xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*  $NetBSD: if_wpi.c,v 1.50 2012/01/30 19:41:21 drochner Exp $    */
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.50 2012/01/30 19:41:21 drochner Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 
68 #include <dev/firmload.h>
69 
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72 
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /*
83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84  */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87 
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 	{ 4, { 2, 4, 11, 22 } };
90 
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93 
94 static once_t wpi_firmware_init;
95 static kmutex_t wpi_firmware_mutex;
96 static size_t wpi_firmware_users;
97 static uint8_t *wpi_firmware_image;
98 static size_t wpi_firmware_size;
99 
100 static int  wpi_match(device_t, cfdata_t, void *);
101 static void wpi_attach(device_t, device_t, void *);
102 static int  wpi_detach(device_t , int);
103 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
104 	void **, bus_size_t, bus_size_t, int);
105 static void wpi_dma_contig_free(struct wpi_dma_info *);
106 static int  wpi_alloc_shared(struct wpi_softc *);
107 static void wpi_free_shared(struct wpi_softc *);
108 static int  wpi_alloc_fwmem(struct wpi_softc *);
109 static void wpi_free_fwmem(struct wpi_softc *);
110 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
111 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
112 static int  wpi_alloc_rpool(struct wpi_softc *);
113 static void wpi_free_rpool(struct wpi_softc *);
114 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
115 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
118 	int);
119 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
120 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
121 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
122 static void wpi_newassoc(struct ieee80211_node *, int);
123 static int  wpi_media_change(struct ifnet *);
124 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
125 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
126 static void wpi_mem_lock(struct wpi_softc *);
127 static void wpi_mem_unlock(struct wpi_softc *);
128 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
129 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
130 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
131 								   const uint32_t *, int);
132 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
133 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
134 static int  wpi_load_firmware(struct wpi_softc *);
135 static void wpi_calib_timeout(void *);
136 static void wpi_iter_func(void *, struct ieee80211_node *);
137 static void wpi_power_calibration(struct wpi_softc *, int);
138 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
139 	struct wpi_rx_data *);
140 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
141 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
142 static void wpi_notif_intr(struct wpi_softc *);
143 static int  wpi_intr(void *);
144 static void wpi_read_eeprom(struct wpi_softc *);
145 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
146 static void wpi_read_eeprom_group(struct wpi_softc *, int);
147 static uint8_t wpi_plcp_signal(int);
148 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
149 	struct ieee80211_node *, int);
150 static void wpi_start(struct ifnet *);
151 static void wpi_watchdog(struct ifnet *);
152 static int  wpi_ioctl(struct ifnet *, u_long, void *);
153 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
154 static int  wpi_wme_update(struct ieee80211com *);
155 static int  wpi_mrr_setup(struct wpi_softc *);
156 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
157 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
158 static int  wpi_set_txpower(struct wpi_softc *,
159 			    struct ieee80211_channel *, int);
160 static int  wpi_get_power_index(struct wpi_softc *,
161 		struct wpi_power_group *, struct ieee80211_channel *, int);
162 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
163 static int  wpi_auth(struct wpi_softc *);
164 static int  wpi_scan(struct wpi_softc *, uint16_t);
165 static int  wpi_config(struct wpi_softc *);
166 static void wpi_stop_master(struct wpi_softc *);
167 static int  wpi_power_up(struct wpi_softc *);
168 static int  wpi_reset(struct wpi_softc *);
169 static void wpi_hw_config(struct wpi_softc *);
170 static int  wpi_init(struct ifnet *);
171 static void wpi_stop(struct ifnet *, int);
172 static bool wpi_resume(device_t, const pmf_qual_t *);
173 static int	wpi_getrfkill(struct wpi_softc *);
174 static void wpi_sysctlattach(struct wpi_softc *);
175 
176 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
177 	wpi_detach, NULL);
178 
179 static int
180 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
181 {
182 	struct pci_attach_args *pa = aux;
183 
184 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
185 		return 0;
186 
187 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
188 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
189 		return 1;
190 
191 	return 0;
192 }
193 
194 /* Base Address Register */
195 #define WPI_PCI_BAR0	0x10
196 
197 static int
198 wpi_attach_once(void)
199 {
200 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
201 	return 0;
202 }
203 
204 static void
205 wpi_attach(device_t parent __unused, device_t self, void *aux)
206 {
207 	struct wpi_softc *sc = device_private(self);
208 	struct ieee80211com *ic = &sc->sc_ic;
209 	struct ifnet *ifp = &sc->sc_ec.ec_if;
210 	struct pci_attach_args *pa = aux;
211 	const char *intrstr;
212 	bus_space_tag_t memt;
213 	bus_space_handle_t memh;
214 	pci_intr_handle_t ih;
215 	pcireg_t data;
216 	int error, ac;
217 
218 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
219 	sc->fw_used = false;
220 
221 	sc->sc_dev = self;
222 	sc->sc_pct = pa->pa_pc;
223 	sc->sc_pcitag = pa->pa_tag;
224 
225 	callout_init(&sc->calib_to, 0);
226 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
227 
228 	pci_aprint_devinfo(pa, NULL);
229 
230 	/* enable bus-mastering */
231 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
232 	data |= PCI_COMMAND_MASTER_ENABLE;
233 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
234 
235 	/* map the register window */
236 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
237 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
238 	if (error != 0) {
239 		aprint_error_dev(self, "could not map memory space\n");
240 		return;
241 	}
242 
243 	sc->sc_st = memt;
244 	sc->sc_sh = memh;
245 	sc->sc_dmat = pa->pa_dmat;
246 
247 	if (pci_intr_map(pa, &ih) != 0) {
248 		aprint_error_dev(self, "could not map interrupt\n");
249 		return;
250 	}
251 
252 	intrstr = pci_intr_string(sc->sc_pct, ih);
253 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
254 	if (sc->sc_ih == NULL) {
255 		aprint_error_dev(self, "could not establish interrupt");
256 		if (intrstr != NULL)
257 			aprint_error(" at %s", intrstr);
258 		aprint_error("\n");
259 		return;
260 	}
261 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
262 
263 	if (wpi_reset(sc) != 0) {
264 		aprint_error_dev(self, "could not reset adapter\n");
265 		return;
266 	}
267 
268  	/*
269 	 * Allocate DMA memory for firmware transfers.
270 	 */
271 	if ((error = wpi_alloc_fwmem(sc)) != 0)
272 		return;
273 
274 	/*
275 	 * Allocate shared page and Tx/Rx rings.
276 	 */
277 	if ((error = wpi_alloc_shared(sc)) != 0) {
278 		aprint_error_dev(self, "could not allocate shared area\n");
279 		goto fail1;
280 	}
281 
282 	if ((error = wpi_alloc_rpool(sc)) != 0) {
283 		aprint_error_dev(self, "could not allocate Rx buffers\n");
284 		goto fail2;
285 	}
286 
287 	for (ac = 0; ac < 4; ac++) {
288 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
289 		if (error != 0) {
290 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
291 			goto fail3;
292 		}
293 	}
294 
295 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
296 	if (error != 0) {
297 		aprint_error_dev(self, "could not allocate command ring\n");
298 		goto fail3;
299 	}
300 
301 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
302 		aprint_error_dev(self, "could not allocate Rx ring\n");
303 		goto fail4;
304 	}
305 
306 	ic->ic_ifp = ifp;
307 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
308 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
309 	ic->ic_state = IEEE80211_S_INIT;
310 
311 	/* set device capabilities */
312 	ic->ic_caps =
313 		IEEE80211_C_IBSS |       /* IBSS mode support */
314 		IEEE80211_C_WPA |        /* 802.11i */
315 		IEEE80211_C_MONITOR |    /* monitor mode supported */
316 		IEEE80211_C_TXPMGT |     /* tx power management */
317 		IEEE80211_C_SHSLOT |     /* short slot time supported */
318 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
319 		IEEE80211_C_WME;         /* 802.11e */
320 
321 	/* read supported channels and MAC address from EEPROM */
322 	wpi_read_eeprom(sc);
323 
324 	/* set supported .11a, .11b, .11g rates */
325 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
326 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
327 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
328 
329 	ic->ic_ibss_chan = &ic->ic_channels[0];
330 
331 	ifp->if_softc = sc;
332 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 	ifp->if_init = wpi_init;
334 	ifp->if_stop = wpi_stop;
335 	ifp->if_ioctl = wpi_ioctl;
336 	ifp->if_start = wpi_start;
337 	ifp->if_watchdog = wpi_watchdog;
338 	IFQ_SET_READY(&ifp->if_snd);
339 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
340 
341 	if_attach(ifp);
342 	ieee80211_ifattach(ic);
343 	/* override default methods */
344 	ic->ic_node_alloc = wpi_node_alloc;
345 	ic->ic_newassoc = wpi_newassoc;
346 	ic->ic_wme.wme_update = wpi_wme_update;
347 
348 	/* override state transition machine */
349 	sc->sc_newstate = ic->ic_newstate;
350 	ic->ic_newstate = wpi_newstate;
351 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
352 
353 	sc->amrr.amrr_min_success_threshold = 1;
354 	sc->amrr.amrr_max_success_threshold = 15;
355 
356 	wpi_sysctlattach(sc);
357 
358 	if (pmf_device_register(self, NULL, wpi_resume))
359 		pmf_class_network_register(self, ifp);
360 	else
361 		aprint_error_dev(self, "couldn't establish power handler\n");
362 
363 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
364 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
365 	    &sc->sc_drvbpf);
366 
367 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
368 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
369 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
370 
371 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
372 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
373 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
374 
375 	ieee80211_announce(ic);
376 
377 	return;
378 
379 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
380 fail3:  while (--ac >= 0)
381 			wpi_free_tx_ring(sc, &sc->txq[ac]);
382 	wpi_free_rpool(sc);
383 fail2:	wpi_free_shared(sc);
384 fail1:	wpi_free_fwmem(sc);
385 }
386 
387 static int
388 wpi_detach(device_t self, int flags __unused)
389 {
390 	struct wpi_softc *sc = device_private(self);
391 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
392 	int ac;
393 
394 	wpi_stop(ifp, 1);
395 
396 	if (ifp != NULL)
397 		bpf_detach(ifp);
398 	ieee80211_ifdetach(&sc->sc_ic);
399 	if (ifp != NULL)
400 		if_detach(ifp);
401 
402 	for (ac = 0; ac < 4; ac++)
403 		wpi_free_tx_ring(sc, &sc->txq[ac]);
404 	wpi_free_tx_ring(sc, &sc->cmdq);
405 	wpi_free_rx_ring(sc, &sc->rxq);
406 	wpi_free_rpool(sc);
407 	wpi_free_shared(sc);
408 
409 	if (sc->sc_ih != NULL) {
410 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
411 		sc->sc_ih = NULL;
412 	}
413 
414 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
415 
416 	if (sc->fw_used) {
417 		mutex_enter(&wpi_firmware_mutex);
418 		if (--wpi_firmware_users == 0)
419 			firmware_free(wpi_firmware_image, wpi_firmware_size);
420 		mutex_exit(&wpi_firmware_mutex);
421 	}
422 
423 	return 0;
424 }
425 
426 static int
427 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
428 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
429 {
430 	int nsegs, error;
431 
432 	dma->tag = tag;
433 	dma->size = size;
434 
435 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
436 	if (error != 0)
437 		goto fail;
438 
439 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
440 	    flags);
441 	if (error != 0)
442 		goto fail;
443 
444 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
445 	if (error != 0)
446 		goto fail;
447 
448 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
449 	if (error != 0)
450 		goto fail;
451 
452 	memset(dma->vaddr, 0, size);
453 
454 	dma->paddr = dma->map->dm_segs[0].ds_addr;
455 	if (kvap != NULL)
456 		*kvap = dma->vaddr;
457 
458 	return 0;
459 
460 fail:   wpi_dma_contig_free(dma);
461 	return error;
462 }
463 
464 static void
465 wpi_dma_contig_free(struct wpi_dma_info *dma)
466 {
467 	if (dma->map != NULL) {
468 		if (dma->vaddr != NULL) {
469 			bus_dmamap_unload(dma->tag, dma->map);
470 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
471 			bus_dmamem_free(dma->tag, &dma->seg, 1);
472 			dma->vaddr = NULL;
473 		}
474 		bus_dmamap_destroy(dma->tag, dma->map);
475 		dma->map = NULL;
476 	}
477 }
478 
479 /*
480  * Allocate a shared page between host and NIC.
481  */
482 static int
483 wpi_alloc_shared(struct wpi_softc *sc)
484 {
485 	int error;
486 	/* must be aligned on a 4K-page boundary */
487 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
488 			(void **)&sc->shared, sizeof (struct wpi_shared),
489 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
490 	if (error != 0)
491 		aprint_error_dev(sc->sc_dev,
492 				"could not allocate shared area DMA memory\n");
493 
494 	return error;
495 }
496 
497 static void
498 wpi_free_shared(struct wpi_softc *sc)
499 {
500 	wpi_dma_contig_free(&sc->shared_dma);
501 }
502 
503 /*
504  * Allocate DMA-safe memory for firmware transfer.
505  */
506 static int
507 wpi_alloc_fwmem(struct wpi_softc *sc)
508 {
509 	int error;
510 	/* allocate enough contiguous space to store text and data */
511 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
512 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
513 	    BUS_DMA_NOWAIT);
514 
515 	if (error != 0)
516 		aprint_error_dev(sc->sc_dev,
517 			"could not allocate firmware transfer area"
518 			"DMA memory\n");
519 	return error;
520 }
521 
522 static void
523 wpi_free_fwmem(struct wpi_softc *sc)
524 {
525 	wpi_dma_contig_free(&sc->fw_dma);
526 }
527 
528 
529 static struct wpi_rbuf *
530 wpi_alloc_rbuf(struct wpi_softc *sc)
531 {
532 	struct wpi_rbuf *rbuf;
533 
534 	mutex_enter(&sc->rxq.freelist_mtx);
535 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
536 	if (rbuf != NULL) {
537 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
538 		sc->rxq.nb_free_entries --;
539 	}
540 	mutex_exit(&sc->rxq.freelist_mtx);
541 
542 	return rbuf;
543 }
544 
545 /*
546  * This is called automatically by the network stack when the mbuf to which our
547  * Rx buffer is attached is freed.
548  */
549 static void
550 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
551 {
552 	struct wpi_rbuf *rbuf = arg;
553 	struct wpi_softc *sc = rbuf->sc;
554 
555 	/* put the buffer back in the free list */
556 
557 	mutex_enter(&sc->rxq.freelist_mtx);
558 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
559 	mutex_exit(&sc->rxq.freelist_mtx);
560 	/* No need to protect this with a mutex, see wpi_rx_intr */
561 	sc->rxq.nb_free_entries ++;
562 
563 	if (__predict_true(m != NULL))
564 		pool_cache_put(mb_cache, m);
565 }
566 
567 static int
568 wpi_alloc_rpool(struct wpi_softc *sc)
569 {
570 	struct wpi_rx_ring *ring = &sc->rxq;
571 	struct wpi_rbuf *rbuf;
572 	int i, error;
573 
574 	/* allocate a big chunk of DMA'able memory.. */
575 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
576 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
577 	if (error != 0) {
578 		aprint_normal_dev(sc->sc_dev,
579 						  "could not allocate Rx buffers DMA memory\n");
580 		return error;
581 	}
582 
583 	/* ..and split it into 3KB chunks */
584 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
585 	SLIST_INIT(&ring->freelist);
586 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
587 		rbuf = &ring->rbuf[i];
588 		rbuf->sc = sc;	/* backpointer for callbacks */
589 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
590 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
591 
592 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
593 	}
594 
595 	ring->nb_free_entries = WPI_RBUF_COUNT;
596 	return 0;
597 }
598 
599 static void
600 wpi_free_rpool(struct wpi_softc *sc)
601 {
602 	wpi_dma_contig_free(&sc->rxq.buf_dma);
603 }
604 
605 static int
606 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
607 {
608 	struct wpi_rx_data *data;
609 	struct wpi_rbuf *rbuf;
610 	int i, error;
611 
612 	ring->cur = 0;
613 
614 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
615 		(void **)&ring->desc,
616 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
617 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
618 	if (error != 0) {
619 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
620 		goto fail;
621 	}
622 
623 	/*
624 	 * Setup Rx buffers.
625 	 */
626 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
627 		data = &ring->data[i];
628 
629 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
630 		if (data->m == NULL) {
631 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
632 			error = ENOMEM;
633 			goto fail;
634 		}
635 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
636 			m_freem(data->m);
637 			data->m = NULL;
638 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
639 			error = ENOMEM;
640 			goto fail;
641 		}
642 		/* attach Rx buffer to mbuf */
643 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
644 		    rbuf);
645 		data->m->m_flags |= M_EXT_RW;
646 
647 		ring->desc[i] = htole32(rbuf->paddr);
648 	}
649 
650 	return 0;
651 
652 fail:	wpi_free_rx_ring(sc, ring);
653 	return error;
654 }
655 
656 static void
657 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
658 {
659 	int ntries;
660 
661 	wpi_mem_lock(sc);
662 
663 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
664 	for (ntries = 0; ntries < 100; ntries++) {
665 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
666 			break;
667 		DELAY(10);
668 	}
669 #ifdef WPI_DEBUG
670 	if (ntries == 100 && wpi_debug > 0)
671 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
672 #endif
673 	wpi_mem_unlock(sc);
674 
675 	ring->cur = 0;
676 }
677 
678 static void
679 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
680 {
681 	int i;
682 
683 	wpi_dma_contig_free(&ring->desc_dma);
684 
685 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
686 		if (ring->data[i].m != NULL)
687 			m_freem(ring->data[i].m);
688 	}
689 }
690 
691 static int
692 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
693 	int qid)
694 {
695 	struct wpi_tx_data *data;
696 	int i, error;
697 
698 	ring->qid = qid;
699 	ring->count = count;
700 	ring->queued = 0;
701 	ring->cur = 0;
702 
703 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
704 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
705 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
706 	if (error != 0) {
707 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
708 		goto fail;
709 	}
710 
711 	/* update shared page with ring's base address */
712 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
713 
714 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
715 		(void **)&ring->cmd,
716 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
717 	if (error != 0) {
718 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
719 		goto fail;
720 	}
721 
722 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
723 		M_NOWAIT);
724 	if (ring->data == NULL) {
725 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
726 		goto fail;
727 	}
728 
729 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
730 
731 	for (i = 0; i < count; i++) {
732 		data = &ring->data[i];
733 
734 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
735 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
736 			&data->map);
737 		if (error != 0) {
738 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
739 			goto fail;
740 		}
741 	}
742 
743 	return 0;
744 
745 fail:	wpi_free_tx_ring(sc, ring);
746 	return error;
747 }
748 
749 static void
750 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
751 {
752 	struct wpi_tx_data *data;
753 	int i, ntries;
754 
755 	wpi_mem_lock(sc);
756 
757 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
758 	for (ntries = 0; ntries < 100; ntries++) {
759 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
760 			break;
761 		DELAY(10);
762 	}
763 #ifdef WPI_DEBUG
764 	if (ntries == 100 && wpi_debug > 0) {
765 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
766 									   ring->qid);
767 	}
768 #endif
769 	wpi_mem_unlock(sc);
770 
771 	for (i = 0; i < ring->count; i++) {
772 		data = &ring->data[i];
773 
774 		if (data->m != NULL) {
775 			bus_dmamap_unload(sc->sc_dmat, data->map);
776 			m_freem(data->m);
777 			data->m = NULL;
778 		}
779 	}
780 
781 	ring->queued = 0;
782 	ring->cur = 0;
783 }
784 
785 static void
786 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
787 {
788 	struct wpi_tx_data *data;
789 	int i;
790 
791 	wpi_dma_contig_free(&ring->desc_dma);
792 	wpi_dma_contig_free(&ring->cmd_dma);
793 
794 	if (ring->data != NULL) {
795 		for (i = 0; i < ring->count; i++) {
796 			data = &ring->data[i];
797 
798 			if (data->m != NULL) {
799 				bus_dmamap_unload(sc->sc_dmat, data->map);
800 				m_freem(data->m);
801 			}
802 		}
803 		free(ring->data, M_DEVBUF);
804 	}
805 }
806 
807 /*ARGUSED*/
808 static struct ieee80211_node *
809 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
810 {
811 	struct wpi_node *wn;
812 
813 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
814 
815 	return (struct ieee80211_node *)wn;
816 }
817 
818 static void
819 wpi_newassoc(struct ieee80211_node *ni, int isnew)
820 {
821 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
822 	int i;
823 
824 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
825 
826 	/* set rate to some reasonable initial value */
827 	for (i = ni->ni_rates.rs_nrates - 1;
828 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
829 	     i--);
830 	ni->ni_txrate = i;
831 }
832 
833 static int
834 wpi_media_change(struct ifnet *ifp)
835 {
836 	int error;
837 
838 	error = ieee80211_media_change(ifp);
839 	if (error != ENETRESET)
840 		return error;
841 
842 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
843 		wpi_init(ifp);
844 
845 	return 0;
846 }
847 
848 static int
849 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
850 {
851 	struct ifnet *ifp = ic->ic_ifp;
852 	struct wpi_softc *sc = ifp->if_softc;
853 	struct ieee80211_node *ni;
854 	int error;
855 
856 	callout_stop(&sc->calib_to);
857 
858 	switch (nstate) {
859 	case IEEE80211_S_SCAN:
860 
861 		if (sc->is_scanning)
862 			break;
863 
864 		sc->is_scanning = true;
865 		ieee80211_node_table_reset(&ic->ic_scan);
866 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
867 
868 		/* make the link LED blink while we're scanning */
869 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
870 
871 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
872 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
873 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
874 			return error;
875 		}
876 
877 		ic->ic_state = nstate;
878 		return 0;
879 
880 	case IEEE80211_S_ASSOC:
881 		if (ic->ic_state != IEEE80211_S_RUN)
882 			break;
883 		/* FALLTHROUGH */
884 	case IEEE80211_S_AUTH:
885 		sc->config.associd = 0;
886 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
887 		if ((error = wpi_auth(sc)) != 0) {
888 			aprint_error_dev(sc->sc_dev,
889 							"could not send authentication request\n");
890 			return error;
891 		}
892 		break;
893 
894 	case IEEE80211_S_RUN:
895 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
896 			/* link LED blinks while monitoring */
897 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
898 			break;
899 		}
900 
901 		ni = ic->ic_bss;
902 
903 		if (ic->ic_opmode != IEEE80211_M_STA) {
904 			(void) wpi_auth(sc);    /* XXX */
905 			wpi_setup_beacon(sc, ni);
906 		}
907 
908 		wpi_enable_tsf(sc, ni);
909 
910 		/* update adapter's configuration */
911 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
912 		/* short preamble/slot time are negotiated when associating */
913 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
914 			WPI_CONFIG_SHSLOT);
915 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
916 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
917 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
918 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
919 		sc->config.filter |= htole32(WPI_FILTER_BSS);
920 		if (ic->ic_opmode != IEEE80211_M_STA)
921 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
922 
923 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
924 
925 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
926 			sc->config.flags));
927 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
928 			sizeof (struct wpi_config), 1);
929 		if (error != 0) {
930 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
931 			return error;
932 		}
933 
934 		/* configuration has changed, set Tx power accordingly */
935 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
936 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
937 			return error;
938 		}
939 
940 		if (ic->ic_opmode == IEEE80211_M_STA) {
941 			/* fake a join to init the tx rate */
942 			wpi_newassoc(ni, 1);
943 		}
944 
945 		/* start periodic calibration timer */
946 		sc->calib_cnt = 0;
947 		callout_schedule(&sc->calib_to, hz/2);
948 
949 		/* link LED always on while associated */
950 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
951 		break;
952 
953 	case IEEE80211_S_INIT:
954 		sc->is_scanning = false;
955 		break;
956 	}
957 
958 	return sc->sc_newstate(ic, nstate, arg);
959 }
960 
961 /*
962  * XXX: Hack to set the current channel to the value advertised in beacons or
963  * probe responses. Only used during AP detection.
964  * XXX: Duplicated from if_iwi.c
965  */
966 static void
967 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
968 {
969 	struct ieee80211_frame *wh;
970 	uint8_t subtype;
971 	uint8_t *frm, *efrm;
972 
973 	wh = mtod(m, struct ieee80211_frame *);
974 
975 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
976 		return;
977 
978 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
979 
980 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
981 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
982 		return;
983 
984 	frm = (uint8_t *)(wh + 1);
985 	efrm = mtod(m, uint8_t *) + m->m_len;
986 
987 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
988 	while (frm < efrm) {
989 		if (*frm == IEEE80211_ELEMID_DSPARMS)
990 #if IEEE80211_CHAN_MAX < 255
991 		if (frm[2] <= IEEE80211_CHAN_MAX)
992 #endif
993 			ic->ic_curchan = &ic->ic_channels[frm[2]];
994 
995 		frm += frm[1] + 2;
996 	}
997 }
998 
999 /*
1000  * Grab exclusive access to NIC memory.
1001  */
1002 static void
1003 wpi_mem_lock(struct wpi_softc *sc)
1004 {
1005 	uint32_t tmp;
1006 	int ntries;
1007 
1008 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1009 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1010 
1011 	/* spin until we actually get the lock */
1012 	for (ntries = 0; ntries < 1000; ntries++) {
1013 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1014 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1015 			break;
1016 		DELAY(10);
1017 	}
1018 	if (ntries == 1000)
1019 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1020 }
1021 
1022 /*
1023  * Release lock on NIC memory.
1024  */
1025 static void
1026 wpi_mem_unlock(struct wpi_softc *sc)
1027 {
1028 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1029 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1030 }
1031 
1032 static uint32_t
1033 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1034 {
1035 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1036 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1037 }
1038 
1039 static void
1040 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1041 {
1042 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1043 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1044 }
1045 
1046 static void
1047 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1048 						const uint32_t *data, int wlen)
1049 {
1050 	for (; wlen > 0; wlen--, data++, addr += 4)
1051 		wpi_mem_write(sc, addr, *data);
1052 }
1053 
1054 
1055 /*
1056  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1057  * instead of using the traditional bit-bang method.
1058  */
1059 static int
1060 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1061 {
1062 	uint8_t *out = data;
1063 	uint32_t val;
1064 	int ntries;
1065 
1066 	wpi_mem_lock(sc);
1067 	for (; len > 0; len -= 2, addr++) {
1068 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1069 
1070 		for (ntries = 0; ntries < 10; ntries++) {
1071 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1072 			    WPI_EEPROM_READY)
1073 				break;
1074 			DELAY(5);
1075 		}
1076 		if (ntries == 10) {
1077 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1078 			return ETIMEDOUT;
1079 		}
1080 		*out++ = val >> 16;
1081 		if (len > 1)
1082 			*out++ = val >> 24;
1083 	}
1084 	wpi_mem_unlock(sc);
1085 
1086 	return 0;
1087 }
1088 
1089 /*
1090  * The firmware boot code is small and is intended to be copied directly into
1091  * the NIC internal memory.
1092  */
1093 int
1094 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1095 {
1096 	int ntries;
1097 
1098 	size /= sizeof (uint32_t);
1099 
1100 	wpi_mem_lock(sc);
1101 
1102 	/* copy microcode image into NIC memory */
1103 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1104 	    (const uint32_t *)ucode, size);
1105 
1106 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1107 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1108 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1109 
1110 	/* run microcode */
1111 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1112 
1113 	/* wait for transfer to complete */
1114 	for (ntries = 0; ntries < 1000; ntries++) {
1115 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1116 			break;
1117 		DELAY(10);
1118 	}
1119 	if (ntries == 1000) {
1120 		wpi_mem_unlock(sc);
1121 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1122 		return ETIMEDOUT;
1123 	}
1124 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1125 
1126 	wpi_mem_unlock(sc);
1127 
1128 	return 0;
1129 }
1130 
1131 static int
1132 wpi_cache_firmware(struct wpi_softc *sc)
1133 {
1134 	firmware_handle_t fw;
1135 	int error;
1136 
1137 	if (sc->fw_used)
1138 		return 0;
1139 
1140 	mutex_enter(&wpi_firmware_mutex);
1141 	if (wpi_firmware_users++) {
1142 		mutex_exit(&wpi_firmware_mutex);
1143 		return 0;
1144 	}
1145 
1146 	/* load firmware image from disk */
1147 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw)) != 0) {
1148 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1149 		goto fail1;
1150 	}
1151 
1152 	wpi_firmware_size = firmware_get_size(fw);
1153 
1154 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1155 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1156 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1157 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1158 		aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1159 		error = EFBIG;
1160 		goto fail1;
1161 	}
1162 
1163 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1164 		aprint_error_dev(sc->sc_dev,
1165 		    "truncated firmware header: %zu bytes\n",
1166 		    wpi_firmware_size);
1167 		error = EINVAL;
1168 		goto fail2;
1169 	}
1170 
1171 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1172 	if (wpi_firmware_image == NULL) {
1173 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1174 		error = ENOMEM;
1175 		goto fail1;
1176 	}
1177 
1178 	if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1179 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1180 		goto fail2;
1181 	}
1182 
1183 	sc->fw_used = true;
1184 	firmware_close(fw);
1185 	mutex_exit(&wpi_firmware_mutex);
1186 
1187 	return 0;
1188 
1189 fail2:
1190 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1191 fail1:
1192 	firmware_close(fw);
1193 	if (--wpi_firmware_users == 0)
1194 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1195 	mutex_exit(&wpi_firmware_mutex);
1196 	return error;
1197 }
1198 
1199 static int
1200 wpi_load_firmware(struct wpi_softc *sc)
1201 {
1202 	struct wpi_dma_info *dma = &sc->fw_dma;
1203 	struct wpi_firmware_hdr hdr;
1204 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1205 	const uint8_t *boot_text;
1206 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1207 	uint32_t boot_textsz;
1208 	int error;
1209 
1210 	if ((error = wpi_cache_firmware(sc)) != 0)
1211 		return error;
1212 
1213 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1214 
1215 	main_textsz = le32toh(hdr.main_textsz);
1216 	main_datasz = le32toh(hdr.main_datasz);
1217 	init_textsz = le32toh(hdr.init_textsz);
1218 	init_datasz = le32toh(hdr.init_datasz);
1219 	boot_textsz = le32toh(hdr.boot_textsz);
1220 
1221 	/* sanity-check firmware segments sizes */
1222 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1223 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1224 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1225 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1226 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1227 	    (boot_textsz & 3) != 0) {
1228 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1229 		error = EINVAL;
1230 		goto free_firmware;
1231 	}
1232 
1233 	/* check that all firmware segments are present */
1234 	if (wpi_firmware_size <
1235 	    sizeof (struct wpi_firmware_hdr) + main_textsz +
1236 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1237 		aprint_error_dev(sc->sc_dev,
1238 		    "firmware file too short: %zu bytes\n", wpi_firmware_size);
1239 		error = EINVAL;
1240 		goto free_firmware;
1241 	}
1242 
1243 	/* get pointers to firmware segments */
1244 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1245 	main_data = main_text + main_textsz;
1246 	init_text = main_data + main_datasz;
1247 	init_data = init_text + init_textsz;
1248 	boot_text = init_data + init_datasz;
1249 
1250 	/* copy initialization images into pre-allocated DMA-safe memory */
1251 	memcpy(dma->vaddr, init_data, init_datasz);
1252 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1253 
1254 	/* tell adapter where to find initialization images */
1255 	wpi_mem_lock(sc);
1256 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1257 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1258 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1259 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1260 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1261 	wpi_mem_unlock(sc);
1262 
1263 	/* load firmware boot code */
1264 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1265 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1266 		return error;
1267 	}
1268 
1269 	/* now press "execute" ;-) */
1270 	WPI_WRITE(sc, WPI_RESET, 0);
1271 
1272 	/* ..and wait at most one second for adapter to initialize */
1273 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1274 		/* this isn't what was supposed to happen.. */
1275 		aprint_error_dev(sc->sc_dev,
1276 		    "timeout waiting for adapter to initialize\n");
1277 	}
1278 
1279 	/* copy runtime images into pre-allocated DMA-safe memory */
1280 	memcpy(dma->vaddr, main_data, main_datasz);
1281 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1282 
1283 	/* tell adapter where to find runtime images */
1284 	wpi_mem_lock(sc);
1285 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1286 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1287 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1288 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1289 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1290 	wpi_mem_unlock(sc);
1291 
1292 	/* wait at most one second for second alive notification */
1293 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1294 		/* this isn't what was supposed to happen.. */
1295 		aprint_error_dev(sc->sc_dev,
1296 		    "timeout waiting for adapter to initialize\n");
1297 	}
1298 
1299 	return error;
1300 
1301 free_firmware:
1302 	mutex_enter(&wpi_firmware_mutex);
1303 	sc->fw_used = false;
1304 	--wpi_firmware_users;
1305 	mutex_exit(&wpi_firmware_mutex);
1306 	return error;
1307 }
1308 
1309 static void
1310 wpi_calib_timeout(void *arg)
1311 {
1312 	struct wpi_softc *sc = arg;
1313 	struct ieee80211com *ic = &sc->sc_ic;
1314 	int temp, s;
1315 
1316 	/* automatic rate control triggered every 500ms */
1317 	if (ic->ic_fixed_rate == -1) {
1318 		s = splnet();
1319 		if (ic->ic_opmode == IEEE80211_M_STA)
1320 			wpi_iter_func(sc, ic->ic_bss);
1321 		else
1322                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1323 		splx(s);
1324 	}
1325 
1326 	/* update sensor data */
1327 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1328 
1329 	/* automatic power calibration every 60s */
1330 	if (++sc->calib_cnt >= 120) {
1331 		wpi_power_calibration(sc, temp);
1332 		sc->calib_cnt = 0;
1333 	}
1334 
1335 	callout_schedule(&sc->calib_to, hz/2);
1336 }
1337 
1338 static void
1339 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1340 {
1341 	struct wpi_softc *sc = arg;
1342 	struct wpi_node *wn = (struct wpi_node *)ni;
1343 
1344 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1345 }
1346 
1347 /*
1348  * This function is called periodically (every 60 seconds) to adjust output
1349  * power to temperature changes.
1350  */
1351 void
1352 wpi_power_calibration(struct wpi_softc *sc, int temp)
1353 {
1354 	/* sanity-check read value */
1355 	if (temp < -260 || temp > 25) {
1356 		/* this can't be correct, ignore */
1357 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1358 		return;
1359 	}
1360 
1361 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1362 
1363 	/* adjust Tx power if need be */
1364 	if (abs(temp - sc->temp) <= 6)
1365 		return;
1366 
1367 	sc->temp = temp;
1368 
1369 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1370 		/* just warn, too bad for the automatic calibration... */
1371 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1372 	}
1373 }
1374 
1375 static void
1376 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1377 	struct wpi_rx_data *data)
1378 {
1379 	struct ieee80211com *ic = &sc->sc_ic;
1380 	struct ifnet *ifp = ic->ic_ifp;
1381 	struct wpi_rx_ring *ring = &sc->rxq;
1382 	struct wpi_rx_stat *stat;
1383 	struct wpi_rx_head *head;
1384 	struct wpi_rx_tail *tail;
1385 	struct wpi_rbuf *rbuf;
1386 	struct ieee80211_frame *wh;
1387 	struct ieee80211_node *ni;
1388 	struct mbuf *m, *mnew;
1389 	int data_off ;
1390 
1391 	stat = (struct wpi_rx_stat *)(desc + 1);
1392 
1393 	if (stat->len > WPI_STAT_MAXLEN) {
1394 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1395 		ifp->if_ierrors++;
1396 		return;
1397 	}
1398 
1399 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1400 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1401 
1402 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1403 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1404 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1405 		le64toh(tail->tstamp)));
1406 
1407 	/*
1408 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1409 	 * to radiotap in monitor mode).
1410 	 */
1411 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1412 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1413 		ifp->if_ierrors++;
1414 		return;
1415 	}
1416 
1417 	/* Compute where are the useful datas */
1418 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1419 
1420 	/*
1421 	 * If the number of free entry is too low
1422 	 * just dup the data->m socket and reuse the same rbuf entry
1423 	 * Note that thi test is not protected by a mutex because the
1424 	 * only path that causes nb_free_entries to decrease is through
1425 	 * this interrupt routine, which is not re-entrent.
1426 	 * What may not be obvious is that the safe path is if that test
1427 	 * evaluates as true, so nb_free_entries can grow any time.
1428 	 */
1429 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1430 
1431 		/* Prepare the mbuf for the m_dup */
1432 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1433 		data->m->m_data = (char*) data->m->m_data + data_off;
1434 
1435 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1436 
1437 		/* Restore the m_data pointer for future use */
1438 		data->m->m_data = (char*) data->m->m_data - data_off;
1439 
1440 		if (m == NULL) {
1441 			ifp->if_ierrors++;
1442 			return;
1443 		}
1444 	} else {
1445 
1446 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1447 		if (mnew == NULL) {
1448 			ifp->if_ierrors++;
1449 			return;
1450 		}
1451 
1452 		rbuf = wpi_alloc_rbuf(sc);
1453 		KASSERT(rbuf != NULL);
1454 
1455  		/* attach Rx buffer to mbuf */
1456 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1457 		 	rbuf);
1458 		mnew->m_flags |= M_EXT_RW;
1459 
1460 		m = data->m;
1461 		data->m = mnew;
1462 
1463 		/* update Rx descriptor */
1464 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1465 
1466 		m->m_data = (char*)m->m_data + data_off;
1467 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1468 	}
1469 
1470 	/* finalize mbuf */
1471 	m->m_pkthdr.rcvif = ifp;
1472 
1473 	if (ic->ic_state == IEEE80211_S_SCAN)
1474 		wpi_fix_channel(ic, m);
1475 
1476 	if (sc->sc_drvbpf != NULL) {
1477 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1478 
1479 		tap->wr_flags = 0;
1480 		tap->wr_chan_freq =
1481 			htole16(ic->ic_channels[head->chan].ic_freq);
1482 		tap->wr_chan_flags =
1483 			htole16(ic->ic_channels[head->chan].ic_flags);
1484 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1485 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1486 		tap->wr_tsft = tail->tstamp;
1487 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1488 		switch (head->rate) {
1489 		/* CCK rates */
1490 		case  10: tap->wr_rate =   2; break;
1491 		case  20: tap->wr_rate =   4; break;
1492 		case  55: tap->wr_rate =  11; break;
1493 		case 110: tap->wr_rate =  22; break;
1494 		/* OFDM rates */
1495 		case 0xd: tap->wr_rate =  12; break;
1496 		case 0xf: tap->wr_rate =  18; break;
1497 		case 0x5: tap->wr_rate =  24; break;
1498 		case 0x7: tap->wr_rate =  36; break;
1499 		case 0x9: tap->wr_rate =  48; break;
1500 		case 0xb: tap->wr_rate =  72; break;
1501 		case 0x1: tap->wr_rate =  96; break;
1502 		case 0x3: tap->wr_rate = 108; break;
1503 		/* unknown rate: should not happen */
1504 		default:  tap->wr_rate =   0;
1505 		}
1506 		if (le16toh(head->flags) & 0x4)
1507 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1508 
1509 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1510 	}
1511 
1512 	/* grab a reference to the source node */
1513 	wh = mtod(m, struct ieee80211_frame *);
1514 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1515 
1516 	/* send the frame to the 802.11 layer */
1517 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1518 
1519 	/* release node reference */
1520 	ieee80211_free_node(ni);
1521 }
1522 
1523 static void
1524 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1525 {
1526 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1527 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1528 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1529 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1530 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1531 
1532 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1533 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1534 		stat->nkill, stat->rate, le32toh(stat->duration),
1535 		le32toh(stat->status)));
1536 
1537 	/*
1538 	 * Update rate control statistics for the node.
1539 	 * XXX we should not count mgmt frames since they're always sent at
1540 	 * the lowest available bit-rate.
1541 	 */
1542 	wn->amn.amn_txcnt++;
1543 	if (stat->ntries > 0) {
1544 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1545 		wn->amn.amn_retrycnt++;
1546 	}
1547 
1548 	if ((le32toh(stat->status) & 0xff) != 1)
1549 		ifp->if_oerrors++;
1550 	else
1551 		ifp->if_opackets++;
1552 
1553 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1554 	m_freem(txdata->m);
1555 	txdata->m = NULL;
1556 	ieee80211_free_node(txdata->ni);
1557 	txdata->ni = NULL;
1558 
1559 	ring->queued--;
1560 
1561 	sc->sc_tx_timer = 0;
1562 	ifp->if_flags &= ~IFF_OACTIVE;
1563 	wpi_start(ifp);
1564 }
1565 
1566 static void
1567 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1568 {
1569 	struct wpi_tx_ring *ring = &sc->cmdq;
1570 	struct wpi_tx_data *data;
1571 
1572 	if ((desc->qid & 7) != 4)
1573 		return;	/* not a command ack */
1574 
1575 	data = &ring->data[desc->idx];
1576 
1577 	/* if the command was mapped in a mbuf, free it */
1578 	if (data->m != NULL) {
1579 		bus_dmamap_unload(sc->sc_dmat, data->map);
1580 		m_freem(data->m);
1581 		data->m = NULL;
1582 	}
1583 
1584 	wakeup(&ring->cmd[desc->idx]);
1585 }
1586 
1587 static void
1588 wpi_notif_intr(struct wpi_softc *sc)
1589 {
1590 	struct ieee80211com *ic = &sc->sc_ic;
1591 	struct ifnet *ifp =  ic->ic_ifp;
1592 	struct wpi_rx_desc *desc;
1593 	struct wpi_rx_data *data;
1594 	uint32_t hw;
1595 
1596 	hw = le32toh(sc->shared->next);
1597 	while (sc->rxq.cur != hw) {
1598 		data = &sc->rxq.data[sc->rxq.cur];
1599 
1600 		desc = mtod(data->m, struct wpi_rx_desc *);
1601 
1602 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1603 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1604 			desc->type, le32toh(desc->len)));
1605 
1606 		if (!(desc->qid & 0x80))	/* reply to a command */
1607 			wpi_cmd_intr(sc, desc);
1608 
1609 		switch (desc->type) {
1610 		case WPI_RX_DONE:
1611 			/* a 802.11 frame was received */
1612 			wpi_rx_intr(sc, desc, data);
1613 			break;
1614 
1615 		case WPI_TX_DONE:
1616 			/* a 802.11 frame has been transmitted */
1617 			wpi_tx_intr(sc, desc);
1618 			break;
1619 
1620 		case WPI_UC_READY:
1621 		{
1622 			struct wpi_ucode_info *uc =
1623 				(struct wpi_ucode_info *)(desc + 1);
1624 
1625 			/* the microcontroller is ready */
1626 			DPRINTF(("microcode alive notification version %x "
1627 				"alive %x\n", le32toh(uc->version),
1628 				le32toh(uc->valid)));
1629 
1630 			if (le32toh(uc->valid) != 1) {
1631 				aprint_error_dev(sc->sc_dev,
1632 					"microcontroller initialization failed\n");
1633 			}
1634 			break;
1635 		}
1636 		case WPI_STATE_CHANGED:
1637 		{
1638 			uint32_t *status = (uint32_t *)(desc + 1);
1639 
1640 			/* enabled/disabled notification */
1641 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1642 
1643 			if (le32toh(*status) & 1) {
1644 				/* the radio button has to be pushed */
1645 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1646 				/* turn the interface down */
1647 				ifp->if_flags &= ~IFF_UP;
1648 				wpi_stop(ifp, 1);
1649 				return;	/* no further processing */
1650 			}
1651 			break;
1652 		}
1653 		case WPI_START_SCAN:
1654 		{
1655 			struct wpi_start_scan *scan =
1656 				(struct wpi_start_scan *)(desc + 1);
1657 
1658 			DPRINTFN(2, ("scanning channel %d status %x\n",
1659 				scan->chan, le32toh(scan->status)));
1660 
1661 			/* fix current channel */
1662 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1663 			break;
1664 		}
1665 		case WPI_STOP_SCAN:
1666 		{
1667 			struct wpi_stop_scan *scan =
1668 				(struct wpi_stop_scan *)(desc + 1);
1669 
1670 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1671 				scan->nchan, scan->status, scan->chan));
1672 
1673 			if (scan->status == 1 && scan->chan <= 14) {
1674 				/*
1675 				 * We just finished scanning 802.11g channels,
1676 				 * start scanning 802.11a ones.
1677 				 */
1678 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1679 					break;
1680 			}
1681 			sc->is_scanning = false;
1682 			ieee80211_end_scan(ic);
1683 			break;
1684 		}
1685 		}
1686 
1687 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1688 	}
1689 
1690 	/* tell the firmware what we have processed */
1691 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1692 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1693 }
1694 
1695 static int
1696 wpi_intr(void *arg)
1697 {
1698 	struct wpi_softc *sc = arg;
1699 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1700 	uint32_t r;
1701 
1702 	r = WPI_READ(sc, WPI_INTR);
1703 	if (r == 0 || r == 0xffffffff)
1704 		return 0;	/* not for us */
1705 
1706 	DPRINTFN(5, ("interrupt reg %x\n", r));
1707 
1708 	/* disable interrupts */
1709 	WPI_WRITE(sc, WPI_MASK, 0);
1710 	/* ack interrupts */
1711 	WPI_WRITE(sc, WPI_INTR, r);
1712 
1713 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1714 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1715 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1716 		wpi_stop(sc->sc_ic.ic_ifp, 1);
1717 		return 1;
1718 	}
1719 
1720 	if (r & WPI_RX_INTR)
1721 		wpi_notif_intr(sc);
1722 
1723 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1724 		wakeup(sc);
1725 
1726 	/* re-enable interrupts */
1727 	if (ifp->if_flags & IFF_UP)
1728 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1729 
1730 	return 1;
1731 }
1732 
1733 static uint8_t
1734 wpi_plcp_signal(int rate)
1735 {
1736 	switch (rate) {
1737 	/* CCK rates (returned values are device-dependent) */
1738 	case 2:		return 10;
1739 	case 4:		return 20;
1740 	case 11:	return 55;
1741 	case 22:	return 110;
1742 
1743 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1744 	/* R1-R4, (u)ral is R4-R1 */
1745 	case 12:	return 0xd;
1746 	case 18:	return 0xf;
1747 	case 24:	return 0x5;
1748 	case 36:	return 0x7;
1749 	case 48:	return 0x9;
1750 	case 72:	return 0xb;
1751 	case 96:	return 0x1;
1752 	case 108:	return 0x3;
1753 
1754 	/* unsupported rates (should not get there) */
1755 	default:	return 0;
1756 	}
1757 }
1758 
1759 /* quickly determine if a given rate is CCK or OFDM */
1760 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1761 
1762 static int
1763 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1764 	int ac)
1765 {
1766 	struct ieee80211com *ic = &sc->sc_ic;
1767 	struct wpi_tx_ring *ring = &sc->txq[ac];
1768 	struct wpi_tx_desc *desc;
1769 	struct wpi_tx_data *data;
1770 	struct wpi_tx_cmd *cmd;
1771 	struct wpi_cmd_data *tx;
1772 	struct ieee80211_frame *wh;
1773 	struct ieee80211_key *k;
1774 	const struct chanAccParams *cap;
1775 	struct mbuf *mnew;
1776 	int i, error, rate, hdrlen, noack = 0;
1777 
1778 	desc = &ring->desc[ring->cur];
1779 	data = &ring->data[ring->cur];
1780 
1781 	wh = mtod(m0, struct ieee80211_frame *);
1782 
1783 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1784 		cap = &ic->ic_wme.wme_chanParams;
1785 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1786 	}
1787 
1788 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1789 		k = ieee80211_crypto_encap(ic, ni, m0);
1790 		if (k == NULL) {
1791 			m_freem(m0);
1792 			return ENOBUFS;
1793 		}
1794 
1795 		/* packet header may have moved, reset our local pointer */
1796 		wh = mtod(m0, struct ieee80211_frame *);
1797 	}
1798 
1799 	hdrlen = ieee80211_anyhdrsize(wh);
1800 
1801 	/* pickup a rate */
1802 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1803 		IEEE80211_FC0_TYPE_MGT) {
1804 		/* mgmt frames are sent at the lowest available bit-rate */
1805 		rate = ni->ni_rates.rs_rates[0];
1806 	} else {
1807 		if (ic->ic_fixed_rate != -1) {
1808 			rate = ic->ic_sup_rates[ic->ic_curmode].
1809 				rs_rates[ic->ic_fixed_rate];
1810 		} else
1811 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1812 	}
1813 	rate &= IEEE80211_RATE_VAL;
1814 
1815 
1816 	if (sc->sc_drvbpf != NULL) {
1817 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1818 
1819 		tap->wt_flags = 0;
1820 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1821 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1822 		tap->wt_rate = rate;
1823 		tap->wt_hwqueue = ac;
1824 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1825 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1826 
1827 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1828 	}
1829 
1830 	cmd = &ring->cmd[ring->cur];
1831 	cmd->code = WPI_CMD_TX_DATA;
1832 	cmd->flags = 0;
1833 	cmd->qid = ring->qid;
1834 	cmd->idx = ring->cur;
1835 
1836 	tx = (struct wpi_cmd_data *)cmd->data;
1837 	tx->flags = 0;
1838 
1839 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1840 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1841 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1842 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1843 
1844 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1845 
1846 	/* retrieve destination node's id */
1847 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1848 		WPI_ID_BSS;
1849 
1850 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1851 		IEEE80211_FC0_TYPE_MGT) {
1852 		/* tell h/w to set timestamp in probe responses */
1853 		if ((wh->i_fc[0] &
1854 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1855 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1856 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1857 
1858 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1859 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1860 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1861 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1862 			tx->timeout = htole16(3);
1863 		else
1864 			tx->timeout = htole16(2);
1865 	} else
1866 		tx->timeout = htole16(0);
1867 
1868 	tx->rate = wpi_plcp_signal(rate);
1869 
1870 	/* be very persistant at sending frames out */
1871 	tx->rts_ntries = 7;
1872 	tx->data_ntries = 15;
1873 
1874 	tx->ofdm_mask = 0xff;
1875 	tx->cck_mask = 0xf;
1876 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1877 
1878 	tx->len = htole16(m0->m_pkthdr.len);
1879 
1880 	/* save and trim IEEE802.11 header */
1881 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1882 	m_adj(m0, hdrlen);
1883 
1884 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1885 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1886 	if (error != 0 && error != EFBIG) {
1887 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1888 		m_freem(m0);
1889 		return error;
1890 	}
1891 	if (error != 0) {
1892 		/* too many fragments, linearize */
1893 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1894 		if (mnew == NULL) {
1895 			m_freem(m0);
1896 			return ENOMEM;
1897 		}
1898 
1899 		M_COPY_PKTHDR(mnew, m0);
1900 		if (m0->m_pkthdr.len > MHLEN) {
1901 			MCLGET(mnew, M_DONTWAIT);
1902 			if (!(mnew->m_flags & M_EXT)) {
1903 				m_freem(m0);
1904 				m_freem(mnew);
1905 				return ENOMEM;
1906 			}
1907 		}
1908 
1909 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1910 		m_freem(m0);
1911 		mnew->m_len = mnew->m_pkthdr.len;
1912 		m0 = mnew;
1913 
1914 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1915 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1916 		if (error != 0) {
1917 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1918 							 error);
1919 			m_freem(m0);
1920 			return error;
1921 		}
1922 	}
1923 
1924 	data->m = m0;
1925 	data->ni = ni;
1926 
1927 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1928 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1929 
1930 	/* first scatter/gather segment is used by the tx data command */
1931 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1932 		(1 + data->map->dm_nsegs) << 24);
1933 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1934 		ring->cur * sizeof (struct wpi_tx_cmd));
1935 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1936 						 ((hdrlen + 3) & ~3));
1937 
1938 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1939 		desc->segs[i].addr =
1940 			htole32(data->map->dm_segs[i - 1].ds_addr);
1941 		desc->segs[i].len  =
1942 			htole32(data->map->dm_segs[i - 1].ds_len);
1943 	}
1944 
1945 	ring->queued++;
1946 
1947 	/* kick ring */
1948 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1949 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1950 
1951 	return 0;
1952 }
1953 
1954 static void
1955 wpi_start(struct ifnet *ifp)
1956 {
1957 	struct wpi_softc *sc = ifp->if_softc;
1958 	struct ieee80211com *ic = &sc->sc_ic;
1959 	struct ieee80211_node *ni;
1960 	struct ether_header *eh;
1961 	struct mbuf *m0;
1962 	int ac;
1963 
1964 	/*
1965 	 * net80211 may still try to send management frames even if the
1966 	 * IFF_RUNNING flag is not set...
1967 	 */
1968 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1969 		return;
1970 
1971 	for (;;) {
1972 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1973 		if (m0 != NULL) {
1974 
1975 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1976 			m0->m_pkthdr.rcvif = NULL;
1977 
1978 			/* management frames go into ring 0 */
1979 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1980 				ifp->if_oerrors++;
1981 				continue;
1982 			}
1983 			bpf_mtap3(ic->ic_rawbpf, m0);
1984 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1985 				ifp->if_oerrors++;
1986 				break;
1987 			}
1988 		} else {
1989 			if (ic->ic_state != IEEE80211_S_RUN)
1990 				break;
1991 			IFQ_POLL(&ifp->if_snd, m0);
1992 			if (m0 == NULL)
1993 				break;
1994 
1995 			if (m0->m_len < sizeof (*eh) &&
1996 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1997 				ifp->if_oerrors++;
1998 				continue;
1999 			}
2000 			eh = mtod(m0, struct ether_header *);
2001 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2002 			if (ni == NULL) {
2003 				m_freem(m0);
2004 				ifp->if_oerrors++;
2005 				continue;
2006 			}
2007 
2008 			/* classify mbuf so we can find which tx ring to use */
2009 			if (ieee80211_classify(ic, m0, ni) != 0) {
2010 				m_freem(m0);
2011 				ieee80211_free_node(ni);
2012 				ifp->if_oerrors++;
2013 				continue;
2014 			}
2015 
2016 			/* no QoS encapsulation for EAPOL frames */
2017 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2018 			    M_WME_GETAC(m0) : WME_AC_BE;
2019 
2020 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2021 				/* there is no place left in this ring */
2022 				ifp->if_flags |= IFF_OACTIVE;
2023 				break;
2024 			}
2025 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2026 			bpf_mtap(ifp, m0);
2027 			m0 = ieee80211_encap(ic, m0, ni);
2028 			if (m0 == NULL) {
2029 				ieee80211_free_node(ni);
2030 				ifp->if_oerrors++;
2031 				continue;
2032 			}
2033 			bpf_mtap3(ic->ic_rawbpf, m0);
2034 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2035 				ieee80211_free_node(ni);
2036 				ifp->if_oerrors++;
2037 				break;
2038 			}
2039 		}
2040 
2041 		sc->sc_tx_timer = 5;
2042 		ifp->if_timer = 1;
2043 	}
2044 }
2045 
2046 static void
2047 wpi_watchdog(struct ifnet *ifp)
2048 {
2049 	struct wpi_softc *sc = ifp->if_softc;
2050 
2051 	ifp->if_timer = 0;
2052 
2053 	if (sc->sc_tx_timer > 0) {
2054 		if (--sc->sc_tx_timer == 0) {
2055 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2056 			ifp->if_oerrors++;
2057 			ifp->if_flags &= ~IFF_UP;
2058 			wpi_stop(ifp, 1);
2059 			return;
2060 		}
2061 		ifp->if_timer = 1;
2062 	}
2063 
2064 	ieee80211_watchdog(&sc->sc_ic);
2065 }
2066 
2067 static int
2068 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2069 {
2070 #define IS_RUNNING(ifp) \
2071 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2072 
2073 	struct wpi_softc *sc = ifp->if_softc;
2074 	struct ieee80211com *ic = &sc->sc_ic;
2075 	int s, error = 0;
2076 
2077 	s = splnet();
2078 
2079 	switch (cmd) {
2080 	case SIOCSIFFLAGS:
2081 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2082 			break;
2083 		if (ifp->if_flags & IFF_UP) {
2084 			if (!(ifp->if_flags & IFF_RUNNING))
2085 				wpi_init(ifp);
2086 		} else {
2087 			if (ifp->if_flags & IFF_RUNNING)
2088 				wpi_stop(ifp, 1);
2089 		}
2090 		break;
2091 
2092 	case SIOCADDMULTI:
2093 	case SIOCDELMULTI:
2094 		/* XXX no h/w multicast filter? --dyoung */
2095 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2096 			/* setup multicast filter, etc */
2097 			error = 0;
2098 		}
2099 		break;
2100 
2101 	default:
2102 		error = ieee80211_ioctl(ic, cmd, data);
2103 	}
2104 
2105 	if (error == ENETRESET) {
2106 		if (IS_RUNNING(ifp) &&
2107 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2108 			wpi_init(ifp);
2109 		error = 0;
2110 	}
2111 
2112 	splx(s);
2113 	return error;
2114 
2115 #undef IS_RUNNING
2116 }
2117 
2118 /*
2119  * Extract various information from EEPROM.
2120  */
2121 static void
2122 wpi_read_eeprom(struct wpi_softc *sc)
2123 {
2124 	struct ieee80211com *ic = &sc->sc_ic;
2125 	char domain[4];
2126 	int i;
2127 
2128 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2129 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2130 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2131 
2132 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2133 	    sc->type));
2134 
2135 	/* read and print regulatory domain */
2136 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2137 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2138 
2139 	/* read and print MAC address */
2140 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2141 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2142 
2143 	/* read the list of authorized channels */
2144 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2145 		wpi_read_eeprom_channels(sc, i);
2146 
2147 	/* read the list of power groups */
2148 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2149 		wpi_read_eeprom_group(sc, i);
2150 }
2151 
2152 static void
2153 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2154 {
2155 	struct ieee80211com *ic = &sc->sc_ic;
2156 	const struct wpi_chan_band *band = &wpi_bands[n];
2157 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2158 	int chan, i;
2159 
2160 	wpi_read_prom_data(sc, band->addr, channels,
2161 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2162 
2163 	for (i = 0; i < band->nchan; i++) {
2164 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2165 			continue;
2166 
2167 		chan = band->chan[i];
2168 
2169 		if (n == 0) {	/* 2GHz band */
2170 			ic->ic_channels[chan].ic_freq =
2171 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2172 			ic->ic_channels[chan].ic_flags =
2173 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2174 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2175 
2176 		} else {	/* 5GHz band */
2177 			/*
2178 			 * Some 3945abg adapters support channels 7, 8, 11
2179 			 * and 12 in the 2GHz *and* 5GHz bands.
2180 			 * Because of limitations in our net80211(9) stack,
2181 			 * we can't support these channels in 5GHz band.
2182 			 */
2183 			if (chan <= 14)
2184 				continue;
2185 
2186 			ic->ic_channels[chan].ic_freq =
2187 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2188 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2189 		}
2190 
2191 		/* is active scan allowed on this channel? */
2192 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2193 			ic->ic_channels[chan].ic_flags |=
2194 			    IEEE80211_CHAN_PASSIVE;
2195 		}
2196 
2197 		/* save maximum allowed power for this channel */
2198 		sc->maxpwr[chan] = channels[i].maxpwr;
2199 
2200 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2201 		    chan, channels[i].flags, sc->maxpwr[chan]));
2202 	}
2203 }
2204 
2205 static void
2206 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2207 {
2208 	struct wpi_power_group *group = &sc->groups[n];
2209 	struct wpi_eeprom_group rgroup;
2210 	int i;
2211 
2212 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2213 	    sizeof rgroup);
2214 
2215 	/* save power group information */
2216 	group->chan   = rgroup.chan;
2217 	group->maxpwr = rgroup.maxpwr;
2218 	/* temperature at which the samples were taken */
2219 	group->temp   = (int16_t)le16toh(rgroup.temp);
2220 
2221 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2222 	    group->chan, group->maxpwr, group->temp));
2223 
2224 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2225 		group->samples[i].index = rgroup.samples[i].index;
2226 		group->samples[i].power = rgroup.samples[i].power;
2227 
2228 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2229 		    group->samples[i].index, group->samples[i].power));
2230 	}
2231 }
2232 
2233 /*
2234  * Send a command to the firmware.
2235  */
2236 static int
2237 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2238 {
2239 	struct wpi_tx_ring *ring = &sc->cmdq;
2240 	struct wpi_tx_desc *desc;
2241 	struct wpi_tx_cmd *cmd;
2242 
2243 	KASSERT(size <= sizeof cmd->data);
2244 
2245 	desc = &ring->desc[ring->cur];
2246 	cmd = &ring->cmd[ring->cur];
2247 
2248 	cmd->code = code;
2249 	cmd->flags = 0;
2250 	cmd->qid = ring->qid;
2251 	cmd->idx = ring->cur;
2252 	memcpy(cmd->data, buf, size);
2253 
2254 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2255 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2256 		ring->cur * sizeof (struct wpi_tx_cmd));
2257 	desc->segs[0].len  = htole32(4 + size);
2258 
2259 	/* kick cmd ring */
2260 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2261 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2262 
2263 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2264 }
2265 
2266 static int
2267 wpi_wme_update(struct ieee80211com *ic)
2268 {
2269 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2270 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2271 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2272 	const struct wmeParams *wmep;
2273 	struct wpi_wme_setup wme;
2274 	int ac;
2275 
2276 	/* don't override default WME values if WME is not actually enabled */
2277 	if (!(ic->ic_flags & IEEE80211_F_WME))
2278 		return 0;
2279 
2280 	wme.flags = 0;
2281 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2282 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2283 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2284 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2285 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2286 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2287 
2288 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2289 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2290 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2291 	}
2292 
2293 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2294 #undef WPI_USEC
2295 #undef WPI_EXP2
2296 }
2297 
2298 /*
2299  * Configure h/w multi-rate retries.
2300  */
2301 static int
2302 wpi_mrr_setup(struct wpi_softc *sc)
2303 {
2304 	struct ieee80211com *ic = &sc->sc_ic;
2305 	struct wpi_mrr_setup mrr;
2306 	int i, error;
2307 
2308 	/* CCK rates (not used with 802.11a) */
2309 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2310 		mrr.rates[i].flags = 0;
2311 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2312 		/* fallback to the immediate lower CCK rate (if any) */
2313 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2314 		/* try one time at this rate before falling back to "next" */
2315 		mrr.rates[i].ntries = 1;
2316 	}
2317 
2318 	/* OFDM rates (not used with 802.11b) */
2319 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2320 		mrr.rates[i].flags = 0;
2321 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2322 		/* fallback to the immediate lower rate (if any) */
2323 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2324 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2325 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2326 			WPI_OFDM6 : WPI_CCK2) :
2327 		    i - 1;
2328 		/* try one time at this rate before falling back to "next" */
2329 		mrr.rates[i].ntries = 1;
2330 	}
2331 
2332 	/* setup MRR for control frames */
2333 	mrr.which = htole32(WPI_MRR_CTL);
2334 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2335 	if (error != 0) {
2336 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2337 		return error;
2338 	}
2339 
2340 	/* setup MRR for data frames */
2341 	mrr.which = htole32(WPI_MRR_DATA);
2342 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2343 	if (error != 0) {
2344 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2345 		return error;
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 static void
2352 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2353 {
2354 	struct wpi_cmd_led led;
2355 
2356 	led.which = which;
2357 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2358 	led.off = off;
2359 	led.on = on;
2360 
2361 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2362 }
2363 
2364 static void
2365 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2366 {
2367 	struct wpi_cmd_tsf tsf;
2368 	uint64_t val, mod;
2369 
2370 	memset(&tsf, 0, sizeof tsf);
2371 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2372 	tsf.bintval = htole16(ni->ni_intval);
2373 	tsf.lintval = htole16(10);
2374 
2375 	/* compute remaining time until next beacon */
2376 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2377 	mod = le64toh(tsf.tstamp) % val;
2378 	tsf.binitval = htole32((uint32_t)(val - mod));
2379 
2380 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2381 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2382 
2383 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2384 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2385 }
2386 
2387 /*
2388  * Update Tx power to match what is defined for channel `c'.
2389  */
2390 static int
2391 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2392 {
2393 	struct ieee80211com *ic = &sc->sc_ic;
2394 	struct wpi_power_group *group;
2395 	struct wpi_cmd_txpower txpower;
2396 	u_int chan;
2397 	int i;
2398 
2399 	/* get channel number */
2400 	chan = ieee80211_chan2ieee(ic, c);
2401 
2402 	/* find the power group to which this channel belongs */
2403 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2404 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2405 			if (chan <= group->chan)
2406 				break;
2407 	} else
2408 		group = &sc->groups[0];
2409 
2410 	memset(&txpower, 0, sizeof txpower);
2411 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2412 	txpower.chan = htole16(chan);
2413 
2414 	/* set Tx power for all OFDM and CCK rates */
2415 	for (i = 0; i <= 11 ; i++) {
2416 		/* retrieve Tx power for this channel/rate combination */
2417 		int idx = wpi_get_power_index(sc, group, c,
2418 		    wpi_ridx_to_rate[i]);
2419 
2420 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2421 
2422 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2423 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2424 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2425 		} else {
2426 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2427 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2428 		}
2429 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2430 		    wpi_ridx_to_rate[i], idx));
2431 	}
2432 
2433 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2434 }
2435 
2436 /*
2437  * Determine Tx power index for a given channel/rate combination.
2438  * This takes into account the regulatory information from EEPROM and the
2439  * current temperature.
2440  */
2441 static int
2442 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2443     struct ieee80211_channel *c, int rate)
2444 {
2445 /* fixed-point arithmetic division using a n-bit fractional part */
2446 #define fdivround(a, b, n)	\
2447 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2448 
2449 /* linear interpolation */
2450 #define interpolate(x, x1, y1, x2, y2, n)	\
2451 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2452 
2453 	struct ieee80211com *ic = &sc->sc_ic;
2454 	struct wpi_power_sample *sample;
2455 	int pwr, idx;
2456 	u_int chan;
2457 
2458 	/* get channel number */
2459 	chan = ieee80211_chan2ieee(ic, c);
2460 
2461 	/* default power is group's maximum power - 3dB */
2462 	pwr = group->maxpwr / 2;
2463 
2464 	/* decrease power for highest OFDM rates to reduce distortion */
2465 	switch (rate) {
2466 	case 72:	/* 36Mb/s */
2467 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2468 		break;
2469 	case 96:	/* 48Mb/s */
2470 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2471 		break;
2472 	case 108:	/* 54Mb/s */
2473 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2474 		break;
2475 	}
2476 
2477 	/* never exceed channel's maximum allowed Tx power */
2478 	pwr = min(pwr, sc->maxpwr[chan]);
2479 
2480 	/* retrieve power index into gain tables from samples */
2481 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2482 		if (pwr > sample[1].power)
2483 			break;
2484 	/* fixed-point linear interpolation using a 19-bit fractional part */
2485 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2486 	    sample[1].power, sample[1].index, 19);
2487 
2488 	/*
2489 	 * Adjust power index based on current temperature:
2490 	 * - if cooler than factory-calibrated: decrease output power
2491 	 * - if warmer than factory-calibrated: increase output power
2492 	 */
2493 	idx -= (sc->temp - group->temp) * 11 / 100;
2494 
2495 	/* decrease power for CCK rates (-5dB) */
2496 	if (!WPI_RATE_IS_OFDM(rate))
2497 		idx += 10;
2498 
2499 	/* keep power index in a valid range */
2500 	if (idx < 0)
2501 		return 0;
2502 	if (idx > WPI_MAX_PWR_INDEX)
2503 		return WPI_MAX_PWR_INDEX;
2504 	return idx;
2505 
2506 #undef interpolate
2507 #undef fdivround
2508 }
2509 
2510 /*
2511  * Build a beacon frame that the firmware will broadcast periodically in
2512  * IBSS or HostAP modes.
2513  */
2514 static int
2515 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2516 {
2517 	struct ieee80211com *ic = &sc->sc_ic;
2518 	struct wpi_tx_ring *ring = &sc->cmdq;
2519 	struct wpi_tx_desc *desc;
2520 	struct wpi_tx_data *data;
2521 	struct wpi_tx_cmd *cmd;
2522 	struct wpi_cmd_beacon *bcn;
2523 	struct ieee80211_beacon_offsets bo;
2524 	struct mbuf *m0;
2525 	int error;
2526 
2527 	desc = &ring->desc[ring->cur];
2528 	data = &ring->data[ring->cur];
2529 
2530 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2531 	if (m0 == NULL) {
2532 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2533 		return ENOMEM;
2534 	}
2535 
2536 	cmd = &ring->cmd[ring->cur];
2537 	cmd->code = WPI_CMD_SET_BEACON;
2538 	cmd->flags = 0;
2539 	cmd->qid = ring->qid;
2540 	cmd->idx = ring->cur;
2541 
2542 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2543 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2544 	bcn->id = WPI_ID_BROADCAST;
2545 	bcn->ofdm_mask = 0xff;
2546 	bcn->cck_mask = 0x0f;
2547 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2548 	bcn->len = htole16(m0->m_pkthdr.len);
2549 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2550 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2551 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2552 
2553 	/* save and trim IEEE802.11 header */
2554 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2555 	m_adj(m0, sizeof (struct ieee80211_frame));
2556 
2557 	/* assume beacon frame is contiguous */
2558 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2559 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2560 	if (error) {
2561 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2562 		m_freem(m0);
2563 		return error;
2564 	}
2565 
2566 	data->m = m0;
2567 
2568 	/* first scatter/gather segment is used by the beacon command */
2569 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2570 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2571 		ring->cur * sizeof (struct wpi_tx_cmd));
2572 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2573 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2574 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2575 
2576 	/* kick cmd ring */
2577 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2578 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2579 
2580 	return 0;
2581 }
2582 
2583 static int
2584 wpi_auth(struct wpi_softc *sc)
2585 {
2586 	struct ieee80211com *ic = &sc->sc_ic;
2587 	struct ieee80211_node *ni = ic->ic_bss;
2588 	struct wpi_node_info node;
2589 	int error;
2590 
2591 	/* update adapter's configuration */
2592 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2593 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2594 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2595 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2596 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2597 		    WPI_CONFIG_24GHZ);
2598 	}
2599 	switch (ic->ic_curmode) {
2600 	case IEEE80211_MODE_11A:
2601 		sc->config.cck_mask  = 0;
2602 		sc->config.ofdm_mask = 0x15;
2603 		break;
2604 	case IEEE80211_MODE_11B:
2605 		sc->config.cck_mask  = 0x03;
2606 		sc->config.ofdm_mask = 0;
2607 		break;
2608 	default:	/* assume 802.11b/g */
2609 		sc->config.cck_mask  = 0x0f;
2610 		sc->config.ofdm_mask = 0x15;
2611 	}
2612 
2613 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2614 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2615 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2616 		sizeof (struct wpi_config), 1);
2617 	if (error != 0) {
2618 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2619 		return error;
2620 	}
2621 
2622 	/* configuration has changed, set Tx power accordingly */
2623 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2624 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2625 		return error;
2626 	}
2627 
2628 	/* add default node */
2629 	memset(&node, 0, sizeof node);
2630 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2631 	node.id = WPI_ID_BSS;
2632 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2633 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2634 	node.action = htole32(WPI_ACTION_SET_RATE);
2635 	node.antenna = WPI_ANTENNA_BOTH;
2636 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2637 	if (error != 0) {
2638 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2639 		return error;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 /*
2646  * Send a scan request to the firmware.  Since this command is huge, we map it
2647  * into a mbuf instead of using the pre-allocated set of commands.
2648  */
2649 static int
2650 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2651 {
2652 	struct ieee80211com *ic = &sc->sc_ic;
2653 	struct wpi_tx_ring *ring = &sc->cmdq;
2654 	struct wpi_tx_desc *desc;
2655 	struct wpi_tx_data *data;
2656 	struct wpi_tx_cmd *cmd;
2657 	struct wpi_scan_hdr *hdr;
2658 	struct wpi_scan_chan *chan;
2659 	struct ieee80211_frame *wh;
2660 	struct ieee80211_rateset *rs;
2661 	struct ieee80211_channel *c;
2662 	enum ieee80211_phymode mode;
2663 	uint8_t *frm;
2664 	int nrates, pktlen, error;
2665 
2666 	desc = &ring->desc[ring->cur];
2667 	data = &ring->data[ring->cur];
2668 
2669 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2670 	if (data->m == NULL) {
2671 		aprint_error_dev(sc->sc_dev,
2672 						"could not allocate mbuf for scan command\n");
2673 		return ENOMEM;
2674 	}
2675 
2676 	MCLGET(data->m, M_DONTWAIT);
2677 	if (!(data->m->m_flags & M_EXT)) {
2678 		m_freem(data->m);
2679 		data->m = NULL;
2680 		aprint_error_dev(sc->sc_dev,
2681 						 "could not allocate mbuf for scan command\n");
2682 		return ENOMEM;
2683 	}
2684 
2685 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2686 	cmd->code = WPI_CMD_SCAN;
2687 	cmd->flags = 0;
2688 	cmd->qid = ring->qid;
2689 	cmd->idx = ring->cur;
2690 
2691 	hdr = (struct wpi_scan_hdr *)cmd->data;
2692 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2693 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2694 	hdr->id = WPI_ID_BROADCAST;
2695 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2696 
2697 	/*
2698 	 * Move to the next channel if no packets are received within 5 msecs
2699 	 * after sending the probe request (this helps to reduce the duration
2700 	 * of active scans).
2701 	 */
2702 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2703 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2704 
2705 	if (flags & IEEE80211_CHAN_A) {
2706 		hdr->crc_threshold = htole16(1);
2707 		/* send probe requests at 6Mbps */
2708 		hdr->rate = wpi_plcp_signal(12);
2709 	} else {
2710 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2711 		/* send probe requests at 1Mbps */
2712 		hdr->rate = wpi_plcp_signal(2);
2713 	}
2714 
2715 	/* for directed scans, firmware inserts the essid IE itself */
2716 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2717 	hdr->essid[0].len = ic->ic_des_esslen;
2718 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2719 
2720 	/*
2721 	 * Build a probe request frame.  Most of the following code is a
2722 	 * copy & paste of what is done in net80211.
2723 	 */
2724 	wh = (struct ieee80211_frame *)(hdr + 1);
2725 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2726 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2727 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2728 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2729 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2730 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2731 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2732 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2733 
2734 	frm = (uint8_t *)(wh + 1);
2735 
2736 	/* add empty essid IE (firmware generates it for directed scans) */
2737 	*frm++ = IEEE80211_ELEMID_SSID;
2738 	*frm++ = 0;
2739 
2740 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2741 	rs = &ic->ic_sup_rates[mode];
2742 
2743 	/* add supported rates IE */
2744 	*frm++ = IEEE80211_ELEMID_RATES;
2745 	nrates = rs->rs_nrates;
2746 	if (nrates > IEEE80211_RATE_SIZE)
2747 		nrates = IEEE80211_RATE_SIZE;
2748 	*frm++ = nrates;
2749 	memcpy(frm, rs->rs_rates, nrates);
2750 	frm += nrates;
2751 
2752 	/* add supported xrates IE */
2753 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2754 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2755 		*frm++ = IEEE80211_ELEMID_XRATES;
2756 		*frm++ = nrates;
2757 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2758 		frm += nrates;
2759 	}
2760 
2761 	/* setup length of probe request */
2762 	hdr->paylen = htole16(frm - (uint8_t *)wh);
2763 
2764 	chan = (struct wpi_scan_chan *)frm;
2765 	for (c  = &ic->ic_channels[1];
2766 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2767 		if ((c->ic_flags & flags) != flags)
2768 			continue;
2769 
2770 		chan->chan = ieee80211_chan2ieee(ic, c);
2771 		chan->flags = 0;
2772 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2773 			chan->flags |= WPI_CHAN_ACTIVE;
2774 			if (ic->ic_des_esslen != 0)
2775 				chan->flags |= WPI_CHAN_DIRECT;
2776 		}
2777 		chan->dsp_gain = 0x6e;
2778 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2779 			chan->rf_gain = 0x3b;
2780 			chan->active = htole16(10);
2781 			chan->passive = htole16(110);
2782 		} else {
2783 			chan->rf_gain = 0x28;
2784 			chan->active = htole16(20);
2785 			chan->passive = htole16(120);
2786 		}
2787 		hdr->nchan++;
2788 		chan++;
2789 
2790 		frm += sizeof (struct wpi_scan_chan);
2791 	}
2792 	hdr->len = htole16(frm - (uint8_t *)hdr);
2793 	pktlen = frm - (uint8_t *)cmd;
2794 
2795 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2796 		NULL, BUS_DMA_NOWAIT);
2797 	if (error) {
2798 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2799 		m_freem(data->m);
2800 		data->m = NULL;
2801 		return error;
2802 	}
2803 
2804 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2805 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2806 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2807 
2808 	/* kick cmd ring */
2809 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2810 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2811 
2812 	return 0;	/* will be notified async. of failure/success */
2813 }
2814 
2815 static int
2816 wpi_config(struct wpi_softc *sc)
2817 {
2818 	struct ieee80211com *ic = &sc->sc_ic;
2819 	struct ifnet *ifp = ic->ic_ifp;
2820 	struct wpi_power power;
2821 	struct wpi_bluetooth bluetooth;
2822 	struct wpi_node_info node;
2823 	int error;
2824 
2825 	memset(&power, 0, sizeof power);
2826 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2827 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2828 	if (error != 0) {
2829 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2830 		return error;
2831 	}
2832 
2833 	/* configure bluetooth coexistence */
2834 	memset(&bluetooth, 0, sizeof bluetooth);
2835 	bluetooth.flags = 3;
2836 	bluetooth.lead = 0xaa;
2837 	bluetooth.kill = 1;
2838 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2839 		0);
2840 	if (error != 0) {
2841 		aprint_error_dev(sc->sc_dev,
2842 			"could not configure bluetooth coexistence\n");
2843 		return error;
2844 	}
2845 
2846 	/* configure adapter */
2847 	memset(&sc->config, 0, sizeof (struct wpi_config));
2848 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2849 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2850 	/*set default channel*/
2851 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2852 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2853 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2854 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2855 		    WPI_CONFIG_24GHZ);
2856 	}
2857 	sc->config.filter = 0;
2858 	switch (ic->ic_opmode) {
2859 	case IEEE80211_M_STA:
2860 		sc->config.mode = WPI_MODE_STA;
2861 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2862 		break;
2863 	case IEEE80211_M_IBSS:
2864 	case IEEE80211_M_AHDEMO:
2865 		sc->config.mode = WPI_MODE_IBSS;
2866 		break;
2867 	case IEEE80211_M_HOSTAP:
2868 		sc->config.mode = WPI_MODE_HOSTAP;
2869 		break;
2870 	case IEEE80211_M_MONITOR:
2871 		sc->config.mode = WPI_MODE_MONITOR;
2872 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2873 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2874 		break;
2875 	}
2876 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2877 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2878 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2879 		sizeof (struct wpi_config), 0);
2880 	if (error != 0) {
2881 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2882 		return error;
2883 	}
2884 
2885 	/* configuration has changed, set Tx power accordingly */
2886 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2887 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2888 		return error;
2889 	}
2890 
2891 	/* add broadcast node */
2892 	memset(&node, 0, sizeof node);
2893 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2894 	node.id = WPI_ID_BROADCAST;
2895 	node.rate = wpi_plcp_signal(2);
2896 	node.action = htole32(WPI_ACTION_SET_RATE);
2897 	node.antenna = WPI_ANTENNA_BOTH;
2898 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2899 	if (error != 0) {
2900 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2901 		return error;
2902 	}
2903 
2904 	if ((error = wpi_mrr_setup(sc)) != 0) {
2905 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2906 		return error;
2907 	}
2908 
2909 	return 0;
2910 }
2911 
2912 static void
2913 wpi_stop_master(struct wpi_softc *sc)
2914 {
2915 	uint32_t tmp;
2916 	int ntries;
2917 
2918 	tmp = WPI_READ(sc, WPI_RESET);
2919 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2920 
2921 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2922 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2923 		return;	/* already asleep */
2924 
2925 	for (ntries = 0; ntries < 100; ntries++) {
2926 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2927 			break;
2928 		DELAY(10);
2929 	}
2930 	if (ntries == 100) {
2931 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2932 	}
2933 }
2934 
2935 static int
2936 wpi_power_up(struct wpi_softc *sc)
2937 {
2938 	uint32_t tmp;
2939 	int ntries;
2940 
2941 	wpi_mem_lock(sc);
2942 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2943 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2944 	wpi_mem_unlock(sc);
2945 
2946 	for (ntries = 0; ntries < 5000; ntries++) {
2947 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2948 			break;
2949 		DELAY(10);
2950 	}
2951 	if (ntries == 5000) {
2952 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2953 		return ETIMEDOUT;
2954 	}
2955 	return 0;
2956 }
2957 
2958 static int
2959 wpi_reset(struct wpi_softc *sc)
2960 {
2961 	uint32_t tmp;
2962 	int ntries;
2963 
2964 	/* clear any pending interrupts */
2965 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2966 
2967 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2968 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2969 
2970 	tmp = WPI_READ(sc, WPI_CHICKEN);
2971 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2972 
2973 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2974 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2975 
2976 	/* wait for clock stabilization */
2977 	for (ntries = 0; ntries < 1000; ntries++) {
2978 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2979 			break;
2980 		DELAY(10);
2981 	}
2982 	if (ntries == 1000) {
2983 		aprint_error_dev(sc->sc_dev,
2984 						 "timeout waiting for clock stabilization\n");
2985 		return ETIMEDOUT;
2986 	}
2987 
2988 	/* initialize EEPROM */
2989 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2990 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2991 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2992 		return EIO;
2993 	}
2994 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2995 
2996 	return 0;
2997 }
2998 
2999 static void
3000 wpi_hw_config(struct wpi_softc *sc)
3001 {
3002 	uint32_t rev, hw;
3003 
3004 	/* voodoo from the reference driver */
3005 	hw = WPI_READ(sc, WPI_HWCONFIG);
3006 
3007 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3008 	rev = PCI_REVISION(rev);
3009 	if ((rev & 0xc0) == 0x40)
3010 		hw |= WPI_HW_ALM_MB;
3011 	else if (!(rev & 0x80))
3012 		hw |= WPI_HW_ALM_MM;
3013 
3014 	if (sc->cap == 0x80)
3015 		hw |= WPI_HW_SKU_MRC;
3016 
3017 	hw &= ~WPI_HW_REV_D;
3018 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3019 		hw |= WPI_HW_REV_D;
3020 
3021 	if (sc->type > 1)
3022 		hw |= WPI_HW_TYPE_B;
3023 
3024 	DPRINTF(("setting h/w config %x\n", hw));
3025 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3026 }
3027 
3028 static int
3029 wpi_init(struct ifnet *ifp)
3030 {
3031 	struct wpi_softc *sc = ifp->if_softc;
3032 	struct ieee80211com *ic = &sc->sc_ic;
3033 	uint32_t tmp;
3034 	int qid, ntries, error;
3035 
3036 	wpi_stop(ifp,1);
3037 	(void)wpi_reset(sc);
3038 
3039 	wpi_mem_lock(sc);
3040 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3041 	DELAY(20);
3042 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3043 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3044 	wpi_mem_unlock(sc);
3045 
3046 	(void)wpi_power_up(sc);
3047 	wpi_hw_config(sc);
3048 
3049 	/* init Rx ring */
3050 	wpi_mem_lock(sc);
3051 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3052 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3053 	    offsetof(struct wpi_shared, next));
3054 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3055 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3056 	wpi_mem_unlock(sc);
3057 
3058 	/* init Tx rings */
3059 	wpi_mem_lock(sc);
3060 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3061 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3062 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3063 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3064 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3065 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3066 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3067 
3068 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3069 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3070 
3071 	for (qid = 0; qid < 6; qid++) {
3072 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3073 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3074 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3075 	}
3076 	wpi_mem_unlock(sc);
3077 
3078 	/* clear "radio off" and "disable command" bits (reversed logic) */
3079 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3080 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3081 
3082 	/* clear any pending interrupts */
3083 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3084 	/* enable interrupts */
3085 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3086 
3087 	/* not sure why/if this is necessary... */
3088 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3089 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090 
3091 	if ((error = wpi_load_firmware(sc)) != 0) {
3092 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3093 		goto fail1;
3094 	}
3095 
3096 	/* Check the status of the radio switch */
3097 	if (wpi_getrfkill(sc)) {
3098 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3099 		error = EBUSY;
3100 		goto fail1;
3101 	}
3102 
3103 	/* wait for thermal sensors to calibrate */
3104 	for (ntries = 0; ntries < 1000; ntries++) {
3105 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3106 			break;
3107 		DELAY(10);
3108 	}
3109 	if (ntries == 1000) {
3110 		aprint_error_dev(sc->sc_dev,
3111 						 "timeout waiting for thermal sensors calibration\n");
3112 		error = ETIMEDOUT;
3113 		goto fail1;
3114 	}
3115 
3116 	DPRINTF(("temperature %d\n", sc->temp));
3117 
3118 	if ((error = wpi_config(sc)) != 0) {
3119 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3120 		goto fail1;
3121 	}
3122 
3123 	ifp->if_flags &= ~IFF_OACTIVE;
3124 	ifp->if_flags |= IFF_RUNNING;
3125 
3126 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3127 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3128 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3129 	}
3130 	else
3131 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3132 
3133 	return 0;
3134 
3135 fail1:	wpi_stop(ifp, 1);
3136 	return error;
3137 }
3138 
3139 
3140 static void
3141 wpi_stop(struct ifnet *ifp, int disable)
3142 {
3143 	struct wpi_softc *sc = ifp->if_softc;
3144 	struct ieee80211com *ic = &sc->sc_ic;
3145 	uint32_t tmp;
3146 	int ac;
3147 
3148 	ifp->if_timer = sc->sc_tx_timer = 0;
3149 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3150 
3151 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3152 
3153 	/* disable interrupts */
3154 	WPI_WRITE(sc, WPI_MASK, 0);
3155 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3156 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3157 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3158 
3159 	wpi_mem_lock(sc);
3160 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3161 	wpi_mem_unlock(sc);
3162 
3163 	/* reset all Tx rings */
3164 	for (ac = 0; ac < 4; ac++)
3165 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3166 	wpi_reset_tx_ring(sc, &sc->cmdq);
3167 
3168 	/* reset Rx ring */
3169 	wpi_reset_rx_ring(sc, &sc->rxq);
3170 
3171 	wpi_mem_lock(sc);
3172 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3173 	wpi_mem_unlock(sc);
3174 
3175 	DELAY(5);
3176 
3177 	wpi_stop_master(sc);
3178 
3179 	tmp = WPI_READ(sc, WPI_RESET);
3180 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3181 }
3182 
3183 static bool
3184 wpi_resume(device_t dv, const pmf_qual_t *qual)
3185 {
3186 	struct wpi_softc *sc = device_private(dv);
3187 
3188 	(void)wpi_reset(sc);
3189 
3190 	return true;
3191 }
3192 
3193 /*
3194  * Return whether or not the radio is enabled in hardware
3195  * (i.e. the rfkill switch is "off").
3196  */
3197 static int
3198 wpi_getrfkill(struct wpi_softc *sc)
3199 {
3200 	uint32_t tmp;
3201 
3202 	wpi_mem_lock(sc);
3203 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3204 	wpi_mem_unlock(sc);
3205 
3206 	return !(tmp & 0x01);
3207 }
3208 
3209 static int
3210 wpi_sysctl_radio(SYSCTLFN_ARGS)
3211 {
3212 	struct sysctlnode node;
3213 	struct wpi_softc *sc;
3214 	int val, error;
3215 
3216 	node = *rnode;
3217 	sc = (struct wpi_softc *)node.sysctl_data;
3218 
3219 	val = !wpi_getrfkill(sc);
3220 
3221 	node.sysctl_data = &val;
3222 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3223 
3224 	if (error || newp == NULL)
3225 		return error;
3226 
3227 	return 0;
3228 }
3229 
3230 static void
3231 wpi_sysctlattach(struct wpi_softc *sc)
3232 {
3233 	int rc;
3234 	const struct sysctlnode *rnode;
3235 	const struct sysctlnode *cnode;
3236 
3237 	struct sysctllog **clog = &sc->sc_sysctllog;
3238 
3239 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3240 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3241 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3242 		goto err;
3243 
3244 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3245 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3246 	    SYSCTL_DESCR("wpi controls and statistics"),
3247 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3248 		goto err;
3249 
3250 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3251 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3252 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3253 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3254 		goto err;
3255 
3256 #ifdef WPI_DEBUG
3257 	/* control debugging printfs */
3258 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3259 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3260 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3261 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3262 		goto err;
3263 #endif
3264 
3265 	return;
3266 err:
3267 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3268 }
3269