1 /* $NetBSD: if_wpi.c,v 1.27 2007/11/07 00:23:19 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.27 2007/11/07 00:23:19 ad Exp $"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 */ 26 27 #include "bpfilter.h" 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/conf.h> 38 #include <sys/kauth.h> 39 #include <sys/callout.h> 40 41 #include <sys/bus.h> 42 #include <machine/endian.h> 43 #include <sys/intr.h> 44 45 #include <dev/pci/pcireg.h> 46 #include <dev/pci/pcivar.h> 47 #include <dev/pci/pcidevs.h> 48 49 #if NBPFILTER > 0 50 #include <net/bpf.h> 51 #endif 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_dl.h> 55 #include <net/if_ether.h> 56 #include <net/if_media.h> 57 #include <net/if_types.h> 58 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_amrr.h> 61 #include <net80211/ieee80211_radiotap.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <netinet/ip.h> 67 68 #include <dev/firmload.h> 69 70 #include <dev/pci/if_wpireg.h> 71 #include <dev/pci/if_wpivar.h> 72 73 #ifdef WPI_DEBUG 74 #define DPRINTF(x) if (wpi_debug > 0) printf x 75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x 76 int wpi_debug = 1; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 /* 83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 84 */ 85 static const struct ieee80211_rateset wpi_rateset_11a = 86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 87 88 static const struct ieee80211_rateset wpi_rateset_11b = 89 { 4, { 2, 4, 11, 22 } }; 90 91 static const struct ieee80211_rateset wpi_rateset_11g = 92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 93 94 static int wpi_match(struct device *, struct cfdata *, void *); 95 static void wpi_attach(struct device *, struct device *, void *); 96 static int wpi_detach(struct device*, int); 97 static void wpi_power(int, void *); 98 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *, 99 void **, bus_size_t, bus_size_t, int); 100 static void wpi_dma_contig_free(struct wpi_dma_info *); 101 static int wpi_alloc_shared(struct wpi_softc *); 102 static void wpi_free_shared(struct wpi_softc *); 103 static int wpi_alloc_fwmem(struct wpi_softc *); 104 static void wpi_free_fwmem(struct wpi_softc *); 105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *); 106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *); 107 static int wpi_alloc_rpool(struct wpi_softc *); 108 static void wpi_free_rpool(struct wpi_softc *); 109 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 112 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int, 113 int); 114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *); 117 static void wpi_newassoc(struct ieee80211_node *, int); 118 static int wpi_media_change(struct ifnet *); 119 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 120 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *); 121 static void wpi_mem_lock(struct wpi_softc *); 122 static void wpi_mem_unlock(struct wpi_softc *); 123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 126 const uint32_t *, int); 127 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 128 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 129 static int wpi_load_firmware(struct wpi_softc *); 130 static void wpi_calib_timeout(void *); 131 static void wpi_iter_func(void *, struct ieee80211_node *); 132 static void wpi_power_calibration(struct wpi_softc *, int); 133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 134 struct wpi_rx_data *); 135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 137 static void wpi_notif_intr(struct wpi_softc *); 138 static int wpi_intr(void *); 139 static void wpi_read_eeprom(struct wpi_softc *); 140 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 141 static void wpi_read_eeprom_group(struct wpi_softc *, int); 142 static uint8_t wpi_plcp_signal(int); 143 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 144 struct ieee80211_node *, int); 145 static void wpi_start(struct ifnet *); 146 static void wpi_watchdog(struct ifnet *); 147 static int wpi_ioctl(struct ifnet *, u_long, void *); 148 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 149 static int wpi_wme_update(struct ieee80211com *); 150 static int wpi_mrr_setup(struct wpi_softc *); 151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 153 static int wpi_set_txpower(struct wpi_softc *, 154 struct ieee80211_channel *, int); 155 static int wpi_get_power_index(struct wpi_softc *, 156 struct wpi_power_group *, struct ieee80211_channel *, int); 157 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 158 static int wpi_auth(struct wpi_softc *); 159 static int wpi_scan(struct wpi_softc *, uint16_t); 160 static int wpi_config(struct wpi_softc *); 161 static void wpi_stop_master(struct wpi_softc *); 162 static int wpi_power_up(struct wpi_softc *); 163 static int wpi_reset(struct wpi_softc *); 164 static void wpi_hw_config(struct wpi_softc *); 165 static int wpi_init(struct ifnet *); 166 static void wpi_stop(struct ifnet *, int); 167 168 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach, 169 wpi_detach, NULL); 170 171 static int 172 wpi_match(struct device *parent, struct cfdata *match __unused, void *aux) 173 { 174 struct pci_attach_args *pa = aux; 175 176 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 177 return 0; 178 179 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 || 180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2) 181 return 1; 182 183 return 0; 184 } 185 186 /* Base Address Register */ 187 #define WPI_PCI_BAR0 0x10 188 189 static void 190 wpi_attach(struct device *parent __unused, struct device *self, void *aux) 191 { 192 struct wpi_softc *sc = (struct wpi_softc *)self; 193 struct ieee80211com *ic = &sc->sc_ic; 194 struct ifnet *ifp = &sc->sc_ec.ec_if; 195 struct pci_attach_args *pa = aux; 196 const char *intrstr; 197 char devinfo[256]; 198 bus_space_tag_t memt; 199 bus_space_handle_t memh; 200 pci_intr_handle_t ih; 201 pcireg_t data; 202 int error, ac, revision; 203 204 sc->sc_pct = pa->pa_pc; 205 sc->sc_pcitag = pa->pa_tag; 206 207 callout_init(&sc->calib_to, 0); 208 209 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); 210 revision = PCI_REVISION(pa->pa_class); 211 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision); 212 213 /* clear device specific PCI configuration register 0x41 */ 214 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 215 data &= ~0x0000ff00; 216 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); 217 218 /* enable bus-mastering */ 219 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 220 data |= PCI_COMMAND_MASTER_ENABLE; 221 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data); 222 223 /* map the register window */ 224 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | 225 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz); 226 if (error != 0) { 227 aprint_error("%s: could not map memory space\n", 228 sc->sc_dev.dv_xname); 229 return; 230 } 231 232 sc->sc_st = memt; 233 sc->sc_sh = memh; 234 sc->sc_dmat = pa->pa_dmat; 235 236 if (pci_intr_map(pa, &ih) != 0) { 237 aprint_error("%s: could not map interrupt\n", 238 sc->sc_dev.dv_xname); 239 return; 240 } 241 242 intrstr = pci_intr_string(sc->sc_pct, ih); 243 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc); 244 if (sc->sc_ih == NULL) { 245 aprint_error("%s: could not establish interrupt", 246 sc->sc_dev.dv_xname); 247 if (intrstr != NULL) 248 aprint_error(" at %s", intrstr); 249 aprint_error("\n"); 250 return; 251 } 252 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 253 254 if (wpi_reset(sc) != 0) { 255 aprint_error("%s: could not reset adapter\n", 256 sc->sc_dev.dv_xname); 257 return; 258 } 259 260 /* 261 * Allocate DMA memory for firmware transfers. 262 */ 263 if ((error = wpi_alloc_fwmem(sc)) != 0) { 264 aprint_error(": could not allocate firmware memory\n"); 265 return; 266 } 267 268 /* 269 * Allocate shared page and Tx/Rx rings. 270 */ 271 if ((error = wpi_alloc_shared(sc)) != 0) { 272 aprint_error("%s: could not allocate shared area\n", 273 sc->sc_dev.dv_xname); 274 goto fail1; 275 } 276 277 if ((error = wpi_alloc_rpool(sc)) != 0) { 278 aprint_error("%s: could not allocate Rx buffers\n", 279 sc->sc_dev.dv_xname); 280 goto fail2; 281 } 282 283 for (ac = 0; ac < 4; ac++) { 284 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 285 if (error != 0) { 286 aprint_error("%s: could not allocate Tx ring %d\n", 287 sc->sc_dev.dv_xname, ac); 288 goto fail3; 289 } 290 } 291 292 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 293 if (error != 0) { 294 aprint_error("%s: could not allocate command ring\n", 295 sc->sc_dev.dv_xname); 296 goto fail3; 297 } 298 299 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) { 300 aprint_error("%s: could not allocate Rx ring\n", 301 sc->sc_dev.dv_xname); 302 goto fail4; 303 } 304 305 ic->ic_ifp = ifp; 306 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 307 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 308 ic->ic_state = IEEE80211_S_INIT; 309 310 /* set device capabilities */ 311 ic->ic_caps = 312 IEEE80211_C_IBSS | /* IBSS mode support */ 313 IEEE80211_C_WPA | /* 802.11i */ 314 IEEE80211_C_MONITOR | /* monitor mode supported */ 315 IEEE80211_C_TXPMGT | /* tx power management */ 316 IEEE80211_C_SHSLOT | /* short slot time supported */ 317 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 318 IEEE80211_C_WME; /* 802.11e */ 319 320 /* read supported channels and MAC address from EEPROM */ 321 wpi_read_eeprom(sc); 322 323 /* set supported .11a, .11b, .11g rates */ 324 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a; 325 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b; 326 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g; 327 328 ic->ic_ibss_chan = &ic->ic_channels[0]; 329 330 ifp->if_softc = sc; 331 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 332 ifp->if_init = wpi_init; 333 ifp->if_stop = wpi_stop; 334 ifp->if_ioctl = wpi_ioctl; 335 ifp->if_start = wpi_start; 336 ifp->if_watchdog = wpi_watchdog; 337 IFQ_SET_READY(&ifp->if_snd); 338 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 339 340 if_attach(ifp); 341 ieee80211_ifattach(ic); 342 /* override default methods */ 343 ic->ic_node_alloc = wpi_node_alloc; 344 ic->ic_newassoc = wpi_newassoc; 345 ic->ic_wme.wme_update = wpi_wme_update; 346 347 /* override state transition machine */ 348 sc->sc_newstate = ic->ic_newstate; 349 ic->ic_newstate = wpi_newstate; 350 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status); 351 352 sc->amrr.amrr_min_success_threshold = 1; 353 sc->amrr.amrr_max_success_threshold = 15; 354 355 /* set powerhook */ 356 sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc); 357 358 #if NBPFILTER > 0 359 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 360 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 361 &sc->sc_drvbpf); 362 363 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 364 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 365 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 366 367 sc->sc_txtap_len = sizeof sc->sc_txtapu; 368 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 369 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 370 #endif 371 372 ieee80211_announce(ic); 373 374 return; 375 376 fail4: wpi_free_tx_ring(sc, &sc->cmdq); 377 fail3: while (--ac >= 0) 378 wpi_free_tx_ring(sc, &sc->txq[ac]); 379 wpi_free_rpool(sc); 380 fail2: wpi_free_shared(sc); 381 fail1: wpi_free_fwmem(sc); 382 } 383 384 static int 385 wpi_detach(struct device* self, int flags __unused) 386 { 387 struct wpi_softc *sc = (struct wpi_softc *)self; 388 struct ifnet *ifp = sc->sc_ic.ic_ifp; 389 int ac; 390 391 wpi_stop(ifp, 1); 392 393 #if NBPFILTER > 0 394 if (ifp != NULL) 395 bpfdetach(ifp); 396 #endif 397 ieee80211_ifdetach(&sc->sc_ic); 398 if (ifp != NULL) 399 if_detach(ifp); 400 401 for (ac = 0; ac < 4; ac++) 402 wpi_free_tx_ring(sc, &sc->txq[ac]); 403 wpi_free_tx_ring(sc, &sc->cmdq); 404 wpi_free_rx_ring(sc, &sc->rxq); 405 wpi_free_rpool(sc); 406 wpi_free_shared(sc); 407 408 if (sc->sc_ih != NULL) { 409 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 410 sc->sc_ih = NULL; 411 } 412 413 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 414 415 return 0; 416 } 417 418 static void 419 wpi_power(int why, void *arg) 420 { 421 struct wpi_softc *sc = arg; 422 struct ifnet *ifp; 423 pcireg_t data; 424 int s; 425 426 if (why != PWR_RESUME) 427 return; 428 429 /* clear device specific PCI configuration register 0x41 */ 430 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 431 data &= ~0x0000ff00; 432 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); 433 434 s = splnet(); 435 ifp = sc->sc_ic.ic_ifp; 436 if (ifp->if_flags & IFF_UP) { 437 ifp->if_init(ifp); 438 if (ifp->if_flags & IFF_RUNNING) 439 ifp->if_start(ifp); 440 } 441 splx(s); 442 } 443 444 static int 445 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, 446 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 447 { 448 int nsegs, error; 449 450 dma->tag = tag; 451 dma->size = size; 452 453 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map); 454 if (error != 0) 455 goto fail; 456 457 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 458 flags); 459 if (error != 0) 460 goto fail; 461 462 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags); 463 if (error != 0) 464 goto fail; 465 466 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags); 467 if (error != 0) 468 goto fail; 469 470 memset(dma->vaddr, 0, size); 471 472 dma->paddr = dma->map->dm_segs[0].ds_addr; 473 if (kvap != NULL) 474 *kvap = dma->vaddr; 475 476 return 0; 477 478 fail: wpi_dma_contig_free(dma); 479 return error; 480 } 481 482 static void 483 wpi_dma_contig_free(struct wpi_dma_info *dma) 484 { 485 if (dma->map != NULL) { 486 if (dma->vaddr != NULL) { 487 bus_dmamap_unload(dma->tag, dma->map); 488 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 489 bus_dmamem_free(dma->tag, &dma->seg, 1); 490 dma->vaddr = NULL; 491 } 492 bus_dmamap_destroy(dma->tag, dma->map); 493 dma->map = NULL; 494 } 495 } 496 497 /* 498 * Allocate a shared page between host and NIC. 499 */ 500 static int 501 wpi_alloc_shared(struct wpi_softc *sc) 502 { 503 int error; 504 /* must be aligned on a 4K-page boundary */ 505 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, 506 (void **)&sc->shared, sizeof (struct wpi_shared), 507 WPI_BUF_ALIGN,BUS_DMA_NOWAIT); 508 if (error != 0) 509 aprint_error( 510 "%s: could not allocate shared area DMA memory\n", 511 sc->sc_dev.dv_xname); 512 513 return error; 514 } 515 516 static void 517 wpi_free_shared(struct wpi_softc *sc) 518 { 519 wpi_dma_contig_free(&sc->shared_dma); 520 } 521 522 /* 523 * Allocate DMA-safe memory for firmware transfer. 524 */ 525 static int 526 wpi_alloc_fwmem(struct wpi_softc *sc) 527 { 528 int error; 529 /* allocate enough contiguous space to store text and data */ 530 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 531 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0, 532 BUS_DMA_NOWAIT); 533 534 if (error != 0) 535 aprint_error( 536 "%s: could not allocate firmware transfer area" 537 "DMA memory\n", sc->sc_dev.dv_xname); 538 return error; 539 } 540 541 static void 542 wpi_free_fwmem(struct wpi_softc *sc) 543 { 544 wpi_dma_contig_free(&sc->fw_dma); 545 } 546 547 548 static struct wpi_rbuf * 549 wpi_alloc_rbuf(struct wpi_softc *sc) 550 { 551 struct wpi_rbuf *rbuf; 552 553 rbuf = SLIST_FIRST(&sc->rxq.freelist); 554 if (rbuf == NULL) 555 return NULL; 556 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 557 sc->rxq.nb_free_entries --; 558 559 return rbuf; 560 } 561 562 /* 563 * This is called automatically by the network stack when the mbuf to which our 564 * Rx buffer is attached is freed. 565 */ 566 static void 567 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 568 { 569 struct wpi_rbuf *rbuf = arg; 570 struct wpi_softc *sc = rbuf->sc; 571 572 /* put the buffer back in the free list */ 573 574 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 575 sc->rxq.nb_free_entries ++; 576 577 if (__predict_true(m != NULL)) 578 pool_cache_put(mb_cache, m); 579 } 580 581 static int 582 wpi_alloc_rpool(struct wpi_softc *sc) 583 { 584 struct wpi_rx_ring *ring = &sc->rxq; 585 struct wpi_rbuf *rbuf; 586 int i, error; 587 588 /* allocate a big chunk of DMA'able memory.. */ 589 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 590 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT); 591 if (error != 0) { 592 aprint_normal("%s: could not allocate Rx buffers DMA memory\n", 593 sc->sc_dev.dv_xname); 594 return error; 595 } 596 597 /* ..and split it into 3KB chunks */ 598 SLIST_INIT(&ring->freelist); 599 for (i = 0; i < WPI_RBUF_COUNT; i++) { 600 rbuf = &ring->rbuf[i]; 601 rbuf->sc = sc; /* backpointer for callbacks */ 602 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE; 603 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE; 604 605 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 606 } 607 608 ring->nb_free_entries = WPI_RBUF_COUNT; 609 return 0; 610 } 611 612 static void 613 wpi_free_rpool(struct wpi_softc *sc) 614 { 615 wpi_dma_contig_free(&sc->rxq.buf_dma); 616 } 617 618 static int 619 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 620 { 621 struct wpi_rx_data *data; 622 struct wpi_rbuf *rbuf; 623 int i, error; 624 625 ring->cur = 0; 626 627 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 628 (void **)&ring->desc, 629 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc), 630 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 631 if (error != 0) { 632 aprint_error("%s: could not allocate rx ring DMA memory\n", 633 sc->sc_dev.dv_xname); 634 goto fail; 635 } 636 637 /* 638 * Setup Rx buffers. 639 */ 640 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 641 data = &ring->data[i]; 642 643 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 644 if (data->m == NULL) { 645 aprint_error("%s: could not allocate rx mbuf\n", 646 sc->sc_dev.dv_xname); 647 error = ENOMEM; 648 goto fail; 649 } 650 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) { 651 m_freem(data->m); 652 data->m = NULL; 653 aprint_error("%s: could not allocate rx cluster\n", 654 sc->sc_dev.dv_xname); 655 error = ENOMEM; 656 goto fail; 657 } 658 /* attach Rx buffer to mbuf */ 659 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 660 rbuf); 661 data->m->m_flags |= M_EXT_RW; 662 663 ring->desc[i] = htole32(rbuf->paddr); 664 } 665 666 return 0; 667 668 fail: wpi_free_rx_ring(sc, ring); 669 return error; 670 } 671 672 static void 673 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 674 { 675 int ntries; 676 677 wpi_mem_lock(sc); 678 679 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 680 for (ntries = 0; ntries < 100; ntries++) { 681 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 682 break; 683 DELAY(10); 684 } 685 #ifdef WPI_DEBUG 686 if (ntries == 100 && wpi_debug > 0) 687 aprint_error("%s: timeout resetting Rx ring\n", 688 sc->sc_dev.dv_xname); 689 #endif 690 wpi_mem_unlock(sc); 691 692 ring->cur = 0; 693 } 694 695 static void 696 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 697 { 698 int i; 699 700 wpi_dma_contig_free(&ring->desc_dma); 701 702 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 703 if (ring->data[i].m != NULL) 704 m_freem(ring->data[i].m); 705 } 706 } 707 708 static int 709 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 710 int qid) 711 { 712 struct wpi_tx_data *data; 713 int i, error; 714 715 ring->qid = qid; 716 ring->count = count; 717 ring->queued = 0; 718 ring->cur = 0; 719 720 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 721 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 722 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 723 if (error != 0) { 724 aprint_error("%s: could not allocate tx ring DMA memory\n", 725 sc->sc_dev.dv_xname); 726 goto fail; 727 } 728 729 /* update shared page with ring's base address */ 730 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 731 732 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 733 (void **)&ring->cmd, 734 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT); 735 if (error != 0) { 736 aprint_error("%s: could not allocate tx cmd DMA memory\n", 737 sc->sc_dev.dv_xname); 738 goto fail; 739 } 740 741 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 742 M_NOWAIT); 743 if (ring->data == NULL) { 744 aprint_error("%s: could not allocate tx data slots\n", 745 sc->sc_dev.dv_xname); 746 goto fail; 747 } 748 749 memset(ring->data, 0, count * sizeof (struct wpi_tx_data)); 750 751 for (i = 0; i < count; i++) { 752 data = &ring->data[i]; 753 754 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 755 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 756 &data->map); 757 if (error != 0) { 758 aprint_error("%s: could not create tx buf DMA map\n", 759 sc->sc_dev.dv_xname); 760 goto fail; 761 } 762 } 763 764 return 0; 765 766 fail: wpi_free_tx_ring(sc, ring); 767 return error; 768 } 769 770 static void 771 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 772 { 773 struct wpi_tx_data *data; 774 int i, ntries; 775 776 wpi_mem_lock(sc); 777 778 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 779 for (ntries = 0; ntries < 100; ntries++) { 780 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 781 break; 782 DELAY(10); 783 } 784 #ifdef WPI_DEBUG 785 if (ntries == 100 && wpi_debug > 0) { 786 aprint_error("%s: timeout resetting Tx ring %d\n", 787 sc->sc_dev.dv_xname, ring->qid); 788 } 789 #endif 790 wpi_mem_unlock(sc); 791 792 for (i = 0; i < ring->count; i++) { 793 data = &ring->data[i]; 794 795 if (data->m != NULL) { 796 bus_dmamap_unload(sc->sc_dmat, data->map); 797 m_freem(data->m); 798 data->m = NULL; 799 } 800 } 801 802 ring->queued = 0; 803 ring->cur = 0; 804 } 805 806 static void 807 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 808 { 809 struct wpi_tx_data *data; 810 int i; 811 812 wpi_dma_contig_free(&ring->desc_dma); 813 wpi_dma_contig_free(&ring->cmd_dma); 814 815 if (ring->data != NULL) { 816 for (i = 0; i < ring->count; i++) { 817 data = &ring->data[i]; 818 819 if (data->m != NULL) { 820 bus_dmamap_unload(sc->sc_dmat, data->map); 821 m_freem(data->m); 822 } 823 } 824 free(ring->data, M_DEVBUF); 825 } 826 } 827 828 /*ARGUSED*/ 829 static struct ieee80211_node * 830 wpi_node_alloc(struct ieee80211_node_table *nt __unused) 831 { 832 struct wpi_node *wn; 833 834 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT); 835 836 if (wn != NULL) 837 memset(wn, 0, sizeof (struct wpi_node)); 838 return (struct ieee80211_node *)wn; 839 } 840 841 static void 842 wpi_newassoc(struct ieee80211_node *ni, int isnew) 843 { 844 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 845 int i; 846 847 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn); 848 849 /* set rate to some reasonable initial value */ 850 for (i = ni->ni_rates.rs_nrates - 1; 851 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 852 i--); 853 ni->ni_txrate = i; 854 } 855 856 static int 857 wpi_media_change(struct ifnet *ifp) 858 { 859 int error; 860 861 error = ieee80211_media_change(ifp); 862 if (error != ENETRESET) 863 return error; 864 865 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 866 wpi_init(ifp); 867 868 return 0; 869 } 870 871 static int 872 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 873 { 874 struct ifnet *ifp = ic->ic_ifp; 875 struct wpi_softc *sc = ifp->if_softc; 876 struct ieee80211_node *ni; 877 int error; 878 879 callout_stop(&sc->calib_to); 880 881 switch (nstate) { 882 case IEEE80211_S_SCAN: 883 884 if (sc->is_scanning) 885 break; 886 887 sc->is_scanning = true; 888 ieee80211_node_table_reset(&ic->ic_scan); 889 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 890 891 /* make the link LED blink while we're scanning */ 892 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 893 894 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) { 895 aprint_error("%s: could not initiate scan\n", 896 sc->sc_dev.dv_xname); 897 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN); 898 return error; 899 } 900 901 ic->ic_state = nstate; 902 return 0; 903 904 case IEEE80211_S_ASSOC: 905 if (ic->ic_state != IEEE80211_S_RUN) 906 break; 907 /* FALLTHROUGH */ 908 case IEEE80211_S_AUTH: 909 sc->config.associd = 0; 910 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 911 if ((error = wpi_auth(sc)) != 0) { 912 aprint_error("%s: could not send authentication request\n", 913 sc->sc_dev.dv_xname); 914 return error; 915 } 916 break; 917 918 case IEEE80211_S_RUN: 919 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 920 /* link LED blinks while monitoring */ 921 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 922 break; 923 } 924 925 ni = ic->ic_bss; 926 927 if (ic->ic_opmode != IEEE80211_M_STA) { 928 (void) wpi_auth(sc); /* XXX */ 929 wpi_setup_beacon(sc, ni); 930 } 931 932 wpi_enable_tsf(sc, ni); 933 934 /* update adapter's configuration */ 935 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 936 /* short preamble/slot time are negotiated when associating */ 937 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 938 WPI_CONFIG_SHSLOT); 939 if (ic->ic_flags & IEEE80211_F_SHSLOT) 940 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 941 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 942 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 943 sc->config.filter |= htole32(WPI_FILTER_BSS); 944 if (ic->ic_opmode != IEEE80211_M_STA) 945 sc->config.filter |= htole32(WPI_FILTER_BEACON); 946 947 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 948 949 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 950 sc->config.flags)); 951 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 952 sizeof (struct wpi_config), 1); 953 if (error != 0) { 954 aprint_error("%s: could not update configuration\n", 955 sc->sc_dev.dv_xname); 956 return error; 957 } 958 959 /* configuration has changed, set Tx power accordingly */ 960 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 961 aprint_error("%s: could not set Tx power\n", 962 sc->sc_dev.dv_xname); 963 return error; 964 } 965 966 if (ic->ic_opmode == IEEE80211_M_STA) { 967 /* fake a join to init the tx rate */ 968 wpi_newassoc(ni, 1); 969 } 970 971 /* start periodic calibration timer */ 972 sc->calib_cnt = 0; 973 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc); 974 975 /* link LED always on while associated */ 976 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 977 break; 978 979 case IEEE80211_S_INIT: 980 sc->is_scanning = false; 981 break; 982 } 983 984 return sc->sc_newstate(ic, nstate, arg); 985 } 986 987 /* 988 * XXX: Hack to set the current channel to the value advertised in beacons or 989 * probe responses. Only used during AP detection. 990 * XXX: Duplicated from if_iwi.c 991 */ 992 static void 993 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m) 994 { 995 struct ieee80211_frame *wh; 996 uint8_t subtype; 997 uint8_t *frm, *efrm; 998 999 wh = mtod(m, struct ieee80211_frame *); 1000 1001 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 1002 return; 1003 1004 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1005 1006 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 1007 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1008 return; 1009 1010 frm = (uint8_t *)(wh + 1); 1011 efrm = mtod(m, uint8_t *) + m->m_len; 1012 1013 frm += 12; /* skip tstamp, bintval and capinfo fields */ 1014 while (frm < efrm) { 1015 if (*frm == IEEE80211_ELEMID_DSPARMS) 1016 #if IEEE80211_CHAN_MAX < 255 1017 if (frm[2] <= IEEE80211_CHAN_MAX) 1018 #endif 1019 ic->ic_curchan = &ic->ic_channels[frm[2]]; 1020 1021 frm += frm[1] + 2; 1022 } 1023 } 1024 1025 /* 1026 * Grab exclusive access to NIC memory. 1027 */ 1028 static void 1029 wpi_mem_lock(struct wpi_softc *sc) 1030 { 1031 uint32_t tmp; 1032 int ntries; 1033 1034 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1035 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1036 1037 /* spin until we actually get the lock */ 1038 for (ntries = 0; ntries < 1000; ntries++) { 1039 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1040 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1041 break; 1042 DELAY(10); 1043 } 1044 if (ntries == 1000) 1045 aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname); 1046 } 1047 1048 /* 1049 * Release lock on NIC memory. 1050 */ 1051 static void 1052 wpi_mem_unlock(struct wpi_softc *sc) 1053 { 1054 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1055 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1056 } 1057 1058 static uint32_t 1059 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1060 { 1061 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1062 return WPI_READ(sc, WPI_READ_MEM_DATA); 1063 } 1064 1065 static void 1066 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1067 { 1068 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1069 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1070 } 1071 1072 static void 1073 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1074 const uint32_t *data, int wlen) 1075 { 1076 for (; wlen > 0; wlen--, data++, addr += 4) 1077 wpi_mem_write(sc, addr, *data); 1078 } 1079 1080 1081 /* 1082 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC 1083 * instead of using the traditional bit-bang method. 1084 */ 1085 static int 1086 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1087 { 1088 uint8_t *out = data; 1089 uint32_t val; 1090 int ntries; 1091 1092 wpi_mem_lock(sc); 1093 for (; len > 0; len -= 2, addr++) { 1094 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1095 1096 for (ntries = 0; ntries < 10; ntries++) { 1097 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & 1098 WPI_EEPROM_READY) 1099 break; 1100 DELAY(5); 1101 } 1102 if (ntries == 10) { 1103 aprint_error("%s: could not read EEPROM\n", 1104 sc->sc_dev.dv_xname); 1105 return ETIMEDOUT; 1106 } 1107 *out++ = val >> 16; 1108 if (len > 1) 1109 *out++ = val >> 24; 1110 } 1111 wpi_mem_unlock(sc); 1112 1113 return 0; 1114 } 1115 1116 /* 1117 * The firmware boot code is small and is intended to be copied directly into 1118 * the NIC internal memory. 1119 */ 1120 int 1121 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size) 1122 { 1123 int ntries; 1124 1125 size /= sizeof (uint32_t); 1126 1127 wpi_mem_lock(sc); 1128 1129 /* copy microcode image into NIC memory */ 1130 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1131 (const uint32_t *)ucode, size); 1132 1133 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1134 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1135 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1136 1137 /* run microcode */ 1138 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1139 1140 /* wait for transfer to complete */ 1141 for (ntries = 0; ntries < 1000; ntries++) { 1142 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN)) 1143 break; 1144 DELAY(10); 1145 } 1146 if (ntries == 1000) { 1147 wpi_mem_unlock(sc); 1148 printf("%s: could not load boot firmware\n", 1149 sc->sc_dev.dv_xname); 1150 return ETIMEDOUT; 1151 } 1152 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1153 1154 wpi_mem_unlock(sc); 1155 1156 return 0; 1157 } 1158 1159 static int 1160 wpi_load_firmware(struct wpi_softc *sc) 1161 { 1162 struct wpi_dma_info *dma = &sc->fw_dma; 1163 struct wpi_firmware_hdr hdr; 1164 const uint8_t *init_text, *init_data, *main_text, *main_data; 1165 const uint8_t *boot_text; 1166 uint32_t init_textsz, init_datasz, main_textsz, main_datasz; 1167 uint32_t boot_textsz; 1168 firmware_handle_t fw; 1169 u_char *dfw; 1170 size_t size; 1171 int error; 1172 1173 /* load firmware image from disk */ 1174 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) { 1175 aprint_error("%s: could not read firmware file\n", 1176 sc->sc_dev.dv_xname); 1177 goto fail1; 1178 } 1179 1180 size = firmware_get_size(fw); 1181 1182 /* extract firmware header information */ 1183 if (size < sizeof (struct wpi_firmware_hdr)) { 1184 aprint_error("%s: truncated firmware header: %zu bytes\n", 1185 sc->sc_dev.dv_xname, size); 1186 error = EINVAL; 1187 goto fail2; 1188 } 1189 1190 if ((error = firmware_read(fw, 0, &hdr, 1191 sizeof (struct wpi_firmware_hdr))) != 0) { 1192 aprint_error("%s: can't get firmware header\n", 1193 sc->sc_dev.dv_xname); 1194 goto fail2; 1195 } 1196 1197 main_textsz = le32toh(hdr.main_textsz); 1198 main_datasz = le32toh(hdr.main_datasz); 1199 init_textsz = le32toh(hdr.init_textsz); 1200 init_datasz = le32toh(hdr.init_datasz); 1201 boot_textsz = le32toh(hdr.boot_textsz); 1202 1203 /* sanity-check firmware segments sizes */ 1204 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ || 1205 main_datasz > WPI_FW_MAIN_DATA_MAXSZ || 1206 init_textsz > WPI_FW_INIT_TEXT_MAXSZ || 1207 init_datasz > WPI_FW_INIT_DATA_MAXSZ || 1208 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ || 1209 (boot_textsz & 3) != 0) { 1210 printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname); 1211 error = EINVAL; 1212 goto fail2; 1213 } 1214 1215 /* check that all firmware segments are present */ 1216 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz + 1217 main_datasz + init_textsz + init_datasz + boot_textsz) { 1218 aprint_error("%s: firmware file too short: %zu bytes\n", 1219 sc->sc_dev.dv_xname, size); 1220 error = EINVAL; 1221 goto fail2; 1222 } 1223 1224 dfw = firmware_malloc(size); 1225 if (dfw == NULL) { 1226 aprint_error("%s: not enough memory to stock firmware\n", 1227 sc->sc_dev.dv_xname); 1228 error = ENOMEM; 1229 goto fail2; 1230 } 1231 1232 if ((error = firmware_read(fw, 0, dfw, size)) != 0) { 1233 aprint_error("%s: can't get firmware\n", 1234 sc->sc_dev.dv_xname); 1235 goto fail2; 1236 } 1237 1238 /* get pointers to firmware segments */ 1239 main_text = dfw + sizeof (struct wpi_firmware_hdr); 1240 main_data = main_text + main_textsz; 1241 init_text = main_data + main_datasz; 1242 init_data = init_text + init_textsz; 1243 boot_text = init_data + init_datasz; 1244 1245 /* copy initialization images into pre-allocated DMA-safe memory */ 1246 memcpy(dma->vaddr, init_data, init_datasz); 1247 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz); 1248 1249 /* tell adapter where to find initialization images */ 1250 wpi_mem_lock(sc); 1251 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1252 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz); 1253 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1254 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 1255 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz); 1256 wpi_mem_unlock(sc); 1257 1258 /* load firmware boot code */ 1259 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) { 1260 printf("%s: could not load boot firmware\n", 1261 sc->sc_dev.dv_xname); 1262 goto fail3; 1263 } 1264 1265 /* now press "execute" ;-) */ 1266 WPI_WRITE(sc, WPI_RESET, 0); 1267 1268 /* ..and wait at most one second for adapter to initialize */ 1269 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1270 /* this isn't what was supposed to happen.. */ 1271 aprint_error("%s: timeout waiting for adapter to initialize\n", 1272 sc->sc_dev.dv_xname); 1273 } 1274 1275 /* copy runtime images into pre-allocated DMA-safe memory */ 1276 memcpy(dma->vaddr, main_data, main_datasz); 1277 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz); 1278 1279 /* tell adapter where to find runtime images */ 1280 wpi_mem_lock(sc); 1281 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1282 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz); 1283 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1284 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 1285 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz); 1286 wpi_mem_unlock(sc); 1287 1288 /* wait at most one second for second alive notification */ 1289 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1290 /* this isn't what was supposed to happen.. */ 1291 printf("%s: timeout waiting for adapter to initialize\n", 1292 sc->sc_dev.dv_xname); 1293 } 1294 1295 1296 fail3: firmware_free(dfw,size); 1297 fail2: firmware_close(fw); 1298 fail1: return error; 1299 } 1300 1301 static void 1302 wpi_calib_timeout(void *arg) 1303 { 1304 struct wpi_softc *sc = arg; 1305 struct ieee80211com *ic = &sc->sc_ic; 1306 int temp, s; 1307 1308 /* automatic rate control triggered every 500ms */ 1309 if (ic->ic_fixed_rate == -1) { 1310 s = splnet(); 1311 if (ic->ic_opmode == IEEE80211_M_STA) 1312 wpi_iter_func(sc, ic->ic_bss); 1313 else 1314 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc); 1315 splx(s); 1316 } 1317 1318 /* update sensor data */ 1319 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 1320 1321 /* automatic power calibration every 60s */ 1322 if (++sc->calib_cnt >= 120) { 1323 wpi_power_calibration(sc, temp); 1324 sc->calib_cnt = 0; 1325 } 1326 1327 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc); 1328 } 1329 1330 static void 1331 wpi_iter_func(void *arg, struct ieee80211_node *ni) 1332 { 1333 struct wpi_softc *sc = arg; 1334 struct wpi_node *wn = (struct wpi_node *)ni; 1335 1336 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1337 } 1338 1339 /* 1340 * This function is called periodically (every 60 seconds) to adjust output 1341 * power to temperature changes. 1342 */ 1343 void 1344 wpi_power_calibration(struct wpi_softc *sc, int temp) 1345 { 1346 /* sanity-check read value */ 1347 if (temp < -260 || temp > 25) { 1348 /* this can't be correct, ignore */ 1349 DPRINTF(("out-of-range temperature reported: %d\n", temp)); 1350 return; 1351 } 1352 1353 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 1354 1355 /* adjust Tx power if need be */ 1356 if (abs(temp - sc->temp) <= 6) 1357 return; 1358 1359 sc->temp = temp; 1360 1361 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) { 1362 /* just warn, too bad for the automatic calibration... */ 1363 aprint_error("%s: could not adjust Tx power\n", 1364 sc->sc_dev.dv_xname); 1365 } 1366 } 1367 1368 static void 1369 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1370 struct wpi_rx_data *data) 1371 { 1372 struct ieee80211com *ic = &sc->sc_ic; 1373 struct ifnet *ifp = ic->ic_ifp; 1374 struct wpi_rx_ring *ring = &sc->rxq; 1375 struct wpi_rx_stat *stat; 1376 struct wpi_rx_head *head; 1377 struct wpi_rx_tail *tail; 1378 struct wpi_rbuf *rbuf; 1379 struct ieee80211_frame *wh; 1380 struct ieee80211_node *ni; 1381 struct mbuf *m, *mnew; 1382 int data_off ; 1383 1384 stat = (struct wpi_rx_stat *)(desc + 1); 1385 1386 if (stat->len > WPI_STAT_MAXLEN) { 1387 aprint_error("%s: invalid rx statistic header\n", 1388 sc->sc_dev.dv_xname); 1389 ifp->if_ierrors++; 1390 return; 1391 } 1392 1393 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len); 1394 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len)); 1395 1396 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x " 1397 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len), 1398 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1399 le64toh(tail->tstamp))); 1400 1401 /* 1402 * Discard Rx frames with bad CRC early (XXX we may want to pass them 1403 * to radiotap in monitor mode). 1404 */ 1405 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1406 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags))); 1407 ifp->if_ierrors++; 1408 return; 1409 } 1410 1411 /* Compute where are the useful datas */ 1412 data_off = (char*)(head + 1) - mtod(data->m, char*); 1413 1414 /* 1415 * If the number of free entry is too low 1416 * just dup the data->m socket and reuse the same rbuf entry 1417 */ 1418 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) { 1419 1420 /* Prepare the mbuf for the m_dup */ 1421 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len); 1422 data->m->m_data = (char*) data->m->m_data + data_off; 1423 1424 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT); 1425 1426 /* Restore the m_data pointer for future use */ 1427 data->m->m_data = (char*) data->m->m_data - data_off; 1428 1429 if (m == NULL) { 1430 ifp->if_ierrors++; 1431 return; 1432 } 1433 } else { 1434 1435 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1436 if (mnew == NULL) { 1437 ifp->if_ierrors++; 1438 return; 1439 } 1440 1441 rbuf = wpi_alloc_rbuf(sc); 1442 KASSERT(rbuf != NULL); 1443 1444 /* attach Rx buffer to mbuf */ 1445 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 1446 rbuf); 1447 mnew->m_flags |= M_EXT_RW; 1448 1449 m = data->m; 1450 data->m = mnew; 1451 1452 /* update Rx descriptor */ 1453 ring->desc[ring->cur] = htole32(rbuf->paddr); 1454 1455 m->m_data = (char*)m->m_data + data_off; 1456 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1457 } 1458 1459 /* finalize mbuf */ 1460 m->m_pkthdr.rcvif = ifp; 1461 1462 if (ic->ic_state == IEEE80211_S_SCAN) 1463 wpi_fix_channel(ic, m); 1464 1465 #if NBPFILTER > 0 1466 if (sc->sc_drvbpf != NULL) { 1467 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1468 1469 tap->wr_flags = 0; 1470 tap->wr_chan_freq = 1471 htole16(ic->ic_channels[head->chan].ic_freq); 1472 tap->wr_chan_flags = 1473 htole16(ic->ic_channels[head->chan].ic_flags); 1474 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1475 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1476 tap->wr_tsft = tail->tstamp; 1477 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1478 switch (head->rate) { 1479 /* CCK rates */ 1480 case 10: tap->wr_rate = 2; break; 1481 case 20: tap->wr_rate = 4; break; 1482 case 55: tap->wr_rate = 11; break; 1483 case 110: tap->wr_rate = 22; break; 1484 /* OFDM rates */ 1485 case 0xd: tap->wr_rate = 12; break; 1486 case 0xf: tap->wr_rate = 18; break; 1487 case 0x5: tap->wr_rate = 24; break; 1488 case 0x7: tap->wr_rate = 36; break; 1489 case 0x9: tap->wr_rate = 48; break; 1490 case 0xb: tap->wr_rate = 72; break; 1491 case 0x1: tap->wr_rate = 96; break; 1492 case 0x3: tap->wr_rate = 108; break; 1493 /* unknown rate: should not happen */ 1494 default: tap->wr_rate = 0; 1495 } 1496 if (le16toh(head->flags) & 0x4) 1497 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1498 1499 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1500 } 1501 #endif 1502 1503 /* grab a reference to the source node */ 1504 wh = mtod(m, struct ieee80211_frame *); 1505 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1506 1507 /* send the frame to the 802.11 layer */ 1508 ieee80211_input(ic, m, ni, stat->rssi, 0); 1509 1510 /* release node reference */ 1511 ieee80211_free_node(ni); 1512 } 1513 1514 static void 1515 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1516 { 1517 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1518 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1519 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1520 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1521 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1522 1523 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x " 1524 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries, 1525 stat->nkill, stat->rate, le32toh(stat->duration), 1526 le32toh(stat->status))); 1527 1528 /* 1529 * Update rate control statistics for the node. 1530 * XXX we should not count mgmt frames since they're always sent at 1531 * the lowest available bit-rate. 1532 */ 1533 wn->amn.amn_txcnt++; 1534 if (stat->ntries > 0) { 1535 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries)); 1536 wn->amn.amn_retrycnt++; 1537 } 1538 1539 if ((le32toh(stat->status) & 0xff) != 1) 1540 ifp->if_oerrors++; 1541 else 1542 ifp->if_opackets++; 1543 1544 bus_dmamap_unload(sc->sc_dmat, txdata->map); 1545 m_freem(txdata->m); 1546 txdata->m = NULL; 1547 ieee80211_free_node(txdata->ni); 1548 txdata->ni = NULL; 1549 1550 ring->queued--; 1551 1552 sc->sc_tx_timer = 0; 1553 ifp->if_flags &= ~IFF_OACTIVE; 1554 wpi_start(ifp); 1555 } 1556 1557 static void 1558 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1559 { 1560 struct wpi_tx_ring *ring = &sc->cmdq; 1561 struct wpi_tx_data *data; 1562 1563 if ((desc->qid & 7) != 4) 1564 return; /* not a command ack */ 1565 1566 data = &ring->data[desc->idx]; 1567 1568 /* if the command was mapped in a mbuf, free it */ 1569 if (data->m != NULL) { 1570 bus_dmamap_unload(sc->sc_dmat, data->map); 1571 m_freem(data->m); 1572 data->m = NULL; 1573 } 1574 1575 wakeup(&ring->cmd[desc->idx]); 1576 } 1577 1578 static void 1579 wpi_notif_intr(struct wpi_softc *sc) 1580 { 1581 struct ieee80211com *ic = &sc->sc_ic; 1582 struct ifnet *ifp = ic->ic_ifp; 1583 struct wpi_rx_desc *desc; 1584 struct wpi_rx_data *data; 1585 uint32_t hw; 1586 1587 hw = le32toh(sc->shared->next); 1588 while (sc->rxq.cur != hw) { 1589 data = &sc->rxq.data[sc->rxq.cur]; 1590 1591 desc = mtod(data->m, struct wpi_rx_desc *); 1592 1593 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1594 "len=%d\n", desc->qid, desc->idx, desc->flags, 1595 desc->type, le32toh(desc->len))); 1596 1597 if (!(desc->qid & 0x80)) /* reply to a command */ 1598 wpi_cmd_intr(sc, desc); 1599 1600 switch (desc->type) { 1601 case WPI_RX_DONE: 1602 /* a 802.11 frame was received */ 1603 wpi_rx_intr(sc, desc, data); 1604 break; 1605 1606 case WPI_TX_DONE: 1607 /* a 802.11 frame has been transmitted */ 1608 wpi_tx_intr(sc, desc); 1609 break; 1610 1611 case WPI_UC_READY: 1612 { 1613 struct wpi_ucode_info *uc = 1614 (struct wpi_ucode_info *)(desc + 1); 1615 1616 /* the microcontroller is ready */ 1617 DPRINTF(("microcode alive notification version %x " 1618 "alive %x\n", le32toh(uc->version), 1619 le32toh(uc->valid))); 1620 1621 if (le32toh(uc->valid) != 1) { 1622 aprint_error("%s: microcontroller " 1623 "initialization failed\n", 1624 sc->sc_dev.dv_xname); 1625 } 1626 break; 1627 } 1628 case WPI_STATE_CHANGED: 1629 { 1630 uint32_t *status = (uint32_t *)(desc + 1); 1631 1632 /* enabled/disabled notification */ 1633 DPRINTF(("state changed to %x\n", le32toh(*status))); 1634 1635 if (le32toh(*status) & 1) { 1636 /* the radio button has to be pushed */ 1637 aprint_error("%s: Radio transmitter is off\n", 1638 sc->sc_dev.dv_xname); 1639 /* turn the interface down */ 1640 ifp->if_flags &= ~IFF_UP; 1641 wpi_stop(ifp, 1); 1642 return; /* no further processing */ 1643 } 1644 break; 1645 } 1646 case WPI_START_SCAN: 1647 { 1648 struct wpi_start_scan *scan = 1649 (struct wpi_start_scan *)(desc + 1); 1650 1651 DPRINTFN(2, ("scanning channel %d status %x\n", 1652 scan->chan, le32toh(scan->status))); 1653 1654 /* fix current channel */ 1655 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 1656 break; 1657 } 1658 case WPI_STOP_SCAN: 1659 { 1660 struct wpi_stop_scan *scan = 1661 (struct wpi_stop_scan *)(desc + 1); 1662 1663 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1664 scan->nchan, scan->status, scan->chan)); 1665 1666 if (scan->status == 1 && scan->chan <= 14) { 1667 /* 1668 * We just finished scanning 802.11g channels, 1669 * start scanning 802.11a ones. 1670 */ 1671 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0) 1672 break; 1673 } 1674 sc->is_scanning = false; 1675 ieee80211_end_scan(ic); 1676 break; 1677 } 1678 } 1679 1680 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1681 } 1682 1683 /* tell the firmware what we have processed */ 1684 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1685 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1686 } 1687 1688 static int 1689 wpi_intr(void *arg) 1690 { 1691 struct wpi_softc *sc = arg; 1692 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1693 uint32_t r; 1694 1695 r = WPI_READ(sc, WPI_INTR); 1696 if (r == 0 || r == 0xffffffff) 1697 return 0; /* not for us */ 1698 1699 DPRINTFN(5, ("interrupt reg %x\n", r)); 1700 1701 /* disable interrupts */ 1702 WPI_WRITE(sc, WPI_MASK, 0); 1703 /* ack interrupts */ 1704 WPI_WRITE(sc, WPI_INTR, r); 1705 1706 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1707 aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname); 1708 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; 1709 wpi_stop(sc->sc_ic.ic_ifp, 1); 1710 return 1; 1711 } 1712 1713 if (r & WPI_RX_INTR) 1714 wpi_notif_intr(sc); 1715 1716 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1717 wakeup(sc); 1718 1719 /* re-enable interrupts */ 1720 if (ifp->if_flags & IFF_UP) 1721 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1722 1723 return 1; 1724 } 1725 1726 static uint8_t 1727 wpi_plcp_signal(int rate) 1728 { 1729 switch (rate) { 1730 /* CCK rates (returned values are device-dependent) */ 1731 case 2: return 10; 1732 case 4: return 20; 1733 case 11: return 55; 1734 case 22: return 110; 1735 1736 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1737 /* R1-R4, (u)ral is R4-R1 */ 1738 case 12: return 0xd; 1739 case 18: return 0xf; 1740 case 24: return 0x5; 1741 case 36: return 0x7; 1742 case 48: return 0x9; 1743 case 72: return 0xb; 1744 case 96: return 0x1; 1745 case 108: return 0x3; 1746 1747 /* unsupported rates (should not get there) */ 1748 default: return 0; 1749 } 1750 } 1751 1752 /* quickly determine if a given rate is CCK or OFDM */ 1753 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1754 1755 static int 1756 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1757 int ac) 1758 { 1759 struct ieee80211com *ic = &sc->sc_ic; 1760 struct wpi_tx_ring *ring = &sc->txq[ac]; 1761 struct wpi_tx_desc *desc; 1762 struct wpi_tx_data *data; 1763 struct wpi_tx_cmd *cmd; 1764 struct wpi_cmd_data *tx; 1765 struct ieee80211_frame *wh; 1766 struct ieee80211_key *k; 1767 const struct chanAccParams *cap; 1768 struct mbuf *mnew; 1769 int i, error, rate, hdrlen, noack = 0; 1770 1771 desc = &ring->desc[ring->cur]; 1772 data = &ring->data[ring->cur]; 1773 1774 wh = mtod(m0, struct ieee80211_frame *); 1775 1776 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1777 cap = &ic->ic_wme.wme_chanParams; 1778 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1779 } 1780 1781 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1782 k = ieee80211_crypto_encap(ic, ni, m0); 1783 if (k == NULL) { 1784 m_freem(m0); 1785 return ENOBUFS; 1786 } 1787 1788 /* packet header may have moved, reset our local pointer */ 1789 wh = mtod(m0, struct ieee80211_frame *); 1790 } 1791 1792 hdrlen = ieee80211_anyhdrsize(wh); 1793 1794 /* pickup a rate */ 1795 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1796 IEEE80211_FC0_TYPE_MGT) { 1797 /* mgmt frames are sent at the lowest available bit-rate */ 1798 rate = ni->ni_rates.rs_rates[0]; 1799 } else { 1800 if (ic->ic_fixed_rate != -1) { 1801 rate = ic->ic_sup_rates[ic->ic_curmode]. 1802 rs_rates[ic->ic_fixed_rate]; 1803 } else 1804 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1805 } 1806 rate &= IEEE80211_RATE_VAL; 1807 1808 1809 #if NBPFILTER > 0 1810 if (sc->sc_drvbpf != NULL) { 1811 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1812 1813 tap->wt_flags = 0; 1814 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1815 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1816 tap->wt_rate = rate; 1817 tap->wt_hwqueue = ac; 1818 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1819 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1820 1821 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1822 } 1823 #endif 1824 1825 cmd = &ring->cmd[ring->cur]; 1826 cmd->code = WPI_CMD_TX_DATA; 1827 cmd->flags = 0; 1828 cmd->qid = ring->qid; 1829 cmd->idx = ring->cur; 1830 1831 tx = (struct wpi_cmd_data *)cmd->data; 1832 tx->flags = 0; 1833 1834 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1835 tx->flags |= htole32(WPI_TX_NEED_ACK); 1836 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) 1837 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP); 1838 1839 tx->flags |= htole32(WPI_TX_AUTO_SEQ); 1840 1841 /* retrieve destination node's id */ 1842 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST : 1843 WPI_ID_BSS; 1844 1845 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1846 IEEE80211_FC0_TYPE_MGT) { 1847 /* tell h/w to set timestamp in probe responses */ 1848 if ((wh->i_fc[0] & 1849 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1850 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1851 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1852 1853 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1854 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) || 1855 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1856 IEEE80211_FC0_SUBTYPE_REASSOC_REQ)) 1857 tx->timeout = htole16(3); 1858 else 1859 tx->timeout = htole16(2); 1860 } else 1861 tx->timeout = htole16(0); 1862 1863 tx->rate = wpi_plcp_signal(rate); 1864 1865 /* be very persistant at sending frames out */ 1866 tx->rts_ntries = 7; 1867 tx->data_ntries = 15; 1868 1869 tx->ofdm_mask = 0xff; 1870 tx->cck_mask = 0xf; 1871 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1872 1873 tx->len = htole16(m0->m_pkthdr.len); 1874 1875 /* save and trim IEEE802.11 header */ 1876 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 1877 m_adj(m0, hdrlen); 1878 1879 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1880 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1881 if (error != 0 && error != EFBIG) { 1882 aprint_error("%s: could not map mbuf (error %d)\n", 1883 sc->sc_dev.dv_xname, error); 1884 m_freem(m0); 1885 return error; 1886 } 1887 if (error != 0) { 1888 /* too many fragments, linearize */ 1889 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1890 if (mnew == NULL) { 1891 m_freem(m0); 1892 return ENOMEM; 1893 } 1894 1895 M_COPY_PKTHDR(mnew, m0); 1896 if (m0->m_pkthdr.len > MHLEN) { 1897 MCLGET(mnew, M_DONTWAIT); 1898 if (!(mnew->m_flags & M_EXT)) { 1899 m_freem(m0); 1900 m_freem(mnew); 1901 return ENOMEM; 1902 } 1903 } 1904 1905 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 1906 m_freem(m0); 1907 mnew->m_len = mnew->m_pkthdr.len; 1908 m0 = mnew; 1909 1910 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1911 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1912 if (error != 0) { 1913 aprint_error("%s: could not map mbuf (error %d)\n", 1914 sc->sc_dev.dv_xname, error); 1915 m_freem(m0); 1916 return error; 1917 } 1918 } 1919 1920 data->m = m0; 1921 data->ni = ni; 1922 1923 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1924 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs)); 1925 1926 /* first scatter/gather segment is used by the tx data command */ 1927 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1928 (1 + data->map->dm_nsegs) << 24); 1929 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1930 ring->cur * sizeof (struct wpi_tx_cmd)); 1931 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) + 1932 ((hdrlen + 3) & ~3)); 1933 1934 for (i = 1; i <= data->map->dm_nsegs; i++) { 1935 desc->segs[i].addr = 1936 htole32(data->map->dm_segs[i - 1].ds_addr); 1937 desc->segs[i].len = 1938 htole32(data->map->dm_segs[i - 1].ds_len); 1939 } 1940 1941 ring->queued++; 1942 1943 /* kick ring */ 1944 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1945 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1946 1947 return 0; 1948 } 1949 1950 static void 1951 wpi_start(struct ifnet *ifp) 1952 { 1953 struct wpi_softc *sc = ifp->if_softc; 1954 struct ieee80211com *ic = &sc->sc_ic; 1955 struct ieee80211_node *ni; 1956 struct ether_header *eh; 1957 struct mbuf *m0; 1958 int ac; 1959 1960 /* 1961 * net80211 may still try to send management frames even if the 1962 * IFF_RUNNING flag is not set... 1963 */ 1964 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1965 return; 1966 1967 for (;;) { 1968 IF_DEQUEUE(&ic->ic_mgtq, m0); 1969 if (m0 != NULL) { 1970 1971 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1972 m0->m_pkthdr.rcvif = NULL; 1973 1974 /* management frames go into ring 0 */ 1975 if (sc->txq[0].queued > sc->txq[0].count - 8) { 1976 ifp->if_oerrors++; 1977 continue; 1978 } 1979 #if NBPFILTER > 0 1980 if (ic->ic_rawbpf != NULL) 1981 bpf_mtap(ic->ic_rawbpf, m0); 1982 #endif 1983 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 1984 ifp->if_oerrors++; 1985 break; 1986 } 1987 } else { 1988 if (ic->ic_state != IEEE80211_S_RUN) 1989 break; 1990 IFQ_POLL(&ifp->if_snd, m0); 1991 if (m0 == NULL) 1992 break; 1993 1994 if (m0->m_len < sizeof (*eh) && 1995 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) { 1996 ifp->if_oerrors++; 1997 continue; 1998 } 1999 eh = mtod(m0, struct ether_header *); 2000 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2001 if (ni == NULL) { 2002 m_freem(m0); 2003 ifp->if_oerrors++; 2004 continue; 2005 } 2006 2007 /* classify mbuf so we can find which tx ring to use */ 2008 if (ieee80211_classify(ic, m0, ni) != 0) { 2009 m_freem(m0); 2010 ieee80211_free_node(ni); 2011 ifp->if_oerrors++; 2012 continue; 2013 } 2014 2015 /* no QoS encapsulation for EAPOL frames */ 2016 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 2017 M_WME_GETAC(m0) : WME_AC_BE; 2018 2019 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2020 /* there is no place left in this ring */ 2021 ifp->if_flags |= IFF_OACTIVE; 2022 break; 2023 } 2024 IFQ_DEQUEUE(&ifp->if_snd, m0); 2025 #if NBPFILTER > 0 2026 if (ifp->if_bpf != NULL) 2027 bpf_mtap(ifp->if_bpf, m0); 2028 #endif 2029 m0 = ieee80211_encap(ic, m0, ni); 2030 if (m0 == NULL) { 2031 ieee80211_free_node(ni); 2032 ifp->if_oerrors++; 2033 continue; 2034 } 2035 #if NBPFILTER > 0 2036 if (ic->ic_rawbpf != NULL) 2037 bpf_mtap(ic->ic_rawbpf, m0); 2038 #endif 2039 if (wpi_tx_data(sc, m0, ni, ac) != 0) { 2040 ieee80211_free_node(ni); 2041 ifp->if_oerrors++; 2042 break; 2043 } 2044 } 2045 2046 sc->sc_tx_timer = 5; 2047 ifp->if_timer = 1; 2048 } 2049 } 2050 2051 static void 2052 wpi_watchdog(struct ifnet *ifp) 2053 { 2054 struct wpi_softc *sc = ifp->if_softc; 2055 2056 ifp->if_timer = 0; 2057 2058 if (sc->sc_tx_timer > 0) { 2059 if (--sc->sc_tx_timer == 0) { 2060 aprint_error("%s: device timeout\n", 2061 sc->sc_dev.dv_xname); 2062 ifp->if_oerrors++; 2063 ifp->if_flags &= ~IFF_UP; 2064 wpi_stop(ifp, 1); 2065 return; 2066 } 2067 ifp->if_timer = 1; 2068 } 2069 2070 ieee80211_watchdog(&sc->sc_ic); 2071 } 2072 2073 static int 2074 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2075 { 2076 #define IS_RUNNING(ifp) \ 2077 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 2078 2079 struct wpi_softc *sc = ifp->if_softc; 2080 struct ieee80211com *ic = &sc->sc_ic; 2081 int s, error = 0; 2082 2083 s = splnet(); 2084 2085 switch (cmd) { 2086 case SIOCSIFFLAGS: 2087 if (ifp->if_flags & IFF_UP) { 2088 if (!(ifp->if_flags & IFF_RUNNING)) 2089 wpi_init(ifp); 2090 } else { 2091 if (ifp->if_flags & IFF_RUNNING) 2092 wpi_stop(ifp, 1); 2093 } 2094 break; 2095 2096 case SIOCADDMULTI: 2097 case SIOCDELMULTI: 2098 /* XXX no h/w multicast filter? --dyoung */ 2099 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2100 /* setup multicast filter, etc */ 2101 error = 0; 2102 } 2103 break; 2104 2105 default: 2106 error = ieee80211_ioctl(ic, cmd, data); 2107 } 2108 2109 if (error == ENETRESET) { 2110 if (IS_RUNNING(ifp) && 2111 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2112 wpi_init(ifp); 2113 error = 0; 2114 } 2115 2116 splx(s); 2117 return error; 2118 2119 #undef IS_RUNNING 2120 } 2121 2122 /* 2123 * Extract various information from EEPROM. 2124 */ 2125 static void 2126 wpi_read_eeprom(struct wpi_softc *sc) 2127 { 2128 struct ieee80211com *ic = &sc->sc_ic; 2129 char domain[4]; 2130 int i; 2131 2132 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1); 2133 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2); 2134 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2135 2136 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev), 2137 sc->type)); 2138 2139 /* read and print regulatory domain */ 2140 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4); 2141 aprint_normal(", %.4s", domain); 2142 2143 /* read and print MAC address */ 2144 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2145 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr)); 2146 2147 /* read the list of authorized channels */ 2148 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2149 wpi_read_eeprom_channels(sc, i); 2150 2151 /* read the list of power groups */ 2152 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2153 wpi_read_eeprom_group(sc, i); 2154 } 2155 2156 static void 2157 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 2158 { 2159 struct ieee80211com *ic = &sc->sc_ic; 2160 const struct wpi_chan_band *band = &wpi_bands[n]; 2161 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 2162 int chan, i; 2163 2164 wpi_read_prom_data(sc, band->addr, channels, 2165 band->nchan * sizeof (struct wpi_eeprom_chan)); 2166 2167 for (i = 0; i < band->nchan; i++) { 2168 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) 2169 continue; 2170 2171 chan = band->chan[i]; 2172 2173 if (n == 0) { /* 2GHz band */ 2174 ic->ic_channels[chan].ic_freq = 2175 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 2176 ic->ic_channels[chan].ic_flags = 2177 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 2178 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 2179 2180 } else { /* 5GHz band */ 2181 /* 2182 * Some 3945abg adapters support channels 7, 8, 11 2183 * and 12 in the 2GHz *and* 5GHz bands. 2184 * Because of limitations in our net80211(9) stack, 2185 * we can't support these channels in 5GHz band. 2186 */ 2187 if (chan <= 14) 2188 continue; 2189 2190 ic->ic_channels[chan].ic_freq = 2191 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 2192 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 2193 } 2194 2195 /* is active scan allowed on this channel? */ 2196 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 2197 ic->ic_channels[chan].ic_flags |= 2198 IEEE80211_CHAN_PASSIVE; 2199 } 2200 2201 /* save maximum allowed power for this channel */ 2202 sc->maxpwr[chan] = channels[i].maxpwr; 2203 2204 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 2205 chan, channels[i].flags, sc->maxpwr[chan])); 2206 } 2207 } 2208 2209 static void 2210 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 2211 { 2212 struct wpi_power_group *group = &sc->groups[n]; 2213 struct wpi_eeprom_group rgroup; 2214 int i; 2215 2216 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 2217 sizeof rgroup); 2218 2219 /* save power group information */ 2220 group->chan = rgroup.chan; 2221 group->maxpwr = rgroup.maxpwr; 2222 /* temperature at which the samples were taken */ 2223 group->temp = (int16_t)le16toh(rgroup.temp); 2224 2225 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 2226 group->chan, group->maxpwr, group->temp)); 2227 2228 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 2229 group->samples[i].index = rgroup.samples[i].index; 2230 group->samples[i].power = rgroup.samples[i].power; 2231 2232 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 2233 group->samples[i].index, group->samples[i].power)); 2234 } 2235 } 2236 2237 /* 2238 * Send a command to the firmware. 2239 */ 2240 static int 2241 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2242 { 2243 struct wpi_tx_ring *ring = &sc->cmdq; 2244 struct wpi_tx_desc *desc; 2245 struct wpi_tx_cmd *cmd; 2246 2247 KASSERT(size <= sizeof cmd->data); 2248 2249 desc = &ring->desc[ring->cur]; 2250 cmd = &ring->cmd[ring->cur]; 2251 2252 cmd->code = code; 2253 cmd->flags = 0; 2254 cmd->qid = ring->qid; 2255 cmd->idx = ring->cur; 2256 memcpy(cmd->data, buf, size); 2257 2258 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2259 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2260 ring->cur * sizeof (struct wpi_tx_cmd)); 2261 desc->segs[0].len = htole32(4 + size); 2262 2263 /* kick cmd ring */ 2264 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2265 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2266 2267 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz); 2268 } 2269 2270 static int 2271 wpi_wme_update(struct ieee80211com *ic) 2272 { 2273 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2274 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2275 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2276 const struct wmeParams *wmep; 2277 struct wpi_wme_setup wme; 2278 int ac; 2279 2280 /* don't override default WME values if WME is not actually enabled */ 2281 if (!(ic->ic_flags & IEEE80211_F_WME)) 2282 return 0; 2283 2284 wme.flags = 0; 2285 for (ac = 0; ac < WME_NUM_AC; ac++) { 2286 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2287 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2288 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2289 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2290 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2291 2292 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2293 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2294 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2295 } 2296 2297 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2298 #undef WPI_USEC 2299 #undef WPI_EXP2 2300 } 2301 2302 /* 2303 * Configure h/w multi-rate retries. 2304 */ 2305 static int 2306 wpi_mrr_setup(struct wpi_softc *sc) 2307 { 2308 struct ieee80211com *ic = &sc->sc_ic; 2309 struct wpi_mrr_setup mrr; 2310 int i, error; 2311 2312 /* CCK rates (not used with 802.11a) */ 2313 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2314 mrr.rates[i].flags = 0; 2315 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2316 /* fallback to the immediate lower CCK rate (if any) */ 2317 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2318 /* try one time at this rate before falling back to "next" */ 2319 mrr.rates[i].ntries = 1; 2320 } 2321 2322 /* OFDM rates (not used with 802.11b) */ 2323 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2324 mrr.rates[i].flags = 0; 2325 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2326 /* fallback to the immediate lower rate (if any) */ 2327 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2328 mrr.rates[i].next = (i == WPI_OFDM6) ? 2329 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2330 WPI_OFDM6 : WPI_CCK2) : 2331 i - 1; 2332 /* try one time at this rate before falling back to "next" */ 2333 mrr.rates[i].ntries = 1; 2334 } 2335 2336 /* setup MRR for control frames */ 2337 mrr.which = htole32(WPI_MRR_CTL); 2338 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2339 if (error != 0) { 2340 aprint_error("%s: could not setup MRR for control frames\n", 2341 sc->sc_dev.dv_xname); 2342 return error; 2343 } 2344 2345 /* setup MRR for data frames */ 2346 mrr.which = htole32(WPI_MRR_DATA); 2347 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2348 if (error != 0) { 2349 aprint_error("%s: could not setup MRR for data frames\n", 2350 sc->sc_dev.dv_xname); 2351 return error; 2352 } 2353 2354 return 0; 2355 } 2356 2357 static void 2358 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2359 { 2360 struct wpi_cmd_led led; 2361 2362 led.which = which; 2363 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2364 led.off = off; 2365 led.on = on; 2366 2367 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2368 } 2369 2370 static void 2371 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2372 { 2373 struct wpi_cmd_tsf tsf; 2374 uint64_t val, mod; 2375 2376 memset(&tsf, 0, sizeof tsf); 2377 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2378 tsf.bintval = htole16(ni->ni_intval); 2379 tsf.lintval = htole16(10); 2380 2381 /* compute remaining time until next beacon */ 2382 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2383 mod = le64toh(tsf.tstamp) % val; 2384 tsf.binitval = htole32((uint32_t)(val - mod)); 2385 2386 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n", 2387 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod))); 2388 2389 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2390 aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname); 2391 } 2392 2393 /* 2394 * Update Tx power to match what is defined for channel `c'. 2395 */ 2396 static int 2397 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 2398 { 2399 struct ieee80211com *ic = &sc->sc_ic; 2400 struct wpi_power_group *group; 2401 struct wpi_cmd_txpower txpower; 2402 u_int chan; 2403 int i; 2404 2405 /* get channel number */ 2406 chan = ieee80211_chan2ieee(ic, c); 2407 2408 /* find the power group to which this channel belongs */ 2409 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2410 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 2411 if (chan <= group->chan) 2412 break; 2413 } else 2414 group = &sc->groups[0]; 2415 2416 memset(&txpower, 0, sizeof txpower); 2417 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 2418 txpower.chan = htole16(chan); 2419 2420 /* set Tx power for all OFDM and CCK rates */ 2421 for (i = 0; i <= 11 ; i++) { 2422 /* retrieve Tx power for this channel/rate combination */ 2423 int idx = wpi_get_power_index(sc, group, c, 2424 wpi_ridx_to_rate[i]); 2425 2426 txpower.rates[i].plcp = wpi_ridx_to_plcp[i]; 2427 2428 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2429 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 2430 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 2431 } else { 2432 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 2433 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 2434 } 2435 DPRINTF(("chan %d/rate %d: power index %d\n", chan, 2436 wpi_ridx_to_rate[i], idx)); 2437 } 2438 2439 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 2440 } 2441 2442 /* 2443 * Determine Tx power index for a given channel/rate combination. 2444 * This takes into account the regulatory information from EEPROM and the 2445 * current temperature. 2446 */ 2447 static int 2448 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 2449 struct ieee80211_channel *c, int rate) 2450 { 2451 /* fixed-point arithmetic division using a n-bit fractional part */ 2452 #define fdivround(a, b, n) \ 2453 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 2454 2455 /* linear interpolation */ 2456 #define interpolate(x, x1, y1, x2, y2, n) \ 2457 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 2458 2459 struct ieee80211com *ic = &sc->sc_ic; 2460 struct wpi_power_sample *sample; 2461 int pwr, idx; 2462 u_int chan; 2463 2464 /* get channel number */ 2465 chan = ieee80211_chan2ieee(ic, c); 2466 2467 /* default power is group's maximum power - 3dB */ 2468 pwr = group->maxpwr / 2; 2469 2470 /* decrease power for highest OFDM rates to reduce distortion */ 2471 switch (rate) { 2472 case 72: /* 36Mb/s */ 2473 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 2474 break; 2475 case 96: /* 48Mb/s */ 2476 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 2477 break; 2478 case 108: /* 54Mb/s */ 2479 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 2480 break; 2481 } 2482 2483 /* never exceed channel's maximum allowed Tx power */ 2484 pwr = min(pwr, sc->maxpwr[chan]); 2485 2486 /* retrieve power index into gain tables from samples */ 2487 for (sample = group->samples; sample < &group->samples[3]; sample++) 2488 if (pwr > sample[1].power) 2489 break; 2490 /* fixed-point linear interpolation using a 19-bit fractional part */ 2491 idx = interpolate(pwr, sample[0].power, sample[0].index, 2492 sample[1].power, sample[1].index, 19); 2493 2494 /* 2495 * Adjust power index based on current temperature: 2496 * - if cooler than factory-calibrated: decrease output power 2497 * - if warmer than factory-calibrated: increase output power 2498 */ 2499 idx -= (sc->temp - group->temp) * 11 / 100; 2500 2501 /* decrease power for CCK rates (-5dB) */ 2502 if (!WPI_RATE_IS_OFDM(rate)) 2503 idx += 10; 2504 2505 /* keep power index in a valid range */ 2506 if (idx < 0) 2507 return 0; 2508 if (idx > WPI_MAX_PWR_INDEX) 2509 return WPI_MAX_PWR_INDEX; 2510 return idx; 2511 2512 #undef interpolate 2513 #undef fdivround 2514 } 2515 2516 /* 2517 * Build a beacon frame that the firmware will broadcast periodically in 2518 * IBSS or HostAP modes. 2519 */ 2520 static int 2521 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2522 { 2523 struct ieee80211com *ic = &sc->sc_ic; 2524 struct wpi_tx_ring *ring = &sc->cmdq; 2525 struct wpi_tx_desc *desc; 2526 struct wpi_tx_data *data; 2527 struct wpi_tx_cmd *cmd; 2528 struct wpi_cmd_beacon *bcn; 2529 struct ieee80211_beacon_offsets bo; 2530 struct mbuf *m0; 2531 int error; 2532 2533 desc = &ring->desc[ring->cur]; 2534 data = &ring->data[ring->cur]; 2535 2536 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2537 if (m0 == NULL) { 2538 aprint_error("%s: could not allocate beacon frame\n", 2539 sc->sc_dev.dv_xname); 2540 return ENOMEM; 2541 } 2542 2543 cmd = &ring->cmd[ring->cur]; 2544 cmd->code = WPI_CMD_SET_BEACON; 2545 cmd->flags = 0; 2546 cmd->qid = ring->qid; 2547 cmd->idx = ring->cur; 2548 2549 bcn = (struct wpi_cmd_beacon *)cmd->data; 2550 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2551 bcn->id = WPI_ID_BROADCAST; 2552 bcn->ofdm_mask = 0xff; 2553 bcn->cck_mask = 0x0f; 2554 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2555 bcn->len = htole16(m0->m_pkthdr.len); 2556 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2557 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2558 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2559 2560 /* save and trim IEEE802.11 header */ 2561 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh); 2562 m_adj(m0, sizeof (struct ieee80211_frame)); 2563 2564 /* assume beacon frame is contiguous */ 2565 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2566 BUS_DMA_READ | BUS_DMA_NOWAIT); 2567 if (error) { 2568 aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname); 2569 m_freem(m0); 2570 return error; 2571 } 2572 2573 data->m = m0; 2574 2575 /* first scatter/gather segment is used by the beacon command */ 2576 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2577 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2578 ring->cur * sizeof (struct wpi_tx_cmd)); 2579 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2580 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr); 2581 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len); 2582 2583 /* kick cmd ring */ 2584 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2585 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2586 2587 return 0; 2588 } 2589 2590 static int 2591 wpi_auth(struct wpi_softc *sc) 2592 { 2593 struct ieee80211com *ic = &sc->sc_ic; 2594 struct ieee80211_node *ni = ic->ic_bss; 2595 struct wpi_node_info node; 2596 int error; 2597 2598 /* update adapter's configuration */ 2599 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2600 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2601 sc->config.flags = htole32(WPI_CONFIG_TSF); 2602 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2603 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2604 WPI_CONFIG_24GHZ); 2605 } 2606 switch (ic->ic_curmode) { 2607 case IEEE80211_MODE_11A: 2608 sc->config.cck_mask = 0; 2609 sc->config.ofdm_mask = 0x15; 2610 break; 2611 case IEEE80211_MODE_11B: 2612 sc->config.cck_mask = 0x03; 2613 sc->config.ofdm_mask = 0; 2614 break; 2615 default: /* assume 802.11b/g */ 2616 sc->config.cck_mask = 0x0f; 2617 sc->config.ofdm_mask = 0x15; 2618 } 2619 2620 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2621 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2622 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2623 sizeof (struct wpi_config), 1); 2624 if (error != 0) { 2625 aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname); 2626 return error; 2627 } 2628 2629 /* configuration has changed, set Tx power accordingly */ 2630 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2631 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname); 2632 return error; 2633 } 2634 2635 /* add default node */ 2636 memset(&node, 0, sizeof node); 2637 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2638 node.id = WPI_ID_BSS; 2639 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2640 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2641 node.action = htole32(WPI_ACTION_SET_RATE); 2642 node.antenna = WPI_ANTENNA_BOTH; 2643 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2644 if (error != 0) { 2645 aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname); 2646 return error; 2647 } 2648 2649 return 0; 2650 } 2651 2652 /* 2653 * Send a scan request to the firmware. Since this command is huge, we map it 2654 * into a mbuf instead of using the pre-allocated set of commands. 2655 */ 2656 static int 2657 wpi_scan(struct wpi_softc *sc, uint16_t flags) 2658 { 2659 struct ieee80211com *ic = &sc->sc_ic; 2660 struct wpi_tx_ring *ring = &sc->cmdq; 2661 struct wpi_tx_desc *desc; 2662 struct wpi_tx_data *data; 2663 struct wpi_tx_cmd *cmd; 2664 struct wpi_scan_hdr *hdr; 2665 struct wpi_scan_chan *chan; 2666 struct ieee80211_frame *wh; 2667 struct ieee80211_rateset *rs; 2668 struct ieee80211_channel *c; 2669 enum ieee80211_phymode mode; 2670 uint8_t *frm; 2671 int nrates, pktlen, error; 2672 2673 desc = &ring->desc[ring->cur]; 2674 data = &ring->data[ring->cur]; 2675 2676 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 2677 if (data->m == NULL) { 2678 aprint_error("%s: could not allocate mbuf for scan command\n", 2679 sc->sc_dev.dv_xname); 2680 return ENOMEM; 2681 } 2682 2683 MCLGET(data->m, M_DONTWAIT); 2684 if (!(data->m->m_flags & M_EXT)) { 2685 m_freem(data->m); 2686 data->m = NULL; 2687 aprint_error("%s: could not allocate mbuf for scan command\n", 2688 sc->sc_dev.dv_xname); 2689 return ENOMEM; 2690 } 2691 2692 cmd = mtod(data->m, struct wpi_tx_cmd *); 2693 cmd->code = WPI_CMD_SCAN; 2694 cmd->flags = 0; 2695 cmd->qid = ring->qid; 2696 cmd->idx = ring->cur; 2697 2698 hdr = (struct wpi_scan_hdr *)cmd->data; 2699 memset(hdr, 0, sizeof (struct wpi_scan_hdr)); 2700 hdr->txflags = htole32(WPI_TX_AUTO_SEQ); 2701 hdr->id = WPI_ID_BROADCAST; 2702 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE); 2703 2704 /* 2705 * Move to the next channel if no packets are received within 5 msecs 2706 * after sending the probe request (this helps to reduce the duration 2707 * of active scans). 2708 */ 2709 hdr->quiet = htole16(5); /* timeout in milliseconds */ 2710 hdr->plcp_threshold = htole16(1); /* min # of packets */ 2711 2712 if (flags & IEEE80211_CHAN_A) { 2713 hdr->crc_threshold = htole16(1); 2714 /* send probe requests at 6Mbps */ 2715 hdr->rate = wpi_plcp_signal(12); 2716 } else { 2717 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2718 /* send probe requests at 1Mbps */ 2719 hdr->rate = wpi_plcp_signal(2); 2720 } 2721 2722 /* for directed scans, firmware inserts the essid IE itself */ 2723 hdr->essid[0].id = IEEE80211_ELEMID_SSID; 2724 hdr->essid[0].len = ic->ic_des_esslen; 2725 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 2726 2727 /* 2728 * Build a probe request frame. Most of the following code is a 2729 * copy & paste of what is done in net80211. 2730 */ 2731 wh = (struct ieee80211_frame *)(hdr + 1); 2732 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2733 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2734 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2735 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2736 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2737 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2738 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2739 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2740 2741 frm = (uint8_t *)(wh + 1); 2742 2743 /* add empty essid IE (firmware generates it for directed scans) */ 2744 *frm++ = IEEE80211_ELEMID_SSID; 2745 *frm++ = 0; 2746 2747 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan); 2748 rs = &ic->ic_sup_rates[mode]; 2749 2750 /* add supported rates IE */ 2751 *frm++ = IEEE80211_ELEMID_RATES; 2752 nrates = rs->rs_nrates; 2753 if (nrates > IEEE80211_RATE_SIZE) 2754 nrates = IEEE80211_RATE_SIZE; 2755 *frm++ = nrates; 2756 memcpy(frm, rs->rs_rates, nrates); 2757 frm += nrates; 2758 2759 /* add supported xrates IE */ 2760 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2761 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2762 *frm++ = IEEE80211_ELEMID_XRATES; 2763 *frm++ = nrates; 2764 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2765 frm += nrates; 2766 } 2767 2768 /* setup length of probe request */ 2769 hdr->paylen = htole16(frm - (uint8_t *)wh); 2770 2771 chan = (struct wpi_scan_chan *)frm; 2772 for (c = &ic->ic_channels[1]; 2773 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2774 if ((c->ic_flags & flags) != flags) 2775 continue; 2776 2777 chan->chan = ieee80211_chan2ieee(ic, c); 2778 chan->flags = 0; 2779 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2780 chan->flags |= WPI_CHAN_ACTIVE; 2781 if (ic->ic_des_esslen != 0) 2782 chan->flags |= WPI_CHAN_DIRECT; 2783 } 2784 chan->dsp_gain = 0x6e; 2785 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2786 chan->rf_gain = 0x3b; 2787 chan->active = htole16(10); 2788 chan->passive = htole16(110); 2789 } else { 2790 chan->rf_gain = 0x28; 2791 chan->active = htole16(20); 2792 chan->passive = htole16(120); 2793 } 2794 hdr->nchan++; 2795 chan++; 2796 2797 frm += sizeof (struct wpi_scan_chan); 2798 } 2799 hdr->len = htole16(frm - (uint8_t *)hdr); 2800 pktlen = frm - (uint8_t *)cmd; 2801 2802 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, 2803 NULL, BUS_DMA_NOWAIT); 2804 if (error) { 2805 aprint_error("%s: could not map scan command\n", 2806 sc->sc_dev.dv_xname); 2807 m_freem(data->m); 2808 data->m = NULL; 2809 return error; 2810 } 2811 2812 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2813 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr); 2814 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len); 2815 2816 /* kick cmd ring */ 2817 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2818 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2819 2820 return 0; /* will be notified async. of failure/success */ 2821 } 2822 2823 static int 2824 wpi_config(struct wpi_softc *sc) 2825 { 2826 struct ieee80211com *ic = &sc->sc_ic; 2827 struct ifnet *ifp = ic->ic_ifp; 2828 struct wpi_power power; 2829 struct wpi_bluetooth bluetooth; 2830 struct wpi_node_info node; 2831 int error; 2832 2833 memset(&power, 0, sizeof power); 2834 power.flags = htole32(WPI_POWER_CAM | 0x8); 2835 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2836 if (error != 0) { 2837 aprint_error("%s: could not set power mode\n", 2838 sc->sc_dev.dv_xname); 2839 return error; 2840 } 2841 2842 /* configure bluetooth coexistence */ 2843 memset(&bluetooth, 0, sizeof bluetooth); 2844 bluetooth.flags = 3; 2845 bluetooth.lead = 0xaa; 2846 bluetooth.kill = 1; 2847 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2848 0); 2849 if (error != 0) { 2850 aprint_error( 2851 "%s: could not configure bluetooth coexistence\n", 2852 sc->sc_dev.dv_xname); 2853 return error; 2854 } 2855 2856 /* configure adapter */ 2857 memset(&sc->config, 0, sizeof (struct wpi_config)); 2858 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2859 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2860 /*set default channel*/ 2861 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 2862 sc->config.flags = htole32(WPI_CONFIG_TSF); 2863 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) { 2864 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2865 WPI_CONFIG_24GHZ); 2866 } 2867 sc->config.filter = 0; 2868 switch (ic->ic_opmode) { 2869 case IEEE80211_M_STA: 2870 sc->config.mode = WPI_MODE_STA; 2871 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2872 break; 2873 case IEEE80211_M_IBSS: 2874 case IEEE80211_M_AHDEMO: 2875 sc->config.mode = WPI_MODE_IBSS; 2876 break; 2877 case IEEE80211_M_HOSTAP: 2878 sc->config.mode = WPI_MODE_HOSTAP; 2879 break; 2880 case IEEE80211_M_MONITOR: 2881 sc->config.mode = WPI_MODE_MONITOR; 2882 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2883 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2884 break; 2885 } 2886 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2887 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2888 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2889 sizeof (struct wpi_config), 0); 2890 if (error != 0) { 2891 aprint_error("%s: configure command failed\n", 2892 sc->sc_dev.dv_xname); 2893 return error; 2894 } 2895 2896 /* configuration has changed, set Tx power accordingly */ 2897 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) { 2898 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname); 2899 return error; 2900 } 2901 2902 /* add broadcast node */ 2903 memset(&node, 0, sizeof node); 2904 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr); 2905 node.id = WPI_ID_BROADCAST; 2906 node.rate = wpi_plcp_signal(2); 2907 node.action = htole32(WPI_ACTION_SET_RATE); 2908 node.antenna = WPI_ANTENNA_BOTH; 2909 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2910 if (error != 0) { 2911 aprint_error("%s: could not add broadcast node\n", 2912 sc->sc_dev.dv_xname); 2913 return error; 2914 } 2915 2916 if ((error = wpi_mrr_setup(sc)) != 0) { 2917 aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname); 2918 return error; 2919 } 2920 2921 return 0; 2922 } 2923 2924 static void 2925 wpi_stop_master(struct wpi_softc *sc) 2926 { 2927 uint32_t tmp; 2928 int ntries; 2929 2930 tmp = WPI_READ(sc, WPI_RESET); 2931 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER); 2932 2933 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2934 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2935 return; /* already asleep */ 2936 2937 for (ntries = 0; ntries < 100; ntries++) { 2938 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2939 break; 2940 DELAY(10); 2941 } 2942 if (ntries == 100) { 2943 aprint_error("%s: timeout waiting for master\n", 2944 sc->sc_dev.dv_xname); 2945 } 2946 } 2947 2948 static int 2949 wpi_power_up(struct wpi_softc *sc) 2950 { 2951 uint32_t tmp; 2952 int ntries; 2953 2954 wpi_mem_lock(sc); 2955 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2956 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2957 wpi_mem_unlock(sc); 2958 2959 for (ntries = 0; ntries < 5000; ntries++) { 2960 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2961 break; 2962 DELAY(10); 2963 } 2964 if (ntries == 5000) { 2965 aprint_error("%s: timeout waiting for NIC to power up\n", 2966 sc->sc_dev.dv_xname); 2967 return ETIMEDOUT; 2968 } 2969 return 0; 2970 } 2971 2972 static int 2973 wpi_reset(struct wpi_softc *sc) 2974 { 2975 uint32_t tmp; 2976 int ntries; 2977 2978 /* clear any pending interrupts */ 2979 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2980 2981 tmp = WPI_READ(sc, WPI_PLL_CTL); 2982 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2983 2984 tmp = WPI_READ(sc, WPI_CHICKEN); 2985 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2986 2987 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2988 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2989 2990 /* wait for clock stabilization */ 2991 for (ntries = 0; ntries < 1000; ntries++) { 2992 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2993 break; 2994 DELAY(10); 2995 } 2996 if (ntries == 1000) { 2997 aprint_error("%s: timeout waiting for clock stabilization\n", 2998 sc->sc_dev.dv_xname); 2999 return ETIMEDOUT; 3000 } 3001 3002 /* initialize EEPROM */ 3003 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 3004 if ((tmp & WPI_EEPROM_VERSION) == 0) { 3005 aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname); 3006 return EIO; 3007 } 3008 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3009 3010 return 0; 3011 } 3012 3013 static void 3014 wpi_hw_config(struct wpi_softc *sc) 3015 { 3016 uint32_t rev, hw; 3017 3018 /* voodoo from the reference driver */ 3019 hw = WPI_READ(sc, WPI_HWCONFIG); 3020 3021 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 3022 rev = PCI_REVISION(rev); 3023 if ((rev & 0xc0) == 0x40) 3024 hw |= WPI_HW_ALM_MB; 3025 else if (!(rev & 0x80)) 3026 hw |= WPI_HW_ALM_MM; 3027 3028 if (sc->cap == 0x80) 3029 hw |= WPI_HW_SKU_MRC; 3030 3031 hw &= ~WPI_HW_REV_D; 3032 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 3033 hw |= WPI_HW_REV_D; 3034 3035 if (sc->type > 1) 3036 hw |= WPI_HW_TYPE_B; 3037 3038 DPRINTF(("setting h/w config %x\n", hw)); 3039 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3040 } 3041 3042 static int 3043 wpi_init(struct ifnet *ifp) 3044 { 3045 struct wpi_softc *sc = ifp->if_softc; 3046 struct ieee80211com *ic = &sc->sc_ic; 3047 uint32_t tmp; 3048 int qid, ntries, error; 3049 3050 wpi_stop(ifp,1); 3051 (void)wpi_reset(sc); 3052 3053 wpi_mem_lock(sc); 3054 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3055 DELAY(20); 3056 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3057 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3058 wpi_mem_unlock(sc); 3059 3060 (void)wpi_power_up(sc); 3061 wpi_hw_config(sc); 3062 3063 /* init Rx ring */ 3064 wpi_mem_lock(sc); 3065 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3066 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3067 offsetof(struct wpi_shared, next)); 3068 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3069 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3070 wpi_mem_unlock(sc); 3071 3072 /* init Tx rings */ 3073 wpi_mem_lock(sc); 3074 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3075 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3076 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3077 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3078 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3079 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3080 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3081 3082 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3083 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3084 3085 for (qid = 0; qid < 6; qid++) { 3086 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3087 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3088 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3089 } 3090 wpi_mem_unlock(sc); 3091 3092 /* clear "radio off" and "disable command" bits (reversed logic) */ 3093 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3094 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3095 3096 /* clear any pending interrupts */ 3097 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3098 /* enable interrupts */ 3099 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3100 3101 /* not sure why/if this is necessary... */ 3102 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3103 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3104 3105 if ((error = wpi_load_firmware(sc)) != 0) { 3106 aprint_error("%s: could not load firmware\n", sc->sc_dev.dv_xname); 3107 goto fail1; 3108 } 3109 3110 /* wait for thermal sensors to calibrate */ 3111 for (ntries = 0; ntries < 1000; ntries++) { 3112 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3113 break; 3114 DELAY(10); 3115 } 3116 if (ntries == 1000) { 3117 aprint_error("%s: timeout waiting for thermal sensors calibration\n", 3118 sc->sc_dev.dv_xname); 3119 error = ETIMEDOUT; 3120 goto fail1; 3121 } 3122 3123 DPRINTF(("temperature %d\n", sc->temp)); 3124 3125 if ((error = wpi_config(sc)) != 0) { 3126 aprint_error("%s: could not configure device\n", 3127 sc->sc_dev.dv_xname); 3128 goto fail1; 3129 } 3130 3131 ifp->if_flags &= ~IFF_OACTIVE; 3132 ifp->if_flags |= IFF_RUNNING; 3133 3134 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3135 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 3136 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3137 } 3138 else 3139 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3140 3141 return 0; 3142 3143 fail1: wpi_stop(ifp, 1); 3144 return error; 3145 } 3146 3147 3148 static void 3149 wpi_stop(struct ifnet *ifp, int disable) 3150 { 3151 struct wpi_softc *sc = ifp->if_softc; 3152 struct ieee80211com *ic = &sc->sc_ic; 3153 uint32_t tmp; 3154 int ac; 3155 3156 ifp->if_timer = sc->sc_tx_timer = 0; 3157 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3158 3159 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3160 3161 /* disable interrupts */ 3162 WPI_WRITE(sc, WPI_MASK, 0); 3163 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3164 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3165 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3166 3167 wpi_mem_lock(sc); 3168 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3169 wpi_mem_unlock(sc); 3170 3171 /* reset all Tx rings */ 3172 for (ac = 0; ac < 4; ac++) 3173 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3174 wpi_reset_tx_ring(sc, &sc->cmdq); 3175 3176 /* reset Rx ring */ 3177 wpi_reset_rx_ring(sc, &sc->rxq); 3178 3179 wpi_mem_lock(sc); 3180 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3181 wpi_mem_unlock(sc); 3182 3183 DELAY(5); 3184 3185 wpi_stop_master(sc); 3186 3187 tmp = WPI_READ(sc, WPI_RESET); 3188 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3189 } 3190