xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: if_wpi.c,v 1.62 2014/07/05 17:39:21 jakllsch Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.62 2014/07/05 17:39:21 jakllsch Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/ip.h>
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_amrr.h>
66 #include <net80211/ieee80211_radiotap.h>
67 
68 #include <dev/firmload.h>
69 
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72 
73 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
74 static once_t wpi_firmware_init;
75 static kmutex_t wpi_firmware_mutex;
76 static size_t wpi_firmware_users;
77 static uint8_t *wpi_firmware_image;
78 static size_t wpi_firmware_size;
79 
80 static int	wpi_match(device_t, cfdata_t, void *);
81 static void	wpi_attach(device_t, device_t, void *);
82 static int	wpi_detach(device_t , int);
83 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
84 		    void **, bus_size_t, bus_size_t, int);
85 static void	wpi_dma_contig_free(struct wpi_dma_info *);
86 static int	wpi_alloc_shared(struct wpi_softc *);
87 static void	wpi_free_shared(struct wpi_softc *);
88 static int	wpi_alloc_fwmem(struct wpi_softc *);
89 static void	wpi_free_fwmem(struct wpi_softc *);
90 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
91 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
92 static int	wpi_alloc_rpool(struct wpi_softc *);
93 static void	wpi_free_rpool(struct wpi_softc *);
94 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
95 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
96 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
97 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
98 		    int, int);
99 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
100 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
101 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
102 static void	wpi_newassoc(struct ieee80211_node *, int);
103 static int	wpi_media_change(struct ifnet *);
104 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
105 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
106 static void	wpi_mem_lock(struct wpi_softc *);
107 static void	wpi_mem_unlock(struct wpi_softc *);
108 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
109 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
110 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
111 		    const uint32_t *, int);
112 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
113 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
114 static int	wpi_cache_firmware(struct wpi_softc *);
115 static void	wpi_release_firmware(void);
116 static int	wpi_load_firmware(struct wpi_softc *);
117 static void	wpi_calib_timeout(void *);
118 static void	wpi_iter_func(void *, struct ieee80211_node *);
119 static void	wpi_power_calibration(struct wpi_softc *, int);
120 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
121 		    struct wpi_rx_data *);
122 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
123 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
124 static void	wpi_notif_intr(struct wpi_softc *);
125 static int	wpi_intr(void *);
126 static void	wpi_read_eeprom(struct wpi_softc *);
127 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
128 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
129 static uint8_t	wpi_plcp_signal(int);
130 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
131 		    struct ieee80211_node *, int);
132 static void	wpi_start(struct ifnet *);
133 static void	wpi_watchdog(struct ifnet *);
134 static int	wpi_ioctl(struct ifnet *, u_long, void *);
135 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
136 static int	wpi_wme_update(struct ieee80211com *);
137 static int	wpi_mrr_setup(struct wpi_softc *);
138 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
139 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
140 static int	wpi_set_txpower(struct wpi_softc *,
141 		    struct ieee80211_channel *, int);
142 static int	wpi_get_power_index(struct wpi_softc *,
143 		    struct wpi_power_group *, struct ieee80211_channel *, int);
144 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
145 static int	wpi_auth(struct wpi_softc *);
146 static int	wpi_scan(struct wpi_softc *, uint16_t);
147 static int	wpi_config(struct wpi_softc *);
148 static void	wpi_stop_master(struct wpi_softc *);
149 static int	wpi_power_up(struct wpi_softc *);
150 static int	wpi_reset(struct wpi_softc *);
151 static void	wpi_hw_config(struct wpi_softc *);
152 static int	wpi_init(struct ifnet *);
153 static void	wpi_stop(struct ifnet *, int);
154 static bool	wpi_resume(device_t, const pmf_qual_t *);
155 static int	wpi_getrfkill(struct wpi_softc *);
156 static void	wpi_sysctlattach(struct wpi_softc *);
157 
158 #ifdef WPI_DEBUG
159 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
160 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
161 int wpi_debug = 1;
162 #else
163 #define DPRINTF(x)
164 #define DPRINTFN(n, x)
165 #endif
166 
167 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
168 	wpi_detach, NULL);
169 
170 static int
171 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
172 {
173 	struct pci_attach_args *pa = aux;
174 
175 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
176 		return 0;
177 
178 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
179 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
180 		return 1;
181 
182 	return 0;
183 }
184 
185 /* Base Address Register */
186 #define WPI_PCI_BAR0	0x10
187 
188 static int
189 wpi_attach_once(void)
190 {
191 
192 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
193 	return 0;
194 }
195 
196 static void
197 wpi_attach(device_t parent __unused, device_t self, void *aux)
198 {
199 	struct wpi_softc *sc = device_private(self);
200 	struct ieee80211com *ic = &sc->sc_ic;
201 	struct ifnet *ifp = &sc->sc_ec.ec_if;
202 	struct pci_attach_args *pa = aux;
203 	const char *intrstr;
204 	bus_space_tag_t memt;
205 	bus_space_handle_t memh;
206 	pci_intr_handle_t ih;
207 	pcireg_t data;
208 	int ac, error;
209 	char intrbuf[PCI_INTRSTR_LEN];
210 
211 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
212 	sc->fw_used = false;
213 
214 	sc->sc_dev = self;
215 	sc->sc_pct = pa->pa_pc;
216 	sc->sc_pcitag = pa->pa_tag;
217 
218 	callout_init(&sc->calib_to, 0);
219 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
220 
221 	pci_aprint_devinfo(pa, NULL);
222 
223 	/* enable bus-mastering */
224 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
225 	data |= PCI_COMMAND_MASTER_ENABLE;
226 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
227 
228 	/* map the register window */
229 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
230 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
231 	if (error != 0) {
232 		aprint_error_dev(self, "could not map memory space\n");
233 		return;
234 	}
235 
236 	sc->sc_st = memt;
237 	sc->sc_sh = memh;
238 	sc->sc_dmat = pa->pa_dmat;
239 
240 	if (pci_intr_map(pa, &ih) != 0) {
241 		aprint_error_dev(self, "could not map interrupt\n");
242 		return;
243 	}
244 
245 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
246 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
247 	if (sc->sc_ih == NULL) {
248 		aprint_error_dev(self, "could not establish interrupt");
249 		if (intrstr != NULL)
250 			aprint_error(" at %s", intrstr);
251 		aprint_error("\n");
252 		return;
253 	}
254 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
255 
256 	/*
257 	 * Put adapter into a known state.
258 	 */
259 	if ((error = wpi_reset(sc)) != 0) {
260 		aprint_error_dev(self, "could not reset adapter\n");
261 		return;
262 	}
263 
264 	/*
265 	 * Allocate DMA memory for firmware transfers.
266 	 */
267 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
268 		aprint_error_dev(self, "could not allocate firmware memory\n");
269 		return;
270 	}
271 
272 	/*
273 	 * Allocate shared page and Tx/Rx rings.
274 	 */
275 	if ((error = wpi_alloc_shared(sc)) != 0) {
276 		aprint_error_dev(self, "could not allocate shared area\n");
277 		goto fail1;
278 	}
279 
280 	if ((error = wpi_alloc_rpool(sc)) != 0) {
281 		aprint_error_dev(self, "could not allocate Rx buffers\n");
282 		goto fail2;
283 	}
284 
285 	for (ac = 0; ac < 4; ac++) {
286 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
287 		    ac);
288 		if (error != 0) {
289 			aprint_error_dev(self,
290 			    "could not allocate Tx ring %d\n", ac);
291 			goto fail3;
292 		}
293 	}
294 
295 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
296 	if (error != 0) {
297 		aprint_error_dev(self, "could not allocate command ring\n");
298 		goto fail3;
299 	}
300 
301 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
302 	if (error != 0) {
303 		aprint_error_dev(self, "could not allocate Rx ring\n");
304 		goto fail4;
305 	}
306 
307 	ic->ic_ifp = ifp;
308 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
309 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
310 	ic->ic_state = IEEE80211_S_INIT;
311 
312 	/* set device capabilities */
313 	ic->ic_caps =
314 	    IEEE80211_C_WPA |		/* 802.11i */
315 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
316 	    IEEE80211_C_TXPMGT |	/* tx power management */
317 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
318 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
319 	    IEEE80211_C_WME;		/* 802.11e */
320 
321 	/* read supported channels and MAC address from EEPROM */
322 	wpi_read_eeprom(sc);
323 
324 	/* set supported .11a, .11b and .11g rates */
325 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
326 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
327 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
328 
329 	/* IBSS channel undefined for now */
330 	ic->ic_ibss_chan = &ic->ic_channels[0];
331 
332 	ifp->if_softc = sc;
333 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
334 	ifp->if_init = wpi_init;
335 	ifp->if_stop = wpi_stop;
336 	ifp->if_ioctl = wpi_ioctl;
337 	ifp->if_start = wpi_start;
338 	ifp->if_watchdog = wpi_watchdog;
339 	IFQ_SET_READY(&ifp->if_snd);
340 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
341 
342 	if_attach(ifp);
343 	ieee80211_ifattach(ic);
344 	/* override default methods */
345 	ic->ic_node_alloc = wpi_node_alloc;
346 	ic->ic_newassoc = wpi_newassoc;
347 	ic->ic_wme.wme_update = wpi_wme_update;
348 
349 	/* override state transition machine */
350 	sc->sc_newstate = ic->ic_newstate;
351 	ic->ic_newstate = wpi_newstate;
352 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
353 
354 	sc->amrr.amrr_min_success_threshold =  1;
355 	sc->amrr.amrr_max_success_threshold = 15;
356 
357 	wpi_sysctlattach(sc);
358 
359 	if (pmf_device_register(self, NULL, wpi_resume))
360 		pmf_class_network_register(self, ifp);
361 	else
362 		aprint_error_dev(self, "couldn't establish power handler\n");
363 
364 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
365 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
366 	    &sc->sc_drvbpf);
367 
368 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
369 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
370 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
371 
372 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
373 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
374 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
375 
376 	ieee80211_announce(ic);
377 
378 	return;
379 
380 	/* free allocated memory if something failed during attachment */
381 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
382 fail3:	while (--ac >= 0)
383 		wpi_free_tx_ring(sc, &sc->txq[ac]);
384 	wpi_free_rpool(sc);
385 fail2:	wpi_free_shared(sc);
386 fail1:	wpi_free_fwmem(sc);
387 }
388 
389 static int
390 wpi_detach(device_t self, int flags __unused)
391 {
392 	struct wpi_softc *sc = device_private(self);
393 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
394 	int ac;
395 
396 	wpi_stop(ifp, 1);
397 
398 	if (ifp != NULL)
399 		bpf_detach(ifp);
400 	ieee80211_ifdetach(&sc->sc_ic);
401 	if (ifp != NULL)
402 		if_detach(ifp);
403 
404 	for (ac = 0; ac < 4; ac++)
405 		wpi_free_tx_ring(sc, &sc->txq[ac]);
406 	wpi_free_tx_ring(sc, &sc->cmdq);
407 	wpi_free_rx_ring(sc, &sc->rxq);
408 	wpi_free_rpool(sc);
409 	wpi_free_shared(sc);
410 
411 	if (sc->sc_ih != NULL) {
412 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
413 		sc->sc_ih = NULL;
414 	}
415 
416 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
417 
418 	if (sc->fw_used) {
419 		sc->fw_used = false;
420 		wpi_release_firmware();
421 	}
422 
423 	return 0;
424 }
425 
426 static int
427 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
428     bus_size_t size, bus_size_t alignment, int flags)
429 {
430 	int nsegs, error;
431 
432 	dma->tag = tag;
433 	dma->size = size;
434 
435 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
436 	if (error != 0)
437 		goto fail;
438 
439 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
440 	    flags);
441 	if (error != 0)
442 		goto fail;
443 
444 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
445 	if (error != 0)
446 		goto fail;
447 
448 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
449 	if (error != 0)
450 		goto fail;
451 
452 	memset(dma->vaddr, 0, size);
453 
454 	dma->paddr = dma->map->dm_segs[0].ds_addr;
455 	if (kvap != NULL)
456 		*kvap = dma->vaddr;
457 
458 	return 0;
459 
460 fail:	wpi_dma_contig_free(dma);
461 	return error;
462 }
463 
464 static void
465 wpi_dma_contig_free(struct wpi_dma_info *dma)
466 {
467 	if (dma->map != NULL) {
468 		if (dma->vaddr != NULL) {
469 			bus_dmamap_unload(dma->tag, dma->map);
470 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
471 			bus_dmamem_free(dma->tag, &dma->seg, 1);
472 			dma->vaddr = NULL;
473 		}
474 		bus_dmamap_destroy(dma->tag, dma->map);
475 		dma->map = NULL;
476 	}
477 }
478 
479 /*
480  * Allocate a shared page between host and NIC.
481  */
482 static int
483 wpi_alloc_shared(struct wpi_softc *sc)
484 {
485 	int error;
486 
487 	/* must be aligned on a 4K-page boundary */
488 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
489 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
490 	    BUS_DMA_NOWAIT);
491 	if (error != 0)
492 		aprint_error_dev(sc->sc_dev,
493 		    "could not allocate shared area DMA memory\n");
494 
495 	return error;
496 }
497 
498 static void
499 wpi_free_shared(struct wpi_softc *sc)
500 {
501 	wpi_dma_contig_free(&sc->shared_dma);
502 }
503 
504 /*
505  * Allocate DMA-safe memory for firmware transfer.
506  */
507 static int
508 wpi_alloc_fwmem(struct wpi_softc *sc)
509 {
510 	int error;
511 
512 	/* allocate enough contiguous space to store text and data */
513 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
514 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
515 	    BUS_DMA_NOWAIT);
516 
517 	if (error != 0)
518 		aprint_error_dev(sc->sc_dev,
519 		    "could not allocate firmware transfer area DMA memory\n");
520 	return error;
521 }
522 
523 static void
524 wpi_free_fwmem(struct wpi_softc *sc)
525 {
526 	wpi_dma_contig_free(&sc->fw_dma);
527 }
528 
529 static struct wpi_rbuf *
530 wpi_alloc_rbuf(struct wpi_softc *sc)
531 {
532 	struct wpi_rbuf *rbuf;
533 
534 	mutex_enter(&sc->rxq.freelist_mtx);
535 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
536 	if (rbuf != NULL) {
537 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
538 		sc->rxq.nb_free_entries --;
539 	}
540 	mutex_exit(&sc->rxq.freelist_mtx);
541 
542 	return rbuf;
543 }
544 
545 /*
546  * This is called automatically by the network stack when the mbuf to which our
547  * Rx buffer is attached is freed.
548  */
549 static void
550 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
551 {
552 	struct wpi_rbuf *rbuf = arg;
553 	struct wpi_softc *sc = rbuf->sc;
554 
555 	/* put the buffer back in the free list */
556 
557 	mutex_enter(&sc->rxq.freelist_mtx);
558 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
559 	mutex_exit(&sc->rxq.freelist_mtx);
560 	/* No need to protect this with a mutex, see wpi_rx_intr */
561 	sc->rxq.nb_free_entries ++;
562 
563 	if (__predict_true(m != NULL))
564 		pool_cache_put(mb_cache, m);
565 }
566 
567 static int
568 wpi_alloc_rpool(struct wpi_softc *sc)
569 {
570 	struct wpi_rx_ring *ring = &sc->rxq;
571 	int i, error;
572 
573 	/* allocate a big chunk of DMA'able memory.. */
574 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
575 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
576 	if (error != 0) {
577 		aprint_normal_dev(sc->sc_dev,
578 		    "could not allocate Rx buffers DMA memory\n");
579 		return error;
580 	}
581 
582 	/* ..and split it into 3KB chunks */
583 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
584 	SLIST_INIT(&ring->freelist);
585 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
586 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
587 
588 		rbuf->sc = sc;	/* backpointer for callbacks */
589 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
590 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
591 
592 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
593 	}
594 
595 	ring->nb_free_entries = WPI_RBUF_COUNT;
596 	return 0;
597 }
598 
599 static void
600 wpi_free_rpool(struct wpi_softc *sc)
601 {
602 	wpi_dma_contig_free(&sc->rxq.buf_dma);
603 }
604 
605 static int
606 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
607 {
608 	int i, error;
609 
610 	ring->cur = 0;
611 
612 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
613 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
614 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
615 	if (error != 0) {
616 		aprint_error_dev(sc->sc_dev,
617 		    "could not allocate rx ring DMA memory\n");
618 		goto fail;
619 	}
620 
621 	/*
622 	 * Setup Rx buffers.
623 	 */
624 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
625 		struct wpi_rx_data *data = &ring->data[i];
626 		struct wpi_rbuf *rbuf;
627 
628 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
629 		if (data->m == NULL) {
630 			aprint_error_dev(sc->sc_dev,
631 			    "could not allocate rx mbuf\n");
632 			error = ENOMEM;
633 			goto fail;
634 		}
635 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
636 			m_freem(data->m);
637 			data->m = NULL;
638 			aprint_error_dev(sc->sc_dev,
639 			    "could not allocate rx cluster\n");
640 			error = ENOMEM;
641 			goto fail;
642 		}
643 		/* attach Rx buffer to mbuf */
644 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
645 		    rbuf);
646 		data->m->m_flags |= M_EXT_RW;
647 
648 		ring->desc[i] = htole32(rbuf->paddr);
649 	}
650 
651 	return 0;
652 
653 fail:	wpi_free_rx_ring(sc, ring);
654 	return error;
655 }
656 
657 static void
658 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
659 {
660 	int ntries;
661 
662 	wpi_mem_lock(sc);
663 
664 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
665 	for (ntries = 0; ntries < 100; ntries++) {
666 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
667 			break;
668 		DELAY(10);
669 	}
670 #ifdef WPI_DEBUG
671 	if (ntries == 100 && wpi_debug > 0)
672 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
673 #endif
674 	wpi_mem_unlock(sc);
675 
676 	ring->cur = 0;
677 }
678 
679 static void
680 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
681 {
682 	int i;
683 
684 	wpi_dma_contig_free(&ring->desc_dma);
685 
686 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
687 		if (ring->data[i].m != NULL)
688 			m_freem(ring->data[i].m);
689 	}
690 }
691 
692 static int
693 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
694     int qid)
695 {
696 	int i, error;
697 
698 	ring->qid = qid;
699 	ring->count = count;
700 	ring->queued = 0;
701 	ring->cur = 0;
702 
703 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
704 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
705 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
706 	if (error != 0) {
707 		aprint_error_dev(sc->sc_dev,
708 		    "could not allocate tx ring DMA memory\n");
709 		goto fail;
710 	}
711 
712 	/* update shared page with ring's base address */
713 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
714 
715 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
716 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
717 	    BUS_DMA_NOWAIT);
718 	if (error != 0) {
719 		aprint_error_dev(sc->sc_dev,
720 		    "could not allocate tx cmd DMA memory\n");
721 		goto fail;
722 	}
723 
724 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
725 	    M_NOWAIT | M_ZERO);
726 	if (ring->data == NULL) {
727 		aprint_error_dev(sc->sc_dev,
728 		    "could not allocate tx data slots\n");
729 		goto fail;
730 	}
731 
732 	for (i = 0; i < count; i++) {
733 		struct wpi_tx_data *data = &ring->data[i];
734 
735 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
736 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
737 		    &data->map);
738 		if (error != 0) {
739 			aprint_error_dev(sc->sc_dev,
740 			    "could not create tx buf DMA map\n");
741 			goto fail;
742 		}
743 	}
744 
745 	return 0;
746 
747 fail:	wpi_free_tx_ring(sc, ring);
748 	return error;
749 }
750 
751 static void
752 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
753 {
754 	int i, ntries;
755 
756 	wpi_mem_lock(sc);
757 
758 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
759 	for (ntries = 0; ntries < 100; ntries++) {
760 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
761 			break;
762 		DELAY(10);
763 	}
764 #ifdef WPI_DEBUG
765 	if (ntries == 100 && wpi_debug > 0) {
766 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
767 		    ring->qid);
768 	}
769 #endif
770 	wpi_mem_unlock(sc);
771 
772 	for (i = 0; i < ring->count; i++) {
773 		struct wpi_tx_data *data = &ring->data[i];
774 
775 		if (data->m != NULL) {
776 			bus_dmamap_unload(sc->sc_dmat, data->map);
777 			m_freem(data->m);
778 			data->m = NULL;
779 		}
780 	}
781 
782 	ring->queued = 0;
783 	ring->cur = 0;
784 }
785 
786 static void
787 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
788 {
789 	int i;
790 
791 	wpi_dma_contig_free(&ring->desc_dma);
792 	wpi_dma_contig_free(&ring->cmd_dma);
793 
794 	if (ring->data != NULL) {
795 		for (i = 0; i < ring->count; i++) {
796 			struct wpi_tx_data *data = &ring->data[i];
797 
798 			if (data->m != NULL) {
799 				bus_dmamap_unload(sc->sc_dmat, data->map);
800 				m_freem(data->m);
801 			}
802 		}
803 		free(ring->data, M_DEVBUF);
804 	}
805 }
806 
807 /*ARGUSED*/
808 static struct ieee80211_node *
809 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
810 {
811 	struct wpi_node *wn;
812 
813 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
814 
815 	return (struct ieee80211_node *)wn;
816 }
817 
818 static void
819 wpi_newassoc(struct ieee80211_node *ni, int isnew)
820 {
821 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
822 	int i;
823 
824 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
825 
826 	/* set rate to some reasonable initial value */
827 	for (i = ni->ni_rates.rs_nrates - 1;
828 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
829 	     i--);
830 	ni->ni_txrate = i;
831 }
832 
833 static int
834 wpi_media_change(struct ifnet *ifp)
835 {
836 	int error;
837 
838 	error = ieee80211_media_change(ifp);
839 	if (error != ENETRESET)
840 		return error;
841 
842 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
843 		wpi_init(ifp);
844 
845 	return 0;
846 }
847 
848 static int
849 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
850 {
851 	struct ifnet *ifp = ic->ic_ifp;
852 	struct wpi_softc *sc = ifp->if_softc;
853 	struct ieee80211_node *ni;
854 	int error;
855 
856 	callout_stop(&sc->calib_to);
857 
858 	switch (nstate) {
859 	case IEEE80211_S_SCAN:
860 
861 		if (sc->is_scanning)
862 			break;
863 
864 		sc->is_scanning = true;
865 		ieee80211_node_table_reset(&ic->ic_scan);
866 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
867 
868 		/* make the link LED blink while we're scanning */
869 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
870 
871 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
872 			aprint_error_dev(sc->sc_dev,
873 			    "could not initiate scan\n");
874 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
875 			return error;
876 		}
877 		ic->ic_state = nstate;
878 		return 0;
879 
880 	case IEEE80211_S_ASSOC:
881 		if (ic->ic_state != IEEE80211_S_RUN)
882 			break;
883 		/* FALLTHROUGH */
884 	case IEEE80211_S_AUTH:
885 		/* reset state to handle reassociations correctly */
886 		sc->config.associd = 0;
887 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
888 
889 		if ((error = wpi_auth(sc)) != 0) {
890 			aprint_error_dev(sc->sc_dev,
891 			    "could not send authentication request\n");
892 			return error;
893 		}
894 		break;
895 
896 	case IEEE80211_S_RUN:
897 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
898 			/* link LED blinks while monitoring */
899 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
900 			break;
901 		}
902 		ni = ic->ic_bss;
903 
904 		if (ic->ic_opmode != IEEE80211_M_STA) {
905 			(void) wpi_auth(sc);    /* XXX */
906 			wpi_setup_beacon(sc, ni);
907 		}
908 
909 		wpi_enable_tsf(sc, ni);
910 
911 		/* update adapter's configuration */
912 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
913 		/* short preamble/slot time are negotiated when associating */
914 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
915 		    WPI_CONFIG_SHSLOT);
916 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
917 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
918 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
919 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
920 		sc->config.filter |= htole32(WPI_FILTER_BSS);
921 		if (ic->ic_opmode != IEEE80211_M_STA)
922 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
923 
924 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
925 
926 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
927 		    sc->config.flags));
928 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
929 		    sizeof (struct wpi_config), 1);
930 		if (error != 0) {
931 			aprint_error_dev(sc->sc_dev,
932 			    "could not update configuration\n");
933 			return error;
934 		}
935 
936 		/* configuration has changed, set Tx power accordingly */
937 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
938 			aprint_error_dev(sc->sc_dev,
939 			    "could not set Tx power\n");
940 			return error;
941 		}
942 
943 		if (ic->ic_opmode == IEEE80211_M_STA) {
944 			/* fake a join to init the tx rate */
945 			wpi_newassoc(ni, 1);
946 		}
947 
948 		/* start periodic calibration timer */
949 		sc->calib_cnt = 0;
950 		callout_schedule(&sc->calib_to, hz/2);
951 
952 		/* link LED always on while associated */
953 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
954 		break;
955 
956 	case IEEE80211_S_INIT:
957 		sc->is_scanning = false;
958 		break;
959 	}
960 
961 	return sc->sc_newstate(ic, nstate, arg);
962 }
963 
964 /*
965  * XXX: Hack to set the current channel to the value advertised in beacons or
966  * probe responses. Only used during AP detection.
967  * XXX: Duplicated from if_iwi.c
968  */
969 static void
970 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
971 {
972 	struct ieee80211_frame *wh;
973 	uint8_t subtype;
974 	uint8_t *frm, *efrm;
975 
976 	wh = mtod(m, struct ieee80211_frame *);
977 
978 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
979 		return;
980 
981 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
982 
983 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
984 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
985 		return;
986 
987 	frm = (uint8_t *)(wh + 1);
988 	efrm = mtod(m, uint8_t *) + m->m_len;
989 
990 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
991 	while (frm < efrm) {
992 		if (*frm == IEEE80211_ELEMID_DSPARMS)
993 #if IEEE80211_CHAN_MAX < 255
994 		if (frm[2] <= IEEE80211_CHAN_MAX)
995 #endif
996 			ic->ic_curchan = &ic->ic_channels[frm[2]];
997 
998 		frm += frm[1] + 2;
999 	}
1000 }
1001 
1002 /*
1003  * Grab exclusive access to NIC memory.
1004  */
1005 static void
1006 wpi_mem_lock(struct wpi_softc *sc)
1007 {
1008 	uint32_t tmp;
1009 	int ntries;
1010 
1011 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1012 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1013 
1014 	/* spin until we actually get the lock */
1015 	for (ntries = 0; ntries < 1000; ntries++) {
1016 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1017 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1018 			break;
1019 		DELAY(10);
1020 	}
1021 	if (ntries == 1000)
1022 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1023 }
1024 
1025 /*
1026  * Release lock on NIC memory.
1027  */
1028 static void
1029 wpi_mem_unlock(struct wpi_softc *sc)
1030 {
1031 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1032 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1033 }
1034 
1035 static uint32_t
1036 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1037 {
1038 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1039 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1040 }
1041 
1042 static void
1043 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1044 {
1045 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1046 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1047 }
1048 
1049 static void
1050 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1051     const uint32_t *data, int wlen)
1052 {
1053 	for (; wlen > 0; wlen--, data++, addr += 4)
1054 		wpi_mem_write(sc, addr, *data);
1055 }
1056 
1057 /*
1058  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1059  * instead of using the traditional bit-bang method.
1060  */
1061 static int
1062 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1063 {
1064 	uint8_t *out = data;
1065 	uint32_t val;
1066 	int ntries;
1067 
1068 	wpi_mem_lock(sc);
1069 	for (; len > 0; len -= 2, addr++) {
1070 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1071 
1072 		for (ntries = 0; ntries < 10; ntries++) {
1073 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1074 			    WPI_EEPROM_READY)
1075 				break;
1076 			DELAY(5);
1077 		}
1078 		if (ntries == 10) {
1079 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1080 			return ETIMEDOUT;
1081 		}
1082 		*out++ = val >> 16;
1083 		if (len > 1)
1084 			*out++ = val >> 24;
1085 	}
1086 	wpi_mem_unlock(sc);
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * The firmware boot code is small and is intended to be copied directly into
1093  * the NIC internal memory.
1094  */
1095 int
1096 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1097 {
1098 	int ntries;
1099 
1100 	size /= sizeof (uint32_t);
1101 
1102 	wpi_mem_lock(sc);
1103 
1104 	/* copy microcode image into NIC memory */
1105 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1106 	    (const uint32_t *)ucode, size);
1107 
1108 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1109 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1110 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1111 
1112 	/* run microcode */
1113 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1114 
1115 	/* wait for transfer to complete */
1116 	for (ntries = 0; ntries < 1000; ntries++) {
1117 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1118 			break;
1119 		DELAY(10);
1120 	}
1121 	if (ntries == 1000) {
1122 		wpi_mem_unlock(sc);
1123 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1124 		return ETIMEDOUT;
1125 	}
1126 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1127 
1128 	wpi_mem_unlock(sc);
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 wpi_cache_firmware(struct wpi_softc *sc)
1135 {
1136 	const char *const fwname = wpi_firmware_name;
1137 	firmware_handle_t fw;
1138 	int error;
1139 
1140 	/* sc is used here only to report error messages.  */
1141 
1142 	mutex_enter(&wpi_firmware_mutex);
1143 
1144 	if (wpi_firmware_users == SIZE_MAX) {
1145 		mutex_exit(&wpi_firmware_mutex);
1146 		return ENFILE;	/* Too many of something in the system...  */
1147 	}
1148 	if (wpi_firmware_users++) {
1149 		KASSERT(wpi_firmware_image != NULL);
1150 		KASSERT(wpi_firmware_size > 0);
1151 		mutex_exit(&wpi_firmware_mutex);
1152 		return 0;	/* Already good to go.  */
1153 	}
1154 
1155 	KASSERT(wpi_firmware_image == NULL);
1156 	KASSERT(wpi_firmware_size == 0);
1157 
1158 	/* load firmware image from disk */
1159 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1160 		aprint_error_dev(sc->sc_dev,
1161 		    "could not open firmware file %s: %d\n", fwname, error);
1162 		goto fail0;
1163 	}
1164 
1165 	wpi_firmware_size = firmware_get_size(fw);
1166 
1167 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1168 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1169 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1170 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1171 		aprint_error_dev(sc->sc_dev,
1172 		    "firmware file %s too large: %zu bytes\n",
1173 		    fwname, wpi_firmware_size);
1174 		error = EFBIG;
1175 		goto fail1;
1176 	}
1177 
1178 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1179 		aprint_error_dev(sc->sc_dev,
1180 		    "firmware file %s too small: %zu bytes\n",
1181 		    fwname, wpi_firmware_size);
1182 		error = EINVAL;
1183 		goto fail1;
1184 	}
1185 
1186 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1187 	if (wpi_firmware_image == NULL) {
1188 		aprint_error_dev(sc->sc_dev,
1189 		    "not enough memory for firmware file %s\n", fwname);
1190 		error = ENOMEM;
1191 		goto fail1;
1192 	}
1193 
1194 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1195 	if (error != 0) {
1196 		aprint_error_dev(sc->sc_dev,
1197 		    "error reading firmware file %s: %d\n", fwname, error);
1198 		goto fail2;
1199 	}
1200 
1201 	/* Success!  */
1202 	firmware_close(fw);
1203 	mutex_exit(&wpi_firmware_mutex);
1204 	return 0;
1205 
1206 fail2:
1207 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1208 	wpi_firmware_image = NULL;
1209 fail1:
1210 	wpi_firmware_size = 0;
1211 	firmware_close(fw);
1212 fail0:
1213 	KASSERT(wpi_firmware_users == 1);
1214 	wpi_firmware_users = 0;
1215 	KASSERT(wpi_firmware_image == NULL);
1216 	KASSERT(wpi_firmware_size == 0);
1217 
1218 	mutex_exit(&wpi_firmware_mutex);
1219 	return error;
1220 }
1221 
1222 static void
1223 wpi_release_firmware(void)
1224 {
1225 
1226 	mutex_enter(&wpi_firmware_mutex);
1227 
1228 	KASSERT(wpi_firmware_users > 0);
1229 	KASSERT(wpi_firmware_image != NULL);
1230 	KASSERT(wpi_firmware_size != 0);
1231 
1232 	if (--wpi_firmware_users == 0) {
1233 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1234 		wpi_firmware_image = NULL;
1235 		wpi_firmware_size = 0;
1236 	}
1237 
1238 	mutex_exit(&wpi_firmware_mutex);
1239 }
1240 
1241 static int
1242 wpi_load_firmware(struct wpi_softc *sc)
1243 {
1244 	struct wpi_dma_info *dma = &sc->fw_dma;
1245 	struct wpi_firmware_hdr hdr;
1246 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1247 	const uint8_t *boot_text;
1248 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1249 	uint32_t boot_textsz;
1250 	size_t size;
1251 	int error;
1252 
1253 	if (!sc->fw_used) {
1254 		if ((error = wpi_cache_firmware(sc)) != 0)
1255 			return error;
1256 		sc->fw_used = true;
1257 	}
1258 
1259 	KASSERT(sc->fw_used);
1260 	KASSERT(wpi_firmware_image != NULL);
1261 	KASSERT(wpi_firmware_size > sizeof(hdr));
1262 
1263 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1264 
1265 	main_textsz = le32toh(hdr.main_textsz);
1266 	main_datasz = le32toh(hdr.main_datasz);
1267 	init_textsz = le32toh(hdr.init_textsz);
1268 	init_datasz = le32toh(hdr.init_datasz);
1269 	boot_textsz = le32toh(hdr.boot_textsz);
1270 
1271 	/* sanity-check firmware segments sizes */
1272 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1273 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1274 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1275 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1276 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1277 	    (boot_textsz & 3) != 0) {
1278 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1279 		error = EINVAL;
1280 		goto free_firmware;
1281 	}
1282 
1283 	/* check that all firmware segments are present */
1284 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1285 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1286 	if (wpi_firmware_size < size) {
1287 		aprint_error_dev(sc->sc_dev,
1288 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1289 		    wpi_firmware_size, size);
1290 		error = EINVAL;
1291 		goto free_firmware;
1292 	}
1293 
1294 	/* get pointers to firmware segments */
1295 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1296 	main_data = main_text + main_textsz;
1297 	init_text = main_data + main_datasz;
1298 	init_data = init_text + init_textsz;
1299 	boot_text = init_data + init_datasz;
1300 
1301 	/* copy initialization images into pre-allocated DMA-safe memory */
1302 	memcpy(dma->vaddr, init_data, init_datasz);
1303 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1304 	    init_textsz);
1305 
1306 	/* tell adapter where to find initialization images */
1307 	wpi_mem_lock(sc);
1308 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1309 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1310 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1311 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1312 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1313 	wpi_mem_unlock(sc);
1314 
1315 	/* load firmware boot code */
1316 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1317 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1318 		return error;
1319 	}
1320 
1321 	/* now press "execute" ;-) */
1322 	WPI_WRITE(sc, WPI_RESET, 0);
1323 
1324 	/* wait at most one second for first alive notification */
1325 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1326 		/* this isn't what was supposed to happen.. */
1327 		aprint_error_dev(sc->sc_dev,
1328 		    "timeout waiting for adapter to initialize\n");
1329 	}
1330 
1331 	/* copy runtime images into pre-allocated DMA-safe memory */
1332 	memcpy(dma->vaddr, main_data, main_datasz);
1333 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1334 	    main_textsz);
1335 
1336 	/* tell adapter where to find runtime images */
1337 	wpi_mem_lock(sc);
1338 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1339 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1340 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1341 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1342 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1343 	wpi_mem_unlock(sc);
1344 
1345 	/* wait at most one second for second alive notification */
1346 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1347 		/* this isn't what was supposed to happen.. */
1348 		aprint_error_dev(sc->sc_dev,
1349 		    "timeout waiting for adapter to initialize\n");
1350 	}
1351 
1352 	return error;
1353 
1354 free_firmware:
1355 	sc->fw_used = false;
1356 	wpi_release_firmware();
1357 	return error;
1358 }
1359 
1360 static void
1361 wpi_calib_timeout(void *arg)
1362 {
1363 	struct wpi_softc *sc = arg;
1364 	struct ieee80211com *ic = &sc->sc_ic;
1365 	int temp, s;
1366 
1367 	/* automatic rate control triggered every 500ms */
1368 	if (ic->ic_fixed_rate == -1) {
1369 		s = splnet();
1370 		if (ic->ic_opmode == IEEE80211_M_STA)
1371 			wpi_iter_func(sc, ic->ic_bss);
1372 		else
1373 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1374 		splx(s);
1375 	}
1376 
1377 	/* update sensor data */
1378 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1379 
1380 	/* automatic power calibration every 60s */
1381 	if (++sc->calib_cnt >= 120) {
1382 		wpi_power_calibration(sc, temp);
1383 		sc->calib_cnt = 0;
1384 	}
1385 
1386 	callout_schedule(&sc->calib_to, hz/2);
1387 }
1388 
1389 static void
1390 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1391 {
1392 	struct wpi_softc *sc = arg;
1393 	struct wpi_node *wn = (struct wpi_node *)ni;
1394 
1395 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1396 }
1397 
1398 /*
1399  * This function is called periodically (every 60 seconds) to adjust output
1400  * power to temperature changes.
1401  */
1402 void
1403 wpi_power_calibration(struct wpi_softc *sc, int temp)
1404 {
1405 	/* sanity-check read value */
1406 	if (temp < -260 || temp > 25) {
1407 		/* this can't be correct, ignore */
1408 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1409 		return;
1410 	}
1411 
1412 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1413 
1414 	/* adjust Tx power if need be */
1415 	if (abs(temp - sc->temp) <= 6)
1416 		return;
1417 
1418 	sc->temp = temp;
1419 
1420 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1421 		/* just warn, too bad for the automatic calibration... */
1422 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1423 	}
1424 }
1425 
1426 static void
1427 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1428     struct wpi_rx_data *data)
1429 {
1430 	struct ieee80211com *ic = &sc->sc_ic;
1431 	struct ifnet *ifp = ic->ic_ifp;
1432 	struct wpi_rx_ring *ring = &sc->rxq;
1433 	struct wpi_rx_stat *stat;
1434 	struct wpi_rx_head *head;
1435 	struct wpi_rx_tail *tail;
1436 	struct wpi_rbuf *rbuf;
1437 	struct ieee80211_frame *wh;
1438 	struct ieee80211_node *ni;
1439 	struct mbuf *m, *mnew;
1440 	int data_off;
1441 
1442 	stat = (struct wpi_rx_stat *)(desc + 1);
1443 
1444 	if (stat->len > WPI_STAT_MAXLEN) {
1445 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1446 		ifp->if_ierrors++;
1447 		return;
1448 	}
1449 
1450 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1451 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1452 
1453 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1454 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1455 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1456 	    le64toh(tail->tstamp)));
1457 
1458 	/*
1459 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1460 	 * to radiotap in monitor mode).
1461 	 */
1462 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1463 		DPRINTF(("rx tail flags error %x\n",
1464 		    le32toh(tail->flags)));
1465 		ifp->if_ierrors++;
1466 		return;
1467 	}
1468 
1469 	/* Compute where are the useful datas */
1470 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1471 
1472 	/*
1473 	 * If the number of free entry is too low
1474 	 * just dup the data->m socket and reuse the same rbuf entry
1475 	 * Note that thi test is not protected by a mutex because the
1476 	 * only path that causes nb_free_entries to decrease is through
1477 	 * this interrupt routine, which is not re-entrent.
1478 	 * What may not be obvious is that the safe path is if that test
1479 	 * evaluates as true, so nb_free_entries can grow any time.
1480 	 */
1481 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1482 
1483 		/* Prepare the mbuf for the m_dup */
1484 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1485 		data->m->m_data = (char*) data->m->m_data + data_off;
1486 
1487 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1488 
1489 		/* Restore the m_data pointer for future use */
1490 		data->m->m_data = (char*) data->m->m_data - data_off;
1491 
1492 		if (m == NULL) {
1493 			ifp->if_ierrors++;
1494 			return;
1495 		}
1496 	} else {
1497 
1498 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1499 		if (mnew == NULL) {
1500 			ifp->if_ierrors++;
1501 			return;
1502 		}
1503 
1504 		rbuf = wpi_alloc_rbuf(sc);
1505 		KASSERT(rbuf != NULL);
1506 
1507 		/* attach Rx buffer to mbuf */
1508 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1509 			rbuf);
1510 		mnew->m_flags |= M_EXT_RW;
1511 
1512 		m = data->m;
1513 		data->m = mnew;
1514 
1515 		/* update Rx descriptor */
1516 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1517 
1518 		m->m_data = (char*)m->m_data + data_off;
1519 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1520 	}
1521 
1522 	/* finalize mbuf */
1523 	m->m_pkthdr.rcvif = ifp;
1524 
1525 	if (ic->ic_state == IEEE80211_S_SCAN)
1526 		wpi_fix_channel(ic, m);
1527 
1528 	if (sc->sc_drvbpf != NULL) {
1529 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1530 
1531 		tap->wr_flags = 0;
1532 		tap->wr_chan_freq =
1533 		    htole16(ic->ic_channels[head->chan].ic_freq);
1534 		tap->wr_chan_flags =
1535 		    htole16(ic->ic_channels[head->chan].ic_flags);
1536 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1537 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1538 		tap->wr_tsft = tail->tstamp;
1539 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1540 		switch (head->rate) {
1541 		/* CCK rates */
1542 		case  10: tap->wr_rate =   2; break;
1543 		case  20: tap->wr_rate =   4; break;
1544 		case  55: tap->wr_rate =  11; break;
1545 		case 110: tap->wr_rate =  22; break;
1546 		/* OFDM rates */
1547 		case 0xd: tap->wr_rate =  12; break;
1548 		case 0xf: tap->wr_rate =  18; break;
1549 		case 0x5: tap->wr_rate =  24; break;
1550 		case 0x7: tap->wr_rate =  36; break;
1551 		case 0x9: tap->wr_rate =  48; break;
1552 		case 0xb: tap->wr_rate =  72; break;
1553 		case 0x1: tap->wr_rate =  96; break;
1554 		case 0x3: tap->wr_rate = 108; break;
1555 		/* unknown rate: should not happen */
1556 		default:  tap->wr_rate =   0;
1557 		}
1558 		if (le16toh(head->flags) & 0x4)
1559 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1560 
1561 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1562 	}
1563 
1564 	/* grab a reference to the source node */
1565 	wh = mtod(m, struct ieee80211_frame *);
1566 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1567 
1568 	/* send the frame to the 802.11 layer */
1569 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1570 
1571 	/* release node reference */
1572 	ieee80211_free_node(ni);
1573 }
1574 
1575 static void
1576 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1577 {
1578 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1579 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1580 	struct wpi_tx_data *data = &ring->data[desc->idx];
1581 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1582 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1583 
1584 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1585 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1586 	    stat->nkill, stat->rate, le32toh(stat->duration),
1587 	    le32toh(stat->status)));
1588 
1589 	/*
1590 	 * Update rate control statistics for the node.
1591 	 * XXX we should not count mgmt frames since they're always sent at
1592 	 * the lowest available bit-rate.
1593 	 */
1594 	wn->amn.amn_txcnt++;
1595 	if (stat->ntries > 0) {
1596 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1597 		wn->amn.amn_retrycnt++;
1598 	}
1599 
1600 	if ((le32toh(stat->status) & 0xff) != 1)
1601 		ifp->if_oerrors++;
1602 	else
1603 		ifp->if_opackets++;
1604 
1605 	bus_dmamap_unload(sc->sc_dmat, data->map);
1606 	m_freem(data->m);
1607 	data->m = NULL;
1608 	ieee80211_free_node(data->ni);
1609 	data->ni = NULL;
1610 
1611 	ring->queued--;
1612 
1613 	sc->sc_tx_timer = 0;
1614 	ifp->if_flags &= ~IFF_OACTIVE;
1615 	wpi_start(ifp);
1616 }
1617 
1618 static void
1619 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1620 {
1621 	struct wpi_tx_ring *ring = &sc->cmdq;
1622 	struct wpi_tx_data *data;
1623 
1624 	if ((desc->qid & 7) != 4)
1625 		return;	/* not a command ack */
1626 
1627 	data = &ring->data[desc->idx];
1628 
1629 	/* if the command was mapped in a mbuf, free it */
1630 	if (data->m != NULL) {
1631 		bus_dmamap_unload(sc->sc_dmat, data->map);
1632 		m_freem(data->m);
1633 		data->m = NULL;
1634 	}
1635 
1636 	wakeup(&ring->cmd[desc->idx]);
1637 }
1638 
1639 static void
1640 wpi_notif_intr(struct wpi_softc *sc)
1641 {
1642 	struct ieee80211com *ic = &sc->sc_ic;
1643 	struct ifnet *ifp =  ic->ic_ifp;
1644 	uint32_t hw;
1645 
1646 	hw = le32toh(sc->shared->next);
1647 	while (sc->rxq.cur != hw) {
1648 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1649 		struct wpi_rx_desc *desc = mtod(data->m, struct wpi_rx_desc *);
1650 
1651 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1652 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1653 		    desc->type, le32toh(desc->len)));
1654 
1655 		if (!(desc->qid & 0x80))	/* reply to a command */
1656 			wpi_cmd_intr(sc, desc);
1657 
1658 		switch (desc->type) {
1659 		case WPI_RX_DONE:
1660 			/* a 802.11 frame was received */
1661 			wpi_rx_intr(sc, desc, data);
1662 			break;
1663 
1664 		case WPI_TX_DONE:
1665 			/* a 802.11 frame has been transmitted */
1666 			wpi_tx_intr(sc, desc);
1667 			break;
1668 
1669 		case WPI_UC_READY:
1670 		{
1671 			struct wpi_ucode_info *uc =
1672 			    (struct wpi_ucode_info *)(desc + 1);
1673 
1674 			/* the microcontroller is ready */
1675 			DPRINTF(("microcode alive notification version %x "
1676 			    "alive %x\n", le32toh(uc->version),
1677 			    le32toh(uc->valid)));
1678 
1679 			if (le32toh(uc->valid) != 1) {
1680 				aprint_error_dev(sc->sc_dev,
1681 				    "microcontroller initialization failed\n");
1682 			}
1683 			break;
1684 		}
1685 		case WPI_STATE_CHANGED:
1686 		{
1687 			uint32_t *status = (uint32_t *)(desc + 1);
1688 
1689 			/* enabled/disabled notification */
1690 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1691 
1692 			if (le32toh(*status) & 1) {
1693 				/* the radio button has to be pushed */
1694 				aprint_error_dev(sc->sc_dev,
1695 				    "Radio transmitter is off\n");
1696 				/* turn the interface down */
1697 				ifp->if_flags &= ~IFF_UP;
1698 				wpi_stop(ifp, 1);
1699 				return;	/* no further processing */
1700 			}
1701 			break;
1702 		}
1703 		case WPI_START_SCAN:
1704 		{
1705 			struct wpi_start_scan *scan =
1706 			    (struct wpi_start_scan *)(desc + 1);
1707 
1708 			DPRINTFN(2, ("scanning channel %d status %x\n",
1709 			    scan->chan, le32toh(scan->status)));
1710 
1711 			/* fix current channel */
1712 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1713 			break;
1714 		}
1715 		case WPI_STOP_SCAN:
1716 		{
1717 			struct wpi_stop_scan *scan =
1718 			    (struct wpi_stop_scan *)(desc + 1);
1719 
1720 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1721 			    scan->nchan, scan->status, scan->chan));
1722 
1723 			if (scan->status == 1 && scan->chan <= 14) {
1724 				/*
1725 				 * We just finished scanning 802.11g channels,
1726 				 * start scanning 802.11a ones.
1727 				 */
1728 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1729 					break;
1730 			}
1731 			sc->is_scanning = false;
1732 			ieee80211_end_scan(ic);
1733 			break;
1734 		}
1735 		}
1736 
1737 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1738 	}
1739 
1740 	/* tell the firmware what we have processed */
1741 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1742 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1743 }
1744 
1745 static int
1746 wpi_intr(void *arg)
1747 {
1748 	struct wpi_softc *sc = arg;
1749 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1750 	uint32_t r;
1751 
1752 	r = WPI_READ(sc, WPI_INTR);
1753 	if (r == 0 || r == 0xffffffff)
1754 		return 0;	/* not for us */
1755 
1756 	DPRINTFN(6, ("interrupt reg %x\n", r));
1757 
1758 	/* disable interrupts */
1759 	WPI_WRITE(sc, WPI_MASK, 0);
1760 	/* ack interrupts */
1761 	WPI_WRITE(sc, WPI_INTR, r);
1762 
1763 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1764 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1765 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1766 		ifp->if_flags &= ~IFF_UP;
1767 		wpi_stop(ifp, 1);
1768 		return 1;
1769 	}
1770 
1771 	if (r & WPI_RX_INTR)
1772 		wpi_notif_intr(sc);
1773 
1774 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1775 		wakeup(sc);
1776 
1777 	/* re-enable interrupts */
1778 	if (ifp->if_flags & IFF_UP)
1779 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1780 
1781 	return 1;
1782 }
1783 
1784 static uint8_t
1785 wpi_plcp_signal(int rate)
1786 {
1787 	switch (rate) {
1788 	/* CCK rates (returned values are device-dependent) */
1789 	case 2:		return 10;
1790 	case 4:		return 20;
1791 	case 11:	return 55;
1792 	case 22:	return 110;
1793 
1794 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1795 	/* R1-R4, (u)ral is R4-R1 */
1796 	case 12:	return 0xd;
1797 	case 18:	return 0xf;
1798 	case 24:	return 0x5;
1799 	case 36:	return 0x7;
1800 	case 48:	return 0x9;
1801 	case 72:	return 0xb;
1802 	case 96:	return 0x1;
1803 	case 108:	return 0x3;
1804 
1805 	/* unsupported rates (should not get there) */
1806 	default:	return 0;
1807 	}
1808 }
1809 
1810 /* quickly determine if a given rate is CCK or OFDM */
1811 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1812 
1813 static int
1814 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1815     int ac)
1816 {
1817 	struct ieee80211com *ic = &sc->sc_ic;
1818 	struct wpi_tx_ring *ring = &sc->txq[ac];
1819 	struct wpi_tx_desc *desc;
1820 	struct wpi_tx_data *data;
1821 	struct wpi_tx_cmd *cmd;
1822 	struct wpi_cmd_data *tx;
1823 	struct ieee80211_frame *wh;
1824 	struct ieee80211_key *k;
1825 	const struct chanAccParams *cap;
1826 	struct mbuf *mnew;
1827 	int i, rate, error, hdrlen, noack = 0;
1828 
1829 	desc = &ring->desc[ring->cur];
1830 	data = &ring->data[ring->cur];
1831 
1832 	wh = mtod(m0, struct ieee80211_frame *);
1833 
1834 	if (ieee80211_has_qos(wh)) {
1835 		cap = &ic->ic_wme.wme_chanParams;
1836 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1837 	}
1838 
1839 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1840 		k = ieee80211_crypto_encap(ic, ni, m0);
1841 		if (k == NULL) {
1842 			m_freem(m0);
1843 			return ENOBUFS;
1844 		}
1845 
1846 		/* packet header may have moved, reset our local pointer */
1847 		wh = mtod(m0, struct ieee80211_frame *);
1848 	}
1849 
1850 	hdrlen = ieee80211_anyhdrsize(wh);
1851 
1852 	/* pickup a rate */
1853 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1854 	    IEEE80211_FC0_TYPE_MGT) {
1855 		/* mgmt frames are sent at the lowest available bit-rate */
1856 		rate = ni->ni_rates.rs_rates[0];
1857 	} else {
1858 		if (ic->ic_fixed_rate != -1) {
1859 			rate = ic->ic_sup_rates[ic->ic_curmode].
1860 			    rs_rates[ic->ic_fixed_rate];
1861 		} else
1862 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1863 	}
1864 	rate &= IEEE80211_RATE_VAL;
1865 
1866 	if (sc->sc_drvbpf != NULL) {
1867 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1868 
1869 		tap->wt_flags = 0;
1870 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1871 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1872 		tap->wt_rate = rate;
1873 		tap->wt_hwqueue = ac;
1874 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1875 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1876 
1877 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1878 	}
1879 
1880 	cmd = &ring->cmd[ring->cur];
1881 	cmd->code = WPI_CMD_TX_DATA;
1882 	cmd->flags = 0;
1883 	cmd->qid = ring->qid;
1884 	cmd->idx = ring->cur;
1885 
1886 	tx = (struct wpi_cmd_data *)cmd->data;
1887 	/* no need to zero tx, all fields are reinitialized here */
1888 	tx->flags = 0;
1889 
1890 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1891 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1892 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1893 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1894 
1895 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1896 
1897 	/* retrieve destination node's id */
1898 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1899 		WPI_ID_BSS;
1900 
1901 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1902 	    IEEE80211_FC0_TYPE_MGT) {
1903 		/* tell h/w to set timestamp in probe responses */
1904 		if ((wh->i_fc[0] &
1905 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1906 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1907 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1908 
1909 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1910 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1911 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1912 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1913 			tx->timeout = htole16(3);
1914 		else
1915 			tx->timeout = htole16(2);
1916 	} else
1917 		tx->timeout = htole16(0);
1918 
1919 	tx->rate = wpi_plcp_signal(rate);
1920 
1921 	/* be very persistant at sending frames out */
1922 	tx->rts_ntries = 7;
1923 	tx->data_ntries = 15;
1924 
1925 	tx->ofdm_mask = 0xff;
1926 	tx->cck_mask = 0x0f;
1927 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1928 
1929 	tx->len = htole16(m0->m_pkthdr.len);
1930 
1931 	/* save and trim IEEE802.11 header */
1932 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1933 	m_adj(m0, hdrlen);
1934 
1935 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1936 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1937 	if (error != 0 && error != EFBIG) {
1938 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1939 		    error);
1940 		m_freem(m0);
1941 		return error;
1942 	}
1943 	if (error != 0) {
1944 		/* too many fragments, linearize */
1945 
1946 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1947 		if (mnew == NULL) {
1948 			m_freem(m0);
1949 			return ENOMEM;
1950 		}
1951 		M_COPY_PKTHDR(mnew, m0);
1952 		if (m0->m_pkthdr.len > MHLEN) {
1953 			MCLGET(mnew, M_DONTWAIT);
1954 			if (!(mnew->m_flags & M_EXT)) {
1955 				m_freem(m0);
1956 				m_freem(mnew);
1957 				return ENOMEM;
1958 			}
1959 		}
1960 
1961 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1962 		m_freem(m0);
1963 		mnew->m_len = mnew->m_pkthdr.len;
1964 		m0 = mnew;
1965 
1966 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1967 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1968 		if (error != 0) {
1969 			aprint_error_dev(sc->sc_dev,
1970 			    "could not map mbuf (error %d)\n", error);
1971 			m_freem(m0);
1972 			return error;
1973 		}
1974 	}
1975 
1976 	data->m = m0;
1977 	data->ni = ni;
1978 
1979 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1980 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1981 
1982 	/* first scatter/gather segment is used by the tx data command */
1983 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1984 	    (1 + data->map->dm_nsegs) << 24);
1985 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1986 	    ring->cur * sizeof (struct wpi_tx_cmd));
1987 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1988 	    ((hdrlen + 3) & ~3));
1989 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1990 		desc->segs[i].addr =
1991 		    htole32(data->map->dm_segs[i - 1].ds_addr);
1992 		desc->segs[i].len  =
1993 		    htole32(data->map->dm_segs[i - 1].ds_len);
1994 	}
1995 
1996 	ring->queued++;
1997 
1998 	/* kick ring */
1999 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2000 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2001 
2002 	return 0;
2003 }
2004 
2005 static void
2006 wpi_start(struct ifnet *ifp)
2007 {
2008 	struct wpi_softc *sc = ifp->if_softc;
2009 	struct ieee80211com *ic = &sc->sc_ic;
2010 	struct ieee80211_node *ni;
2011 	struct ether_header *eh;
2012 	struct mbuf *m0;
2013 	int ac;
2014 
2015 	/*
2016 	 * net80211 may still try to send management frames even if the
2017 	 * IFF_RUNNING flag is not set...
2018 	 */
2019 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2020 		return;
2021 
2022 	for (;;) {
2023 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2024 		if (m0 != NULL) {
2025 
2026 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2027 			m0->m_pkthdr.rcvif = NULL;
2028 
2029 			/* management frames go into ring 0 */
2030 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2031 				ifp->if_oerrors++;
2032 				continue;
2033 			}
2034 			bpf_mtap3(ic->ic_rawbpf, m0);
2035 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2036 				ifp->if_oerrors++;
2037 				break;
2038 			}
2039 		} else {
2040 			if (ic->ic_state != IEEE80211_S_RUN)
2041 				break;
2042 			IFQ_POLL(&ifp->if_snd, m0);
2043 			if (m0 == NULL)
2044 				break;
2045 
2046 			if (m0->m_len < sizeof (*eh) &&
2047 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2048 				ifp->if_oerrors++;
2049 				continue;
2050 			}
2051 			eh = mtod(m0, struct ether_header *);
2052 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2053 			if (ni == NULL) {
2054 				m_freem(m0);
2055 				ifp->if_oerrors++;
2056 				continue;
2057 			}
2058 
2059 			/* classify mbuf so we can find which tx ring to use */
2060 			if (ieee80211_classify(ic, m0, ni) != 0) {
2061 				m_freem(m0);
2062 				ieee80211_free_node(ni);
2063 				ifp->if_oerrors++;
2064 				continue;
2065 			}
2066 
2067 			/* no QoS encapsulation for EAPOL frames */
2068 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2069 			    M_WME_GETAC(m0) : WME_AC_BE;
2070 
2071 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2072 				/* there is no place left in this ring */
2073 				ifp->if_flags |= IFF_OACTIVE;
2074 				break;
2075 			}
2076 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2077 			bpf_mtap(ifp, m0);
2078 			m0 = ieee80211_encap(ic, m0, ni);
2079 			if (m0 == NULL) {
2080 				ieee80211_free_node(ni);
2081 				ifp->if_oerrors++;
2082 				continue;
2083 			}
2084 			bpf_mtap3(ic->ic_rawbpf, m0);
2085 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2086 				ieee80211_free_node(ni);
2087 				ifp->if_oerrors++;
2088 				break;
2089 			}
2090 		}
2091 
2092 		sc->sc_tx_timer = 5;
2093 		ifp->if_timer = 1;
2094 	}
2095 }
2096 
2097 static void
2098 wpi_watchdog(struct ifnet *ifp)
2099 {
2100 	struct wpi_softc *sc = ifp->if_softc;
2101 
2102 	ifp->if_timer = 0;
2103 
2104 	if (sc->sc_tx_timer > 0) {
2105 		if (--sc->sc_tx_timer == 0) {
2106 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2107 			ifp->if_flags &= ~IFF_UP;
2108 			wpi_stop(ifp, 1);
2109 			ifp->if_oerrors++;
2110 			return;
2111 		}
2112 		ifp->if_timer = 1;
2113 	}
2114 
2115 	ieee80211_watchdog(&sc->sc_ic);
2116 }
2117 
2118 static int
2119 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2120 {
2121 #define IS_RUNNING(ifp) \
2122 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2123 
2124 	struct wpi_softc *sc = ifp->if_softc;
2125 	struct ieee80211com *ic = &sc->sc_ic;
2126 	int s, error = 0;
2127 
2128 	s = splnet();
2129 
2130 	switch (cmd) {
2131 	case SIOCSIFFLAGS:
2132 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2133 			break;
2134 		if (ifp->if_flags & IFF_UP) {
2135 			if (!(ifp->if_flags & IFF_RUNNING))
2136 				wpi_init(ifp);
2137 		} else {
2138 			if (ifp->if_flags & IFF_RUNNING)
2139 				wpi_stop(ifp, 1);
2140 		}
2141 		break;
2142 
2143 	case SIOCADDMULTI:
2144 	case SIOCDELMULTI:
2145 		/* XXX no h/w multicast filter? --dyoung */
2146 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2147 			/* setup multicast filter, etc */
2148 			error = 0;
2149 		}
2150 		break;
2151 
2152 	default:
2153 		error = ieee80211_ioctl(ic, cmd, data);
2154 	}
2155 
2156 	if (error == ENETRESET) {
2157 		if (IS_RUNNING(ifp) &&
2158 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2159 			wpi_init(ifp);
2160 		error = 0;
2161 	}
2162 
2163 	splx(s);
2164 	return error;
2165 
2166 #undef IS_RUNNING
2167 }
2168 
2169 /*
2170  * Extract various information from EEPROM.
2171  */
2172 static void
2173 wpi_read_eeprom(struct wpi_softc *sc)
2174 {
2175 	struct ieee80211com *ic = &sc->sc_ic;
2176 	char domain[4];
2177 	int i;
2178 
2179 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2180 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2181 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2182 
2183 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2184 	    sc->type));
2185 
2186 	/* read and print regulatory domain */
2187 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2188 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2189 
2190 	/* read and print MAC address */
2191 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2192 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2193 
2194 	/* read the list of authorized channels */
2195 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2196 		wpi_read_eeprom_channels(sc, i);
2197 
2198 	/* read the list of power groups */
2199 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2200 		wpi_read_eeprom_group(sc, i);
2201 }
2202 
2203 static void
2204 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2205 {
2206 	struct ieee80211com *ic = &sc->sc_ic;
2207 	const struct wpi_chan_band *band = &wpi_bands[n];
2208 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2209 	int chan, i;
2210 
2211 	wpi_read_prom_data(sc, band->addr, channels,
2212 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2213 
2214 	for (i = 0; i < band->nchan; i++) {
2215 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2216 			continue;
2217 
2218 		chan = band->chan[i];
2219 
2220 		if (n == 0) {	/* 2GHz band */
2221 			ic->ic_channels[chan].ic_freq =
2222 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2223 			ic->ic_channels[chan].ic_flags =
2224 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2225 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2226 
2227 		} else {	/* 5GHz band */
2228 			/*
2229 			 * Some 3945ABG adapters support channels 7, 8, 11
2230 			 * and 12 in the 2GHz *and* 5GHz bands.
2231 			 * Because of limitations in our net80211(9) stack,
2232 			 * we can't support these channels in 5GHz band.
2233 			 */
2234 			if (chan <= 14)
2235 				continue;
2236 
2237 			ic->ic_channels[chan].ic_freq =
2238 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2239 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2240 		}
2241 
2242 		/* is active scan allowed on this channel? */
2243 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2244 			ic->ic_channels[chan].ic_flags |=
2245 			    IEEE80211_CHAN_PASSIVE;
2246 		}
2247 
2248 		/* save maximum allowed power for this channel */
2249 		sc->maxpwr[chan] = channels[i].maxpwr;
2250 
2251 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2252 		    chan, channels[i].flags, sc->maxpwr[chan]));
2253 	}
2254 }
2255 
2256 static void
2257 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2258 {
2259 	struct wpi_power_group *group = &sc->groups[n];
2260 	struct wpi_eeprom_group rgroup;
2261 	int i;
2262 
2263 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2264 	    sizeof rgroup);
2265 
2266 	/* save power group information */
2267 	group->chan   = rgroup.chan;
2268 	group->maxpwr = rgroup.maxpwr;
2269 	/* temperature at which the samples were taken */
2270 	group->temp   = (int16_t)le16toh(rgroup.temp);
2271 
2272 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2273 	    group->chan, group->maxpwr, group->temp));
2274 
2275 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2276 		group->samples[i].index = rgroup.samples[i].index;
2277 		group->samples[i].power = rgroup.samples[i].power;
2278 
2279 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2280 		    group->samples[i].index, group->samples[i].power));
2281 	}
2282 }
2283 
2284 /*
2285  * Send a command to the firmware.
2286  */
2287 static int
2288 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2289 {
2290 	struct wpi_tx_ring *ring = &sc->cmdq;
2291 	struct wpi_tx_desc *desc;
2292 	struct wpi_tx_cmd *cmd;
2293 
2294 	KASSERT(size <= sizeof cmd->data);
2295 
2296 	desc = &ring->desc[ring->cur];
2297 	cmd = &ring->cmd[ring->cur];
2298 
2299 	cmd->code = code;
2300 	cmd->flags = 0;
2301 	cmd->qid = ring->qid;
2302 	cmd->idx = ring->cur;
2303 	memcpy(cmd->data, buf, size);
2304 
2305 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2306 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2307 	    ring->cur * sizeof (struct wpi_tx_cmd));
2308 	desc->segs[0].len  = htole32(4 + size);
2309 
2310 	/* kick cmd ring */
2311 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2312 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2313 
2314 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2315 }
2316 
2317 static int
2318 wpi_wme_update(struct ieee80211com *ic)
2319 {
2320 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2321 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2322 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2323 	const struct wmeParams *wmep;
2324 	struct wpi_wme_setup wme;
2325 	int ac;
2326 
2327 	/* don't override default WME values if WME is not actually enabled */
2328 	if (!(ic->ic_flags & IEEE80211_F_WME))
2329 		return 0;
2330 
2331 	wme.flags = 0;
2332 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2333 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2334 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2335 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2336 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2337 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2338 
2339 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2340 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2341 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2342 	}
2343 
2344 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2345 #undef WPI_USEC
2346 #undef WPI_EXP2
2347 }
2348 
2349 /*
2350  * Configure h/w multi-rate retries.
2351  */
2352 static int
2353 wpi_mrr_setup(struct wpi_softc *sc)
2354 {
2355 	struct ieee80211com *ic = &sc->sc_ic;
2356 	struct wpi_mrr_setup mrr;
2357 	int i, error;
2358 
2359 	/* CCK rates (not used with 802.11a) */
2360 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2361 		mrr.rates[i].flags = 0;
2362 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2363 		/* fallback to the immediate lower CCK rate (if any) */
2364 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2365 		/* try one time at this rate before falling back to "next" */
2366 		mrr.rates[i].ntries = 1;
2367 	}
2368 
2369 	/* OFDM rates (not used with 802.11b) */
2370 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2371 		mrr.rates[i].flags = 0;
2372 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2373 		/* fallback to the immediate lower rate (if any) */
2374 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2375 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2376 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2377 			WPI_OFDM6 : WPI_CCK2) :
2378 		    i - 1;
2379 		/* try one time at this rate before falling back to "next" */
2380 		mrr.rates[i].ntries = 1;
2381 	}
2382 
2383 	/* setup MRR for control frames */
2384 	mrr.which = htole32(WPI_MRR_CTL);
2385 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2386 	if (error != 0) {
2387 		aprint_error_dev(sc->sc_dev,
2388 		    "could not setup MRR for control frames\n");
2389 		return error;
2390 	}
2391 
2392 	/* setup MRR for data frames */
2393 	mrr.which = htole32(WPI_MRR_DATA);
2394 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2395 	if (error != 0) {
2396 		aprint_error_dev(sc->sc_dev,
2397 		    "could not setup MRR for data frames\n");
2398 		return error;
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 static void
2405 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2406 {
2407 	struct wpi_cmd_led led;
2408 
2409 	led.which = which;
2410 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2411 	led.off = off;
2412 	led.on = on;
2413 
2414 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2415 }
2416 
2417 static void
2418 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2419 {
2420 	struct wpi_cmd_tsf tsf;
2421 	uint64_t val, mod;
2422 
2423 	memset(&tsf, 0, sizeof tsf);
2424 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2425 	tsf.bintval = htole16(ni->ni_intval);
2426 	tsf.lintval = htole16(10);
2427 
2428 	/* compute remaining time until next beacon */
2429 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2430 	mod = le64toh(tsf.tstamp) % val;
2431 	tsf.binitval = htole32((uint32_t)(val - mod));
2432 
2433 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2434 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2435 
2436 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2437 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2438 }
2439 
2440 /*
2441  * Update Tx power to match what is defined for channel `c'.
2442  */
2443 static int
2444 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2445 {
2446 	struct ieee80211com *ic = &sc->sc_ic;
2447 	struct wpi_power_group *group;
2448 	struct wpi_cmd_txpower txpower;
2449 	u_int chan;
2450 	int i;
2451 
2452 	/* get channel number */
2453 	chan = ieee80211_chan2ieee(ic, c);
2454 
2455 	/* find the power group to which this channel belongs */
2456 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2457 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2458 			if (chan <= group->chan)
2459 				break;
2460 	} else
2461 		group = &sc->groups[0];
2462 
2463 	memset(&txpower, 0, sizeof txpower);
2464 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2465 	txpower.chan = htole16(chan);
2466 
2467 	/* set Tx power for all OFDM and CCK rates */
2468 	for (i = 0; i <= 11 ; i++) {
2469 		/* retrieve Tx power for this channel/rate combination */
2470 		int idx = wpi_get_power_index(sc, group, c,
2471 		    wpi_ridx_to_rate[i]);
2472 
2473 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2474 
2475 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2476 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2477 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2478 		} else {
2479 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2480 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2481 		}
2482 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2483 		    wpi_ridx_to_rate[i], idx));
2484 	}
2485 
2486 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2487 }
2488 
2489 /*
2490  * Determine Tx power index for a given channel/rate combination.
2491  * This takes into account the regulatory information from EEPROM and the
2492  * current temperature.
2493  */
2494 static int
2495 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2496     struct ieee80211_channel *c, int rate)
2497 {
2498 /* fixed-point arithmetic division using a n-bit fractional part */
2499 #define fdivround(a, b, n)	\
2500 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2501 
2502 /* linear interpolation */
2503 #define interpolate(x, x1, y1, x2, y2, n)	\
2504 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2505 
2506 	struct ieee80211com *ic = &sc->sc_ic;
2507 	struct wpi_power_sample *sample;
2508 	int pwr, idx;
2509 	u_int chan;
2510 
2511 	/* get channel number */
2512 	chan = ieee80211_chan2ieee(ic, c);
2513 
2514 	/* default power is group's maximum power - 3dB */
2515 	pwr = group->maxpwr / 2;
2516 
2517 	/* decrease power for highest OFDM rates to reduce distortion */
2518 	switch (rate) {
2519 	case 72:	/* 36Mb/s */
2520 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2521 		break;
2522 	case 96:	/* 48Mb/s */
2523 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2524 		break;
2525 	case 108:	/* 54Mb/s */
2526 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2527 		break;
2528 	}
2529 
2530 	/* never exceed channel's maximum allowed Tx power */
2531 	pwr = min(pwr, sc->maxpwr[chan]);
2532 
2533 	/* retrieve power index into gain tables from samples */
2534 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2535 		if (pwr > sample[1].power)
2536 			break;
2537 	/* fixed-point linear interpolation using a 19-bit fractional part */
2538 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2539 	    sample[1].power, sample[1].index, 19);
2540 
2541 	/*-
2542 	 * Adjust power index based on current temperature:
2543 	 * - if cooler than factory-calibrated: decrease output power
2544 	 * - if warmer than factory-calibrated: increase output power
2545 	 */
2546 	idx -= (sc->temp - group->temp) * 11 / 100;
2547 
2548 	/* decrease power for CCK rates (-5dB) */
2549 	if (!WPI_RATE_IS_OFDM(rate))
2550 		idx += 10;
2551 
2552 	/* keep power index in a valid range */
2553 	if (idx < 0)
2554 		return 0;
2555 	if (idx > WPI_MAX_PWR_INDEX)
2556 		return WPI_MAX_PWR_INDEX;
2557 	return idx;
2558 
2559 #undef interpolate
2560 #undef fdivround
2561 }
2562 
2563 /*
2564  * Build a beacon frame that the firmware will broadcast periodically in
2565  * IBSS or HostAP modes.
2566  */
2567 static int
2568 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2569 {
2570 	struct ieee80211com *ic = &sc->sc_ic;
2571 	struct wpi_tx_ring *ring = &sc->cmdq;
2572 	struct wpi_tx_desc *desc;
2573 	struct wpi_tx_data *data;
2574 	struct wpi_tx_cmd *cmd;
2575 	struct wpi_cmd_beacon *bcn;
2576 	struct ieee80211_beacon_offsets bo;
2577 	struct mbuf *m0;
2578 	int error;
2579 
2580 	desc = &ring->desc[ring->cur];
2581 	data = &ring->data[ring->cur];
2582 
2583 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2584 	if (m0 == NULL) {
2585 		aprint_error_dev(sc->sc_dev,
2586 		    "could not allocate beacon frame\n");
2587 		return ENOMEM;
2588 	}
2589 
2590 	cmd = &ring->cmd[ring->cur];
2591 	cmd->code = WPI_CMD_SET_BEACON;
2592 	cmd->flags = 0;
2593 	cmd->qid = ring->qid;
2594 	cmd->idx = ring->cur;
2595 
2596 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2597 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2598 	bcn->id = WPI_ID_BROADCAST;
2599 	bcn->ofdm_mask = 0xff;
2600 	bcn->cck_mask = 0x0f;
2601 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2602 	bcn->len = htole16(m0->m_pkthdr.len);
2603 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2604 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2605 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2606 
2607 	/* save and trim IEEE802.11 header */
2608 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2609 	m_adj(m0, sizeof (struct ieee80211_frame));
2610 
2611 	/* assume beacon frame is contiguous */
2612 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2613 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2614 	if (error != 0) {
2615 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2616 		m_freem(m0);
2617 		return error;
2618 	}
2619 
2620 	data->m = m0;
2621 
2622 	/* first scatter/gather segment is used by the beacon command */
2623 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2624 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2625 	    ring->cur * sizeof (struct wpi_tx_cmd));
2626 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2627 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2628 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2629 
2630 	/* kick cmd ring */
2631 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2632 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2633 
2634 	return 0;
2635 }
2636 
2637 static int
2638 wpi_auth(struct wpi_softc *sc)
2639 {
2640 	struct ieee80211com *ic = &sc->sc_ic;
2641 	struct ieee80211_node *ni = ic->ic_bss;
2642 	struct wpi_node_info node;
2643 	int error;
2644 
2645 	/* update adapter's configuration */
2646 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2647 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2648 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2649 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2650 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2651 		    WPI_CONFIG_24GHZ);
2652 	}
2653 	switch (ic->ic_curmode) {
2654 	case IEEE80211_MODE_11A:
2655 		sc->config.cck_mask  = 0;
2656 		sc->config.ofdm_mask = 0x15;
2657 		break;
2658 	case IEEE80211_MODE_11B:
2659 		sc->config.cck_mask  = 0x03;
2660 		sc->config.ofdm_mask = 0;
2661 		break;
2662 	default:	/* assume 802.11b/g */
2663 		sc->config.cck_mask  = 0x0f;
2664 		sc->config.ofdm_mask = 0x15;
2665 	}
2666 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2667 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2668 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2669 	    sizeof (struct wpi_config), 1);
2670 	if (error != 0) {
2671 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2672 		return error;
2673 	}
2674 
2675 	/* configuration has changed, set Tx power accordingly */
2676 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2677 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2678 		return error;
2679 	}
2680 
2681 	/* add default node */
2682 	memset(&node, 0, sizeof node);
2683 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2684 	node.id = WPI_ID_BSS;
2685 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2686 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2687 	node.action = htole32(WPI_ACTION_SET_RATE);
2688 	node.antenna = WPI_ANTENNA_BOTH;
2689 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2690 	if (error != 0) {
2691 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2692 		return error;
2693 	}
2694 
2695 	return 0;
2696 }
2697 
2698 /*
2699  * Send a scan request to the firmware.  Since this command is huge, we map it
2700  * into a mbuf instead of using the pre-allocated set of commands.
2701  */
2702 static int
2703 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2704 {
2705 	struct ieee80211com *ic = &sc->sc_ic;
2706 	struct wpi_tx_ring *ring = &sc->cmdq;
2707 	struct wpi_tx_desc *desc;
2708 	struct wpi_tx_data *data;
2709 	struct wpi_tx_cmd *cmd;
2710 	struct wpi_scan_hdr *hdr;
2711 	struct wpi_scan_chan *chan;
2712 	struct ieee80211_frame *wh;
2713 	struct ieee80211_rateset *rs;
2714 	struct ieee80211_channel *c;
2715 	enum ieee80211_phymode mode;
2716 	uint8_t *frm;
2717 	int pktlen, error, nrates;
2718 
2719 	desc = &ring->desc[ring->cur];
2720 	data = &ring->data[ring->cur];
2721 
2722 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2723 	if (data->m == NULL) {
2724 		aprint_error_dev(sc->sc_dev,
2725 		    "could not allocate mbuf for scan command\n");
2726 		return ENOMEM;
2727 	}
2728 	MCLGET(data->m, M_DONTWAIT);
2729 	if (!(data->m->m_flags & M_EXT)) {
2730 		m_freem(data->m);
2731 		data->m = NULL;
2732 		aprint_error_dev(sc->sc_dev,
2733 		    "could not allocate mbuf for scan command\n");
2734 		return ENOMEM;
2735 	}
2736 
2737 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2738 	cmd->code = WPI_CMD_SCAN;
2739 	cmd->flags = 0;
2740 	cmd->qid = ring->qid;
2741 	cmd->idx = ring->cur;
2742 
2743 	hdr = (struct wpi_scan_hdr *)cmd->data;
2744 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2745 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2746 	hdr->cmd.id = WPI_ID_BROADCAST;
2747 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2748 	/*
2749 	 * Move to the next channel if no packets are received within 5 msecs
2750 	 * after sending the probe request (this helps to reduce the duration
2751 	 * of active scans).
2752 	 */
2753 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2754 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2755 
2756 	if (flags & IEEE80211_CHAN_A) {
2757 		hdr->crc_threshold = htole16(1);
2758 		/* send probe requests at 6Mbps */
2759 		hdr->cmd.rate = wpi_plcp_signal(12);
2760 	} else {
2761 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2762 		/* send probe requests at 1Mbps */
2763 		hdr->cmd.rate = wpi_plcp_signal(2);
2764 	}
2765 
2766 	/* for directed scans, firmware inserts the essid IE itself */
2767 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2768 	hdr->essid[0].len = ic->ic_des_esslen;
2769 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2770 
2771 	/*
2772 	 * Build a probe request frame.  Most of the following code is a
2773 	 * copy & paste of what is done in net80211.
2774 	 */
2775 	wh = (struct ieee80211_frame *)(hdr + 1);
2776 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2777 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2778 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2779 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2780 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2781 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2782 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2783 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2784 
2785 	frm = (uint8_t *)(wh + 1);
2786 
2787 	/* add empty essid IE (firmware generates it for directed scans) */
2788 	*frm++ = IEEE80211_ELEMID_SSID;
2789 	*frm++ = 0;
2790 
2791 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2792 	rs = &ic->ic_sup_rates[mode];
2793 
2794 	/* add supported rates IE */
2795 	*frm++ = IEEE80211_ELEMID_RATES;
2796 	nrates = rs->rs_nrates;
2797 	if (nrates > IEEE80211_RATE_SIZE)
2798 		nrates = IEEE80211_RATE_SIZE;
2799 	*frm++ = nrates;
2800 	memcpy(frm, rs->rs_rates, nrates);
2801 	frm += nrates;
2802 
2803 	/* add supported xrates IE */
2804 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2805 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2806 		*frm++ = IEEE80211_ELEMID_XRATES;
2807 		*frm++ = nrates;
2808 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2809 		frm += nrates;
2810 	}
2811 
2812 	/* setup length of probe request */
2813 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2814 
2815 	chan = (struct wpi_scan_chan *)frm;
2816 	for (c  = &ic->ic_channels[1];
2817 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2818 		if ((c->ic_flags & flags) != flags)
2819 			continue;
2820 
2821 		chan->chan = ieee80211_chan2ieee(ic, c);
2822 		chan->flags = 0;
2823 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2824 			chan->flags |= WPI_CHAN_ACTIVE;
2825 			if (ic->ic_des_esslen != 0)
2826 				chan->flags |= WPI_CHAN_DIRECT;
2827 		}
2828 		chan->dsp_gain = 0x6e;
2829 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2830 			chan->rf_gain = 0x3b;
2831 			chan->active  = htole16(10);
2832 			chan->passive = htole16(110);
2833 		} else {
2834 			chan->rf_gain = 0x28;
2835 			chan->active  = htole16(20);
2836 			chan->passive = htole16(120);
2837 		}
2838 		hdr->nchan++;
2839 		chan++;
2840 
2841 		frm += sizeof (struct wpi_scan_chan);
2842 	}
2843 
2844 	hdr->len = htole16(frm - (uint8_t *)hdr);
2845 	pktlen = frm - (uint8_t *)cmd;
2846 
2847 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2848 	    BUS_DMA_NOWAIT);
2849 	if (error != 0) {
2850 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2851 		m_freem(data->m);
2852 		data->m = NULL;
2853 		return error;
2854 	}
2855 
2856 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2857 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2858 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2859 
2860 	/* kick cmd ring */
2861 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2862 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2863 
2864 	return 0;	/* will be notified async. of failure/success */
2865 }
2866 
2867 static int
2868 wpi_config(struct wpi_softc *sc)
2869 {
2870 	struct ieee80211com *ic = &sc->sc_ic;
2871 	struct ifnet *ifp = ic->ic_ifp;
2872 	struct wpi_power power;
2873 	struct wpi_bluetooth bluetooth;
2874 	struct wpi_node_info node;
2875 	int error;
2876 
2877 	memset(&power, 0, sizeof power);
2878 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2879 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2880 	if (error != 0) {
2881 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2882 		return error;
2883 	}
2884 
2885 	/* configure bluetooth coexistence */
2886 	memset(&bluetooth, 0, sizeof bluetooth);
2887 	bluetooth.flags = 3;
2888 	bluetooth.lead = 0xaa;
2889 	bluetooth.kill = 1;
2890 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2891 	    0);
2892 	if (error != 0) {
2893 		aprint_error_dev(sc->sc_dev,
2894 			"could not configure bluetooth coexistence\n");
2895 		return error;
2896 	}
2897 
2898 	/* configure adapter */
2899 	memset(&sc->config, 0, sizeof (struct wpi_config));
2900 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2901 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2902 	/* set default channel */
2903 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2904 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2905 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2906 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2907 		    WPI_CONFIG_24GHZ);
2908 	}
2909 	sc->config.filter = 0;
2910 	switch (ic->ic_opmode) {
2911 	case IEEE80211_M_STA:
2912 		sc->config.mode = WPI_MODE_STA;
2913 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2914 		break;
2915 	case IEEE80211_M_IBSS:
2916 	case IEEE80211_M_AHDEMO:
2917 		sc->config.mode = WPI_MODE_IBSS;
2918 		break;
2919 	case IEEE80211_M_HOSTAP:
2920 		sc->config.mode = WPI_MODE_HOSTAP;
2921 		break;
2922 	case IEEE80211_M_MONITOR:
2923 		sc->config.mode = WPI_MODE_MONITOR;
2924 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2925 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2926 		break;
2927 	}
2928 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2929 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2930 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2931 	    sizeof (struct wpi_config), 0);
2932 	if (error != 0) {
2933 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2934 		return error;
2935 	}
2936 
2937 	/* configuration has changed, set Tx power accordingly */
2938 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2939 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2940 		return error;
2941 	}
2942 
2943 	/* add broadcast node */
2944 	memset(&node, 0, sizeof node);
2945 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2946 	node.id = WPI_ID_BROADCAST;
2947 	node.rate = wpi_plcp_signal(2);
2948 	node.action = htole32(WPI_ACTION_SET_RATE);
2949 	node.antenna = WPI_ANTENNA_BOTH;
2950 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2951 	if (error != 0) {
2952 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2953 		return error;
2954 	}
2955 
2956 	if ((error = wpi_mrr_setup(sc)) != 0) {
2957 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2958 		return error;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 static void
2965 wpi_stop_master(struct wpi_softc *sc)
2966 {
2967 	uint32_t tmp;
2968 	int ntries;
2969 
2970 	tmp = WPI_READ(sc, WPI_RESET);
2971 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2972 
2973 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2974 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2975 		return;	/* already asleep */
2976 
2977 	for (ntries = 0; ntries < 100; ntries++) {
2978 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2979 			break;
2980 		DELAY(10);
2981 	}
2982 	if (ntries == 100) {
2983 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2984 	}
2985 }
2986 
2987 static int
2988 wpi_power_up(struct wpi_softc *sc)
2989 {
2990 	uint32_t tmp;
2991 	int ntries;
2992 
2993 	wpi_mem_lock(sc);
2994 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2995 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2996 	wpi_mem_unlock(sc);
2997 
2998 	for (ntries = 0; ntries < 5000; ntries++) {
2999 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3000 			break;
3001 		DELAY(10);
3002 	}
3003 	if (ntries == 5000) {
3004 		aprint_error_dev(sc->sc_dev,
3005 		    "timeout waiting for NIC to power up\n");
3006 		return ETIMEDOUT;
3007 	}
3008 	return 0;
3009 }
3010 
3011 static int
3012 wpi_reset(struct wpi_softc *sc)
3013 {
3014 	uint32_t tmp;
3015 	int ntries;
3016 
3017 	/* clear any pending interrupts */
3018 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3019 
3020 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3021 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3022 
3023 	tmp = WPI_READ(sc, WPI_CHICKEN);
3024 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3025 
3026 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3027 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3028 
3029 	/* wait for clock stabilization */
3030 	for (ntries = 0; ntries < 1000; ntries++) {
3031 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3032 			break;
3033 		DELAY(10);
3034 	}
3035 	if (ntries == 1000) {
3036 		aprint_error_dev(sc->sc_dev,
3037 		    "timeout waiting for clock stabilization\n");
3038 		return ETIMEDOUT;
3039 	}
3040 
3041 	/* initialize EEPROM */
3042 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3043 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3044 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3045 		return EIO;
3046 	}
3047 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3048 
3049 	return 0;
3050 }
3051 
3052 static void
3053 wpi_hw_config(struct wpi_softc *sc)
3054 {
3055 	uint32_t rev, hw;
3056 
3057 	/* voodoo from the reference driver */
3058 	hw = WPI_READ(sc, WPI_HWCONFIG);
3059 
3060 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3061 	rev = PCI_REVISION(rev);
3062 	if ((rev & 0xc0) == 0x40)
3063 		hw |= WPI_HW_ALM_MB;
3064 	else if (!(rev & 0x80))
3065 		hw |= WPI_HW_ALM_MM;
3066 
3067 	if (sc->cap == 0x80)
3068 		hw |= WPI_HW_SKU_MRC;
3069 
3070 	hw &= ~WPI_HW_REV_D;
3071 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3072 		hw |= WPI_HW_REV_D;
3073 
3074 	if (sc->type > 1)
3075 		hw |= WPI_HW_TYPE_B;
3076 
3077 	DPRINTF(("setting h/w config %x\n", hw));
3078 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3079 }
3080 
3081 static int
3082 wpi_init(struct ifnet *ifp)
3083 {
3084 	struct wpi_softc *sc = ifp->if_softc;
3085 	struct ieee80211com *ic = &sc->sc_ic;
3086 	uint32_t tmp;
3087 	int qid, ntries, error;
3088 
3089 	wpi_stop(ifp,1);
3090 	(void)wpi_reset(sc);
3091 
3092 	wpi_mem_lock(sc);
3093 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3094 	DELAY(20);
3095 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3096 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3097 	wpi_mem_unlock(sc);
3098 
3099 	(void)wpi_power_up(sc);
3100 	wpi_hw_config(sc);
3101 
3102 	/* init Rx ring */
3103 	wpi_mem_lock(sc);
3104 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3105 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3106 	    offsetof(struct wpi_shared, next));
3107 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3108 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3109 	wpi_mem_unlock(sc);
3110 
3111 	/* init Tx rings */
3112 	wpi_mem_lock(sc);
3113 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3114 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3115 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3116 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3117 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3118 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3119 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3120 
3121 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3122 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3123 
3124 	for (qid = 0; qid < 6; qid++) {
3125 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3126 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3127 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3128 	}
3129 	wpi_mem_unlock(sc);
3130 
3131 	/* clear "radio off" and "disable command" bits (reversed logic) */
3132 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3133 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3134 
3135 	/* clear any pending interrupts */
3136 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3137 	/* enable interrupts */
3138 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3139 
3140 	/* not sure why/if this is necessary... */
3141 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3142 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3143 
3144 	if ((error = wpi_load_firmware(sc)) != 0)
3145 		/* wpi_load_firmware prints error messages for us.  */
3146 		goto fail1;
3147 
3148 	/* Check the status of the radio switch */
3149 	if (wpi_getrfkill(sc)) {
3150 		aprint_error_dev(sc->sc_dev,
3151 		    "radio is disabled by hardware switch\n");
3152 		error = EBUSY;
3153 		goto fail1;
3154 	}
3155 
3156 	/* wait for thermal sensors to calibrate */
3157 	for (ntries = 0; ntries < 1000; ntries++) {
3158 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3159 			break;
3160 		DELAY(10);
3161 	}
3162 	if (ntries == 1000) {
3163 		aprint_error_dev(sc->sc_dev,
3164 		    "timeout waiting for thermal sensors calibration\n");
3165 		error = ETIMEDOUT;
3166 		goto fail1;
3167 	}
3168 	DPRINTF(("temperature %d\n", sc->temp));
3169 
3170 	if ((error = wpi_config(sc)) != 0) {
3171 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3172 		goto fail1;
3173 	}
3174 
3175 	ifp->if_flags &= ~IFF_OACTIVE;
3176 	ifp->if_flags |= IFF_RUNNING;
3177 
3178 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3179 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3180 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3181 	}
3182 	else
3183 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3184 
3185 	return 0;
3186 
3187 fail1:	wpi_stop(ifp, 1);
3188 	return error;
3189 }
3190 
3191 static void
3192 wpi_stop(struct ifnet *ifp, int disable)
3193 {
3194 	struct wpi_softc *sc = ifp->if_softc;
3195 	struct ieee80211com *ic = &sc->sc_ic;
3196 	uint32_t tmp;
3197 	int ac;
3198 
3199 	ifp->if_timer = sc->sc_tx_timer = 0;
3200 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3201 
3202 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3203 
3204 	/* disable interrupts */
3205 	WPI_WRITE(sc, WPI_MASK, 0);
3206 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3207 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3208 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3209 
3210 	wpi_mem_lock(sc);
3211 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3212 	wpi_mem_unlock(sc);
3213 
3214 	/* reset all Tx rings */
3215 	for (ac = 0; ac < 4; ac++)
3216 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3217 	wpi_reset_tx_ring(sc, &sc->cmdq);
3218 
3219 	/* reset Rx ring */
3220 	wpi_reset_rx_ring(sc, &sc->rxq);
3221 
3222 	wpi_mem_lock(sc);
3223 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3224 	wpi_mem_unlock(sc);
3225 
3226 	DELAY(5);
3227 
3228 	wpi_stop_master(sc);
3229 
3230 	tmp = WPI_READ(sc, WPI_RESET);
3231 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3232 }
3233 
3234 static bool
3235 wpi_resume(device_t dv, const pmf_qual_t *qual)
3236 {
3237 	struct wpi_softc *sc = device_private(dv);
3238 
3239 	(void)wpi_reset(sc);
3240 
3241 	return true;
3242 }
3243 
3244 /*
3245  * Return whether or not the radio is enabled in hardware
3246  * (i.e. the rfkill switch is "off").
3247  */
3248 static int
3249 wpi_getrfkill(struct wpi_softc *sc)
3250 {
3251 	uint32_t tmp;
3252 
3253 	wpi_mem_lock(sc);
3254 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3255 	wpi_mem_unlock(sc);
3256 
3257 	return !(tmp & 0x01);
3258 }
3259 
3260 static int
3261 wpi_sysctl_radio(SYSCTLFN_ARGS)
3262 {
3263 	struct sysctlnode node;
3264 	struct wpi_softc *sc;
3265 	int val, error;
3266 
3267 	node = *rnode;
3268 	sc = (struct wpi_softc *)node.sysctl_data;
3269 
3270 	val = !wpi_getrfkill(sc);
3271 
3272 	node.sysctl_data = &val;
3273 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3274 
3275 	if (error || newp == NULL)
3276 		return error;
3277 
3278 	return 0;
3279 }
3280 
3281 static void
3282 wpi_sysctlattach(struct wpi_softc *sc)
3283 {
3284 	int rc;
3285 	const struct sysctlnode *rnode;
3286 	const struct sysctlnode *cnode;
3287 
3288 	struct sysctllog **clog = &sc->sc_sysctllog;
3289 
3290 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3291 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3292 	    SYSCTL_DESCR("wpi controls and statistics"),
3293 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3294 		goto err;
3295 
3296 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3297 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3298 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3299 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3300 		goto err;
3301 
3302 #ifdef WPI_DEBUG
3303 	/* control debugging printfs */
3304 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3305 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3306 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3307 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3308 		goto err;
3309 #endif
3310 
3311 	return;
3312 err:
3313 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3314 }
3315