xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*  $NetBSD: if_wpi.c,v 1.54 2012/11/25 19:50:34 riastradh Exp $    */
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.54 2012/11/25 19:50:34 riastradh Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 
68 #include <dev/firmload.h>
69 
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72 
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /*
83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84  */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87 
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 	{ 4, { 2, 4, 11, 22 } };
90 
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93 
94 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
95 static once_t wpi_firmware_init;
96 static kmutex_t wpi_firmware_mutex;
97 static size_t wpi_firmware_users;
98 static uint8_t *wpi_firmware_image;
99 static size_t wpi_firmware_size;
100 
101 static int  wpi_match(device_t, cfdata_t, void *);
102 static void wpi_attach(device_t, device_t, void *);
103 static int  wpi_detach(device_t , int);
104 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
105 	void **, bus_size_t, bus_size_t, int);
106 static void wpi_dma_contig_free(struct wpi_dma_info *);
107 static int  wpi_alloc_shared(struct wpi_softc *);
108 static void wpi_free_shared(struct wpi_softc *);
109 static int  wpi_alloc_fwmem(struct wpi_softc *);
110 static void wpi_free_fwmem(struct wpi_softc *);
111 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
112 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
113 static int  wpi_alloc_rpool(struct wpi_softc *);
114 static void wpi_free_rpool(struct wpi_softc *);
115 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
118 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
119 	int);
120 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
121 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
122 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
123 static void wpi_newassoc(struct ieee80211_node *, int);
124 static int  wpi_media_change(struct ifnet *);
125 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
126 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
127 static void wpi_mem_lock(struct wpi_softc *);
128 static void wpi_mem_unlock(struct wpi_softc *);
129 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
130 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
131 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
132 								   const uint32_t *, int);
133 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
134 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
135 static int  wpi_cache_firmware(struct wpi_softc *);
136 static void wpi_release_firmware(void);
137 static int  wpi_load_firmware(struct wpi_softc *);
138 static void wpi_calib_timeout(void *);
139 static void wpi_iter_func(void *, struct ieee80211_node *);
140 static void wpi_power_calibration(struct wpi_softc *, int);
141 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
142 	struct wpi_rx_data *);
143 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
144 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
145 static void wpi_notif_intr(struct wpi_softc *);
146 static int  wpi_intr(void *);
147 static void wpi_read_eeprom(struct wpi_softc *);
148 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
149 static void wpi_read_eeprom_group(struct wpi_softc *, int);
150 static uint8_t wpi_plcp_signal(int);
151 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
152 	struct ieee80211_node *, int);
153 static void wpi_start(struct ifnet *);
154 static void wpi_watchdog(struct ifnet *);
155 static int  wpi_ioctl(struct ifnet *, u_long, void *);
156 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
157 static int  wpi_wme_update(struct ieee80211com *);
158 static int  wpi_mrr_setup(struct wpi_softc *);
159 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
160 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
161 static int  wpi_set_txpower(struct wpi_softc *,
162 			    struct ieee80211_channel *, int);
163 static int  wpi_get_power_index(struct wpi_softc *,
164 		struct wpi_power_group *, struct ieee80211_channel *, int);
165 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
166 static int  wpi_auth(struct wpi_softc *);
167 static int  wpi_scan(struct wpi_softc *, uint16_t);
168 static int  wpi_config(struct wpi_softc *);
169 static void wpi_stop_master(struct wpi_softc *);
170 static int  wpi_power_up(struct wpi_softc *);
171 static int  wpi_reset(struct wpi_softc *);
172 static void wpi_hw_config(struct wpi_softc *);
173 static int  wpi_init(struct ifnet *);
174 static void wpi_stop(struct ifnet *, int);
175 static bool wpi_resume(device_t, const pmf_qual_t *);
176 static int	wpi_getrfkill(struct wpi_softc *);
177 static void wpi_sysctlattach(struct wpi_softc *);
178 
179 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
180 	wpi_detach, NULL);
181 
182 static int
183 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
184 {
185 	struct pci_attach_args *pa = aux;
186 
187 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
188 		return 0;
189 
190 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
191 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
192 		return 1;
193 
194 	return 0;
195 }
196 
197 /* Base Address Register */
198 #define WPI_PCI_BAR0	0x10
199 
200 static int
201 wpi_attach_once(void)
202 {
203 
204 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
205 	return 0;
206 }
207 
208 static void
209 wpi_attach(device_t parent __unused, device_t self, void *aux)
210 {
211 	struct wpi_softc *sc = device_private(self);
212 	struct ieee80211com *ic = &sc->sc_ic;
213 	struct ifnet *ifp = &sc->sc_ec.ec_if;
214 	struct pci_attach_args *pa = aux;
215 	const char *intrstr;
216 	bus_space_tag_t memt;
217 	bus_space_handle_t memh;
218 	pci_intr_handle_t ih;
219 	pcireg_t data;
220 	int error, ac;
221 
222 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
223 	sc->fw_used = false;
224 
225 	sc->sc_dev = self;
226 	sc->sc_pct = pa->pa_pc;
227 	sc->sc_pcitag = pa->pa_tag;
228 
229 	callout_init(&sc->calib_to, 0);
230 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
231 
232 	pci_aprint_devinfo(pa, NULL);
233 
234 	/* enable bus-mastering */
235 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
236 	data |= PCI_COMMAND_MASTER_ENABLE;
237 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
238 
239 	/* map the register window */
240 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
241 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
242 	if (error != 0) {
243 		aprint_error_dev(self, "could not map memory space\n");
244 		return;
245 	}
246 
247 	sc->sc_st = memt;
248 	sc->sc_sh = memh;
249 	sc->sc_dmat = pa->pa_dmat;
250 
251 	if (pci_intr_map(pa, &ih) != 0) {
252 		aprint_error_dev(self, "could not map interrupt\n");
253 		return;
254 	}
255 
256 	intrstr = pci_intr_string(sc->sc_pct, ih);
257 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
258 	if (sc->sc_ih == NULL) {
259 		aprint_error_dev(self, "could not establish interrupt");
260 		if (intrstr != NULL)
261 			aprint_error(" at %s", intrstr);
262 		aprint_error("\n");
263 		return;
264 	}
265 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
266 
267 	if (wpi_reset(sc) != 0) {
268 		aprint_error_dev(self, "could not reset adapter\n");
269 		return;
270 	}
271 
272  	/*
273 	 * Allocate DMA memory for firmware transfers.
274 	 */
275 	if ((error = wpi_alloc_fwmem(sc)) != 0)
276 		return;
277 
278 	/*
279 	 * Allocate shared page and Tx/Rx rings.
280 	 */
281 	if ((error = wpi_alloc_shared(sc)) != 0) {
282 		aprint_error_dev(self, "could not allocate shared area\n");
283 		goto fail1;
284 	}
285 
286 	if ((error = wpi_alloc_rpool(sc)) != 0) {
287 		aprint_error_dev(self, "could not allocate Rx buffers\n");
288 		goto fail2;
289 	}
290 
291 	for (ac = 0; ac < 4; ac++) {
292 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
293 		if (error != 0) {
294 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
295 			goto fail3;
296 		}
297 	}
298 
299 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
300 	if (error != 0) {
301 		aprint_error_dev(self, "could not allocate command ring\n");
302 		goto fail3;
303 	}
304 
305 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
306 		aprint_error_dev(self, "could not allocate Rx ring\n");
307 		goto fail4;
308 	}
309 
310 	ic->ic_ifp = ifp;
311 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
312 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
313 	ic->ic_state = IEEE80211_S_INIT;
314 
315 	/* set device capabilities */
316 	ic->ic_caps =
317 #ifdef netyet
318 		IEEE80211_C_IBSS |       /* IBSS mode support */
319 #endif
320 		IEEE80211_C_WPA |        /* 802.11i */
321 		IEEE80211_C_MONITOR |    /* monitor mode supported */
322 		IEEE80211_C_TXPMGT |     /* tx power management */
323 		IEEE80211_C_SHSLOT |     /* short slot time supported */
324 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
325 		IEEE80211_C_WME;         /* 802.11e */
326 
327 	/* read supported channels and MAC address from EEPROM */
328 	wpi_read_eeprom(sc);
329 
330 	/* set supported .11a, .11b, .11g rates */
331 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
332 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
333 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
334 
335 	ic->ic_ibss_chan = &ic->ic_channels[0];
336 
337 	ifp->if_softc = sc;
338 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
339 	ifp->if_init = wpi_init;
340 	ifp->if_stop = wpi_stop;
341 	ifp->if_ioctl = wpi_ioctl;
342 	ifp->if_start = wpi_start;
343 	ifp->if_watchdog = wpi_watchdog;
344 	IFQ_SET_READY(&ifp->if_snd);
345 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
346 
347 	if_attach(ifp);
348 	ieee80211_ifattach(ic);
349 	/* override default methods */
350 	ic->ic_node_alloc = wpi_node_alloc;
351 	ic->ic_newassoc = wpi_newassoc;
352 	ic->ic_wme.wme_update = wpi_wme_update;
353 
354 	/* override state transition machine */
355 	sc->sc_newstate = ic->ic_newstate;
356 	ic->ic_newstate = wpi_newstate;
357 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
358 
359 	sc->amrr.amrr_min_success_threshold = 1;
360 	sc->amrr.amrr_max_success_threshold = 15;
361 
362 	wpi_sysctlattach(sc);
363 
364 	if (pmf_device_register(self, NULL, wpi_resume))
365 		pmf_class_network_register(self, ifp);
366 	else
367 		aprint_error_dev(self, "couldn't establish power handler\n");
368 
369 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
370 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
371 	    &sc->sc_drvbpf);
372 
373 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
374 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
375 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
376 
377 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
378 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
379 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
380 
381 	ieee80211_announce(ic);
382 
383 	return;
384 
385 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
386 fail3:  while (--ac >= 0)
387 			wpi_free_tx_ring(sc, &sc->txq[ac]);
388 	wpi_free_rpool(sc);
389 fail2:	wpi_free_shared(sc);
390 fail1:	wpi_free_fwmem(sc);
391 }
392 
393 static int
394 wpi_detach(device_t self, int flags __unused)
395 {
396 	struct wpi_softc *sc = device_private(self);
397 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
398 	int ac;
399 
400 	wpi_stop(ifp, 1);
401 
402 	if (ifp != NULL)
403 		bpf_detach(ifp);
404 	ieee80211_ifdetach(&sc->sc_ic);
405 	if (ifp != NULL)
406 		if_detach(ifp);
407 
408 	for (ac = 0; ac < 4; ac++)
409 		wpi_free_tx_ring(sc, &sc->txq[ac]);
410 	wpi_free_tx_ring(sc, &sc->cmdq);
411 	wpi_free_rx_ring(sc, &sc->rxq);
412 	wpi_free_rpool(sc);
413 	wpi_free_shared(sc);
414 
415 	if (sc->sc_ih != NULL) {
416 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
417 		sc->sc_ih = NULL;
418 	}
419 
420 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
421 
422 	if (sc->fw_used) {
423 		sc->fw_used = false;
424 		wpi_release_firmware();
425 	}
426 
427 	return 0;
428 }
429 
430 static int
431 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
432 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
433 {
434 	int nsegs, error;
435 
436 	dma->tag = tag;
437 	dma->size = size;
438 
439 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
440 	if (error != 0)
441 		goto fail;
442 
443 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
444 	    flags);
445 	if (error != 0)
446 		goto fail;
447 
448 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
449 	if (error != 0)
450 		goto fail;
451 
452 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
453 	if (error != 0)
454 		goto fail;
455 
456 	memset(dma->vaddr, 0, size);
457 
458 	dma->paddr = dma->map->dm_segs[0].ds_addr;
459 	if (kvap != NULL)
460 		*kvap = dma->vaddr;
461 
462 	return 0;
463 
464 fail:   wpi_dma_contig_free(dma);
465 	return error;
466 }
467 
468 static void
469 wpi_dma_contig_free(struct wpi_dma_info *dma)
470 {
471 	if (dma->map != NULL) {
472 		if (dma->vaddr != NULL) {
473 			bus_dmamap_unload(dma->tag, dma->map);
474 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
475 			bus_dmamem_free(dma->tag, &dma->seg, 1);
476 			dma->vaddr = NULL;
477 		}
478 		bus_dmamap_destroy(dma->tag, dma->map);
479 		dma->map = NULL;
480 	}
481 }
482 
483 /*
484  * Allocate a shared page between host and NIC.
485  */
486 static int
487 wpi_alloc_shared(struct wpi_softc *sc)
488 {
489 	int error;
490 	/* must be aligned on a 4K-page boundary */
491 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
492 			(void **)&sc->shared, sizeof (struct wpi_shared),
493 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
494 	if (error != 0)
495 		aprint_error_dev(sc->sc_dev,
496 				"could not allocate shared area DMA memory\n");
497 
498 	return error;
499 }
500 
501 static void
502 wpi_free_shared(struct wpi_softc *sc)
503 {
504 	wpi_dma_contig_free(&sc->shared_dma);
505 }
506 
507 /*
508  * Allocate DMA-safe memory for firmware transfer.
509  */
510 static int
511 wpi_alloc_fwmem(struct wpi_softc *sc)
512 {
513 	int error;
514 	/* allocate enough contiguous space to store text and data */
515 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
516 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
517 	    BUS_DMA_NOWAIT);
518 
519 	if (error != 0)
520 		aprint_error_dev(sc->sc_dev,
521 			"could not allocate firmware transfer area"
522 			"DMA memory\n");
523 	return error;
524 }
525 
526 static void
527 wpi_free_fwmem(struct wpi_softc *sc)
528 {
529 	wpi_dma_contig_free(&sc->fw_dma);
530 }
531 
532 
533 static struct wpi_rbuf *
534 wpi_alloc_rbuf(struct wpi_softc *sc)
535 {
536 	struct wpi_rbuf *rbuf;
537 
538 	mutex_enter(&sc->rxq.freelist_mtx);
539 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
540 	if (rbuf != NULL) {
541 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
542 		sc->rxq.nb_free_entries --;
543 	}
544 	mutex_exit(&sc->rxq.freelist_mtx);
545 
546 	return rbuf;
547 }
548 
549 /*
550  * This is called automatically by the network stack when the mbuf to which our
551  * Rx buffer is attached is freed.
552  */
553 static void
554 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
555 {
556 	struct wpi_rbuf *rbuf = arg;
557 	struct wpi_softc *sc = rbuf->sc;
558 
559 	/* put the buffer back in the free list */
560 
561 	mutex_enter(&sc->rxq.freelist_mtx);
562 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
563 	mutex_exit(&sc->rxq.freelist_mtx);
564 	/* No need to protect this with a mutex, see wpi_rx_intr */
565 	sc->rxq.nb_free_entries ++;
566 
567 	if (__predict_true(m != NULL))
568 		pool_cache_put(mb_cache, m);
569 }
570 
571 static int
572 wpi_alloc_rpool(struct wpi_softc *sc)
573 {
574 	struct wpi_rx_ring *ring = &sc->rxq;
575 	struct wpi_rbuf *rbuf;
576 	int i, error;
577 
578 	/* allocate a big chunk of DMA'able memory.. */
579 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
580 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
581 	if (error != 0) {
582 		aprint_normal_dev(sc->sc_dev,
583 						  "could not allocate Rx buffers DMA memory\n");
584 		return error;
585 	}
586 
587 	/* ..and split it into 3KB chunks */
588 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
589 	SLIST_INIT(&ring->freelist);
590 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
591 		rbuf = &ring->rbuf[i];
592 		rbuf->sc = sc;	/* backpointer for callbacks */
593 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
594 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
595 
596 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
597 	}
598 
599 	ring->nb_free_entries = WPI_RBUF_COUNT;
600 	return 0;
601 }
602 
603 static void
604 wpi_free_rpool(struct wpi_softc *sc)
605 {
606 	wpi_dma_contig_free(&sc->rxq.buf_dma);
607 }
608 
609 static int
610 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
611 {
612 	struct wpi_rx_data *data;
613 	struct wpi_rbuf *rbuf;
614 	int i, error;
615 
616 	ring->cur = 0;
617 
618 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
619 		(void **)&ring->desc,
620 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
621 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
622 	if (error != 0) {
623 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
624 		goto fail;
625 	}
626 
627 	/*
628 	 * Setup Rx buffers.
629 	 */
630 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
631 		data = &ring->data[i];
632 
633 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
634 		if (data->m == NULL) {
635 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
636 			error = ENOMEM;
637 			goto fail;
638 		}
639 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
640 			m_freem(data->m);
641 			data->m = NULL;
642 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
643 			error = ENOMEM;
644 			goto fail;
645 		}
646 		/* attach Rx buffer to mbuf */
647 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
648 		    rbuf);
649 		data->m->m_flags |= M_EXT_RW;
650 
651 		ring->desc[i] = htole32(rbuf->paddr);
652 	}
653 
654 	return 0;
655 
656 fail:	wpi_free_rx_ring(sc, ring);
657 	return error;
658 }
659 
660 static void
661 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
662 {
663 	int ntries;
664 
665 	wpi_mem_lock(sc);
666 
667 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
668 	for (ntries = 0; ntries < 100; ntries++) {
669 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
670 			break;
671 		DELAY(10);
672 	}
673 #ifdef WPI_DEBUG
674 	if (ntries == 100 && wpi_debug > 0)
675 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
676 #endif
677 	wpi_mem_unlock(sc);
678 
679 	ring->cur = 0;
680 }
681 
682 static void
683 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
684 {
685 	int i;
686 
687 	wpi_dma_contig_free(&ring->desc_dma);
688 
689 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
690 		if (ring->data[i].m != NULL)
691 			m_freem(ring->data[i].m);
692 	}
693 }
694 
695 static int
696 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
697 	int qid)
698 {
699 	struct wpi_tx_data *data;
700 	int i, error;
701 
702 	ring->qid = qid;
703 	ring->count = count;
704 	ring->queued = 0;
705 	ring->cur = 0;
706 
707 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
708 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
709 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
710 	if (error != 0) {
711 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
712 		goto fail;
713 	}
714 
715 	/* update shared page with ring's base address */
716 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
717 
718 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
719 		(void **)&ring->cmd,
720 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
721 	if (error != 0) {
722 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
723 		goto fail;
724 	}
725 
726 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
727 		M_NOWAIT);
728 	if (ring->data == NULL) {
729 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
730 		goto fail;
731 	}
732 
733 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
734 
735 	for (i = 0; i < count; i++) {
736 		data = &ring->data[i];
737 
738 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
739 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
740 			&data->map);
741 		if (error != 0) {
742 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
743 			goto fail;
744 		}
745 	}
746 
747 	return 0;
748 
749 fail:	wpi_free_tx_ring(sc, ring);
750 	return error;
751 }
752 
753 static void
754 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
755 {
756 	struct wpi_tx_data *data;
757 	int i, ntries;
758 
759 	wpi_mem_lock(sc);
760 
761 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
762 	for (ntries = 0; ntries < 100; ntries++) {
763 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
764 			break;
765 		DELAY(10);
766 	}
767 #ifdef WPI_DEBUG
768 	if (ntries == 100 && wpi_debug > 0) {
769 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
770 									   ring->qid);
771 	}
772 #endif
773 	wpi_mem_unlock(sc);
774 
775 	for (i = 0; i < ring->count; i++) {
776 		data = &ring->data[i];
777 
778 		if (data->m != NULL) {
779 			bus_dmamap_unload(sc->sc_dmat, data->map);
780 			m_freem(data->m);
781 			data->m = NULL;
782 		}
783 	}
784 
785 	ring->queued = 0;
786 	ring->cur = 0;
787 }
788 
789 static void
790 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
791 {
792 	struct wpi_tx_data *data;
793 	int i;
794 
795 	wpi_dma_contig_free(&ring->desc_dma);
796 	wpi_dma_contig_free(&ring->cmd_dma);
797 
798 	if (ring->data != NULL) {
799 		for (i = 0; i < ring->count; i++) {
800 			data = &ring->data[i];
801 
802 			if (data->m != NULL) {
803 				bus_dmamap_unload(sc->sc_dmat, data->map);
804 				m_freem(data->m);
805 			}
806 		}
807 		free(ring->data, M_DEVBUF);
808 	}
809 }
810 
811 /*ARGUSED*/
812 static struct ieee80211_node *
813 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
814 {
815 	struct wpi_node *wn;
816 
817 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
818 
819 	return (struct ieee80211_node *)wn;
820 }
821 
822 static void
823 wpi_newassoc(struct ieee80211_node *ni, int isnew)
824 {
825 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
826 	int i;
827 
828 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
829 
830 	/* set rate to some reasonable initial value */
831 	for (i = ni->ni_rates.rs_nrates - 1;
832 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
833 	     i--);
834 	ni->ni_txrate = i;
835 }
836 
837 static int
838 wpi_media_change(struct ifnet *ifp)
839 {
840 	int error;
841 
842 	error = ieee80211_media_change(ifp);
843 	if (error != ENETRESET)
844 		return error;
845 
846 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
847 		wpi_init(ifp);
848 
849 	return 0;
850 }
851 
852 static int
853 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
854 {
855 	struct ifnet *ifp = ic->ic_ifp;
856 	struct wpi_softc *sc = ifp->if_softc;
857 	struct ieee80211_node *ni;
858 	int error;
859 
860 	callout_stop(&sc->calib_to);
861 
862 	switch (nstate) {
863 	case IEEE80211_S_SCAN:
864 
865 		if (sc->is_scanning)
866 			break;
867 
868 		sc->is_scanning = true;
869 		ieee80211_node_table_reset(&ic->ic_scan);
870 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
871 
872 		/* make the link LED blink while we're scanning */
873 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
874 
875 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
876 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
877 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
878 			return error;
879 		}
880 
881 		ic->ic_state = nstate;
882 		return 0;
883 
884 	case IEEE80211_S_ASSOC:
885 		if (ic->ic_state != IEEE80211_S_RUN)
886 			break;
887 		/* FALLTHROUGH */
888 	case IEEE80211_S_AUTH:
889 		sc->config.associd = 0;
890 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
891 		if ((error = wpi_auth(sc)) != 0) {
892 			aprint_error_dev(sc->sc_dev,
893 							"could not send authentication request\n");
894 			return error;
895 		}
896 		break;
897 
898 	case IEEE80211_S_RUN:
899 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
900 			/* link LED blinks while monitoring */
901 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
902 			break;
903 		}
904 
905 		ni = ic->ic_bss;
906 
907 		if (ic->ic_opmode != IEEE80211_M_STA) {
908 			(void) wpi_auth(sc);    /* XXX */
909 			wpi_setup_beacon(sc, ni);
910 		}
911 
912 		wpi_enable_tsf(sc, ni);
913 
914 		/* update adapter's configuration */
915 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
916 		/* short preamble/slot time are negotiated when associating */
917 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
918 			WPI_CONFIG_SHSLOT);
919 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
920 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
921 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
922 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
923 		sc->config.filter |= htole32(WPI_FILTER_BSS);
924 		if (ic->ic_opmode != IEEE80211_M_STA)
925 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
926 
927 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
928 
929 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
930 			sc->config.flags));
931 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
932 			sizeof (struct wpi_config), 1);
933 		if (error != 0) {
934 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
935 			return error;
936 		}
937 
938 		/* configuration has changed, set Tx power accordingly */
939 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
940 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
941 			return error;
942 		}
943 
944 		if (ic->ic_opmode == IEEE80211_M_STA) {
945 			/* fake a join to init the tx rate */
946 			wpi_newassoc(ni, 1);
947 		}
948 
949 		/* start periodic calibration timer */
950 		sc->calib_cnt = 0;
951 		callout_schedule(&sc->calib_to, hz/2);
952 
953 		/* link LED always on while associated */
954 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
955 		break;
956 
957 	case IEEE80211_S_INIT:
958 		sc->is_scanning = false;
959 		break;
960 	}
961 
962 	return sc->sc_newstate(ic, nstate, arg);
963 }
964 
965 /*
966  * XXX: Hack to set the current channel to the value advertised in beacons or
967  * probe responses. Only used during AP detection.
968  * XXX: Duplicated from if_iwi.c
969  */
970 static void
971 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
972 {
973 	struct ieee80211_frame *wh;
974 	uint8_t subtype;
975 	uint8_t *frm, *efrm;
976 
977 	wh = mtod(m, struct ieee80211_frame *);
978 
979 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
980 		return;
981 
982 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
983 
984 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
985 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
986 		return;
987 
988 	frm = (uint8_t *)(wh + 1);
989 	efrm = mtod(m, uint8_t *) + m->m_len;
990 
991 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
992 	while (frm < efrm) {
993 		if (*frm == IEEE80211_ELEMID_DSPARMS)
994 #if IEEE80211_CHAN_MAX < 255
995 		if (frm[2] <= IEEE80211_CHAN_MAX)
996 #endif
997 			ic->ic_curchan = &ic->ic_channels[frm[2]];
998 
999 		frm += frm[1] + 2;
1000 	}
1001 }
1002 
1003 /*
1004  * Grab exclusive access to NIC memory.
1005  */
1006 static void
1007 wpi_mem_lock(struct wpi_softc *sc)
1008 {
1009 	uint32_t tmp;
1010 	int ntries;
1011 
1012 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1013 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1014 
1015 	/* spin until we actually get the lock */
1016 	for (ntries = 0; ntries < 1000; ntries++) {
1017 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1018 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1019 			break;
1020 		DELAY(10);
1021 	}
1022 	if (ntries == 1000)
1023 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1024 }
1025 
1026 /*
1027  * Release lock on NIC memory.
1028  */
1029 static void
1030 wpi_mem_unlock(struct wpi_softc *sc)
1031 {
1032 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1033 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1034 }
1035 
1036 static uint32_t
1037 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1038 {
1039 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1040 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1041 }
1042 
1043 static void
1044 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1045 {
1046 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1047 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1048 }
1049 
1050 static void
1051 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1052 						const uint32_t *data, int wlen)
1053 {
1054 	for (; wlen > 0; wlen--, data++, addr += 4)
1055 		wpi_mem_write(sc, addr, *data);
1056 }
1057 
1058 
1059 /*
1060  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1061  * instead of using the traditional bit-bang method.
1062  */
1063 static int
1064 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1065 {
1066 	uint8_t *out = data;
1067 	uint32_t val;
1068 	int ntries;
1069 
1070 	wpi_mem_lock(sc);
1071 	for (; len > 0; len -= 2, addr++) {
1072 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1073 
1074 		for (ntries = 0; ntries < 10; ntries++) {
1075 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1076 			    WPI_EEPROM_READY)
1077 				break;
1078 			DELAY(5);
1079 		}
1080 		if (ntries == 10) {
1081 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1082 			return ETIMEDOUT;
1083 		}
1084 		*out++ = val >> 16;
1085 		if (len > 1)
1086 			*out++ = val >> 24;
1087 	}
1088 	wpi_mem_unlock(sc);
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * The firmware boot code is small and is intended to be copied directly into
1095  * the NIC internal memory.
1096  */
1097 int
1098 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1099 {
1100 	int ntries;
1101 
1102 	size /= sizeof (uint32_t);
1103 
1104 	wpi_mem_lock(sc);
1105 
1106 	/* copy microcode image into NIC memory */
1107 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1108 	    (const uint32_t *)ucode, size);
1109 
1110 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1111 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1112 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1113 
1114 	/* run microcode */
1115 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1116 
1117 	/* wait for transfer to complete */
1118 	for (ntries = 0; ntries < 1000; ntries++) {
1119 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1120 			break;
1121 		DELAY(10);
1122 	}
1123 	if (ntries == 1000) {
1124 		wpi_mem_unlock(sc);
1125 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1126 		return ETIMEDOUT;
1127 	}
1128 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1129 
1130 	wpi_mem_unlock(sc);
1131 
1132 	return 0;
1133 }
1134 
1135 static int
1136 wpi_cache_firmware(struct wpi_softc *sc)
1137 {
1138 	const char *const fwname = wpi_firmware_name;
1139 	firmware_handle_t fw;
1140 	int error;
1141 
1142 	/* sc is used here only to report error messages.  */
1143 
1144 	mutex_enter(&wpi_firmware_mutex);
1145 
1146 	if (wpi_firmware_users == SIZE_MAX) {
1147 		mutex_exit(&wpi_firmware_mutex);
1148 		return ENFILE;	/* Too many of something in the system...  */
1149 	}
1150 	if (wpi_firmware_users++) {
1151 		KASSERT(wpi_firmware_image != NULL);
1152 		KASSERT(wpi_firmware_size > 0);
1153 		mutex_exit(&wpi_firmware_mutex);
1154 		return 0;	/* Already good to go.  */
1155 	}
1156 
1157 	KASSERT(wpi_firmware_image == NULL);
1158 	KASSERT(wpi_firmware_size == 0);
1159 
1160 	/* load firmware image from disk */
1161 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1162 		aprint_error_dev(sc->sc_dev,
1163 		    "could not open firmware file %s: %d\n", fwname, error);
1164 		goto fail0;
1165 	}
1166 
1167 	wpi_firmware_size = firmware_get_size(fw);
1168 
1169 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1170 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1171 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1172 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1173 		aprint_error_dev(sc->sc_dev,
1174 		    "firmware file %s too large: %zu bytes\n",
1175 		    fwname, wpi_firmware_size);
1176 		error = EFBIG;
1177 		goto fail1;
1178 	}
1179 
1180 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1181 		aprint_error_dev(sc->sc_dev,
1182 		    "firmware file %s too small: %zu bytes\n",
1183 		    fwname, wpi_firmware_size);
1184 		error = EINVAL;
1185 		goto fail1;
1186 	}
1187 
1188 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1189 	if (wpi_firmware_image == NULL) {
1190 		aprint_error_dev(sc->sc_dev,
1191 		    "not enough memory for firmware file %s\n", fwname);
1192 		error = ENOMEM;
1193 		goto fail1;
1194 	}
1195 
1196 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1197 	if (error != 0) {
1198 		aprint_error_dev(sc->sc_dev,
1199 		    "error reading firmware file %s: %d\n", fwname, error);
1200 		goto fail2;
1201 	}
1202 
1203 	/* Success!  */
1204 	firmware_close(fw);
1205 	mutex_exit(&wpi_firmware_mutex);
1206 	return 0;
1207 
1208 fail2:
1209 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1210 	wpi_firmware_image = NULL;
1211 fail1:
1212 	wpi_firmware_size = 0;
1213 	firmware_close(fw);
1214 fail0:
1215 	KASSERT(wpi_firmware_users == 1);
1216 	wpi_firmware_users = 0;
1217 	KASSERT(wpi_firmware_image == NULL);
1218 	KASSERT(wpi_firmware_size == 0);
1219 
1220 	mutex_exit(&wpi_firmware_mutex);
1221 	return error;
1222 }
1223 
1224 static void
1225 wpi_release_firmware(void)
1226 {
1227 
1228 	mutex_enter(&wpi_firmware_mutex);
1229 
1230 	KASSERT(wpi_firmware_users > 0);
1231 	KASSERT(wpi_firmware_image != NULL);
1232 	KASSERT(wpi_firmware_size != 0);
1233 
1234 	if (--wpi_firmware_users == 0) {
1235 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1236 		wpi_firmware_image = NULL;
1237 		wpi_firmware_size = 0;
1238 	}
1239 
1240 	mutex_exit(&wpi_firmware_mutex);
1241 }
1242 
1243 static int
1244 wpi_load_firmware(struct wpi_softc *sc)
1245 {
1246 	struct wpi_dma_info *dma = &sc->fw_dma;
1247 	struct wpi_firmware_hdr hdr;
1248 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1249 	const uint8_t *boot_text;
1250 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1251 	uint32_t boot_textsz;
1252 	size_t size;
1253 	int error;
1254 
1255 	if (!sc->fw_used) {
1256 		if ((error = wpi_cache_firmware(sc)) != 0)
1257 			return error;
1258 		sc->fw_used = true;
1259 	}
1260 
1261 	KASSERT(sc->fw_used);
1262 	KASSERT(wpi_firmware_image != NULL);
1263 	KASSERT(wpi_firmware_size > sizeof(hdr));
1264 
1265 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1266 
1267 	main_textsz = le32toh(hdr.main_textsz);
1268 	main_datasz = le32toh(hdr.main_datasz);
1269 	init_textsz = le32toh(hdr.init_textsz);
1270 	init_datasz = le32toh(hdr.init_datasz);
1271 	boot_textsz = le32toh(hdr.boot_textsz);
1272 
1273 	/* sanity-check firmware segments sizes */
1274 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1275 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1276 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1277 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1278 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1279 	    (boot_textsz & 3) != 0) {
1280 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1281 		error = EINVAL;
1282 		goto free_firmware;
1283 	}
1284 
1285 	/* check that all firmware segments are present */
1286 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1287 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1288 	if (wpi_firmware_size < size) {
1289 		aprint_error_dev(sc->sc_dev,
1290 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1291 		    wpi_firmware_size, size);
1292 		error = EINVAL;
1293 		goto free_firmware;
1294 	}
1295 
1296 	/* get pointers to firmware segments */
1297 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1298 	main_data = main_text + main_textsz;
1299 	init_text = main_data + main_datasz;
1300 	init_data = init_text + init_textsz;
1301 	boot_text = init_data + init_datasz;
1302 
1303 	/* copy initialization images into pre-allocated DMA-safe memory */
1304 	memcpy(dma->vaddr, init_data, init_datasz);
1305 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1306 	    init_textsz);
1307 
1308 	/* tell adapter where to find initialization images */
1309 	wpi_mem_lock(sc);
1310 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1311 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1312 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1313 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1314 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1315 	wpi_mem_unlock(sc);
1316 
1317 	/* load firmware boot code */
1318 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1319 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1320 		return error;
1321 	}
1322 
1323 	/* now press "execute" ;-) */
1324 	WPI_WRITE(sc, WPI_RESET, 0);
1325 
1326 	/* ..and wait at most one second for adapter to initialize */
1327 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1328 		/* this isn't what was supposed to happen.. */
1329 		aprint_error_dev(sc->sc_dev,
1330 		    "timeout waiting for adapter to initialize\n");
1331 	}
1332 
1333 	/* copy runtime images into pre-allocated DMA-safe memory */
1334 	memcpy(dma->vaddr, main_data, main_datasz);
1335 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1336 	    main_textsz);
1337 
1338 	/* tell adapter where to find runtime images */
1339 	wpi_mem_lock(sc);
1340 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1341 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1342 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1343 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1344 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1345 	wpi_mem_unlock(sc);
1346 
1347 	/* wait at most one second for second alive notification */
1348 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1349 		/* this isn't what was supposed to happen.. */
1350 		aprint_error_dev(sc->sc_dev,
1351 		    "timeout waiting for adapter to initialize\n");
1352 	}
1353 
1354 	return error;
1355 
1356 free_firmware:
1357 	sc->fw_used = false;
1358 	wpi_release_firmware();
1359 	return error;
1360 }
1361 
1362 static void
1363 wpi_calib_timeout(void *arg)
1364 {
1365 	struct wpi_softc *sc = arg;
1366 	struct ieee80211com *ic = &sc->sc_ic;
1367 	int temp, s;
1368 
1369 	/* automatic rate control triggered every 500ms */
1370 	if (ic->ic_fixed_rate == -1) {
1371 		s = splnet();
1372 		if (ic->ic_opmode == IEEE80211_M_STA)
1373 			wpi_iter_func(sc, ic->ic_bss);
1374 		else
1375                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1376 		splx(s);
1377 	}
1378 
1379 	/* update sensor data */
1380 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1381 
1382 	/* automatic power calibration every 60s */
1383 	if (++sc->calib_cnt >= 120) {
1384 		wpi_power_calibration(sc, temp);
1385 		sc->calib_cnt = 0;
1386 	}
1387 
1388 	callout_schedule(&sc->calib_to, hz/2);
1389 }
1390 
1391 static void
1392 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1393 {
1394 	struct wpi_softc *sc = arg;
1395 	struct wpi_node *wn = (struct wpi_node *)ni;
1396 
1397 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1398 }
1399 
1400 /*
1401  * This function is called periodically (every 60 seconds) to adjust output
1402  * power to temperature changes.
1403  */
1404 void
1405 wpi_power_calibration(struct wpi_softc *sc, int temp)
1406 {
1407 	/* sanity-check read value */
1408 	if (temp < -260 || temp > 25) {
1409 		/* this can't be correct, ignore */
1410 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1411 		return;
1412 	}
1413 
1414 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1415 
1416 	/* adjust Tx power if need be */
1417 	if (abs(temp - sc->temp) <= 6)
1418 		return;
1419 
1420 	sc->temp = temp;
1421 
1422 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1423 		/* just warn, too bad for the automatic calibration... */
1424 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1425 	}
1426 }
1427 
1428 static void
1429 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1430 	struct wpi_rx_data *data)
1431 {
1432 	struct ieee80211com *ic = &sc->sc_ic;
1433 	struct ifnet *ifp = ic->ic_ifp;
1434 	struct wpi_rx_ring *ring = &sc->rxq;
1435 	struct wpi_rx_stat *stat;
1436 	struct wpi_rx_head *head;
1437 	struct wpi_rx_tail *tail;
1438 	struct wpi_rbuf *rbuf;
1439 	struct ieee80211_frame *wh;
1440 	struct ieee80211_node *ni;
1441 	struct mbuf *m, *mnew;
1442 	int data_off ;
1443 
1444 	stat = (struct wpi_rx_stat *)(desc + 1);
1445 
1446 	if (stat->len > WPI_STAT_MAXLEN) {
1447 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1448 		ifp->if_ierrors++;
1449 		return;
1450 	}
1451 
1452 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1453 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1454 
1455 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1456 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1457 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1458 		le64toh(tail->tstamp)));
1459 
1460 	/*
1461 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1462 	 * to radiotap in monitor mode).
1463 	 */
1464 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1465 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1466 		ifp->if_ierrors++;
1467 		return;
1468 	}
1469 
1470 	/* Compute where are the useful datas */
1471 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1472 
1473 	/*
1474 	 * If the number of free entry is too low
1475 	 * just dup the data->m socket and reuse the same rbuf entry
1476 	 * Note that thi test is not protected by a mutex because the
1477 	 * only path that causes nb_free_entries to decrease is through
1478 	 * this interrupt routine, which is not re-entrent.
1479 	 * What may not be obvious is that the safe path is if that test
1480 	 * evaluates as true, so nb_free_entries can grow any time.
1481 	 */
1482 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1483 
1484 		/* Prepare the mbuf for the m_dup */
1485 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1486 		data->m->m_data = (char*) data->m->m_data + data_off;
1487 
1488 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1489 
1490 		/* Restore the m_data pointer for future use */
1491 		data->m->m_data = (char*) data->m->m_data - data_off;
1492 
1493 		if (m == NULL) {
1494 			ifp->if_ierrors++;
1495 			return;
1496 		}
1497 	} else {
1498 
1499 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1500 		if (mnew == NULL) {
1501 			ifp->if_ierrors++;
1502 			return;
1503 		}
1504 
1505 		rbuf = wpi_alloc_rbuf(sc);
1506 		KASSERT(rbuf != NULL);
1507 
1508  		/* attach Rx buffer to mbuf */
1509 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1510 		 	rbuf);
1511 		mnew->m_flags |= M_EXT_RW;
1512 
1513 		m = data->m;
1514 		data->m = mnew;
1515 
1516 		/* update Rx descriptor */
1517 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1518 
1519 		m->m_data = (char*)m->m_data + data_off;
1520 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1521 	}
1522 
1523 	/* finalize mbuf */
1524 	m->m_pkthdr.rcvif = ifp;
1525 
1526 	if (ic->ic_state == IEEE80211_S_SCAN)
1527 		wpi_fix_channel(ic, m);
1528 
1529 	if (sc->sc_drvbpf != NULL) {
1530 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1531 
1532 		tap->wr_flags = 0;
1533 		tap->wr_chan_freq =
1534 			htole16(ic->ic_channels[head->chan].ic_freq);
1535 		tap->wr_chan_flags =
1536 			htole16(ic->ic_channels[head->chan].ic_flags);
1537 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1538 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1539 		tap->wr_tsft = tail->tstamp;
1540 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1541 		switch (head->rate) {
1542 		/* CCK rates */
1543 		case  10: tap->wr_rate =   2; break;
1544 		case  20: tap->wr_rate =   4; break;
1545 		case  55: tap->wr_rate =  11; break;
1546 		case 110: tap->wr_rate =  22; break;
1547 		/* OFDM rates */
1548 		case 0xd: tap->wr_rate =  12; break;
1549 		case 0xf: tap->wr_rate =  18; break;
1550 		case 0x5: tap->wr_rate =  24; break;
1551 		case 0x7: tap->wr_rate =  36; break;
1552 		case 0x9: tap->wr_rate =  48; break;
1553 		case 0xb: tap->wr_rate =  72; break;
1554 		case 0x1: tap->wr_rate =  96; break;
1555 		case 0x3: tap->wr_rate = 108; break;
1556 		/* unknown rate: should not happen */
1557 		default:  tap->wr_rate =   0;
1558 		}
1559 		if (le16toh(head->flags) & 0x4)
1560 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1561 
1562 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1563 	}
1564 
1565 	/* grab a reference to the source node */
1566 	wh = mtod(m, struct ieee80211_frame *);
1567 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1568 
1569 	/* send the frame to the 802.11 layer */
1570 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1571 
1572 	/* release node reference */
1573 	ieee80211_free_node(ni);
1574 }
1575 
1576 static void
1577 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1578 {
1579 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1580 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1581 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1582 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1583 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1584 
1585 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1586 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1587 		stat->nkill, stat->rate, le32toh(stat->duration),
1588 		le32toh(stat->status)));
1589 
1590 	/*
1591 	 * Update rate control statistics for the node.
1592 	 * XXX we should not count mgmt frames since they're always sent at
1593 	 * the lowest available bit-rate.
1594 	 */
1595 	wn->amn.amn_txcnt++;
1596 	if (stat->ntries > 0) {
1597 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1598 		wn->amn.amn_retrycnt++;
1599 	}
1600 
1601 	if ((le32toh(stat->status) & 0xff) != 1)
1602 		ifp->if_oerrors++;
1603 	else
1604 		ifp->if_opackets++;
1605 
1606 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1607 	m_freem(txdata->m);
1608 	txdata->m = NULL;
1609 	ieee80211_free_node(txdata->ni);
1610 	txdata->ni = NULL;
1611 
1612 	ring->queued--;
1613 
1614 	sc->sc_tx_timer = 0;
1615 	ifp->if_flags &= ~IFF_OACTIVE;
1616 	wpi_start(ifp);
1617 }
1618 
1619 static void
1620 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1621 {
1622 	struct wpi_tx_ring *ring = &sc->cmdq;
1623 	struct wpi_tx_data *data;
1624 
1625 	if ((desc->qid & 7) != 4)
1626 		return;	/* not a command ack */
1627 
1628 	data = &ring->data[desc->idx];
1629 
1630 	/* if the command was mapped in a mbuf, free it */
1631 	if (data->m != NULL) {
1632 		bus_dmamap_unload(sc->sc_dmat, data->map);
1633 		m_freem(data->m);
1634 		data->m = NULL;
1635 	}
1636 
1637 	wakeup(&ring->cmd[desc->idx]);
1638 }
1639 
1640 static void
1641 wpi_notif_intr(struct wpi_softc *sc)
1642 {
1643 	struct ieee80211com *ic = &sc->sc_ic;
1644 	struct ifnet *ifp =  ic->ic_ifp;
1645 	struct wpi_rx_desc *desc;
1646 	struct wpi_rx_data *data;
1647 	uint32_t hw;
1648 
1649 	hw = le32toh(sc->shared->next);
1650 	while (sc->rxq.cur != hw) {
1651 		data = &sc->rxq.data[sc->rxq.cur];
1652 
1653 		desc = mtod(data->m, struct wpi_rx_desc *);
1654 
1655 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1656 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1657 			desc->type, le32toh(desc->len)));
1658 
1659 		if (!(desc->qid & 0x80))	/* reply to a command */
1660 			wpi_cmd_intr(sc, desc);
1661 
1662 		switch (desc->type) {
1663 		case WPI_RX_DONE:
1664 			/* a 802.11 frame was received */
1665 			wpi_rx_intr(sc, desc, data);
1666 			break;
1667 
1668 		case WPI_TX_DONE:
1669 			/* a 802.11 frame has been transmitted */
1670 			wpi_tx_intr(sc, desc);
1671 			break;
1672 
1673 		case WPI_UC_READY:
1674 		{
1675 			struct wpi_ucode_info *uc =
1676 				(struct wpi_ucode_info *)(desc + 1);
1677 
1678 			/* the microcontroller is ready */
1679 			DPRINTF(("microcode alive notification version %x "
1680 				"alive %x\n", le32toh(uc->version),
1681 				le32toh(uc->valid)));
1682 
1683 			if (le32toh(uc->valid) != 1) {
1684 				aprint_error_dev(sc->sc_dev,
1685 					"microcontroller initialization failed\n");
1686 			}
1687 			break;
1688 		}
1689 		case WPI_STATE_CHANGED:
1690 		{
1691 			uint32_t *status = (uint32_t *)(desc + 1);
1692 
1693 			/* enabled/disabled notification */
1694 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1695 
1696 			if (le32toh(*status) & 1) {
1697 				/* the radio button has to be pushed */
1698 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1699 				/* turn the interface down */
1700 				ifp->if_flags &= ~IFF_UP;
1701 				wpi_stop(ifp, 1);
1702 				return;	/* no further processing */
1703 			}
1704 			break;
1705 		}
1706 		case WPI_START_SCAN:
1707 		{
1708 			struct wpi_start_scan *scan =
1709 				(struct wpi_start_scan *)(desc + 1);
1710 
1711 			DPRINTFN(2, ("scanning channel %d status %x\n",
1712 				scan->chan, le32toh(scan->status)));
1713 
1714 			/* fix current channel */
1715 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1716 			break;
1717 		}
1718 		case WPI_STOP_SCAN:
1719 		{
1720 			struct wpi_stop_scan *scan =
1721 				(struct wpi_stop_scan *)(desc + 1);
1722 
1723 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1724 				scan->nchan, scan->status, scan->chan));
1725 
1726 			if (scan->status == 1 && scan->chan <= 14) {
1727 				/*
1728 				 * We just finished scanning 802.11g channels,
1729 				 * start scanning 802.11a ones.
1730 				 */
1731 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1732 					break;
1733 			}
1734 			sc->is_scanning = false;
1735 			ieee80211_end_scan(ic);
1736 			break;
1737 		}
1738 		}
1739 
1740 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1741 	}
1742 
1743 	/* tell the firmware what we have processed */
1744 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1745 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1746 }
1747 
1748 static int
1749 wpi_intr(void *arg)
1750 {
1751 	struct wpi_softc *sc = arg;
1752 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1753 	uint32_t r;
1754 
1755 	r = WPI_READ(sc, WPI_INTR);
1756 	if (r == 0 || r == 0xffffffff)
1757 		return 0;	/* not for us */
1758 
1759 	DPRINTFN(5, ("interrupt reg %x\n", r));
1760 
1761 	/* disable interrupts */
1762 	WPI_WRITE(sc, WPI_MASK, 0);
1763 	/* ack interrupts */
1764 	WPI_WRITE(sc, WPI_INTR, r);
1765 
1766 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1767 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1768 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1769 		wpi_stop(sc->sc_ic.ic_ifp, 1);
1770 		return 1;
1771 	}
1772 
1773 	if (r & WPI_RX_INTR)
1774 		wpi_notif_intr(sc);
1775 
1776 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1777 		wakeup(sc);
1778 
1779 	/* re-enable interrupts */
1780 	if (ifp->if_flags & IFF_UP)
1781 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1782 
1783 	return 1;
1784 }
1785 
1786 static uint8_t
1787 wpi_plcp_signal(int rate)
1788 {
1789 	switch (rate) {
1790 	/* CCK rates (returned values are device-dependent) */
1791 	case 2:		return 10;
1792 	case 4:		return 20;
1793 	case 11:	return 55;
1794 	case 22:	return 110;
1795 
1796 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1797 	/* R1-R4, (u)ral is R4-R1 */
1798 	case 12:	return 0xd;
1799 	case 18:	return 0xf;
1800 	case 24:	return 0x5;
1801 	case 36:	return 0x7;
1802 	case 48:	return 0x9;
1803 	case 72:	return 0xb;
1804 	case 96:	return 0x1;
1805 	case 108:	return 0x3;
1806 
1807 	/* unsupported rates (should not get there) */
1808 	default:	return 0;
1809 	}
1810 }
1811 
1812 /* quickly determine if a given rate is CCK or OFDM */
1813 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1814 
1815 static int
1816 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1817 	int ac)
1818 {
1819 	struct ieee80211com *ic = &sc->sc_ic;
1820 	struct wpi_tx_ring *ring = &sc->txq[ac];
1821 	struct wpi_tx_desc *desc;
1822 	struct wpi_tx_data *data;
1823 	struct wpi_tx_cmd *cmd;
1824 	struct wpi_cmd_data *tx;
1825 	struct ieee80211_frame *wh;
1826 	struct ieee80211_key *k;
1827 	const struct chanAccParams *cap;
1828 	struct mbuf *mnew;
1829 	int i, error, rate, hdrlen, noack = 0;
1830 
1831 	desc = &ring->desc[ring->cur];
1832 	data = &ring->data[ring->cur];
1833 
1834 	wh = mtod(m0, struct ieee80211_frame *);
1835 
1836 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1837 		cap = &ic->ic_wme.wme_chanParams;
1838 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1839 	}
1840 
1841 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1842 		k = ieee80211_crypto_encap(ic, ni, m0);
1843 		if (k == NULL) {
1844 			m_freem(m0);
1845 			return ENOBUFS;
1846 		}
1847 
1848 		/* packet header may have moved, reset our local pointer */
1849 		wh = mtod(m0, struct ieee80211_frame *);
1850 	}
1851 
1852 	hdrlen = ieee80211_anyhdrsize(wh);
1853 
1854 	/* pickup a rate */
1855 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1856 		IEEE80211_FC0_TYPE_MGT) {
1857 		/* mgmt frames are sent at the lowest available bit-rate */
1858 		rate = ni->ni_rates.rs_rates[0];
1859 	} else {
1860 		if (ic->ic_fixed_rate != -1) {
1861 			rate = ic->ic_sup_rates[ic->ic_curmode].
1862 				rs_rates[ic->ic_fixed_rate];
1863 		} else
1864 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1865 	}
1866 	rate &= IEEE80211_RATE_VAL;
1867 
1868 
1869 	if (sc->sc_drvbpf != NULL) {
1870 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1871 
1872 		tap->wt_flags = 0;
1873 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1874 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1875 		tap->wt_rate = rate;
1876 		tap->wt_hwqueue = ac;
1877 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1878 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1879 
1880 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1881 	}
1882 
1883 	cmd = &ring->cmd[ring->cur];
1884 	cmd->code = WPI_CMD_TX_DATA;
1885 	cmd->flags = 0;
1886 	cmd->qid = ring->qid;
1887 	cmd->idx = ring->cur;
1888 
1889 	tx = (struct wpi_cmd_data *)cmd->data;
1890 	tx->flags = 0;
1891 
1892 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1893 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1894 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1895 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1896 
1897 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1898 
1899 	/* retrieve destination node's id */
1900 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1901 		WPI_ID_BSS;
1902 
1903 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1904 		IEEE80211_FC0_TYPE_MGT) {
1905 		/* tell h/w to set timestamp in probe responses */
1906 		if ((wh->i_fc[0] &
1907 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1908 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1909 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1910 
1911 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1912 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1913 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1914 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1915 			tx->timeout = htole16(3);
1916 		else
1917 			tx->timeout = htole16(2);
1918 	} else
1919 		tx->timeout = htole16(0);
1920 
1921 	tx->rate = wpi_plcp_signal(rate);
1922 
1923 	/* be very persistant at sending frames out */
1924 	tx->rts_ntries = 7;
1925 	tx->data_ntries = 15;
1926 
1927 	tx->ofdm_mask = 0xff;
1928 	tx->cck_mask = 0xf;
1929 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1930 
1931 	tx->len = htole16(m0->m_pkthdr.len);
1932 
1933 	/* save and trim IEEE802.11 header */
1934 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1935 	m_adj(m0, hdrlen);
1936 
1937 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1938 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1939 	if (error != 0 && error != EFBIG) {
1940 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1941 		m_freem(m0);
1942 		return error;
1943 	}
1944 	if (error != 0) {
1945 		/* too many fragments, linearize */
1946 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1947 		if (mnew == NULL) {
1948 			m_freem(m0);
1949 			return ENOMEM;
1950 		}
1951 
1952 		M_COPY_PKTHDR(mnew, m0);
1953 		if (m0->m_pkthdr.len > MHLEN) {
1954 			MCLGET(mnew, M_DONTWAIT);
1955 			if (!(mnew->m_flags & M_EXT)) {
1956 				m_freem(m0);
1957 				m_freem(mnew);
1958 				return ENOMEM;
1959 			}
1960 		}
1961 
1962 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1963 		m_freem(m0);
1964 		mnew->m_len = mnew->m_pkthdr.len;
1965 		m0 = mnew;
1966 
1967 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1968 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1969 		if (error != 0) {
1970 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1971 							 error);
1972 			m_freem(m0);
1973 			return error;
1974 		}
1975 	}
1976 
1977 	data->m = m0;
1978 	data->ni = ni;
1979 
1980 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1981 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1982 
1983 	/* first scatter/gather segment is used by the tx data command */
1984 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1985 		(1 + data->map->dm_nsegs) << 24);
1986 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1987 		ring->cur * sizeof (struct wpi_tx_cmd));
1988 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1989 						 ((hdrlen + 3) & ~3));
1990 
1991 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1992 		desc->segs[i].addr =
1993 			htole32(data->map->dm_segs[i - 1].ds_addr);
1994 		desc->segs[i].len  =
1995 			htole32(data->map->dm_segs[i - 1].ds_len);
1996 	}
1997 
1998 	ring->queued++;
1999 
2000 	/* kick ring */
2001 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2002 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2003 
2004 	return 0;
2005 }
2006 
2007 static void
2008 wpi_start(struct ifnet *ifp)
2009 {
2010 	struct wpi_softc *sc = ifp->if_softc;
2011 	struct ieee80211com *ic = &sc->sc_ic;
2012 	struct ieee80211_node *ni;
2013 	struct ether_header *eh;
2014 	struct mbuf *m0;
2015 	int ac;
2016 
2017 	/*
2018 	 * net80211 may still try to send management frames even if the
2019 	 * IFF_RUNNING flag is not set...
2020 	 */
2021 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2022 		return;
2023 
2024 	for (;;) {
2025 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2026 		if (m0 != NULL) {
2027 
2028 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2029 			m0->m_pkthdr.rcvif = NULL;
2030 
2031 			/* management frames go into ring 0 */
2032 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2033 				ifp->if_oerrors++;
2034 				continue;
2035 			}
2036 			bpf_mtap3(ic->ic_rawbpf, m0);
2037 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2038 				ifp->if_oerrors++;
2039 				break;
2040 			}
2041 		} else {
2042 			if (ic->ic_state != IEEE80211_S_RUN)
2043 				break;
2044 			IFQ_POLL(&ifp->if_snd, m0);
2045 			if (m0 == NULL)
2046 				break;
2047 
2048 			if (m0->m_len < sizeof (*eh) &&
2049 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2050 				ifp->if_oerrors++;
2051 				continue;
2052 			}
2053 			eh = mtod(m0, struct ether_header *);
2054 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2055 			if (ni == NULL) {
2056 				m_freem(m0);
2057 				ifp->if_oerrors++;
2058 				continue;
2059 			}
2060 
2061 			/* classify mbuf so we can find which tx ring to use */
2062 			if (ieee80211_classify(ic, m0, ni) != 0) {
2063 				m_freem(m0);
2064 				ieee80211_free_node(ni);
2065 				ifp->if_oerrors++;
2066 				continue;
2067 			}
2068 
2069 			/* no QoS encapsulation for EAPOL frames */
2070 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2071 			    M_WME_GETAC(m0) : WME_AC_BE;
2072 
2073 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2074 				/* there is no place left in this ring */
2075 				ifp->if_flags |= IFF_OACTIVE;
2076 				break;
2077 			}
2078 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2079 			bpf_mtap(ifp, m0);
2080 			m0 = ieee80211_encap(ic, m0, ni);
2081 			if (m0 == NULL) {
2082 				ieee80211_free_node(ni);
2083 				ifp->if_oerrors++;
2084 				continue;
2085 			}
2086 			bpf_mtap3(ic->ic_rawbpf, m0);
2087 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2088 				ieee80211_free_node(ni);
2089 				ifp->if_oerrors++;
2090 				break;
2091 			}
2092 		}
2093 
2094 		sc->sc_tx_timer = 5;
2095 		ifp->if_timer = 1;
2096 	}
2097 }
2098 
2099 static void
2100 wpi_watchdog(struct ifnet *ifp)
2101 {
2102 	struct wpi_softc *sc = ifp->if_softc;
2103 
2104 	ifp->if_timer = 0;
2105 
2106 	if (sc->sc_tx_timer > 0) {
2107 		if (--sc->sc_tx_timer == 0) {
2108 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2109 			ifp->if_oerrors++;
2110 			ifp->if_flags &= ~IFF_UP;
2111 			wpi_stop(ifp, 1);
2112 			return;
2113 		}
2114 		ifp->if_timer = 1;
2115 	}
2116 
2117 	ieee80211_watchdog(&sc->sc_ic);
2118 }
2119 
2120 static int
2121 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2122 {
2123 #define IS_RUNNING(ifp) \
2124 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2125 
2126 	struct wpi_softc *sc = ifp->if_softc;
2127 	struct ieee80211com *ic = &sc->sc_ic;
2128 	int s, error = 0;
2129 
2130 	s = splnet();
2131 
2132 	switch (cmd) {
2133 	case SIOCSIFFLAGS:
2134 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2135 			break;
2136 		if (ifp->if_flags & IFF_UP) {
2137 			if (!(ifp->if_flags & IFF_RUNNING))
2138 				wpi_init(ifp);
2139 		} else {
2140 			if (ifp->if_flags & IFF_RUNNING)
2141 				wpi_stop(ifp, 1);
2142 		}
2143 		break;
2144 
2145 	case SIOCADDMULTI:
2146 	case SIOCDELMULTI:
2147 		/* XXX no h/w multicast filter? --dyoung */
2148 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2149 			/* setup multicast filter, etc */
2150 			error = 0;
2151 		}
2152 		break;
2153 
2154 	default:
2155 		error = ieee80211_ioctl(ic, cmd, data);
2156 	}
2157 
2158 	if (error == ENETRESET) {
2159 		if (IS_RUNNING(ifp) &&
2160 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2161 			wpi_init(ifp);
2162 		error = 0;
2163 	}
2164 
2165 	splx(s);
2166 	return error;
2167 
2168 #undef IS_RUNNING
2169 }
2170 
2171 /*
2172  * Extract various information from EEPROM.
2173  */
2174 static void
2175 wpi_read_eeprom(struct wpi_softc *sc)
2176 {
2177 	struct ieee80211com *ic = &sc->sc_ic;
2178 	char domain[4];
2179 	int i;
2180 
2181 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2182 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2183 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2184 
2185 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2186 	    sc->type));
2187 
2188 	/* read and print regulatory domain */
2189 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2190 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2191 
2192 	/* read and print MAC address */
2193 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2194 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2195 
2196 	/* read the list of authorized channels */
2197 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2198 		wpi_read_eeprom_channels(sc, i);
2199 
2200 	/* read the list of power groups */
2201 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2202 		wpi_read_eeprom_group(sc, i);
2203 }
2204 
2205 static void
2206 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2207 {
2208 	struct ieee80211com *ic = &sc->sc_ic;
2209 	const struct wpi_chan_band *band = &wpi_bands[n];
2210 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2211 	int chan, i;
2212 
2213 	wpi_read_prom_data(sc, band->addr, channels,
2214 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2215 
2216 	for (i = 0; i < band->nchan; i++) {
2217 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2218 			continue;
2219 
2220 		chan = band->chan[i];
2221 
2222 		if (n == 0) {	/* 2GHz band */
2223 			ic->ic_channels[chan].ic_freq =
2224 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2225 			ic->ic_channels[chan].ic_flags =
2226 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2227 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2228 
2229 		} else {	/* 5GHz band */
2230 			/*
2231 			 * Some 3945abg adapters support channels 7, 8, 11
2232 			 * and 12 in the 2GHz *and* 5GHz bands.
2233 			 * Because of limitations in our net80211(9) stack,
2234 			 * we can't support these channels in 5GHz band.
2235 			 */
2236 			if (chan <= 14)
2237 				continue;
2238 
2239 			ic->ic_channels[chan].ic_freq =
2240 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2241 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2242 		}
2243 
2244 		/* is active scan allowed on this channel? */
2245 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2246 			ic->ic_channels[chan].ic_flags |=
2247 			    IEEE80211_CHAN_PASSIVE;
2248 		}
2249 
2250 		/* save maximum allowed power for this channel */
2251 		sc->maxpwr[chan] = channels[i].maxpwr;
2252 
2253 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2254 		    chan, channels[i].flags, sc->maxpwr[chan]));
2255 	}
2256 }
2257 
2258 static void
2259 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2260 {
2261 	struct wpi_power_group *group = &sc->groups[n];
2262 	struct wpi_eeprom_group rgroup;
2263 	int i;
2264 
2265 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2266 	    sizeof rgroup);
2267 
2268 	/* save power group information */
2269 	group->chan   = rgroup.chan;
2270 	group->maxpwr = rgroup.maxpwr;
2271 	/* temperature at which the samples were taken */
2272 	group->temp   = (int16_t)le16toh(rgroup.temp);
2273 
2274 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2275 	    group->chan, group->maxpwr, group->temp));
2276 
2277 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2278 		group->samples[i].index = rgroup.samples[i].index;
2279 		group->samples[i].power = rgroup.samples[i].power;
2280 
2281 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2282 		    group->samples[i].index, group->samples[i].power));
2283 	}
2284 }
2285 
2286 /*
2287  * Send a command to the firmware.
2288  */
2289 static int
2290 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2291 {
2292 	struct wpi_tx_ring *ring = &sc->cmdq;
2293 	struct wpi_tx_desc *desc;
2294 	struct wpi_tx_cmd *cmd;
2295 
2296 	KASSERT(size <= sizeof cmd->data);
2297 
2298 	desc = &ring->desc[ring->cur];
2299 	cmd = &ring->cmd[ring->cur];
2300 
2301 	cmd->code = code;
2302 	cmd->flags = 0;
2303 	cmd->qid = ring->qid;
2304 	cmd->idx = ring->cur;
2305 	memcpy(cmd->data, buf, size);
2306 
2307 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2308 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2309 		ring->cur * sizeof (struct wpi_tx_cmd));
2310 	desc->segs[0].len  = htole32(4 + size);
2311 
2312 	/* kick cmd ring */
2313 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2314 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2315 
2316 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2317 }
2318 
2319 static int
2320 wpi_wme_update(struct ieee80211com *ic)
2321 {
2322 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2323 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2324 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2325 	const struct wmeParams *wmep;
2326 	struct wpi_wme_setup wme;
2327 	int ac;
2328 
2329 	/* don't override default WME values if WME is not actually enabled */
2330 	if (!(ic->ic_flags & IEEE80211_F_WME))
2331 		return 0;
2332 
2333 	wme.flags = 0;
2334 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2335 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2336 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2337 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2338 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2339 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2340 
2341 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2342 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2343 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2344 	}
2345 
2346 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2347 #undef WPI_USEC
2348 #undef WPI_EXP2
2349 }
2350 
2351 /*
2352  * Configure h/w multi-rate retries.
2353  */
2354 static int
2355 wpi_mrr_setup(struct wpi_softc *sc)
2356 {
2357 	struct ieee80211com *ic = &sc->sc_ic;
2358 	struct wpi_mrr_setup mrr;
2359 	int i, error;
2360 
2361 	/* CCK rates (not used with 802.11a) */
2362 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2363 		mrr.rates[i].flags = 0;
2364 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2365 		/* fallback to the immediate lower CCK rate (if any) */
2366 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2367 		/* try one time at this rate before falling back to "next" */
2368 		mrr.rates[i].ntries = 1;
2369 	}
2370 
2371 	/* OFDM rates (not used with 802.11b) */
2372 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2373 		mrr.rates[i].flags = 0;
2374 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2375 		/* fallback to the immediate lower rate (if any) */
2376 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2377 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2378 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2379 			WPI_OFDM6 : WPI_CCK2) :
2380 		    i - 1;
2381 		/* try one time at this rate before falling back to "next" */
2382 		mrr.rates[i].ntries = 1;
2383 	}
2384 
2385 	/* setup MRR for control frames */
2386 	mrr.which = htole32(WPI_MRR_CTL);
2387 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2388 	if (error != 0) {
2389 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2390 		return error;
2391 	}
2392 
2393 	/* setup MRR for data frames */
2394 	mrr.which = htole32(WPI_MRR_DATA);
2395 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2396 	if (error != 0) {
2397 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2398 		return error;
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 static void
2405 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2406 {
2407 	struct wpi_cmd_led led;
2408 
2409 	led.which = which;
2410 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2411 	led.off = off;
2412 	led.on = on;
2413 
2414 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2415 }
2416 
2417 static void
2418 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2419 {
2420 	struct wpi_cmd_tsf tsf;
2421 	uint64_t val, mod;
2422 
2423 	memset(&tsf, 0, sizeof tsf);
2424 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2425 	tsf.bintval = htole16(ni->ni_intval);
2426 	tsf.lintval = htole16(10);
2427 
2428 	/* compute remaining time until next beacon */
2429 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2430 	mod = le64toh(tsf.tstamp) % val;
2431 	tsf.binitval = htole32((uint32_t)(val - mod));
2432 
2433 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2434 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2435 
2436 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2437 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2438 }
2439 
2440 /*
2441  * Update Tx power to match what is defined for channel `c'.
2442  */
2443 static int
2444 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2445 {
2446 	struct ieee80211com *ic = &sc->sc_ic;
2447 	struct wpi_power_group *group;
2448 	struct wpi_cmd_txpower txpower;
2449 	u_int chan;
2450 	int i;
2451 
2452 	/* get channel number */
2453 	chan = ieee80211_chan2ieee(ic, c);
2454 
2455 	/* find the power group to which this channel belongs */
2456 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2457 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2458 			if (chan <= group->chan)
2459 				break;
2460 	} else
2461 		group = &sc->groups[0];
2462 
2463 	memset(&txpower, 0, sizeof txpower);
2464 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2465 	txpower.chan = htole16(chan);
2466 
2467 	/* set Tx power for all OFDM and CCK rates */
2468 	for (i = 0; i <= 11 ; i++) {
2469 		/* retrieve Tx power for this channel/rate combination */
2470 		int idx = wpi_get_power_index(sc, group, c,
2471 		    wpi_ridx_to_rate[i]);
2472 
2473 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2474 
2475 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2476 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2477 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2478 		} else {
2479 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2480 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2481 		}
2482 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2483 		    wpi_ridx_to_rate[i], idx));
2484 	}
2485 
2486 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2487 }
2488 
2489 /*
2490  * Determine Tx power index for a given channel/rate combination.
2491  * This takes into account the regulatory information from EEPROM and the
2492  * current temperature.
2493  */
2494 static int
2495 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2496     struct ieee80211_channel *c, int rate)
2497 {
2498 /* fixed-point arithmetic division using a n-bit fractional part */
2499 #define fdivround(a, b, n)	\
2500 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2501 
2502 /* linear interpolation */
2503 #define interpolate(x, x1, y1, x2, y2, n)	\
2504 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2505 
2506 	struct ieee80211com *ic = &sc->sc_ic;
2507 	struct wpi_power_sample *sample;
2508 	int pwr, idx;
2509 	u_int chan;
2510 
2511 	/* get channel number */
2512 	chan = ieee80211_chan2ieee(ic, c);
2513 
2514 	/* default power is group's maximum power - 3dB */
2515 	pwr = group->maxpwr / 2;
2516 
2517 	/* decrease power for highest OFDM rates to reduce distortion */
2518 	switch (rate) {
2519 	case 72:	/* 36Mb/s */
2520 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2521 		break;
2522 	case 96:	/* 48Mb/s */
2523 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2524 		break;
2525 	case 108:	/* 54Mb/s */
2526 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2527 		break;
2528 	}
2529 
2530 	/* never exceed channel's maximum allowed Tx power */
2531 	pwr = min(pwr, sc->maxpwr[chan]);
2532 
2533 	/* retrieve power index into gain tables from samples */
2534 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2535 		if (pwr > sample[1].power)
2536 			break;
2537 	/* fixed-point linear interpolation using a 19-bit fractional part */
2538 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2539 	    sample[1].power, sample[1].index, 19);
2540 
2541 	/*
2542 	 * Adjust power index based on current temperature:
2543 	 * - if cooler than factory-calibrated: decrease output power
2544 	 * - if warmer than factory-calibrated: increase output power
2545 	 */
2546 	idx -= (sc->temp - group->temp) * 11 / 100;
2547 
2548 	/* decrease power for CCK rates (-5dB) */
2549 	if (!WPI_RATE_IS_OFDM(rate))
2550 		idx += 10;
2551 
2552 	/* keep power index in a valid range */
2553 	if (idx < 0)
2554 		return 0;
2555 	if (idx > WPI_MAX_PWR_INDEX)
2556 		return WPI_MAX_PWR_INDEX;
2557 	return idx;
2558 
2559 #undef interpolate
2560 #undef fdivround
2561 }
2562 
2563 /*
2564  * Build a beacon frame that the firmware will broadcast periodically in
2565  * IBSS or HostAP modes.
2566  */
2567 static int
2568 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2569 {
2570 	struct ieee80211com *ic = &sc->sc_ic;
2571 	struct wpi_tx_ring *ring = &sc->cmdq;
2572 	struct wpi_tx_desc *desc;
2573 	struct wpi_tx_data *data;
2574 	struct wpi_tx_cmd *cmd;
2575 	struct wpi_cmd_beacon *bcn;
2576 	struct ieee80211_beacon_offsets bo;
2577 	struct mbuf *m0;
2578 	int error;
2579 
2580 	desc = &ring->desc[ring->cur];
2581 	data = &ring->data[ring->cur];
2582 
2583 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2584 	if (m0 == NULL) {
2585 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2586 		return ENOMEM;
2587 	}
2588 
2589 	cmd = &ring->cmd[ring->cur];
2590 	cmd->code = WPI_CMD_SET_BEACON;
2591 	cmd->flags = 0;
2592 	cmd->qid = ring->qid;
2593 	cmd->idx = ring->cur;
2594 
2595 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2596 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2597 	bcn->id = WPI_ID_BROADCAST;
2598 	bcn->ofdm_mask = 0xff;
2599 	bcn->cck_mask = 0x0f;
2600 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2601 	bcn->len = htole16(m0->m_pkthdr.len);
2602 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2603 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2604 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2605 
2606 	/* save and trim IEEE802.11 header */
2607 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2608 	m_adj(m0, sizeof (struct ieee80211_frame));
2609 
2610 	/* assume beacon frame is contiguous */
2611 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2612 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2613 	if (error) {
2614 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2615 		m_freem(m0);
2616 		return error;
2617 	}
2618 
2619 	data->m = m0;
2620 
2621 	/* first scatter/gather segment is used by the beacon command */
2622 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2623 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2624 		ring->cur * sizeof (struct wpi_tx_cmd));
2625 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2626 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2627 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2628 
2629 	/* kick cmd ring */
2630 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2631 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2632 
2633 	return 0;
2634 }
2635 
2636 static int
2637 wpi_auth(struct wpi_softc *sc)
2638 {
2639 	struct ieee80211com *ic = &sc->sc_ic;
2640 	struct ieee80211_node *ni = ic->ic_bss;
2641 	struct wpi_node_info node;
2642 	int error;
2643 
2644 	/* update adapter's configuration */
2645 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2646 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2647 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2648 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2649 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2650 		    WPI_CONFIG_24GHZ);
2651 	}
2652 	switch (ic->ic_curmode) {
2653 	case IEEE80211_MODE_11A:
2654 		sc->config.cck_mask  = 0;
2655 		sc->config.ofdm_mask = 0x15;
2656 		break;
2657 	case IEEE80211_MODE_11B:
2658 		sc->config.cck_mask  = 0x03;
2659 		sc->config.ofdm_mask = 0;
2660 		break;
2661 	default:	/* assume 802.11b/g */
2662 		sc->config.cck_mask  = 0x0f;
2663 		sc->config.ofdm_mask = 0x15;
2664 	}
2665 
2666 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2667 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2668 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2669 		sizeof (struct wpi_config), 1);
2670 	if (error != 0) {
2671 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2672 		return error;
2673 	}
2674 
2675 	/* configuration has changed, set Tx power accordingly */
2676 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2677 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2678 		return error;
2679 	}
2680 
2681 	/* add default node */
2682 	memset(&node, 0, sizeof node);
2683 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2684 	node.id = WPI_ID_BSS;
2685 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2686 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2687 	node.action = htole32(WPI_ACTION_SET_RATE);
2688 	node.antenna = WPI_ANTENNA_BOTH;
2689 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2690 	if (error != 0) {
2691 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2692 		return error;
2693 	}
2694 
2695 	return 0;
2696 }
2697 
2698 /*
2699  * Send a scan request to the firmware.  Since this command is huge, we map it
2700  * into a mbuf instead of using the pre-allocated set of commands.
2701  */
2702 static int
2703 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2704 {
2705 	struct ieee80211com *ic = &sc->sc_ic;
2706 	struct wpi_tx_ring *ring = &sc->cmdq;
2707 	struct wpi_tx_desc *desc;
2708 	struct wpi_tx_data *data;
2709 	struct wpi_tx_cmd *cmd;
2710 	struct wpi_scan_hdr *hdr;
2711 	struct wpi_scan_chan *chan;
2712 	struct ieee80211_frame *wh;
2713 	struct ieee80211_rateset *rs;
2714 	struct ieee80211_channel *c;
2715 	enum ieee80211_phymode mode;
2716 	uint8_t *frm;
2717 	int nrates, pktlen, error;
2718 
2719 	desc = &ring->desc[ring->cur];
2720 	data = &ring->data[ring->cur];
2721 
2722 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2723 	if (data->m == NULL) {
2724 		aprint_error_dev(sc->sc_dev,
2725 						"could not allocate mbuf for scan command\n");
2726 		return ENOMEM;
2727 	}
2728 
2729 	MCLGET(data->m, M_DONTWAIT);
2730 	if (!(data->m->m_flags & M_EXT)) {
2731 		m_freem(data->m);
2732 		data->m = NULL;
2733 		aprint_error_dev(sc->sc_dev,
2734 						 "could not allocate mbuf for scan command\n");
2735 		return ENOMEM;
2736 	}
2737 
2738 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2739 	cmd->code = WPI_CMD_SCAN;
2740 	cmd->flags = 0;
2741 	cmd->qid = ring->qid;
2742 	cmd->idx = ring->cur;
2743 
2744 	hdr = (struct wpi_scan_hdr *)cmd->data;
2745 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2746 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2747 	hdr->id = WPI_ID_BROADCAST;
2748 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2749 
2750 	/*
2751 	 * Move to the next channel if no packets are received within 5 msecs
2752 	 * after sending the probe request (this helps to reduce the duration
2753 	 * of active scans).
2754 	 */
2755 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2756 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2757 
2758 	if (flags & IEEE80211_CHAN_A) {
2759 		hdr->crc_threshold = htole16(1);
2760 		/* send probe requests at 6Mbps */
2761 		hdr->rate = wpi_plcp_signal(12);
2762 	} else {
2763 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2764 		/* send probe requests at 1Mbps */
2765 		hdr->rate = wpi_plcp_signal(2);
2766 	}
2767 
2768 	/* for directed scans, firmware inserts the essid IE itself */
2769 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2770 	hdr->essid[0].len = ic->ic_des_esslen;
2771 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2772 
2773 	/*
2774 	 * Build a probe request frame.  Most of the following code is a
2775 	 * copy & paste of what is done in net80211.
2776 	 */
2777 	wh = (struct ieee80211_frame *)(hdr + 1);
2778 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2779 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2780 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2781 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2782 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2783 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2784 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2785 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2786 
2787 	frm = (uint8_t *)(wh + 1);
2788 
2789 	/* add empty essid IE (firmware generates it for directed scans) */
2790 	*frm++ = IEEE80211_ELEMID_SSID;
2791 	*frm++ = 0;
2792 
2793 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2794 	rs = &ic->ic_sup_rates[mode];
2795 
2796 	/* add supported rates IE */
2797 	*frm++ = IEEE80211_ELEMID_RATES;
2798 	nrates = rs->rs_nrates;
2799 	if (nrates > IEEE80211_RATE_SIZE)
2800 		nrates = IEEE80211_RATE_SIZE;
2801 	*frm++ = nrates;
2802 	memcpy(frm, rs->rs_rates, nrates);
2803 	frm += nrates;
2804 
2805 	/* add supported xrates IE */
2806 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2807 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2808 		*frm++ = IEEE80211_ELEMID_XRATES;
2809 		*frm++ = nrates;
2810 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2811 		frm += nrates;
2812 	}
2813 
2814 	/* setup length of probe request */
2815 	hdr->paylen = htole16(frm - (uint8_t *)wh);
2816 
2817 	chan = (struct wpi_scan_chan *)frm;
2818 	for (c  = &ic->ic_channels[1];
2819 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2820 		if ((c->ic_flags & flags) != flags)
2821 			continue;
2822 
2823 		chan->chan = ieee80211_chan2ieee(ic, c);
2824 		chan->flags = 0;
2825 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2826 			chan->flags |= WPI_CHAN_ACTIVE;
2827 			if (ic->ic_des_esslen != 0)
2828 				chan->flags |= WPI_CHAN_DIRECT;
2829 		}
2830 		chan->dsp_gain = 0x6e;
2831 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2832 			chan->rf_gain = 0x3b;
2833 			chan->active = htole16(10);
2834 			chan->passive = htole16(110);
2835 		} else {
2836 			chan->rf_gain = 0x28;
2837 			chan->active = htole16(20);
2838 			chan->passive = htole16(120);
2839 		}
2840 		hdr->nchan++;
2841 		chan++;
2842 
2843 		frm += sizeof (struct wpi_scan_chan);
2844 	}
2845 	hdr->len = htole16(frm - (uint8_t *)hdr);
2846 	pktlen = frm - (uint8_t *)cmd;
2847 
2848 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2849 		NULL, BUS_DMA_NOWAIT);
2850 	if (error) {
2851 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2852 		m_freem(data->m);
2853 		data->m = NULL;
2854 		return error;
2855 	}
2856 
2857 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2858 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2859 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2860 
2861 	/* kick cmd ring */
2862 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2863 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2864 
2865 	return 0;	/* will be notified async. of failure/success */
2866 }
2867 
2868 static int
2869 wpi_config(struct wpi_softc *sc)
2870 {
2871 	struct ieee80211com *ic = &sc->sc_ic;
2872 	struct ifnet *ifp = ic->ic_ifp;
2873 	struct wpi_power power;
2874 	struct wpi_bluetooth bluetooth;
2875 	struct wpi_node_info node;
2876 	int error;
2877 
2878 	memset(&power, 0, sizeof power);
2879 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2880 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2881 	if (error != 0) {
2882 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2883 		return error;
2884 	}
2885 
2886 	/* configure bluetooth coexistence */
2887 	memset(&bluetooth, 0, sizeof bluetooth);
2888 	bluetooth.flags = 3;
2889 	bluetooth.lead = 0xaa;
2890 	bluetooth.kill = 1;
2891 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2892 		0);
2893 	if (error != 0) {
2894 		aprint_error_dev(sc->sc_dev,
2895 			"could not configure bluetooth coexistence\n");
2896 		return error;
2897 	}
2898 
2899 	/* configure adapter */
2900 	memset(&sc->config, 0, sizeof (struct wpi_config));
2901 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2902 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2903 	/*set default channel*/
2904 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2905 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2906 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2907 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2908 		    WPI_CONFIG_24GHZ);
2909 	}
2910 	sc->config.filter = 0;
2911 	switch (ic->ic_opmode) {
2912 	case IEEE80211_M_STA:
2913 		sc->config.mode = WPI_MODE_STA;
2914 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2915 		break;
2916 	case IEEE80211_M_IBSS:
2917 	case IEEE80211_M_AHDEMO:
2918 		sc->config.mode = WPI_MODE_IBSS;
2919 		break;
2920 	case IEEE80211_M_HOSTAP:
2921 		sc->config.mode = WPI_MODE_HOSTAP;
2922 		break;
2923 	case IEEE80211_M_MONITOR:
2924 		sc->config.mode = WPI_MODE_MONITOR;
2925 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2926 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2927 		break;
2928 	}
2929 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2930 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2931 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2932 		sizeof (struct wpi_config), 0);
2933 	if (error != 0) {
2934 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2935 		return error;
2936 	}
2937 
2938 	/* configuration has changed, set Tx power accordingly */
2939 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2940 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2941 		return error;
2942 	}
2943 
2944 	/* add broadcast node */
2945 	memset(&node, 0, sizeof node);
2946 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2947 	node.id = WPI_ID_BROADCAST;
2948 	node.rate = wpi_plcp_signal(2);
2949 	node.action = htole32(WPI_ACTION_SET_RATE);
2950 	node.antenna = WPI_ANTENNA_BOTH;
2951 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2952 	if (error != 0) {
2953 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2954 		return error;
2955 	}
2956 
2957 	if ((error = wpi_mrr_setup(sc)) != 0) {
2958 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2959 		return error;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 static void
2966 wpi_stop_master(struct wpi_softc *sc)
2967 {
2968 	uint32_t tmp;
2969 	int ntries;
2970 
2971 	tmp = WPI_READ(sc, WPI_RESET);
2972 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2973 
2974 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2975 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2976 		return;	/* already asleep */
2977 
2978 	for (ntries = 0; ntries < 100; ntries++) {
2979 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2980 			break;
2981 		DELAY(10);
2982 	}
2983 	if (ntries == 100) {
2984 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2985 	}
2986 }
2987 
2988 static int
2989 wpi_power_up(struct wpi_softc *sc)
2990 {
2991 	uint32_t tmp;
2992 	int ntries;
2993 
2994 	wpi_mem_lock(sc);
2995 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2996 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2997 	wpi_mem_unlock(sc);
2998 
2999 	for (ntries = 0; ntries < 5000; ntries++) {
3000 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3001 			break;
3002 		DELAY(10);
3003 	}
3004 	if (ntries == 5000) {
3005 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
3006 		return ETIMEDOUT;
3007 	}
3008 	return 0;
3009 }
3010 
3011 static int
3012 wpi_reset(struct wpi_softc *sc)
3013 {
3014 	uint32_t tmp;
3015 	int ntries;
3016 
3017 	/* clear any pending interrupts */
3018 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3019 
3020 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3021 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3022 
3023 	tmp = WPI_READ(sc, WPI_CHICKEN);
3024 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3025 
3026 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3027 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3028 
3029 	/* wait for clock stabilization */
3030 	for (ntries = 0; ntries < 1000; ntries++) {
3031 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3032 			break;
3033 		DELAY(10);
3034 	}
3035 	if (ntries == 1000) {
3036 		aprint_error_dev(sc->sc_dev,
3037 						 "timeout waiting for clock stabilization\n");
3038 		return ETIMEDOUT;
3039 	}
3040 
3041 	/* initialize EEPROM */
3042 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3043 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3044 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3045 		return EIO;
3046 	}
3047 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3048 
3049 	return 0;
3050 }
3051 
3052 static void
3053 wpi_hw_config(struct wpi_softc *sc)
3054 {
3055 	uint32_t rev, hw;
3056 
3057 	/* voodoo from the reference driver */
3058 	hw = WPI_READ(sc, WPI_HWCONFIG);
3059 
3060 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3061 	rev = PCI_REVISION(rev);
3062 	if ((rev & 0xc0) == 0x40)
3063 		hw |= WPI_HW_ALM_MB;
3064 	else if (!(rev & 0x80))
3065 		hw |= WPI_HW_ALM_MM;
3066 
3067 	if (sc->cap == 0x80)
3068 		hw |= WPI_HW_SKU_MRC;
3069 
3070 	hw &= ~WPI_HW_REV_D;
3071 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3072 		hw |= WPI_HW_REV_D;
3073 
3074 	if (sc->type > 1)
3075 		hw |= WPI_HW_TYPE_B;
3076 
3077 	DPRINTF(("setting h/w config %x\n", hw));
3078 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3079 }
3080 
3081 static int
3082 wpi_init(struct ifnet *ifp)
3083 {
3084 	struct wpi_softc *sc = ifp->if_softc;
3085 	struct ieee80211com *ic = &sc->sc_ic;
3086 	uint32_t tmp;
3087 	int qid, ntries, error;
3088 
3089 	wpi_stop(ifp,1);
3090 	(void)wpi_reset(sc);
3091 
3092 	wpi_mem_lock(sc);
3093 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3094 	DELAY(20);
3095 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3096 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3097 	wpi_mem_unlock(sc);
3098 
3099 	(void)wpi_power_up(sc);
3100 	wpi_hw_config(sc);
3101 
3102 	/* init Rx ring */
3103 	wpi_mem_lock(sc);
3104 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3105 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3106 	    offsetof(struct wpi_shared, next));
3107 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3108 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3109 	wpi_mem_unlock(sc);
3110 
3111 	/* init Tx rings */
3112 	wpi_mem_lock(sc);
3113 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3114 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3115 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3116 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3117 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3118 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3119 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3120 
3121 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3122 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3123 
3124 	for (qid = 0; qid < 6; qid++) {
3125 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3126 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3127 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3128 	}
3129 	wpi_mem_unlock(sc);
3130 
3131 	/* clear "radio off" and "disable command" bits (reversed logic) */
3132 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3133 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3134 
3135 	/* clear any pending interrupts */
3136 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3137 	/* enable interrupts */
3138 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3139 
3140 	/* not sure why/if this is necessary... */
3141 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3142 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3143 
3144 	if ((error = wpi_load_firmware(sc)) != 0)
3145 		/* wpi_load_firmware prints error messages for us.  */
3146 		goto fail1;
3147 
3148 	/* Check the status of the radio switch */
3149 	if (wpi_getrfkill(sc)) {
3150 		aprint_error_dev(sc->sc_dev,
3151 		    "radio is disabled by hardware switch\n");
3152 		error = EBUSY;
3153 		goto fail1;
3154 	}
3155 
3156 	/* wait for thermal sensors to calibrate */
3157 	for (ntries = 0; ntries < 1000; ntries++) {
3158 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3159 			break;
3160 		DELAY(10);
3161 	}
3162 	if (ntries == 1000) {
3163 		aprint_error_dev(sc->sc_dev,
3164 		    "timeout waiting for thermal sensors calibration\n");
3165 		error = ETIMEDOUT;
3166 		goto fail1;
3167 	}
3168 
3169 	DPRINTF(("temperature %d\n", sc->temp));
3170 
3171 	if ((error = wpi_config(sc)) != 0) {
3172 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3173 		goto fail1;
3174 	}
3175 
3176 	ifp->if_flags &= ~IFF_OACTIVE;
3177 	ifp->if_flags |= IFF_RUNNING;
3178 
3179 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3180 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3181 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3182 	}
3183 	else
3184 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3185 
3186 	return 0;
3187 
3188 fail1:	wpi_stop(ifp, 1);
3189 	return error;
3190 }
3191 
3192 
3193 static void
3194 wpi_stop(struct ifnet *ifp, int disable)
3195 {
3196 	struct wpi_softc *sc = ifp->if_softc;
3197 	struct ieee80211com *ic = &sc->sc_ic;
3198 	uint32_t tmp;
3199 	int ac;
3200 
3201 	ifp->if_timer = sc->sc_tx_timer = 0;
3202 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3203 
3204 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3205 
3206 	/* disable interrupts */
3207 	WPI_WRITE(sc, WPI_MASK, 0);
3208 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3209 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3210 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3211 
3212 	wpi_mem_lock(sc);
3213 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3214 	wpi_mem_unlock(sc);
3215 
3216 	/* reset all Tx rings */
3217 	for (ac = 0; ac < 4; ac++)
3218 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3219 	wpi_reset_tx_ring(sc, &sc->cmdq);
3220 
3221 	/* reset Rx ring */
3222 	wpi_reset_rx_ring(sc, &sc->rxq);
3223 
3224 	wpi_mem_lock(sc);
3225 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3226 	wpi_mem_unlock(sc);
3227 
3228 	DELAY(5);
3229 
3230 	wpi_stop_master(sc);
3231 
3232 	tmp = WPI_READ(sc, WPI_RESET);
3233 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3234 }
3235 
3236 static bool
3237 wpi_resume(device_t dv, const pmf_qual_t *qual)
3238 {
3239 	struct wpi_softc *sc = device_private(dv);
3240 
3241 	(void)wpi_reset(sc);
3242 
3243 	return true;
3244 }
3245 
3246 /*
3247  * Return whether or not the radio is enabled in hardware
3248  * (i.e. the rfkill switch is "off").
3249  */
3250 static int
3251 wpi_getrfkill(struct wpi_softc *sc)
3252 {
3253 	uint32_t tmp;
3254 
3255 	wpi_mem_lock(sc);
3256 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3257 	wpi_mem_unlock(sc);
3258 
3259 	return !(tmp & 0x01);
3260 }
3261 
3262 static int
3263 wpi_sysctl_radio(SYSCTLFN_ARGS)
3264 {
3265 	struct sysctlnode node;
3266 	struct wpi_softc *sc;
3267 	int val, error;
3268 
3269 	node = *rnode;
3270 	sc = (struct wpi_softc *)node.sysctl_data;
3271 
3272 	val = !wpi_getrfkill(sc);
3273 
3274 	node.sysctl_data = &val;
3275 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3276 
3277 	if (error || newp == NULL)
3278 		return error;
3279 
3280 	return 0;
3281 }
3282 
3283 static void
3284 wpi_sysctlattach(struct wpi_softc *sc)
3285 {
3286 	int rc;
3287 	const struct sysctlnode *rnode;
3288 	const struct sysctlnode *cnode;
3289 
3290 	struct sysctllog **clog = &sc->sc_sysctllog;
3291 
3292 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3293 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3294 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3295 		goto err;
3296 
3297 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3298 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3299 	    SYSCTL_DESCR("wpi controls and statistics"),
3300 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3301 		goto err;
3302 
3303 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3304 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3305 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3306 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3307 		goto err;
3308 
3309 #ifdef WPI_DEBUG
3310 	/* control debugging printfs */
3311 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3312 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3313 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3314 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3315 		goto err;
3316 #endif
3317 
3318 	return;
3319 err:
3320 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3321 }
3322