xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*  $NetBSD: if_wpi.c,v 1.33 2007/12/09 20:28:10 jmcneill Exp $    */
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.33 2007/12/09 20:28:10 jmcneill Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include "bpfilter.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48 
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 
68 #include <dev/firmload.h>
69 
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72 
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /*
83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84  */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87 
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 	{ 4, { 2, 4, 11, 22 } };
90 
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93 
94 static int  wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int  wpi_detach(device_t , int);
97 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
98 	void **, bus_size_t, bus_size_t, int);
99 static void wpi_dma_contig_free(struct wpi_dma_info *);
100 static int  wpi_alloc_shared(struct wpi_softc *);
101 static void wpi_free_shared(struct wpi_softc *);
102 static int  wpi_alloc_fwmem(struct wpi_softc *);
103 static void wpi_free_fwmem(struct wpi_softc *);
104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
106 static int  wpi_alloc_rpool(struct wpi_softc *);
107 static void wpi_free_rpool(struct wpi_softc *);
108 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
112 	int);
113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
116 static void wpi_newassoc(struct ieee80211_node *, int);
117 static int  wpi_media_change(struct ifnet *);
118 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
119 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
120 static void wpi_mem_lock(struct wpi_softc *);
121 static void wpi_mem_unlock(struct wpi_softc *);
122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
125 								   const uint32_t *, int);
126 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
127 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
128 static int  wpi_load_firmware(struct wpi_softc *);
129 static void wpi_calib_timeout(void *);
130 static void wpi_iter_func(void *, struct ieee80211_node *);
131 static void wpi_power_calibration(struct wpi_softc *, int);
132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
133 	struct wpi_rx_data *);
134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_notif_intr(struct wpi_softc *);
137 static int  wpi_intr(void *);
138 static void wpi_read_eeprom(struct wpi_softc *);
139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
141 static uint8_t wpi_plcp_signal(int);
142 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
143 	struct ieee80211_node *, int);
144 static void wpi_start(struct ifnet *);
145 static void wpi_watchdog(struct ifnet *);
146 static int  wpi_ioctl(struct ifnet *, u_long, void *);
147 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
148 static int  wpi_wme_update(struct ieee80211com *);
149 static int  wpi_mrr_setup(struct wpi_softc *);
150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
152 static int  wpi_set_txpower(struct wpi_softc *,
153 			    struct ieee80211_channel *, int);
154 static int  wpi_get_power_index(struct wpi_softc *,
155 		struct wpi_power_group *, struct ieee80211_channel *, int);
156 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
157 static int  wpi_auth(struct wpi_softc *);
158 static int  wpi_scan(struct wpi_softc *, uint16_t);
159 static int  wpi_config(struct wpi_softc *);
160 static void wpi_stop_master(struct wpi_softc *);
161 static int  wpi_power_up(struct wpi_softc *);
162 static int  wpi_reset(struct wpi_softc *);
163 static void wpi_hw_config(struct wpi_softc *);
164 static int  wpi_init(struct ifnet *);
165 static void wpi_stop(struct ifnet *, int);
166 static bool wpi_resume(device_t);
167 
168 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 	wpi_detach, NULL);
170 
171 static int
172 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
173 {
174 	struct pci_attach_args *pa = aux;
175 
176 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 		return 0;
178 
179 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 		return 1;
182 
183 	return 0;
184 }
185 
186 /* Base Address Register */
187 #define WPI_PCI_BAR0	0x10
188 
189 static void
190 wpi_attach(device_t parent __unused, device_t self, void *aux)
191 {
192 	struct wpi_softc *sc = device_private(self);
193 	struct ieee80211com *ic = &sc->sc_ic;
194 	struct ifnet *ifp = &sc->sc_ec.ec_if;
195 	struct pci_attach_args *pa = aux;
196 	const char *intrstr;
197 	char devinfo[256];
198 	bus_space_tag_t memt;
199 	bus_space_handle_t memh;
200 	pci_intr_handle_t ih;
201 	pcireg_t data;
202 	int error, ac, revision;
203 
204 	sc->sc_dev = self;
205 	sc->sc_pct = pa->pa_pc;
206 	sc->sc_pcitag = pa->pa_tag;
207 
208 	callout_init(&sc->calib_to, 0);
209 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
210 
211 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
212 	revision = PCI_REVISION(pa->pa_class);
213 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
214 
215 	pci_disable_retry(pa->pa_pc, pa->pa_tag);
216 
217 	/* enable bus-mastering */
218 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
219 	data |= PCI_COMMAND_MASTER_ENABLE;
220 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
221 
222 	/* map the register window */
223 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
224 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
225 	if (error != 0) {
226 		aprint_error_dev(self, "could not map memory space\n");
227 		return;
228 	}
229 
230 	sc->sc_st = memt;
231 	sc->sc_sh = memh;
232 	sc->sc_dmat = pa->pa_dmat;
233 
234 	if (pci_intr_map(pa, &ih) != 0) {
235 		aprint_error_dev(self, "could not map interrupt\n");
236 		return;
237 	}
238 
239 	intrstr = pci_intr_string(sc->sc_pct, ih);
240 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
241 	if (sc->sc_ih == NULL) {
242 		aprint_error_dev(self, "could not establish interrupt");
243 		if (intrstr != NULL)
244 			aprint_error(" at %s", intrstr);
245 		aprint_error("\n");
246 		return;
247 	}
248 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
249 
250 	if (wpi_reset(sc) != 0) {
251 		aprint_error_dev(self, "could not reset adapter\n");
252 		return;
253 	}
254 
255  	/*
256 	 * Allocate DMA memory for firmware transfers.
257 	 */
258 	if ((error = wpi_alloc_fwmem(sc)) != 0)
259 		return;
260 
261 	/*
262 	 * Allocate shared page and Tx/Rx rings.
263 	 */
264 	if ((error = wpi_alloc_shared(sc)) != 0) {
265 		aprint_error_dev(self, "could not allocate shared area\n");
266 		goto fail1;
267 	}
268 
269 	if ((error = wpi_alloc_rpool(sc)) != 0) {
270 		aprint_error_dev(self, "could not allocate Rx buffers\n");
271 		goto fail2;
272 	}
273 
274 	for (ac = 0; ac < 4; ac++) {
275 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
276 		if (error != 0) {
277 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
278 			goto fail3;
279 		}
280 	}
281 
282 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
283 	if (error != 0) {
284 		aprint_error_dev(self, "could not allocate command ring\n");
285 		goto fail3;
286 	}
287 
288 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
289 		aprint_error_dev(self, "could not allocate Rx ring\n");
290 		goto fail4;
291 	}
292 
293 	ic->ic_ifp = ifp;
294 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
295 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
296 	ic->ic_state = IEEE80211_S_INIT;
297 
298 	/* set device capabilities */
299 	ic->ic_caps =
300 		IEEE80211_C_IBSS |       /* IBSS mode support */
301 		IEEE80211_C_WPA |        /* 802.11i */
302 		IEEE80211_C_MONITOR |    /* monitor mode supported */
303 		IEEE80211_C_TXPMGT |     /* tx power management */
304 		IEEE80211_C_SHSLOT |     /* short slot time supported */
305 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
306 		IEEE80211_C_WME;         /* 802.11e */
307 
308 	/* read supported channels and MAC address from EEPROM */
309 	wpi_read_eeprom(sc);
310 
311 	/* set supported .11a, .11b, .11g rates */
312 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
313 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
314 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
315 
316 	ic->ic_ibss_chan = &ic->ic_channels[0];
317 
318 	ifp->if_softc = sc;
319 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
320 	ifp->if_init = wpi_init;
321 	ifp->if_stop = wpi_stop;
322 	ifp->if_ioctl = wpi_ioctl;
323 	ifp->if_start = wpi_start;
324 	ifp->if_watchdog = wpi_watchdog;
325 	IFQ_SET_READY(&ifp->if_snd);
326 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
327 
328 	if_attach(ifp);
329 	ieee80211_ifattach(ic);
330 	/* override default methods */
331 	ic->ic_node_alloc = wpi_node_alloc;
332 	ic->ic_newassoc = wpi_newassoc;
333 	ic->ic_wme.wme_update = wpi_wme_update;
334 
335 	/* override state transition machine */
336 	sc->sc_newstate = ic->ic_newstate;
337 	ic->ic_newstate = wpi_newstate;
338 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
339 
340 	sc->amrr.amrr_min_success_threshold = 1;
341 	sc->amrr.amrr_max_success_threshold = 15;
342 
343 	if (!pmf_device_register(self, NULL, wpi_resume))
344 		aprint_error_dev(self, "couldn't establish power handler\n");
345 	else
346 		pmf_class_network_register(self, ifp);
347 
348 #if NBPFILTER > 0
349 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
350 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
351 		&sc->sc_drvbpf);
352 
353 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
354 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
355 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
356 
357 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
358 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
359 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
360 #endif
361 
362 	ieee80211_announce(ic);
363 
364 	return;
365 
366 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
367 fail3:  while (--ac >= 0)
368 			wpi_free_tx_ring(sc, &sc->txq[ac]);
369 	wpi_free_rpool(sc);
370 fail2:	wpi_free_shared(sc);
371 fail1:	wpi_free_fwmem(sc);
372 }
373 
374 static int
375 wpi_detach(device_t self, int flags __unused)
376 {
377 	struct wpi_softc *sc = device_private(self);
378 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
379 	int ac;
380 
381 	wpi_stop(ifp, 1);
382 
383 #if NBPFILTER > 0
384 	if (ifp != NULL)
385 		bpfdetach(ifp);
386 #endif
387 	ieee80211_ifdetach(&sc->sc_ic);
388 	if (ifp != NULL)
389 		if_detach(ifp);
390 
391 	for (ac = 0; ac < 4; ac++)
392 		wpi_free_tx_ring(sc, &sc->txq[ac]);
393 	wpi_free_tx_ring(sc, &sc->cmdq);
394 	wpi_free_rx_ring(sc, &sc->rxq);
395 	wpi_free_rpool(sc);
396 	wpi_free_shared(sc);
397 
398 	if (sc->sc_ih != NULL) {
399 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
400 		sc->sc_ih = NULL;
401 	}
402 
403 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
404 
405 	return 0;
406 }
407 
408 static int
409 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
410 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
411 {
412 	int nsegs, error;
413 
414 	dma->tag = tag;
415 	dma->size = size;
416 
417 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
418 	if (error != 0)
419 		goto fail;
420 
421 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
422 	    flags);
423 	if (error != 0)
424 		goto fail;
425 
426 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
427 	if (error != 0)
428 		goto fail;
429 
430 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
431 	if (error != 0)
432 		goto fail;
433 
434 	memset(dma->vaddr, 0, size);
435 
436 	dma->paddr = dma->map->dm_segs[0].ds_addr;
437 	if (kvap != NULL)
438 		*kvap = dma->vaddr;
439 
440 	return 0;
441 
442 fail:   wpi_dma_contig_free(dma);
443 	return error;
444 }
445 
446 static void
447 wpi_dma_contig_free(struct wpi_dma_info *dma)
448 {
449 	if (dma->map != NULL) {
450 		if (dma->vaddr != NULL) {
451 			bus_dmamap_unload(dma->tag, dma->map);
452 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
453 			bus_dmamem_free(dma->tag, &dma->seg, 1);
454 			dma->vaddr = NULL;
455 		}
456 		bus_dmamap_destroy(dma->tag, dma->map);
457 		dma->map = NULL;
458 	}
459 }
460 
461 /*
462  * Allocate a shared page between host and NIC.
463  */
464 static int
465 wpi_alloc_shared(struct wpi_softc *sc)
466 {
467 	int error;
468 	/* must be aligned on a 4K-page boundary */
469 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
470 			(void **)&sc->shared, sizeof (struct wpi_shared),
471 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
472 	if (error != 0)
473 		aprint_error_dev(sc->sc_dev,
474 				"could not allocate shared area DMA memory\n");
475 
476 	return error;
477 }
478 
479 static void
480 wpi_free_shared(struct wpi_softc *sc)
481 {
482 	wpi_dma_contig_free(&sc->shared_dma);
483 }
484 
485 /*
486  * Allocate DMA-safe memory for firmware transfer.
487  */
488 static int
489 wpi_alloc_fwmem(struct wpi_softc *sc)
490 {
491 	int error;
492 	/* allocate enough contiguous space to store text and data */
493 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
494 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
495 	    BUS_DMA_NOWAIT);
496 
497 	if (error != 0)
498 		aprint_error_dev(sc->sc_dev,
499 			"could not allocate firmware transfer area"
500 			"DMA memory\n");
501 	return error;
502 }
503 
504 static void
505 wpi_free_fwmem(struct wpi_softc *sc)
506 {
507 	wpi_dma_contig_free(&sc->fw_dma);
508 }
509 
510 
511 static struct wpi_rbuf *
512 wpi_alloc_rbuf(struct wpi_softc *sc)
513 {
514 	struct wpi_rbuf *rbuf;
515 
516 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
517 	if (rbuf == NULL)
518 		return NULL;
519 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
520 	sc->rxq.nb_free_entries --;
521 
522 	return rbuf;
523 }
524 
525 /*
526  * This is called automatically by the network stack when the mbuf to which our
527  * Rx buffer is attached is freed.
528  */
529 static void
530 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
531 {
532 	struct wpi_rbuf *rbuf = arg;
533 	struct wpi_softc *sc = rbuf->sc;
534 
535 	/* put the buffer back in the free list */
536 
537 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
538 	sc->rxq.nb_free_entries ++;
539 
540 	if (__predict_true(m != NULL))
541 		pool_cache_put(mb_cache, m);
542 }
543 
544 static int
545 wpi_alloc_rpool(struct wpi_softc *sc)
546 {
547 	struct wpi_rx_ring *ring = &sc->rxq;
548 	struct wpi_rbuf *rbuf;
549 	int i, error;
550 
551 	/* allocate a big chunk of DMA'able memory.. */
552 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
553 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
554 	if (error != 0) {
555 		aprint_normal_dev(sc->sc_dev,
556 						  "could not allocate Rx buffers DMA memory\n");
557 		return error;
558 	}
559 
560 	/* ..and split it into 3KB chunks */
561 	SLIST_INIT(&ring->freelist);
562 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
563 		rbuf = &ring->rbuf[i];
564 		rbuf->sc = sc;	/* backpointer for callbacks */
565 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
566 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
567 
568 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
569 	}
570 
571 	ring->nb_free_entries = WPI_RBUF_COUNT;
572 	return 0;
573 }
574 
575 static void
576 wpi_free_rpool(struct wpi_softc *sc)
577 {
578 	wpi_dma_contig_free(&sc->rxq.buf_dma);
579 }
580 
581 static int
582 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
583 {
584 	struct wpi_rx_data *data;
585 	struct wpi_rbuf *rbuf;
586 	int i, error;
587 
588 	ring->cur = 0;
589 
590 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
591 		(void **)&ring->desc,
592 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
593 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
594 	if (error != 0) {
595 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
596 		goto fail;
597 	}
598 
599 	/*
600 	 * Setup Rx buffers.
601 	 */
602 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
603 		data = &ring->data[i];
604 
605 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
606 		if (data->m == NULL) {
607 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
608 			error = ENOMEM;
609 			goto fail;
610 		}
611 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
612 			m_freem(data->m);
613 			data->m = NULL;
614 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
615 			error = ENOMEM;
616 			goto fail;
617 		}
618 		/* attach Rx buffer to mbuf */
619 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
620 		    rbuf);
621 		data->m->m_flags |= M_EXT_RW;
622 
623 		ring->desc[i] = htole32(rbuf->paddr);
624 	}
625 
626 	return 0;
627 
628 fail:	wpi_free_rx_ring(sc, ring);
629 	return error;
630 }
631 
632 static void
633 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
634 {
635 	int ntries;
636 
637 	wpi_mem_lock(sc);
638 
639 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
640 	for (ntries = 0; ntries < 100; ntries++) {
641 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
642 			break;
643 		DELAY(10);
644 	}
645 #ifdef WPI_DEBUG
646 	if (ntries == 100 && wpi_debug > 0)
647 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
648 #endif
649 	wpi_mem_unlock(sc);
650 
651 	ring->cur = 0;
652 }
653 
654 static void
655 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
656 {
657 	int i;
658 
659 	wpi_dma_contig_free(&ring->desc_dma);
660 
661 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
662 		if (ring->data[i].m != NULL)
663 			m_freem(ring->data[i].m);
664 	}
665 }
666 
667 static int
668 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
669 	int qid)
670 {
671 	struct wpi_tx_data *data;
672 	int i, error;
673 
674 	ring->qid = qid;
675 	ring->count = count;
676 	ring->queued = 0;
677 	ring->cur = 0;
678 
679 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
680 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
681 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
682 	if (error != 0) {
683 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
684 		goto fail;
685 	}
686 
687 	/* update shared page with ring's base address */
688 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
689 
690 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
691 		(void **)&ring->cmd,
692 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
693 	if (error != 0) {
694 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
695 		goto fail;
696 	}
697 
698 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
699 		M_NOWAIT);
700 	if (ring->data == NULL) {
701 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
702 		goto fail;
703 	}
704 
705 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
706 
707 	for (i = 0; i < count; i++) {
708 		data = &ring->data[i];
709 
710 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
711 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
712 			&data->map);
713 		if (error != 0) {
714 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
715 			goto fail;
716 		}
717 	}
718 
719 	return 0;
720 
721 fail:	wpi_free_tx_ring(sc, ring);
722 	return error;
723 }
724 
725 static void
726 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
727 {
728 	struct wpi_tx_data *data;
729 	int i, ntries;
730 
731 	wpi_mem_lock(sc);
732 
733 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
734 	for (ntries = 0; ntries < 100; ntries++) {
735 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
736 			break;
737 		DELAY(10);
738 	}
739 #ifdef WPI_DEBUG
740 	if (ntries == 100 && wpi_debug > 0) {
741 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
742 									   ring->qid);
743 	}
744 #endif
745 	wpi_mem_unlock(sc);
746 
747 	for (i = 0; i < ring->count; i++) {
748 		data = &ring->data[i];
749 
750 		if (data->m != NULL) {
751 			bus_dmamap_unload(sc->sc_dmat, data->map);
752 			m_freem(data->m);
753 			data->m = NULL;
754 		}
755 	}
756 
757 	ring->queued = 0;
758 	ring->cur = 0;
759 }
760 
761 static void
762 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
763 {
764 	struct wpi_tx_data *data;
765 	int i;
766 
767 	wpi_dma_contig_free(&ring->desc_dma);
768 	wpi_dma_contig_free(&ring->cmd_dma);
769 
770 	if (ring->data != NULL) {
771 		for (i = 0; i < ring->count; i++) {
772 			data = &ring->data[i];
773 
774 			if (data->m != NULL) {
775 				bus_dmamap_unload(sc->sc_dmat, data->map);
776 				m_freem(data->m);
777 			}
778 		}
779 		free(ring->data, M_DEVBUF);
780 	}
781 }
782 
783 /*ARGUSED*/
784 static struct ieee80211_node *
785 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
786 {
787 	struct wpi_node *wn;
788 
789 	wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
790 
791 	if (wn != NULL)
792 		memset(wn, 0, sizeof (struct wpi_node));
793 	return (struct ieee80211_node *)wn;
794 }
795 
796 static void
797 wpi_newassoc(struct ieee80211_node *ni, int isnew)
798 {
799 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
800 	int i;
801 
802 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
803 
804 	/* set rate to some reasonable initial value */
805 	for (i = ni->ni_rates.rs_nrates - 1;
806 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
807 	     i--);
808 	ni->ni_txrate = i;
809 }
810 
811 static int
812 wpi_media_change(struct ifnet *ifp)
813 {
814 	int error;
815 
816 	error = ieee80211_media_change(ifp);
817 	if (error != ENETRESET)
818 		return error;
819 
820 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
821 		wpi_init(ifp);
822 
823 	return 0;
824 }
825 
826 static int
827 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
828 {
829 	struct ifnet *ifp = ic->ic_ifp;
830 	struct wpi_softc *sc = ifp->if_softc;
831 	struct ieee80211_node *ni;
832 	int error;
833 
834 	callout_stop(&sc->calib_to);
835 
836 	switch (nstate) {
837 	case IEEE80211_S_SCAN:
838 
839 		if (sc->is_scanning)
840 			break;
841 
842 		sc->is_scanning = true;
843 		ieee80211_node_table_reset(&ic->ic_scan);
844 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
845 
846 		/* make the link LED blink while we're scanning */
847 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
848 
849 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
850 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
851 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
852 			return error;
853 		}
854 
855 		ic->ic_state = nstate;
856 		return 0;
857 
858 	case IEEE80211_S_ASSOC:
859 		if (ic->ic_state != IEEE80211_S_RUN)
860 			break;
861 		/* FALLTHROUGH */
862 	case IEEE80211_S_AUTH:
863 		sc->config.associd = 0;
864 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
865 		if ((error = wpi_auth(sc)) != 0) {
866 			aprint_error_dev(sc->sc_dev,
867 							"could not send authentication request\n");
868 			return error;
869 		}
870 		break;
871 
872 	case IEEE80211_S_RUN:
873 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
874 			/* link LED blinks while monitoring */
875 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
876 			break;
877 		}
878 
879 		ni = ic->ic_bss;
880 
881 		if (ic->ic_opmode != IEEE80211_M_STA) {
882 			(void) wpi_auth(sc);    /* XXX */
883 			wpi_setup_beacon(sc, ni);
884 		}
885 
886 		wpi_enable_tsf(sc, ni);
887 
888 		/* update adapter's configuration */
889 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
890 		/* short preamble/slot time are negotiated when associating */
891 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
892 			WPI_CONFIG_SHSLOT);
893 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
894 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
895 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
896 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
897 		sc->config.filter |= htole32(WPI_FILTER_BSS);
898 		if (ic->ic_opmode != IEEE80211_M_STA)
899 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
900 
901 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
902 
903 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
904 			sc->config.flags));
905 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
906 			sizeof (struct wpi_config), 1);
907 		if (error != 0) {
908 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
909 			return error;
910 		}
911 
912 		/* configuration has changed, set Tx power accordingly */
913 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
914 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
915 			return error;
916 		}
917 
918 		if (ic->ic_opmode == IEEE80211_M_STA) {
919 			/* fake a join to init the tx rate */
920 			wpi_newassoc(ni, 1);
921 		}
922 
923 		/* start periodic calibration timer */
924 		sc->calib_cnt = 0;
925 		callout_schedule(&sc->calib_to, hz/2);
926 
927 		/* link LED always on while associated */
928 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
929 		break;
930 
931 	case IEEE80211_S_INIT:
932 		sc->is_scanning = false;
933 		break;
934 	}
935 
936 	return sc->sc_newstate(ic, nstate, arg);
937 }
938 
939 /*
940  * XXX: Hack to set the current channel to the value advertised in beacons or
941  * probe responses. Only used during AP detection.
942  * XXX: Duplicated from if_iwi.c
943  */
944 static void
945 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
946 {
947 	struct ieee80211_frame *wh;
948 	uint8_t subtype;
949 	uint8_t *frm, *efrm;
950 
951 	wh = mtod(m, struct ieee80211_frame *);
952 
953 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
954 		return;
955 
956 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
957 
958 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
959 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
960 		return;
961 
962 	frm = (uint8_t *)(wh + 1);
963 	efrm = mtod(m, uint8_t *) + m->m_len;
964 
965 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
966 	while (frm < efrm) {
967 		if (*frm == IEEE80211_ELEMID_DSPARMS)
968 #if IEEE80211_CHAN_MAX < 255
969 		if (frm[2] <= IEEE80211_CHAN_MAX)
970 #endif
971 			ic->ic_curchan = &ic->ic_channels[frm[2]];
972 
973 		frm += frm[1] + 2;
974 	}
975 }
976 
977 /*
978  * Grab exclusive access to NIC memory.
979  */
980 static void
981 wpi_mem_lock(struct wpi_softc *sc)
982 {
983 	uint32_t tmp;
984 	int ntries;
985 
986 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
987 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
988 
989 	/* spin until we actually get the lock */
990 	for (ntries = 0; ntries < 1000; ntries++) {
991 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
992 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
993 			break;
994 		DELAY(10);
995 	}
996 	if (ntries == 1000)
997 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
998 }
999 
1000 /*
1001  * Release lock on NIC memory.
1002  */
1003 static void
1004 wpi_mem_unlock(struct wpi_softc *sc)
1005 {
1006 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1007 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1008 }
1009 
1010 static uint32_t
1011 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1012 {
1013 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1014 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1015 }
1016 
1017 static void
1018 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1019 {
1020 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1021 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1022 }
1023 
1024 static void
1025 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1026 						const uint32_t *data, int wlen)
1027 {
1028 	for (; wlen > 0; wlen--, data++, addr += 4)
1029 		wpi_mem_write(sc, addr, *data);
1030 }
1031 
1032 
1033 /*
1034  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1035  * instead of using the traditional bit-bang method.
1036  */
1037 static int
1038 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1039 {
1040 	uint8_t *out = data;
1041 	uint32_t val;
1042 	int ntries;
1043 
1044 	wpi_mem_lock(sc);
1045 	for (; len > 0; len -= 2, addr++) {
1046 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1047 
1048 		for (ntries = 0; ntries < 10; ntries++) {
1049 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1050 			    WPI_EEPROM_READY)
1051 				break;
1052 			DELAY(5);
1053 		}
1054 		if (ntries == 10) {
1055 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1056 			return ETIMEDOUT;
1057 		}
1058 		*out++ = val >> 16;
1059 		if (len > 1)
1060 			*out++ = val >> 24;
1061 	}
1062 	wpi_mem_unlock(sc);
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * The firmware boot code is small and is intended to be copied directly into
1069  * the NIC internal memory.
1070  */
1071 int
1072 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1073 {
1074 	int ntries;
1075 
1076 	size /= sizeof (uint32_t);
1077 
1078 	wpi_mem_lock(sc);
1079 
1080 	/* copy microcode image into NIC memory */
1081 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1082 	    (const uint32_t *)ucode, size);
1083 
1084 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1085 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1086 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1087 
1088 	/* run microcode */
1089 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1090 
1091 	/* wait for transfer to complete */
1092 	for (ntries = 0; ntries < 1000; ntries++) {
1093 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1094 			break;
1095 		DELAY(10);
1096 	}
1097 	if (ntries == 1000) {
1098 		wpi_mem_unlock(sc);
1099 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1100 		return ETIMEDOUT;
1101 	}
1102 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1103 
1104 	wpi_mem_unlock(sc);
1105 
1106 	return 0;
1107 }
1108 
1109 static int
1110 wpi_load_firmware(struct wpi_softc *sc)
1111 {
1112 	struct wpi_dma_info *dma = &sc->fw_dma;
1113 	struct wpi_firmware_hdr hdr;
1114 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1115 	const uint8_t *boot_text;
1116 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1117 	uint32_t boot_textsz;
1118 	firmware_handle_t fw;
1119 	u_char *dfw;
1120 	size_t size;
1121 	int error;
1122 
1123 	/* load firmware image from disk */
1124 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1125 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1126 		goto fail1;
1127 	}
1128 
1129 	size = firmware_get_size(fw);
1130 
1131 	/* extract firmware header information */
1132 	if (size < sizeof (struct wpi_firmware_hdr)) {
1133 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1134 		    			 size);
1135 		error = EINVAL;
1136 		goto fail2;
1137 	}
1138 
1139 	if ((error = firmware_read(fw, 0, &hdr,
1140 		sizeof (struct wpi_firmware_hdr))) != 0) {
1141 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1142 		goto fail2;
1143 	}
1144 
1145 	main_textsz = le32toh(hdr.main_textsz);
1146 	main_datasz = le32toh(hdr.main_datasz);
1147 	init_textsz = le32toh(hdr.init_textsz);
1148 	init_datasz = le32toh(hdr.init_datasz);
1149 	boot_textsz = le32toh(hdr.boot_textsz);
1150 
1151 	/* sanity-check firmware segments sizes */
1152 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1153 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1154 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1155 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1156 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1157 	    (boot_textsz & 3) != 0) {
1158 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1159 		error = EINVAL;
1160 		goto fail2;
1161 	}
1162 
1163 	/* check that all firmware segments are present */
1164 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1165 		main_datasz + init_textsz + init_datasz + boot_textsz) {
1166 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1167 		    			 size);
1168 		error = EINVAL;
1169 		goto fail2;
1170 	}
1171 
1172 	dfw = firmware_malloc(size);
1173 	if (dfw == NULL) {
1174 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1175 		error = ENOMEM;
1176 		goto fail2;
1177 	}
1178 
1179 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1180 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1181 		goto fail2;
1182 	}
1183 
1184 	/* get pointers to firmware segments */
1185 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
1186 	main_data = main_text + main_textsz;
1187 	init_text = main_data + main_datasz;
1188 	init_data = init_text + init_textsz;
1189 	boot_text = init_data + init_datasz;
1190 
1191 	/* copy initialization images into pre-allocated DMA-safe memory */
1192 	memcpy(dma->vaddr, init_data, init_datasz);
1193 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1194 
1195 	/* tell adapter where to find initialization images */
1196 	wpi_mem_lock(sc);
1197 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1198 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1199 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1200 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1201 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1202 	wpi_mem_unlock(sc);
1203 
1204 	/* load firmware boot code */
1205 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1206 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1207 		goto fail3;
1208 	}
1209 
1210 	/* now press "execute" ;-) */
1211 	WPI_WRITE(sc, WPI_RESET, 0);
1212 
1213 	/* ..and wait at most one second for adapter to initialize */
1214 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1215 		/* this isn't what was supposed to happen.. */
1216 		aprint_error_dev(sc->sc_dev,
1217 					"timeout waiting for adapter to initialize\n");
1218 	}
1219 
1220 	/* copy runtime images into pre-allocated DMA-safe memory */
1221 	memcpy(dma->vaddr, main_data, main_datasz);
1222 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1223 
1224 	/* tell adapter where to find runtime images */
1225 	wpi_mem_lock(sc);
1226 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1227 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1228 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1229 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1230 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1231 	wpi_mem_unlock(sc);
1232 
1233 	/* wait at most one second for second alive notification */
1234 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1235 		/* this isn't what was supposed to happen.. */
1236 		aprint_error_dev(sc->sc_dev,
1237 						"timeout waiting for adapter to initialize\n");
1238 	}
1239 
1240 
1241 fail3: 	firmware_free(dfw,size);
1242 fail2:	firmware_close(fw);
1243 fail1:	return error;
1244 }
1245 
1246 static void
1247 wpi_calib_timeout(void *arg)
1248 {
1249 	struct wpi_softc *sc = arg;
1250 	struct ieee80211com *ic = &sc->sc_ic;
1251 	int temp, s;
1252 
1253 	/* automatic rate control triggered every 500ms */
1254 	if (ic->ic_fixed_rate == -1) {
1255 		s = splnet();
1256 		if (ic->ic_opmode == IEEE80211_M_STA)
1257 			wpi_iter_func(sc, ic->ic_bss);
1258 		else
1259                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1260 		splx(s);
1261 	}
1262 
1263 	/* update sensor data */
1264 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1265 
1266 	/* automatic power calibration every 60s */
1267 	if (++sc->calib_cnt >= 120) {
1268 		wpi_power_calibration(sc, temp);
1269 		sc->calib_cnt = 0;
1270 	}
1271 
1272 	callout_schedule(&sc->calib_to, hz/2);
1273 }
1274 
1275 static void
1276 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1277 {
1278 	struct wpi_softc *sc = arg;
1279 	struct wpi_node *wn = (struct wpi_node *)ni;
1280 
1281 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1282 }
1283 
1284 /*
1285  * This function is called periodically (every 60 seconds) to adjust output
1286  * power to temperature changes.
1287  */
1288 void
1289 wpi_power_calibration(struct wpi_softc *sc, int temp)
1290 {
1291 	/* sanity-check read value */
1292 	if (temp < -260 || temp > 25) {
1293 		/* this can't be correct, ignore */
1294 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1295 		return;
1296 	}
1297 
1298 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1299 
1300 	/* adjust Tx power if need be */
1301 	if (abs(temp - sc->temp) <= 6)
1302 		return;
1303 
1304 	sc->temp = temp;
1305 
1306 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1307 		/* just warn, too bad for the automatic calibration... */
1308 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1309 	}
1310 }
1311 
1312 static void
1313 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1314 	struct wpi_rx_data *data)
1315 {
1316 	struct ieee80211com *ic = &sc->sc_ic;
1317 	struct ifnet *ifp = ic->ic_ifp;
1318 	struct wpi_rx_ring *ring = &sc->rxq;
1319 	struct wpi_rx_stat *stat;
1320 	struct wpi_rx_head *head;
1321 	struct wpi_rx_tail *tail;
1322 	struct wpi_rbuf *rbuf;
1323 	struct ieee80211_frame *wh;
1324 	struct ieee80211_node *ni;
1325 	struct mbuf *m, *mnew;
1326 	int data_off ;
1327 
1328 	stat = (struct wpi_rx_stat *)(desc + 1);
1329 
1330 	if (stat->len > WPI_STAT_MAXLEN) {
1331 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1332 		ifp->if_ierrors++;
1333 		return;
1334 	}
1335 
1336 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1337 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1338 
1339 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1340 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1341 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1342 		le64toh(tail->tstamp)));
1343 
1344 	/*
1345 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1346 	 * to radiotap in monitor mode).
1347 	 */
1348 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1349 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1350 		ifp->if_ierrors++;
1351 		return;
1352 	}
1353 
1354 	/* Compute where are the useful datas */
1355 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1356 
1357 	/*
1358 	 * If the number of free entry is too low
1359 	 * just dup the data->m socket and reuse the same rbuf entry
1360 	 */
1361 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1362 
1363 		/* Prepare the mbuf for the m_dup */
1364 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1365 		data->m->m_data = (char*) data->m->m_data + data_off;
1366 
1367 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1368 
1369 		/* Restore the m_data pointer for future use */
1370 		data->m->m_data = (char*) data->m->m_data - data_off;
1371 
1372 		if (m == NULL) {
1373 			ifp->if_ierrors++;
1374 			return;
1375 		}
1376 	} else {
1377 
1378 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1379 		if (mnew == NULL) {
1380 			ifp->if_ierrors++;
1381 			return;
1382 		}
1383 
1384 		rbuf = wpi_alloc_rbuf(sc);
1385 		KASSERT(rbuf != NULL);
1386 
1387  		/* attach Rx buffer to mbuf */
1388 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1389 		 	rbuf);
1390 		mnew->m_flags |= M_EXT_RW;
1391 
1392 		m = data->m;
1393 		data->m = mnew;
1394 
1395 		/* update Rx descriptor */
1396 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1397 
1398 		m->m_data = (char*)m->m_data + data_off;
1399 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1400 	}
1401 
1402 	/* finalize mbuf */
1403 	m->m_pkthdr.rcvif = ifp;
1404 
1405 	if (ic->ic_state == IEEE80211_S_SCAN)
1406 		wpi_fix_channel(ic, m);
1407 
1408 #if NBPFILTER > 0
1409 	if (sc->sc_drvbpf != NULL) {
1410 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1411 
1412 		tap->wr_flags = 0;
1413 		tap->wr_chan_freq =
1414 			htole16(ic->ic_channels[head->chan].ic_freq);
1415 		tap->wr_chan_flags =
1416 			htole16(ic->ic_channels[head->chan].ic_flags);
1417 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1418 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1419 		tap->wr_tsft = tail->tstamp;
1420 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1421 		switch (head->rate) {
1422 		/* CCK rates */
1423 		case  10: tap->wr_rate =   2; break;
1424 		case  20: tap->wr_rate =   4; break;
1425 		case  55: tap->wr_rate =  11; break;
1426 		case 110: tap->wr_rate =  22; break;
1427 		/* OFDM rates */
1428 		case 0xd: tap->wr_rate =  12; break;
1429 		case 0xf: tap->wr_rate =  18; break;
1430 		case 0x5: tap->wr_rate =  24; break;
1431 		case 0x7: tap->wr_rate =  36; break;
1432 		case 0x9: tap->wr_rate =  48; break;
1433 		case 0xb: tap->wr_rate =  72; break;
1434 		case 0x1: tap->wr_rate =  96; break;
1435 		case 0x3: tap->wr_rate = 108; break;
1436 		/* unknown rate: should not happen */
1437 		default:  tap->wr_rate =   0;
1438 		}
1439 		if (le16toh(head->flags) & 0x4)
1440 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1441 
1442 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1443 	}
1444 #endif
1445 
1446 	/* grab a reference to the source node */
1447 	wh = mtod(m, struct ieee80211_frame *);
1448 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1449 
1450 	/* send the frame to the 802.11 layer */
1451 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1452 
1453 	/* release node reference */
1454 	ieee80211_free_node(ni);
1455 }
1456 
1457 static void
1458 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1459 {
1460 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1461 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1462 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1463 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1464 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1465 
1466 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1467 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1468 		stat->nkill, stat->rate, le32toh(stat->duration),
1469 		le32toh(stat->status)));
1470 
1471 	/*
1472 	 * Update rate control statistics for the node.
1473 	 * XXX we should not count mgmt frames since they're always sent at
1474 	 * the lowest available bit-rate.
1475 	 */
1476 	wn->amn.amn_txcnt++;
1477 	if (stat->ntries > 0) {
1478 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1479 		wn->amn.amn_retrycnt++;
1480 	}
1481 
1482 	if ((le32toh(stat->status) & 0xff) != 1)
1483 		ifp->if_oerrors++;
1484 	else
1485 		ifp->if_opackets++;
1486 
1487 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1488 	m_freem(txdata->m);
1489 	txdata->m = NULL;
1490 	ieee80211_free_node(txdata->ni);
1491 	txdata->ni = NULL;
1492 
1493 	ring->queued--;
1494 
1495 	sc->sc_tx_timer = 0;
1496 	ifp->if_flags &= ~IFF_OACTIVE;
1497 	wpi_start(ifp);
1498 }
1499 
1500 static void
1501 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1502 {
1503 	struct wpi_tx_ring *ring = &sc->cmdq;
1504 	struct wpi_tx_data *data;
1505 
1506 	if ((desc->qid & 7) != 4)
1507 		return;	/* not a command ack */
1508 
1509 	data = &ring->data[desc->idx];
1510 
1511 	/* if the command was mapped in a mbuf, free it */
1512 	if (data->m != NULL) {
1513 		bus_dmamap_unload(sc->sc_dmat, data->map);
1514 		m_freem(data->m);
1515 		data->m = NULL;
1516 	}
1517 
1518 	wakeup(&ring->cmd[desc->idx]);
1519 }
1520 
1521 static void
1522 wpi_notif_intr(struct wpi_softc *sc)
1523 {
1524 	struct ieee80211com *ic = &sc->sc_ic;
1525 	struct ifnet *ifp =  ic->ic_ifp;
1526 	struct wpi_rx_desc *desc;
1527 	struct wpi_rx_data *data;
1528 	uint32_t hw;
1529 
1530 	hw = le32toh(sc->shared->next);
1531 	while (sc->rxq.cur != hw) {
1532 		data = &sc->rxq.data[sc->rxq.cur];
1533 
1534 		desc = mtod(data->m, struct wpi_rx_desc *);
1535 
1536 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1537 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1538 			desc->type, le32toh(desc->len)));
1539 
1540 		if (!(desc->qid & 0x80))	/* reply to a command */
1541 			wpi_cmd_intr(sc, desc);
1542 
1543 		switch (desc->type) {
1544 		case WPI_RX_DONE:
1545 			/* a 802.11 frame was received */
1546 			wpi_rx_intr(sc, desc, data);
1547 			break;
1548 
1549 		case WPI_TX_DONE:
1550 			/* a 802.11 frame has been transmitted */
1551 			wpi_tx_intr(sc, desc);
1552 			break;
1553 
1554 		case WPI_UC_READY:
1555 		{
1556 			struct wpi_ucode_info *uc =
1557 				(struct wpi_ucode_info *)(desc + 1);
1558 
1559 			/* the microcontroller is ready */
1560 			DPRINTF(("microcode alive notification version %x "
1561 				"alive %x\n", le32toh(uc->version),
1562 				le32toh(uc->valid)));
1563 
1564 			if (le32toh(uc->valid) != 1) {
1565 				aprint_error_dev(sc->sc_dev,
1566 					"microcontroller initialization failed\n");
1567 			}
1568 			break;
1569 		}
1570 		case WPI_STATE_CHANGED:
1571 		{
1572 			uint32_t *status = (uint32_t *)(desc + 1);
1573 
1574 			/* enabled/disabled notification */
1575 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1576 
1577 			if (le32toh(*status) & 1) {
1578 				/* the radio button has to be pushed */
1579 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1580 				/* turn the interface down */
1581 				ifp->if_flags &= ~IFF_UP;
1582 				wpi_stop(ifp, 1);
1583 				return;	/* no further processing */
1584 			}
1585 			break;
1586 		}
1587 		case WPI_START_SCAN:
1588 		{
1589 			struct wpi_start_scan *scan =
1590 				(struct wpi_start_scan *)(desc + 1);
1591 
1592 			DPRINTFN(2, ("scanning channel %d status %x\n",
1593 				scan->chan, le32toh(scan->status)));
1594 
1595 			/* fix current channel */
1596 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1597 			break;
1598 		}
1599 		case WPI_STOP_SCAN:
1600 		{
1601 			struct wpi_stop_scan *scan =
1602 				(struct wpi_stop_scan *)(desc + 1);
1603 
1604 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1605 				scan->nchan, scan->status, scan->chan));
1606 
1607 			if (scan->status == 1 && scan->chan <= 14) {
1608 				/*
1609 				 * We just finished scanning 802.11g channels,
1610 				 * start scanning 802.11a ones.
1611 				 */
1612 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1613 					break;
1614 			}
1615 			sc->is_scanning = false;
1616 			ieee80211_end_scan(ic);
1617 			break;
1618 		}
1619 		}
1620 
1621 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1622 	}
1623 
1624 	/* tell the firmware what we have processed */
1625 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1626 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1627 }
1628 
1629 static int
1630 wpi_intr(void *arg)
1631 {
1632 	struct wpi_softc *sc = arg;
1633 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1634 	uint32_t r;
1635 
1636 	r = WPI_READ(sc, WPI_INTR);
1637 	if (r == 0 || r == 0xffffffff)
1638 		return 0;	/* not for us */
1639 
1640 	DPRINTFN(5, ("interrupt reg %x\n", r));
1641 
1642 	/* disable interrupts */
1643 	WPI_WRITE(sc, WPI_MASK, 0);
1644 	/* ack interrupts */
1645 	WPI_WRITE(sc, WPI_INTR, r);
1646 
1647 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1648 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1649 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1650 		wpi_stop(sc->sc_ic.ic_ifp, 1);
1651 		return 1;
1652 	}
1653 
1654 	if (r & WPI_RX_INTR)
1655 		wpi_notif_intr(sc);
1656 
1657 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1658 		wakeup(sc);
1659 
1660 	/* re-enable interrupts */
1661 	if (ifp->if_flags & IFF_UP)
1662 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1663 
1664 	return 1;
1665 }
1666 
1667 static uint8_t
1668 wpi_plcp_signal(int rate)
1669 {
1670 	switch (rate) {
1671 	/* CCK rates (returned values are device-dependent) */
1672 	case 2:		return 10;
1673 	case 4:		return 20;
1674 	case 11:	return 55;
1675 	case 22:	return 110;
1676 
1677 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1678 	/* R1-R4, (u)ral is R4-R1 */
1679 	case 12:	return 0xd;
1680 	case 18:	return 0xf;
1681 	case 24:	return 0x5;
1682 	case 36:	return 0x7;
1683 	case 48:	return 0x9;
1684 	case 72:	return 0xb;
1685 	case 96:	return 0x1;
1686 	case 108:	return 0x3;
1687 
1688 	/* unsupported rates (should not get there) */
1689 	default:	return 0;
1690 	}
1691 }
1692 
1693 /* quickly determine if a given rate is CCK or OFDM */
1694 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1695 
1696 static int
1697 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1698 	int ac)
1699 {
1700 	struct ieee80211com *ic = &sc->sc_ic;
1701 	struct wpi_tx_ring *ring = &sc->txq[ac];
1702 	struct wpi_tx_desc *desc;
1703 	struct wpi_tx_data *data;
1704 	struct wpi_tx_cmd *cmd;
1705 	struct wpi_cmd_data *tx;
1706 	struct ieee80211_frame *wh;
1707 	struct ieee80211_key *k;
1708 	const struct chanAccParams *cap;
1709 	struct mbuf *mnew;
1710 	int i, error, rate, hdrlen, noack = 0;
1711 
1712 	desc = &ring->desc[ring->cur];
1713 	data = &ring->data[ring->cur];
1714 
1715 	wh = mtod(m0, struct ieee80211_frame *);
1716 
1717 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1718 		cap = &ic->ic_wme.wme_chanParams;
1719 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1720 	}
1721 
1722 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1723 		k = ieee80211_crypto_encap(ic, ni, m0);
1724 		if (k == NULL) {
1725 			m_freem(m0);
1726 			return ENOBUFS;
1727 		}
1728 
1729 		/* packet header may have moved, reset our local pointer */
1730 		wh = mtod(m0, struct ieee80211_frame *);
1731 	}
1732 
1733 	hdrlen = ieee80211_anyhdrsize(wh);
1734 
1735 	/* pickup a rate */
1736 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1737 		IEEE80211_FC0_TYPE_MGT) {
1738 		/* mgmt frames are sent at the lowest available bit-rate */
1739 		rate = ni->ni_rates.rs_rates[0];
1740 	} else {
1741 		if (ic->ic_fixed_rate != -1) {
1742 			rate = ic->ic_sup_rates[ic->ic_curmode].
1743 				rs_rates[ic->ic_fixed_rate];
1744 		} else
1745 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1746 	}
1747 	rate &= IEEE80211_RATE_VAL;
1748 
1749 
1750 #if NBPFILTER > 0
1751 	if (sc->sc_drvbpf != NULL) {
1752 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1753 
1754 		tap->wt_flags = 0;
1755 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1756 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1757 		tap->wt_rate = rate;
1758 		tap->wt_hwqueue = ac;
1759 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1760 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1761 
1762 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1763 	}
1764 #endif
1765 
1766 	cmd = &ring->cmd[ring->cur];
1767 	cmd->code = WPI_CMD_TX_DATA;
1768 	cmd->flags = 0;
1769 	cmd->qid = ring->qid;
1770 	cmd->idx = ring->cur;
1771 
1772 	tx = (struct wpi_cmd_data *)cmd->data;
1773 	tx->flags = 0;
1774 
1775 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1776 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1777 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1778 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1779 
1780 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1781 
1782 	/* retrieve destination node's id */
1783 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1784 		WPI_ID_BSS;
1785 
1786 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1787 		IEEE80211_FC0_TYPE_MGT) {
1788 		/* tell h/w to set timestamp in probe responses */
1789 		if ((wh->i_fc[0] &
1790 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1791 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1792 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1793 
1794 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1795 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1796 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1797 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1798 			tx->timeout = htole16(3);
1799 		else
1800 			tx->timeout = htole16(2);
1801 	} else
1802 		tx->timeout = htole16(0);
1803 
1804 	tx->rate = wpi_plcp_signal(rate);
1805 
1806 	/* be very persistant at sending frames out */
1807 	tx->rts_ntries = 7;
1808 	tx->data_ntries = 15;
1809 
1810 	tx->ofdm_mask = 0xff;
1811 	tx->cck_mask = 0xf;
1812 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1813 
1814 	tx->len = htole16(m0->m_pkthdr.len);
1815 
1816 	/* save and trim IEEE802.11 header */
1817 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1818 	m_adj(m0, hdrlen);
1819 
1820 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1821 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1822 	if (error != 0 && error != EFBIG) {
1823 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1824 		m_freem(m0);
1825 		return error;
1826 	}
1827 	if (error != 0) {
1828 		/* too many fragments, linearize */
1829 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1830 		if (mnew == NULL) {
1831 			m_freem(m0);
1832 			return ENOMEM;
1833 		}
1834 
1835 		M_COPY_PKTHDR(mnew, m0);
1836 		if (m0->m_pkthdr.len > MHLEN) {
1837 			MCLGET(mnew, M_DONTWAIT);
1838 			if (!(mnew->m_flags & M_EXT)) {
1839 				m_freem(m0);
1840 				m_freem(mnew);
1841 				return ENOMEM;
1842 			}
1843 		}
1844 
1845 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1846 		m_freem(m0);
1847 		mnew->m_len = mnew->m_pkthdr.len;
1848 		m0 = mnew;
1849 
1850 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1851 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1852 		if (error != 0) {
1853 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1854 							 error);
1855 			m_freem(m0);
1856 			return error;
1857 		}
1858 	}
1859 
1860 	data->m = m0;
1861 	data->ni = ni;
1862 
1863 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1864 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1865 
1866 	/* first scatter/gather segment is used by the tx data command */
1867 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1868 		(1 + data->map->dm_nsegs) << 24);
1869 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1870 		ring->cur * sizeof (struct wpi_tx_cmd));
1871 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1872 						 ((hdrlen + 3) & ~3));
1873 
1874 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1875 		desc->segs[i].addr =
1876 			htole32(data->map->dm_segs[i - 1].ds_addr);
1877 		desc->segs[i].len  =
1878 			htole32(data->map->dm_segs[i - 1].ds_len);
1879 	}
1880 
1881 	ring->queued++;
1882 
1883 	/* kick ring */
1884 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1885 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1886 
1887 	return 0;
1888 }
1889 
1890 static void
1891 wpi_start(struct ifnet *ifp)
1892 {
1893 	struct wpi_softc *sc = ifp->if_softc;
1894 	struct ieee80211com *ic = &sc->sc_ic;
1895 	struct ieee80211_node *ni;
1896 	struct ether_header *eh;
1897 	struct mbuf *m0;
1898 	int ac;
1899 
1900 	/*
1901 	 * net80211 may still try to send management frames even if the
1902 	 * IFF_RUNNING flag is not set...
1903 	 */
1904 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1905 		return;
1906 
1907 	for (;;) {
1908 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1909 		if (m0 != NULL) {
1910 
1911 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1912 			m0->m_pkthdr.rcvif = NULL;
1913 
1914 			/* management frames go into ring 0 */
1915 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1916 				ifp->if_oerrors++;
1917 				continue;
1918 			}
1919 #if NBPFILTER > 0
1920 			if (ic->ic_rawbpf != NULL)
1921 				bpf_mtap(ic->ic_rawbpf, m0);
1922 #endif
1923 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1924 				ifp->if_oerrors++;
1925 				break;
1926 			}
1927 		} else {
1928 			if (ic->ic_state != IEEE80211_S_RUN)
1929 				break;
1930 			IFQ_POLL(&ifp->if_snd, m0);
1931 			if (m0 == NULL)
1932 				break;
1933 
1934 			if (m0->m_len < sizeof (*eh) &&
1935 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1936 				ifp->if_oerrors++;
1937 				continue;
1938 			}
1939 			eh = mtod(m0, struct ether_header *);
1940 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1941 			if (ni == NULL) {
1942 				m_freem(m0);
1943 				ifp->if_oerrors++;
1944 				continue;
1945 			}
1946 
1947 			/* classify mbuf so we can find which tx ring to use */
1948 			if (ieee80211_classify(ic, m0, ni) != 0) {
1949 				m_freem(m0);
1950 				ieee80211_free_node(ni);
1951 				ifp->if_oerrors++;
1952 				continue;
1953 			}
1954 
1955 			/* no QoS encapsulation for EAPOL frames */
1956 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1957 			    M_WME_GETAC(m0) : WME_AC_BE;
1958 
1959 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1960 				/* there is no place left in this ring */
1961 				ifp->if_flags |= IFF_OACTIVE;
1962 				break;
1963 			}
1964 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1965 #if NBPFILTER > 0
1966 			if (ifp->if_bpf != NULL)
1967 				bpf_mtap(ifp->if_bpf, m0);
1968 #endif
1969 			m0 = ieee80211_encap(ic, m0, ni);
1970 			if (m0 == NULL) {
1971 				ieee80211_free_node(ni);
1972 				ifp->if_oerrors++;
1973 				continue;
1974 			}
1975 #if NBPFILTER > 0
1976 			if (ic->ic_rawbpf != NULL)
1977 				bpf_mtap(ic->ic_rawbpf, m0);
1978 #endif
1979 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1980 				ieee80211_free_node(ni);
1981 				ifp->if_oerrors++;
1982 				break;
1983 			}
1984 		}
1985 
1986 		sc->sc_tx_timer = 5;
1987 		ifp->if_timer = 1;
1988 	}
1989 }
1990 
1991 static void
1992 wpi_watchdog(struct ifnet *ifp)
1993 {
1994 	struct wpi_softc *sc = ifp->if_softc;
1995 
1996 	ifp->if_timer = 0;
1997 
1998 	if (sc->sc_tx_timer > 0) {
1999 		if (--sc->sc_tx_timer == 0) {
2000 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2001 			ifp->if_oerrors++;
2002 			ifp->if_flags &= ~IFF_UP;
2003 			wpi_stop(ifp, 1);
2004 			return;
2005 		}
2006 		ifp->if_timer = 1;
2007 	}
2008 
2009 	ieee80211_watchdog(&sc->sc_ic);
2010 }
2011 
2012 static int
2013 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2014 {
2015 #define IS_RUNNING(ifp) \
2016 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2017 
2018 	struct wpi_softc *sc = ifp->if_softc;
2019 	struct ieee80211com *ic = &sc->sc_ic;
2020 	int s, error = 0;
2021 
2022 	s = splnet();
2023 
2024 	switch (cmd) {
2025 	case SIOCSIFFLAGS:
2026 		if (ifp->if_flags & IFF_UP) {
2027 			if (!(ifp->if_flags & IFF_RUNNING))
2028 				wpi_init(ifp);
2029 		} else {
2030 			if (ifp->if_flags & IFF_RUNNING)
2031 				wpi_stop(ifp, 1);
2032 		}
2033 		break;
2034 
2035 	case SIOCADDMULTI:
2036 	case SIOCDELMULTI:
2037 		/* XXX no h/w multicast filter? --dyoung */
2038 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2039 			/* setup multicast filter, etc */
2040 			error = 0;
2041 		}
2042 		break;
2043 
2044 	default:
2045 		error = ieee80211_ioctl(ic, cmd, data);
2046 	}
2047 
2048 	if (error == ENETRESET) {
2049 		if (IS_RUNNING(ifp) &&
2050 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2051 			wpi_init(ifp);
2052 		error = 0;
2053 	}
2054 
2055 	splx(s);
2056 	return error;
2057 
2058 #undef IS_RUNNING
2059 }
2060 
2061 /*
2062  * Extract various information from EEPROM.
2063  */
2064 static void
2065 wpi_read_eeprom(struct wpi_softc *sc)
2066 {
2067 	struct ieee80211com *ic = &sc->sc_ic;
2068 	char domain[4];
2069 	int i;
2070 
2071 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2072 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2073 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2074 
2075 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2076 	    sc->type));
2077 
2078 	/* read and print regulatory domain */
2079 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2080 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2081 
2082 	/* read and print MAC address */
2083 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2084 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2085 
2086 	/* read the list of authorized channels */
2087 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2088 		wpi_read_eeprom_channels(sc, i);
2089 
2090 	/* read the list of power groups */
2091 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2092 		wpi_read_eeprom_group(sc, i);
2093 }
2094 
2095 static void
2096 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2097 {
2098 	struct ieee80211com *ic = &sc->sc_ic;
2099 	const struct wpi_chan_band *band = &wpi_bands[n];
2100 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2101 	int chan, i;
2102 
2103 	wpi_read_prom_data(sc, band->addr, channels,
2104 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2105 
2106 	for (i = 0; i < band->nchan; i++) {
2107 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2108 			continue;
2109 
2110 		chan = band->chan[i];
2111 
2112 		if (n == 0) {	/* 2GHz band */
2113 			ic->ic_channels[chan].ic_freq =
2114 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2115 			ic->ic_channels[chan].ic_flags =
2116 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2117 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2118 
2119 		} else {	/* 5GHz band */
2120 			/*
2121 			 * Some 3945abg adapters support channels 7, 8, 11
2122 			 * and 12 in the 2GHz *and* 5GHz bands.
2123 			 * Because of limitations in our net80211(9) stack,
2124 			 * we can't support these channels in 5GHz band.
2125 			 */
2126 			if (chan <= 14)
2127 				continue;
2128 
2129 			ic->ic_channels[chan].ic_freq =
2130 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2131 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2132 		}
2133 
2134 		/* is active scan allowed on this channel? */
2135 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2136 			ic->ic_channels[chan].ic_flags |=
2137 			    IEEE80211_CHAN_PASSIVE;
2138 		}
2139 
2140 		/* save maximum allowed power for this channel */
2141 		sc->maxpwr[chan] = channels[i].maxpwr;
2142 
2143 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2144 		    chan, channels[i].flags, sc->maxpwr[chan]));
2145 	}
2146 }
2147 
2148 static void
2149 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2150 {
2151 	struct wpi_power_group *group = &sc->groups[n];
2152 	struct wpi_eeprom_group rgroup;
2153 	int i;
2154 
2155 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2156 	    sizeof rgroup);
2157 
2158 	/* save power group information */
2159 	group->chan   = rgroup.chan;
2160 	group->maxpwr = rgroup.maxpwr;
2161 	/* temperature at which the samples were taken */
2162 	group->temp   = (int16_t)le16toh(rgroup.temp);
2163 
2164 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2165 	    group->chan, group->maxpwr, group->temp));
2166 
2167 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2168 		group->samples[i].index = rgroup.samples[i].index;
2169 		group->samples[i].power = rgroup.samples[i].power;
2170 
2171 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2172 		    group->samples[i].index, group->samples[i].power));
2173 	}
2174 }
2175 
2176 /*
2177  * Send a command to the firmware.
2178  */
2179 static int
2180 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2181 {
2182 	struct wpi_tx_ring *ring = &sc->cmdq;
2183 	struct wpi_tx_desc *desc;
2184 	struct wpi_tx_cmd *cmd;
2185 
2186 	KASSERT(size <= sizeof cmd->data);
2187 
2188 	desc = &ring->desc[ring->cur];
2189 	cmd = &ring->cmd[ring->cur];
2190 
2191 	cmd->code = code;
2192 	cmd->flags = 0;
2193 	cmd->qid = ring->qid;
2194 	cmd->idx = ring->cur;
2195 	memcpy(cmd->data, buf, size);
2196 
2197 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2198 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2199 		ring->cur * sizeof (struct wpi_tx_cmd));
2200 	desc->segs[0].len  = htole32(4 + size);
2201 
2202 	/* kick cmd ring */
2203 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2204 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2205 
2206 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2207 }
2208 
2209 static int
2210 wpi_wme_update(struct ieee80211com *ic)
2211 {
2212 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2213 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2214 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2215 	const struct wmeParams *wmep;
2216 	struct wpi_wme_setup wme;
2217 	int ac;
2218 
2219 	/* don't override default WME values if WME is not actually enabled */
2220 	if (!(ic->ic_flags & IEEE80211_F_WME))
2221 		return 0;
2222 
2223 	wme.flags = 0;
2224 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2225 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2226 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2227 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2228 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2229 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2230 
2231 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2232 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2233 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2234 	}
2235 
2236 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2237 #undef WPI_USEC
2238 #undef WPI_EXP2
2239 }
2240 
2241 /*
2242  * Configure h/w multi-rate retries.
2243  */
2244 static int
2245 wpi_mrr_setup(struct wpi_softc *sc)
2246 {
2247 	struct ieee80211com *ic = &sc->sc_ic;
2248 	struct wpi_mrr_setup mrr;
2249 	int i, error;
2250 
2251 	/* CCK rates (not used with 802.11a) */
2252 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2253 		mrr.rates[i].flags = 0;
2254 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2255 		/* fallback to the immediate lower CCK rate (if any) */
2256 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2257 		/* try one time at this rate before falling back to "next" */
2258 		mrr.rates[i].ntries = 1;
2259 	}
2260 
2261 	/* OFDM rates (not used with 802.11b) */
2262 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2263 		mrr.rates[i].flags = 0;
2264 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2265 		/* fallback to the immediate lower rate (if any) */
2266 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2267 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2268 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2269 			WPI_OFDM6 : WPI_CCK2) :
2270 		    i - 1;
2271 		/* try one time at this rate before falling back to "next" */
2272 		mrr.rates[i].ntries = 1;
2273 	}
2274 
2275 	/* setup MRR for control frames */
2276 	mrr.which = htole32(WPI_MRR_CTL);
2277 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2278 	if (error != 0) {
2279 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2280 		return error;
2281 	}
2282 
2283 	/* setup MRR for data frames */
2284 	mrr.which = htole32(WPI_MRR_DATA);
2285 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2286 	if (error != 0) {
2287 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2288 		return error;
2289 	}
2290 
2291 	return 0;
2292 }
2293 
2294 static void
2295 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2296 {
2297 	struct wpi_cmd_led led;
2298 
2299 	led.which = which;
2300 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2301 	led.off = off;
2302 	led.on = on;
2303 
2304 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2305 }
2306 
2307 static void
2308 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2309 {
2310 	struct wpi_cmd_tsf tsf;
2311 	uint64_t val, mod;
2312 
2313 	memset(&tsf, 0, sizeof tsf);
2314 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2315 	tsf.bintval = htole16(ni->ni_intval);
2316 	tsf.lintval = htole16(10);
2317 
2318 	/* compute remaining time until next beacon */
2319 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2320 	mod = le64toh(tsf.tstamp) % val;
2321 	tsf.binitval = htole32((uint32_t)(val - mod));
2322 
2323 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2324 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2325 
2326 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2327 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2328 }
2329 
2330 /*
2331  * Update Tx power to match what is defined for channel `c'.
2332  */
2333 static int
2334 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2335 {
2336 	struct ieee80211com *ic = &sc->sc_ic;
2337 	struct wpi_power_group *group;
2338 	struct wpi_cmd_txpower txpower;
2339 	u_int chan;
2340 	int i;
2341 
2342 	/* get channel number */
2343 	chan = ieee80211_chan2ieee(ic, c);
2344 
2345 	/* find the power group to which this channel belongs */
2346 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2347 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2348 			if (chan <= group->chan)
2349 				break;
2350 	} else
2351 		group = &sc->groups[0];
2352 
2353 	memset(&txpower, 0, sizeof txpower);
2354 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2355 	txpower.chan = htole16(chan);
2356 
2357 	/* set Tx power for all OFDM and CCK rates */
2358 	for (i = 0; i <= 11 ; i++) {
2359 		/* retrieve Tx power for this channel/rate combination */
2360 		int idx = wpi_get_power_index(sc, group, c,
2361 		    wpi_ridx_to_rate[i]);
2362 
2363 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2364 
2365 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2366 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2367 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2368 		} else {
2369 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2370 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2371 		}
2372 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2373 		    wpi_ridx_to_rate[i], idx));
2374 	}
2375 
2376 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2377 }
2378 
2379 /*
2380  * Determine Tx power index for a given channel/rate combination.
2381  * This takes into account the regulatory information from EEPROM and the
2382  * current temperature.
2383  */
2384 static int
2385 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2386     struct ieee80211_channel *c, int rate)
2387 {
2388 /* fixed-point arithmetic division using a n-bit fractional part */
2389 #define fdivround(a, b, n)	\
2390 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2391 
2392 /* linear interpolation */
2393 #define interpolate(x, x1, y1, x2, y2, n)	\
2394 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2395 
2396 	struct ieee80211com *ic = &sc->sc_ic;
2397 	struct wpi_power_sample *sample;
2398 	int pwr, idx;
2399 	u_int chan;
2400 
2401 	/* get channel number */
2402 	chan = ieee80211_chan2ieee(ic, c);
2403 
2404 	/* default power is group's maximum power - 3dB */
2405 	pwr = group->maxpwr / 2;
2406 
2407 	/* decrease power for highest OFDM rates to reduce distortion */
2408 	switch (rate) {
2409 	case 72:	/* 36Mb/s */
2410 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2411 		break;
2412 	case 96:	/* 48Mb/s */
2413 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2414 		break;
2415 	case 108:	/* 54Mb/s */
2416 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2417 		break;
2418 	}
2419 
2420 	/* never exceed channel's maximum allowed Tx power */
2421 	pwr = min(pwr, sc->maxpwr[chan]);
2422 
2423 	/* retrieve power index into gain tables from samples */
2424 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2425 		if (pwr > sample[1].power)
2426 			break;
2427 	/* fixed-point linear interpolation using a 19-bit fractional part */
2428 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2429 	    sample[1].power, sample[1].index, 19);
2430 
2431 	/*
2432 	 * Adjust power index based on current temperature:
2433 	 * - if cooler than factory-calibrated: decrease output power
2434 	 * - if warmer than factory-calibrated: increase output power
2435 	 */
2436 	idx -= (sc->temp - group->temp) * 11 / 100;
2437 
2438 	/* decrease power for CCK rates (-5dB) */
2439 	if (!WPI_RATE_IS_OFDM(rate))
2440 		idx += 10;
2441 
2442 	/* keep power index in a valid range */
2443 	if (idx < 0)
2444 		return 0;
2445 	if (idx > WPI_MAX_PWR_INDEX)
2446 		return WPI_MAX_PWR_INDEX;
2447 	return idx;
2448 
2449 #undef interpolate
2450 #undef fdivround
2451 }
2452 
2453 /*
2454  * Build a beacon frame that the firmware will broadcast periodically in
2455  * IBSS or HostAP modes.
2456  */
2457 static int
2458 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2459 {
2460 	struct ieee80211com *ic = &sc->sc_ic;
2461 	struct wpi_tx_ring *ring = &sc->cmdq;
2462 	struct wpi_tx_desc *desc;
2463 	struct wpi_tx_data *data;
2464 	struct wpi_tx_cmd *cmd;
2465 	struct wpi_cmd_beacon *bcn;
2466 	struct ieee80211_beacon_offsets bo;
2467 	struct mbuf *m0;
2468 	int error;
2469 
2470 	desc = &ring->desc[ring->cur];
2471 	data = &ring->data[ring->cur];
2472 
2473 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2474 	if (m0 == NULL) {
2475 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2476 		return ENOMEM;
2477 	}
2478 
2479 	cmd = &ring->cmd[ring->cur];
2480 	cmd->code = WPI_CMD_SET_BEACON;
2481 	cmd->flags = 0;
2482 	cmd->qid = ring->qid;
2483 	cmd->idx = ring->cur;
2484 
2485 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2486 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2487 	bcn->id = WPI_ID_BROADCAST;
2488 	bcn->ofdm_mask = 0xff;
2489 	bcn->cck_mask = 0x0f;
2490 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2491 	bcn->len = htole16(m0->m_pkthdr.len);
2492 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2493 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2494 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2495 
2496 	/* save and trim IEEE802.11 header */
2497 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2498 	m_adj(m0, sizeof (struct ieee80211_frame));
2499 
2500 	/* assume beacon frame is contiguous */
2501 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2502 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2503 	if (error) {
2504 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2505 		m_freem(m0);
2506 		return error;
2507 	}
2508 
2509 	data->m = m0;
2510 
2511 	/* first scatter/gather segment is used by the beacon command */
2512 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2513 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2514 		ring->cur * sizeof (struct wpi_tx_cmd));
2515 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2516 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2517 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2518 
2519 	/* kick cmd ring */
2520 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2521 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2522 
2523 	return 0;
2524 }
2525 
2526 static int
2527 wpi_auth(struct wpi_softc *sc)
2528 {
2529 	struct ieee80211com *ic = &sc->sc_ic;
2530 	struct ieee80211_node *ni = ic->ic_bss;
2531 	struct wpi_node_info node;
2532 	int error;
2533 
2534 	/* update adapter's configuration */
2535 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2536 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2537 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2538 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2539 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2540 		    WPI_CONFIG_24GHZ);
2541 	}
2542 	switch (ic->ic_curmode) {
2543 	case IEEE80211_MODE_11A:
2544 		sc->config.cck_mask  = 0;
2545 		sc->config.ofdm_mask = 0x15;
2546 		break;
2547 	case IEEE80211_MODE_11B:
2548 		sc->config.cck_mask  = 0x03;
2549 		sc->config.ofdm_mask = 0;
2550 		break;
2551 	default:	/* assume 802.11b/g */
2552 		sc->config.cck_mask  = 0x0f;
2553 		sc->config.ofdm_mask = 0x15;
2554 	}
2555 
2556 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2557 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2558 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2559 		sizeof (struct wpi_config), 1);
2560 	if (error != 0) {
2561 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2562 		return error;
2563 	}
2564 
2565 	/* configuration has changed, set Tx power accordingly */
2566 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2567 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2568 		return error;
2569 	}
2570 
2571 	/* add default node */
2572 	memset(&node, 0, sizeof node);
2573 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2574 	node.id = WPI_ID_BSS;
2575 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2576 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2577 	node.action = htole32(WPI_ACTION_SET_RATE);
2578 	node.antenna = WPI_ANTENNA_BOTH;
2579 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2580 	if (error != 0) {
2581 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2582 		return error;
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 /*
2589  * Send a scan request to the firmware.  Since this command is huge, we map it
2590  * into a mbuf instead of using the pre-allocated set of commands.
2591  */
2592 static int
2593 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2594 {
2595 	struct ieee80211com *ic = &sc->sc_ic;
2596 	struct wpi_tx_ring *ring = &sc->cmdq;
2597 	struct wpi_tx_desc *desc;
2598 	struct wpi_tx_data *data;
2599 	struct wpi_tx_cmd *cmd;
2600 	struct wpi_scan_hdr *hdr;
2601 	struct wpi_scan_chan *chan;
2602 	struct ieee80211_frame *wh;
2603 	struct ieee80211_rateset *rs;
2604 	struct ieee80211_channel *c;
2605 	enum ieee80211_phymode mode;
2606 	uint8_t *frm;
2607 	int nrates, pktlen, error;
2608 
2609 	desc = &ring->desc[ring->cur];
2610 	data = &ring->data[ring->cur];
2611 
2612 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2613 	if (data->m == NULL) {
2614 		aprint_error_dev(sc->sc_dev,
2615 						"could not allocate mbuf for scan command\n");
2616 		return ENOMEM;
2617 	}
2618 
2619 	MCLGET(data->m, M_DONTWAIT);
2620 	if (!(data->m->m_flags & M_EXT)) {
2621 		m_freem(data->m);
2622 		data->m = NULL;
2623 		aprint_error_dev(sc->sc_dev,
2624 						 "could not allocate mbuf for scan command\n");
2625 		return ENOMEM;
2626 	}
2627 
2628 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2629 	cmd->code = WPI_CMD_SCAN;
2630 	cmd->flags = 0;
2631 	cmd->qid = ring->qid;
2632 	cmd->idx = ring->cur;
2633 
2634 	hdr = (struct wpi_scan_hdr *)cmd->data;
2635 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2636 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2637 	hdr->id = WPI_ID_BROADCAST;
2638 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2639 
2640 	/*
2641 	 * Move to the next channel if no packets are received within 5 msecs
2642 	 * after sending the probe request (this helps to reduce the duration
2643 	 * of active scans).
2644 	 */
2645 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2646 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2647 
2648 	if (flags & IEEE80211_CHAN_A) {
2649 		hdr->crc_threshold = htole16(1);
2650 		/* send probe requests at 6Mbps */
2651 		hdr->rate = wpi_plcp_signal(12);
2652 	} else {
2653 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2654 		/* send probe requests at 1Mbps */
2655 		hdr->rate = wpi_plcp_signal(2);
2656 	}
2657 
2658 	/* for directed scans, firmware inserts the essid IE itself */
2659 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2660 	hdr->essid[0].len = ic->ic_des_esslen;
2661 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2662 
2663 	/*
2664 	 * Build a probe request frame.  Most of the following code is a
2665 	 * copy & paste of what is done in net80211.
2666 	 */
2667 	wh = (struct ieee80211_frame *)(hdr + 1);
2668 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2669 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2670 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2671 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2672 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2673 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2674 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2675 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2676 
2677 	frm = (uint8_t *)(wh + 1);
2678 
2679 	/* add empty essid IE (firmware generates it for directed scans) */
2680 	*frm++ = IEEE80211_ELEMID_SSID;
2681 	*frm++ = 0;
2682 
2683 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2684 	rs = &ic->ic_sup_rates[mode];
2685 
2686 	/* add supported rates IE */
2687 	*frm++ = IEEE80211_ELEMID_RATES;
2688 	nrates = rs->rs_nrates;
2689 	if (nrates > IEEE80211_RATE_SIZE)
2690 		nrates = IEEE80211_RATE_SIZE;
2691 	*frm++ = nrates;
2692 	memcpy(frm, rs->rs_rates, nrates);
2693 	frm += nrates;
2694 
2695 	/* add supported xrates IE */
2696 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2697 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2698 		*frm++ = IEEE80211_ELEMID_XRATES;
2699 		*frm++ = nrates;
2700 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2701 		frm += nrates;
2702 	}
2703 
2704 	/* setup length of probe request */
2705 	hdr->paylen = htole16(frm - (uint8_t *)wh);
2706 
2707 	chan = (struct wpi_scan_chan *)frm;
2708 	for (c  = &ic->ic_channels[1];
2709 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2710 		if ((c->ic_flags & flags) != flags)
2711 			continue;
2712 
2713 		chan->chan = ieee80211_chan2ieee(ic, c);
2714 		chan->flags = 0;
2715 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2716 			chan->flags |= WPI_CHAN_ACTIVE;
2717 			if (ic->ic_des_esslen != 0)
2718 				chan->flags |= WPI_CHAN_DIRECT;
2719 		}
2720 		chan->dsp_gain = 0x6e;
2721 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2722 			chan->rf_gain = 0x3b;
2723 			chan->active = htole16(10);
2724 			chan->passive = htole16(110);
2725 		} else {
2726 			chan->rf_gain = 0x28;
2727 			chan->active = htole16(20);
2728 			chan->passive = htole16(120);
2729 		}
2730 		hdr->nchan++;
2731 		chan++;
2732 
2733 		frm += sizeof (struct wpi_scan_chan);
2734 	}
2735 	hdr->len = htole16(frm - (uint8_t *)hdr);
2736 	pktlen = frm - (uint8_t *)cmd;
2737 
2738 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2739 		NULL, BUS_DMA_NOWAIT);
2740 	if (error) {
2741 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2742 		m_freem(data->m);
2743 		data->m = NULL;
2744 		return error;
2745 	}
2746 
2747 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2748 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2749 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2750 
2751 	/* kick cmd ring */
2752 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2753 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2754 
2755 	return 0;	/* will be notified async. of failure/success */
2756 }
2757 
2758 static int
2759 wpi_config(struct wpi_softc *sc)
2760 {
2761 	struct ieee80211com *ic = &sc->sc_ic;
2762 	struct ifnet *ifp = ic->ic_ifp;
2763 	struct wpi_power power;
2764 	struct wpi_bluetooth bluetooth;
2765 	struct wpi_node_info node;
2766 	int error;
2767 
2768 	memset(&power, 0, sizeof power);
2769 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2770 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2771 	if (error != 0) {
2772 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2773 		return error;
2774 	}
2775 
2776 	/* configure bluetooth coexistence */
2777 	memset(&bluetooth, 0, sizeof bluetooth);
2778 	bluetooth.flags = 3;
2779 	bluetooth.lead = 0xaa;
2780 	bluetooth.kill = 1;
2781 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2782 		0);
2783 	if (error != 0) {
2784 		aprint_error_dev(sc->sc_dev,
2785 			"could not configure bluetooth coexistence\n");
2786 		return error;
2787 	}
2788 
2789 	/* configure adapter */
2790 	memset(&sc->config, 0, sizeof (struct wpi_config));
2791 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2792 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2793 	/*set default channel*/
2794 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2795 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2796 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2797 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2798 		    WPI_CONFIG_24GHZ);
2799 	}
2800 	sc->config.filter = 0;
2801 	switch (ic->ic_opmode) {
2802 	case IEEE80211_M_STA:
2803 		sc->config.mode = WPI_MODE_STA;
2804 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2805 		break;
2806 	case IEEE80211_M_IBSS:
2807 	case IEEE80211_M_AHDEMO:
2808 		sc->config.mode = WPI_MODE_IBSS;
2809 		break;
2810 	case IEEE80211_M_HOSTAP:
2811 		sc->config.mode = WPI_MODE_HOSTAP;
2812 		break;
2813 	case IEEE80211_M_MONITOR:
2814 		sc->config.mode = WPI_MODE_MONITOR;
2815 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2816 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2817 		break;
2818 	}
2819 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2820 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2821 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2822 		sizeof (struct wpi_config), 0);
2823 	if (error != 0) {
2824 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2825 		return error;
2826 	}
2827 
2828 	/* configuration has changed, set Tx power accordingly */
2829 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2830 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2831 		return error;
2832 	}
2833 
2834 	/* add broadcast node */
2835 	memset(&node, 0, sizeof node);
2836 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2837 	node.id = WPI_ID_BROADCAST;
2838 	node.rate = wpi_plcp_signal(2);
2839 	node.action = htole32(WPI_ACTION_SET_RATE);
2840 	node.antenna = WPI_ANTENNA_BOTH;
2841 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2842 	if (error != 0) {
2843 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2844 		return error;
2845 	}
2846 
2847 	if ((error = wpi_mrr_setup(sc)) != 0) {
2848 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2849 		return error;
2850 	}
2851 
2852 	return 0;
2853 }
2854 
2855 static void
2856 wpi_stop_master(struct wpi_softc *sc)
2857 {
2858 	uint32_t tmp;
2859 	int ntries;
2860 
2861 	tmp = WPI_READ(sc, WPI_RESET);
2862 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2863 
2864 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2865 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2866 		return;	/* already asleep */
2867 
2868 	for (ntries = 0; ntries < 100; ntries++) {
2869 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2870 			break;
2871 		DELAY(10);
2872 	}
2873 	if (ntries == 100) {
2874 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2875 	}
2876 }
2877 
2878 static int
2879 wpi_power_up(struct wpi_softc *sc)
2880 {
2881 	uint32_t tmp;
2882 	int ntries;
2883 
2884 	wpi_mem_lock(sc);
2885 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2886 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2887 	wpi_mem_unlock(sc);
2888 
2889 	for (ntries = 0; ntries < 5000; ntries++) {
2890 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2891 			break;
2892 		DELAY(10);
2893 	}
2894 	if (ntries == 5000) {
2895 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2896 		return ETIMEDOUT;
2897 	}
2898 	return 0;
2899 }
2900 
2901 static int
2902 wpi_reset(struct wpi_softc *sc)
2903 {
2904 	uint32_t tmp;
2905 	int ntries;
2906 
2907 	/* clear any pending interrupts */
2908 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2909 
2910 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2911 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2912 
2913 	tmp = WPI_READ(sc, WPI_CHICKEN);
2914 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2915 
2916 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2917 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2918 
2919 	/* wait for clock stabilization */
2920 	for (ntries = 0; ntries < 1000; ntries++) {
2921 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2922 			break;
2923 		DELAY(10);
2924 	}
2925 	if (ntries == 1000) {
2926 		aprint_error_dev(sc->sc_dev,
2927 						 "timeout waiting for clock stabilization\n");
2928 		return ETIMEDOUT;
2929 	}
2930 
2931 	/* initialize EEPROM */
2932 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2933 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2934 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2935 		return EIO;
2936 	}
2937 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2938 
2939 	return 0;
2940 }
2941 
2942 static void
2943 wpi_hw_config(struct wpi_softc *sc)
2944 {
2945 	uint32_t rev, hw;
2946 
2947 	/* voodoo from the reference driver */
2948 	hw = WPI_READ(sc, WPI_HWCONFIG);
2949 
2950 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2951 	rev = PCI_REVISION(rev);
2952 	if ((rev & 0xc0) == 0x40)
2953 		hw |= WPI_HW_ALM_MB;
2954 	else if (!(rev & 0x80))
2955 		hw |= WPI_HW_ALM_MM;
2956 
2957 	if (sc->cap == 0x80)
2958 		hw |= WPI_HW_SKU_MRC;
2959 
2960 	hw &= ~WPI_HW_REV_D;
2961 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2962 		hw |= WPI_HW_REV_D;
2963 
2964 	if (sc->type > 1)
2965 		hw |= WPI_HW_TYPE_B;
2966 
2967 	DPRINTF(("setting h/w config %x\n", hw));
2968 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2969 }
2970 
2971 static int
2972 wpi_init(struct ifnet *ifp)
2973 {
2974 	struct wpi_softc *sc = ifp->if_softc;
2975 	struct ieee80211com *ic = &sc->sc_ic;
2976 	uint32_t tmp;
2977 	int qid, ntries, error;
2978 
2979 	wpi_stop(ifp,1);
2980 	(void)wpi_reset(sc);
2981 
2982 	wpi_mem_lock(sc);
2983 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2984 	DELAY(20);
2985 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2986 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2987 	wpi_mem_unlock(sc);
2988 
2989 	(void)wpi_power_up(sc);
2990 	wpi_hw_config(sc);
2991 
2992 	/* init Rx ring */
2993 	wpi_mem_lock(sc);
2994 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2995 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2996 	    offsetof(struct wpi_shared, next));
2997 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2998 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2999 	wpi_mem_unlock(sc);
3000 
3001 	/* init Tx rings */
3002 	wpi_mem_lock(sc);
3003 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3004 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3005 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3006 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3007 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3008 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3009 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3010 
3011 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3012 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3013 
3014 	for (qid = 0; qid < 6; qid++) {
3015 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3016 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3017 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3018 	}
3019 	wpi_mem_unlock(sc);
3020 
3021 	/* clear "radio off" and "disable command" bits (reversed logic) */
3022 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3023 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3024 
3025 	/* clear any pending interrupts */
3026 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3027 	/* enable interrupts */
3028 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3029 
3030 	/* not sure why/if this is necessary... */
3031 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3032 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3033 
3034 	if ((error = wpi_load_firmware(sc)) != 0) {
3035 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3036 		goto fail1;
3037 	}
3038 
3039 	/* Check the status of the radio switch */
3040 	wpi_mem_lock(sc);
3041 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3042 	wpi_mem_unlock(sc);
3043 
3044 	if (!(tmp & 0x01)) {
3045 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3046 		error = EPERM; // XXX
3047 		goto fail1;
3048 	}
3049 
3050 	/* wait for thermal sensors to calibrate */
3051 	for (ntries = 0; ntries < 1000; ntries++) {
3052 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3053 			break;
3054 		DELAY(10);
3055 	}
3056 	if (ntries == 1000) {
3057 		aprint_error_dev(sc->sc_dev,
3058 						 "timeout waiting for thermal sensors calibration\n");
3059 		error = ETIMEDOUT;
3060 		goto fail1;
3061 	}
3062 
3063 	DPRINTF(("temperature %d\n", sc->temp));
3064 
3065 	if ((error = wpi_config(sc)) != 0) {
3066 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3067 		goto fail1;
3068 	}
3069 
3070 	ifp->if_flags &= ~IFF_OACTIVE;
3071 	ifp->if_flags |= IFF_RUNNING;
3072 
3073 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3074 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3075 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3076 	}
3077 	else
3078 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3079 
3080 	return 0;
3081 
3082 fail1:	wpi_stop(ifp, 1);
3083 	return error;
3084 }
3085 
3086 
3087 static void
3088 wpi_stop(struct ifnet *ifp, int disable)
3089 {
3090 	struct wpi_softc *sc = ifp->if_softc;
3091 	struct ieee80211com *ic = &sc->sc_ic;
3092 	uint32_t tmp;
3093 	int ac;
3094 
3095 	ifp->if_timer = sc->sc_tx_timer = 0;
3096 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3097 
3098 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3099 
3100 	/* disable interrupts */
3101 	WPI_WRITE(sc, WPI_MASK, 0);
3102 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3103 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3104 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3105 
3106 	wpi_mem_lock(sc);
3107 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3108 	wpi_mem_unlock(sc);
3109 
3110 	/* reset all Tx rings */
3111 	for (ac = 0; ac < 4; ac++)
3112 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3113 	wpi_reset_tx_ring(sc, &sc->cmdq);
3114 
3115 	/* reset Rx ring */
3116 	wpi_reset_rx_ring(sc, &sc->rxq);
3117 
3118 	wpi_mem_lock(sc);
3119 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3120 	wpi_mem_unlock(sc);
3121 
3122 	DELAY(5);
3123 
3124 	wpi_stop_master(sc);
3125 
3126 	tmp = WPI_READ(sc, WPI_RESET);
3127 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3128 }
3129 
3130 static bool
3131 wpi_resume(device_t dv)
3132 {
3133 	struct wpi_softc *sc = device_private(dv);
3134 
3135 	pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
3136 	(void)wpi_reset(sc);
3137 
3138 	return true;
3139 }
3140