1 /* $NetBSD: if_wpi.c,v 1.90 2021/02/05 16:06:24 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.90 2021/02/05 16:06:24 christos Exp $"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 */ 26 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/sysctl.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/mutex.h> 37 #include <sys/once.h> 38 #include <sys/conf.h> 39 #include <sys/kauth.h> 40 #include <sys/callout.h> 41 #include <sys/proc.h> 42 #include <sys/kthread.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #include <dev/pci/pcireg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcidevs.h> 51 52 #include <dev/sysmon/sysmonvar.h> 53 54 #include <net/bpf.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_dl.h> 58 #include <net/if_ether.h> 59 #include <net/if_media.h> 60 #include <net/if_types.h> 61 62 #include <netinet/in.h> 63 #include <netinet/in_systm.h> 64 #include <netinet/in_var.h> 65 #include <netinet/ip.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_amrr.h> 69 #include <net80211/ieee80211_radiotap.h> 70 71 #include <dev/firmload.h> 72 73 #include <dev/pci/if_wpireg.h> 74 #include <dev/pci/if_wpivar.h> 75 76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode"; 77 static once_t wpi_firmware_init; 78 static kmutex_t wpi_firmware_mutex; 79 static size_t wpi_firmware_users; 80 static uint8_t *wpi_firmware_image; 81 static size_t wpi_firmware_size; 82 83 static int wpi_match(device_t, cfdata_t, void *); 84 static void wpi_attach(device_t, device_t, void *); 85 static int wpi_detach(device_t , int); 86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *, 87 void **, bus_size_t, bus_size_t, int); 88 static void wpi_dma_contig_free(struct wpi_dma_info *); 89 static int wpi_alloc_shared(struct wpi_softc *); 90 static void wpi_free_shared(struct wpi_softc *); 91 static int wpi_alloc_fwmem(struct wpi_softc *); 92 static void wpi_free_fwmem(struct wpi_softc *); 93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *); 94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *); 95 static int wpi_alloc_rpool(struct wpi_softc *); 96 static void wpi_free_rpool(struct wpi_softc *); 97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 101 int, int); 102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *); 105 static void wpi_newassoc(struct ieee80211_node *, int); 106 static int wpi_media_change(struct ifnet *); 107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 108 static void wpi_mem_lock(struct wpi_softc *); 109 static void wpi_mem_unlock(struct wpi_softc *); 110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 113 const uint32_t *, int); 114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 116 static int wpi_cache_firmware(struct wpi_softc *); 117 static void wpi_release_firmware(void); 118 static int wpi_load_firmware(struct wpi_softc *); 119 static void wpi_calib_timeout(void *); 120 static void wpi_iter_func(void *, struct ieee80211_node *); 121 static void wpi_power_calibration(struct wpi_softc *, int); 122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 123 struct wpi_rx_data *); 124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 126 static void wpi_notif_intr(struct wpi_softc *); 127 static int wpi_intr(void *); 128 static void wpi_softintr(void *); 129 static void wpi_read_eeprom(struct wpi_softc *); 130 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 131 static void wpi_read_eeprom_group(struct wpi_softc *, int); 132 static uint8_t wpi_plcp_signal(int); 133 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 134 struct ieee80211_node *, int); 135 static void wpi_start(struct ifnet *); 136 static void wpi_watchdog(struct ifnet *); 137 static int wpi_ioctl(struct ifnet *, u_long, void *); 138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 139 static int wpi_wme_update(struct ieee80211com *); 140 static int wpi_mrr_setup(struct wpi_softc *); 141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 143 static int wpi_set_txpower(struct wpi_softc *, 144 struct ieee80211_channel *, int); 145 static int wpi_get_power_index(struct wpi_softc *, 146 struct wpi_power_group *, struct ieee80211_channel *, int); 147 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 148 static int wpi_auth(struct wpi_softc *); 149 static int wpi_scan(struct wpi_softc *); 150 static int wpi_config(struct wpi_softc *); 151 static void wpi_stop_master(struct wpi_softc *); 152 static int wpi_power_up(struct wpi_softc *); 153 static int wpi_reset(struct wpi_softc *); 154 static void wpi_hw_config(struct wpi_softc *); 155 static int wpi_init(struct ifnet *); 156 static void wpi_stop(struct ifnet *, int); 157 static bool wpi_resume(device_t, const pmf_qual_t *); 158 static int wpi_getrfkill(struct wpi_softc *); 159 static void wpi_sysctlattach(struct wpi_softc *); 160 static void wpi_rsw_thread(void *); 161 static void wpi_rsw_suspend(struct wpi_softc *); 162 static void wpi_stop_intr(struct ifnet *, int); 163 164 #ifdef WPI_DEBUG 165 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0) 166 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0) 167 int wpi_debug = 1; 168 #else 169 #define DPRINTF(x) 170 #define DPRINTFN(n, x) 171 #endif 172 173 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach, 174 wpi_detach, NULL); 175 176 static int 177 wpi_match(device_t parent, cfdata_t match __unused, void *aux) 178 { 179 struct pci_attach_args *pa = aux; 180 181 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 182 return 0; 183 184 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 || 185 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2) 186 return 1; 187 188 return 0; 189 } 190 191 /* Base Address Register */ 192 #define WPI_PCI_BAR0 0x10 193 194 static int 195 wpi_attach_once(void) 196 { 197 198 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE); 199 return 0; 200 } 201 202 static void 203 wpi_attach(device_t parent __unused, device_t self, void *aux) 204 { 205 struct wpi_softc *sc = device_private(self); 206 struct ieee80211com *ic = &sc->sc_ic; 207 struct ifnet *ifp = &sc->sc_ec.ec_if; 208 struct pci_attach_args *pa = aux; 209 const char *intrstr; 210 bus_space_tag_t memt; 211 bus_space_handle_t memh; 212 pcireg_t data; 213 int ac, error; 214 char intrbuf[PCI_INTRSTR_LEN]; 215 216 RUN_ONCE(&wpi_firmware_init, wpi_attach_once); 217 sc->fw_used = false; 218 219 sc->sc_dev = self; 220 sc->sc_pct = pa->pa_pc; 221 sc->sc_pcitag = pa->pa_tag; 222 223 sc->sc_rsw_status = WPI_RSW_UNKNOWN; 224 sc->sc_rsw.smpsw_name = device_xname(self); 225 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO; 226 error = sysmon_pswitch_register(&sc->sc_rsw); 227 if (error) { 228 aprint_error_dev(self, 229 "unable to register radio switch with sysmon\n"); 230 return; 231 } 232 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE); 233 cv_init(&sc->sc_rsw_cv, "wpirsw"); 234 sc->sc_rsw_suspend = false; 235 sc->sc_rsw_suspended = false; 236 if (kthread_create(PRI_NONE, 0, NULL, 237 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) { 238 aprint_error_dev(self, "couldn't create switch thread\n"); 239 } 240 241 callout_init(&sc->calib_to, 0); 242 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc); 243 244 pci_aprint_devinfo(pa, NULL); 245 246 /* enable bus-mastering */ 247 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 248 data |= PCI_COMMAND_MASTER_ENABLE; 249 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data); 250 251 /* map the register window */ 252 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | 253 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz); 254 if (error != 0) { 255 aprint_error_dev(self, "could not map memory space\n"); 256 return; 257 } 258 259 sc->sc_st = memt; 260 sc->sc_sh = memh; 261 sc->sc_dmat = pa->pa_dmat; 262 263 sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc); 264 if (sc->sc_soft_ih == NULL) { 265 aprint_error_dev(self, "could not establish softint\n"); 266 goto unmap; 267 } 268 269 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) { 270 aprint_error_dev(self, "could not map interrupt\n"); 271 goto failsi; 272 } 273 274 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf, 275 sizeof(intrbuf)); 276 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0], 277 IPL_NET, wpi_intr, sc, device_xname(self)); 278 if (sc->sc_ih == NULL) { 279 aprint_error_dev(self, "could not establish interrupt"); 280 if (intrstr != NULL) 281 aprint_error(" at %s", intrstr); 282 aprint_error("\n"); 283 goto failia; 284 } 285 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 286 287 /* 288 * Put adapter into a known state. 289 */ 290 if ((error = wpi_reset(sc)) != 0) { 291 aprint_error_dev(self, "could not reset adapter\n"); 292 goto failih; 293 } 294 295 /* 296 * Allocate DMA memory for firmware transfers. 297 */ 298 if ((error = wpi_alloc_fwmem(sc)) != 0) { 299 aprint_error_dev(self, "could not allocate firmware memory\n"); 300 goto failih; 301 } 302 303 /* 304 * Allocate shared page and Tx/Rx rings. 305 */ 306 if ((error = wpi_alloc_shared(sc)) != 0) { 307 aprint_error_dev(self, "could not allocate shared area\n"); 308 goto fail1; 309 } 310 311 if ((error = wpi_alloc_rpool(sc)) != 0) { 312 aprint_error_dev(self, "could not allocate Rx buffers\n"); 313 goto fail2; 314 } 315 316 for (ac = 0; ac < 4; ac++) { 317 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, 318 ac); 319 if (error != 0) { 320 aprint_error_dev(self, 321 "could not allocate Tx ring %d\n", ac); 322 goto fail3; 323 } 324 } 325 326 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 327 if (error != 0) { 328 aprint_error_dev(self, "could not allocate command ring\n"); 329 goto fail3; 330 } 331 332 error = wpi_alloc_rx_ring(sc, &sc->rxq); 333 if (error != 0) { 334 aprint_error_dev(self, "could not allocate Rx ring\n"); 335 goto fail4; 336 } 337 338 ic->ic_ifp = ifp; 339 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 340 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 341 ic->ic_state = IEEE80211_S_INIT; 342 343 /* set device capabilities */ 344 ic->ic_caps = 345 IEEE80211_C_WPA | /* 802.11i */ 346 IEEE80211_C_MONITOR | /* monitor mode supported */ 347 IEEE80211_C_TXPMGT | /* tx power management */ 348 IEEE80211_C_SHSLOT | /* short slot time supported */ 349 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 350 IEEE80211_C_WME; /* 802.11e */ 351 352 /* read supported channels and MAC address from EEPROM */ 353 wpi_read_eeprom(sc); 354 355 /* set supported .11a, .11b and .11g rates */ 356 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 357 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 358 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 359 360 /* IBSS channel undefined for now */ 361 ic->ic_ibss_chan = &ic->ic_channels[0]; 362 363 ifp->if_softc = sc; 364 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 365 ifp->if_init = wpi_init; 366 ifp->if_stop = wpi_stop; 367 ifp->if_ioctl = wpi_ioctl; 368 ifp->if_start = wpi_start; 369 ifp->if_watchdog = wpi_watchdog; 370 IFQ_SET_READY(&ifp->if_snd); 371 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 372 373 error = if_initialize(ifp); 374 if (error != 0) { 375 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", 376 error); 377 goto fail5; 378 } 379 ieee80211_ifattach(ic); 380 /* Use common softint-based if_input */ 381 ifp->if_percpuq = if_percpuq_create(ifp); 382 if_register(ifp); 383 384 /* override default methods */ 385 ic->ic_node_alloc = wpi_node_alloc; 386 ic->ic_newassoc = wpi_newassoc; 387 ic->ic_wme.wme_update = wpi_wme_update; 388 389 /* override state transition machine */ 390 sc->sc_newstate = ic->ic_newstate; 391 ic->ic_newstate = wpi_newstate; 392 393 /* XXX media locking needs revisiting */ 394 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET); 395 ieee80211_media_init_with_lock(ic, 396 wpi_media_change, ieee80211_media_status, &sc->sc_media_mtx); 397 398 sc->amrr.amrr_min_success_threshold = 1; 399 sc->amrr.amrr_max_success_threshold = 15; 400 401 wpi_sysctlattach(sc); 402 403 if (pmf_device_register(self, NULL, wpi_resume)) 404 pmf_class_network_register(self, ifp); 405 else 406 aprint_error_dev(self, "couldn't establish power handler\n"); 407 408 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 409 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 410 &sc->sc_drvbpf); 411 412 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 413 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 414 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 415 416 sc->sc_txtap_len = sizeof sc->sc_txtapu; 417 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 418 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 419 420 ieee80211_announce(ic); 421 422 return; 423 424 /* free allocated memory if something failed during attachment */ 425 fail5: wpi_free_rx_ring(sc, &sc->rxq); 426 fail4: wpi_free_tx_ring(sc, &sc->cmdq); 427 fail3: while (--ac >= 0) 428 wpi_free_tx_ring(sc, &sc->txq[ac]); 429 wpi_free_rpool(sc); 430 fail2: wpi_free_shared(sc); 431 fail1: wpi_free_fwmem(sc); 432 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 433 sc->sc_ih = NULL; 434 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 435 sc->sc_pihp = NULL; 436 failsi: softint_disestablish(sc->sc_soft_ih); 437 sc->sc_soft_ih = NULL; 438 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 439 } 440 441 static int 442 wpi_detach(device_t self, int flags __unused) 443 { 444 struct wpi_softc *sc = device_private(self); 445 struct ifnet *ifp = sc->sc_ic.ic_ifp; 446 int ac; 447 448 wpi_stop(ifp, 1); 449 450 if (ifp != NULL) 451 bpf_detach(ifp); 452 ieee80211_ifdetach(&sc->sc_ic); 453 if (ifp != NULL) 454 if_detach(ifp); 455 456 for (ac = 0; ac < 4; ac++) 457 wpi_free_tx_ring(sc, &sc->txq[ac]); 458 wpi_free_tx_ring(sc, &sc->cmdq); 459 wpi_free_rx_ring(sc, &sc->rxq); 460 wpi_free_rpool(sc); 461 wpi_free_shared(sc); 462 463 if (sc->sc_ih != NULL) { 464 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 465 sc->sc_ih = NULL; 466 } 467 if (sc->sc_pihp != NULL) { 468 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 469 sc->sc_pihp = NULL; 470 } 471 if (sc->sc_soft_ih != NULL) { 472 softint_disestablish(sc->sc_soft_ih); 473 sc->sc_soft_ih = NULL; 474 } 475 476 mutex_enter(&sc->sc_rsw_mtx); 477 sc->sc_dying = 1; 478 cv_signal(&sc->sc_rsw_cv); 479 while (sc->sc_rsw_lwp != NULL) 480 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx); 481 mutex_exit(&sc->sc_rsw_mtx); 482 sysmon_pswitch_unregister(&sc->sc_rsw); 483 484 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 485 486 if (sc->fw_used) { 487 sc->fw_used = false; 488 wpi_release_firmware(); 489 } 490 cv_destroy(&sc->sc_rsw_cv); 491 mutex_destroy(&sc->sc_rsw_mtx); 492 return 0; 493 } 494 495 static int 496 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap, 497 bus_size_t size, bus_size_t alignment, int flags) 498 { 499 int nsegs, error; 500 501 dma->tag = tag; 502 dma->size = size; 503 504 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map); 505 if (error != 0) 506 goto fail; 507 508 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 509 flags); 510 if (error != 0) 511 goto fail; 512 513 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags); 514 if (error != 0) 515 goto fail; 516 517 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags); 518 if (error != 0) 519 goto fail; 520 521 memset(dma->vaddr, 0, size); 522 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 523 524 dma->paddr = dma->map->dm_segs[0].ds_addr; 525 if (kvap != NULL) 526 *kvap = dma->vaddr; 527 528 return 0; 529 530 fail: wpi_dma_contig_free(dma); 531 return error; 532 } 533 534 static void 535 wpi_dma_contig_free(struct wpi_dma_info *dma) 536 { 537 if (dma->map != NULL) { 538 if (dma->vaddr != NULL) { 539 bus_dmamap_unload(dma->tag, dma->map); 540 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 541 bus_dmamem_free(dma->tag, &dma->seg, 1); 542 dma->vaddr = NULL; 543 } 544 bus_dmamap_destroy(dma->tag, dma->map); 545 dma->map = NULL; 546 } 547 } 548 549 /* 550 * Allocate a shared page between host and NIC. 551 */ 552 static int 553 wpi_alloc_shared(struct wpi_softc *sc) 554 { 555 int error; 556 557 /* must be aligned on a 4K-page boundary */ 558 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, 559 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN, 560 BUS_DMA_NOWAIT); 561 if (error != 0) 562 aprint_error_dev(sc->sc_dev, 563 "could not allocate shared area DMA memory\n"); 564 565 return error; 566 } 567 568 static void 569 wpi_free_shared(struct wpi_softc *sc) 570 { 571 wpi_dma_contig_free(&sc->shared_dma); 572 } 573 574 /* 575 * Allocate DMA-safe memory for firmware transfer. 576 */ 577 static int 578 wpi_alloc_fwmem(struct wpi_softc *sc) 579 { 580 int error; 581 582 /* allocate enough contiguous space to store text and data */ 583 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 584 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0, 585 BUS_DMA_NOWAIT); 586 587 if (error != 0) 588 aprint_error_dev(sc->sc_dev, 589 "could not allocate firmware transfer area DMA memory\n"); 590 return error; 591 } 592 593 static void 594 wpi_free_fwmem(struct wpi_softc *sc) 595 { 596 wpi_dma_contig_free(&sc->fw_dma); 597 } 598 599 static struct wpi_rbuf * 600 wpi_alloc_rbuf(struct wpi_softc *sc) 601 { 602 struct wpi_rbuf *rbuf; 603 604 mutex_enter(&sc->rxq.freelist_mtx); 605 rbuf = SLIST_FIRST(&sc->rxq.freelist); 606 if (rbuf != NULL) { 607 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 608 } 609 mutex_exit(&sc->rxq.freelist_mtx); 610 611 return rbuf; 612 } 613 614 /* 615 * This is called automatically by the network stack when the mbuf to which our 616 * Rx buffer is attached is freed. 617 */ 618 static void 619 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 620 { 621 struct wpi_rbuf *rbuf = arg; 622 struct wpi_softc *sc = rbuf->sc; 623 624 /* put the buffer back in the free list */ 625 626 mutex_enter(&sc->rxq.freelist_mtx); 627 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 628 mutex_exit(&sc->rxq.freelist_mtx); 629 630 if (__predict_true(m != NULL)) 631 pool_cache_put(mb_cache, m); 632 } 633 634 static int 635 wpi_alloc_rpool(struct wpi_softc *sc) 636 { 637 struct wpi_rx_ring *ring = &sc->rxq; 638 int i, error; 639 640 /* allocate a big chunk of DMA'able memory.. */ 641 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 642 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT); 643 if (error != 0) { 644 aprint_normal_dev(sc->sc_dev, 645 "could not allocate Rx buffers DMA memory\n"); 646 return error; 647 } 648 649 /* ..and split it into 3KB chunks */ 650 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 651 SLIST_INIT(&ring->freelist); 652 for (i = 0; i < WPI_RBUF_COUNT; i++) { 653 struct wpi_rbuf *rbuf = &ring->rbuf[i]; 654 655 rbuf->sc = sc; /* backpointer for callbacks */ 656 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE; 657 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE; 658 659 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 660 } 661 662 return 0; 663 } 664 665 static void 666 wpi_free_rpool(struct wpi_softc *sc) 667 { 668 mutex_destroy(&sc->rxq.freelist_mtx); 669 wpi_dma_contig_free(&sc->rxq.buf_dma); 670 } 671 672 static int 673 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 674 { 675 bus_size_t size; 676 int i, error; 677 678 ring->cur = 0; 679 680 size = WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc); 681 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 682 (void **)&ring->desc, size, 683 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 684 if (error != 0) { 685 aprint_error_dev(sc->sc_dev, 686 "could not allocate rx ring DMA memory\n"); 687 goto fail; 688 } 689 690 /* 691 * Setup Rx buffers. 692 */ 693 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 694 struct wpi_rx_data *data = &ring->data[i]; 695 struct wpi_rbuf *rbuf; 696 697 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1, 698 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map); 699 if (error) { 700 aprint_error_dev(sc->sc_dev, 701 "could not allocate rx dma map\n"); 702 goto fail; 703 } 704 705 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 706 if (data->m == NULL) { 707 aprint_error_dev(sc->sc_dev, 708 "could not allocate rx mbuf\n"); 709 error = ENOMEM; 710 goto fail; 711 } 712 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) { 713 m_freem(data->m); 714 data->m = NULL; 715 aprint_error_dev(sc->sc_dev, 716 "could not allocate rx cluster\n"); 717 error = ENOMEM; 718 goto fail; 719 } 720 /* attach Rx buffer to mbuf */ 721 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 722 rbuf); 723 data->m->m_flags |= M_EXT_RW; 724 725 error = bus_dmamap_load(sc->sc_dmat, data->map, 726 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 727 BUS_DMA_NOWAIT | BUS_DMA_READ); 728 if (error) { 729 aprint_error_dev(sc->sc_dev, 730 "could not load mbuf: %d\n", error); 731 goto fail; 732 } 733 734 ring->desc[i] = htole32(rbuf->paddr); 735 } 736 737 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 738 BUS_DMASYNC_PREWRITE); 739 740 return 0; 741 742 fail: wpi_free_rx_ring(sc, ring); 743 return error; 744 } 745 746 static void 747 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 748 { 749 int ntries; 750 751 wpi_mem_lock(sc); 752 753 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 754 for (ntries = 0; ntries < 100; ntries++) { 755 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 756 break; 757 DELAY(10); 758 } 759 #ifdef WPI_DEBUG 760 if (ntries == 100 && wpi_debug > 0) 761 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n"); 762 #endif 763 wpi_mem_unlock(sc); 764 765 ring->cur = 0; 766 } 767 768 static void 769 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 770 { 771 int i; 772 773 wpi_dma_contig_free(&ring->desc_dma); 774 775 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 776 if (ring->data[i].m != NULL) { 777 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map); 778 m_freem(ring->data[i].m); 779 } 780 if (ring->data[i].map != NULL) { 781 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map); 782 } 783 } 784 } 785 786 static int 787 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 788 int qid) 789 { 790 int i, error; 791 792 ring->qid = qid; 793 ring->count = count; 794 ring->queued = 0; 795 ring->cur = 0; 796 797 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 798 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 799 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 800 if (error != 0) { 801 aprint_error_dev(sc->sc_dev, 802 "could not allocate tx ring DMA memory\n"); 803 goto fail; 804 } 805 806 /* update shared page with ring's base address */ 807 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 808 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 809 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE); 810 811 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 812 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4, 813 BUS_DMA_NOWAIT); 814 if (error != 0) { 815 aprint_error_dev(sc->sc_dev, 816 "could not allocate tx cmd DMA memory\n"); 817 goto fail; 818 } 819 820 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 821 M_WAITOK | M_ZERO); 822 823 for (i = 0; i < count; i++) { 824 struct wpi_tx_data *data = &ring->data[i]; 825 826 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 827 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 828 &data->map); 829 if (error != 0) { 830 aprint_error_dev(sc->sc_dev, 831 "could not create tx buf DMA map\n"); 832 goto fail; 833 } 834 } 835 836 return 0; 837 838 fail: wpi_free_tx_ring(sc, ring); 839 return error; 840 } 841 842 static void 843 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 844 { 845 int i, ntries; 846 847 wpi_mem_lock(sc); 848 849 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 850 for (ntries = 0; ntries < 100; ntries++) { 851 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 852 break; 853 DELAY(10); 854 } 855 #ifdef WPI_DEBUG 856 if (ntries == 100 && wpi_debug > 0) { 857 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", 858 ring->qid); 859 } 860 #endif 861 wpi_mem_unlock(sc); 862 863 for (i = 0; i < ring->count; i++) { 864 struct wpi_tx_data *data = &ring->data[i]; 865 866 if (data->m != NULL) { 867 bus_dmamap_unload(sc->sc_dmat, data->map); 868 m_freem(data->m); 869 data->m = NULL; 870 } 871 } 872 873 ring->queued = 0; 874 ring->cur = 0; 875 } 876 877 static void 878 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 879 { 880 int i; 881 882 wpi_dma_contig_free(&ring->desc_dma); 883 wpi_dma_contig_free(&ring->cmd_dma); 884 885 if (ring->data != NULL) { 886 for (i = 0; i < ring->count; i++) { 887 struct wpi_tx_data *data = &ring->data[i]; 888 889 if (data->m != NULL) { 890 bus_dmamap_unload(sc->sc_dmat, data->map); 891 m_freem(data->m); 892 } 893 } 894 free(ring->data, M_DEVBUF); 895 } 896 } 897 898 /*ARGUSED*/ 899 static struct ieee80211_node * 900 wpi_node_alloc(struct ieee80211_node_table *nt __unused) 901 { 902 struct wpi_node *wn; 903 904 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 905 906 return (struct ieee80211_node *)wn; 907 } 908 909 static void 910 wpi_newassoc(struct ieee80211_node *ni, int isnew) 911 { 912 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 913 int i; 914 915 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn); 916 917 /* set rate to some reasonable initial value */ 918 for (i = ni->ni_rates.rs_nrates - 1; 919 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 920 i--); 921 ni->ni_txrate = i; 922 } 923 924 static int 925 wpi_media_change(struct ifnet *ifp) 926 { 927 int error; 928 929 error = ieee80211_media_change(ifp); 930 if (error != ENETRESET) 931 return error; 932 933 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 934 wpi_init(ifp); 935 936 return 0; 937 } 938 939 static int 940 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 941 { 942 struct ifnet *ifp = ic->ic_ifp; 943 struct wpi_softc *sc = ifp->if_softc; 944 struct ieee80211_node *ni; 945 enum ieee80211_state ostate = ic->ic_state; 946 int error; 947 948 callout_stop(&sc->calib_to); 949 950 switch (nstate) { 951 case IEEE80211_S_SCAN: 952 953 if (sc->is_scanning) 954 break; 955 956 sc->is_scanning = true; 957 958 if (ostate != IEEE80211_S_SCAN) { 959 /* make the link LED blink while we're scanning */ 960 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 961 } 962 963 if ((error = wpi_scan(sc)) != 0) { 964 aprint_error_dev(sc->sc_dev, 965 "could not initiate scan\n"); 966 return error; 967 } 968 break; 969 970 case IEEE80211_S_ASSOC: 971 if (ic->ic_state != IEEE80211_S_RUN) 972 break; 973 /* FALLTHROUGH */ 974 case IEEE80211_S_AUTH: 975 /* reset state to handle reassociations correctly */ 976 sc->config.associd = 0; 977 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 978 979 if ((error = wpi_auth(sc)) != 0) { 980 aprint_error_dev(sc->sc_dev, 981 "could not send authentication request\n"); 982 return error; 983 } 984 break; 985 986 case IEEE80211_S_RUN: 987 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 988 /* link LED blinks while monitoring */ 989 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 990 break; 991 } 992 ni = ic->ic_bss; 993 994 if (ic->ic_opmode != IEEE80211_M_STA) { 995 (void) wpi_auth(sc); /* XXX */ 996 wpi_setup_beacon(sc, ni); 997 } 998 999 wpi_enable_tsf(sc, ni); 1000 1001 /* update adapter's configuration */ 1002 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 1003 /* short preamble/slot time are negotiated when associating */ 1004 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 1005 WPI_CONFIG_SHSLOT); 1006 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1007 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 1008 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1009 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 1010 sc->config.filter |= htole32(WPI_FILTER_BSS); 1011 if (ic->ic_opmode != IEEE80211_M_STA) 1012 sc->config.filter |= htole32(WPI_FILTER_BEACON); 1013 1014 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 1015 1016 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 1017 sc->config.flags)); 1018 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 1019 sizeof (struct wpi_config), 1); 1020 if (error != 0) { 1021 aprint_error_dev(sc->sc_dev, 1022 "could not update configuration\n"); 1023 return error; 1024 } 1025 1026 /* configuration has changed, set Tx power accordingly */ 1027 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) { 1028 aprint_error_dev(sc->sc_dev, 1029 "could not set Tx power\n"); 1030 return error; 1031 } 1032 1033 if (ic->ic_opmode == IEEE80211_M_STA) { 1034 /* fake a join to init the tx rate */ 1035 wpi_newassoc(ni, 1); 1036 } 1037 1038 /* start periodic calibration timer */ 1039 sc->calib_cnt = 0; 1040 callout_schedule(&sc->calib_to, hz/2); 1041 1042 /* link LED always on while associated */ 1043 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 1044 break; 1045 1046 case IEEE80211_S_INIT: 1047 sc->is_scanning = false; 1048 break; 1049 } 1050 1051 return sc->sc_newstate(ic, nstate, arg); 1052 } 1053 1054 /* 1055 * Grab exclusive access to NIC memory. 1056 */ 1057 static void 1058 wpi_mem_lock(struct wpi_softc *sc) 1059 { 1060 uint32_t tmp; 1061 int ntries; 1062 1063 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1064 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1065 1066 /* spin until we actually get the lock */ 1067 for (ntries = 0; ntries < 1000; ntries++) { 1068 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1069 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1070 break; 1071 DELAY(10); 1072 } 1073 if (ntries == 1000) 1074 aprint_error_dev(sc->sc_dev, "could not lock memory\n"); 1075 } 1076 1077 /* 1078 * Release lock on NIC memory. 1079 */ 1080 static void 1081 wpi_mem_unlock(struct wpi_softc *sc) 1082 { 1083 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1084 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1085 } 1086 1087 static uint32_t 1088 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1089 { 1090 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1091 return WPI_READ(sc, WPI_READ_MEM_DATA); 1092 } 1093 1094 static void 1095 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1096 { 1097 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1098 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1099 } 1100 1101 static void 1102 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1103 const uint32_t *data, int wlen) 1104 { 1105 for (; wlen > 0; wlen--, data++, addr += 4) 1106 wpi_mem_write(sc, addr, *data); 1107 } 1108 1109 /* 1110 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC 1111 * instead of using the traditional bit-bang method. 1112 */ 1113 static int 1114 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1115 { 1116 uint8_t *out = data; 1117 uint32_t val; 1118 int ntries; 1119 1120 wpi_mem_lock(sc); 1121 for (; len > 0; len -= 2, addr++) { 1122 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1123 1124 for (ntries = 0; ntries < 10; ntries++) { 1125 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & 1126 WPI_EEPROM_READY) 1127 break; 1128 DELAY(5); 1129 } 1130 if (ntries == 10) { 1131 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 1132 return ETIMEDOUT; 1133 } 1134 *out++ = val >> 16; 1135 if (len > 1) 1136 *out++ = val >> 24; 1137 } 1138 wpi_mem_unlock(sc); 1139 1140 return 0; 1141 } 1142 1143 /* 1144 * The firmware boot code is small and is intended to be copied directly into 1145 * the NIC internal memory. 1146 */ 1147 int 1148 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size) 1149 { 1150 int ntries; 1151 1152 size /= sizeof (uint32_t); 1153 1154 wpi_mem_lock(sc); 1155 1156 /* copy microcode image into NIC memory */ 1157 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1158 (const uint32_t *)ucode, size); 1159 1160 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1161 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1162 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1163 1164 /* run microcode */ 1165 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1166 1167 /* wait for transfer to complete */ 1168 for (ntries = 0; ntries < 1000; ntries++) { 1169 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN)) 1170 break; 1171 DELAY(10); 1172 } 1173 if (ntries == 1000) { 1174 wpi_mem_unlock(sc); 1175 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n"); 1176 return ETIMEDOUT; 1177 } 1178 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1179 1180 wpi_mem_unlock(sc); 1181 1182 return 0; 1183 } 1184 1185 static int 1186 wpi_cache_firmware(struct wpi_softc *sc) 1187 { 1188 const char *const fwname = wpi_firmware_name; 1189 firmware_handle_t fw; 1190 int error; 1191 1192 /* sc is used here only to report error messages. */ 1193 1194 mutex_enter(&wpi_firmware_mutex); 1195 1196 if (wpi_firmware_users == SIZE_MAX) { 1197 mutex_exit(&wpi_firmware_mutex); 1198 return ENFILE; /* Too many of something in the system... */ 1199 } 1200 if (wpi_firmware_users++) { 1201 KASSERT(wpi_firmware_image != NULL); 1202 KASSERT(wpi_firmware_size > 0); 1203 mutex_exit(&wpi_firmware_mutex); 1204 return 0; /* Already good to go. */ 1205 } 1206 1207 KASSERT(wpi_firmware_image == NULL); 1208 KASSERT(wpi_firmware_size == 0); 1209 1210 /* load firmware image from disk */ 1211 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) { 1212 aprint_error_dev(sc->sc_dev, 1213 "could not open firmware file %s: %d\n", fwname, error); 1214 goto fail0; 1215 } 1216 1217 wpi_firmware_size = firmware_get_size(fw); 1218 1219 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) + 1220 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ + 1221 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ + 1222 WPI_FW_BOOT_TEXT_MAXSZ) { 1223 aprint_error_dev(sc->sc_dev, 1224 "firmware file %s too large: %zu bytes\n", 1225 fwname, wpi_firmware_size); 1226 error = EFBIG; 1227 goto fail1; 1228 } 1229 1230 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) { 1231 aprint_error_dev(sc->sc_dev, 1232 "firmware file %s too small: %zu bytes\n", 1233 fwname, wpi_firmware_size); 1234 error = EINVAL; 1235 goto fail1; 1236 } 1237 1238 wpi_firmware_image = firmware_malloc(wpi_firmware_size); 1239 if (wpi_firmware_image == NULL) { 1240 aprint_error_dev(sc->sc_dev, 1241 "not enough memory for firmware file %s\n", fwname); 1242 error = ENOMEM; 1243 goto fail1; 1244 } 1245 1246 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size); 1247 if (error != 0) { 1248 aprint_error_dev(sc->sc_dev, 1249 "error reading firmware file %s: %d\n", fwname, error); 1250 goto fail2; 1251 } 1252 1253 /* Success! */ 1254 firmware_close(fw); 1255 mutex_exit(&wpi_firmware_mutex); 1256 return 0; 1257 1258 fail2: 1259 firmware_free(wpi_firmware_image, wpi_firmware_size); 1260 wpi_firmware_image = NULL; 1261 fail1: 1262 wpi_firmware_size = 0; 1263 firmware_close(fw); 1264 fail0: 1265 KASSERT(wpi_firmware_users == 1); 1266 wpi_firmware_users = 0; 1267 KASSERT(wpi_firmware_image == NULL); 1268 KASSERT(wpi_firmware_size == 0); 1269 1270 mutex_exit(&wpi_firmware_mutex); 1271 return error; 1272 } 1273 1274 static void 1275 wpi_release_firmware(void) 1276 { 1277 1278 mutex_enter(&wpi_firmware_mutex); 1279 1280 KASSERT(wpi_firmware_users > 0); 1281 KASSERT(wpi_firmware_image != NULL); 1282 KASSERT(wpi_firmware_size != 0); 1283 1284 if (--wpi_firmware_users == 0) { 1285 firmware_free(wpi_firmware_image, wpi_firmware_size); 1286 wpi_firmware_image = NULL; 1287 wpi_firmware_size = 0; 1288 } 1289 1290 mutex_exit(&wpi_firmware_mutex); 1291 } 1292 1293 static int 1294 wpi_load_firmware(struct wpi_softc *sc) 1295 { 1296 struct wpi_dma_info *dma = &sc->fw_dma; 1297 struct wpi_firmware_hdr hdr; 1298 const uint8_t *init_text, *init_data, *main_text, *main_data; 1299 const uint8_t *boot_text; 1300 uint32_t init_textsz, init_datasz, main_textsz, main_datasz; 1301 uint32_t boot_textsz; 1302 size_t size; 1303 int error; 1304 1305 if (!sc->fw_used) { 1306 if ((error = wpi_cache_firmware(sc)) != 0) 1307 return error; 1308 sc->fw_used = true; 1309 } 1310 1311 KASSERT(sc->fw_used); 1312 KASSERT(wpi_firmware_image != NULL); 1313 KASSERT(wpi_firmware_size > sizeof(hdr)); 1314 1315 memcpy(&hdr, wpi_firmware_image, sizeof(hdr)); 1316 1317 main_textsz = le32toh(hdr.main_textsz); 1318 main_datasz = le32toh(hdr.main_datasz); 1319 init_textsz = le32toh(hdr.init_textsz); 1320 init_datasz = le32toh(hdr.init_datasz); 1321 boot_textsz = le32toh(hdr.boot_textsz); 1322 1323 /* sanity-check firmware segments sizes */ 1324 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ || 1325 main_datasz > WPI_FW_MAIN_DATA_MAXSZ || 1326 init_textsz > WPI_FW_INIT_TEXT_MAXSZ || 1327 init_datasz > WPI_FW_INIT_DATA_MAXSZ || 1328 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ || 1329 (boot_textsz & 3) != 0) { 1330 aprint_error_dev(sc->sc_dev, "invalid firmware header\n"); 1331 error = EINVAL; 1332 goto free_firmware; 1333 } 1334 1335 /* check that all firmware segments are present */ 1336 size = sizeof (struct wpi_firmware_hdr) + main_textsz + 1337 main_datasz + init_textsz + init_datasz + boot_textsz; 1338 if (wpi_firmware_size < size) { 1339 aprint_error_dev(sc->sc_dev, 1340 "firmware file truncated: %zu bytes, expected %zu bytes\n", 1341 wpi_firmware_size, size); 1342 error = EINVAL; 1343 goto free_firmware; 1344 } 1345 1346 /* get pointers to firmware segments */ 1347 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr); 1348 main_data = main_text + main_textsz; 1349 init_text = main_data + main_datasz; 1350 init_data = init_text + init_textsz; 1351 boot_text = init_data + init_datasz; 1352 1353 /* copy initialization images into pre-allocated DMA-safe memory */ 1354 memcpy(dma->vaddr, init_data, init_datasz); 1355 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, 1356 init_textsz); 1357 1358 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 1359 1360 /* tell adapter where to find initialization images */ 1361 wpi_mem_lock(sc); 1362 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1363 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz); 1364 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1365 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 1366 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz); 1367 wpi_mem_unlock(sc); 1368 1369 /* load firmware boot code */ 1370 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) { 1371 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n"); 1372 return error; 1373 } 1374 1375 /* now press "execute" ;-) */ 1376 WPI_WRITE(sc, WPI_RESET, 0); 1377 1378 /* wait at most one second for first alive notification */ 1379 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1380 /* this isn't what was supposed to happen.. */ 1381 aprint_error_dev(sc->sc_dev, 1382 "timeout waiting for adapter to initialize\n"); 1383 } 1384 1385 /* copy runtime images into pre-allocated DMA-safe memory */ 1386 memcpy(dma->vaddr, main_data, main_datasz); 1387 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, 1388 main_textsz); 1389 1390 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 1391 1392 /* tell adapter where to find runtime images */ 1393 wpi_mem_lock(sc); 1394 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1395 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz); 1396 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1397 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 1398 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz); 1399 wpi_mem_unlock(sc); 1400 1401 /* wait at most one second for second alive notification */ 1402 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1403 /* this isn't what was supposed to happen.. */ 1404 aprint_error_dev(sc->sc_dev, 1405 "timeout waiting for adapter to initialize\n"); 1406 } 1407 1408 return error; 1409 1410 free_firmware: 1411 sc->fw_used = false; 1412 wpi_release_firmware(); 1413 return error; 1414 } 1415 1416 static void 1417 wpi_calib_timeout(void *arg) 1418 { 1419 struct wpi_softc *sc = arg; 1420 struct ieee80211com *ic = &sc->sc_ic; 1421 int temp, s; 1422 1423 /* automatic rate control triggered every 500ms */ 1424 if (ic->ic_fixed_rate == -1) { 1425 s = splnet(); 1426 if (ic->ic_opmode == IEEE80211_M_STA) 1427 wpi_iter_func(sc, ic->ic_bss); 1428 else 1429 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc); 1430 splx(s); 1431 } 1432 1433 /* update sensor data */ 1434 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 1435 1436 /* automatic power calibration every 60s */ 1437 if (++sc->calib_cnt >= 120) { 1438 wpi_power_calibration(sc, temp); 1439 sc->calib_cnt = 0; 1440 } 1441 1442 callout_schedule(&sc->calib_to, hz/2); 1443 } 1444 1445 static void 1446 wpi_iter_func(void *arg, struct ieee80211_node *ni) 1447 { 1448 struct wpi_softc *sc = arg; 1449 struct wpi_node *wn = (struct wpi_node *)ni; 1450 1451 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1452 } 1453 1454 /* 1455 * This function is called periodically (every 60 seconds) to adjust output 1456 * power to temperature changes. 1457 */ 1458 void 1459 wpi_power_calibration(struct wpi_softc *sc, int temp) 1460 { 1461 /* sanity-check read value */ 1462 if (temp < -260 || temp > 25) { 1463 /* this can't be correct, ignore */ 1464 DPRINTF(("out-of-range temperature reported: %d\n", temp)); 1465 return; 1466 } 1467 1468 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 1469 1470 /* adjust Tx power if need be */ 1471 if (abs(temp - sc->temp) <= 6) 1472 return; 1473 1474 sc->temp = temp; 1475 1476 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) { 1477 /* just warn, too bad for the automatic calibration... */ 1478 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n"); 1479 } 1480 } 1481 1482 static void 1483 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1484 struct wpi_rx_data *data) 1485 { 1486 struct ieee80211com *ic = &sc->sc_ic; 1487 struct ifnet *ifp = ic->ic_ifp; 1488 struct wpi_rx_ring *ring = &sc->rxq; 1489 struct wpi_rx_stat *stat; 1490 struct wpi_rx_head *head; 1491 struct wpi_rx_tail *tail; 1492 struct wpi_rbuf *rbuf; 1493 struct ieee80211_frame *wh; 1494 struct ieee80211_node *ni; 1495 struct mbuf *m, *mnew; 1496 int data_off, error, s; 1497 1498 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1499 BUS_DMASYNC_POSTREAD); 1500 stat = (struct wpi_rx_stat *)(desc + 1); 1501 1502 if (stat->len > WPI_STAT_MAXLEN) { 1503 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n"); 1504 if_statinc(ifp, if_ierrors); 1505 return; 1506 } 1507 1508 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len); 1509 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len)); 1510 1511 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x " 1512 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len), 1513 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1514 le64toh(tail->tstamp))); 1515 1516 /* 1517 * Discard Rx frames with bad CRC early (XXX we may want to pass them 1518 * to radiotap in monitor mode). 1519 */ 1520 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1521 DPRINTF(("rx tail flags error %x\n", 1522 le32toh(tail->flags))); 1523 if_statinc(ifp, if_ierrors); 1524 return; 1525 } 1526 1527 /* Compute where are the useful datas */ 1528 data_off = (char*)(head + 1) - mtod(data->m, char*); 1529 1530 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1531 if (mnew == NULL) { 1532 if_statinc(ifp, if_ierrors); 1533 return; 1534 } 1535 1536 rbuf = wpi_alloc_rbuf(sc); 1537 if (rbuf == NULL) { 1538 m_freem(mnew); 1539 if_statinc(ifp, if_ierrors); 1540 return; 1541 } 1542 1543 /* attach Rx buffer to mbuf */ 1544 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 1545 rbuf); 1546 mnew->m_flags |= M_EXT_RW; 1547 1548 bus_dmamap_unload(sc->sc_dmat, data->map); 1549 1550 error = bus_dmamap_load(sc->sc_dmat, data->map, 1551 mtod(mnew, void *), WPI_RBUF_SIZE, NULL, 1552 BUS_DMA_NOWAIT | BUS_DMA_READ); 1553 if (error) { 1554 device_printf(sc->sc_dev, 1555 "couldn't load rx mbuf: %d\n", error); 1556 m_freem(mnew); 1557 if_statinc(ifp, if_ierrors); 1558 1559 error = bus_dmamap_load(sc->sc_dmat, data->map, 1560 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 1561 BUS_DMA_NOWAIT | BUS_DMA_READ); 1562 if (error) 1563 panic("%s: bus_dmamap_load failed: %d\n", 1564 device_xname(sc->sc_dev), error); 1565 return; 1566 } 1567 1568 /* new mbuf loaded successfully */ 1569 m = data->m; 1570 data->m = mnew; 1571 1572 /* update Rx descriptor */ 1573 ring->desc[ring->cur] = htole32(rbuf->paddr); 1574 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1575 ring->desc_dma.size, 1576 BUS_DMASYNC_PREWRITE); 1577 1578 m->m_data = (char*)m->m_data + data_off; 1579 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1580 1581 /* finalize mbuf */ 1582 m_set_rcvif(m, ifp); 1583 1584 s = splnet(); 1585 1586 if (sc->sc_drvbpf != NULL) { 1587 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1588 1589 tap->wr_flags = 0; 1590 tap->wr_chan_freq = 1591 htole16(ic->ic_channels[head->chan].ic_freq); 1592 tap->wr_chan_flags = 1593 htole16(ic->ic_channels[head->chan].ic_flags); 1594 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1595 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1596 tap->wr_tsft = tail->tstamp; 1597 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1598 switch (head->rate) { 1599 /* CCK rates */ 1600 case 10: tap->wr_rate = 2; break; 1601 case 20: tap->wr_rate = 4; break; 1602 case 55: tap->wr_rate = 11; break; 1603 case 110: tap->wr_rate = 22; break; 1604 /* OFDM rates */ 1605 case 0xd: tap->wr_rate = 12; break; 1606 case 0xf: tap->wr_rate = 18; break; 1607 case 0x5: tap->wr_rate = 24; break; 1608 case 0x7: tap->wr_rate = 36; break; 1609 case 0x9: tap->wr_rate = 48; break; 1610 case 0xb: tap->wr_rate = 72; break; 1611 case 0x1: tap->wr_rate = 96; break; 1612 case 0x3: tap->wr_rate = 108; break; 1613 /* unknown rate: should not happen */ 1614 default: tap->wr_rate = 0; 1615 } 1616 if (le16toh(head->flags) & 0x4) 1617 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1618 1619 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 1620 } 1621 1622 /* grab a reference to the source node */ 1623 wh = mtod(m, struct ieee80211_frame *); 1624 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1625 1626 /* send the frame to the 802.11 layer */ 1627 ieee80211_input(ic, m, ni, stat->rssi, 0); 1628 1629 /* release node reference */ 1630 ieee80211_free_node(ni); 1631 1632 splx(s); 1633 } 1634 1635 static void 1636 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1637 { 1638 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1639 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1640 struct wpi_tx_data *data = &ring->data[desc->idx]; 1641 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1642 struct wpi_node *wn = (struct wpi_node *)data->ni; 1643 int s; 1644 1645 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x " 1646 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries, 1647 stat->nkill, stat->rate, le32toh(stat->duration), 1648 le32toh(stat->status))); 1649 1650 s = splnet(); 1651 1652 /* 1653 * Update rate control statistics for the node. 1654 * XXX we should not count mgmt frames since they're always sent at 1655 * the lowest available bit-rate. 1656 */ 1657 wn->amn.amn_txcnt++; 1658 if (stat->ntries > 0) { 1659 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries)); 1660 wn->amn.amn_retrycnt++; 1661 } 1662 1663 if ((le32toh(stat->status) & 0xff) != 1) 1664 if_statinc(ifp, if_oerrors); 1665 else 1666 if_statinc(ifp, if_opackets); 1667 1668 bus_dmamap_unload(sc->sc_dmat, data->map); 1669 m_freem(data->m); 1670 data->m = NULL; 1671 ieee80211_free_node(data->ni); 1672 data->ni = NULL; 1673 1674 ring->queued--; 1675 1676 sc->sc_tx_timer = 0; 1677 ifp->if_flags &= ~IFF_OACTIVE; 1678 wpi_start(ifp); /* in softint */ 1679 1680 splx(s); 1681 } 1682 1683 static void 1684 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1685 { 1686 struct wpi_tx_ring *ring = &sc->cmdq; 1687 struct wpi_tx_data *data; 1688 1689 if ((desc->qid & 7) != 4) 1690 return; /* not a command ack */ 1691 1692 data = &ring->data[desc->idx]; 1693 1694 /* if the command was mapped in a mbuf, free it */ 1695 if (data->m != NULL) { 1696 bus_dmamap_unload(sc->sc_dmat, data->map); 1697 m_freem(data->m); 1698 data->m = NULL; 1699 } 1700 1701 wakeup(&ring->cmd[desc->idx]); 1702 } 1703 1704 static void 1705 wpi_notif_intr(struct wpi_softc *sc) 1706 { 1707 struct ieee80211com *ic = &sc->sc_ic; 1708 struct ifnet *ifp = ic->ic_ifp; 1709 uint32_t hw; 1710 int s; 1711 1712 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 1713 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD); 1714 1715 hw = le32toh(sc->shared->next); 1716 while (sc->rxq.cur != hw) { 1717 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 1718 struct wpi_rx_desc *desc; 1719 1720 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1721 BUS_DMASYNC_POSTREAD); 1722 desc = mtod(data->m, struct wpi_rx_desc *); 1723 1724 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1725 "len=%d\n", desc->qid, desc->idx, desc->flags, 1726 desc->type, le32toh(desc->len))); 1727 1728 if (!(desc->qid & 0x80)) /* reply to a command */ 1729 wpi_cmd_intr(sc, desc); 1730 1731 switch (desc->type) { 1732 case WPI_RX_DONE: 1733 /* a 802.11 frame was received */ 1734 wpi_rx_intr(sc, desc, data); 1735 break; 1736 1737 case WPI_TX_DONE: 1738 /* a 802.11 frame has been transmitted */ 1739 wpi_tx_intr(sc, desc); 1740 break; 1741 1742 case WPI_UC_READY: 1743 { 1744 struct wpi_ucode_info *uc = 1745 (struct wpi_ucode_info *)(desc + 1); 1746 1747 /* the microcontroller is ready */ 1748 DPRINTF(("microcode alive notification version %x " 1749 "alive %x\n", le32toh(uc->version), 1750 le32toh(uc->valid))); 1751 1752 if (le32toh(uc->valid) != 1) { 1753 aprint_error_dev(sc->sc_dev, 1754 "microcontroller initialization failed\n"); 1755 } 1756 break; 1757 } 1758 case WPI_STATE_CHANGED: 1759 { 1760 uint32_t *status = (uint32_t *)(desc + 1); 1761 1762 /* enabled/disabled notification */ 1763 DPRINTF(("state changed to %x\n", le32toh(*status))); 1764 1765 if (le32toh(*status) & 1) { 1766 s = splnet(); 1767 /* the radio button has to be pushed */ 1768 /* wake up thread to signal powerd */ 1769 cv_signal(&sc->sc_rsw_cv); 1770 aprint_error_dev(sc->sc_dev, 1771 "Radio transmitter is off\n"); 1772 /* turn the interface down */ 1773 ifp->if_flags &= ~IFF_UP; 1774 wpi_stop_intr(ifp, 1); 1775 splx(s); 1776 return; /* no further processing */ 1777 } 1778 break; 1779 } 1780 case WPI_START_SCAN: 1781 { 1782 #if 0 1783 struct wpi_start_scan *scan = 1784 (struct wpi_start_scan *)(desc + 1); 1785 1786 DPRINTFN(2, ("scanning channel %d status %x\n", 1787 scan->chan, le32toh(scan->status))); 1788 1789 /* fix current channel */ 1790 ic->ic_curchan = &ic->ic_channels[scan->chan]; 1791 #endif 1792 break; 1793 } 1794 case WPI_STOP_SCAN: 1795 { 1796 #ifdef WPI_DEBUG 1797 struct wpi_stop_scan *scan = 1798 (struct wpi_stop_scan *)(desc + 1); 1799 #endif 1800 1801 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1802 scan->nchan, scan->status, scan->chan)); 1803 1804 s = splnet(); 1805 sc->is_scanning = false; 1806 if (ic->ic_state == IEEE80211_S_SCAN) 1807 ieee80211_next_scan(ic); 1808 splx(s); 1809 break; 1810 } 1811 } 1812 1813 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1814 } 1815 1816 /* tell the firmware what we have processed */ 1817 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1818 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1819 } 1820 1821 static int 1822 wpi_intr(void *arg) 1823 { 1824 struct wpi_softc *sc = arg; 1825 uint32_t r; 1826 1827 r = WPI_READ(sc, WPI_INTR); 1828 if (r == 0 || r == 0xffffffff) 1829 return 0; /* not for us */ 1830 1831 DPRINTFN(6, ("interrupt reg %x\n", r)); 1832 1833 /* disable interrupts */ 1834 WPI_WRITE(sc, WPI_MASK, 0); 1835 1836 softint_schedule(sc->sc_soft_ih); 1837 return 1; 1838 } 1839 1840 static void 1841 wpi_softintr(void *arg) 1842 { 1843 struct wpi_softc *sc = arg; 1844 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1845 uint32_t r; 1846 1847 r = WPI_READ(sc, WPI_INTR); 1848 if (r == 0 || r == 0xffffffff) 1849 goto out; 1850 1851 /* ack interrupts */ 1852 WPI_WRITE(sc, WPI_INTR, r); 1853 1854 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1855 /* SYSTEM FAILURE, SYSTEM FAILURE */ 1856 aprint_error_dev(sc->sc_dev, "fatal firmware error\n"); 1857 ifp->if_flags &= ~IFF_UP; 1858 wpi_stop_intr(ifp, 1); 1859 return; 1860 } 1861 1862 if (r & WPI_RX_INTR) 1863 wpi_notif_intr(sc); 1864 1865 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1866 wakeup(sc); 1867 1868 out: 1869 /* re-enable interrupts */ 1870 if (ifp->if_flags & IFF_UP) 1871 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1872 } 1873 1874 static uint8_t 1875 wpi_plcp_signal(int rate) 1876 { 1877 switch (rate) { 1878 /* CCK rates (returned values are device-dependent) */ 1879 case 2: return 10; 1880 case 4: return 20; 1881 case 11: return 55; 1882 case 22: return 110; 1883 1884 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1885 /* R1-R4, (u)ral is R4-R1 */ 1886 case 12: return 0xd; 1887 case 18: return 0xf; 1888 case 24: return 0x5; 1889 case 36: return 0x7; 1890 case 48: return 0x9; 1891 case 72: return 0xb; 1892 case 96: return 0x1; 1893 case 108: return 0x3; 1894 1895 /* unsupported rates (should not get there) */ 1896 default: return 0; 1897 } 1898 } 1899 1900 /* quickly determine if a given rate is CCK or OFDM */ 1901 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1902 1903 static int 1904 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1905 int ac) 1906 { 1907 struct ieee80211com *ic = &sc->sc_ic; 1908 struct wpi_tx_ring *ring = &sc->txq[ac]; 1909 struct wpi_tx_desc *desc; 1910 struct wpi_tx_data *data; 1911 struct wpi_tx_cmd *cmd; 1912 struct wpi_cmd_data *tx; 1913 struct ieee80211_frame *wh; 1914 struct ieee80211_key *k; 1915 const struct chanAccParams *cap; 1916 struct mbuf *mnew; 1917 int i, rate, error, hdrlen, noack = 0; 1918 1919 desc = &ring->desc[ring->cur]; 1920 data = &ring->data[ring->cur]; 1921 1922 wh = mtod(m0, struct ieee80211_frame *); 1923 1924 if (ieee80211_has_qos(wh)) { 1925 cap = &ic->ic_wme.wme_chanParams; 1926 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1927 } 1928 1929 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1930 k = ieee80211_crypto_encap(ic, ni, m0); 1931 if (k == NULL) { 1932 m_freem(m0); 1933 return ENOBUFS; 1934 } 1935 1936 /* packet header may have moved, reset our local pointer */ 1937 wh = mtod(m0, struct ieee80211_frame *); 1938 } 1939 1940 hdrlen = ieee80211_anyhdrsize(wh); 1941 1942 /* pickup a rate */ 1943 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1944 IEEE80211_FC0_TYPE_MGT) { 1945 /* mgmt frames are sent at the lowest available bit-rate */ 1946 rate = ni->ni_rates.rs_rates[0]; 1947 } else { 1948 if (ic->ic_fixed_rate != -1) { 1949 rate = ic->ic_sup_rates[ic->ic_curmode]. 1950 rs_rates[ic->ic_fixed_rate]; 1951 } else 1952 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1953 } 1954 rate &= IEEE80211_RATE_VAL; 1955 1956 if (sc->sc_drvbpf != NULL) { 1957 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1958 1959 tap->wt_flags = 0; 1960 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1961 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1962 tap->wt_rate = rate; 1963 tap->wt_hwqueue = ac; 1964 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1965 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1966 1967 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 1968 } 1969 1970 cmd = &ring->cmd[ring->cur]; 1971 cmd->code = WPI_CMD_TX_DATA; 1972 cmd->flags = 0; 1973 cmd->qid = ring->qid; 1974 cmd->idx = ring->cur; 1975 1976 tx = (struct wpi_cmd_data *)cmd->data; 1977 /* no need to zero tx, all fields are reinitialized here */ 1978 tx->flags = 0; 1979 1980 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1981 tx->flags |= htole32(WPI_TX_NEED_ACK); 1982 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) 1983 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP); 1984 1985 tx->flags |= htole32(WPI_TX_AUTO_SEQ); 1986 1987 /* retrieve destination node's id */ 1988 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST : 1989 WPI_ID_BSS; 1990 1991 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1992 IEEE80211_FC0_TYPE_MGT) { 1993 /* tell h/w to set timestamp in probe responses */ 1994 if ((wh->i_fc[0] & 1995 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1996 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1997 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1998 1999 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 2000 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) || 2001 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 2002 IEEE80211_FC0_SUBTYPE_REASSOC_REQ)) 2003 tx->timeout = htole16(3); 2004 else 2005 tx->timeout = htole16(2); 2006 } else 2007 tx->timeout = htole16(0); 2008 2009 tx->rate = wpi_plcp_signal(rate); 2010 2011 /* be very persistant at sending frames out */ 2012 tx->rts_ntries = 7; 2013 tx->data_ntries = 15; 2014 2015 tx->ofdm_mask = 0xff; 2016 tx->cck_mask = 0x0f; 2017 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2018 2019 tx->len = htole16(m0->m_pkthdr.len); 2020 2021 /* save and trim IEEE802.11 header */ 2022 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 2023 m_adj(m0, hdrlen); 2024 2025 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2026 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 2027 if (error != 0 && error != EFBIG) { 2028 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", 2029 error); 2030 m_freem(m0); 2031 return error; 2032 } 2033 if (error != 0) { 2034 /* too many fragments, linearize */ 2035 2036 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 2037 if (mnew == NULL) { 2038 m_freem(m0); 2039 return ENOMEM; 2040 } 2041 m_copy_pkthdr(mnew, m0); 2042 if (m0->m_pkthdr.len > MHLEN) { 2043 MCLGET(mnew, M_DONTWAIT); 2044 if (!(mnew->m_flags & M_EXT)) { 2045 m_freem(m0); 2046 m_freem(mnew); 2047 return ENOMEM; 2048 } 2049 } 2050 2051 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 2052 m_freem(m0); 2053 mnew->m_len = mnew->m_pkthdr.len; 2054 m0 = mnew; 2055 2056 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2057 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 2058 if (error != 0) { 2059 aprint_error_dev(sc->sc_dev, 2060 "could not map mbuf (error %d)\n", error); 2061 m_freem(m0); 2062 return error; 2063 } 2064 } 2065 2066 data->m = m0; 2067 data->ni = ni; 2068 2069 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2070 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs)); 2071 2072 /* first scatter/gather segment is used by the tx data command */ 2073 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2074 (1 + data->map->dm_nsegs) << 24); 2075 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2076 ring->cur * sizeof (struct wpi_tx_cmd)); 2077 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) + 2078 ((hdrlen + 3) & ~3)); 2079 for (i = 1; i <= data->map->dm_nsegs; i++) { 2080 desc->segs[i].addr = 2081 htole32(data->map->dm_segs[i - 1].ds_addr); 2082 desc->segs[i].len = 2083 htole32(data->map->dm_segs[i - 1].ds_len); 2084 } 2085 2086 ring->queued++; 2087 2088 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2089 data->map->dm_mapsize, 2090 BUS_DMASYNC_PREWRITE); 2091 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0, 2092 ring->cmd_dma.size, 2093 BUS_DMASYNC_PREWRITE); 2094 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2095 ring->desc_dma.size, 2096 BUS_DMASYNC_PREWRITE); 2097 2098 /* kick ring */ 2099 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2100 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2101 2102 return 0; 2103 } 2104 2105 static void 2106 wpi_start(struct ifnet *ifp) 2107 { 2108 struct wpi_softc *sc = ifp->if_softc; 2109 struct ieee80211com *ic = &sc->sc_ic; 2110 struct ieee80211_node *ni; 2111 struct ether_header *eh; 2112 struct mbuf *m0; 2113 int ac; 2114 2115 /* 2116 * net80211 may still try to send management frames even if the 2117 * IFF_RUNNING flag is not set... 2118 */ 2119 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 2120 return; 2121 2122 for (;;) { 2123 IF_DEQUEUE(&ic->ic_mgtq, m0); 2124 if (m0 != NULL) { 2125 2126 ni = M_GETCTX(m0, struct ieee80211_node *); 2127 M_CLEARCTX(m0); 2128 2129 /* management frames go into ring 0 */ 2130 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2131 if_statinc(ifp, if_oerrors); 2132 continue; 2133 } 2134 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 2135 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 2136 if_statinc(ifp, if_oerrors); 2137 break; 2138 } 2139 } else { 2140 if (ic->ic_state != IEEE80211_S_RUN) 2141 break; 2142 IFQ_POLL(&ifp->if_snd, m0); 2143 if (m0 == NULL) 2144 break; 2145 2146 if (m0->m_len < sizeof (*eh) && 2147 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) { 2148 if_statinc(ifp, if_oerrors); 2149 continue; 2150 } 2151 eh = mtod(m0, struct ether_header *); 2152 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2153 if (ni == NULL) { 2154 m_freem(m0); 2155 if_statinc(ifp, if_oerrors); 2156 continue; 2157 } 2158 2159 /* classify mbuf so we can find which tx ring to use */ 2160 if (ieee80211_classify(ic, m0, ni) != 0) { 2161 m_freem(m0); 2162 ieee80211_free_node(ni); 2163 if_statinc(ifp, if_oerrors); 2164 continue; 2165 } 2166 2167 /* no QoS encapsulation for EAPOL frames */ 2168 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 2169 M_WME_GETAC(m0) : WME_AC_BE; 2170 2171 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2172 /* there is no place left in this ring */ 2173 ifp->if_flags |= IFF_OACTIVE; 2174 break; 2175 } 2176 IFQ_DEQUEUE(&ifp->if_snd, m0); 2177 bpf_mtap(ifp, m0, BPF_D_OUT); 2178 m0 = ieee80211_encap(ic, m0, ni); 2179 if (m0 == NULL) { 2180 ieee80211_free_node(ni); 2181 if_statinc(ifp, if_oerrors); 2182 continue; 2183 } 2184 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 2185 if (wpi_tx_data(sc, m0, ni, ac) != 0) { 2186 ieee80211_free_node(ni); 2187 if_statinc(ifp, if_oerrors); 2188 break; 2189 } 2190 } 2191 2192 sc->sc_tx_timer = 5; 2193 ifp->if_timer = 1; 2194 } 2195 } 2196 2197 static void 2198 wpi_watchdog(struct ifnet *ifp) 2199 { 2200 struct wpi_softc *sc = ifp->if_softc; 2201 2202 ifp->if_timer = 0; 2203 2204 if (sc->sc_tx_timer > 0) { 2205 if (--sc->sc_tx_timer == 0) { 2206 aprint_error_dev(sc->sc_dev, "device timeout\n"); 2207 ifp->if_flags &= ~IFF_UP; 2208 wpi_stop_intr(ifp, 1); 2209 if_statinc(ifp, if_oerrors); 2210 return; 2211 } 2212 ifp->if_timer = 1; 2213 } 2214 2215 ieee80211_watchdog(&sc->sc_ic); 2216 } 2217 2218 static int 2219 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2220 { 2221 #define IS_RUNNING(ifp) \ 2222 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 2223 2224 struct wpi_softc *sc = ifp->if_softc; 2225 struct ieee80211com *ic = &sc->sc_ic; 2226 int s, error = 0; 2227 2228 s = splnet(); 2229 2230 switch (cmd) { 2231 case SIOCSIFFLAGS: 2232 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2233 break; 2234 if (ifp->if_flags & IFF_UP) { 2235 if (!(ifp->if_flags & IFF_RUNNING)) 2236 wpi_init(ifp); 2237 } else { 2238 if (ifp->if_flags & IFF_RUNNING) 2239 wpi_stop(ifp, 1); 2240 } 2241 break; 2242 2243 case SIOCADDMULTI: 2244 case SIOCDELMULTI: 2245 /* XXX no h/w multicast filter? --dyoung */ 2246 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2247 /* setup multicast filter, etc */ 2248 error = 0; 2249 } 2250 break; 2251 2252 default: 2253 error = ieee80211_ioctl(ic, cmd, data); 2254 } 2255 2256 if (error == ENETRESET) { 2257 if (IS_RUNNING(ifp) && 2258 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2259 wpi_init(ifp); 2260 error = 0; 2261 } 2262 2263 splx(s); 2264 return error; 2265 2266 #undef IS_RUNNING 2267 } 2268 2269 /* 2270 * Extract various information from EEPROM. 2271 */ 2272 static void 2273 wpi_read_eeprom(struct wpi_softc *sc) 2274 { 2275 struct ieee80211com *ic = &sc->sc_ic; 2276 char domain[4]; 2277 int i; 2278 2279 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1); 2280 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2); 2281 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2282 2283 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev), 2284 sc->type)); 2285 2286 /* read and print regulatory domain */ 2287 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4); 2288 aprint_normal_dev(sc->sc_dev, "%.4s", domain); 2289 2290 /* read and print MAC address */ 2291 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2292 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr)); 2293 2294 /* read the list of authorized channels */ 2295 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2296 wpi_read_eeprom_channels(sc, i); 2297 2298 /* read the list of power groups */ 2299 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2300 wpi_read_eeprom_group(sc, i); 2301 } 2302 2303 static void 2304 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 2305 { 2306 struct ieee80211com *ic = &sc->sc_ic; 2307 const struct wpi_chan_band *band = &wpi_bands[n]; 2308 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 2309 int chan, i; 2310 2311 wpi_read_prom_data(sc, band->addr, channels, 2312 band->nchan * sizeof (struct wpi_eeprom_chan)); 2313 2314 for (i = 0; i < band->nchan; i++) { 2315 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) 2316 continue; 2317 2318 chan = band->chan[i]; 2319 2320 if (n == 0) { /* 2GHz band */ 2321 ic->ic_channels[chan].ic_freq = 2322 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 2323 ic->ic_channels[chan].ic_flags = 2324 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 2325 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 2326 2327 } else { /* 5GHz band */ 2328 /* 2329 * Some 3945ABG adapters support channels 7, 8, 11 2330 * and 12 in the 2GHz *and* 5GHz bands. 2331 * Because of limitations in our net80211(9) stack, 2332 * we can't support these channels in 5GHz band. 2333 */ 2334 if (chan <= 14) 2335 continue; 2336 2337 ic->ic_channels[chan].ic_freq = 2338 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 2339 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 2340 } 2341 2342 /* is active scan allowed on this channel? */ 2343 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 2344 ic->ic_channels[chan].ic_flags |= 2345 IEEE80211_CHAN_PASSIVE; 2346 } 2347 2348 /* save maximum allowed power for this channel */ 2349 sc->maxpwr[chan] = channels[i].maxpwr; 2350 2351 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 2352 chan, channels[i].flags, sc->maxpwr[chan])); 2353 } 2354 } 2355 2356 static void 2357 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 2358 { 2359 struct wpi_power_group *group = &sc->groups[n]; 2360 struct wpi_eeprom_group rgroup; 2361 int i; 2362 2363 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 2364 sizeof rgroup); 2365 2366 /* save power group information */ 2367 group->chan = rgroup.chan; 2368 group->maxpwr = rgroup.maxpwr; 2369 /* temperature at which the samples were taken */ 2370 group->temp = (int16_t)le16toh(rgroup.temp); 2371 2372 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 2373 group->chan, group->maxpwr, group->temp)); 2374 2375 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 2376 group->samples[i].index = rgroup.samples[i].index; 2377 group->samples[i].power = rgroup.samples[i].power; 2378 2379 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 2380 group->samples[i].index, group->samples[i].power)); 2381 } 2382 } 2383 2384 /* 2385 * Send a command to the firmware. 2386 */ 2387 static int 2388 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2389 { 2390 struct wpi_tx_ring *ring = &sc->cmdq; 2391 struct wpi_tx_desc *desc; 2392 struct wpi_tx_cmd *cmd; 2393 struct wpi_dma_info *dma; 2394 2395 KASSERT(size <= sizeof cmd->data); 2396 2397 desc = &ring->desc[ring->cur]; 2398 cmd = &ring->cmd[ring->cur]; 2399 2400 cmd->code = code; 2401 cmd->flags = 0; 2402 cmd->qid = ring->qid; 2403 cmd->idx = ring->cur; 2404 memcpy(cmd->data, buf, size); 2405 2406 dma = &ring->cmd_dma; 2407 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 2408 2409 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2410 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2411 ring->cur * sizeof (struct wpi_tx_cmd)); 2412 desc->segs[0].len = htole32(4 + size); 2413 2414 dma = &ring->desc_dma; 2415 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE); 2416 2417 /* kick cmd ring */ 2418 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2419 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2420 2421 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz); 2422 } 2423 2424 static int 2425 wpi_wme_update(struct ieee80211com *ic) 2426 { 2427 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2428 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2429 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2430 const struct wmeParams *wmep; 2431 struct wpi_wme_setup wme; 2432 int ac; 2433 2434 /* don't override default WME values if WME is not actually enabled */ 2435 if (!(ic->ic_flags & IEEE80211_F_WME)) 2436 return 0; 2437 2438 wme.flags = 0; 2439 for (ac = 0; ac < WME_NUM_AC; ac++) { 2440 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2441 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2442 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2443 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2444 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2445 2446 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2447 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2448 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2449 } 2450 2451 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2452 #undef WPI_USEC 2453 #undef WPI_EXP2 2454 } 2455 2456 /* 2457 * Configure h/w multi-rate retries. 2458 */ 2459 static int 2460 wpi_mrr_setup(struct wpi_softc *sc) 2461 { 2462 struct ieee80211com *ic = &sc->sc_ic; 2463 struct wpi_mrr_setup mrr; 2464 int i, error; 2465 2466 /* CCK rates (not used with 802.11a) */ 2467 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2468 mrr.rates[i].flags = 0; 2469 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2470 /* fallback to the immediate lower CCK rate (if any) */ 2471 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2472 /* try one time at this rate before falling back to "next" */ 2473 mrr.rates[i].ntries = 1; 2474 } 2475 2476 /* OFDM rates (not used with 802.11b) */ 2477 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2478 mrr.rates[i].flags = 0; 2479 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2480 /* fallback to the immediate lower rate (if any) */ 2481 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2482 mrr.rates[i].next = (i == WPI_OFDM6) ? 2483 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2484 WPI_OFDM6 : WPI_CCK2) : 2485 i - 1; 2486 /* try one time at this rate before falling back to "next" */ 2487 mrr.rates[i].ntries = 1; 2488 } 2489 2490 /* setup MRR for control frames */ 2491 mrr.which = htole32(WPI_MRR_CTL); 2492 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2493 if (error != 0) { 2494 aprint_error_dev(sc->sc_dev, 2495 "could not setup MRR for control frames\n"); 2496 return error; 2497 } 2498 2499 /* setup MRR for data frames */ 2500 mrr.which = htole32(WPI_MRR_DATA); 2501 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2502 if (error != 0) { 2503 aprint_error_dev(sc->sc_dev, 2504 "could not setup MRR for data frames\n"); 2505 return error; 2506 } 2507 2508 return 0; 2509 } 2510 2511 static void 2512 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2513 { 2514 struct wpi_cmd_led led; 2515 2516 led.which = which; 2517 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2518 led.off = off; 2519 led.on = on; 2520 2521 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2522 } 2523 2524 static void 2525 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2526 { 2527 struct wpi_cmd_tsf tsf; 2528 uint64_t val, mod; 2529 2530 memset(&tsf, 0, sizeof tsf); 2531 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 2532 tsf.bintval = htole16(ni->ni_intval); 2533 tsf.lintval = htole16(10); 2534 2535 /* compute remaining time until next beacon */ 2536 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2537 mod = le64toh(tsf.tstamp) % val; 2538 tsf.binitval = htole32((uint32_t)(val - mod)); 2539 2540 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n", 2541 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod))); 2542 2543 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2544 aprint_error_dev(sc->sc_dev, "could not enable TSF\n"); 2545 } 2546 2547 /* 2548 * Update Tx power to match what is defined for channel `c'. 2549 */ 2550 static int 2551 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 2552 { 2553 struct ieee80211com *ic = &sc->sc_ic; 2554 struct wpi_power_group *group; 2555 struct wpi_cmd_txpower txpower; 2556 u_int chan; 2557 int i; 2558 2559 /* get channel number */ 2560 chan = ieee80211_chan2ieee(ic, c); 2561 2562 /* find the power group to which this channel belongs */ 2563 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2564 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 2565 if (chan <= group->chan) 2566 break; 2567 } else 2568 group = &sc->groups[0]; 2569 2570 memset(&txpower, 0, sizeof txpower); 2571 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 2572 txpower.chan = htole16(chan); 2573 2574 /* set Tx power for all OFDM and CCK rates */ 2575 for (i = 0; i <= 11 ; i++) { 2576 /* retrieve Tx power for this channel/rate combination */ 2577 int idx = wpi_get_power_index(sc, group, c, 2578 wpi_ridx_to_rate[i]); 2579 2580 txpower.rates[i].plcp = wpi_ridx_to_plcp[i]; 2581 2582 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2583 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 2584 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 2585 } else { 2586 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 2587 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 2588 } 2589 DPRINTF(("chan %d/rate %d: power index %d\n", chan, 2590 wpi_ridx_to_rate[i], idx)); 2591 } 2592 2593 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 2594 } 2595 2596 /* 2597 * Determine Tx power index for a given channel/rate combination. 2598 * This takes into account the regulatory information from EEPROM and the 2599 * current temperature. 2600 */ 2601 static int 2602 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 2603 struct ieee80211_channel *c, int rate) 2604 { 2605 /* fixed-point arithmetic division using a n-bit fractional part */ 2606 #define fdivround(a, b, n) \ 2607 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 2608 2609 /* linear interpolation */ 2610 #define interpolate(x, x1, y1, x2, y2, n) \ 2611 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 2612 2613 struct ieee80211com *ic = &sc->sc_ic; 2614 struct wpi_power_sample *sample; 2615 int pwr, idx; 2616 u_int chan; 2617 2618 /* get channel number */ 2619 chan = ieee80211_chan2ieee(ic, c); 2620 2621 /* default power is group's maximum power - 3dB */ 2622 pwr = group->maxpwr / 2; 2623 2624 /* decrease power for highest OFDM rates to reduce distortion */ 2625 switch (rate) { 2626 case 72: /* 36Mb/s */ 2627 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 2628 break; 2629 case 96: /* 48Mb/s */ 2630 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 2631 break; 2632 case 108: /* 54Mb/s */ 2633 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 2634 break; 2635 } 2636 2637 /* never exceed channel's maximum allowed Tx power */ 2638 pwr = uimin(pwr, sc->maxpwr[chan]); 2639 2640 /* retrieve power index into gain tables from samples */ 2641 for (sample = group->samples; sample < &group->samples[3]; sample++) 2642 if (pwr > sample[1].power) 2643 break; 2644 /* fixed-point linear interpolation using a 19-bit fractional part */ 2645 idx = interpolate(pwr, sample[0].power, sample[0].index, 2646 sample[1].power, sample[1].index, 19); 2647 2648 /*- 2649 * Adjust power index based on current temperature: 2650 * - if cooler than factory-calibrated: decrease output power 2651 * - if warmer than factory-calibrated: increase output power 2652 */ 2653 idx -= (sc->temp - group->temp) * 11 / 100; 2654 2655 /* decrease power for CCK rates (-5dB) */ 2656 if (!WPI_RATE_IS_OFDM(rate)) 2657 idx += 10; 2658 2659 /* keep power index in a valid range */ 2660 if (idx < 0) 2661 return 0; 2662 if (idx > WPI_MAX_PWR_INDEX) 2663 return WPI_MAX_PWR_INDEX; 2664 return idx; 2665 2666 #undef interpolate 2667 #undef fdivround 2668 } 2669 2670 /* 2671 * Build a beacon frame that the firmware will broadcast periodically in 2672 * IBSS or HostAP modes. 2673 */ 2674 static int 2675 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2676 { 2677 struct ieee80211com *ic = &sc->sc_ic; 2678 struct wpi_tx_ring *ring = &sc->cmdq; 2679 struct wpi_tx_desc *desc; 2680 struct wpi_tx_data *data; 2681 struct wpi_tx_cmd *cmd; 2682 struct wpi_cmd_beacon *bcn; 2683 struct ieee80211_beacon_offsets bo; 2684 struct mbuf *m0; 2685 int error; 2686 2687 desc = &ring->desc[ring->cur]; 2688 data = &ring->data[ring->cur]; 2689 2690 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2691 if (m0 == NULL) { 2692 aprint_error_dev(sc->sc_dev, 2693 "could not allocate beacon frame\n"); 2694 return ENOMEM; 2695 } 2696 2697 cmd = &ring->cmd[ring->cur]; 2698 cmd->code = WPI_CMD_SET_BEACON; 2699 cmd->flags = 0; 2700 cmd->qid = ring->qid; 2701 cmd->idx = ring->cur; 2702 2703 bcn = (struct wpi_cmd_beacon *)cmd->data; 2704 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2705 bcn->id = WPI_ID_BROADCAST; 2706 bcn->ofdm_mask = 0xff; 2707 bcn->cck_mask = 0x0f; 2708 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2709 bcn->len = htole16(m0->m_pkthdr.len); 2710 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2711 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2712 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2713 2714 /* save and trim IEEE802.11 header */ 2715 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh); 2716 m_adj(m0, sizeof (struct ieee80211_frame)); 2717 2718 /* assume beacon frame is contiguous */ 2719 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2720 BUS_DMA_READ | BUS_DMA_NOWAIT); 2721 if (error != 0) { 2722 aprint_error_dev(sc->sc_dev, "could not map beacon\n"); 2723 m_freem(m0); 2724 return error; 2725 } 2726 2727 data->m = m0; 2728 2729 /* first scatter/gather segment is used by the beacon command */ 2730 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2731 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2732 ring->cur * sizeof (struct wpi_tx_cmd)); 2733 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2734 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr); 2735 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len); 2736 2737 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2738 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2739 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2740 BUS_DMASYNC_PREWRITE); 2741 2742 /* kick cmd ring */ 2743 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2744 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2745 2746 return 0; 2747 } 2748 2749 static int 2750 wpi_auth(struct wpi_softc *sc) 2751 { 2752 struct ieee80211com *ic = &sc->sc_ic; 2753 struct ieee80211_node *ni = ic->ic_bss; 2754 struct wpi_node_info node; 2755 int error; 2756 2757 /* update adapter's configuration */ 2758 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2759 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2760 sc->config.flags = htole32(WPI_CONFIG_TSF); 2761 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2762 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2763 WPI_CONFIG_24GHZ); 2764 } 2765 switch (ic->ic_curmode) { 2766 case IEEE80211_MODE_11A: 2767 sc->config.cck_mask = 0; 2768 sc->config.ofdm_mask = 0x15; 2769 break; 2770 case IEEE80211_MODE_11B: 2771 sc->config.cck_mask = 0x03; 2772 sc->config.ofdm_mask = 0; 2773 break; 2774 default: /* assume 802.11b/g */ 2775 sc->config.cck_mask = 0x0f; 2776 sc->config.ofdm_mask = 0x15; 2777 } 2778 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2779 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2780 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2781 sizeof (struct wpi_config), 1); 2782 if (error != 0) { 2783 aprint_error_dev(sc->sc_dev, "could not configure\n"); 2784 return error; 2785 } 2786 2787 /* configuration has changed, set Tx power accordingly */ 2788 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2789 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 2790 return error; 2791 } 2792 2793 /* add default node */ 2794 memset(&node, 0, sizeof node); 2795 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2796 node.id = WPI_ID_BSS; 2797 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2798 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2799 node.action = htole32(WPI_ACTION_SET_RATE); 2800 node.antenna = WPI_ANTENNA_BOTH; 2801 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2802 if (error != 0) { 2803 aprint_error_dev(sc->sc_dev, "could not add BSS node\n"); 2804 return error; 2805 } 2806 2807 return 0; 2808 } 2809 2810 /* 2811 * Send a scan request to the firmware. Since this command is huge, we map it 2812 * into a mbuf instead of using the pre-allocated set of commands. 2813 */ 2814 static int 2815 wpi_scan(struct wpi_softc *sc) 2816 { 2817 struct ieee80211com *ic = &sc->sc_ic; 2818 struct wpi_tx_ring *ring = &sc->cmdq; 2819 struct wpi_tx_desc *desc; 2820 struct wpi_tx_data *data; 2821 struct wpi_tx_cmd *cmd; 2822 struct wpi_scan_hdr *hdr; 2823 struct wpi_scan_chan *chan; 2824 struct ieee80211_frame *wh; 2825 struct ieee80211_rateset *rs; 2826 struct ieee80211_channel *c; 2827 uint8_t *frm; 2828 int pktlen, error, nrates; 2829 2830 if (ic->ic_curchan == NULL) 2831 return EIO; 2832 2833 desc = &ring->desc[ring->cur]; 2834 data = &ring->data[ring->cur]; 2835 2836 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 2837 if (data->m == NULL) { 2838 aprint_error_dev(sc->sc_dev, 2839 "could not allocate mbuf for scan command\n"); 2840 return ENOMEM; 2841 } 2842 MCLGET(data->m, M_DONTWAIT); 2843 if (!(data->m->m_flags & M_EXT)) { 2844 m_freem(data->m); 2845 data->m = NULL; 2846 aprint_error_dev(sc->sc_dev, 2847 "could not allocate mbuf for scan command\n"); 2848 return ENOMEM; 2849 } 2850 2851 cmd = mtod(data->m, struct wpi_tx_cmd *); 2852 cmd->code = WPI_CMD_SCAN; 2853 cmd->flags = 0; 2854 cmd->qid = ring->qid; 2855 cmd->idx = ring->cur; 2856 2857 hdr = (struct wpi_scan_hdr *)cmd->data; 2858 memset(hdr, 0, sizeof (struct wpi_scan_hdr)); 2859 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ); 2860 hdr->cmd.id = WPI_ID_BROADCAST; 2861 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE); 2862 /* 2863 * Move to the next channel if no packets are received within 5 msecs 2864 * after sending the probe request (this helps to reduce the duration 2865 * of active scans). 2866 */ 2867 hdr->quiet = htole16(5); /* timeout in milliseconds */ 2868 hdr->plcp_threshold = htole16(1); /* min # of packets */ 2869 2870 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) { 2871 hdr->crc_threshold = htole16(1); 2872 /* send probe requests at 6Mbps */ 2873 hdr->cmd.rate = wpi_plcp_signal(12); 2874 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 2875 } else { 2876 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2877 /* send probe requests at 1Mbps */ 2878 hdr->cmd.rate = wpi_plcp_signal(2); 2879 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 2880 } 2881 2882 /* for directed scans, firmware inserts the essid IE itself */ 2883 if (ic->ic_des_esslen != 0) { 2884 hdr->essid[0].id = IEEE80211_ELEMID_SSID; 2885 hdr->essid[0].len = ic->ic_des_esslen; 2886 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 2887 } 2888 2889 /* 2890 * Build a probe request frame. Most of the following code is a 2891 * copy & paste of what is done in net80211. 2892 */ 2893 wh = (struct ieee80211_frame *)(hdr + 1); 2894 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2895 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2896 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2897 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2898 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2899 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2900 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2901 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2902 2903 frm = (uint8_t *)(wh + 1); 2904 2905 /* add empty essid IE (firmware generates it for directed scans) */ 2906 *frm++ = IEEE80211_ELEMID_SSID; 2907 *frm++ = 0; 2908 2909 /* add supported rates IE */ 2910 *frm++ = IEEE80211_ELEMID_RATES; 2911 nrates = rs->rs_nrates; 2912 if (nrates > IEEE80211_RATE_SIZE) 2913 nrates = IEEE80211_RATE_SIZE; 2914 *frm++ = nrates; 2915 memcpy(frm, rs->rs_rates, nrates); 2916 frm += nrates; 2917 2918 /* add supported xrates IE */ 2919 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2920 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2921 *frm++ = IEEE80211_ELEMID_XRATES; 2922 *frm++ = nrates; 2923 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2924 frm += nrates; 2925 } 2926 2927 /* setup length of probe request */ 2928 hdr->cmd.len = htole16(frm - (uint8_t *)wh); 2929 2930 chan = (struct wpi_scan_chan *)frm; 2931 c = ic->ic_curchan; 2932 2933 chan->chan = ieee80211_chan2ieee(ic, c); 2934 chan->flags = 0; 2935 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2936 chan->flags |= WPI_CHAN_ACTIVE; 2937 if (ic->ic_des_esslen != 0) 2938 chan->flags |= WPI_CHAN_DIRECT; 2939 } 2940 chan->dsp_gain = 0x6e; 2941 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2942 chan->rf_gain = 0x3b; 2943 chan->active = htole16(10); 2944 chan->passive = htole16(110); 2945 } else { 2946 chan->rf_gain = 0x28; 2947 chan->active = htole16(20); 2948 chan->passive = htole16(120); 2949 } 2950 hdr->nchan++; 2951 chan++; 2952 2953 frm += sizeof (struct wpi_scan_chan); 2954 2955 hdr->len = htole16(frm - (uint8_t *)hdr); 2956 pktlen = frm - (uint8_t *)cmd; 2957 2958 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL, 2959 BUS_DMA_NOWAIT); 2960 if (error != 0) { 2961 aprint_error_dev(sc->sc_dev, "could not map scan command\n"); 2962 m_freem(data->m); 2963 data->m = NULL; 2964 return error; 2965 } 2966 2967 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2968 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr); 2969 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len); 2970 2971 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 2972 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2973 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2974 BUS_DMASYNC_PREWRITE); 2975 2976 /* kick cmd ring */ 2977 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2978 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2979 2980 return 0; /* will be notified async. of failure/success */ 2981 } 2982 2983 static int 2984 wpi_config(struct wpi_softc *sc) 2985 { 2986 struct ieee80211com *ic = &sc->sc_ic; 2987 struct ifnet *ifp = ic->ic_ifp; 2988 struct wpi_power power; 2989 struct wpi_bluetooth bluetooth; 2990 struct wpi_node_info node; 2991 int error; 2992 2993 memset(&power, 0, sizeof power); 2994 power.flags = htole32(WPI_POWER_CAM | 0x8); 2995 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2996 if (error != 0) { 2997 aprint_error_dev(sc->sc_dev, "could not set power mode\n"); 2998 return error; 2999 } 3000 3001 /* configure bluetooth coexistence */ 3002 memset(&bluetooth, 0, sizeof bluetooth); 3003 bluetooth.flags = 3; 3004 bluetooth.lead = 0xaa; 3005 bluetooth.kill = 1; 3006 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 3007 0); 3008 if (error != 0) { 3009 aprint_error_dev(sc->sc_dev, 3010 "could not configure bluetooth coexistence\n"); 3011 return error; 3012 } 3013 3014 /* configure adapter */ 3015 memset(&sc->config, 0, sizeof (struct wpi_config)); 3016 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 3017 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 3018 /* set default channel */ 3019 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 3020 sc->config.flags = htole32(WPI_CONFIG_TSF); 3021 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 3022 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 3023 WPI_CONFIG_24GHZ); 3024 } 3025 sc->config.filter = 0; 3026 switch (ic->ic_opmode) { 3027 case IEEE80211_M_STA: 3028 sc->config.mode = WPI_MODE_STA; 3029 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 3030 break; 3031 case IEEE80211_M_IBSS: 3032 case IEEE80211_M_AHDEMO: 3033 sc->config.mode = WPI_MODE_IBSS; 3034 break; 3035 case IEEE80211_M_HOSTAP: 3036 sc->config.mode = WPI_MODE_HOSTAP; 3037 break; 3038 case IEEE80211_M_MONITOR: 3039 sc->config.mode = WPI_MODE_MONITOR; 3040 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 3041 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 3042 break; 3043 } 3044 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 3045 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 3046 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 3047 sizeof (struct wpi_config), 0); 3048 if (error != 0) { 3049 aprint_error_dev(sc->sc_dev, "configure command failed\n"); 3050 return error; 3051 } 3052 3053 /* configuration has changed, set Tx power accordingly */ 3054 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 3055 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 3056 return error; 3057 } 3058 3059 /* add broadcast node */ 3060 memset(&node, 0, sizeof node); 3061 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr); 3062 node.id = WPI_ID_BROADCAST; 3063 node.rate = wpi_plcp_signal(2); 3064 node.action = htole32(WPI_ACTION_SET_RATE); 3065 node.antenna = WPI_ANTENNA_BOTH; 3066 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 3067 if (error != 0) { 3068 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n"); 3069 return error; 3070 } 3071 3072 if ((error = wpi_mrr_setup(sc)) != 0) { 3073 aprint_error_dev(sc->sc_dev, "could not setup MRR\n"); 3074 return error; 3075 } 3076 3077 return 0; 3078 } 3079 3080 static void 3081 wpi_stop_master(struct wpi_softc *sc) 3082 { 3083 uint32_t tmp; 3084 int ntries; 3085 3086 tmp = WPI_READ(sc, WPI_RESET); 3087 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER); 3088 3089 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3090 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 3091 return; /* already asleep */ 3092 3093 for (ntries = 0; ntries < 100; ntries++) { 3094 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 3095 break; 3096 DELAY(10); 3097 } 3098 if (ntries == 100) { 3099 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); 3100 } 3101 } 3102 3103 static int 3104 wpi_power_up(struct wpi_softc *sc) 3105 { 3106 uint32_t tmp; 3107 int ntries; 3108 3109 wpi_mem_lock(sc); 3110 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 3111 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 3112 wpi_mem_unlock(sc); 3113 3114 for (ntries = 0; ntries < 5000; ntries++) { 3115 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 3116 break; 3117 DELAY(10); 3118 } 3119 if (ntries == 5000) { 3120 aprint_error_dev(sc->sc_dev, 3121 "timeout waiting for NIC to power up\n"); 3122 return ETIMEDOUT; 3123 } 3124 return 0; 3125 } 3126 3127 static int 3128 wpi_reset(struct wpi_softc *sc) 3129 { 3130 uint32_t tmp; 3131 int ntries; 3132 3133 /* clear any pending interrupts */ 3134 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3135 3136 tmp = WPI_READ(sc, WPI_PLL_CTL); 3137 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 3138 3139 tmp = WPI_READ(sc, WPI_CHICKEN); 3140 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 3141 3142 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3143 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 3144 3145 /* wait for clock stabilization */ 3146 for (ntries = 0; ntries < 1000; ntries++) { 3147 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 3148 break; 3149 DELAY(10); 3150 } 3151 if (ntries == 1000) { 3152 aprint_error_dev(sc->sc_dev, 3153 "timeout waiting for clock stabilization\n"); 3154 return ETIMEDOUT; 3155 } 3156 3157 /* initialize EEPROM */ 3158 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 3159 if ((tmp & WPI_EEPROM_VERSION) == 0) { 3160 aprint_error_dev(sc->sc_dev, "EEPROM not found\n"); 3161 return EIO; 3162 } 3163 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3164 3165 return 0; 3166 } 3167 3168 static void 3169 wpi_hw_config(struct wpi_softc *sc) 3170 { 3171 uint32_t rev, hw; 3172 3173 /* voodoo from the reference driver */ 3174 hw = WPI_READ(sc, WPI_HWCONFIG); 3175 3176 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 3177 rev = PCI_REVISION(rev); 3178 if ((rev & 0xc0) == 0x40) 3179 hw |= WPI_HW_ALM_MB; 3180 else if (!(rev & 0x80)) 3181 hw |= WPI_HW_ALM_MM; 3182 3183 if (sc->cap == 0x80) 3184 hw |= WPI_HW_SKU_MRC; 3185 3186 hw &= ~WPI_HW_REV_D; 3187 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 3188 hw |= WPI_HW_REV_D; 3189 3190 if (sc->type > 1) 3191 hw |= WPI_HW_TYPE_B; 3192 3193 DPRINTF(("setting h/w config %x\n", hw)); 3194 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3195 } 3196 3197 static int 3198 wpi_init(struct ifnet *ifp) 3199 { 3200 struct wpi_softc *sc = ifp->if_softc; 3201 struct ieee80211com *ic = &sc->sc_ic; 3202 uint32_t tmp; 3203 int qid, ntries, error; 3204 3205 wpi_stop(ifp, 1); 3206 (void)wpi_reset(sc); 3207 3208 wpi_mem_lock(sc); 3209 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3210 DELAY(20); 3211 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3212 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3213 wpi_mem_unlock(sc); 3214 3215 (void)wpi_power_up(sc); 3216 wpi_hw_config(sc); 3217 3218 /* init Rx ring */ 3219 wpi_mem_lock(sc); 3220 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3221 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3222 offsetof(struct wpi_shared, next)); 3223 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3224 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3225 wpi_mem_unlock(sc); 3226 3227 /* init Tx rings */ 3228 wpi_mem_lock(sc); 3229 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3230 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3231 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3232 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3233 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3234 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3235 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3236 3237 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3238 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3239 3240 for (qid = 0; qid < 6; qid++) { 3241 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3242 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3243 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3244 } 3245 wpi_mem_unlock(sc); 3246 3247 /* clear "radio off" and "disable command" bits (reversed logic) */ 3248 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3249 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3250 3251 /* clear any pending interrupts */ 3252 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3253 /* enable interrupts */ 3254 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3255 3256 /* not sure why/if this is necessary... */ 3257 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3258 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3259 3260 if ((error = wpi_load_firmware(sc)) != 0) 3261 /* wpi_load_firmware prints error messages for us. */ 3262 goto fail1; 3263 3264 /* Check the status of the radio switch */ 3265 mutex_enter(&sc->sc_rsw_mtx); 3266 if (wpi_getrfkill(sc)) { 3267 mutex_exit(&sc->sc_rsw_mtx); 3268 aprint_error_dev(sc->sc_dev, 3269 "radio is disabled by hardware switch\n"); 3270 ifp->if_flags &= ~IFF_UP; 3271 error = EBUSY; 3272 goto fail1; 3273 } 3274 sc->sc_rsw_suspend = false; 3275 cv_broadcast(&sc->sc_rsw_cv); 3276 while (sc->sc_rsw_suspend) 3277 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx); 3278 mutex_exit(&sc->sc_rsw_mtx); 3279 3280 /* wait for thermal sensors to calibrate */ 3281 for (ntries = 0; ntries < 1000; ntries++) { 3282 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3283 break; 3284 DELAY(10); 3285 } 3286 if (ntries == 1000) { 3287 aprint_error_dev(sc->sc_dev, 3288 "timeout waiting for thermal sensors calibration\n"); 3289 error = ETIMEDOUT; 3290 goto fail1; 3291 } 3292 DPRINTF(("temperature %d\n", sc->temp)); 3293 3294 if ((error = wpi_config(sc)) != 0) { 3295 aprint_error_dev(sc->sc_dev, "could not configure device\n"); 3296 goto fail1; 3297 } 3298 3299 ifp->if_flags &= ~IFF_OACTIVE; 3300 ifp->if_flags |= IFF_RUNNING; 3301 3302 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3303 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 3304 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3305 } 3306 else 3307 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3308 3309 return 0; 3310 3311 fail1: wpi_stop(ifp, 1); 3312 return error; 3313 } 3314 3315 static void 3316 wpi_stop1(struct ifnet *ifp, int disable, bool fromintr) 3317 { 3318 struct wpi_softc *sc = ifp->if_softc; 3319 struct ieee80211com *ic = &sc->sc_ic; 3320 uint32_t tmp; 3321 int ac; 3322 3323 ifp->if_timer = sc->sc_tx_timer = 0; 3324 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3325 3326 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3327 3328 if (fromintr) { 3329 sc->sc_rsw_suspend = true; // XXX: without mutex or wait 3330 } else { 3331 wpi_rsw_suspend(sc); 3332 } 3333 3334 /* disable interrupts */ 3335 WPI_WRITE(sc, WPI_MASK, 0); 3336 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3337 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3338 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3339 3340 wpi_mem_lock(sc); 3341 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3342 wpi_mem_unlock(sc); 3343 3344 /* reset all Tx rings */ 3345 for (ac = 0; ac < 4; ac++) 3346 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3347 wpi_reset_tx_ring(sc, &sc->cmdq); 3348 3349 /* reset Rx ring */ 3350 wpi_reset_rx_ring(sc, &sc->rxq); 3351 3352 wpi_mem_lock(sc); 3353 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3354 wpi_mem_unlock(sc); 3355 3356 DELAY(5); 3357 3358 wpi_stop_master(sc); 3359 3360 tmp = WPI_READ(sc, WPI_RESET); 3361 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3362 } 3363 3364 static void 3365 wpi_stop(struct ifnet *ifp, int disable) 3366 { 3367 wpi_stop1(ifp, disable, false); 3368 } 3369 3370 static void 3371 wpi_stop_intr(struct ifnet *ifp, int disable) 3372 { 3373 wpi_stop1(ifp, disable, true); 3374 } 3375 3376 static bool 3377 wpi_resume(device_t dv, const pmf_qual_t *qual) 3378 { 3379 struct wpi_softc *sc = device_private(dv); 3380 3381 (void)wpi_reset(sc); 3382 3383 return true; 3384 } 3385 3386 /* 3387 * Return whether or not the radio is enabled in hardware 3388 * (i.e. the rfkill switch is "off"). 3389 */ 3390 static int 3391 wpi_getrfkill(struct wpi_softc *sc) 3392 { 3393 uint32_t tmp; 3394 3395 wpi_mem_lock(sc); 3396 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL); 3397 wpi_mem_unlock(sc); 3398 3399 KASSERT(mutex_owned(&sc->sc_rsw_mtx)); 3400 if (tmp & 0x01) { 3401 /* switch is on */ 3402 if (sc->sc_rsw_status != WPI_RSW_ON) { 3403 sc->sc_rsw_status = WPI_RSW_ON; 3404 sysmon_pswitch_event(&sc->sc_rsw, 3405 PSWITCH_EVENT_PRESSED); 3406 } 3407 } else { 3408 /* switch is off */ 3409 if (sc->sc_rsw_status != WPI_RSW_OFF) { 3410 sc->sc_rsw_status = WPI_RSW_OFF; 3411 sysmon_pswitch_event(&sc->sc_rsw, 3412 PSWITCH_EVENT_RELEASED); 3413 } 3414 } 3415 3416 return !(tmp & 0x01); 3417 } 3418 3419 static int 3420 wpi_sysctl_radio(SYSCTLFN_ARGS) 3421 { 3422 struct sysctlnode node; 3423 struct wpi_softc *sc; 3424 int val, error; 3425 3426 node = *rnode; 3427 sc = (struct wpi_softc *)node.sysctl_data; 3428 3429 mutex_enter(&sc->sc_rsw_mtx); 3430 val = !wpi_getrfkill(sc); 3431 mutex_exit(&sc->sc_rsw_mtx); 3432 3433 node.sysctl_data = &val; 3434 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3435 3436 if (error || newp == NULL) 3437 return error; 3438 3439 return 0; 3440 } 3441 3442 static void 3443 wpi_sysctlattach(struct wpi_softc *sc) 3444 { 3445 int rc; 3446 const struct sysctlnode *rnode; 3447 const struct sysctlnode *cnode; 3448 3449 struct sysctllog **clog = &sc->sc_sysctllog; 3450 3451 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 3452 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev), 3453 SYSCTL_DESCR("wpi controls and statistics"), 3454 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) 3455 goto err; 3456 3457 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 3458 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio", 3459 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"), 3460 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0) 3461 goto err; 3462 3463 #ifdef WPI_DEBUG 3464 /* control debugging printfs */ 3465 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 3466 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 3467 "debug", SYSCTL_DESCR("Enable debugging output"), 3468 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) 3469 goto err; 3470 #endif 3471 3472 return; 3473 err: 3474 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 3475 } 3476 3477 static void 3478 wpi_rsw_suspend(struct wpi_softc *sc) 3479 { 3480 /* suspend rfkill test thread */ 3481 mutex_enter(&sc->sc_rsw_mtx); 3482 sc->sc_rsw_suspend = true; 3483 cv_broadcast(&sc->sc_rsw_cv); 3484 while (!sc->sc_rsw_suspended) 3485 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx); 3486 mutex_exit(&sc->sc_rsw_mtx); 3487 } 3488 3489 static void 3490 wpi_rsw_thread(void *arg) 3491 { 3492 struct wpi_softc *sc = (struct wpi_softc *)arg; 3493 3494 mutex_enter(&sc->sc_rsw_mtx); 3495 for (;;) { 3496 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz); 3497 if (sc->sc_dying) { 3498 sc->sc_rsw_lwp = NULL; 3499 cv_broadcast(&sc->sc_rsw_cv); 3500 mutex_exit(&sc->sc_rsw_mtx); 3501 kthread_exit(0); 3502 } 3503 if (sc->sc_rsw_suspend) { 3504 sc->sc_rsw_suspended = true; 3505 cv_broadcast(&sc->sc_rsw_cv); 3506 while (sc->sc_rsw_suspend || sc->sc_dying) 3507 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx); 3508 sc->sc_rsw_suspended = false; 3509 cv_broadcast(&sc->sc_rsw_cv); 3510 } 3511 wpi_getrfkill(sc); 3512 } 3513 } 3514