic_newstate = wpi_newstate; 388 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status); 389 390 sc->amrr.amrr_min_success_threshold = 1; 391 sc->amrr.amrr_max_success_threshold = 15; 392 393 wpi_sysctlattach(sc); 394 395 if (pmf_device_register(self, NULL, wpi_resume)) 396 pmf_class_network_register(self, ifp); 397 else 398 aprint_error_dev(self, "couldn't establish power handler\n"); 399 400 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 401 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 402 &sc->sc_drvbpf); 403 404 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 405 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 406 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 407 408 sc->sc_txtap_len = sizeof sc->sc_txtapu; 409 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 410 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 411 412 ieee80211_announce(ic); 413 414 return; 415 416 /* free allocated memory if something failed during attachment */ 417 fail5: wpi_free_rx_ring(sc, &sc->rxq); 418 fail4: wpi_free_tx_ring(sc, &sc->cmdq); 419 fail3: while (--ac >= 0) 420 wpi_free_tx_ring(sc, &sc->txq[ac]); 421 wpi_free_rpool(sc); 422 fail2: wpi_free_shared(sc); 423 fail1: wpi_free_fwmem(sc); 424 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 425 sc->sc_ih = NULL; 426 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 427 sc->sc_pihp = NULL; 428 failsi: softint_disestablish(sc->sc_soft_ih); 429 sc->sc_soft_ih = NULL; 430 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 431 } 432 433 static int 434 wpi_detach(device_t self, int flags __unused) 435 { 436 struct wpi_softc *sc = device_private(self); 437 struct ifnet *ifp = sc->sc_ic.ic_ifp; 438 int ac; 439 440 wpi_stop(ifp, 1); 441 442 if (ifp != NULL) 443 bpf_detach(ifp); 444 ieee80211_ifdetach(&sc->sc_ic); 445 if (ifp != NULL) 446 if_detach(ifp); 447 448 for (ac = 0; ac < 4; ac++) 449 wpi_free_tx_ring(sc, &sc->txq[ac]); 450 wpi_free_tx_ring(sc, &sc->cmdq); 451 wpi_free_rx_ring(sc, &sc->rxq); 452 wpi_free_rpool(sc); 453 wpi_free_shared(sc); 454 455 if (sc->sc_ih != NULL) { 456 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 457 sc->sc_ih = NULL; 458 } 459 if (sc->sc_pihp != NULL) { 460 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 461 sc->sc_pihp = NULL; 462 } 463 if (sc->sc_soft_ih != NULL) { 464 softint_disestablish(sc->sc_soft_ih); 465 sc->sc_soft_ih = NULL; 466 } 467 468 mutex_enter(&sc->sc_rsw_mtx); 469 sc->sc_dying = 1; 470 cv_signal(&sc->sc_rsw_cv); 471 while (sc->sc_rsw_lwp != NULL) 472 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx); 473 mutex_exit(&sc->sc_rsw_mtx); 474 sysmon_pswitch_unregister(&sc->sc_rsw); 475 476 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 477 478 if (sc->fw_used) { 479 sc->fw_used = false; 480 wpi_release_firmware(); 481 } 482 cv_destroy(&sc->sc_rsw_cv); 483 mutex_destroy(&sc->sc_rsw_mtx); 484 return 0; 485 } 486 487 static int 488 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap, 489 bus_size_t size, bus_size_t alignment, int flags) 490 { 491 int nsegs, error; 492 493 dma->tag = tag; 494 dma->size = size; 495 496 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map); 497 if (error != 0) 498 goto fail; 499 500 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 501 flags); 502 if (error != 0) 503 goto fail; 504 505 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags); 506 if (error != 0) 507 goto fail; 508 509 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags); 510 if (error != 0) 511 goto fail; 512 513 memset(dma->vaddr, 0, size); 514 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 515 516 dma->paddr = dma->map->dm_segs[0].ds_addr; 517 if (kvap != NULL) 518 *kvap = dma->vaddr; 519 520 return 0; 521 522 fail: wpi_dma_contig_free(dma); 523 return error; 524 } 525 526 static void 527 wpi_dma_contig_free(struct wpi_dma_info *dma) 528 { 529 if (dma->map != NULL) { 530 if (dma->vaddr != NULL) { 531 bus_dmamap_unload(dma->tag, dma->map); 532 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 533 bus_dmamem_free(dma->tag, &dma->seg, 1); 534 dma->vaddr = NULL; 535 } 536 bus_dmamap_destroy(dma->tag, dma->map); 537 dma->map = NULL; 538 } 539 } 540 541 /* 542 * Allocate a shared page between host and NIC. 543 */ 544 static int 545 wpi_alloc_shared(struct wpi_softc *sc) 546 { 547 int error; 548 549 /* must be aligned on a 4K-page boundary */ 550 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, 551 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN, 552 BUS_DMA_NOWAIT); 553 if (error != 0) 554 aprint_error_dev(sc->sc_dev, 555 "could not allocate shared area DMA memory\n"); 556 557 return error; 558 } 559 560 static void 561 wpi_free_shared(struct wpi_softc *sc) 562 { 563 wpi_dma_contig_free(&sc->shared_dma); 564 } 565 566 /* 567 * Allocate DMA-safe memory for firmware transfer. 568 */ 569 static int 570 wpi_alloc_fwmem(struct wpi_softc *sc) 571 { 572 int error; 573 574 /* allocate enough contiguous space to store text and data */ 575 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 576 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0, 577 BUS_DMA_NOWAIT); 578 579 if (error != 0) 580 aprint_error_dev(sc->sc_dev, 581 "could not allocate firmware transfer area DMA memory\n"); 582 return error; 583 } 584 585 static void 586 wpi_free_fwmem(struct wpi_softc *sc) 587 { 588 wpi_dma_contig_free(&sc->fw_dma); 589 } 590 591 static struct wpi_rbuf * 592 wpi_alloc_rbuf(struct wpi_softc *sc) 593 { 594 struct wpi_rbuf *rbuf; 595 596 mutex_enter(&sc->rxq.freelist_mtx); 597 rbuf = SLIST_FIRST(&sc->rxq.freelist); 598 if (rbuf != NULL) { 599 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 600 } 601 mutex_exit(&sc->rxq.freelist_mtx); 602 603 return rbuf; 604 } 605 606 /* 607 * This is called automatically by the network stack when the mbuf to which our 608 * Rx buffer is attached is freed. 609 */ 610 static void 611 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 612 { 613 struct wpi_rbuf *rbuf = arg; 614 struct wpi_softc *sc = rbuf->sc; 615 616 /* put the buffer back in the free list */ 617 618 mutex_enter(&sc->rxq.freelist_mtx); 619 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 620 mutex_exit(&sc->rxq.freelist_mtx); 621 622 if (__predict_true(m != NULL)) 623 pool_cache_put(mb_cache, m); 624 } 625 626 static int 627 wpi_alloc_rpool(struct wpi_softc *sc) 628 { 629 struct wpi_rx_ring *ring = &sc->rxq; 630 int i, error; 631 632 /* allocate a big chunk of DMA'able memory.. */ 633 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 634 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT); 635 if (error != 0) { 636 aprint_normal_dev(sc->sc_dev, 637 "could not allocate Rx buffers DMA memory\n"); 638 return error; 639 } 640 641 /* ..and split it into 3KB chunks */ 642 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 643 SLIST_INIT(&ring->freelist); 644 for (i = 0; i < WPI_RBUF_COUNT; i++) { 645 struct wpi_rbuf *rbuf = &ring->rbuf[i]; 646 647 rbuf->sc = sc; /* backpointer for callbacks */ 648 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE; 649 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE; 650 651 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 652 } 653 654 return 0; 655 } 656 657 static void 658 wpi_free_rpool(struct wpi_softc *sc) 659 { 660 wpi_dma_contig_free(&sc->rxq.buf_dma); 661 } 662 663 static int 664 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 665 { 666 bus_size_t size; 667 int i, error; 668 669 ring->cur = 0; 670 671 size = WPI_RX_RING_COUNT * sizeof (uint32_t); 672 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 673 (void **)&ring->desc, size, 674 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 675 if (error != 0) { 676 aprint_error_dev(sc->sc_dev, 677 "could not allocate rx ring DMA memory\n"); 678 goto fail; 679 } 680 681 /* 682 * Setup Rx buffers. 683 */ 684 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 685 struct wpi_rx_data *data = &ring->data[i]; 686 struct wpi_rbuf *rbuf; 687 688 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1, 689 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map); 690 if (error) { 691 aprint_error_dev(sc->sc_dev, 692 "could not allocate rx dma map\n"); 693 goto fail; 694 } 695 696 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 697 if (data->m == NULL) { 698 aprint_error_dev(sc->sc_dev, 699 "could not allocate rx mbuf\n"); 700 error = ENOMEM; 701 goto fail; 702 } 703 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) { 704 m_freem(data->m); 705 data->m = NULL; 706 aprint_error_dev(sc->sc_dev, 707 "could not allocate rx cluster\n"); 708 error = ENOMEM; 709 goto fail; 710 } 711 /* attach Rx buffer to mbuf */ 712 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 713 rbuf); 714 data->m->m_flags |= M_EXT_RW; 715 716 error = bus_dmamap_load(sc->sc_dmat, data->map, 717 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 718 BUS_DMA_NOWAIT | BUS_DMA_READ); 719 if (error) { 720 aprint_error_dev(sc->sc_dev, 721 "could not load mbuf: %d\n", error); 722 goto fail; 723 } 724 725 ring->desc[i] = htole32(rbuf->paddr); 726 } 727 728 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 729 BUS_DMASYNC_PREWRITE); 730 731 return 0; 732 733 fail: wpi_free_rx_ring(sc, ring); 734 return error; 735 } 736 737 static void 738 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 739 { 740 int ntries; 741 742 wpi_mem_lock(sc); 743 744 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 745 for (ntries = 0; ntries < 100; ntries++) { 746 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 747 break; 748 DELAY(10); 749 } 750 #ifdef WPI_DEBUG 751 if (ntries == 100 && wpi_debug > 0) 752 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n"); 753 #endif 754 wpi_mem_unlock(sc); 755 756 ring->cur = 0; 757 } 758 759 static void 760 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 761 { 762 int i; 763 764 wpi_dma_contig_free(&ring->desc_dma); 765 766 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 767 if (ring->data[i].m != NULL) { 768 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map); 769 m_freem(ring->data[i].m); 770 } 771 if (ring->data[i].map != NULL) { 772 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map); 773 } 774 } 775 } 776 777 static int 778 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 779 int qid) 780 { 781 int i, error; 782 783 ring->qid = qid; 784 ring->count = count; 785 ring->queued = 0; 786 ring->cur = 0; 787 788 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 789 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 790 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 791 if (error != 0) { 792 aprint_error_dev(sc->sc_dev, 793 "could not allocate tx ring DMA memory\n"); 794 goto fail; 795 } 796 797 /* update shared page with ring's base address */ 798 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 799 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 800 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE); 801 802 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 803 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4, 804 BUS_DMA_NOWAIT); 805 if (error != 0) { 806 aprint_error_dev(sc->sc_dev, 807 "could not allocate tx cmd DMA memory\n"); 808 goto fail; 809 } 810 811 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 812 M_NOWAIT | M_ZERO); 813 if (ring->data == NULL) { 814 aprint_error_dev(sc->sc_dev, 815 "could not allocate tx data slots\n"); 816 goto fail; 817 } 818 819 for (i = 0; i < count; i++) { 820 struct wpi_tx_data *data = &ring->data[i]; 821 822 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 823 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 824 &data->map); 825 if (error != 0) { 826 aprint_error_dev(sc->sc_dev, 827 "could not create tx buf DMA map\n"); 828 goto fail; 829 } 830 } 831 832 return 0; 833 834 fail: wpi_free_tx_ring(sc, ring); 835 return error; 836 } 837 838 static void 839 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 840 { 841 int i, ntries; 842 843 wpi_mem_lock(sc); 844 845 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 846 for (ntries = 0; ntries < 100; ntries++) { 847 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 848 break; 849 DELAY(10); 850 } 851 #ifdef WPI_DEBUG 852 if (ntries == 100 && wpi_debug > 0) { 853 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", 854 ring->qid); 855 } 856 #endif 857 wpi_mem_unlock(sc); 858 859 for (i = 0; i < ring->count; i++) { 860 struct wpi_tx_data *data = &ring->data[i]; 861 862 if (data->m != NULL) { 863 bus_dmamap_unload(sc->sc_dmat, data->map); 864 m_freem(data->m); 865 data->m = NULL; 866 } 867 } 868 869 ring->queued = 0; 870 ring->cur = 0; 871 } 872 873 static void 874 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 875 { 876 int i; 877 878 wpi_dma_contig_free(&ring->desc_dma); 879 wpi_dma_contig_free(&ring->cmd_dma); 880 881 if (ring->data != NULL) { 882 for (i = 0; i < ring->count; i++) { 883 struct wpi_tx_data *data = &ring->data[i]; 884 885 if (data->m != NULL) { 886 bus_dmamap_unload(sc->sc_dmat, data->map); 887 m_freem(data->m); 888 } 889 } 890 free(ring->data, M_DEVBUF); 891 } 892 } 893 894 /*ARGUSED*/ 895 static struct ieee80211_node * 896 wpi_node_alloc(struct ieee80211_node_table *nt __unused) 897 { 898 struct wpi_node *wn; 899 900 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 901 902 return (struct ieee80211_node *)wn; 903 } 904 905 static void 906 wpi_newassoc(struct ieee80211_node *ni, int isnew) 907 { 908 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 909 int i; 910 911 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn); 912 913 /* set rate to some reasonable initial value */ 914 for (i = ni->ni_rates.rs_nrates - 1; 915 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 916 i--); 917 ni->ni_txrate = i; 918 } 919 920 static int 921 wpi_media_change(struct ifnet *ifp) 922 { 923 int error; 924 925 error = ieee80211_media_change(ifp); 926 if (error != ENETRESET) 927 return error; 928 929 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 930 wpi_init(ifp); 931 932 return 0; 933 } 934 935 static int 936 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 937 { 938 struct ifnet *ifp = ic->ic_ifp; 939 struct wpi_softc *sc = ifp->if_softc; 940 struct ieee80211_node *ni; 941 enum ieee80211_state ostate = ic->ic_state; 942 int error; 943 944 callout_stop(&sc->calib_to); 945 946 switch (nstate) { 947 case IEEE80211_S_SCAN: 948 949 if (sc->is_scanning) 950 break; 951 952 sc->is_scanning = true; 953 954 if (ostate != IEEE80211_S_SCAN) { 955 /* make the link LED blink while we're scanning */ 956 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 957 } 958 959 if ((error = wpi_scan(sc)) != 0) { 960 aprint_error_dev(sc->sc_dev, 961 "could not initiate scan\n"); 962 return error; 963 } 964 break; 965 966 case IEEE80211_S_ASSOC: 967 if (ic->ic_state != IEEE80211_S_RUN) 968 break; 969 /* FALLTHROUGH */ 970 case IEEE80211_S_AUTH: 971 /* reset state to handle reassociations correctly */ 972 sc->config.associd = 0; 973 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 974 975 if ((error = wpi_auth(sc)) != 0) { 976 aprint_error_dev(sc->sc_dev, 977 "could not send authentication request\n"); 978 return error; 979 } 980 break; 981 982 case IEEE80211_S_RUN: 983 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 984 /* link LED blinks while monitoring */ 985 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 986 break; 987 } 988 ni = ic->ic_bss; 989 990 if (ic->ic_opmode != IEEE80211_M_STA) { 991 (void) wpi_auth(sc); /* XXX */ 992 wpi_setup_beacon(sc, ni); 993 } 994 995 wpi_enable_tsf(sc, ni); 996 997 /* update adapter's configuration */ 998 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 999 /* short preamble/slot time are negotiated when associating */ 1000 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 1001 WPI_CONFIG_SHSLOT); 1002 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1003 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 1004 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1005 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 1006 sc->config.filter |= htole32(WPI_FILTER_BSS); 1007 if (ic->ic_opmode != IEEE80211_M_STA) 1008 sc->config.filter |= htole32(WPI_FILTER_BEACON); 1009 1010 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 1011 1012 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 1013 sc->config.flags)); 1014 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 1015 sizeof (struct wpi_config), 1); 1016 if (error != 0) { 1017 aprint_error_dev(sc->sc_dev, 1018 "could not update configuration\n"); 1019 return error; 1020 } 1021 1022 /* configuration has changed, set Tx power accordingly */ 1023 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) { 1024 aprint_error_dev(sc->sc_dev, 1025 "could not set Tx power\n"); 1026 return error; 1027 } 1028 1029 if (ic->ic_opmode == IEEE80211_M_STA) { 1030 /* fake a join to init the tx rate */ 1031 wpi_newassoc(ni, 1); 1032 } 1033 1034 /* start periodic calibration timer */ 1035 sc->calib_cnt = 0; 1036 callout_schedule(&sc->calib_to, hz/2); 1037 1038 /* link LED always on while associated */ 1039 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 1040 break; 1041 1042 case IEEE80211_S_INIT: 1043 sc->is_scanning = false; 1044 break; 1045 } 1046 1047 return sc->sc_newstate(ic, nstate, arg); 1048 } 1049 1050 /* 1051 * Grab exclusive access to NIC memory. 1052 */ 1053 static void 1054 wpi_mem_lock(struct wpi_softc *sc) 1055 { 1056 uint32_t tmp; 1057 int ntries; 1058 1059 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1060 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1061 1062 /* spin until we actually get the lock */ 1063 for (ntries = 0; ntries < 1000; ntries++) { 1064 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1065 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1066 break; 1067 DELAY(10); 1068 } 1069 if (ntries == 1000) 1070 aprint_error_dev(sc->sc_dev, "could not lock memory\n"); 1071 } 1072 1073 /* 1074 * Release lock on NIC memory. 1075 */ 1076 static void 1077 wpi_mem_unlock(struct wpi_softc *sc) 1078 { 1079 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1080 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1081 } 1082 1083 static uint32_t 1084 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1085 { 1086 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1087 return WPI_READ(sc, WPI_READ_MEM_DATA); 1088 } 1089 1090 static void 1091 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1092 { 1093 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1094 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1095 } 1096 1097 static void 1098 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1099 const uint32_t *data, int wlen) 1100 { 1101 for (; wlen > 0; wlen--, data++, addr += 4) 1102 wpi_mem_write(sc, addr, *data); 1103 } 1104 1105 /* 1106 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC 1107 * instead of using the traditional bit-bang method. 1108 */ 1109 static int 1110 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1111 { 1112 uint8_t *out = data; 1113 uint32_t val; 1114 int ntries; 1115 1116 wpi_mem_lock(sc); 1117 for (; len > 0; len -= 2, addr++) { 1118 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1119 1120 for (ntries = 0; ntries < 10; ntries++) { 1121 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & 1122 WPI_EEPROM_READY) 1123 break; 1124 DELAY(5); 1125 } 1126 if (ntries == 10) { 1127 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 1128 return ETIMEDOUT; 1129 } 1130 *out++ = val >> 16; 1131 if (len > 1) 1132 *out++ = val >> 24; 1133 } 1134 wpi_mem_unlock(sc); 1135 1136 return 0; 1137 } 1138 1139 /* 1140 * The firmware boot code is small and is intended to be copied directly into 1141 * the NIC internal memory. 1142 */ 1143 int 1144 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size) 1145 { 1146 int ntries; 1147 1148 size /= sizeof (uint32_t); 1149 1150 wpi_mem_lock(sc); 1151 1152 /* copy microcode image into NIC memory */ 1153 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1154 (const uint32_t *)ucode, size); 1155 1156 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1157 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1158 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1159 1160 /* run microcode */ 1161 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1162 1163 /* wait for transfer to complete */ 1164 for (ntries = 0; ntries < 1000; ntries++) { 1165 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN)) 1166 break; 1167 DELAY(10); 1168 } 1169 if (ntries == 1000) { 1170 wpi_mem_unlock(sc); 1171 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n"); 1172 return ETIMEDOUT; 1173 } 1174 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1175 1176 wpi_mem_unlock(sc); 1177 1178 return 0; 1179 } 1180 1181 static int 1182 wpi_cache_firmware(struct wpi_softc *sc) 1183 { 1184 const char *const fwname = wpi_firmware_name; 1185 firmware_handle_t fw; 1186 int error; 1187 1188 /* sc is used here only to report error messages. */ 1189 1190 mutex_enter(&wpi_firmware_mutex); 1191 1192 if (wpi_firmware_users == SIZE_MAX) { 1193 mutex_exit(&wpi_firmware_mutex); 1194 return ENFILE; /* Too many of something in the system... */ 1195 } 1196 if (wpi_firmware_users++) { 1197 KASSERT(wpi_firmware_image != NULL); 1198 KASSERT(wpi_firmware_size > 0); 1199 mutex_exit(&wpi_firmware_mutex); 1200 return 0; /* Already good to go. */ 1201 } 1202 1203 KASSERT(wpi_firmware_image == NULL); 1204 KASSERT(wpi_firmware_size == 0); 1205 1206 /* load firmware image from disk */ 1207 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) { 1208 aprint_error_dev(sc->sc_dev, 1209 "could not open firmware file %s: %d\n", fwname, error); 1210 goto fail0; 1211 } 1212 1213 wpi_firmware_size = firmware_get_size(fw); 1214 1215 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) + 1216 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ + 1217 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ + 1218 WPI_FW_BOOT_TEXT_MAXSZ) { 1219 aprint_error_dev(sc->sc_dev, 1220 "firmware file %s too large: %zu bytes\n", 1221 fwname, wpi_firmware_size); 1222 error = EFBIG; 1223 goto fail1; 1224 } 1225 1226 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) { 1227 aprint_error_dev(sc->sc_dev, 1228 "firmware file %s too small: %zu bytes\n", 1229 fwname, wpi_firmware_size); 1230 error = EINVAL; 1231 goto fail1; 1232 } 1233 1234 wpi_firmware_image = firmware_malloc(wpi_firmware_size); 1235 if (wpi_firmware_image == NULL) { 1236 aprint_error_dev(sc->sc_dev, 1237 "not enough memory for firmware file %s\n", fwname); 1238 error = ENOMEM; 1239 goto fail1; 1240 } 1241 1242 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size); 1243 if (error != 0) { 1244 aprint_error_dev(sc->sc_dev, 1245 "error reading firmware file %s: %d\n", fwname, error); 1246 goto fail2; 1247 } 1248 1249 /* Success! */ 1250 firmware_close(fw); 1251 mutex_exit(&wpi_firmware_mutex); 1252 return 0; 1253 1254 fail2: 1255 firmware_free(wpi_firmware_image, wpi_firmware_size); 1256 wpi_firmware_image = NULL; 1257 fail1: 1258 wpi_firmware_size = 0; 1259 firmware_close(fw); 1260 fail0: 1261 KASSERT(wpi_firmware_users == 1); 1262 wpi_firmware_users = 0; 1263 KASSERT(wpi_firmware_image == NULL); 1264 KASSERT(wpi_firmware_size == 0); 1265 1266 mutex_exit(&wpi_firmware_mutex); 1267 return error; 1268 } 1269 1270 static void 1271 wpi_release_firmware(void) 1272 { 1273 1274 mutex_enter(&wpi_firmware_mutex); 1275 1276 KASSERT(wpi_firmware_users > 0); 1277 KASSERT(wpi_firmware_image != NULL); 1278 KASSERT(wpi_firmware_size != 0); 1279 1280 if (--wpi_firmware_users == 0) { 1281 firmware_free(wpi_firmware_image, wpi_firmware_size); 1282 wpi_firmware_image = NULL; 1283 wpi_firmware_size = 0; 1284 } 1285 1286 mutex_exit(&wpi_firmware_mutex); 1287 } 1288 1289 static int 1290 wpi_load_firmware(struct wpi_softc *sc) 1291 { 1292 struct wpi_dma_info *dma = &sc->fw_dma; 1293 struct wpi_firmware_hdr hdr; 1294 const uint8_t *init_text, *init_data, *main_text, *main_data; 1295 const uint8_t *boot_text; 1296 uint32_t init_textsz, init_datasz, main_textsz, main_datasz; 1297 uint32_t boot_textsz; 1298 size_t size; 1299 int error; 1300 1301 if (!sc->fw_used) { 1302 if ((error = wpi_cache_firmware(sc)) != 0) 1303 return error; 1304 sc->fw_used = true; 1305 } 1306 1307 KASSERT(sc->fw_used); 1308 KASSERT(wpi_firmware_image != NULL); 1309 KASSERT(wpi_firmware_size > sizeof(hdr)); 1310 1311 memcpy(&hdr, wpi_firmware_image, sizeof(hdr)); 1312 1313 main_textsz = le32toh(hdr.main_textsz); 1314 main_datasz = le32toh(hdr.main_datasz); 1315 init_textsz = le32toh(hdr.init_textsz); 1316 init_datasz = le32toh(hdr.init_datasz); 1317 boot_textsz = le32toh(hdr.boot_textsz); 1318 1319 /* sanity-check firmware segments sizes */ 1320 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ || 1321 main_datasz > WPI_FW_MAIN_DATA_MAXSZ || 1322 init_textsz > WPI_FW_INIT_TEXT_MAXSZ || 1323 init_datasz > WPI_FW_INIT_DATA_MAXSZ || 1324 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ || 1325 (boot_textsz & 3) != 0) { 1326 aprint_error_dev(sc->sc_dev, "invalid firmware header\n"); 1327 error = EINVAL; 1328 goto free_firmware; 1329 } 1330 1331 /* check that all firmware segments are present */ 1332 size = sizeof (struct wpi_firmware_hdr) + main_textsz + 1333 main_datasz + init_textsz + init_datasz + boot_textsz; 1334 if (wpi_firmware_size < size) { 1335 aprint_error_dev(sc->sc_dev, 1336 "firmware file truncated: %zu bytes, expected %zu bytes\n", 1337 wpi_firmware_size, size); 1338 error = EINVAL; 1339 goto free_firmware; 1340 } 1341 1342 /* get pointers to firmware segments */ 1343 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr); 1344 main_data = main_text + main_textsz; 1345 init_text = main_data + main_datasz; 1346 init_data = init_text + init_textsz; 1347 boot_text = init_data + init_datasz; 1348 1349 /* copy initialization images into pre-allocated DMA-safe memory */ 1350 memcpy(dma->vaddr, init_data, init_datasz); 1351 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, 1352 init_textsz); 1353 1354 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 1355 1356 /* tell adapter where to find initialization images */ 1357 wpi_mem_lock(sc); 1358 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1359 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz); 1360 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1361 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 1362 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz); 1363 wpi_mem_unlock(sc); 1364 1365 /* load firmware boot code */ 1366 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) { 1367 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n"); 1368 return error; 1369 } 1370 1371 /* now press "execute" ;-) */ 1372 WPI_WRITE(sc, WPI_RESET, 0); 1373 1374 /* wait at most one second for first alive notification */ 1375 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1376 /* this isn't what was supposed to happen.. */ 1377 aprint_error_dev(sc->sc_dev, 1378 "timeout waiting for adapter to initialize\n"); 1379 } 1380 1381 /* copy runtime images into pre-allocated DMA-safe memory */ 1382 memcpy(dma->vaddr, main_data, main_datasz); 1383 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, 1384 main_textsz); 1385 1386 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 1387 1388 /* tell adapter where to find runtime images */ 1389 wpi_mem_lock(sc); 1390 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1391 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz); 1392 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1393 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 1394 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz); 1395 wpi_mem_unlock(sc); 1396 1397 /* wait at most one second for second alive notification */ 1398 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1399 /* this isn't what was supposed to happen.. */ 1400 aprint_error_dev(sc->sc_dev, 1401 "timeout waiting for adapter to initialize\n"); 1402 } 1403 1404 return error; 1405 1406 free_firmware: 1407 sc->fw_used = false; 1408 wpi_release_firmware(); 1409 return error; 1410 } 1411 1412 static void 1413 wpi_calib_timeout(void *arg) 1414 { 1415 struct wpi_softc *sc = arg; 1416 struct ieee80211com *ic = &sc->sc_ic; 1417 int temp, s; 1418 1419 /* automatic rate control triggered every 500ms */ 1420 if (ic->ic_fixed_rate == -1) { 1421 s = splnet(); 1422 if (ic->ic_opmode == IEEE80211_M_STA) 1423 wpi_iter_func(sc, ic->ic_bss); 1424 else 1425 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc); 1426 splx(s); 1427 } 1428 1429 /* update sensor data */ 1430 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 1431 1432 /* automatic power calibration every 60s */ 1433 if (++sc->calib_cnt >= 120) { 1434 wpi_power_calibration(sc, temp); 1435 sc->calib_cnt = 0; 1436 } 1437 1438 callout_schedule(&sc->calib_to, hz/2); 1439 } 1440 1441 static void 1442 wpi_iter_func(void *arg, struct ieee80211_node *ni) 1443 { 1444 struct wpi_softc *sc = arg; 1445 struct wpi_node *wn = (struct wpi_node *)ni; 1446 1447 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1448 } 1449 1450 /* 1451 * This function is called periodically (every 60 seconds) to adjust output 1452 * power to temperature changes. 1453 */ 1454 void 1455 wpi_power_calibration(struct wpi_softc *sc, int temp) 1456 { 1457 /* sanity-check read value */ 1458 if (temp < -260 || temp > 25) { 1459 /* this can't be correct, ignore */ 1460 DPRINTF(("out-of-range temperature reported: %d\n", temp)); 1461 return; 1462 } 1463 1464 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 1465 1466 /* adjust Tx power if need be */ 1467 if (abs(temp - sc->temp) <= 6) 1468 return; 1469 1470 sc->temp = temp; 1471 1472 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) { 1473 /* just warn, too bad for the automatic calibration... */ 1474 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n"); 1475 } 1476 } 1477 1478 static void 1479 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1480 struct wpi_rx_data *data) 1481 { 1482 struct ieee80211com *ic = &sc->sc_ic; 1483 struct ifnet *ifp = ic->ic_ifp; 1484 struct wpi_rx_ring *ring = &sc->rxq; 1485 struct wpi_rx_stat *stat; 1486 struct wpi_rx_head *head; 1487 struct wpi_rx_tail *tail; 1488 struct wpi_rbuf *rbuf; 1489 struct ieee80211_frame *wh; 1490 struct ieee80211_node *ni; 1491 struct mbuf *m, *mnew; 1492 int data_off, error, s; 1493 1494 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1495 BUS_DMASYNC_POSTREAD); 1496 stat = (struct wpi_rx_stat *)(desc + 1); 1497 1498 if (stat->len > WPI_STAT_MAXLEN) { 1499 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n"); 1500 ifp->if_ierrors++; 1501 return; 1502 } 1503 1504 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len); 1505 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len)); 1506 1507 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x " 1508 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len), 1509 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1510 le64toh(tail->tstamp))); 1511 1512 /* 1513 * Discard Rx frames with bad CRC early (XXX we may want to pass them 1514 * to radiotap in monitor mode). 1515 */ 1516 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1517 DPRINTF(("rx tail flags error %x\n", 1518 le32toh(tail->flags))); 1519 ifp->if_ierrors++; 1520 return; 1521 } 1522 1523 /* Compute where are the useful datas */ 1524 data_off = (char*)(head + 1) - mtod(data->m, char*); 1525 1526 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1527 if (mnew == NULL) { 1528 ifp->if_ierrors++; 1529 return; 1530 } 1531 1532 rbuf = wpi_alloc_rbuf(sc); 1533 if (rbuf == NULL) { 1534 m_freem(mnew); 1535 ifp->if_ierrors++; 1536 return; 1537 } 1538 1539 /* attach Rx buffer to mbuf */ 1540 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 1541 rbuf); 1542 mnew->m_flags |= M_EXT_RW; 1543 1544 bus_dmamap_unload(sc->sc_dmat, data->map); 1545 1546 error = bus_dmamap_load(sc->sc_dmat, data->map, 1547 mtod(mnew, void *), WPI_RBUF_SIZE, NULL, 1548 BUS_DMA_NOWAIT | BUS_DMA_READ); 1549 if (error) { 1550 device_printf(sc->sc_dev, 1551 "couldn't load rx mbuf: %d\n", error); 1552 m_freem(mnew); 1553 ifp->if_ierrors++; 1554 1555 error = bus_dmamap_load(sc->sc_dmat, data->map, 1556 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 1557 BUS_DMA_NOWAIT | BUS_DMA_READ); 1558 if (error) 1559 panic("%s: bus_dmamap_load failed: %d\n", 1560 device_xname(sc->sc_dev), error); 1561 return; 1562 } 1563 1564 /* new mbuf loaded successfully */ 1565 m = data->m; 1566 data->m = mnew; 1567 1568 /* update Rx descriptor */ 1569 ring->desc[ring->cur] = htole32(rbuf->paddr); 1570 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1571 ring->desc_dma.size, 1572 BUS_DMASYNC_PREWRITE); 1573 1574 m->m_data = (char*)m->m_data + data_off; 1575 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1576 1577 /* finalize mbuf */ 1578 m_set_rcvif(m, ifp); 1579 1580 s = splnet(); 1581 1582 if (sc->sc_drvbpf != NULL) { 1583 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1584 1585 tap->wr_flags = 0; 1586 tap->wr_chan_freq = 1587 htole16(ic->ic_channels[head->chan].ic_freq); 1588 tap->wr_chan_flags = 1589 htole16(ic->ic_channels[head->chan].ic_flags); 1590 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1591 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1592 tap->wr_tsft = tail->tstamp; 1593 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1594 switch (head->rate) { 1595 /* CCK rates */ 1596 case 10: tap->wr_rate = 2; break; 1597 case 20: tap->wr_rate = 4; break; 1598 case 55: tap->wr_rate = 11; break; 1599 case 110: tap->wr_rate = 22; break; 1600 /* OFDM rates */ 1601 case 0xd: tap->wr_rate = 12; break; 1602 case 0xf: tap->wr_rate = 18; break; 1603 case 0x5: tap->wr_rate = 24; break; 1604 case 0x7: tap->wr_rate = 36; break; 1605 case 0x9: tap->wr_rate = 48; break; 1606 case 0xb: tap->wr_rate = 72; break; 1607 case 0x1: tap->wr_rate = 96; break; 1608 case 0x3: tap->wr_rate = 108; break; 1609 /* unknown rate: should not happen */ 1610 default: tap->wr_rate = 0; 1611 } 1612 if (le16toh(head->flags) & 0x4) 1613 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1614 1615 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 1616 } 1617 1618 /* grab a reference to the source node */ 1619 wh = mtod(m, struct ieee80211_frame *); 1620 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1621 1622 /* send the frame to the 802.11 layer */ 1623 ieee80211_input(ic, m, ni, stat->rssi, 0); 1624 1625 /* release node reference */ 1626 ieee80211_free_node(ni); 1627 1628 splx(s); 1629 } 1630 1631 static void 1632 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1633 { 1634 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1635 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1636 struct wpi_tx_data *data = &ring->data[desc->idx]; 1637 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1638 struct wpi_node *wn = (struct wpi_node *)data->ni; 1639 int s; 1640 1641 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x " 1642 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries, 1643 stat->nkill, stat->rate, le32toh(stat->duration), 1644 le32toh(stat->status))); 1645 1646 s = splnet(); 1647 1648 /* 1649 * Update rate control statistics for the node. 1650 * XXX we should not count mgmt frames since they're always sent at 1651 * the lowest available bit-rate. 1652 */ 1653 wn->amn.amn_txcnt++; 1654 if (stat->ntries > 0) { 1655 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries)); 1656 wn->amn.amn_retrycnt++; 1657 } 1658 1659 if ((le32toh(stat->status) & 0xff) != 1) 1660 ifp->if_oerrors++; 1661 else 1662 ifp->if_opackets++; 1663 1664 bus_dmamap_unload(sc->sc_dmat, data->map); 1665 m_freem(data->m); 1666 data->m = NULL; 1667 ieee80211_free_node(data->ni); 1668 data->ni = NULL; 1669 1670 ring->queued--; 1671 1672 sc->sc_tx_timer = 0; 1673 ifp->if_flags &= ~IFF_OACTIVE; 1674 wpi_start(ifp); /* in softint */ 1675 1676 splx(s); 1677 } 1678 1679 static void 1680 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1681 { 1682 struct wpi_tx_ring *ring = &sc->cmdq; 1683 struct wpi_tx_data *data; 1684 1685 if ((desc->qid & 7) != 4) 1686 return; /* not a command ack */ 1687 1688 data = &ring->data[desc->idx]; 1689 1690 /* if the command was mapped in a mbuf, free it */ 1691 if (data->m != NULL) { 1692 bus_dmamap_unload(sc->sc_dmat, data->map); 1693 m_freem(data->m); 1694 data->m = NULL; 1695 } 1696 1697 wakeup(&ring->cmd[desc->idx]); 1698 } 1699 1700 static void 1701 wpi_notif_intr(struct wpi_softc *sc) 1702 { 1703 struct ieee80211com *ic = &sc->sc_ic; 1704 struct ifnet *ifp = ic->ic_ifp; 1705 uint32_t hw; 1706 int s; 1707 1708 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 1709 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD); 1710 1711 hw = le32toh(sc->shared->next); 1712 while (sc->rxq.cur != hw) { 1713 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 1714 struct wpi_rx_desc *desc; 1715 1716 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1717 BUS_DMASYNC_POSTREAD); 1718 desc = mtod(data->m, struct wpi_rx_desc *); 1719 1720 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1721 "len=%d\n", desc->qid, desc->idx, desc->flags, 1722 desc->type, le32toh(desc->len))); 1723 1724 if (!(desc->qid & 0x80)) /* reply to a command */ 1725 wpi_cmd_intr(sc, desc); 1726 1727 switch (desc->type) { 1728 case WPI_RX_DONE: 1729 /* a 802.11 frame was received */ 1730 wpi_rx_intr(sc, desc, data); 1731 break; 1732 1733 case WPI_TX_DONE: 1734 /* a 802.11 frame has been transmitted */ 1735 wpi_tx_intr(sc, desc); 1736 break; 1737 1738 case WPI_UC_READY: 1739 { 1740 struct wpi_ucode_info *uc = 1741 (struct wpi_ucode_info *)(desc + 1); 1742 1743 /* the microcontroller is ready */ 1744 DPRINTF(("microcode alive notification version %x " 1745 "alive %x\n", le32toh(uc->version), 1746 le32toh(uc->valid))); 1747 1748 if (le32toh(uc->valid) != 1) { 1749 aprint_error_dev(sc->sc_dev, 1750 "microcontroller initialization failed\n"); 1751 } 1752 break; 1753 } 1754 case WPI_STATE_CHANGED: 1755 { 1756 uint32_t *status = (uint32_t *)(desc + 1); 1757 1758 /* enabled/disabled notification */ 1759 DPRINTF(("state changed to %x\n", le32toh(*status))); 1760 1761 if (le32toh(*status) & 1) { 1762 s = splnet(); 1763 /* the radio button has to be pushed */ 1764 /* wake up thread to signal powerd */ 1765 cv_signal(&sc->sc_rsw_cv); 1766 aprint_error_dev(sc->sc_dev, 1767 "Radio transmitter is off\n"); 1768 /* turn the interface down */ 1769 ifp->if_flags &= ~IFF_UP; 1770 wpi_stop(ifp, 1); 1771 splx(s); 1772 return; /* no further processing */ 1773 } 1774 break; 1775 } 1776 case WPI_START_SCAN: 1777 { 1778 #if 0 1779 struct wpi_start_scan *scan = 1780 (struct wpi_start_scan *)(desc + 1); 1781 1782 DPRINTFN(2, ("scanning channel %d status %x\n", 1783 scan->chan, le32toh(scan->status))); 1784 1785 /* fix current channel */ 1786 ic->ic_curchan = &ic->ic_channels[scan->chan]; 1787 #endif 1788 break; 1789 } 1790 case WPI_STOP_SCAN: 1791 { 1792 #ifdef WPI_DEBUG 1793 struct wpi_stop_scan *scan = 1794 (struct wpi_stop_scan *)(desc + 1); 1795 #endif 1796 1797 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1798 scan->nchan, scan->status, scan->chan)); 1799 1800 s = splnet(); 1801 sc->is_scanning = false; 1802 if (ic->ic_state == IEEE80211_S_SCAN) 1803 ieee80211_next_scan(ic); 1804 splx(s); 1805 break; 1806 } 1807 } 1808 1809 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1810 } 1811 1812 /* tell the firmware what we have processed */ 1813 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1814 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1815 } 1816 1817 static int 1818 wpi_intr(void *arg) 1819 { 1820 struct wpi_softc *sc = arg; 1821 uint32_t r; 1822 1823 r = WPI_READ(sc, WPI_INTR); 1824 if (r == 0 || r == 0xffffffff) 1825 return 0; /* not for us */ 1826 1827 DPRINTFN(6, ("interrupt reg %x\n", r)); 1828 1829 /* disable interrupts */ 1830 WPI_WRITE(sc, WPI_MASK, 0); 1831 1832 softint_schedule(sc->sc_soft_ih); 1833 return 1; 1834 } 1835 1836 static void 1837 wpi_softintr(void *arg) 1838 { 1839 struct wpi_softc *sc = arg; 1840 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1841 uint32_t r; 1842 1843 r = WPI_READ(sc, WPI_INTR); 1844 if (r == 0 || r == 0xffffffff) 1845 goto out; 1846 1847 /* ack interrupts */ 1848 WPI_WRITE(sc, WPI_INTR, r); 1849 1850 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1851 /* SYSTEM FAILURE, SYSTEM FAILURE */ 1852 aprint_error_dev(sc->sc_dev, "fatal firmware error\n"); 1853 ifp->if_flags &= ~IFF_UP; 1854 wpi_stop(ifp, 1); 1855 return; 1856 } 1857 1858 if (r & WPI_RX_INTR) 1859 wpi_notif_intr(sc); 1860 1861 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1862 wakeup(sc); 1863 1864 out: 1865 /* re-enable interrupts */ 1866 if (ifp->if_flags & IFF_UP) 1867 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1868 } 1869 1870 static uint8_t 1871 wpi_plcp_signal(int rate) 1872 { 1873 switch (rate) { 1874 /* CCK rates (returned values are device-dependent) */ 1875 case 2: return 10; 1876 case 4: return 20; 1877 case 11: return 55; 1878 case 22: return 110; 1879 1880 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1881 /* R1-R4, (u)ral is R4-R1 */ 1882 case 12: return 0xd; 1883 case 18: return 0xf; 1884 case 24: return 0x5; 1885 case 36: return 0x7; 1886 case 48: return 0x9; 1887 case 72: return 0xb; 1888 case 96: return 0x1; 1889 case 108: return 0x3; 1890 1891 /* unsupported rates (should not get there) */ 1892 default: return 0; 1893 } 1894 } 1895 1896 /* quickly determine if a given rate is CCK or OFDM */ 1897 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1898 1899 static int 1900 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1901 int ac) 1902 { 1903 struct ieee80211com *ic = &sc->sc_ic; 1904 struct wpi_tx_ring *ring = &sc->txq[ac]; 1905 struct wpi_tx_desc *desc; 1906 struct wpi_tx_data *data; 1907 struct wpi_tx_cmd *cmd; 1908 struct wpi_cmd_data *tx; 1909 struct ieee80211_frame *wh; 1910 struct ieee80211_key *k; 1911 const struct chanAccParams *cap; 1912 struct mbuf *mnew; 1913 int i, rate, error, hdrlen, noack = 0; 1914 1915 desc = &ring->desc[ring->cur]; 1916 data = &ring->data[ring->cur]; 1917 1918 wh = mtod(m0, struct ieee80211_frame *); 1919 1920 if (ieee80211_has_qos(wh)) { 1921 cap = &ic->ic_wme.wme_chanParams; 1922 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1923 } 1924 1925 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1926 k = ieee80211_crypto_encap(ic, ni, m0); 1927 if (k == NULL) { 1928 m_freem(m0); 1929 return ENOBUFS; 1930 } 1931 1932 /* packet header may have moved, reset our local pointer */ 1933 wh = mtod(m0, struct ieee80211_frame *); 1934 } 1935 1936 hdrlen = ieee80211_anyhdrsize(wh); 1937 1938 /* pickup a rate */ 1939 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1940 IEEE80211_FC0_TYPE_MGT) { 1941 /* mgmt frames are sent at the lowest available bit-rate */ 1942 rate = ni->ni_rates.rs_rates[0]; 1943 } else { 1944 if (ic->ic_fixed_rate != -1) { 1945 rate = ic->ic_sup_rates[ic->ic_curmode]. 1946 rs_rates[ic->ic_fixed_rate]; 1947 } else 1948 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1949 } 1950 rate &= IEEE80211_RATE_VAL; 1951 1952 if (sc->sc_drvbpf != NULL) { 1953 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1954 1955 tap->wt_flags = 0; 1956 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1957 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1958 tap->wt_rate = rate; 1959 tap->wt_hwqueue = ac; 1960 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1961 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1962 1963 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 1964 } 1965 1966 cmd = &ring->cmd[ring->cur]; 1967 cmd->code = WPI_CMD_TX_DATA; 1968 cmd->flags = 0; 1969 cmd->qid = ring->qid; 1970 cmd->idx = ring->cur; 1971 1972 tx = (struct wpi_cmd_data *)cmd->data; 1973 /* no need to zero tx, all fields are reinitialized here */ 1974 tx->flags = 0; 1975 1976 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1977 tx->flags |= htole32(WPI_TX_NEED_ACK); 1978 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) 1979 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP); 1980 1981 tx->flags |= htole32(WPI_TX_AUTO_SEQ); 1982 1983 /* retrieve destination node's id */ 1984 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST : 1985 WPI_ID_BSS; 1986 1987 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1988 IEEE80211_FC0_TYPE_MGT) { 1989 /* tell h/w to set timestamp in probe responses */ 1990 if ((wh->i_fc[0] & 1991 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1992 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1993 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1994 1995 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1996 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) || 1997 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1998 IEEE80211_FC0_SUBTYPE_REASSOC_REQ)) 1999 tx->timeout = htole16(3); 2000 else 2001 tx->timeout = htole16(2); 2002 } else 2003 tx->timeout = htole16(0); 2004 2005 tx->rate = wpi_plcp_signal(rate); 2006 2007 /* be very persistant at sending frames out */ 2008 tx->rts_ntries = 7; 2009 tx->data_ntries = 15; 2010 2011 tx->ofdm_mask = 0xff; 2012 tx->cck_mask = 0x0f; 2013 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2014 2015 tx->len = htole16(m0->m_pkthdr.len); 2016 2017 /* save and trim IEEE802.11 header */ 2018 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 2019 m_adj(m0, hdrlen); 2020 2021 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2022 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 2023 if (error != 0 && error != EFBIG) { 2024 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", 2025 error); 2026 m_freem(m0); 2027 return error; 2028 } 2029 if (error != 0) { 2030 /* too many fragments, linearize */ 2031 2032 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 2033 if (mnew == NULL) { 2034 m_freem(m0); 2035 return ENOMEM; 2036 } 2037 M_COPY_PKTHDR(mnew, m0); 2038 if (m0->m_pkthdr.len > MHLEN) { 2039 MCLGET(mnew, M_DONTWAIT); 2040 if (!(mnew->m_flags & M_EXT)) { 2041 m_freem(m0); 2042 m_freem(mnew); 2043 return ENOMEM; 2044 } 2045 } 2046 2047 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 2048 m_freem(m0); 2049 mnew->m_len = mnew->m_pkthdr.len; 2050 m0 = mnew; 2051 2052 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2053 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 2054 if (error != 0) { 2055 aprint_error_dev(sc->sc_dev, 2056 "could not map mbuf (error %d)\n", error); 2057 m_freem(m0); 2058 return error; 2059 } 2060 } 2061 2062 data->m = m0; 2063 data->ni = ni; 2064 2065 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2066 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs)); 2067 2068 /* first scatter/gather segment is used by the tx data command */ 2069 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2070 (1 + data->map->dm_nsegs) << 24); 2071 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2072 ring->cur * sizeof (struct wpi_tx_cmd)); 2073 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) + 2074 ((hdrlen + 3) & ~3)); 2075 for (i = 1; i <= data->map->dm_nsegs; i++) { 2076 desc->segs[i].addr = 2077 htole32(data->map->dm_segs[i - 1].ds_addr); 2078 desc->segs[i].len = 2079 htole32(data->map->dm_segs[i - 1].ds_len); 2080 } 2081 2082 ring->queued++; 2083 2084 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2085 data->map->dm_mapsize, 2086 BUS_DMASYNC_PREWRITE); 2087 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0, 2088 ring->cmd_dma.size, 2089 BUS_DMASYNC_PREWRITE); 2090 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2091 ring->desc_dma.size, 2092 BUS_DMASYNC_PREWRITE); 2093 2094 /* kick ring */ 2095 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2096 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2097 2098 return 0; 2099 } 2100 2101 static void 2102 wpi_start(struct ifnet *ifp) 2103 { 2104 struct wpi_softc *sc = ifp->if_softc; 2105 struct ieee80211com *ic = &sc->sc_ic; 2106 struct ieee80211_node *ni; 2107 struct ether_header *eh; 2108 struct mbuf *m0; 2109 int ac; 2110 2111 /* 2112 * net80211 may still try to send management frames even if the 2113 * IFF_RUNNING flag is not set... 2114 */ 2115 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 2116 return; 2117 2118 for (;;) { 2119 IF_DEQUEUE(&ic->ic_mgtq, m0); 2120 if (m0 != NULL) { 2121 2122 ni = M_GETCTX(m0, struct ieee80211_node *); 2123 M_CLEARCTX(m0); 2124 2125 /* management frames go into ring 0 */ 2126 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2127 ifp->if_oerrors++; 2128 continue; 2129 } 2130 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 2131 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 2132 ifp->if_oerrors++; 2133 break; 2134 } 2135 } else { 2136 if (ic->ic_state != IEEE80211_S_RUN) 2137 break; 2138 IFQ_POLL(&ifp->if_snd, m0); 2139 if (m0 == NULL) 2140 break; 2141 2142 if (m0->m_len < sizeof (*eh) && 2143 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) { 2144 ifp->if_oerrors++; 2145 continue; 2146 } 2147 eh = mtod(m0, struct ether_header *); 2148 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2149 if (ni == NULL) { 2150 m_freem(m0); 2151 ifp->if_oerrors++; 2152 continue; 2153 } 2154 2155 /* classify mbuf so we can find which tx ring to use */ 2156 if (ieee80211_classify(ic, m0, ni) != 0) { 2157 m_freem(m0); 2158 ieee80211_free_node(ni); 2159 ifp->if_oerrors++; 2160 continue; 2161 } 2162 2163 /* no QoS encapsulation for EAPOL frames */ 2164 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 2165 M_WME_GETAC(m0) : WME_AC_BE; 2166 2167 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2168 /* there is no place left in this ring */ 2169 ifp->if_flags |= IFF_OACTIVE; 2170 break; 2171 } 2172 IFQ_DEQUEUE(&ifp->if_snd, m0); 2173 bpf_mtap(ifp, m0, BPF_D_OUT); 2174 m0 = ieee80211_encap(ic, m0, ni); 2175 if (m0 == NULL) { 2176 ieee80211_free_node(ni); 2177 ifp->if_oerrors++; 2178 continue; 2179 } 2180 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 2181 if (wpi_tx_data(sc, m0, ni, ac) != 0) { 2182 ieee80211_free_node(ni); 2183 ifp->if_oerrors++; 2184 break; 2185 } 2186 } 2187 2188 sc->sc_tx_timer = 5; 2189 ifp->if_timer = 1; 2190 } 2191 } 2192 2193 static void 2194 wpi_watchdog(struct ifnet *ifp) 2195 { 2196 struct wpi_softc *sc = ifp->if_softc; 2197 2198 ifp->if_timer = 0; 2199 2200 if (sc->sc_tx_timer > 0) { 2201 if (--sc->sc_tx_timer == 0) { 2202 aprint_error_dev(sc->sc_dev, "device timeout\n"); 2203 ifp->if_flags &= ~IFF_UP; 2204 wpi_stop(ifp, 1); 2205 ifp->if_oerrors++; 2206 return; 2207 } 2208 ifp->if_timer = 1; 2209 } 2210 2211 ieee80211_watchdog(&sc->sc_ic); 2212 } 2213 2214 static int 2215 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2216 { 2217 #define IS_RUNNING(ifp) \ 2218 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 2219 2220 struct wpi_softc *sc = ifp->if_softc; 2221 struct ieee80211com *ic = &sc->sc_ic; 2222 int s, error = 0; 2223 2224 s = splnet(); 2225 2226 switch (cmd) { 2227 case SIOCSIFFLAGS: 2228 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2229 break; 2230 if (ifp->if_flags & IFF_UP) { 2231 if (!(ifp->if_flags & IFF_RUNNING)) 2232 wpi_init(ifp); 2233 } else { 2234 if (ifp->if_flags & IFF_RUNNING) 2235 wpi_stop(ifp, 1); 2236 } 2237 break; 2238 2239 case SIOCADDMULTI: 2240 case SIOCDELMULTI: 2241 /* XXX no h/w multicast filter? --dyoung */ 2242 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2243 /* setup multicast filter, etc */ 2244 error = 0; 2245 } 2246 break; 2247 2248 default: 2249 error = ieee80211_ioctl(ic, cmd, data); 2250 } 2251 2252 if (error == ENETRESET) { 2253 if (IS_RUNNING(ifp) && 2254 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2255 wpi_init(ifp); 2256 error = 0; 2257 } 2258 2259 splx(s); 2260 return error; 2261 2262 #undef IS_RUNNING 2263 } 2264 2265 /* 2266 * Extract various information from EEPROM. 2267 */ 2268 static void 2269 wpi_read_eeprom(struct wpi_softc *sc) 2270 { 2271 struct ieee80211com *ic = &sc->sc_ic; 2272 char domain[4]; 2273 int i; 2274 2275 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1); 2276 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2); 2277 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2278 2279 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev), 2280 sc->type)); 2281 2282 /* read and print regulatory domain */ 2283 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4); 2284 aprint_normal_dev(sc->sc_dev, "%.4s", domain); 2285 2286 /* read and print MAC address */ 2287 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2288 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr)); 2289 2290 /* read the list of authorized channels */ 2291 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2292 wpi_read_eeprom_channels(sc, i); 2293 2294 /* read the list of power groups */ 2295 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2296 wpi_read_eeprom_group(sc, i); 2297 } 2298 2299 static void 2300 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 2301 { 2302 struct ieee80211com *ic = &sc->sc_ic; 2303 const struct wpi_chan_band *band = &wpi_bands[n]; 2304 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 2305 int chan, i; 2306 2307 wpi_read_prom_data(sc, band->addr, channels, 2308 band->nchan * sizeof (struct wpi_eeprom_chan)); 2309 2310 for (i = 0; i < band->nchan; i++) { 2311 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) 2312 continue; 2313 2314 chan = band->chan[i]; 2315 2316 if (n == 0) { /* 2GHz band */ 2317 ic->ic_channels[chan].ic_freq = 2318 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 2319 ic->ic_channels[chan].ic_flags = 2320 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 2321 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 2322 2323 } else { /* 5GHz band */ 2324 /* 2325 * Some 3945ABG adapters support channels 7, 8, 11 2326 * and 12 in the 2GHz *and* 5GHz bands. 2327 * Because of limitations in our net80211(9) stack, 2328 * we can't support these channels in 5GHz band. 2329 */ 2330 if (chan <= 14) 2331 continue; 2332 2333 ic->ic_channels[chan].ic_freq = 2334 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 2335 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 2336 } 2337 2338 /* is active scan allowed on this channel? */ 2339 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 2340 ic->ic_channels[chan].ic_flags |= 2341 IEEE80211_CHAN_PASSIVE; 2342 } 2343 2344 /* save maximum allowed power for this channel */ 2345 sc->maxpwr[chan] = channels[i].maxpwr; 2346 2347 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 2348 chan, channels[i].flags, sc->maxpwr[chan])); 2349 } 2350 } 2351 2352 static void 2353 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 2354 { 2355 struct wpi_power_group *group = &sc->groups[n]; 2356 struct wpi_eeprom_group rgroup; 2357 int i; 2358 2359 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 2360 sizeof rgroup); 2361 2362 /* save power group information */ 2363 group->chan = rgroup.chan; 2364 group->maxpwr = rgroup.maxpwr; 2365 /* temperature at which the samples were taken */ 2366 group->temp = (int16_t)le16toh(rgroup.temp); 2367 2368 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 2369 group->chan, group->maxpwr, group->temp)); 2370 2371 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 2372 group->samples[i].index = rgroup.samples[i].index; 2373 group->samples[i].power = rgroup.samples[i].power; 2374 2375 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 2376 group->samples[i].index, group->samples[i].power)); 2377 } 2378 } 2379 2380 /* 2381 * Send a command to the firmware. 2382 */ 2383 static int 2384 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2385 { 2386 struct wpi_tx_ring *ring = &sc->cmdq; 2387 struct wpi_tx_desc *desc; 2388 struct wpi_tx_cmd *cmd; 2389 struct wpi_dma_info *dma; 2390 2391 KASSERT(size <= sizeof cmd->data); 2392 2393 desc = &ring->desc[ring->cur]; 2394 cmd = &ring->cmd[ring->cur]; 2395 2396 cmd->code = code; 2397 cmd->flags = 0; 2398 cmd->qid = ring->qid; 2399 cmd->idx = ring->cur; 2400 memcpy(cmd->data, buf, size); 2401 2402 dma = &ring->cmd_dma; 2403 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 2404 2405 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2406 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2407 ring->cur * sizeof (struct wpi_tx_cmd)); 2408 desc->segs[0].len = htole32(4 + size); 2409 2410 dma = &ring->desc_dma; 2411 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 2412 2413 /* kick cmd ring */ 2414 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2415 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2416 2417 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz); 2418 } 2419 2420 static int 2421 wpi_wme_update(struct ieee80211com *ic) 2422 { 2423 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2424 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2425 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2426 const struct wmeParams *wmep; 2427 struct wpi_wme_setup wme; 2428 int ac; 2429 2430 /* don't override default WME values if WME is not actually enabled */ 2431 if (!(ic->ic_flags & IEEE80211_F_WME)) 2432 return 0; 2433 2434 wme.flags = 0; 2435 for (ac = 0; ac < WME_NUM_AC; ac++) { 2436 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2437 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2438 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2439 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2440 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2441 2442 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2443 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2444 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2445 } 2446 2447 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2448 #undef WPI_USEC 2449 #undef WPI_EXP2 2450 } 2451 2452 /* 2453 * Configure h/w multi-rate retries. 2454 */ 2455 static int 2456 wpi_mrr_setup(struct wpi_softc *sc) 2457 { 2458 struct ieee80211com *ic = &sc->sc_ic; 2459 struct wpi_mrr_setup mrr; 2460 int i, error; 2461 2462 /* CCK rates (not used with 802.11a) */ 2463 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2464 mrr.rates[i].flags = 0; 2465 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2466 /* fallback to the immediate lower CCK rate (if any) */ 2467 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2468 /* try one time at this rate before falling back to "next" */ 2469 mrr.rates[i].ntries = 1; 2470 } 2471 2472 /* OFDM rates (not used with 802.11b) */ 2473 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2474 mrr.rates[i].flags = 0; 2475 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2476 /* fallback to the immediate lower rate (if any) */ 2477 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2478 mrr.rates[i].next = (i == WPI_OFDM6) ? 2479 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2480 WPI_OFDM6 : WPI_CCK2) : 2481 i - 1; 2482 /* try one time at this rate before falling back to "next" */ 2483 mrr.rates[i].ntries = 1; 2484 } 2485 2486 /* setup MRR for control frames */ 2487 mrr.which = htole32(WPI_MRR_CTL); 2488 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2489 if (error != 0) { 2490 aprint_error_dev(sc->sc_dev, 2491 "could not setup MRR for control frames\n"); 2492 return error; 2493 } 2494 2495 /* setup MRR for data frames */ 2496 mrr.which = htole32(WPI_MRR_DATA); 2497 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2498 if (error != 0) { 2499 aprint_error_dev(sc->sc_dev, 2500 "could not setup MRR for data frames\n"); 2501 return error; 2502 } 2503 2504 return 0; 2505 } 2506 2507 static void 2508 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2509 { 2510 struct wpi_cmd_led led; 2511 2512 led.which = which; 2513 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2514 led.off = off; 2515 led.on = on; 2516 2517 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2518 } 2519 2520 static void 2521 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2522 { 2523 struct wpi_cmd_tsf tsf; 2524 uint64_t val, mod; 2525 2526 memset(&tsf, 0, sizeof tsf); 2527 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 2528 tsf.bintval = htole16(ni->ni_intval); 2529 tsf.lintval = htole16(10); 2530 2531 /* compute remaining time until next beacon */ 2532 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2533 mod = le64toh(tsf.tstamp) % val; 2534 tsf.binitval = htole32((uint32_t)(val - mod)); 2535 2536 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n", 2537 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod))); 2538 2539 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2540 aprint_error_dev(sc->sc_dev, "could not enable TSF\n"); 2541 } 2542 2543 /* 2544 * Update Tx power to match what is defined for channel `c'. 2545 */ 2546 static int 2547 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 2548 { 2549 struct ieee80211com *ic = &sc->sc_ic; 2550 struct wpi_power_group *group; 2551 struct wpi_cmd_txpower txpower; 2552 u_int chan; 2553 int i; 2554 2555 /* get channel number */ 2556 chan = ieee80211_chan2ieee(ic, c); 2557 2558 /* find the power group to which this channel belongs */ 2559 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2560 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 2561 if (chan <= group->chan) 2562 break; 2563 } else 2564 group = &sc->groups[0]; 2565 2566 memset(&txpower, 0, sizeof txpower); 2567 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 2568 txpower.chan = htole16(chan); 2569 2570 /* set Tx power for all OFDM and CCK rates */ 2571 for (i = 0; i <= 11 ; i++) { 2572 /* retrieve Tx power for this channel/rate combination */ 2573 int idx = wpi_get_power_index(sc, group, c, 2574 wpi_ridx_to_rate[i]); 2575 2576 txpower.rates[i].plcp = wpi_ridx_to_plcp[i]; 2577 2578 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2579 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 2580 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 2581 } else { 2582 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 2583 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 2584 } 2585 DPRINTF(("chan %d/rate %d: power index %d\n", chan, 2586 wpi_ridx_to_rate[i], idx)); 2587 } 2588 2589 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 2590 } 2591 2592 /* 2593 * Determine Tx power index for a given channel/rate combination. 2594 * This takes into account the regulatory information from EEPROM and the 2595 * current temperature. 2596 */ 2597 static int 2598 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 2599 struct ieee80211_channel *c, int rate) 2600 { 2601 /* fixed-point arithmetic division using a n-bit fractional part */ 2602 #define fdivround(a, b, n) \ 2603 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 2604 2605 /* linear interpolation */ 2606 #define interpolate(x, x1, y1, x2, y2, n) \ 2607 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 2608 2609 struct ieee80211com *ic = &sc->sc_ic; 2610 struct wpi_power_sample *sample; 2611 int pwr, idx; 2612 u_int chan; 2613 2614 /* get channel number */ 2615 chan = ieee80211_chan2ieee(ic, c); 2616 2617 /* default power is group's maximum power - 3dB */ 2618 pwr = group->maxpwr / 2; 2619 2620 /* decrease power for highest OFDM rates to reduce distortion */ 2621 switch (rate) { 2622 case 72: /* 36Mb/s */ 2623 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 2624 break; 2625 case 96: /* 48Mb/s */ 2626 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 2627 break; 2628 case 108: /* 54Mb/s */ 2629 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 2630 break; 2631 } 2632 2633 /* never exceed channel's maximum allowed Tx power */ 2634 pwr = min(pwr, sc->maxpwr[chan]); 2635 2636 /* retrieve power index into gain tables from samples */ 2637 for (sample = group->samples; sample < &group->samples[3]; sample++) 2638 if (pwr > sample[1].power) 2639 break; 2640 /* fixed-point linear interpolation using a 19-bit fractional part */ 2641 idx = interpolate(pwr, sample[0].power, sample[0].index, 2642 sample[1].power, sample[1].index, 19); 2643 2644 /*- 2645 * Adjust power index based on current temperature: 2646 * - if cooler than factory-calibrated: decrease output power 2647 * - if warmer than factory-calibrated: increase output power 2648 */ 2649 idx -= (sc->temp - group->temp) * 11 / 100; 2650 2651 /* decrease power for CCK rates (-5dB) */ 2652 if (!WPI_RATE_IS_OFDM(rate)) 2653 idx += 10; 2654 2655 /* keep power index in a valid range */ 2656 if (idx < 0) 2657 return 0; 2658 if (idx > WPI_MAX_PWR_INDEX) 2659 return WPI_MAX_PWR_INDEX; 2660 return idx; 2661 2662 #undef interpolate 2663 #undef fdivround 2664 } 2665 2666 /* 2667 * Build a beacon frame that the firmware will broadcast periodically in 2668 * IBSS or HostAP modes. 2669 */ 2670 static int 2671 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2672 { 2673 struct ieee80211com *ic = &sc->sc_ic; 2674 struct wpi_tx_ring *ring = &sc->cmdq; 2675 struct wpi_tx_desc *desc; 2676 struct wpi_tx_data *data; 2677 struct wpi_tx_cmd *cmd; 2678 struct wpi_cmd_beacon *bcn; 2679 struct ieee80211_beacon_offsets bo; 2680 struct mbuf *m0; 2681 int error; 2682 2683 desc = &ring->desc[ring->cur]; 2684 data = &ring->data[ring->cur]; 2685 2686 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2687 if (m0 == NULL) { 2688 aprint_error_dev(sc->sc_dev, 2689 "could not allocate beacon frame\n"); 2690 return ENOMEM; 2691 } 2692 2693 cmd = &ring->cmd[ring->cur]; 2694 cmd->code = WPI_CMD_SET_BEACON; 2695 cmd->flags = 0; 2696 cmd->qid = ring->qid; 2697 cmd->idx = ring->cur; 2698 2699 bcn = (struct wpi_cmd_beacon *)cmd->data; 2700 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2701 bcn->id = WPI_ID_BROADCAST; 2702 bcn->ofdm_mask = 0xff; 2703 bcn->cck_mask = 0x0f; 2704 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2705 bcn->len = htole16(m0->m_pkthdr.len); 2706 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2707 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2708 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2709 2710 /* save and trim IEEE802.11 header */ 2711 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh); 2712 m_adj(m0, sizeof (struct ieee80211_frame)); 2713 2714 /* assume beacon frame is contiguous */ 2715 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2716 BUS_DMA_READ | BUS_DMA_NOWAIT); 2717 if (error != 0) { 2718 aprint_error_dev(sc->sc_dev, "could not map beacon\n"); 2719 m_freem(m0); 2720 return error; 2721 } 2722 2723 data->m = m0; 2724 2725 /* first scatter/gather segment is used by the beacon command */ 2726 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2727 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2728 ring->cur * sizeof (struct wpi_tx_cmd)); 2729 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2730 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr); 2731 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len); 2732 2733 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2734 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2735 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2736 BUS_DMASYNC_PREWRITE); 2737 2738 /* kick cmd ring */ 2739 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2740 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2741 2742 return 0; 2743 } 2744 2745 static int 2746 wpi_auth(struct wpi_softc *sc) 2747 { 2748 struct ieee80211com *ic = &sc->sc_ic; 2749 struct ieee80211_node *ni = ic->ic_bss; 2750 struct wpi_node_info node; 2751 int error; 2752 2753 /* update adapter's configuration */ 2754 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2755 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2756 sc->config.flags = htole32(WPI_CONFIG_TSF); 2757 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2758 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2759 WPI_CONFIG_24GHZ); 2760 } 2761 switch (ic->ic_curmode) { 2762 case IEEE80211_MODE_11A: 2763 sc->config.cck_mask = 0; 2764 sc->config.ofdm_mask = 0x15; 2765 break; 2766 case IEEE80211_MODE_11B: 2767 sc->config.cck_mask = 0x03; 2768 sc->config.ofdm_mask = 0; 2769 break; 2770 default: /* assume 802.11b/g */ 2771 sc->config.cck_mask = 0x0f; 2772 sc->config.ofdm_mask = 0x15; 2773 } 2774 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2775 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2776 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2777 sizeof (struct wpi_config), 1); 2778 if (error != 0) { 2779 aprint_error_dev(sc->sc_dev, "could not configure\n"); 2780 return error; 2781 } 2782 2783 /* configuration has changed, set Tx power accordingly */ 2784 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2785 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 2786 return error; 2787 } 2788 2789 /* add default node */ 2790 memset(&node, 0, sizeof node); 2791 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2792 node.id = WPI_ID_BSS; 2793 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2794 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2795 node.action = htole32(WPI_ACTION_SET_RATE); 2796 node.antenna = WPI_ANTENNA_BOTH; 2797 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2798 if (error != 0) { 2799 aprint_error_dev(sc->sc_dev, "could not add BSS node\n"); 2800 return error; 2801 } 2802 2803 return 0; 2804 } 2805 2806 /* 2807 * Send a scan request to the firmware. Since this command is huge, we map it 2808 * into a mbuf instead of using the pre-allocated set of commands. 2809 */ 2810 static int 2811 wpi_scan(struct wpi_softc *sc) 2812 { 2813 struct ieee80211com *ic = &sc->sc_ic; 2814 struct wpi_tx_ring *ring = &sc->cmdq; 2815 struct wpi_tx_desc *desc; 2816 struct wpi_tx_data *data; 2817 struct wpi_tx_cmd *cmd; 2818 struct wpi_scan_hdr *hdr; 2819 struct wpi_scan_chan *chan; 2820 struct ieee80211_frame *wh; 2821 struct ieee80211_rateset *rs; 2822 struct ieee80211_channel *c; 2823 uint8_t *frm; 2824 int pktlen, error, nrates; 2825 2826 if (ic->ic_curchan == NULL) 2827 return EIO; 2828 2829 desc = &ring->desc[ring->cur]; 2830 data = &ring->data[ring->cur]; 2831 2832 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 2833 if (data->m == NULL) { 2834 aprint_error_dev(sc->sc_dev, 2835 "could not allocate mbuf for scan command\n"); 2836 return ENOMEM; 2837 } 2838 MCLGET(data->m, M_DONTWAIT); 2839 if (!(data->m->m_flags & M_EXT)) { 2840 m_freem(data->m); 2841 data->m = NULL; 2842 aprint_error_dev(sc->sc_dev, 2843 "could not allocate mbuf for scan command\n"); 2844 return ENOMEM; 2845 } 2846 2847 cmd = mtod(data->m, struct wpi_tx_cmd *); 2848 cmd->code = WPI_CMD_SCAN; 2849 cmd->flags = 0; 2850 cmd->qid = ring->qid; 2851 cmd->idx = ring->cur; 2852 2853 hdr = (struct wpi_scan_hdr *)cmd->data; 2854 memset(hdr, 0, sizeof (struct wpi_scan_hdr)); 2855 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ); 2856 hdr->cmd.id = WPI_ID_BROADCAST; 2857 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE); 2858 /* 2859 * Move to the next channel if no packets are received within 5 msecs 2860 * after sending the probe request (this helps to reduce the duration 2861 * of active scans). 2862 */ 2863 hdr->quiet = htole16(5); /* timeout in milliseconds */ 2864 hdr->plcp_threshold = htole16(1); /* min # of packets */ 2865 2866 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) { 2867 hdr->crc_threshold = htole16(1); 2868 /* send probe requests at 6Mbps */ 2869 hdr->cmd.rate = wpi_plcp_signal(12); 2870 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 2871 } else { 2872 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2873 /* send probe requests at 1Mbps */ 2874 hdr->cmd.rate = wpi_plcp_signal(2); 2875 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 2876 } 2877 2878 /* for directed scans, firmware inserts the essid IE itself */ 2879 if (ic->ic_des_esslen != 0) { 2880 hdr->essid[0].id = IEEE80211_ELEMID_SSID; 2881 hdr->essid[0].len = ic->ic_des_esslen; 2882 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 2883 } 2884 2885 /* 2886 * Build a probe request frame. Most of the following code is a 2887 * copy & paste of what is done in net80211. 2888 */ 2889 wh = (struct ieee80211_frame *)(hdr + 1); 2890 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2891 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2892 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2893 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2894 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2895 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2896 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2897 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2898 2899 frm = (uint8_t *)(wh + 1); 2900 2901 /* add empty essid IE (firmware generates it for directed scans) */ 2902 *frm++ = IEEE80211_ELEMID_SSID; 2903 *frm++ = 0; 2904 2905 /* add supported rates IE */ 2906 *frm++ = IEEE80211_ELEMID_RATES; 2907 nrates = rs->rs_nrates; 2908 if (nrates > IEEE80211_RATE_SIZE) 2909 nrates = IEEE80211_RATE_SIZE; 2910 *frm++ = nrates; 2911 memcpy(frm, rs->rs_rates, nrates); 2912 frm += nrates; 2913 2914 /* add supported xrates IE */ 2915 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2916 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2917 *frm++ = IEEE80211_ELEMID_XRATES; 2918 *frm++ = nrates; 2919 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2920 frm += nrates; 2921 } 2922 2923 /* setup length of probe request */ 2924 hdr->cmd.len = htole16(frm - (uint8_t *)wh); 2925 2926 chan = (struct wpi_scan_chan *)frm; 2927 c = ic->ic_curchan; 2928 2929 chan->chan = ieee80211_chan2ieee(ic, c); 2930 chan->flags = 0; 2931 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2932 chan->flags |= WPI_CHAN_ACTIVE; 2933 if (ic->ic_des_esslen != 0) 2934 chan->flags |= WPI_CHAN_DIRECT; 2935 } 2936 chan->dsp_gain = 0x6e; 2937 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2938 chan->rf_gain = 0x3b; 2939 chan->active = htole16(10); 2940 chan->passive = htole16(110); 2941 } else { 2942 chan->rf_gain = 0x28; 2943 chan->active = htole16(20); 2944 chan->passive = htole16(120); 2945 } 2946 hdr->nchan++; 2947 chan++; 2948 2949 frm += sizeof (struct wpi_scan_chan); 2950 2951 hdr->len = htole16(frm - (uint8_t *)hdr); 2952 pktlen = frm - (uint8_t *)cmd; 2953 2954 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL, 2955 BUS_DMA_NOWAIT); 2956 if (error != 0) { 2957 aprint_error_dev(sc->sc_dev, "could not map scan command\n"); 2958 m_freem(data->m); 2959 data->m = NULL; 2960 return error; 2961 } 2962 2963 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2964 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr); 2965 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len); 2966 2967 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2968 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2969 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2970 BUS_DMASYNC_PREWRITE); 2971 2972 /* kick cmd ring */ 2973 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2974 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2975 2976 return 0; /* will be notified async. of failure/success */ 2977 } 2978 2979 static int 2980 wpi_config(struct wpi_softc *sc) 2981 { 2982 struct ieee80211com *ic = &sc->sc_ic; 2983 struct ifnet *ifp = ic->ic_ifp; 2984 struct wpi_power power; 2985 struct wpi_bluetooth bluetooth; 2986 struct wpi_node_info node; 2987 int error; 2988 2989 memset(&power, 0, sizeof power); 2990 power.flags = htole32(WPI_POWER_CAM | 0x8); 2991 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2992 if (error != 0) { 2993 aprint_error_dev(sc->sc_dev, "could not set power mode\n"); 2994 return error; 2995 } 2996 2997 /* configure bluetooth coexistence */ 2998 memset(&bluetooth, 0, sizeof bluetooth); 2999 bluetooth.flags = 3; 3000 bluetooth.lead = 0xaa; 3001 bluetooth.kill = 1; 3002 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 3003 0); 3004 if (error != 0) { 3005 aprint_error_dev(sc->sc_dev, 3006 "could not configure bluetooth coexistence\n"); 3007 return error; 3008 } 3009 3010 /* configure adapter */ 3011 memset(&sc->config, 0, sizeof (struct wpi_config)); 3012 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 3013 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 3014 /* set default channel */ 3015 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 3016 sc->config.flags = htole32(WPI_CONFIG_TSF); 3017 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 3018 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 3019 WPI_CONFIG_24GHZ); 3020 } 3021 sc->config.filter = 0; 3022 switch (ic->ic_opmode) { 3023 case IEEE80211_M_STA: 3024 sc->config.mode = WPI_MODE_STA; 3025 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 3026 break; 3027 case IEEE80211_M_IBSS: 3028 case IEEE80211_M_AHDEMO: 3029 sc->config.mode = WPI_MODE_IBSS; 3030 break; 3031 case IEEE80211_M_HOSTAP: 3032 sc->config.mode = WPI_MODE_HOSTAP; 3033 break; 3034 case IEEE80211_M_MONITOR: 3035 sc->config.mode = WPI_MODE_MONITOR; 3036 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 3037 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 3038 break; 3039 } 3040 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 3041 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 3042 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 3043 sizeof (struct wpi_config), 0); 3044 if (error != 0) { 3045 aprint_error_dev(sc->sc_dev, "configure command failed\n"); 3046 return error; 3047 } 3048 3049 /* configuration has changed, set Tx power accordingly */ 3050 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 3051 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 3052 return error; 3053 } 3054 3055 /* add broadcast node */ 3056 memset(&node, 0, sizeof node); 3057 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr); 3058 node.id = WPI_ID_BROADCAST; 3059 node.rate = wpi_plcp_signal(2); 3060 node.action = htole32(WPI_ACTION_SET_RATE); 3061 node.antenna = WPI_ANTENNA_BOTH; 3062 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 3063 if (error != 0) { 3064 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n"); 3065 return error; 3066 } 3067 3068 if ((error = wpi_mrr_setup(sc)) != 0) { 3069 aprint_error_dev(sc->sc_dev, "could not setup MRR\n"); 3070 return error; 3071 } 3072 3073 return 0; 3074 } 3075 3076 static void 3077 wpi_stop_master(struct wpi_softc *sc) 3078 { 3079 uint32_t tmp; 3080 int ntries; 3081 3082 tmp = WPI_READ(sc, WPI_RESET); 3083 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER); 3084 3085 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3086 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 3087 return; /* already asleep */ 3088 3089 for (ntries = 0; ntries < 100; ntries++) { 3090 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 3091 break; 3092 DELAY(10); 3093 } 3094 if (ntries == 100) { 3095 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); 3096 } 3097 } 3098 3099 static int 3100 wpi_power_up(struct wpi_softc *sc) 3101 { 3102 uint32_t tmp; 3103 int ntries; 3104 3105 wpi_mem_lock(sc); 3106 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 3107 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 3108 wpi_mem_unlock(sc); 3109 3110 for (ntries = 0; ntries < 5000; ntries++) { 3111 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 3112 break; 3113 DELAY(10); 3114 } 3115 if (ntries == 5000) { 3116 aprint_error_dev(sc->sc_dev, 3117 "timeout waiting for NIC to power up\n"); 3118 return ETIMEDOUT; 3119 } 3120 return 0; 3121 } 3122 3123 static int 3124 wpi_reset(struct wpi_softc *sc) 3125 { 3126 uint32_t tmp; 3127 int ntries; 3128 3129 /* clear any pending interrupts */ 3130 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3131 3132 tmp = WPI_READ(sc, WPI_PLL_CTL); 3133 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 3134 3135 tmp = WPI_READ(sc, WPI_CHICKEN); 3136 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 3137 3138 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3139 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 3140 3141 /* wait for clock stabilization */ 3142 for (ntries = 0; ntries < 1000; ntries++) { 3143 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 3144 break; 3145 DELAY(10); 3146 } 3147 if (ntries == 1000) { 3148 aprint_error_dev(sc->sc_dev, 3149 "timeout waiting for clock stabilization\n"); 3150 return ETIMEDOUT; 3151 } 3152 3153 /* initialize EEPROM */ 3154 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 3155 if ((tmp & WPI_EEPROM_VERSION) == 0) { 3156 aprint_error_dev(sc->sc_dev, "EEPROM not found\n"); 3157 return EIO; 3158 } 3159 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3160 3161 return 0; 3162 } 3163 3164 static void 3165 wpi_hw_config(struct wpi_softc *sc) 3166 { 3167 uint32_t rev, hw; 3168 3169 /* voodoo from the reference driver */ 3170 hw = WPI_READ(sc, WPI_HWCONFIG); 3171 3172 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 3173 rev = PCI_REVISION(rev); 3174 if ((rev & 0xc0) == 0x40) 3175 hw |= WPI_HW_ALM_MB; 3176 else if (!(rev & 0x80)) 3177 hw |= WPI_HW_ALM_MM; 3178 3179 if (sc->cap == 0x80) 3180 hw |= WPI_HW_SKU_MRC; 3181 3182 hw &= ~WPI_HW_REV_D; 3183 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 3184 hw |= WPI_HW_REV_D; 3185 3186 if (sc->type > 1) 3187 hw |= WPI_HW_TYPE_B; 3188 3189 DPRINTF(("setting h/w config %x\n", hw)); 3190 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3191 } 3192 3193 static int 3194 wpi_init(struct ifnet *ifp) 3195 { 3196 struct wpi_softc *sc = ifp->if_softc; 3197 struct ieee80211com *ic = &sc->sc_ic; 3198 uint32_t tmp; 3199 int qid, ntries, error; 3200 3201 wpi_stop(ifp,1); 3202 (void)wpi_reset(sc); 3203 3204 wpi_mem_lock(sc); 3205 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3206 DELAY(20); 3207 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3208 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3209 wpi_mem_unlock(sc); 3210 3211 (void)wpi_power_up(sc); 3212 wpi_hw_config(sc); 3213 3214 /* init Rx ring */ 3215 wpi_mem_lock(sc); 3216 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3217 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3218 offsetof(struct wpi_shared, next)); 3219 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3220 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3221 wpi_mem_unlock(sc); 3222 3223 /* init Tx rings */ 3224 wpi_mem_lock(sc); 3225 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3226 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3227 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3228 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3229 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3230 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3231 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3232 3233 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3234 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3235 3236 for (qid = 0; qid < 6; qid++) { 3237 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3238 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3239 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3240 } 3241 wpi_mem_unlock(sc); 3242 3243 /* clear "radio off" and "disable command" bits (reversed logic) */ 3244 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3245 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3246 3247 /* clear any pending interrupts */ 3248 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3249 /* enable interrupts */ 3250 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3251 3252 /* not sure why/if this is necessary... */ 3253 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3254 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3255 3256 if ((error = wpi_load_firmware(sc)) != 0) 3257 /* wpi_load_firmware prints error messages for us. */ 3258 goto fail1; 3259 3260 /* Check the status of the radio switch */ 3261 mutex_enter(&sc->sc_rsw_mtx); 3262 if (wpi_getrfkill(sc)) { 3263 mutex_exit(&sc->sc_rsw_mtx); 3264 aprint_error_dev(sc->sc_dev, 3265 "radio is disabled by hardware switch\n"); 3266 ifp->if_flags &= ~IFF_UP; 3267 error = EBUSY; 3268 goto fail1; 3269 } 3270 mutex_exit(&sc->sc_rsw_mtx); 3271 3272 /* wait for thermal sensors to calibrate */ 3273 for (ntries = 0; ntries < 1000; ntries++) { 3274 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3275 break; 3276 DELAY(10); 3277 } 3278 if (ntries == 1000) { 3279 aprint_error_dev(sc->sc_dev, 3280 "timeout waiting for thermal sensors calibration\n"); 3281 error = ETIMEDOUT; 3282 goto fail1; 3283 } 3284 DPRINTF(("temperature %d\n", sc->temp)); 3285 3286 if ((error = wpi_config(sc)) != 0) { 3287 aprint_error_dev(sc->sc_dev, "could not configure device\n"); 3288 goto fail1; 3289 } 3290 3291 ifp->if_flags &= ~IFF_OACTIVE; 3292 ifp->if_flags |= IFF_RUNNING; 3293 3294 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3295 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 3296 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3297 } 3298 else 3299 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3300 3301 return 0; 3302 3303 fail1: wpi_stop(ifp, 1); 3304 return error; 3305 } 3306 3307 static void 3308 wpi_stop(struct ifnet *ifp, int disable) 3309 { 3310 struct wpi_softc *sc = ifp->if_softc; 3311 struct ieee80211com *ic = &sc->sc_ic; 3312 uint32_t tmp; 3313 int ac; 3314 3315 ifp->if_timer = sc->sc_tx_timer = 0; 3316 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3317 3318 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3319 3320 /* disable interrupts */ 3321 WPI_WRITE(sc, WPI_MASK, 0); 3322 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3323 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3324 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3325 3326 wpi_mem_lock(sc); 3327 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3328 wpi_mem_unlock(sc); 3329 3330 /* reset all Tx rings */ 3331 for (ac = 0; ac < 4; ac++) 3332 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3333 wpi_reset_tx_ring(sc, &sc->cmdq); 3334 3335 /* reset Rx ring */ 3336 wpi_reset_rx_ring(sc, &sc->rxq); 3337 3338 wpi_mem_lock(sc); 3339 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3340 wpi_mem_unlock(sc); 3341 3342 DELAY(5); 3343 3344 wpi_stop_master(sc); 3345 3346 tmp = WPI_READ(sc, WPI_RESET); 3347 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3348 } 3349 3350 static bool 3351 wpi_resume(device_t dv, const pmf_qual_t *qual) 3352 { 3353 struct wpi_softc *sc = device_private(dv); 3354 3355 (void)wpi_reset(sc); 3356 3357 return true; 3358 } 3359 3360 /* 3361 * Return whether or not the radio is enabled in hardware 3362 * (i.e. the rfkill switch is "off"). 3363 */ 3364 static int 3365 wpi_getrfkill(struct wpi_softc *sc) 3366 { 3367 uint32_t tmp; 3368 3369 wpi_mem_lock(sc); 3370 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL); 3371 wpi_mem_unlock(sc); 3372 3373 KASSERT(mutex_owned(&sc->sc_rsw_mtx)); 3374 if (tmp & 0x01) { 3375 /* switch is on */ 3376 if (sc->sc_rsw_status != WPI_RSW_ON) { 3377 sc->sc_rsw_status = WPI_RSW_ON; 3378 sysmon_pswitch_event(&sc->sc_rsw, 3379 PSWITCH_EVENT_PRESSED); 3380 } 3381 } else { 3382 /* switch is off */ 3383 if (sc->sc_rsw_status != WPI_RSW_OFF) { 3384 sc->sc_rsw_status = WPI_RSW_OFF; 3385 sysmon_pswitch_event(&sc->sc_rsw, 3386 PSWITCH_EVENT_RELEASED); 3387 } 3388 } 3389 3390 return !(tmp & 0x01); 3391 } 3392 3393 static int 3394 wpi_sysctl_radio(SYSCTLFN_ARGS) 3395 { 3396 struct sysctlnode node; 3397 struct wpi_softc *sc; 3398 int val, error; 3399 3400 node = *rnode; 3401 sc = (struct wpi_softc *)node.sysctl_data; 3402 3403 mutex_enter(&sc->sc_rsw_mtx); 3404 val = !wpi_getrfkill(sc); 3405 mutex_exit(&sc->sc_rsw_mtx); 3406 3407 node.sysctl_data = &val; 3408 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3409 3410 if (error || newp == NULL) 3411 return error; 3412 3413 return 0; 3414 } 3415 3416 static void 3417 wpi_sysctlattach(struct wpi_softc *sc) 3418 { 3419 int rc; 3420 const struct sysctlnode *rnode; 3421 const struct sysctlnode *cnode; 3422 3423 struct sysctllog **clog = &sc->sc_sysctllog; 3424 3425 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 3426 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev), 3427 SYSCTL_DESCR("wpi controls and statistics"), 3428 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) 3429 goto err; 3430 3431 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 3432 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio", 3433 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"), 3434 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0) 3435 goto err; 3436 3437 #ifdef WPI_DEBUG 3438 /* control debugging printfs */ 3439 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 3440 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 3441 "debug", SYSCTL_DESCR("Enable debugging output"), 3442 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) 3443 goto err; 3444 #endif 3445 3446 return; 3447 err: 3448 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 3449 } 3450 3451 static void 3452 wpi_rsw_thread(void *arg) 3453 { 3454 struct wpi_softc *sc = (struct wpi_softc *)arg; 3455 3456 mutex_enter(&sc->sc_rsw_mtx); 3457 for (;;) { 3458 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz); 3459 if (sc->sc_dying) { 3460 sc->sc_rsw_lwp = NULL; 3461 cv_broadcast(&sc->sc_rsw_cv); 3462 mutex_exit(&sc->sc_rsw_mtx); 3463 kthread_exit(0); 3464 } 3465 wpi_getrfkill(sc); 3466 } 3467 } 3468 3469