xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision 80d9064ac03cbb6a4174695f0d5b237c8766d3d0)
1 /*	$NetBSD: if_wpi.c,v 1.68 2014/08/08 10:17:07 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.68 2014/08/08 10:17:07 jmcneill Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/ip.h>
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_amrr.h>
66 #include <net80211/ieee80211_radiotap.h>
67 
68 #include <dev/firmload.h>
69 
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72 
73 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
74 static once_t wpi_firmware_init;
75 static kmutex_t wpi_firmware_mutex;
76 static size_t wpi_firmware_users;
77 static uint8_t *wpi_firmware_image;
78 static size_t wpi_firmware_size;
79 
80 static int	wpi_match(device_t, cfdata_t, void *);
81 static void	wpi_attach(device_t, device_t, void *);
82 static int	wpi_detach(device_t , int);
83 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
84 		    void **, bus_size_t, bus_size_t, int);
85 static void	wpi_dma_contig_free(struct wpi_dma_info *);
86 static int	wpi_alloc_shared(struct wpi_softc *);
87 static void	wpi_free_shared(struct wpi_softc *);
88 static int	wpi_alloc_fwmem(struct wpi_softc *);
89 static void	wpi_free_fwmem(struct wpi_softc *);
90 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
91 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
92 static int	wpi_alloc_rpool(struct wpi_softc *);
93 static void	wpi_free_rpool(struct wpi_softc *);
94 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
95 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
96 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
97 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
98 		    int, int);
99 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
100 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
101 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
102 static void	wpi_newassoc(struct ieee80211_node *, int);
103 static int	wpi_media_change(struct ifnet *);
104 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
105 static void	wpi_mem_lock(struct wpi_softc *);
106 static void	wpi_mem_unlock(struct wpi_softc *);
107 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
108 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
109 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
110 		    const uint32_t *, int);
111 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
112 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
113 static int	wpi_cache_firmware(struct wpi_softc *);
114 static void	wpi_release_firmware(void);
115 static int	wpi_load_firmware(struct wpi_softc *);
116 static void	wpi_calib_timeout(void *);
117 static void	wpi_iter_func(void *, struct ieee80211_node *);
118 static void	wpi_power_calibration(struct wpi_softc *, int);
119 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
120 		    struct wpi_rx_data *);
121 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
122 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
123 static void	wpi_notif_intr(struct wpi_softc *);
124 static int	wpi_intr(void *);
125 static void	wpi_read_eeprom(struct wpi_softc *);
126 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
127 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
128 static uint8_t	wpi_plcp_signal(int);
129 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
130 		    struct ieee80211_node *, int);
131 static void	wpi_start(struct ifnet *);
132 static void	wpi_watchdog(struct ifnet *);
133 static int	wpi_ioctl(struct ifnet *, u_long, void *);
134 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
135 static int	wpi_wme_update(struct ieee80211com *);
136 static int	wpi_mrr_setup(struct wpi_softc *);
137 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
138 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
139 static int	wpi_set_txpower(struct wpi_softc *,
140 		    struct ieee80211_channel *, int);
141 static int	wpi_get_power_index(struct wpi_softc *,
142 		    struct wpi_power_group *, struct ieee80211_channel *, int);
143 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
144 static int	wpi_auth(struct wpi_softc *);
145 static int	wpi_scan(struct wpi_softc *);
146 static int	wpi_config(struct wpi_softc *);
147 static void	wpi_stop_master(struct wpi_softc *);
148 static int	wpi_power_up(struct wpi_softc *);
149 static int	wpi_reset(struct wpi_softc *);
150 static void	wpi_hw_config(struct wpi_softc *);
151 static int	wpi_init(struct ifnet *);
152 static void	wpi_stop(struct ifnet *, int);
153 static bool	wpi_resume(device_t, const pmf_qual_t *);
154 static int	wpi_getrfkill(struct wpi_softc *);
155 static void	wpi_sysctlattach(struct wpi_softc *);
156 
157 #ifdef WPI_DEBUG
158 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
159 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
160 int wpi_debug = 1;
161 #else
162 #define DPRINTF(x)
163 #define DPRINTFN(n, x)
164 #endif
165 
166 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
167 	wpi_detach, NULL);
168 
169 static int
170 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
171 {
172 	struct pci_attach_args *pa = aux;
173 
174 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
175 		return 0;
176 
177 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
178 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
179 		return 1;
180 
181 	return 0;
182 }
183 
184 /* Base Address Register */
185 #define WPI_PCI_BAR0	0x10
186 
187 static int
188 wpi_attach_once(void)
189 {
190 
191 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
192 	return 0;
193 }
194 
195 static void
196 wpi_attach(device_t parent __unused, device_t self, void *aux)
197 {
198 	struct wpi_softc *sc = device_private(self);
199 	struct ieee80211com *ic = &sc->sc_ic;
200 	struct ifnet *ifp = &sc->sc_ec.ec_if;
201 	struct pci_attach_args *pa = aux;
202 	const char *intrstr;
203 	bus_space_tag_t memt;
204 	bus_space_handle_t memh;
205 	pci_intr_handle_t ih;
206 	pcireg_t data;
207 	int ac, error;
208 	char intrbuf[PCI_INTRSTR_LEN];
209 
210 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
211 	sc->fw_used = false;
212 
213 	sc->sc_dev = self;
214 	sc->sc_pct = pa->pa_pc;
215 	sc->sc_pcitag = pa->pa_tag;
216 
217 	callout_init(&sc->calib_to, 0);
218 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
219 
220 	pci_aprint_devinfo(pa, NULL);
221 
222 	/* enable bus-mastering */
223 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
224 	data |= PCI_COMMAND_MASTER_ENABLE;
225 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
226 
227 	/* map the register window */
228 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
229 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
230 	if (error != 0) {
231 		aprint_error_dev(self, "could not map memory space\n");
232 		return;
233 	}
234 
235 	sc->sc_st = memt;
236 	sc->sc_sh = memh;
237 	sc->sc_dmat = pa->pa_dmat;
238 
239 	if (pci_intr_map(pa, &ih) != 0) {
240 		aprint_error_dev(self, "could not map interrupt\n");
241 		return;
242 	}
243 
244 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
245 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
246 	if (sc->sc_ih == NULL) {
247 		aprint_error_dev(self, "could not establish interrupt");
248 		if (intrstr != NULL)
249 			aprint_error(" at %s", intrstr);
250 		aprint_error("\n");
251 		return;
252 	}
253 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
254 
255 	/*
256 	 * Put adapter into a known state.
257 	 */
258 	if ((error = wpi_reset(sc)) != 0) {
259 		aprint_error_dev(self, "could not reset adapter\n");
260 		return;
261 	}
262 
263 	/*
264 	 * Allocate DMA memory for firmware transfers.
265 	 */
266 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
267 		aprint_error_dev(self, "could not allocate firmware memory\n");
268 		return;
269 	}
270 
271 	/*
272 	 * Allocate shared page and Tx/Rx rings.
273 	 */
274 	if ((error = wpi_alloc_shared(sc)) != 0) {
275 		aprint_error_dev(self, "could not allocate shared area\n");
276 		goto fail1;
277 	}
278 
279 	if ((error = wpi_alloc_rpool(sc)) != 0) {
280 		aprint_error_dev(self, "could not allocate Rx buffers\n");
281 		goto fail2;
282 	}
283 
284 	for (ac = 0; ac < 4; ac++) {
285 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
286 		    ac);
287 		if (error != 0) {
288 			aprint_error_dev(self,
289 			    "could not allocate Tx ring %d\n", ac);
290 			goto fail3;
291 		}
292 	}
293 
294 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
295 	if (error != 0) {
296 		aprint_error_dev(self, "could not allocate command ring\n");
297 		goto fail3;
298 	}
299 
300 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
301 	if (error != 0) {
302 		aprint_error_dev(self, "could not allocate Rx ring\n");
303 		goto fail4;
304 	}
305 
306 	ic->ic_ifp = ifp;
307 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
308 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
309 	ic->ic_state = IEEE80211_S_INIT;
310 
311 	/* set device capabilities */
312 	ic->ic_caps =
313 	    IEEE80211_C_WPA |		/* 802.11i */
314 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
315 	    IEEE80211_C_TXPMGT |	/* tx power management */
316 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
317 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
318 	    IEEE80211_C_WME;		/* 802.11e */
319 
320 	/* read supported channels and MAC address from EEPROM */
321 	wpi_read_eeprom(sc);
322 
323 	/* set supported .11a, .11b and .11g rates */
324 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
325 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
326 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
327 
328 	/* IBSS channel undefined for now */
329 	ic->ic_ibss_chan = &ic->ic_channels[0];
330 
331 	ifp->if_softc = sc;
332 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 	ifp->if_init = wpi_init;
334 	ifp->if_stop = wpi_stop;
335 	ifp->if_ioctl = wpi_ioctl;
336 	ifp->if_start = wpi_start;
337 	ifp->if_watchdog = wpi_watchdog;
338 	IFQ_SET_READY(&ifp->if_snd);
339 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
340 
341 	if_attach(ifp);
342 	ieee80211_ifattach(ic);
343 	/* override default methods */
344 	ic->ic_node_alloc = wpi_node_alloc;
345 	ic->ic_newassoc = wpi_newassoc;
346 	ic->ic_wme.wme_update = wpi_wme_update;
347 
348 	/* override state transition machine */
349 	sc->sc_newstate = ic->ic_newstate;
350 	ic->ic_newstate = wpi_newstate;
351 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
352 
353 	sc->amrr.amrr_min_success_threshold =  1;
354 	sc->amrr.amrr_max_success_threshold = 15;
355 
356 	wpi_sysctlattach(sc);
357 
358 	if (pmf_device_register(self, NULL, wpi_resume))
359 		pmf_class_network_register(self, ifp);
360 	else
361 		aprint_error_dev(self, "couldn't establish power handler\n");
362 
363 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
364 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
365 	    &sc->sc_drvbpf);
366 
367 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
368 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
369 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
370 
371 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
372 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
373 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
374 
375 	ieee80211_announce(ic);
376 
377 	return;
378 
379 	/* free allocated memory if something failed during attachment */
380 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
381 fail3:	while (--ac >= 0)
382 		wpi_free_tx_ring(sc, &sc->txq[ac]);
383 	wpi_free_rpool(sc);
384 fail2:	wpi_free_shared(sc);
385 fail1:	wpi_free_fwmem(sc);
386 }
387 
388 static int
389 wpi_detach(device_t self, int flags __unused)
390 {
391 	struct wpi_softc *sc = device_private(self);
392 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
393 	int ac;
394 
395 	wpi_stop(ifp, 1);
396 
397 	if (ifp != NULL)
398 		bpf_detach(ifp);
399 	ieee80211_ifdetach(&sc->sc_ic);
400 	if (ifp != NULL)
401 		if_detach(ifp);
402 
403 	for (ac = 0; ac < 4; ac++)
404 		wpi_free_tx_ring(sc, &sc->txq[ac]);
405 	wpi_free_tx_ring(sc, &sc->cmdq);
406 	wpi_free_rx_ring(sc, &sc->rxq);
407 	wpi_free_rpool(sc);
408 	wpi_free_shared(sc);
409 
410 	if (sc->sc_ih != NULL) {
411 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
412 		sc->sc_ih = NULL;
413 	}
414 
415 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
416 
417 	if (sc->fw_used) {
418 		sc->fw_used = false;
419 		wpi_release_firmware();
420 	}
421 
422 	return 0;
423 }
424 
425 static int
426 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
427     bus_size_t size, bus_size_t alignment, int flags)
428 {
429 	int nsegs, error;
430 
431 	dma->tag = tag;
432 	dma->size = size;
433 
434 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
435 	if (error != 0)
436 		goto fail;
437 
438 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
439 	    flags);
440 	if (error != 0)
441 		goto fail;
442 
443 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
444 	if (error != 0)
445 		goto fail;
446 
447 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
448 	if (error != 0)
449 		goto fail;
450 
451 	memset(dma->vaddr, 0, size);
452 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
453 
454 	dma->paddr = dma->map->dm_segs[0].ds_addr;
455 	if (kvap != NULL)
456 		*kvap = dma->vaddr;
457 
458 	return 0;
459 
460 fail:	wpi_dma_contig_free(dma);
461 	return error;
462 }
463 
464 static void
465 wpi_dma_contig_free(struct wpi_dma_info *dma)
466 {
467 	if (dma->map != NULL) {
468 		if (dma->vaddr != NULL) {
469 			bus_dmamap_unload(dma->tag, dma->map);
470 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
471 			bus_dmamem_free(dma->tag, &dma->seg, 1);
472 			dma->vaddr = NULL;
473 		}
474 		bus_dmamap_destroy(dma->tag, dma->map);
475 		dma->map = NULL;
476 	}
477 }
478 
479 /*
480  * Allocate a shared page between host and NIC.
481  */
482 static int
483 wpi_alloc_shared(struct wpi_softc *sc)
484 {
485 	int error;
486 
487 	/* must be aligned on a 4K-page boundary */
488 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
489 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
490 	    BUS_DMA_NOWAIT);
491 	if (error != 0)
492 		aprint_error_dev(sc->sc_dev,
493 		    "could not allocate shared area DMA memory\n");
494 
495 	return error;
496 }
497 
498 static void
499 wpi_free_shared(struct wpi_softc *sc)
500 {
501 	wpi_dma_contig_free(&sc->shared_dma);
502 }
503 
504 /*
505  * Allocate DMA-safe memory for firmware transfer.
506  */
507 static int
508 wpi_alloc_fwmem(struct wpi_softc *sc)
509 {
510 	int error;
511 
512 	/* allocate enough contiguous space to store text and data */
513 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
514 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
515 	    BUS_DMA_NOWAIT);
516 
517 	if (error != 0)
518 		aprint_error_dev(sc->sc_dev,
519 		    "could not allocate firmware transfer area DMA memory\n");
520 	return error;
521 }
522 
523 static void
524 wpi_free_fwmem(struct wpi_softc *sc)
525 {
526 	wpi_dma_contig_free(&sc->fw_dma);
527 }
528 
529 static struct wpi_rbuf *
530 wpi_alloc_rbuf(struct wpi_softc *sc)
531 {
532 	struct wpi_rbuf *rbuf;
533 
534 	mutex_enter(&sc->rxq.freelist_mtx);
535 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
536 	if (rbuf != NULL) {
537 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
538 	}
539 	mutex_exit(&sc->rxq.freelist_mtx);
540 
541 	return rbuf;
542 }
543 
544 /*
545  * This is called automatically by the network stack when the mbuf to which our
546  * Rx buffer is attached is freed.
547  */
548 static void
549 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
550 {
551 	struct wpi_rbuf *rbuf = arg;
552 	struct wpi_softc *sc = rbuf->sc;
553 
554 	/* put the buffer back in the free list */
555 
556 	mutex_enter(&sc->rxq.freelist_mtx);
557 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
558 	mutex_exit(&sc->rxq.freelist_mtx);
559 
560 	if (__predict_true(m != NULL))
561 		pool_cache_put(mb_cache, m);
562 }
563 
564 static int
565 wpi_alloc_rpool(struct wpi_softc *sc)
566 {
567 	struct wpi_rx_ring *ring = &sc->rxq;
568 	int i, error;
569 
570 	/* allocate a big chunk of DMA'able memory.. */
571 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
572 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
573 	if (error != 0) {
574 		aprint_normal_dev(sc->sc_dev,
575 		    "could not allocate Rx buffers DMA memory\n");
576 		return error;
577 	}
578 
579 	/* ..and split it into 3KB chunks */
580 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
581 	SLIST_INIT(&ring->freelist);
582 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
583 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
584 
585 		rbuf->sc = sc;	/* backpointer for callbacks */
586 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
587 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
588 
589 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
590 	}
591 
592 	return 0;
593 }
594 
595 static void
596 wpi_free_rpool(struct wpi_softc *sc)
597 {
598 	wpi_dma_contig_free(&sc->rxq.buf_dma);
599 }
600 
601 static int
602 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
603 {
604 	bus_size_t size;
605 	int i, error;
606 
607 	ring->cur = 0;
608 
609 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
610 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
611 	    (void **)&ring->desc, size,
612 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
613 	if (error != 0) {
614 		aprint_error_dev(sc->sc_dev,
615 		    "could not allocate rx ring DMA memory\n");
616 		goto fail;
617 	}
618 
619 	/*
620 	 * Setup Rx buffers.
621 	 */
622 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
623 		struct wpi_rx_data *data = &ring->data[i];
624 		struct wpi_rbuf *rbuf;
625 
626 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
627 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
628 		if (error) {
629 			aprint_error_dev(sc->sc_dev,
630 			    "could not allocate rx dma map\n");
631 			goto fail;
632 		}
633 
634 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
635 		if (data->m == NULL) {
636 			aprint_error_dev(sc->sc_dev,
637 			    "could not allocate rx mbuf\n");
638 			error = ENOMEM;
639 			goto fail;
640 		}
641 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
642 			m_freem(data->m);
643 			data->m = NULL;
644 			aprint_error_dev(sc->sc_dev,
645 			    "could not allocate rx cluster\n");
646 			error = ENOMEM;
647 			goto fail;
648 		}
649 		/* attach Rx buffer to mbuf */
650 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
651 		    rbuf);
652 		data->m->m_flags |= M_EXT_RW;
653 
654 		error = bus_dmamap_load(sc->sc_dmat, data->map,
655 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
656 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
657 		if (error) {
658 			aprint_error_dev(sc->sc_dev,
659 			    "could not load mbuf: %d\n", error);
660 			goto fail;
661 		}
662 
663 		ring->desc[i] = htole32(rbuf->paddr);
664 	}
665 
666 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
667 	    BUS_DMASYNC_PREWRITE);
668 
669 	return 0;
670 
671 fail:	wpi_free_rx_ring(sc, ring);
672 	return error;
673 }
674 
675 static void
676 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
677 {
678 	int ntries;
679 
680 	wpi_mem_lock(sc);
681 
682 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
683 	for (ntries = 0; ntries < 100; ntries++) {
684 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
685 			break;
686 		DELAY(10);
687 	}
688 #ifdef WPI_DEBUG
689 	if (ntries == 100 && wpi_debug > 0)
690 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
691 #endif
692 	wpi_mem_unlock(sc);
693 
694 	ring->cur = 0;
695 }
696 
697 static void
698 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
699 {
700 	int i;
701 
702 	wpi_dma_contig_free(&ring->desc_dma);
703 
704 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
705 		if (ring->data[i].m != NULL) {
706 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
707 			m_freem(ring->data[i].m);
708 		}
709 		if (ring->data[i].map != NULL) {
710 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
711 		}
712 	}
713 }
714 
715 static int
716 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
717     int qid)
718 {
719 	int i, error;
720 
721 	ring->qid = qid;
722 	ring->count = count;
723 	ring->queued = 0;
724 	ring->cur = 0;
725 
726 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
727 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
728 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
729 	if (error != 0) {
730 		aprint_error_dev(sc->sc_dev,
731 		    "could not allocate tx ring DMA memory\n");
732 		goto fail;
733 	}
734 
735 	/* update shared page with ring's base address */
736 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
737 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
738 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
739 
740 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
741 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
742 	    BUS_DMA_NOWAIT);
743 	if (error != 0) {
744 		aprint_error_dev(sc->sc_dev,
745 		    "could not allocate tx cmd DMA memory\n");
746 		goto fail;
747 	}
748 
749 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
750 	    M_NOWAIT | M_ZERO);
751 	if (ring->data == NULL) {
752 		aprint_error_dev(sc->sc_dev,
753 		    "could not allocate tx data slots\n");
754 		goto fail;
755 	}
756 
757 	for (i = 0; i < count; i++) {
758 		struct wpi_tx_data *data = &ring->data[i];
759 
760 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
761 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
762 		    &data->map);
763 		if (error != 0) {
764 			aprint_error_dev(sc->sc_dev,
765 			    "could not create tx buf DMA map\n");
766 			goto fail;
767 		}
768 	}
769 
770 	return 0;
771 
772 fail:	wpi_free_tx_ring(sc, ring);
773 	return error;
774 }
775 
776 static void
777 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
778 {
779 	int i, ntries;
780 
781 	wpi_mem_lock(sc);
782 
783 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
784 	for (ntries = 0; ntries < 100; ntries++) {
785 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
786 			break;
787 		DELAY(10);
788 	}
789 #ifdef WPI_DEBUG
790 	if (ntries == 100 && wpi_debug > 0) {
791 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
792 		    ring->qid);
793 	}
794 #endif
795 	wpi_mem_unlock(sc);
796 
797 	for (i = 0; i < ring->count; i++) {
798 		struct wpi_tx_data *data = &ring->data[i];
799 
800 		if (data->m != NULL) {
801 			bus_dmamap_unload(sc->sc_dmat, data->map);
802 			m_freem(data->m);
803 			data->m = NULL;
804 		}
805 	}
806 
807 	ring->queued = 0;
808 	ring->cur = 0;
809 }
810 
811 static void
812 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
813 {
814 	int i;
815 
816 	wpi_dma_contig_free(&ring->desc_dma);
817 	wpi_dma_contig_free(&ring->cmd_dma);
818 
819 	if (ring->data != NULL) {
820 		for (i = 0; i < ring->count; i++) {
821 			struct wpi_tx_data *data = &ring->data[i];
822 
823 			if (data->m != NULL) {
824 				bus_dmamap_unload(sc->sc_dmat, data->map);
825 				m_freem(data->m);
826 			}
827 		}
828 		free(ring->data, M_DEVBUF);
829 	}
830 }
831 
832 /*ARGUSED*/
833 static struct ieee80211_node *
834 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
835 {
836 	struct wpi_node *wn;
837 
838 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
839 
840 	return (struct ieee80211_node *)wn;
841 }
842 
843 static void
844 wpi_newassoc(struct ieee80211_node *ni, int isnew)
845 {
846 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
847 	int i;
848 
849 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
850 
851 	/* set rate to some reasonable initial value */
852 	for (i = ni->ni_rates.rs_nrates - 1;
853 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
854 	     i--);
855 	ni->ni_txrate = i;
856 }
857 
858 static int
859 wpi_media_change(struct ifnet *ifp)
860 {
861 	int error;
862 
863 	error = ieee80211_media_change(ifp);
864 	if (error != ENETRESET)
865 		return error;
866 
867 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
868 		wpi_init(ifp);
869 
870 	return 0;
871 }
872 
873 static int
874 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
875 {
876 	struct ifnet *ifp = ic->ic_ifp;
877 	struct wpi_softc *sc = ifp->if_softc;
878 	struct ieee80211_node *ni;
879 	enum ieee80211_state ostate = ic->ic_state;
880 	int error;
881 
882 	callout_stop(&sc->calib_to);
883 
884 	switch (nstate) {
885 	case IEEE80211_S_SCAN:
886 
887 		if (sc->is_scanning)
888 			break;
889 
890 		sc->is_scanning = true;
891 
892 		if (ostate != IEEE80211_S_SCAN) {
893 			/* make the link LED blink while we're scanning */
894 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
895 		}
896 
897 		if ((error = wpi_scan(sc)) != 0) {
898 			aprint_error_dev(sc->sc_dev,
899 			    "could not initiate scan\n");
900 			return error;
901 		}
902 		break;
903 
904 	case IEEE80211_S_ASSOC:
905 		if (ic->ic_state != IEEE80211_S_RUN)
906 			break;
907 		/* FALLTHROUGH */
908 	case IEEE80211_S_AUTH:
909 		/* reset state to handle reassociations correctly */
910 		sc->config.associd = 0;
911 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
912 
913 		if ((error = wpi_auth(sc)) != 0) {
914 			aprint_error_dev(sc->sc_dev,
915 			    "could not send authentication request\n");
916 			return error;
917 		}
918 		break;
919 
920 	case IEEE80211_S_RUN:
921 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
922 			/* link LED blinks while monitoring */
923 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
924 			break;
925 		}
926 		ni = ic->ic_bss;
927 
928 		if (ic->ic_opmode != IEEE80211_M_STA) {
929 			(void) wpi_auth(sc);    /* XXX */
930 			wpi_setup_beacon(sc, ni);
931 		}
932 
933 		wpi_enable_tsf(sc, ni);
934 
935 		/* update adapter's configuration */
936 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
937 		/* short preamble/slot time are negotiated when associating */
938 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
939 		    WPI_CONFIG_SHSLOT);
940 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
941 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
942 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
943 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
944 		sc->config.filter |= htole32(WPI_FILTER_BSS);
945 		if (ic->ic_opmode != IEEE80211_M_STA)
946 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
947 
948 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
949 
950 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
951 		    sc->config.flags));
952 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
953 		    sizeof (struct wpi_config), 1);
954 		if (error != 0) {
955 			aprint_error_dev(sc->sc_dev,
956 			    "could not update configuration\n");
957 			return error;
958 		}
959 
960 		/* configuration has changed, set Tx power accordingly */
961 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
962 			aprint_error_dev(sc->sc_dev,
963 			    "could not set Tx power\n");
964 			return error;
965 		}
966 
967 		if (ic->ic_opmode == IEEE80211_M_STA) {
968 			/* fake a join to init the tx rate */
969 			wpi_newassoc(ni, 1);
970 		}
971 
972 		/* start periodic calibration timer */
973 		sc->calib_cnt = 0;
974 		callout_schedule(&sc->calib_to, hz/2);
975 
976 		/* link LED always on while associated */
977 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
978 		break;
979 
980 	case IEEE80211_S_INIT:
981 		sc->is_scanning = false;
982 		break;
983 	}
984 
985 	return sc->sc_newstate(ic, nstate, arg);
986 }
987 
988 /*
989  * Grab exclusive access to NIC memory.
990  */
991 static void
992 wpi_mem_lock(struct wpi_softc *sc)
993 {
994 	uint32_t tmp;
995 	int ntries;
996 
997 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
998 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
999 
1000 	/* spin until we actually get the lock */
1001 	for (ntries = 0; ntries < 1000; ntries++) {
1002 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1003 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1004 			break;
1005 		DELAY(10);
1006 	}
1007 	if (ntries == 1000)
1008 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1009 }
1010 
1011 /*
1012  * Release lock on NIC memory.
1013  */
1014 static void
1015 wpi_mem_unlock(struct wpi_softc *sc)
1016 {
1017 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1018 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1019 }
1020 
1021 static uint32_t
1022 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1023 {
1024 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1025 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1026 }
1027 
1028 static void
1029 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1030 {
1031 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1032 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1033 }
1034 
1035 static void
1036 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1037     const uint32_t *data, int wlen)
1038 {
1039 	for (; wlen > 0; wlen--, data++, addr += 4)
1040 		wpi_mem_write(sc, addr, *data);
1041 }
1042 
1043 /*
1044  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1045  * instead of using the traditional bit-bang method.
1046  */
1047 static int
1048 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1049 {
1050 	uint8_t *out = data;
1051 	uint32_t val;
1052 	int ntries;
1053 
1054 	wpi_mem_lock(sc);
1055 	for (; len > 0; len -= 2, addr++) {
1056 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1057 
1058 		for (ntries = 0; ntries < 10; ntries++) {
1059 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1060 			    WPI_EEPROM_READY)
1061 				break;
1062 			DELAY(5);
1063 		}
1064 		if (ntries == 10) {
1065 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1066 			return ETIMEDOUT;
1067 		}
1068 		*out++ = val >> 16;
1069 		if (len > 1)
1070 			*out++ = val >> 24;
1071 	}
1072 	wpi_mem_unlock(sc);
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  * The firmware boot code is small and is intended to be copied directly into
1079  * the NIC internal memory.
1080  */
1081 int
1082 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1083 {
1084 	int ntries;
1085 
1086 	size /= sizeof (uint32_t);
1087 
1088 	wpi_mem_lock(sc);
1089 
1090 	/* copy microcode image into NIC memory */
1091 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1092 	    (const uint32_t *)ucode, size);
1093 
1094 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1095 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1096 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1097 
1098 	/* run microcode */
1099 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1100 
1101 	/* wait for transfer to complete */
1102 	for (ntries = 0; ntries < 1000; ntries++) {
1103 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1104 			break;
1105 		DELAY(10);
1106 	}
1107 	if (ntries == 1000) {
1108 		wpi_mem_unlock(sc);
1109 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1110 		return ETIMEDOUT;
1111 	}
1112 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1113 
1114 	wpi_mem_unlock(sc);
1115 
1116 	return 0;
1117 }
1118 
1119 static int
1120 wpi_cache_firmware(struct wpi_softc *sc)
1121 {
1122 	const char *const fwname = wpi_firmware_name;
1123 	firmware_handle_t fw;
1124 	int error;
1125 
1126 	/* sc is used here only to report error messages.  */
1127 
1128 	mutex_enter(&wpi_firmware_mutex);
1129 
1130 	if (wpi_firmware_users == SIZE_MAX) {
1131 		mutex_exit(&wpi_firmware_mutex);
1132 		return ENFILE;	/* Too many of something in the system...  */
1133 	}
1134 	if (wpi_firmware_users++) {
1135 		KASSERT(wpi_firmware_image != NULL);
1136 		KASSERT(wpi_firmware_size > 0);
1137 		mutex_exit(&wpi_firmware_mutex);
1138 		return 0;	/* Already good to go.  */
1139 	}
1140 
1141 	KASSERT(wpi_firmware_image == NULL);
1142 	KASSERT(wpi_firmware_size == 0);
1143 
1144 	/* load firmware image from disk */
1145 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1146 		aprint_error_dev(sc->sc_dev,
1147 		    "could not open firmware file %s: %d\n", fwname, error);
1148 		goto fail0;
1149 	}
1150 
1151 	wpi_firmware_size = firmware_get_size(fw);
1152 
1153 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1154 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1155 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1156 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1157 		aprint_error_dev(sc->sc_dev,
1158 		    "firmware file %s too large: %zu bytes\n",
1159 		    fwname, wpi_firmware_size);
1160 		error = EFBIG;
1161 		goto fail1;
1162 	}
1163 
1164 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1165 		aprint_error_dev(sc->sc_dev,
1166 		    "firmware file %s too small: %zu bytes\n",
1167 		    fwname, wpi_firmware_size);
1168 		error = EINVAL;
1169 		goto fail1;
1170 	}
1171 
1172 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1173 	if (wpi_firmware_image == NULL) {
1174 		aprint_error_dev(sc->sc_dev,
1175 		    "not enough memory for firmware file %s\n", fwname);
1176 		error = ENOMEM;
1177 		goto fail1;
1178 	}
1179 
1180 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1181 	if (error != 0) {
1182 		aprint_error_dev(sc->sc_dev,
1183 		    "error reading firmware file %s: %d\n", fwname, error);
1184 		goto fail2;
1185 	}
1186 
1187 	/* Success!  */
1188 	firmware_close(fw);
1189 	mutex_exit(&wpi_firmware_mutex);
1190 	return 0;
1191 
1192 fail2:
1193 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1194 	wpi_firmware_image = NULL;
1195 fail1:
1196 	wpi_firmware_size = 0;
1197 	firmware_close(fw);
1198 fail0:
1199 	KASSERT(wpi_firmware_users == 1);
1200 	wpi_firmware_users = 0;
1201 	KASSERT(wpi_firmware_image == NULL);
1202 	KASSERT(wpi_firmware_size == 0);
1203 
1204 	mutex_exit(&wpi_firmware_mutex);
1205 	return error;
1206 }
1207 
1208 static void
1209 wpi_release_firmware(void)
1210 {
1211 
1212 	mutex_enter(&wpi_firmware_mutex);
1213 
1214 	KASSERT(wpi_firmware_users > 0);
1215 	KASSERT(wpi_firmware_image != NULL);
1216 	KASSERT(wpi_firmware_size != 0);
1217 
1218 	if (--wpi_firmware_users == 0) {
1219 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1220 		wpi_firmware_image = NULL;
1221 		wpi_firmware_size = 0;
1222 	}
1223 
1224 	mutex_exit(&wpi_firmware_mutex);
1225 }
1226 
1227 static int
1228 wpi_load_firmware(struct wpi_softc *sc)
1229 {
1230 	struct wpi_dma_info *dma = &sc->fw_dma;
1231 	struct wpi_firmware_hdr hdr;
1232 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1233 	const uint8_t *boot_text;
1234 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1235 	uint32_t boot_textsz;
1236 	size_t size;
1237 	int error;
1238 
1239 	if (!sc->fw_used) {
1240 		if ((error = wpi_cache_firmware(sc)) != 0)
1241 			return error;
1242 		sc->fw_used = true;
1243 	}
1244 
1245 	KASSERT(sc->fw_used);
1246 	KASSERT(wpi_firmware_image != NULL);
1247 	KASSERT(wpi_firmware_size > sizeof(hdr));
1248 
1249 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1250 
1251 	main_textsz = le32toh(hdr.main_textsz);
1252 	main_datasz = le32toh(hdr.main_datasz);
1253 	init_textsz = le32toh(hdr.init_textsz);
1254 	init_datasz = le32toh(hdr.init_datasz);
1255 	boot_textsz = le32toh(hdr.boot_textsz);
1256 
1257 	/* sanity-check firmware segments sizes */
1258 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1259 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1260 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1261 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1262 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1263 	    (boot_textsz & 3) != 0) {
1264 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1265 		error = EINVAL;
1266 		goto free_firmware;
1267 	}
1268 
1269 	/* check that all firmware segments are present */
1270 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1271 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1272 	if (wpi_firmware_size < size) {
1273 		aprint_error_dev(sc->sc_dev,
1274 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1275 		    wpi_firmware_size, size);
1276 		error = EINVAL;
1277 		goto free_firmware;
1278 	}
1279 
1280 	/* get pointers to firmware segments */
1281 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1282 	main_data = main_text + main_textsz;
1283 	init_text = main_data + main_datasz;
1284 	init_data = init_text + init_textsz;
1285 	boot_text = init_data + init_datasz;
1286 
1287 	/* copy initialization images into pre-allocated DMA-safe memory */
1288 	memcpy(dma->vaddr, init_data, init_datasz);
1289 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1290 	    init_textsz);
1291 
1292 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1293 
1294 	/* tell adapter where to find initialization images */
1295 	wpi_mem_lock(sc);
1296 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1297 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1298 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1299 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1300 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1301 	wpi_mem_unlock(sc);
1302 
1303 	/* load firmware boot code */
1304 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1305 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1306 		return error;
1307 	}
1308 
1309 	/* now press "execute" ;-) */
1310 	WPI_WRITE(sc, WPI_RESET, 0);
1311 
1312 	/* wait at most one second for first alive notification */
1313 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1314 		/* this isn't what was supposed to happen.. */
1315 		aprint_error_dev(sc->sc_dev,
1316 		    "timeout waiting for adapter to initialize\n");
1317 	}
1318 
1319 	/* copy runtime images into pre-allocated DMA-safe memory */
1320 	memcpy(dma->vaddr, main_data, main_datasz);
1321 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1322 	    main_textsz);
1323 
1324 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1325 
1326 	/* tell adapter where to find runtime images */
1327 	wpi_mem_lock(sc);
1328 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1329 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1330 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1331 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1332 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1333 	wpi_mem_unlock(sc);
1334 
1335 	/* wait at most one second for second alive notification */
1336 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1337 		/* this isn't what was supposed to happen.. */
1338 		aprint_error_dev(sc->sc_dev,
1339 		    "timeout waiting for adapter to initialize\n");
1340 	}
1341 
1342 	return error;
1343 
1344 free_firmware:
1345 	sc->fw_used = false;
1346 	wpi_release_firmware();
1347 	return error;
1348 }
1349 
1350 static void
1351 wpi_calib_timeout(void *arg)
1352 {
1353 	struct wpi_softc *sc = arg;
1354 	struct ieee80211com *ic = &sc->sc_ic;
1355 	int temp, s;
1356 
1357 	/* automatic rate control triggered every 500ms */
1358 	if (ic->ic_fixed_rate == -1) {
1359 		s = splnet();
1360 		if (ic->ic_opmode == IEEE80211_M_STA)
1361 			wpi_iter_func(sc, ic->ic_bss);
1362 		else
1363 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1364 		splx(s);
1365 	}
1366 
1367 	/* update sensor data */
1368 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1369 
1370 	/* automatic power calibration every 60s */
1371 	if (++sc->calib_cnt >= 120) {
1372 		wpi_power_calibration(sc, temp);
1373 		sc->calib_cnt = 0;
1374 	}
1375 
1376 	callout_schedule(&sc->calib_to, hz/2);
1377 }
1378 
1379 static void
1380 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1381 {
1382 	struct wpi_softc *sc = arg;
1383 	struct wpi_node *wn = (struct wpi_node *)ni;
1384 
1385 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1386 }
1387 
1388 /*
1389  * This function is called periodically (every 60 seconds) to adjust output
1390  * power to temperature changes.
1391  */
1392 void
1393 wpi_power_calibration(struct wpi_softc *sc, int temp)
1394 {
1395 	/* sanity-check read value */
1396 	if (temp < -260 || temp > 25) {
1397 		/* this can't be correct, ignore */
1398 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1399 		return;
1400 	}
1401 
1402 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1403 
1404 	/* adjust Tx power if need be */
1405 	if (abs(temp - sc->temp) <= 6)
1406 		return;
1407 
1408 	sc->temp = temp;
1409 
1410 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1411 		/* just warn, too bad for the automatic calibration... */
1412 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1413 	}
1414 }
1415 
1416 static void
1417 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1418     struct wpi_rx_data *data)
1419 {
1420 	struct ieee80211com *ic = &sc->sc_ic;
1421 	struct ifnet *ifp = ic->ic_ifp;
1422 	struct wpi_rx_ring *ring = &sc->rxq;
1423 	struct wpi_rx_stat *stat;
1424 	struct wpi_rx_head *head;
1425 	struct wpi_rx_tail *tail;
1426 	struct wpi_rbuf *rbuf;
1427 	struct ieee80211_frame *wh;
1428 	struct ieee80211_node *ni;
1429 	struct mbuf *m, *mnew;
1430 	int data_off, error;
1431 
1432 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1433 	    BUS_DMASYNC_POSTREAD);
1434 	stat = (struct wpi_rx_stat *)(desc + 1);
1435 
1436 	if (stat->len > WPI_STAT_MAXLEN) {
1437 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1438 		ifp->if_ierrors++;
1439 		return;
1440 	}
1441 
1442 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1443 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1444 
1445 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1446 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1447 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1448 	    le64toh(tail->tstamp)));
1449 
1450 	/*
1451 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1452 	 * to radiotap in monitor mode).
1453 	 */
1454 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1455 		DPRINTF(("rx tail flags error %x\n",
1456 		    le32toh(tail->flags)));
1457 		ifp->if_ierrors++;
1458 		return;
1459 	}
1460 
1461 	/* Compute where are the useful datas */
1462 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1463 
1464 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1465 	if (mnew == NULL) {
1466 		ifp->if_ierrors++;
1467 		return;
1468 	}
1469 
1470 	rbuf = wpi_alloc_rbuf(sc);
1471 	if (rbuf == NULL) {
1472 		m_freem(mnew);
1473 		ifp->if_ierrors++;
1474 		return;
1475 	}
1476 
1477 	/* attach Rx buffer to mbuf */
1478 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1479 		rbuf);
1480 	mnew->m_flags |= M_EXT_RW;
1481 
1482 	bus_dmamap_unload(sc->sc_dmat, data->map);
1483 
1484 	error = bus_dmamap_load(sc->sc_dmat, data->map,
1485 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1486 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1487 	if (error) {
1488 		device_printf(sc->sc_dev,
1489 		    "couldn't load rx mbuf: %d\n", error);
1490 		m_freem(mnew);
1491 		ifp->if_ierrors++;
1492 
1493 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1494 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1495 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1496 		if (error)
1497 			panic("%s: bus_dmamap_load failed: %d\n",
1498 			    device_xname(sc->sc_dev), error);
1499 		return;
1500 	}
1501 
1502 	/* new mbuf loaded successfully */
1503 	m = data->m;
1504 	data->m = mnew;
1505 
1506 	/* update Rx descriptor */
1507 	ring->desc[ring->cur] = htole32(rbuf->paddr);
1508 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1509 	    ring->desc_dma.size,
1510 	    BUS_DMASYNC_PREWRITE);
1511 
1512 	m->m_data = (char*)m->m_data + data_off;
1513 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1514 
1515 	/* finalize mbuf */
1516 	m->m_pkthdr.rcvif = ifp;
1517 
1518 	if (sc->sc_drvbpf != NULL) {
1519 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1520 
1521 		tap->wr_flags = 0;
1522 		tap->wr_chan_freq =
1523 		    htole16(ic->ic_channels[head->chan].ic_freq);
1524 		tap->wr_chan_flags =
1525 		    htole16(ic->ic_channels[head->chan].ic_flags);
1526 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1527 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1528 		tap->wr_tsft = tail->tstamp;
1529 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1530 		switch (head->rate) {
1531 		/* CCK rates */
1532 		case  10: tap->wr_rate =   2; break;
1533 		case  20: tap->wr_rate =   4; break;
1534 		case  55: tap->wr_rate =  11; break;
1535 		case 110: tap->wr_rate =  22; break;
1536 		/* OFDM rates */
1537 		case 0xd: tap->wr_rate =  12; break;
1538 		case 0xf: tap->wr_rate =  18; break;
1539 		case 0x5: tap->wr_rate =  24; break;
1540 		case 0x7: tap->wr_rate =  36; break;
1541 		case 0x9: tap->wr_rate =  48; break;
1542 		case 0xb: tap->wr_rate =  72; break;
1543 		case 0x1: tap->wr_rate =  96; break;
1544 		case 0x3: tap->wr_rate = 108; break;
1545 		/* unknown rate: should not happen */
1546 		default:  tap->wr_rate =   0;
1547 		}
1548 		if (le16toh(head->flags) & 0x4)
1549 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1550 
1551 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1552 	}
1553 
1554 	/* grab a reference to the source node */
1555 	wh = mtod(m, struct ieee80211_frame *);
1556 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1557 
1558 	/* send the frame to the 802.11 layer */
1559 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1560 
1561 	/* release node reference */
1562 	ieee80211_free_node(ni);
1563 }
1564 
1565 static void
1566 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1567 {
1568 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1569 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1570 	struct wpi_tx_data *data = &ring->data[desc->idx];
1571 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1572 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1573 
1574 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1575 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1576 	    stat->nkill, stat->rate, le32toh(stat->duration),
1577 	    le32toh(stat->status)));
1578 
1579 	/*
1580 	 * Update rate control statistics for the node.
1581 	 * XXX we should not count mgmt frames since they're always sent at
1582 	 * the lowest available bit-rate.
1583 	 */
1584 	wn->amn.amn_txcnt++;
1585 	if (stat->ntries > 0) {
1586 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1587 		wn->amn.amn_retrycnt++;
1588 	}
1589 
1590 	if ((le32toh(stat->status) & 0xff) != 1)
1591 		ifp->if_oerrors++;
1592 	else
1593 		ifp->if_opackets++;
1594 
1595 	bus_dmamap_unload(sc->sc_dmat, data->map);
1596 	m_freem(data->m);
1597 	data->m = NULL;
1598 	ieee80211_free_node(data->ni);
1599 	data->ni = NULL;
1600 
1601 	ring->queued--;
1602 
1603 	sc->sc_tx_timer = 0;
1604 	ifp->if_flags &= ~IFF_OACTIVE;
1605 	wpi_start(ifp);
1606 }
1607 
1608 static void
1609 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1610 {
1611 	struct wpi_tx_ring *ring = &sc->cmdq;
1612 	struct wpi_tx_data *data;
1613 
1614 	if ((desc->qid & 7) != 4)
1615 		return;	/* not a command ack */
1616 
1617 	data = &ring->data[desc->idx];
1618 
1619 	/* if the command was mapped in a mbuf, free it */
1620 	if (data->m != NULL) {
1621 		bus_dmamap_unload(sc->sc_dmat, data->map);
1622 		m_freem(data->m);
1623 		data->m = NULL;
1624 	}
1625 
1626 	wakeup(&ring->cmd[desc->idx]);
1627 }
1628 
1629 static void
1630 wpi_notif_intr(struct wpi_softc *sc)
1631 {
1632 	struct ieee80211com *ic = &sc->sc_ic;
1633 	struct ifnet *ifp =  ic->ic_ifp;
1634 	uint32_t hw;
1635 
1636 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1637 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1638 
1639 	hw = le32toh(sc->shared->next);
1640 	while (sc->rxq.cur != hw) {
1641 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1642 		struct wpi_rx_desc *desc;
1643 
1644 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1645 		    BUS_DMASYNC_POSTREAD);
1646 		desc = mtod(data->m, struct wpi_rx_desc *);
1647 
1648 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1649 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1650 		    desc->type, le32toh(desc->len)));
1651 
1652 		if (!(desc->qid & 0x80))	/* reply to a command */
1653 			wpi_cmd_intr(sc, desc);
1654 
1655 		switch (desc->type) {
1656 		case WPI_RX_DONE:
1657 			/* a 802.11 frame was received */
1658 			wpi_rx_intr(sc, desc, data);
1659 			break;
1660 
1661 		case WPI_TX_DONE:
1662 			/* a 802.11 frame has been transmitted */
1663 			wpi_tx_intr(sc, desc);
1664 			break;
1665 
1666 		case WPI_UC_READY:
1667 		{
1668 			struct wpi_ucode_info *uc =
1669 			    (struct wpi_ucode_info *)(desc + 1);
1670 
1671 			/* the microcontroller is ready */
1672 			DPRINTF(("microcode alive notification version %x "
1673 			    "alive %x\n", le32toh(uc->version),
1674 			    le32toh(uc->valid)));
1675 
1676 			if (le32toh(uc->valid) != 1) {
1677 				aprint_error_dev(sc->sc_dev,
1678 				    "microcontroller initialization failed\n");
1679 			}
1680 			break;
1681 		}
1682 		case WPI_STATE_CHANGED:
1683 		{
1684 			uint32_t *status = (uint32_t *)(desc + 1);
1685 
1686 			/* enabled/disabled notification */
1687 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1688 
1689 			if (le32toh(*status) & 1) {
1690 				/* the radio button has to be pushed */
1691 				aprint_error_dev(sc->sc_dev,
1692 				    "Radio transmitter is off\n");
1693 				/* turn the interface down */
1694 				ifp->if_flags &= ~IFF_UP;
1695 				wpi_stop(ifp, 1);
1696 				return;	/* no further processing */
1697 			}
1698 			break;
1699 		}
1700 		case WPI_START_SCAN:
1701 		{
1702 #if 0
1703 			struct wpi_start_scan *scan =
1704 			    (struct wpi_start_scan *)(desc + 1);
1705 
1706 			DPRINTFN(2, ("scanning channel %d status %x\n",
1707 			    scan->chan, le32toh(scan->status)));
1708 
1709 			/* fix current channel */
1710 			ic->ic_curchan = &ic->ic_channels[scan->chan];
1711 #endif
1712 			break;
1713 		}
1714 		case WPI_STOP_SCAN:
1715 		{
1716 #ifdef WPI_DEBUG
1717 			struct wpi_stop_scan *scan =
1718 			    (struct wpi_stop_scan *)(desc + 1);
1719 #endif
1720 
1721 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1722 			    scan->nchan, scan->status, scan->chan));
1723 
1724 			sc->is_scanning = false;
1725 			if (ic->ic_state == IEEE80211_S_SCAN)
1726 				ieee80211_next_scan(ic);
1727 
1728 			break;
1729 		}
1730 		}
1731 
1732 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1733 	}
1734 
1735 	/* tell the firmware what we have processed */
1736 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1737 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1738 }
1739 
1740 static int
1741 wpi_intr(void *arg)
1742 {
1743 	struct wpi_softc *sc = arg;
1744 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1745 	uint32_t r;
1746 
1747 	r = WPI_READ(sc, WPI_INTR);
1748 	if (r == 0 || r == 0xffffffff)
1749 		return 0;	/* not for us */
1750 
1751 	DPRINTFN(6, ("interrupt reg %x\n", r));
1752 
1753 	/* disable interrupts */
1754 	WPI_WRITE(sc, WPI_MASK, 0);
1755 	/* ack interrupts */
1756 	WPI_WRITE(sc, WPI_INTR, r);
1757 
1758 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1759 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1760 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1761 		ifp->if_flags &= ~IFF_UP;
1762 		wpi_stop(ifp, 1);
1763 		return 1;
1764 	}
1765 
1766 	if (r & WPI_RX_INTR)
1767 		wpi_notif_intr(sc);
1768 
1769 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1770 		wakeup(sc);
1771 
1772 	/* re-enable interrupts */
1773 	if (ifp->if_flags & IFF_UP)
1774 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1775 
1776 	return 1;
1777 }
1778 
1779 static uint8_t
1780 wpi_plcp_signal(int rate)
1781 {
1782 	switch (rate) {
1783 	/* CCK rates (returned values are device-dependent) */
1784 	case 2:		return 10;
1785 	case 4:		return 20;
1786 	case 11:	return 55;
1787 	case 22:	return 110;
1788 
1789 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1790 	/* R1-R4, (u)ral is R4-R1 */
1791 	case 12:	return 0xd;
1792 	case 18:	return 0xf;
1793 	case 24:	return 0x5;
1794 	case 36:	return 0x7;
1795 	case 48:	return 0x9;
1796 	case 72:	return 0xb;
1797 	case 96:	return 0x1;
1798 	case 108:	return 0x3;
1799 
1800 	/* unsupported rates (should not get there) */
1801 	default:	return 0;
1802 	}
1803 }
1804 
1805 /* quickly determine if a given rate is CCK or OFDM */
1806 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1807 
1808 static int
1809 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1810     int ac)
1811 {
1812 	struct ieee80211com *ic = &sc->sc_ic;
1813 	struct wpi_tx_ring *ring = &sc->txq[ac];
1814 	struct wpi_tx_desc *desc;
1815 	struct wpi_tx_data *data;
1816 	struct wpi_tx_cmd *cmd;
1817 	struct wpi_cmd_data *tx;
1818 	struct ieee80211_frame *wh;
1819 	struct ieee80211_key *k;
1820 	const struct chanAccParams *cap;
1821 	struct mbuf *mnew;
1822 	int i, rate, error, hdrlen, noack = 0;
1823 
1824 	desc = &ring->desc[ring->cur];
1825 	data = &ring->data[ring->cur];
1826 
1827 	wh = mtod(m0, struct ieee80211_frame *);
1828 
1829 	if (ieee80211_has_qos(wh)) {
1830 		cap = &ic->ic_wme.wme_chanParams;
1831 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1832 	}
1833 
1834 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1835 		k = ieee80211_crypto_encap(ic, ni, m0);
1836 		if (k == NULL) {
1837 			m_freem(m0);
1838 			return ENOBUFS;
1839 		}
1840 
1841 		/* packet header may have moved, reset our local pointer */
1842 		wh = mtod(m0, struct ieee80211_frame *);
1843 	}
1844 
1845 	hdrlen = ieee80211_anyhdrsize(wh);
1846 
1847 	/* pickup a rate */
1848 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1849 	    IEEE80211_FC0_TYPE_MGT) {
1850 		/* mgmt frames are sent at the lowest available bit-rate */
1851 		rate = ni->ni_rates.rs_rates[0];
1852 	} else {
1853 		if (ic->ic_fixed_rate != -1) {
1854 			rate = ic->ic_sup_rates[ic->ic_curmode].
1855 			    rs_rates[ic->ic_fixed_rate];
1856 		} else
1857 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1858 	}
1859 	rate &= IEEE80211_RATE_VAL;
1860 
1861 	if (sc->sc_drvbpf != NULL) {
1862 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1863 
1864 		tap->wt_flags = 0;
1865 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1866 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1867 		tap->wt_rate = rate;
1868 		tap->wt_hwqueue = ac;
1869 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1870 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1871 
1872 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1873 	}
1874 
1875 	cmd = &ring->cmd[ring->cur];
1876 	cmd->code = WPI_CMD_TX_DATA;
1877 	cmd->flags = 0;
1878 	cmd->qid = ring->qid;
1879 	cmd->idx = ring->cur;
1880 
1881 	tx = (struct wpi_cmd_data *)cmd->data;
1882 	/* no need to zero tx, all fields are reinitialized here */
1883 	tx->flags = 0;
1884 
1885 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1886 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1887 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1888 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1889 
1890 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1891 
1892 	/* retrieve destination node's id */
1893 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1894 		WPI_ID_BSS;
1895 
1896 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1897 	    IEEE80211_FC0_TYPE_MGT) {
1898 		/* tell h/w to set timestamp in probe responses */
1899 		if ((wh->i_fc[0] &
1900 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1901 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1902 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1903 
1904 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1905 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1906 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1907 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1908 			tx->timeout = htole16(3);
1909 		else
1910 			tx->timeout = htole16(2);
1911 	} else
1912 		tx->timeout = htole16(0);
1913 
1914 	tx->rate = wpi_plcp_signal(rate);
1915 
1916 	/* be very persistant at sending frames out */
1917 	tx->rts_ntries = 7;
1918 	tx->data_ntries = 15;
1919 
1920 	tx->ofdm_mask = 0xff;
1921 	tx->cck_mask = 0x0f;
1922 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1923 
1924 	tx->len = htole16(m0->m_pkthdr.len);
1925 
1926 	/* save and trim IEEE802.11 header */
1927 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1928 	m_adj(m0, hdrlen);
1929 
1930 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1931 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1932 	if (error != 0 && error != EFBIG) {
1933 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1934 		    error);
1935 		m_freem(m0);
1936 		return error;
1937 	}
1938 	if (error != 0) {
1939 		/* too many fragments, linearize */
1940 
1941 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1942 		if (mnew == NULL) {
1943 			m_freem(m0);
1944 			return ENOMEM;
1945 		}
1946 		M_COPY_PKTHDR(mnew, m0);
1947 		if (m0->m_pkthdr.len > MHLEN) {
1948 			MCLGET(mnew, M_DONTWAIT);
1949 			if (!(mnew->m_flags & M_EXT)) {
1950 				m_freem(m0);
1951 				m_freem(mnew);
1952 				return ENOMEM;
1953 			}
1954 		}
1955 
1956 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1957 		m_freem(m0);
1958 		mnew->m_len = mnew->m_pkthdr.len;
1959 		m0 = mnew;
1960 
1961 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1962 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1963 		if (error != 0) {
1964 			aprint_error_dev(sc->sc_dev,
1965 			    "could not map mbuf (error %d)\n", error);
1966 			m_freem(m0);
1967 			return error;
1968 		}
1969 	}
1970 
1971 	data->m = m0;
1972 	data->ni = ni;
1973 
1974 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1975 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1976 
1977 	/* first scatter/gather segment is used by the tx data command */
1978 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1979 	    (1 + data->map->dm_nsegs) << 24);
1980 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1981 	    ring->cur * sizeof (struct wpi_tx_cmd));
1982 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1983 	    ((hdrlen + 3) & ~3));
1984 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1985 		desc->segs[i].addr =
1986 		    htole32(data->map->dm_segs[i - 1].ds_addr);
1987 		desc->segs[i].len  =
1988 		    htole32(data->map->dm_segs[i - 1].ds_len);
1989 	}
1990 
1991 	ring->queued++;
1992 
1993 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1994 	    data->map->dm_mapsize,
1995 	    BUS_DMASYNC_PREWRITE);
1996 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
1997 	    ring->cmd_dma.size,
1998 	    BUS_DMASYNC_PREWRITE);
1999 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2000 	    ring->desc_dma.size,
2001 	    BUS_DMASYNC_PREWRITE);
2002 
2003 	/* kick ring */
2004 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2005 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2006 
2007 	return 0;
2008 }
2009 
2010 static void
2011 wpi_start(struct ifnet *ifp)
2012 {
2013 	struct wpi_softc *sc = ifp->if_softc;
2014 	struct ieee80211com *ic = &sc->sc_ic;
2015 	struct ieee80211_node *ni;
2016 	struct ether_header *eh;
2017 	struct mbuf *m0;
2018 	int ac;
2019 
2020 	/*
2021 	 * net80211 may still try to send management frames even if the
2022 	 * IFF_RUNNING flag is not set...
2023 	 */
2024 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2025 		return;
2026 
2027 	for (;;) {
2028 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2029 		if (m0 != NULL) {
2030 
2031 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2032 			m0->m_pkthdr.rcvif = NULL;
2033 
2034 			/* management frames go into ring 0 */
2035 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2036 				ifp->if_oerrors++;
2037 				continue;
2038 			}
2039 			bpf_mtap3(ic->ic_rawbpf, m0);
2040 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2041 				ifp->if_oerrors++;
2042 				break;
2043 			}
2044 		} else {
2045 			if (ic->ic_state != IEEE80211_S_RUN)
2046 				break;
2047 			IFQ_POLL(&ifp->if_snd, m0);
2048 			if (m0 == NULL)
2049 				break;
2050 
2051 			if (m0->m_len < sizeof (*eh) &&
2052 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2053 				ifp->if_oerrors++;
2054 				continue;
2055 			}
2056 			eh = mtod(m0, struct ether_header *);
2057 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2058 			if (ni == NULL) {
2059 				m_freem(m0);
2060 				ifp->if_oerrors++;
2061 				continue;
2062 			}
2063 
2064 			/* classify mbuf so we can find which tx ring to use */
2065 			if (ieee80211_classify(ic, m0, ni) != 0) {
2066 				m_freem(m0);
2067 				ieee80211_free_node(ni);
2068 				ifp->if_oerrors++;
2069 				continue;
2070 			}
2071 
2072 			/* no QoS encapsulation for EAPOL frames */
2073 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2074 			    M_WME_GETAC(m0) : WME_AC_BE;
2075 
2076 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2077 				/* there is no place left in this ring */
2078 				ifp->if_flags |= IFF_OACTIVE;
2079 				break;
2080 			}
2081 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2082 			bpf_mtap(ifp, m0);
2083 			m0 = ieee80211_encap(ic, m0, ni);
2084 			if (m0 == NULL) {
2085 				ieee80211_free_node(ni);
2086 				ifp->if_oerrors++;
2087 				continue;
2088 			}
2089 			bpf_mtap3(ic->ic_rawbpf, m0);
2090 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2091 				ieee80211_free_node(ni);
2092 				ifp->if_oerrors++;
2093 				break;
2094 			}
2095 		}
2096 
2097 		sc->sc_tx_timer = 5;
2098 		ifp->if_timer = 1;
2099 	}
2100 }
2101 
2102 static void
2103 wpi_watchdog(struct ifnet *ifp)
2104 {
2105 	struct wpi_softc *sc = ifp->if_softc;
2106 
2107 	ifp->if_timer = 0;
2108 
2109 	if (sc->sc_tx_timer > 0) {
2110 		if (--sc->sc_tx_timer == 0) {
2111 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2112 			ifp->if_flags &= ~IFF_UP;
2113 			wpi_stop(ifp, 1);
2114 			ifp->if_oerrors++;
2115 			return;
2116 		}
2117 		ifp->if_timer = 1;
2118 	}
2119 
2120 	ieee80211_watchdog(&sc->sc_ic);
2121 }
2122 
2123 static int
2124 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2125 {
2126 #define IS_RUNNING(ifp) \
2127 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2128 
2129 	struct wpi_softc *sc = ifp->if_softc;
2130 	struct ieee80211com *ic = &sc->sc_ic;
2131 	int s, error = 0;
2132 
2133 	s = splnet();
2134 
2135 	switch (cmd) {
2136 	case SIOCSIFFLAGS:
2137 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2138 			break;
2139 		if (ifp->if_flags & IFF_UP) {
2140 			if (!(ifp->if_flags & IFF_RUNNING))
2141 				wpi_init(ifp);
2142 		} else {
2143 			if (ifp->if_flags & IFF_RUNNING)
2144 				wpi_stop(ifp, 1);
2145 		}
2146 		break;
2147 
2148 	case SIOCADDMULTI:
2149 	case SIOCDELMULTI:
2150 		/* XXX no h/w multicast filter? --dyoung */
2151 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2152 			/* setup multicast filter, etc */
2153 			error = 0;
2154 		}
2155 		break;
2156 
2157 	default:
2158 		error = ieee80211_ioctl(ic, cmd, data);
2159 	}
2160 
2161 	if (error == ENETRESET) {
2162 		if (IS_RUNNING(ifp) &&
2163 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2164 			wpi_init(ifp);
2165 		error = 0;
2166 	}
2167 
2168 	splx(s);
2169 	return error;
2170 
2171 #undef IS_RUNNING
2172 }
2173 
2174 /*
2175  * Extract various information from EEPROM.
2176  */
2177 static void
2178 wpi_read_eeprom(struct wpi_softc *sc)
2179 {
2180 	struct ieee80211com *ic = &sc->sc_ic;
2181 	char domain[4];
2182 	int i;
2183 
2184 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2185 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2186 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2187 
2188 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2189 	    sc->type));
2190 
2191 	/* read and print regulatory domain */
2192 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2193 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2194 
2195 	/* read and print MAC address */
2196 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2197 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2198 
2199 	/* read the list of authorized channels */
2200 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2201 		wpi_read_eeprom_channels(sc, i);
2202 
2203 	/* read the list of power groups */
2204 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2205 		wpi_read_eeprom_group(sc, i);
2206 }
2207 
2208 static void
2209 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2210 {
2211 	struct ieee80211com *ic = &sc->sc_ic;
2212 	const struct wpi_chan_band *band = &wpi_bands[n];
2213 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2214 	int chan, i;
2215 
2216 	wpi_read_prom_data(sc, band->addr, channels,
2217 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2218 
2219 	for (i = 0; i < band->nchan; i++) {
2220 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2221 			continue;
2222 
2223 		chan = band->chan[i];
2224 
2225 		if (n == 0) {	/* 2GHz band */
2226 			ic->ic_channels[chan].ic_freq =
2227 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2228 			ic->ic_channels[chan].ic_flags =
2229 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2230 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2231 
2232 		} else {	/* 5GHz band */
2233 			/*
2234 			 * Some 3945ABG adapters support channels 7, 8, 11
2235 			 * and 12 in the 2GHz *and* 5GHz bands.
2236 			 * Because of limitations in our net80211(9) stack,
2237 			 * we can't support these channels in 5GHz band.
2238 			 */
2239 			if (chan <= 14)
2240 				continue;
2241 
2242 			ic->ic_channels[chan].ic_freq =
2243 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2244 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2245 		}
2246 
2247 		/* is active scan allowed on this channel? */
2248 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2249 			ic->ic_channels[chan].ic_flags |=
2250 			    IEEE80211_CHAN_PASSIVE;
2251 		}
2252 
2253 		/* save maximum allowed power for this channel */
2254 		sc->maxpwr[chan] = channels[i].maxpwr;
2255 
2256 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2257 		    chan, channels[i].flags, sc->maxpwr[chan]));
2258 	}
2259 }
2260 
2261 static void
2262 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2263 {
2264 	struct wpi_power_group *group = &sc->groups[n];
2265 	struct wpi_eeprom_group rgroup;
2266 	int i;
2267 
2268 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2269 	    sizeof rgroup);
2270 
2271 	/* save power group information */
2272 	group->chan   = rgroup.chan;
2273 	group->maxpwr = rgroup.maxpwr;
2274 	/* temperature at which the samples were taken */
2275 	group->temp   = (int16_t)le16toh(rgroup.temp);
2276 
2277 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2278 	    group->chan, group->maxpwr, group->temp));
2279 
2280 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2281 		group->samples[i].index = rgroup.samples[i].index;
2282 		group->samples[i].power = rgroup.samples[i].power;
2283 
2284 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2285 		    group->samples[i].index, group->samples[i].power));
2286 	}
2287 }
2288 
2289 /*
2290  * Send a command to the firmware.
2291  */
2292 static int
2293 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2294 {
2295 	struct wpi_tx_ring *ring = &sc->cmdq;
2296 	struct wpi_tx_desc *desc;
2297 	struct wpi_tx_cmd *cmd;
2298 	struct wpi_dma_info *dma;
2299 
2300 	KASSERT(size <= sizeof cmd->data);
2301 
2302 	desc = &ring->desc[ring->cur];
2303 	cmd = &ring->cmd[ring->cur];
2304 
2305 	cmd->code = code;
2306 	cmd->flags = 0;
2307 	cmd->qid = ring->qid;
2308 	cmd->idx = ring->cur;
2309 	memcpy(cmd->data, buf, size);
2310 
2311 	dma = &ring->cmd_dma;
2312 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2313 
2314 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2315 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2316 	    ring->cur * sizeof (struct wpi_tx_cmd));
2317 	desc->segs[0].len  = htole32(4 + size);
2318 
2319 	dma = &ring->desc_dma;
2320 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2321 
2322 	/* kick cmd ring */
2323 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2324 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2325 
2326 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2327 }
2328 
2329 static int
2330 wpi_wme_update(struct ieee80211com *ic)
2331 {
2332 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2333 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2334 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2335 	const struct wmeParams *wmep;
2336 	struct wpi_wme_setup wme;
2337 	int ac;
2338 
2339 	/* don't override default WME values if WME is not actually enabled */
2340 	if (!(ic->ic_flags & IEEE80211_F_WME))
2341 		return 0;
2342 
2343 	wme.flags = 0;
2344 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2345 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2346 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2347 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2348 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2349 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2350 
2351 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2352 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2353 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2354 	}
2355 
2356 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2357 #undef WPI_USEC
2358 #undef WPI_EXP2
2359 }
2360 
2361 /*
2362  * Configure h/w multi-rate retries.
2363  */
2364 static int
2365 wpi_mrr_setup(struct wpi_softc *sc)
2366 {
2367 	struct ieee80211com *ic = &sc->sc_ic;
2368 	struct wpi_mrr_setup mrr;
2369 	int i, error;
2370 
2371 	/* CCK rates (not used with 802.11a) */
2372 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2373 		mrr.rates[i].flags = 0;
2374 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2375 		/* fallback to the immediate lower CCK rate (if any) */
2376 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2377 		/* try one time at this rate before falling back to "next" */
2378 		mrr.rates[i].ntries = 1;
2379 	}
2380 
2381 	/* OFDM rates (not used with 802.11b) */
2382 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2383 		mrr.rates[i].flags = 0;
2384 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2385 		/* fallback to the immediate lower rate (if any) */
2386 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2387 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2388 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2389 			WPI_OFDM6 : WPI_CCK2) :
2390 		    i - 1;
2391 		/* try one time at this rate before falling back to "next" */
2392 		mrr.rates[i].ntries = 1;
2393 	}
2394 
2395 	/* setup MRR for control frames */
2396 	mrr.which = htole32(WPI_MRR_CTL);
2397 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2398 	if (error != 0) {
2399 		aprint_error_dev(sc->sc_dev,
2400 		    "could not setup MRR for control frames\n");
2401 		return error;
2402 	}
2403 
2404 	/* setup MRR for data frames */
2405 	mrr.which = htole32(WPI_MRR_DATA);
2406 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2407 	if (error != 0) {
2408 		aprint_error_dev(sc->sc_dev,
2409 		    "could not setup MRR for data frames\n");
2410 		return error;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 static void
2417 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2418 {
2419 	struct wpi_cmd_led led;
2420 
2421 	led.which = which;
2422 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2423 	led.off = off;
2424 	led.on = on;
2425 
2426 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2427 }
2428 
2429 static void
2430 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2431 {
2432 	struct wpi_cmd_tsf tsf;
2433 	uint64_t val, mod;
2434 
2435 	memset(&tsf, 0, sizeof tsf);
2436 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2437 	tsf.bintval = htole16(ni->ni_intval);
2438 	tsf.lintval = htole16(10);
2439 
2440 	/* compute remaining time until next beacon */
2441 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2442 	mod = le64toh(tsf.tstamp) % val;
2443 	tsf.binitval = htole32((uint32_t)(val - mod));
2444 
2445 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2446 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2447 
2448 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2449 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2450 }
2451 
2452 /*
2453  * Update Tx power to match what is defined for channel `c'.
2454  */
2455 static int
2456 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2457 {
2458 	struct ieee80211com *ic = &sc->sc_ic;
2459 	struct wpi_power_group *group;
2460 	struct wpi_cmd_txpower txpower;
2461 	u_int chan;
2462 	int i;
2463 
2464 	/* get channel number */
2465 	chan = ieee80211_chan2ieee(ic, c);
2466 
2467 	/* find the power group to which this channel belongs */
2468 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2469 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2470 			if (chan <= group->chan)
2471 				break;
2472 	} else
2473 		group = &sc->groups[0];
2474 
2475 	memset(&txpower, 0, sizeof txpower);
2476 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2477 	txpower.chan = htole16(chan);
2478 
2479 	/* set Tx power for all OFDM and CCK rates */
2480 	for (i = 0; i <= 11 ; i++) {
2481 		/* retrieve Tx power for this channel/rate combination */
2482 		int idx = wpi_get_power_index(sc, group, c,
2483 		    wpi_ridx_to_rate[i]);
2484 
2485 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2486 
2487 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2488 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2489 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2490 		} else {
2491 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2492 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2493 		}
2494 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2495 		    wpi_ridx_to_rate[i], idx));
2496 	}
2497 
2498 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2499 }
2500 
2501 /*
2502  * Determine Tx power index for a given channel/rate combination.
2503  * This takes into account the regulatory information from EEPROM and the
2504  * current temperature.
2505  */
2506 static int
2507 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2508     struct ieee80211_channel *c, int rate)
2509 {
2510 /* fixed-point arithmetic division using a n-bit fractional part */
2511 #define fdivround(a, b, n)	\
2512 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2513 
2514 /* linear interpolation */
2515 #define interpolate(x, x1, y1, x2, y2, n)	\
2516 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2517 
2518 	struct ieee80211com *ic = &sc->sc_ic;
2519 	struct wpi_power_sample *sample;
2520 	int pwr, idx;
2521 	u_int chan;
2522 
2523 	/* get channel number */
2524 	chan = ieee80211_chan2ieee(ic, c);
2525 
2526 	/* default power is group's maximum power - 3dB */
2527 	pwr = group->maxpwr / 2;
2528 
2529 	/* decrease power for highest OFDM rates to reduce distortion */
2530 	switch (rate) {
2531 	case 72:	/* 36Mb/s */
2532 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2533 		break;
2534 	case 96:	/* 48Mb/s */
2535 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2536 		break;
2537 	case 108:	/* 54Mb/s */
2538 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2539 		break;
2540 	}
2541 
2542 	/* never exceed channel's maximum allowed Tx power */
2543 	pwr = min(pwr, sc->maxpwr[chan]);
2544 
2545 	/* retrieve power index into gain tables from samples */
2546 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2547 		if (pwr > sample[1].power)
2548 			break;
2549 	/* fixed-point linear interpolation using a 19-bit fractional part */
2550 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2551 	    sample[1].power, sample[1].index, 19);
2552 
2553 	/*-
2554 	 * Adjust power index based on current temperature:
2555 	 * - if cooler than factory-calibrated: decrease output power
2556 	 * - if warmer than factory-calibrated: increase output power
2557 	 */
2558 	idx -= (sc->temp - group->temp) * 11 / 100;
2559 
2560 	/* decrease power for CCK rates (-5dB) */
2561 	if (!WPI_RATE_IS_OFDM(rate))
2562 		idx += 10;
2563 
2564 	/* keep power index in a valid range */
2565 	if (idx < 0)
2566 		return 0;
2567 	if (idx > WPI_MAX_PWR_INDEX)
2568 		return WPI_MAX_PWR_INDEX;
2569 	return idx;
2570 
2571 #undef interpolate
2572 #undef fdivround
2573 }
2574 
2575 /*
2576  * Build a beacon frame that the firmware will broadcast periodically in
2577  * IBSS or HostAP modes.
2578  */
2579 static int
2580 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2581 {
2582 	struct ieee80211com *ic = &sc->sc_ic;
2583 	struct wpi_tx_ring *ring = &sc->cmdq;
2584 	struct wpi_tx_desc *desc;
2585 	struct wpi_tx_data *data;
2586 	struct wpi_tx_cmd *cmd;
2587 	struct wpi_cmd_beacon *bcn;
2588 	struct ieee80211_beacon_offsets bo;
2589 	struct mbuf *m0;
2590 	int error;
2591 
2592 	desc = &ring->desc[ring->cur];
2593 	data = &ring->data[ring->cur];
2594 
2595 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2596 	if (m0 == NULL) {
2597 		aprint_error_dev(sc->sc_dev,
2598 		    "could not allocate beacon frame\n");
2599 		return ENOMEM;
2600 	}
2601 
2602 	cmd = &ring->cmd[ring->cur];
2603 	cmd->code = WPI_CMD_SET_BEACON;
2604 	cmd->flags = 0;
2605 	cmd->qid = ring->qid;
2606 	cmd->idx = ring->cur;
2607 
2608 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2609 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2610 	bcn->id = WPI_ID_BROADCAST;
2611 	bcn->ofdm_mask = 0xff;
2612 	bcn->cck_mask = 0x0f;
2613 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2614 	bcn->len = htole16(m0->m_pkthdr.len);
2615 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2616 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2617 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2618 
2619 	/* save and trim IEEE802.11 header */
2620 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2621 	m_adj(m0, sizeof (struct ieee80211_frame));
2622 
2623 	/* assume beacon frame is contiguous */
2624 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2625 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2626 	if (error != 0) {
2627 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2628 		m_freem(m0);
2629 		return error;
2630 	}
2631 
2632 	data->m = m0;
2633 
2634 	/* first scatter/gather segment is used by the beacon command */
2635 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2636 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2637 	    ring->cur * sizeof (struct wpi_tx_cmd));
2638 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2639 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2640 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2641 
2642 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2643 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2644 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2645 	    BUS_DMASYNC_PREWRITE);
2646 
2647 	/* kick cmd ring */
2648 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2649 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2650 
2651 	return 0;
2652 }
2653 
2654 static int
2655 wpi_auth(struct wpi_softc *sc)
2656 {
2657 	struct ieee80211com *ic = &sc->sc_ic;
2658 	struct ieee80211_node *ni = ic->ic_bss;
2659 	struct wpi_node_info node;
2660 	int error;
2661 
2662 	/* update adapter's configuration */
2663 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2664 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2665 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2666 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2667 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2668 		    WPI_CONFIG_24GHZ);
2669 	}
2670 	switch (ic->ic_curmode) {
2671 	case IEEE80211_MODE_11A:
2672 		sc->config.cck_mask  = 0;
2673 		sc->config.ofdm_mask = 0x15;
2674 		break;
2675 	case IEEE80211_MODE_11B:
2676 		sc->config.cck_mask  = 0x03;
2677 		sc->config.ofdm_mask = 0;
2678 		break;
2679 	default:	/* assume 802.11b/g */
2680 		sc->config.cck_mask  = 0x0f;
2681 		sc->config.ofdm_mask = 0x15;
2682 	}
2683 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2684 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2685 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2686 	    sizeof (struct wpi_config), 1);
2687 	if (error != 0) {
2688 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2689 		return error;
2690 	}
2691 
2692 	/* configuration has changed, set Tx power accordingly */
2693 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2694 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2695 		return error;
2696 	}
2697 
2698 	/* add default node */
2699 	memset(&node, 0, sizeof node);
2700 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2701 	node.id = WPI_ID_BSS;
2702 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2703 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2704 	node.action = htole32(WPI_ACTION_SET_RATE);
2705 	node.antenna = WPI_ANTENNA_BOTH;
2706 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2707 	if (error != 0) {
2708 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2709 		return error;
2710 	}
2711 
2712 	return 0;
2713 }
2714 
2715 /*
2716  * Send a scan request to the firmware.  Since this command is huge, we map it
2717  * into a mbuf instead of using the pre-allocated set of commands.
2718  */
2719 static int
2720 wpi_scan(struct wpi_softc *sc)
2721 {
2722 	struct ieee80211com *ic = &sc->sc_ic;
2723 	struct wpi_tx_ring *ring = &sc->cmdq;
2724 	struct wpi_tx_desc *desc;
2725 	struct wpi_tx_data *data;
2726 	struct wpi_tx_cmd *cmd;
2727 	struct wpi_scan_hdr *hdr;
2728 	struct wpi_scan_chan *chan;
2729 	struct ieee80211_frame *wh;
2730 	struct ieee80211_rateset *rs;
2731 	struct ieee80211_channel *c;
2732 	uint8_t *frm;
2733 	int pktlen, error, nrates;
2734 
2735 	if (ic->ic_curchan == NULL)
2736 		return EIO;
2737 
2738 	desc = &ring->desc[ring->cur];
2739 	data = &ring->data[ring->cur];
2740 
2741 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2742 	if (data->m == NULL) {
2743 		aprint_error_dev(sc->sc_dev,
2744 		    "could not allocate mbuf for scan command\n");
2745 		return ENOMEM;
2746 	}
2747 	MCLGET(data->m, M_DONTWAIT);
2748 	if (!(data->m->m_flags & M_EXT)) {
2749 		m_freem(data->m);
2750 		data->m = NULL;
2751 		aprint_error_dev(sc->sc_dev,
2752 		    "could not allocate mbuf for scan command\n");
2753 		return ENOMEM;
2754 	}
2755 
2756 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2757 	cmd->code = WPI_CMD_SCAN;
2758 	cmd->flags = 0;
2759 	cmd->qid = ring->qid;
2760 	cmd->idx = ring->cur;
2761 
2762 	hdr = (struct wpi_scan_hdr *)cmd->data;
2763 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2764 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2765 	hdr->cmd.id = WPI_ID_BROADCAST;
2766 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2767 	/*
2768 	 * Move to the next channel if no packets are received within 5 msecs
2769 	 * after sending the probe request (this helps to reduce the duration
2770 	 * of active scans).
2771 	 */
2772 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2773 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2774 
2775 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2776 		hdr->crc_threshold = htole16(1);
2777 		/* send probe requests at 6Mbps */
2778 		hdr->cmd.rate = wpi_plcp_signal(12);
2779 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2780 	} else {
2781 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2782 		/* send probe requests at 1Mbps */
2783 		hdr->cmd.rate = wpi_plcp_signal(2);
2784 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2785 	}
2786 
2787 	/* for directed scans, firmware inserts the essid IE itself */
2788 	if (ic->ic_des_esslen != 0) {
2789 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2790 		hdr->essid[0].len = ic->ic_des_esslen;
2791 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2792 	}
2793 
2794 	/*
2795 	 * Build a probe request frame.  Most of the following code is a
2796 	 * copy & paste of what is done in net80211.
2797 	 */
2798 	wh = (struct ieee80211_frame *)(hdr + 1);
2799 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2800 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2801 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2802 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2803 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2804 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2805 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2806 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2807 
2808 	frm = (uint8_t *)(wh + 1);
2809 
2810 	/* add empty essid IE (firmware generates it for directed scans) */
2811 	*frm++ = IEEE80211_ELEMID_SSID;
2812 	*frm++ = 0;
2813 
2814 	/* add supported rates IE */
2815 	*frm++ = IEEE80211_ELEMID_RATES;
2816 	nrates = rs->rs_nrates;
2817 	if (nrates > IEEE80211_RATE_SIZE)
2818 		nrates = IEEE80211_RATE_SIZE;
2819 	*frm++ = nrates;
2820 	memcpy(frm, rs->rs_rates, nrates);
2821 	frm += nrates;
2822 
2823 	/* add supported xrates IE */
2824 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2825 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2826 		*frm++ = IEEE80211_ELEMID_XRATES;
2827 		*frm++ = nrates;
2828 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2829 		frm += nrates;
2830 	}
2831 
2832 	/* setup length of probe request */
2833 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2834 
2835 	chan = (struct wpi_scan_chan *)frm;
2836 	c = ic->ic_curchan;
2837 
2838 	chan->chan = ieee80211_chan2ieee(ic, c);
2839 	chan->flags = 0;
2840 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2841 		chan->flags |= WPI_CHAN_ACTIVE;
2842 		if (ic->ic_des_esslen != 0)
2843 			chan->flags |= WPI_CHAN_DIRECT;
2844 	}
2845 	chan->dsp_gain = 0x6e;
2846 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2847 		chan->rf_gain = 0x3b;
2848 		chan->active  = htole16(10);
2849 		chan->passive = htole16(110);
2850 	} else {
2851 		chan->rf_gain = 0x28;
2852 		chan->active  = htole16(20);
2853 		chan->passive = htole16(120);
2854 	}
2855 	hdr->nchan++;
2856 	chan++;
2857 
2858 	frm += sizeof (struct wpi_scan_chan);
2859 
2860 	hdr->len = htole16(frm - (uint8_t *)hdr);
2861 	pktlen = frm - (uint8_t *)cmd;
2862 
2863 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2864 	    BUS_DMA_NOWAIT);
2865 	if (error != 0) {
2866 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2867 		m_freem(data->m);
2868 		data->m = NULL;
2869 		return error;
2870 	}
2871 
2872 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2873 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2874 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2875 
2876 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2877 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2878 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2879 	    BUS_DMASYNC_PREWRITE);
2880 
2881 	/* kick cmd ring */
2882 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2883 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2884 
2885 	return 0;	/* will be notified async. of failure/success */
2886 }
2887 
2888 static int
2889 wpi_config(struct wpi_softc *sc)
2890 {
2891 	struct ieee80211com *ic = &sc->sc_ic;
2892 	struct ifnet *ifp = ic->ic_ifp;
2893 	struct wpi_power power;
2894 	struct wpi_bluetooth bluetooth;
2895 	struct wpi_node_info node;
2896 	int error;
2897 
2898 	memset(&power, 0, sizeof power);
2899 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2900 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2901 	if (error != 0) {
2902 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2903 		return error;
2904 	}
2905 
2906 	/* configure bluetooth coexistence */
2907 	memset(&bluetooth, 0, sizeof bluetooth);
2908 	bluetooth.flags = 3;
2909 	bluetooth.lead = 0xaa;
2910 	bluetooth.kill = 1;
2911 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2912 	    0);
2913 	if (error != 0) {
2914 		aprint_error_dev(sc->sc_dev,
2915 			"could not configure bluetooth coexistence\n");
2916 		return error;
2917 	}
2918 
2919 	/* configure adapter */
2920 	memset(&sc->config, 0, sizeof (struct wpi_config));
2921 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2922 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2923 	/* set default channel */
2924 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2925 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2926 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2927 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2928 		    WPI_CONFIG_24GHZ);
2929 	}
2930 	sc->config.filter = 0;
2931 	switch (ic->ic_opmode) {
2932 	case IEEE80211_M_STA:
2933 		sc->config.mode = WPI_MODE_STA;
2934 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2935 		break;
2936 	case IEEE80211_M_IBSS:
2937 	case IEEE80211_M_AHDEMO:
2938 		sc->config.mode = WPI_MODE_IBSS;
2939 		break;
2940 	case IEEE80211_M_HOSTAP:
2941 		sc->config.mode = WPI_MODE_HOSTAP;
2942 		break;
2943 	case IEEE80211_M_MONITOR:
2944 		sc->config.mode = WPI_MODE_MONITOR;
2945 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2946 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2947 		break;
2948 	}
2949 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2950 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2951 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2952 	    sizeof (struct wpi_config), 0);
2953 	if (error != 0) {
2954 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2955 		return error;
2956 	}
2957 
2958 	/* configuration has changed, set Tx power accordingly */
2959 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2960 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2961 		return error;
2962 	}
2963 
2964 	/* add broadcast node */
2965 	memset(&node, 0, sizeof node);
2966 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2967 	node.id = WPI_ID_BROADCAST;
2968 	node.rate = wpi_plcp_signal(2);
2969 	node.action = htole32(WPI_ACTION_SET_RATE);
2970 	node.antenna = WPI_ANTENNA_BOTH;
2971 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2972 	if (error != 0) {
2973 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2974 		return error;
2975 	}
2976 
2977 	if ((error = wpi_mrr_setup(sc)) != 0) {
2978 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2979 		return error;
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 static void
2986 wpi_stop_master(struct wpi_softc *sc)
2987 {
2988 	uint32_t tmp;
2989 	int ntries;
2990 
2991 	tmp = WPI_READ(sc, WPI_RESET);
2992 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2993 
2994 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2995 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2996 		return;	/* already asleep */
2997 
2998 	for (ntries = 0; ntries < 100; ntries++) {
2999 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3000 			break;
3001 		DELAY(10);
3002 	}
3003 	if (ntries == 100) {
3004 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3005 	}
3006 }
3007 
3008 static int
3009 wpi_power_up(struct wpi_softc *sc)
3010 {
3011 	uint32_t tmp;
3012 	int ntries;
3013 
3014 	wpi_mem_lock(sc);
3015 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3016 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3017 	wpi_mem_unlock(sc);
3018 
3019 	for (ntries = 0; ntries < 5000; ntries++) {
3020 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3021 			break;
3022 		DELAY(10);
3023 	}
3024 	if (ntries == 5000) {
3025 		aprint_error_dev(sc->sc_dev,
3026 		    "timeout waiting for NIC to power up\n");
3027 		return ETIMEDOUT;
3028 	}
3029 	return 0;
3030 }
3031 
3032 static int
3033 wpi_reset(struct wpi_softc *sc)
3034 {
3035 	uint32_t tmp;
3036 	int ntries;
3037 
3038 	/* clear any pending interrupts */
3039 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3040 
3041 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3042 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3043 
3044 	tmp = WPI_READ(sc, WPI_CHICKEN);
3045 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3046 
3047 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3048 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3049 
3050 	/* wait for clock stabilization */
3051 	for (ntries = 0; ntries < 1000; ntries++) {
3052 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3053 			break;
3054 		DELAY(10);
3055 	}
3056 	if (ntries == 1000) {
3057 		aprint_error_dev(sc->sc_dev,
3058 		    "timeout waiting for clock stabilization\n");
3059 		return ETIMEDOUT;
3060 	}
3061 
3062 	/* initialize EEPROM */
3063 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3064 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3065 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3066 		return EIO;
3067 	}
3068 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3069 
3070 	return 0;
3071 }
3072 
3073 static void
3074 wpi_hw_config(struct wpi_softc *sc)
3075 {
3076 	uint32_t rev, hw;
3077 
3078 	/* voodoo from the reference driver */
3079 	hw = WPI_READ(sc, WPI_HWCONFIG);
3080 
3081 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3082 	rev = PCI_REVISION(rev);
3083 	if ((rev & 0xc0) == 0x40)
3084 		hw |= WPI_HW_ALM_MB;
3085 	else if (!(rev & 0x80))
3086 		hw |= WPI_HW_ALM_MM;
3087 
3088 	if (sc->cap == 0x80)
3089 		hw |= WPI_HW_SKU_MRC;
3090 
3091 	hw &= ~WPI_HW_REV_D;
3092 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3093 		hw |= WPI_HW_REV_D;
3094 
3095 	if (sc->type > 1)
3096 		hw |= WPI_HW_TYPE_B;
3097 
3098 	DPRINTF(("setting h/w config %x\n", hw));
3099 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3100 }
3101 
3102 static int
3103 wpi_init(struct ifnet *ifp)
3104 {
3105 	struct wpi_softc *sc = ifp->if_softc;
3106 	struct ieee80211com *ic = &sc->sc_ic;
3107 	uint32_t tmp;
3108 	int qid, ntries, error;
3109 
3110 	wpi_stop(ifp,1);
3111 	(void)wpi_reset(sc);
3112 
3113 	wpi_mem_lock(sc);
3114 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3115 	DELAY(20);
3116 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3117 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3118 	wpi_mem_unlock(sc);
3119 
3120 	(void)wpi_power_up(sc);
3121 	wpi_hw_config(sc);
3122 
3123 	/* init Rx ring */
3124 	wpi_mem_lock(sc);
3125 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3126 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3127 	    offsetof(struct wpi_shared, next));
3128 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3129 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3130 	wpi_mem_unlock(sc);
3131 
3132 	/* init Tx rings */
3133 	wpi_mem_lock(sc);
3134 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3135 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3136 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3137 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3138 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3139 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3140 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3141 
3142 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3143 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3144 
3145 	for (qid = 0; qid < 6; qid++) {
3146 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3147 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3148 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3149 	}
3150 	wpi_mem_unlock(sc);
3151 
3152 	/* clear "radio off" and "disable command" bits (reversed logic) */
3153 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3154 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3155 
3156 	/* clear any pending interrupts */
3157 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3158 	/* enable interrupts */
3159 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3160 
3161 	/* not sure why/if this is necessary... */
3162 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3163 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3164 
3165 	if ((error = wpi_load_firmware(sc)) != 0)
3166 		/* wpi_load_firmware prints error messages for us.  */
3167 		goto fail1;
3168 
3169 	/* Check the status of the radio switch */
3170 	if (wpi_getrfkill(sc)) {
3171 		aprint_error_dev(sc->sc_dev,
3172 		    "radio is disabled by hardware switch\n");
3173 		error = EBUSY;
3174 		goto fail1;
3175 	}
3176 
3177 	/* wait for thermal sensors to calibrate */
3178 	for (ntries = 0; ntries < 1000; ntries++) {
3179 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3180 			break;
3181 		DELAY(10);
3182 	}
3183 	if (ntries == 1000) {
3184 		aprint_error_dev(sc->sc_dev,
3185 		    "timeout waiting for thermal sensors calibration\n");
3186 		error = ETIMEDOUT;
3187 		goto fail1;
3188 	}
3189 	DPRINTF(("temperature %d\n", sc->temp));
3190 
3191 	if ((error = wpi_config(sc)) != 0) {
3192 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3193 		goto fail1;
3194 	}
3195 
3196 	ifp->if_flags &= ~IFF_OACTIVE;
3197 	ifp->if_flags |= IFF_RUNNING;
3198 
3199 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3200 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3201 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3202 	}
3203 	else
3204 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3205 
3206 	return 0;
3207 
3208 fail1:	wpi_stop(ifp, 1);
3209 	return error;
3210 }
3211 
3212 static void
3213 wpi_stop(struct ifnet *ifp, int disable)
3214 {
3215 	struct wpi_softc *sc = ifp->if_softc;
3216 	struct ieee80211com *ic = &sc->sc_ic;
3217 	uint32_t tmp;
3218 	int ac;
3219 
3220 	ifp->if_timer = sc->sc_tx_timer = 0;
3221 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3222 
3223 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3224 
3225 	/* disable interrupts */
3226 	WPI_WRITE(sc, WPI_MASK, 0);
3227 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3228 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3229 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3230 
3231 	wpi_mem_lock(sc);
3232 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3233 	wpi_mem_unlock(sc);
3234 
3235 	/* reset all Tx rings */
3236 	for (ac = 0; ac < 4; ac++)
3237 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3238 	wpi_reset_tx_ring(sc, &sc->cmdq);
3239 
3240 	/* reset Rx ring */
3241 	wpi_reset_rx_ring(sc, &sc->rxq);
3242 
3243 	wpi_mem_lock(sc);
3244 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3245 	wpi_mem_unlock(sc);
3246 
3247 	DELAY(5);
3248 
3249 	wpi_stop_master(sc);
3250 
3251 	tmp = WPI_READ(sc, WPI_RESET);
3252 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3253 }
3254 
3255 static bool
3256 wpi_resume(device_t dv, const pmf_qual_t *qual)
3257 {
3258 	struct wpi_softc *sc = device_private(dv);
3259 
3260 	(void)wpi_reset(sc);
3261 
3262 	return true;
3263 }
3264 
3265 /*
3266  * Return whether or not the radio is enabled in hardware
3267  * (i.e. the rfkill switch is "off").
3268  */
3269 static int
3270 wpi_getrfkill(struct wpi_softc *sc)
3271 {
3272 	uint32_t tmp;
3273 
3274 	wpi_mem_lock(sc);
3275 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3276 	wpi_mem_unlock(sc);
3277 
3278 	return !(tmp & 0x01);
3279 }
3280 
3281 static int
3282 wpi_sysctl_radio(SYSCTLFN_ARGS)
3283 {
3284 	struct sysctlnode node;
3285 	struct wpi_softc *sc;
3286 	int val, error;
3287 
3288 	node = *rnode;
3289 	sc = (struct wpi_softc *)node.sysctl_data;
3290 
3291 	val = !wpi_getrfkill(sc);
3292 
3293 	node.sysctl_data = &val;
3294 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3295 
3296 	if (error || newp == NULL)
3297 		return error;
3298 
3299 	return 0;
3300 }
3301 
3302 static void
3303 wpi_sysctlattach(struct wpi_softc *sc)
3304 {
3305 	int rc;
3306 	const struct sysctlnode *rnode;
3307 	const struct sysctlnode *cnode;
3308 
3309 	struct sysctllog **clog = &sc->sc_sysctllog;
3310 
3311 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3312 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3313 	    SYSCTL_DESCR("wpi controls and statistics"),
3314 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3315 		goto err;
3316 
3317 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3318 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3319 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3320 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3321 		goto err;
3322 
3323 #ifdef WPI_DEBUG
3324 	/* control debugging printfs */
3325 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3326 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3327 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3328 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3329 		goto err;
3330 #endif
3331 
3332 	return;
3333 err:
3334 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3335 }
3336