xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision 2e2322c9c07009df921d11b1268f8506affbb8ba)
1 /*	$NetBSD: if_wpi.c,v 1.75 2016/12/08 01:12:01 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.75 2016/12/08 01:12:01 ozaki-r Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51 
52 #include <dev/sysmon/sysmonvar.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70 
71 #include <dev/firmload.h>
72 
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75 
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82 
83 static int	wpi_match(device_t, cfdata_t, void *);
84 static void	wpi_attach(device_t, device_t, void *);
85 static int	wpi_detach(device_t , int);
86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
89 static int	wpi_alloc_shared(struct wpi_softc *);
90 static void	wpi_free_shared(struct wpi_softc *);
91 static int	wpi_alloc_fwmem(struct wpi_softc *);
92 static void	wpi_free_fwmem(struct wpi_softc *);
93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int	wpi_alloc_rpool(struct wpi_softc *);
96 static void	wpi_free_rpool(struct wpi_softc *);
97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 		    int, int);
102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void	wpi_newassoc(struct ieee80211_node *, int);
106 static int	wpi_media_change(struct ifnet *);
107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void	wpi_mem_lock(struct wpi_softc *);
109 static void	wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 		    const uint32_t *, int);
114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
116 static int	wpi_cache_firmware(struct wpi_softc *);
117 static void	wpi_release_firmware(void);
118 static int	wpi_load_firmware(struct wpi_softc *);
119 static void	wpi_calib_timeout(void *);
120 static void	wpi_iter_func(void *, struct ieee80211_node *);
121 static void	wpi_power_calibration(struct wpi_softc *, int);
122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 		    struct wpi_rx_data *);
124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void	wpi_notif_intr(struct wpi_softc *);
127 static int	wpi_intr(void *);
128 static void	wpi_read_eeprom(struct wpi_softc *);
129 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
130 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
131 static uint8_t	wpi_plcp_signal(int);
132 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
133 		    struct ieee80211_node *, int);
134 static void	wpi_start(struct ifnet *);
135 static void	wpi_watchdog(struct ifnet *);
136 static int	wpi_ioctl(struct ifnet *, u_long, void *);
137 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
138 static int	wpi_wme_update(struct ieee80211com *);
139 static int	wpi_mrr_setup(struct wpi_softc *);
140 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
141 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
142 static int	wpi_set_txpower(struct wpi_softc *,
143 		    struct ieee80211_channel *, int);
144 static int	wpi_get_power_index(struct wpi_softc *,
145 		    struct wpi_power_group *, struct ieee80211_channel *, int);
146 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
147 static int	wpi_auth(struct wpi_softc *);
148 static int	wpi_scan(struct wpi_softc *);
149 static int	wpi_config(struct wpi_softc *);
150 static void	wpi_stop_master(struct wpi_softc *);
151 static int	wpi_power_up(struct wpi_softc *);
152 static int	wpi_reset(struct wpi_softc *);
153 static void	wpi_hw_config(struct wpi_softc *);
154 static int	wpi_init(struct ifnet *);
155 static void	wpi_stop(struct ifnet *, int);
156 static bool	wpi_resume(device_t, const pmf_qual_t *);
157 static int	wpi_getrfkill(struct wpi_softc *);
158 static void	wpi_sysctlattach(struct wpi_softc *);
159 static void	wpi_rsw_thread(void *);
160 
161 #ifdef WPI_DEBUG
162 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
163 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
164 int wpi_debug = 1;
165 #else
166 #define DPRINTF(x)
167 #define DPRINTFN(n, x)
168 #endif
169 
170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
171 	wpi_detach, NULL);
172 
173 static int
174 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
175 {
176 	struct pci_attach_args *pa = aux;
177 
178 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
179 		return 0;
180 
181 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
182 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
183 		return 1;
184 
185 	return 0;
186 }
187 
188 /* Base Address Register */
189 #define WPI_PCI_BAR0	0x10
190 
191 static int
192 wpi_attach_once(void)
193 {
194 
195 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
196 	return 0;
197 }
198 
199 static void
200 wpi_attach(device_t parent __unused, device_t self, void *aux)
201 {
202 	struct wpi_softc *sc = device_private(self);
203 	struct ieee80211com *ic = &sc->sc_ic;
204 	struct ifnet *ifp = &sc->sc_ec.ec_if;
205 	struct pci_attach_args *pa = aux;
206 	const char *intrstr;
207 	bus_space_tag_t memt;
208 	bus_space_handle_t memh;
209 	pci_intr_handle_t ih;
210 	pcireg_t data;
211 	int ac, error;
212 	char intrbuf[PCI_INTRSTR_LEN];
213 
214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 	sc->fw_used = false;
216 
217 	sc->sc_dev = self;
218 	sc->sc_pct = pa->pa_pc;
219 	sc->sc_pcitag = pa->pa_tag;
220 
221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 	sc->sc_rsw.smpsw_name = device_xname(self);
223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 	error = sysmon_pswitch_register(&sc->sc_rsw);
225 	if (error) {
226 		aprint_error_dev(self,
227 		    "unable to register radio switch with sysmon\n");
228 		return;
229 	}
230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
232 	if (kthread_create(PRI_NONE, 0, NULL,
233 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
234 		aprint_error_dev(self, "couldn't create switch thread\n");
235 	}
236 
237 	callout_init(&sc->calib_to, 0);
238 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
239 
240 	pci_aprint_devinfo(pa, NULL);
241 
242 	/* enable bus-mastering */
243 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
244 	data |= PCI_COMMAND_MASTER_ENABLE;
245 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
246 
247 	/* map the register window */
248 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
249 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
250 	if (error != 0) {
251 		aprint_error_dev(self, "could not map memory space\n");
252 		return;
253 	}
254 
255 	sc->sc_st = memt;
256 	sc->sc_sh = memh;
257 	sc->sc_dmat = pa->pa_dmat;
258 
259 	if (pci_intr_map(pa, &ih) != 0) {
260 		aprint_error_dev(self, "could not map interrupt\n");
261 		return;
262 	}
263 
264 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
265 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
266 	if (sc->sc_ih == NULL) {
267 		aprint_error_dev(self, "could not establish interrupt");
268 		if (intrstr != NULL)
269 			aprint_error(" at %s", intrstr);
270 		aprint_error("\n");
271 		return;
272 	}
273 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
274 
275 	/*
276 	 * Put adapter into a known state.
277 	 */
278 	if ((error = wpi_reset(sc)) != 0) {
279 		aprint_error_dev(self, "could not reset adapter\n");
280 		return;
281 	}
282 
283 	/*
284 	 * Allocate DMA memory for firmware transfers.
285 	 */
286 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
287 		aprint_error_dev(self, "could not allocate firmware memory\n");
288 		return;
289 	}
290 
291 	/*
292 	 * Allocate shared page and Tx/Rx rings.
293 	 */
294 	if ((error = wpi_alloc_shared(sc)) != 0) {
295 		aprint_error_dev(self, "could not allocate shared area\n");
296 		goto fail1;
297 	}
298 
299 	if ((error = wpi_alloc_rpool(sc)) != 0) {
300 		aprint_error_dev(self, "could not allocate Rx buffers\n");
301 		goto fail2;
302 	}
303 
304 	for (ac = 0; ac < 4; ac++) {
305 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
306 		    ac);
307 		if (error != 0) {
308 			aprint_error_dev(self,
309 			    "could not allocate Tx ring %d\n", ac);
310 			goto fail3;
311 		}
312 	}
313 
314 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
315 	if (error != 0) {
316 		aprint_error_dev(self, "could not allocate command ring\n");
317 		goto fail3;
318 	}
319 
320 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
321 	if (error != 0) {
322 		aprint_error_dev(self, "could not allocate Rx ring\n");
323 		goto fail4;
324 	}
325 
326 	ic->ic_ifp = ifp;
327 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
328 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
329 	ic->ic_state = IEEE80211_S_INIT;
330 
331 	/* set device capabilities */
332 	ic->ic_caps =
333 	    IEEE80211_C_WPA |		/* 802.11i */
334 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
335 	    IEEE80211_C_TXPMGT |	/* tx power management */
336 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
337 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
338 	    IEEE80211_C_WME;		/* 802.11e */
339 
340 	/* read supported channels and MAC address from EEPROM */
341 	wpi_read_eeprom(sc);
342 
343 	/* set supported .11a, .11b and .11g rates */
344 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
345 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
346 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
347 
348 	/* IBSS channel undefined for now */
349 	ic->ic_ibss_chan = &ic->ic_channels[0];
350 
351 	ifp->if_softc = sc;
352 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
353 	ifp->if_init = wpi_init;
354 	ifp->if_stop = wpi_stop;
355 	ifp->if_ioctl = wpi_ioctl;
356 	ifp->if_start = wpi_start;
357 	ifp->if_watchdog = wpi_watchdog;
358 	IFQ_SET_READY(&ifp->if_snd);
359 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
360 
361 	if_attach(ifp);
362 	if_deferred_start_init(ifp, NULL);
363 	ieee80211_ifattach(ic);
364 	/* override default methods */
365 	ic->ic_node_alloc = wpi_node_alloc;
366 	ic->ic_newassoc = wpi_newassoc;
367 	ic->ic_wme.wme_update = wpi_wme_update;
368 
369 	/* override state transition machine */
370 	sc->sc_newstate = ic->ic_newstate;
371 	ic->ic_newstate = wpi_newstate;
372 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
373 
374 	sc->amrr.amrr_min_success_threshold =  1;
375 	sc->amrr.amrr_max_success_threshold = 15;
376 
377 	wpi_sysctlattach(sc);
378 
379 	if (pmf_device_register(self, NULL, wpi_resume))
380 		pmf_class_network_register(self, ifp);
381 	else
382 		aprint_error_dev(self, "couldn't establish power handler\n");
383 
384 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
385 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
386 	    &sc->sc_drvbpf);
387 
388 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
389 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
390 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
391 
392 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
393 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
394 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
395 
396 	ieee80211_announce(ic);
397 
398 	return;
399 
400 	/* free allocated memory if something failed during attachment */
401 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
402 fail3:	while (--ac >= 0)
403 		wpi_free_tx_ring(sc, &sc->txq[ac]);
404 	wpi_free_rpool(sc);
405 fail2:	wpi_free_shared(sc);
406 fail1:	wpi_free_fwmem(sc);
407 }
408 
409 static int
410 wpi_detach(device_t self, int flags __unused)
411 {
412 	struct wpi_softc *sc = device_private(self);
413 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
414 	int ac;
415 
416 	wpi_stop(ifp, 1);
417 
418 	if (ifp != NULL)
419 		bpf_detach(ifp);
420 	ieee80211_ifdetach(&sc->sc_ic);
421 	if (ifp != NULL)
422 		if_detach(ifp);
423 
424 	for (ac = 0; ac < 4; ac++)
425 		wpi_free_tx_ring(sc, &sc->txq[ac]);
426 	wpi_free_tx_ring(sc, &sc->cmdq);
427 	wpi_free_rx_ring(sc, &sc->rxq);
428 	wpi_free_rpool(sc);
429 	wpi_free_shared(sc);
430 
431 	if (sc->sc_ih != NULL) {
432 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
433 		sc->sc_ih = NULL;
434 	}
435 	mutex_enter(&sc->sc_rsw_mtx);
436 	sc->sc_dying = 1;
437 	cv_signal(&sc->sc_rsw_cv);
438 	while (sc->sc_rsw_lwp != NULL)
439 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
440 	mutex_exit(&sc->sc_rsw_mtx);
441 	sysmon_pswitch_unregister(&sc->sc_rsw);
442 
443 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
444 
445 	if (sc->fw_used) {
446 		sc->fw_used = false;
447 		wpi_release_firmware();
448 	}
449 	cv_destroy(&sc->sc_rsw_cv);
450 	mutex_destroy(&sc->sc_rsw_mtx);
451 	return 0;
452 }
453 
454 static int
455 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
456     bus_size_t size, bus_size_t alignment, int flags)
457 {
458 	int nsegs, error;
459 
460 	dma->tag = tag;
461 	dma->size = size;
462 
463 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
464 	if (error != 0)
465 		goto fail;
466 
467 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
468 	    flags);
469 	if (error != 0)
470 		goto fail;
471 
472 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
473 	if (error != 0)
474 		goto fail;
475 
476 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
477 	if (error != 0)
478 		goto fail;
479 
480 	memset(dma->vaddr, 0, size);
481 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
482 
483 	dma->paddr = dma->map->dm_segs[0].ds_addr;
484 	if (kvap != NULL)
485 		*kvap = dma->vaddr;
486 
487 	return 0;
488 
489 fail:	wpi_dma_contig_free(dma);
490 	return error;
491 }
492 
493 static void
494 wpi_dma_contig_free(struct wpi_dma_info *dma)
495 {
496 	if (dma->map != NULL) {
497 		if (dma->vaddr != NULL) {
498 			bus_dmamap_unload(dma->tag, dma->map);
499 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
500 			bus_dmamem_free(dma->tag, &dma->seg, 1);
501 			dma->vaddr = NULL;
502 		}
503 		bus_dmamap_destroy(dma->tag, dma->map);
504 		dma->map = NULL;
505 	}
506 }
507 
508 /*
509  * Allocate a shared page between host and NIC.
510  */
511 static int
512 wpi_alloc_shared(struct wpi_softc *sc)
513 {
514 	int error;
515 
516 	/* must be aligned on a 4K-page boundary */
517 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
518 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
519 	    BUS_DMA_NOWAIT);
520 	if (error != 0)
521 		aprint_error_dev(sc->sc_dev,
522 		    "could not allocate shared area DMA memory\n");
523 
524 	return error;
525 }
526 
527 static void
528 wpi_free_shared(struct wpi_softc *sc)
529 {
530 	wpi_dma_contig_free(&sc->shared_dma);
531 }
532 
533 /*
534  * Allocate DMA-safe memory for firmware transfer.
535  */
536 static int
537 wpi_alloc_fwmem(struct wpi_softc *sc)
538 {
539 	int error;
540 
541 	/* allocate enough contiguous space to store text and data */
542 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
543 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
544 	    BUS_DMA_NOWAIT);
545 
546 	if (error != 0)
547 		aprint_error_dev(sc->sc_dev,
548 		    "could not allocate firmware transfer area DMA memory\n");
549 	return error;
550 }
551 
552 static void
553 wpi_free_fwmem(struct wpi_softc *sc)
554 {
555 	wpi_dma_contig_free(&sc->fw_dma);
556 }
557 
558 static struct wpi_rbuf *
559 wpi_alloc_rbuf(struct wpi_softc *sc)
560 {
561 	struct wpi_rbuf *rbuf;
562 
563 	mutex_enter(&sc->rxq.freelist_mtx);
564 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
565 	if (rbuf != NULL) {
566 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
567 	}
568 	mutex_exit(&sc->rxq.freelist_mtx);
569 
570 	return rbuf;
571 }
572 
573 /*
574  * This is called automatically by the network stack when the mbuf to which our
575  * Rx buffer is attached is freed.
576  */
577 static void
578 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
579 {
580 	struct wpi_rbuf *rbuf = arg;
581 	struct wpi_softc *sc = rbuf->sc;
582 
583 	/* put the buffer back in the free list */
584 
585 	mutex_enter(&sc->rxq.freelist_mtx);
586 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
587 	mutex_exit(&sc->rxq.freelist_mtx);
588 
589 	if (__predict_true(m != NULL))
590 		pool_cache_put(mb_cache, m);
591 }
592 
593 static int
594 wpi_alloc_rpool(struct wpi_softc *sc)
595 {
596 	struct wpi_rx_ring *ring = &sc->rxq;
597 	int i, error;
598 
599 	/* allocate a big chunk of DMA'able memory.. */
600 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
601 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
602 	if (error != 0) {
603 		aprint_normal_dev(sc->sc_dev,
604 		    "could not allocate Rx buffers DMA memory\n");
605 		return error;
606 	}
607 
608 	/* ..and split it into 3KB chunks */
609 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
610 	SLIST_INIT(&ring->freelist);
611 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
612 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
613 
614 		rbuf->sc = sc;	/* backpointer for callbacks */
615 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
616 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
617 
618 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
619 	}
620 
621 	return 0;
622 }
623 
624 static void
625 wpi_free_rpool(struct wpi_softc *sc)
626 {
627 	wpi_dma_contig_free(&sc->rxq.buf_dma);
628 }
629 
630 static int
631 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
632 {
633 	bus_size_t size;
634 	int i, error;
635 
636 	ring->cur = 0;
637 
638 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
639 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
640 	    (void **)&ring->desc, size,
641 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
642 	if (error != 0) {
643 		aprint_error_dev(sc->sc_dev,
644 		    "could not allocate rx ring DMA memory\n");
645 		goto fail;
646 	}
647 
648 	/*
649 	 * Setup Rx buffers.
650 	 */
651 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
652 		struct wpi_rx_data *data = &ring->data[i];
653 		struct wpi_rbuf *rbuf;
654 
655 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
656 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
657 		if (error) {
658 			aprint_error_dev(sc->sc_dev,
659 			    "could not allocate rx dma map\n");
660 			goto fail;
661 		}
662 
663 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
664 		if (data->m == NULL) {
665 			aprint_error_dev(sc->sc_dev,
666 			    "could not allocate rx mbuf\n");
667 			error = ENOMEM;
668 			goto fail;
669 		}
670 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
671 			m_freem(data->m);
672 			data->m = NULL;
673 			aprint_error_dev(sc->sc_dev,
674 			    "could not allocate rx cluster\n");
675 			error = ENOMEM;
676 			goto fail;
677 		}
678 		/* attach Rx buffer to mbuf */
679 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
680 		    rbuf);
681 		data->m->m_flags |= M_EXT_RW;
682 
683 		error = bus_dmamap_load(sc->sc_dmat, data->map,
684 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
685 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
686 		if (error) {
687 			aprint_error_dev(sc->sc_dev,
688 			    "could not load mbuf: %d\n", error);
689 			goto fail;
690 		}
691 
692 		ring->desc[i] = htole32(rbuf->paddr);
693 	}
694 
695 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
696 	    BUS_DMASYNC_PREWRITE);
697 
698 	return 0;
699 
700 fail:	wpi_free_rx_ring(sc, ring);
701 	return error;
702 }
703 
704 static void
705 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
706 {
707 	int ntries;
708 
709 	wpi_mem_lock(sc);
710 
711 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
712 	for (ntries = 0; ntries < 100; ntries++) {
713 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
714 			break;
715 		DELAY(10);
716 	}
717 #ifdef WPI_DEBUG
718 	if (ntries == 100 && wpi_debug > 0)
719 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
720 #endif
721 	wpi_mem_unlock(sc);
722 
723 	ring->cur = 0;
724 }
725 
726 static void
727 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
728 {
729 	int i;
730 
731 	wpi_dma_contig_free(&ring->desc_dma);
732 
733 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
734 		if (ring->data[i].m != NULL) {
735 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
736 			m_freem(ring->data[i].m);
737 		}
738 		if (ring->data[i].map != NULL) {
739 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
740 		}
741 	}
742 }
743 
744 static int
745 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
746     int qid)
747 {
748 	int i, error;
749 
750 	ring->qid = qid;
751 	ring->count = count;
752 	ring->queued = 0;
753 	ring->cur = 0;
754 
755 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
756 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
757 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
758 	if (error != 0) {
759 		aprint_error_dev(sc->sc_dev,
760 		    "could not allocate tx ring DMA memory\n");
761 		goto fail;
762 	}
763 
764 	/* update shared page with ring's base address */
765 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
766 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
767 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
768 
769 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
770 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
771 	    BUS_DMA_NOWAIT);
772 	if (error != 0) {
773 		aprint_error_dev(sc->sc_dev,
774 		    "could not allocate tx cmd DMA memory\n");
775 		goto fail;
776 	}
777 
778 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
779 	    M_NOWAIT | M_ZERO);
780 	if (ring->data == NULL) {
781 		aprint_error_dev(sc->sc_dev,
782 		    "could not allocate tx data slots\n");
783 		goto fail;
784 	}
785 
786 	for (i = 0; i < count; i++) {
787 		struct wpi_tx_data *data = &ring->data[i];
788 
789 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
790 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
791 		    &data->map);
792 		if (error != 0) {
793 			aprint_error_dev(sc->sc_dev,
794 			    "could not create tx buf DMA map\n");
795 			goto fail;
796 		}
797 	}
798 
799 	return 0;
800 
801 fail:	wpi_free_tx_ring(sc, ring);
802 	return error;
803 }
804 
805 static void
806 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
807 {
808 	int i, ntries;
809 
810 	wpi_mem_lock(sc);
811 
812 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
813 	for (ntries = 0; ntries < 100; ntries++) {
814 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
815 			break;
816 		DELAY(10);
817 	}
818 #ifdef WPI_DEBUG
819 	if (ntries == 100 && wpi_debug > 0) {
820 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
821 		    ring->qid);
822 	}
823 #endif
824 	wpi_mem_unlock(sc);
825 
826 	for (i = 0; i < ring->count; i++) {
827 		struct wpi_tx_data *data = &ring->data[i];
828 
829 		if (data->m != NULL) {
830 			bus_dmamap_unload(sc->sc_dmat, data->map);
831 			m_freem(data->m);
832 			data->m = NULL;
833 		}
834 	}
835 
836 	ring->queued = 0;
837 	ring->cur = 0;
838 }
839 
840 static void
841 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
842 {
843 	int i;
844 
845 	wpi_dma_contig_free(&ring->desc_dma);
846 	wpi_dma_contig_free(&ring->cmd_dma);
847 
848 	if (ring->data != NULL) {
849 		for (i = 0; i < ring->count; i++) {
850 			struct wpi_tx_data *data = &ring->data[i];
851 
852 			if (data->m != NULL) {
853 				bus_dmamap_unload(sc->sc_dmat, data->map);
854 				m_freem(data->m);
855 			}
856 		}
857 		free(ring->data, M_DEVBUF);
858 	}
859 }
860 
861 /*ARGUSED*/
862 static struct ieee80211_node *
863 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
864 {
865 	struct wpi_node *wn;
866 
867 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
868 
869 	return (struct ieee80211_node *)wn;
870 }
871 
872 static void
873 wpi_newassoc(struct ieee80211_node *ni, int isnew)
874 {
875 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
876 	int i;
877 
878 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
879 
880 	/* set rate to some reasonable initial value */
881 	for (i = ni->ni_rates.rs_nrates - 1;
882 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
883 	     i--);
884 	ni->ni_txrate = i;
885 }
886 
887 static int
888 wpi_media_change(struct ifnet *ifp)
889 {
890 	int error;
891 
892 	error = ieee80211_media_change(ifp);
893 	if (error != ENETRESET)
894 		return error;
895 
896 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
897 		wpi_init(ifp);
898 
899 	return 0;
900 }
901 
902 static int
903 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
904 {
905 	struct ifnet *ifp = ic->ic_ifp;
906 	struct wpi_softc *sc = ifp->if_softc;
907 	struct ieee80211_node *ni;
908 	enum ieee80211_state ostate = ic->ic_state;
909 	int error;
910 
911 	callout_stop(&sc->calib_to);
912 
913 	switch (nstate) {
914 	case IEEE80211_S_SCAN:
915 
916 		if (sc->is_scanning)
917 			break;
918 
919 		sc->is_scanning = true;
920 
921 		if (ostate != IEEE80211_S_SCAN) {
922 			/* make the link LED blink while we're scanning */
923 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
924 		}
925 
926 		if ((error = wpi_scan(sc)) != 0) {
927 			aprint_error_dev(sc->sc_dev,
928 			    "could not initiate scan\n");
929 			return error;
930 		}
931 		break;
932 
933 	case IEEE80211_S_ASSOC:
934 		if (ic->ic_state != IEEE80211_S_RUN)
935 			break;
936 		/* FALLTHROUGH */
937 	case IEEE80211_S_AUTH:
938 		/* reset state to handle reassociations correctly */
939 		sc->config.associd = 0;
940 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
941 
942 		if ((error = wpi_auth(sc)) != 0) {
943 			aprint_error_dev(sc->sc_dev,
944 			    "could not send authentication request\n");
945 			return error;
946 		}
947 		break;
948 
949 	case IEEE80211_S_RUN:
950 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
951 			/* link LED blinks while monitoring */
952 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
953 			break;
954 		}
955 		ni = ic->ic_bss;
956 
957 		if (ic->ic_opmode != IEEE80211_M_STA) {
958 			(void) wpi_auth(sc);    /* XXX */
959 			wpi_setup_beacon(sc, ni);
960 		}
961 
962 		wpi_enable_tsf(sc, ni);
963 
964 		/* update adapter's configuration */
965 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
966 		/* short preamble/slot time are negotiated when associating */
967 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
968 		    WPI_CONFIG_SHSLOT);
969 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
970 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
971 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
972 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
973 		sc->config.filter |= htole32(WPI_FILTER_BSS);
974 		if (ic->ic_opmode != IEEE80211_M_STA)
975 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
976 
977 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
978 
979 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
980 		    sc->config.flags));
981 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
982 		    sizeof (struct wpi_config), 1);
983 		if (error != 0) {
984 			aprint_error_dev(sc->sc_dev,
985 			    "could not update configuration\n");
986 			return error;
987 		}
988 
989 		/* configuration has changed, set Tx power accordingly */
990 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
991 			aprint_error_dev(sc->sc_dev,
992 			    "could not set Tx power\n");
993 			return error;
994 		}
995 
996 		if (ic->ic_opmode == IEEE80211_M_STA) {
997 			/* fake a join to init the tx rate */
998 			wpi_newassoc(ni, 1);
999 		}
1000 
1001 		/* start periodic calibration timer */
1002 		sc->calib_cnt = 0;
1003 		callout_schedule(&sc->calib_to, hz/2);
1004 
1005 		/* link LED always on while associated */
1006 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1007 		break;
1008 
1009 	case IEEE80211_S_INIT:
1010 		sc->is_scanning = false;
1011 		break;
1012 	}
1013 
1014 	return sc->sc_newstate(ic, nstate, arg);
1015 }
1016 
1017 /*
1018  * Grab exclusive access to NIC memory.
1019  */
1020 static void
1021 wpi_mem_lock(struct wpi_softc *sc)
1022 {
1023 	uint32_t tmp;
1024 	int ntries;
1025 
1026 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1027 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1028 
1029 	/* spin until we actually get the lock */
1030 	for (ntries = 0; ntries < 1000; ntries++) {
1031 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1032 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1033 			break;
1034 		DELAY(10);
1035 	}
1036 	if (ntries == 1000)
1037 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1038 }
1039 
1040 /*
1041  * Release lock on NIC memory.
1042  */
1043 static void
1044 wpi_mem_unlock(struct wpi_softc *sc)
1045 {
1046 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1047 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1048 }
1049 
1050 static uint32_t
1051 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1052 {
1053 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1054 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1055 }
1056 
1057 static void
1058 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1059 {
1060 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1061 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1062 }
1063 
1064 static void
1065 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1066     const uint32_t *data, int wlen)
1067 {
1068 	for (; wlen > 0; wlen--, data++, addr += 4)
1069 		wpi_mem_write(sc, addr, *data);
1070 }
1071 
1072 /*
1073  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1074  * instead of using the traditional bit-bang method.
1075  */
1076 static int
1077 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1078 {
1079 	uint8_t *out = data;
1080 	uint32_t val;
1081 	int ntries;
1082 
1083 	wpi_mem_lock(sc);
1084 	for (; len > 0; len -= 2, addr++) {
1085 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1086 
1087 		for (ntries = 0; ntries < 10; ntries++) {
1088 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1089 			    WPI_EEPROM_READY)
1090 				break;
1091 			DELAY(5);
1092 		}
1093 		if (ntries == 10) {
1094 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1095 			return ETIMEDOUT;
1096 		}
1097 		*out++ = val >> 16;
1098 		if (len > 1)
1099 			*out++ = val >> 24;
1100 	}
1101 	wpi_mem_unlock(sc);
1102 
1103 	return 0;
1104 }
1105 
1106 /*
1107  * The firmware boot code is small and is intended to be copied directly into
1108  * the NIC internal memory.
1109  */
1110 int
1111 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1112 {
1113 	int ntries;
1114 
1115 	size /= sizeof (uint32_t);
1116 
1117 	wpi_mem_lock(sc);
1118 
1119 	/* copy microcode image into NIC memory */
1120 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1121 	    (const uint32_t *)ucode, size);
1122 
1123 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1124 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1125 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1126 
1127 	/* run microcode */
1128 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1129 
1130 	/* wait for transfer to complete */
1131 	for (ntries = 0; ntries < 1000; ntries++) {
1132 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1133 			break;
1134 		DELAY(10);
1135 	}
1136 	if (ntries == 1000) {
1137 		wpi_mem_unlock(sc);
1138 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1139 		return ETIMEDOUT;
1140 	}
1141 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1142 
1143 	wpi_mem_unlock(sc);
1144 
1145 	return 0;
1146 }
1147 
1148 static int
1149 wpi_cache_firmware(struct wpi_softc *sc)
1150 {
1151 	const char *const fwname = wpi_firmware_name;
1152 	firmware_handle_t fw;
1153 	int error;
1154 
1155 	/* sc is used here only to report error messages.  */
1156 
1157 	mutex_enter(&wpi_firmware_mutex);
1158 
1159 	if (wpi_firmware_users == SIZE_MAX) {
1160 		mutex_exit(&wpi_firmware_mutex);
1161 		return ENFILE;	/* Too many of something in the system...  */
1162 	}
1163 	if (wpi_firmware_users++) {
1164 		KASSERT(wpi_firmware_image != NULL);
1165 		KASSERT(wpi_firmware_size > 0);
1166 		mutex_exit(&wpi_firmware_mutex);
1167 		return 0;	/* Already good to go.  */
1168 	}
1169 
1170 	KASSERT(wpi_firmware_image == NULL);
1171 	KASSERT(wpi_firmware_size == 0);
1172 
1173 	/* load firmware image from disk */
1174 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1175 		aprint_error_dev(sc->sc_dev,
1176 		    "could not open firmware file %s: %d\n", fwname, error);
1177 		goto fail0;
1178 	}
1179 
1180 	wpi_firmware_size = firmware_get_size(fw);
1181 
1182 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1183 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1184 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1185 	    WPI_FW_BOOT_TEXT_MAXSZ) {
1186 		aprint_error_dev(sc->sc_dev,
1187 		    "firmware file %s too large: %zu bytes\n",
1188 		    fwname, wpi_firmware_size);
1189 		error = EFBIG;
1190 		goto fail1;
1191 	}
1192 
1193 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1194 		aprint_error_dev(sc->sc_dev,
1195 		    "firmware file %s too small: %zu bytes\n",
1196 		    fwname, wpi_firmware_size);
1197 		error = EINVAL;
1198 		goto fail1;
1199 	}
1200 
1201 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1202 	if (wpi_firmware_image == NULL) {
1203 		aprint_error_dev(sc->sc_dev,
1204 		    "not enough memory for firmware file %s\n", fwname);
1205 		error = ENOMEM;
1206 		goto fail1;
1207 	}
1208 
1209 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1210 	if (error != 0) {
1211 		aprint_error_dev(sc->sc_dev,
1212 		    "error reading firmware file %s: %d\n", fwname, error);
1213 		goto fail2;
1214 	}
1215 
1216 	/* Success!  */
1217 	firmware_close(fw);
1218 	mutex_exit(&wpi_firmware_mutex);
1219 	return 0;
1220 
1221 fail2:
1222 	firmware_free(wpi_firmware_image, wpi_firmware_size);
1223 	wpi_firmware_image = NULL;
1224 fail1:
1225 	wpi_firmware_size = 0;
1226 	firmware_close(fw);
1227 fail0:
1228 	KASSERT(wpi_firmware_users == 1);
1229 	wpi_firmware_users = 0;
1230 	KASSERT(wpi_firmware_image == NULL);
1231 	KASSERT(wpi_firmware_size == 0);
1232 
1233 	mutex_exit(&wpi_firmware_mutex);
1234 	return error;
1235 }
1236 
1237 static void
1238 wpi_release_firmware(void)
1239 {
1240 
1241 	mutex_enter(&wpi_firmware_mutex);
1242 
1243 	KASSERT(wpi_firmware_users > 0);
1244 	KASSERT(wpi_firmware_image != NULL);
1245 	KASSERT(wpi_firmware_size != 0);
1246 
1247 	if (--wpi_firmware_users == 0) {
1248 		firmware_free(wpi_firmware_image, wpi_firmware_size);
1249 		wpi_firmware_image = NULL;
1250 		wpi_firmware_size = 0;
1251 	}
1252 
1253 	mutex_exit(&wpi_firmware_mutex);
1254 }
1255 
1256 static int
1257 wpi_load_firmware(struct wpi_softc *sc)
1258 {
1259 	struct wpi_dma_info *dma = &sc->fw_dma;
1260 	struct wpi_firmware_hdr hdr;
1261 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1262 	const uint8_t *boot_text;
1263 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1264 	uint32_t boot_textsz;
1265 	size_t size;
1266 	int error;
1267 
1268 	if (!sc->fw_used) {
1269 		if ((error = wpi_cache_firmware(sc)) != 0)
1270 			return error;
1271 		sc->fw_used = true;
1272 	}
1273 
1274 	KASSERT(sc->fw_used);
1275 	KASSERT(wpi_firmware_image != NULL);
1276 	KASSERT(wpi_firmware_size > sizeof(hdr));
1277 
1278 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1279 
1280 	main_textsz = le32toh(hdr.main_textsz);
1281 	main_datasz = le32toh(hdr.main_datasz);
1282 	init_textsz = le32toh(hdr.init_textsz);
1283 	init_datasz = le32toh(hdr.init_datasz);
1284 	boot_textsz = le32toh(hdr.boot_textsz);
1285 
1286 	/* sanity-check firmware segments sizes */
1287 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1288 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1289 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1290 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1291 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1292 	    (boot_textsz & 3) != 0) {
1293 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1294 		error = EINVAL;
1295 		goto free_firmware;
1296 	}
1297 
1298 	/* check that all firmware segments are present */
1299 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1300 	    main_datasz + init_textsz + init_datasz + boot_textsz;
1301 	if (wpi_firmware_size < size) {
1302 		aprint_error_dev(sc->sc_dev,
1303 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1304 		    wpi_firmware_size, size);
1305 		error = EINVAL;
1306 		goto free_firmware;
1307 	}
1308 
1309 	/* get pointers to firmware segments */
1310 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1311 	main_data = main_text + main_textsz;
1312 	init_text = main_data + main_datasz;
1313 	init_data = init_text + init_textsz;
1314 	boot_text = init_data + init_datasz;
1315 
1316 	/* copy initialization images into pre-allocated DMA-safe memory */
1317 	memcpy(dma->vaddr, init_data, init_datasz);
1318 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1319 	    init_textsz);
1320 
1321 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1322 
1323 	/* tell adapter where to find initialization images */
1324 	wpi_mem_lock(sc);
1325 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1326 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1327 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1328 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1329 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1330 	wpi_mem_unlock(sc);
1331 
1332 	/* load firmware boot code */
1333 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1334 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1335 		return error;
1336 	}
1337 
1338 	/* now press "execute" ;-) */
1339 	WPI_WRITE(sc, WPI_RESET, 0);
1340 
1341 	/* wait at most one second for first alive notification */
1342 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1343 		/* this isn't what was supposed to happen.. */
1344 		aprint_error_dev(sc->sc_dev,
1345 		    "timeout waiting for adapter to initialize\n");
1346 	}
1347 
1348 	/* copy runtime images into pre-allocated DMA-safe memory */
1349 	memcpy(dma->vaddr, main_data, main_datasz);
1350 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1351 	    main_textsz);
1352 
1353 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1354 
1355 	/* tell adapter where to find runtime images */
1356 	wpi_mem_lock(sc);
1357 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1358 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1359 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1360 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1361 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1362 	wpi_mem_unlock(sc);
1363 
1364 	/* wait at most one second for second alive notification */
1365 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1366 		/* this isn't what was supposed to happen.. */
1367 		aprint_error_dev(sc->sc_dev,
1368 		    "timeout waiting for adapter to initialize\n");
1369 	}
1370 
1371 	return error;
1372 
1373 free_firmware:
1374 	sc->fw_used = false;
1375 	wpi_release_firmware();
1376 	return error;
1377 }
1378 
1379 static void
1380 wpi_calib_timeout(void *arg)
1381 {
1382 	struct wpi_softc *sc = arg;
1383 	struct ieee80211com *ic = &sc->sc_ic;
1384 	int temp, s;
1385 
1386 	/* automatic rate control triggered every 500ms */
1387 	if (ic->ic_fixed_rate == -1) {
1388 		s = splnet();
1389 		if (ic->ic_opmode == IEEE80211_M_STA)
1390 			wpi_iter_func(sc, ic->ic_bss);
1391 		else
1392 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1393 		splx(s);
1394 	}
1395 
1396 	/* update sensor data */
1397 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1398 
1399 	/* automatic power calibration every 60s */
1400 	if (++sc->calib_cnt >= 120) {
1401 		wpi_power_calibration(sc, temp);
1402 		sc->calib_cnt = 0;
1403 	}
1404 
1405 	callout_schedule(&sc->calib_to, hz/2);
1406 }
1407 
1408 static void
1409 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1410 {
1411 	struct wpi_softc *sc = arg;
1412 	struct wpi_node *wn = (struct wpi_node *)ni;
1413 
1414 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1415 }
1416 
1417 /*
1418  * This function is called periodically (every 60 seconds) to adjust output
1419  * power to temperature changes.
1420  */
1421 void
1422 wpi_power_calibration(struct wpi_softc *sc, int temp)
1423 {
1424 	/* sanity-check read value */
1425 	if (temp < -260 || temp > 25) {
1426 		/* this can't be correct, ignore */
1427 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1428 		return;
1429 	}
1430 
1431 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1432 
1433 	/* adjust Tx power if need be */
1434 	if (abs(temp - sc->temp) <= 6)
1435 		return;
1436 
1437 	sc->temp = temp;
1438 
1439 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1440 		/* just warn, too bad for the automatic calibration... */
1441 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1442 	}
1443 }
1444 
1445 static void
1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447     struct wpi_rx_data *data)
1448 {
1449 	struct ieee80211com *ic = &sc->sc_ic;
1450 	struct ifnet *ifp = ic->ic_ifp;
1451 	struct wpi_rx_ring *ring = &sc->rxq;
1452 	struct wpi_rx_stat *stat;
1453 	struct wpi_rx_head *head;
1454 	struct wpi_rx_tail *tail;
1455 	struct wpi_rbuf *rbuf;
1456 	struct ieee80211_frame *wh;
1457 	struct ieee80211_node *ni;
1458 	struct mbuf *m, *mnew;
1459 	int data_off, error;
1460 
1461 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1462 	    BUS_DMASYNC_POSTREAD);
1463 	stat = (struct wpi_rx_stat *)(desc + 1);
1464 
1465 	if (stat->len > WPI_STAT_MAXLEN) {
1466 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1467 		ifp->if_ierrors++;
1468 		return;
1469 	}
1470 
1471 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1472 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1473 
1474 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1475 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1476 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1477 	    le64toh(tail->tstamp)));
1478 
1479 	/*
1480 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1481 	 * to radiotap in monitor mode).
1482 	 */
1483 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1484 		DPRINTF(("rx tail flags error %x\n",
1485 		    le32toh(tail->flags)));
1486 		ifp->if_ierrors++;
1487 		return;
1488 	}
1489 
1490 	/* Compute where are the useful datas */
1491 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1492 
1493 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1494 	if (mnew == NULL) {
1495 		ifp->if_ierrors++;
1496 		return;
1497 	}
1498 
1499 	rbuf = wpi_alloc_rbuf(sc);
1500 	if (rbuf == NULL) {
1501 		m_freem(mnew);
1502 		ifp->if_ierrors++;
1503 		return;
1504 	}
1505 
1506 	/* attach Rx buffer to mbuf */
1507 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1508 		rbuf);
1509 	mnew->m_flags |= M_EXT_RW;
1510 
1511 	bus_dmamap_unload(sc->sc_dmat, data->map);
1512 
1513 	error = bus_dmamap_load(sc->sc_dmat, data->map,
1514 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1515 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1516 	if (error) {
1517 		device_printf(sc->sc_dev,
1518 		    "couldn't load rx mbuf: %d\n", error);
1519 		m_freem(mnew);
1520 		ifp->if_ierrors++;
1521 
1522 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1523 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1524 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1525 		if (error)
1526 			panic("%s: bus_dmamap_load failed: %d\n",
1527 			    device_xname(sc->sc_dev), error);
1528 		return;
1529 	}
1530 
1531 	/* new mbuf loaded successfully */
1532 	m = data->m;
1533 	data->m = mnew;
1534 
1535 	/* update Rx descriptor */
1536 	ring->desc[ring->cur] = htole32(rbuf->paddr);
1537 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1538 	    ring->desc_dma.size,
1539 	    BUS_DMASYNC_PREWRITE);
1540 
1541 	m->m_data = (char*)m->m_data + data_off;
1542 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1543 
1544 	/* finalize mbuf */
1545 	m_set_rcvif(m, ifp);
1546 
1547 	if (sc->sc_drvbpf != NULL) {
1548 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1549 
1550 		tap->wr_flags = 0;
1551 		tap->wr_chan_freq =
1552 		    htole16(ic->ic_channels[head->chan].ic_freq);
1553 		tap->wr_chan_flags =
1554 		    htole16(ic->ic_channels[head->chan].ic_flags);
1555 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1556 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1557 		tap->wr_tsft = tail->tstamp;
1558 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1559 		switch (head->rate) {
1560 		/* CCK rates */
1561 		case  10: tap->wr_rate =   2; break;
1562 		case  20: tap->wr_rate =   4; break;
1563 		case  55: tap->wr_rate =  11; break;
1564 		case 110: tap->wr_rate =  22; break;
1565 		/* OFDM rates */
1566 		case 0xd: tap->wr_rate =  12; break;
1567 		case 0xf: tap->wr_rate =  18; break;
1568 		case 0x5: tap->wr_rate =  24; break;
1569 		case 0x7: tap->wr_rate =  36; break;
1570 		case 0x9: tap->wr_rate =  48; break;
1571 		case 0xb: tap->wr_rate =  72; break;
1572 		case 0x1: tap->wr_rate =  96; break;
1573 		case 0x3: tap->wr_rate = 108; break;
1574 		/* unknown rate: should not happen */
1575 		default:  tap->wr_rate =   0;
1576 		}
1577 		if (le16toh(head->flags) & 0x4)
1578 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1579 
1580 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1581 	}
1582 
1583 	/* grab a reference to the source node */
1584 	wh = mtod(m, struct ieee80211_frame *);
1585 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1586 
1587 	/* send the frame to the 802.11 layer */
1588 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1589 
1590 	/* release node reference */
1591 	ieee80211_free_node(ni);
1592 }
1593 
1594 static void
1595 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1596 {
1597 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1598 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1599 	struct wpi_tx_data *data = &ring->data[desc->idx];
1600 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1601 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1602 
1603 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1604 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1605 	    stat->nkill, stat->rate, le32toh(stat->duration),
1606 	    le32toh(stat->status)));
1607 
1608 	/*
1609 	 * Update rate control statistics for the node.
1610 	 * XXX we should not count mgmt frames since they're always sent at
1611 	 * the lowest available bit-rate.
1612 	 */
1613 	wn->amn.amn_txcnt++;
1614 	if (stat->ntries > 0) {
1615 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1616 		wn->amn.amn_retrycnt++;
1617 	}
1618 
1619 	if ((le32toh(stat->status) & 0xff) != 1)
1620 		ifp->if_oerrors++;
1621 	else
1622 		ifp->if_opackets++;
1623 
1624 	bus_dmamap_unload(sc->sc_dmat, data->map);
1625 	m_freem(data->m);
1626 	data->m = NULL;
1627 	ieee80211_free_node(data->ni);
1628 	data->ni = NULL;
1629 
1630 	ring->queued--;
1631 
1632 	sc->sc_tx_timer = 0;
1633 	ifp->if_flags &= ~IFF_OACTIVE;
1634 	if_schedule_deferred_start(ifp);
1635 }
1636 
1637 static void
1638 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1639 {
1640 	struct wpi_tx_ring *ring = &sc->cmdq;
1641 	struct wpi_tx_data *data;
1642 
1643 	if ((desc->qid & 7) != 4)
1644 		return;	/* not a command ack */
1645 
1646 	data = &ring->data[desc->idx];
1647 
1648 	/* if the command was mapped in a mbuf, free it */
1649 	if (data->m != NULL) {
1650 		bus_dmamap_unload(sc->sc_dmat, data->map);
1651 		m_freem(data->m);
1652 		data->m = NULL;
1653 	}
1654 
1655 	wakeup(&ring->cmd[desc->idx]);
1656 }
1657 
1658 static void
1659 wpi_notif_intr(struct wpi_softc *sc)
1660 {
1661 	struct ieee80211com *ic = &sc->sc_ic;
1662 	struct ifnet *ifp =  ic->ic_ifp;
1663 	uint32_t hw;
1664 
1665 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1666 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1667 
1668 	hw = le32toh(sc->shared->next);
1669 	while (sc->rxq.cur != hw) {
1670 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1671 		struct wpi_rx_desc *desc;
1672 
1673 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1674 		    BUS_DMASYNC_POSTREAD);
1675 		desc = mtod(data->m, struct wpi_rx_desc *);
1676 
1677 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1678 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1679 		    desc->type, le32toh(desc->len)));
1680 
1681 		if (!(desc->qid & 0x80))	/* reply to a command */
1682 			wpi_cmd_intr(sc, desc);
1683 
1684 		switch (desc->type) {
1685 		case WPI_RX_DONE:
1686 			/* a 802.11 frame was received */
1687 			wpi_rx_intr(sc, desc, data);
1688 			break;
1689 
1690 		case WPI_TX_DONE:
1691 			/* a 802.11 frame has been transmitted */
1692 			wpi_tx_intr(sc, desc);
1693 			break;
1694 
1695 		case WPI_UC_READY:
1696 		{
1697 			struct wpi_ucode_info *uc =
1698 			    (struct wpi_ucode_info *)(desc + 1);
1699 
1700 			/* the microcontroller is ready */
1701 			DPRINTF(("microcode alive notification version %x "
1702 			    "alive %x\n", le32toh(uc->version),
1703 			    le32toh(uc->valid)));
1704 
1705 			if (le32toh(uc->valid) != 1) {
1706 				aprint_error_dev(sc->sc_dev,
1707 				    "microcontroller initialization failed\n");
1708 			}
1709 			break;
1710 		}
1711 		case WPI_STATE_CHANGED:
1712 		{
1713 			uint32_t *status = (uint32_t *)(desc + 1);
1714 
1715 			/* enabled/disabled notification */
1716 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1717 
1718 			if (le32toh(*status) & 1) {
1719 				/* the radio button has to be pushed */
1720 				/* wake up thread to signal powerd */
1721 				cv_signal(&sc->sc_rsw_cv);
1722 				aprint_error_dev(sc->sc_dev,
1723 				    "Radio transmitter is off\n");
1724 				/* turn the interface down */
1725 				ifp->if_flags &= ~IFF_UP;
1726 				wpi_stop(ifp, 1);
1727 				return;	/* no further processing */
1728 			}
1729 			break;
1730 		}
1731 		case WPI_START_SCAN:
1732 		{
1733 #if 0
1734 			struct wpi_start_scan *scan =
1735 			    (struct wpi_start_scan *)(desc + 1);
1736 
1737 			DPRINTFN(2, ("scanning channel %d status %x\n",
1738 			    scan->chan, le32toh(scan->status)));
1739 
1740 			/* fix current channel */
1741 			ic->ic_curchan = &ic->ic_channels[scan->chan];
1742 #endif
1743 			break;
1744 		}
1745 		case WPI_STOP_SCAN:
1746 		{
1747 #ifdef WPI_DEBUG
1748 			struct wpi_stop_scan *scan =
1749 			    (struct wpi_stop_scan *)(desc + 1);
1750 #endif
1751 
1752 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1753 			    scan->nchan, scan->status, scan->chan));
1754 
1755 			sc->is_scanning = false;
1756 			if (ic->ic_state == IEEE80211_S_SCAN)
1757 				ieee80211_next_scan(ic);
1758 
1759 			break;
1760 		}
1761 		}
1762 
1763 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1764 	}
1765 
1766 	/* tell the firmware what we have processed */
1767 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1768 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1769 }
1770 
1771 static int
1772 wpi_intr(void *arg)
1773 {
1774 	struct wpi_softc *sc = arg;
1775 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1776 	uint32_t r;
1777 
1778 	r = WPI_READ(sc, WPI_INTR);
1779 	if (r == 0 || r == 0xffffffff)
1780 		return 0;	/* not for us */
1781 
1782 	DPRINTFN(6, ("interrupt reg %x\n", r));
1783 
1784 	/* disable interrupts */
1785 	WPI_WRITE(sc, WPI_MASK, 0);
1786 	/* ack interrupts */
1787 	WPI_WRITE(sc, WPI_INTR, r);
1788 
1789 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1790 		/* SYSTEM FAILURE, SYSTEM FAILURE */
1791 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1792 		ifp->if_flags &= ~IFF_UP;
1793 		wpi_stop(ifp, 1);
1794 		return 1;
1795 	}
1796 
1797 	if (r & WPI_RX_INTR)
1798 		wpi_notif_intr(sc);
1799 
1800 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1801 		wakeup(sc);
1802 
1803 	/* re-enable interrupts */
1804 	if (ifp->if_flags & IFF_UP)
1805 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1806 
1807 	return 1;
1808 }
1809 
1810 static uint8_t
1811 wpi_plcp_signal(int rate)
1812 {
1813 	switch (rate) {
1814 	/* CCK rates (returned values are device-dependent) */
1815 	case 2:		return 10;
1816 	case 4:		return 20;
1817 	case 11:	return 55;
1818 	case 22:	return 110;
1819 
1820 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1821 	/* R1-R4, (u)ral is R4-R1 */
1822 	case 12:	return 0xd;
1823 	case 18:	return 0xf;
1824 	case 24:	return 0x5;
1825 	case 36:	return 0x7;
1826 	case 48:	return 0x9;
1827 	case 72:	return 0xb;
1828 	case 96:	return 0x1;
1829 	case 108:	return 0x3;
1830 
1831 	/* unsupported rates (should not get there) */
1832 	default:	return 0;
1833 	}
1834 }
1835 
1836 /* quickly determine if a given rate is CCK or OFDM */
1837 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1838 
1839 static int
1840 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1841     int ac)
1842 {
1843 	struct ieee80211com *ic = &sc->sc_ic;
1844 	struct wpi_tx_ring *ring = &sc->txq[ac];
1845 	struct wpi_tx_desc *desc;
1846 	struct wpi_tx_data *data;
1847 	struct wpi_tx_cmd *cmd;
1848 	struct wpi_cmd_data *tx;
1849 	struct ieee80211_frame *wh;
1850 	struct ieee80211_key *k;
1851 	const struct chanAccParams *cap;
1852 	struct mbuf *mnew;
1853 	int i, rate, error, hdrlen, noack = 0;
1854 
1855 	desc = &ring->desc[ring->cur];
1856 	data = &ring->data[ring->cur];
1857 
1858 	wh = mtod(m0, struct ieee80211_frame *);
1859 
1860 	if (ieee80211_has_qos(wh)) {
1861 		cap = &ic->ic_wme.wme_chanParams;
1862 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1863 	}
1864 
1865 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1866 		k = ieee80211_crypto_encap(ic, ni, m0);
1867 		if (k == NULL) {
1868 			m_freem(m0);
1869 			return ENOBUFS;
1870 		}
1871 
1872 		/* packet header may have moved, reset our local pointer */
1873 		wh = mtod(m0, struct ieee80211_frame *);
1874 	}
1875 
1876 	hdrlen = ieee80211_anyhdrsize(wh);
1877 
1878 	/* pickup a rate */
1879 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1880 	    IEEE80211_FC0_TYPE_MGT) {
1881 		/* mgmt frames are sent at the lowest available bit-rate */
1882 		rate = ni->ni_rates.rs_rates[0];
1883 	} else {
1884 		if (ic->ic_fixed_rate != -1) {
1885 			rate = ic->ic_sup_rates[ic->ic_curmode].
1886 			    rs_rates[ic->ic_fixed_rate];
1887 		} else
1888 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1889 	}
1890 	rate &= IEEE80211_RATE_VAL;
1891 
1892 	if (sc->sc_drvbpf != NULL) {
1893 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1894 
1895 		tap->wt_flags = 0;
1896 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1897 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1898 		tap->wt_rate = rate;
1899 		tap->wt_hwqueue = ac;
1900 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1901 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1902 
1903 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1904 	}
1905 
1906 	cmd = &ring->cmd[ring->cur];
1907 	cmd->code = WPI_CMD_TX_DATA;
1908 	cmd->flags = 0;
1909 	cmd->qid = ring->qid;
1910 	cmd->idx = ring->cur;
1911 
1912 	tx = (struct wpi_cmd_data *)cmd->data;
1913 	/* no need to zero tx, all fields are reinitialized here */
1914 	tx->flags = 0;
1915 
1916 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1917 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1918 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1919 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1920 
1921 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1922 
1923 	/* retrieve destination node's id */
1924 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1925 		WPI_ID_BSS;
1926 
1927 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1928 	    IEEE80211_FC0_TYPE_MGT) {
1929 		/* tell h/w to set timestamp in probe responses */
1930 		if ((wh->i_fc[0] &
1931 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1932 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1933 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1934 
1935 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1936 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1937 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1938 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1939 			tx->timeout = htole16(3);
1940 		else
1941 			tx->timeout = htole16(2);
1942 	} else
1943 		tx->timeout = htole16(0);
1944 
1945 	tx->rate = wpi_plcp_signal(rate);
1946 
1947 	/* be very persistant at sending frames out */
1948 	tx->rts_ntries = 7;
1949 	tx->data_ntries = 15;
1950 
1951 	tx->ofdm_mask = 0xff;
1952 	tx->cck_mask = 0x0f;
1953 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1954 
1955 	tx->len = htole16(m0->m_pkthdr.len);
1956 
1957 	/* save and trim IEEE802.11 header */
1958 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1959 	m_adj(m0, hdrlen);
1960 
1961 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1962 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1963 	if (error != 0 && error != EFBIG) {
1964 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1965 		    error);
1966 		m_freem(m0);
1967 		return error;
1968 	}
1969 	if (error != 0) {
1970 		/* too many fragments, linearize */
1971 
1972 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1973 		if (mnew == NULL) {
1974 			m_freem(m0);
1975 			return ENOMEM;
1976 		}
1977 		M_COPY_PKTHDR(mnew, m0);
1978 		if (m0->m_pkthdr.len > MHLEN) {
1979 			MCLGET(mnew, M_DONTWAIT);
1980 			if (!(mnew->m_flags & M_EXT)) {
1981 				m_freem(m0);
1982 				m_freem(mnew);
1983 				return ENOMEM;
1984 			}
1985 		}
1986 
1987 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1988 		m_freem(m0);
1989 		mnew->m_len = mnew->m_pkthdr.len;
1990 		m0 = mnew;
1991 
1992 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1993 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1994 		if (error != 0) {
1995 			aprint_error_dev(sc->sc_dev,
1996 			    "could not map mbuf (error %d)\n", error);
1997 			m_freem(m0);
1998 			return error;
1999 		}
2000 	}
2001 
2002 	data->m = m0;
2003 	data->ni = ni;
2004 
2005 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2006 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2007 
2008 	/* first scatter/gather segment is used by the tx data command */
2009 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2010 	    (1 + data->map->dm_nsegs) << 24);
2011 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2012 	    ring->cur * sizeof (struct wpi_tx_cmd));
2013 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
2014 	    ((hdrlen + 3) & ~3));
2015 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2016 		desc->segs[i].addr =
2017 		    htole32(data->map->dm_segs[i - 1].ds_addr);
2018 		desc->segs[i].len  =
2019 		    htole32(data->map->dm_segs[i - 1].ds_len);
2020 	}
2021 
2022 	ring->queued++;
2023 
2024 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2025 	    data->map->dm_mapsize,
2026 	    BUS_DMASYNC_PREWRITE);
2027 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2028 	    ring->cmd_dma.size,
2029 	    BUS_DMASYNC_PREWRITE);
2030 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2031 	    ring->desc_dma.size,
2032 	    BUS_DMASYNC_PREWRITE);
2033 
2034 	/* kick ring */
2035 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2036 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2037 
2038 	return 0;
2039 }
2040 
2041 static void
2042 wpi_start(struct ifnet *ifp)
2043 {
2044 	struct wpi_softc *sc = ifp->if_softc;
2045 	struct ieee80211com *ic = &sc->sc_ic;
2046 	struct ieee80211_node *ni;
2047 	struct ether_header *eh;
2048 	struct mbuf *m0;
2049 	int ac;
2050 
2051 	/*
2052 	 * net80211 may still try to send management frames even if the
2053 	 * IFF_RUNNING flag is not set...
2054 	 */
2055 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2056 		return;
2057 
2058 	for (;;) {
2059 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2060 		if (m0 != NULL) {
2061 
2062 			ni = M_GETCTX(m0, struct ieee80211_node *);
2063 			M_CLEARCTX(m0);
2064 
2065 			/* management frames go into ring 0 */
2066 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2067 				ifp->if_oerrors++;
2068 				continue;
2069 			}
2070 			bpf_mtap3(ic->ic_rawbpf, m0);
2071 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2072 				ifp->if_oerrors++;
2073 				break;
2074 			}
2075 		} else {
2076 			if (ic->ic_state != IEEE80211_S_RUN)
2077 				break;
2078 			IFQ_POLL(&ifp->if_snd, m0);
2079 			if (m0 == NULL)
2080 				break;
2081 
2082 			if (m0->m_len < sizeof (*eh) &&
2083 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2084 				ifp->if_oerrors++;
2085 				continue;
2086 			}
2087 			eh = mtod(m0, struct ether_header *);
2088 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2089 			if (ni == NULL) {
2090 				m_freem(m0);
2091 				ifp->if_oerrors++;
2092 				continue;
2093 			}
2094 
2095 			/* classify mbuf so we can find which tx ring to use */
2096 			if (ieee80211_classify(ic, m0, ni) != 0) {
2097 				m_freem(m0);
2098 				ieee80211_free_node(ni);
2099 				ifp->if_oerrors++;
2100 				continue;
2101 			}
2102 
2103 			/* no QoS encapsulation for EAPOL frames */
2104 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2105 			    M_WME_GETAC(m0) : WME_AC_BE;
2106 
2107 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2108 				/* there is no place left in this ring */
2109 				ifp->if_flags |= IFF_OACTIVE;
2110 				break;
2111 			}
2112 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2113 			bpf_mtap(ifp, m0);
2114 			m0 = ieee80211_encap(ic, m0, ni);
2115 			if (m0 == NULL) {
2116 				ieee80211_free_node(ni);
2117 				ifp->if_oerrors++;
2118 				continue;
2119 			}
2120 			bpf_mtap3(ic->ic_rawbpf, m0);
2121 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2122 				ieee80211_free_node(ni);
2123 				ifp->if_oerrors++;
2124 				break;
2125 			}
2126 		}
2127 
2128 		sc->sc_tx_timer = 5;
2129 		ifp->if_timer = 1;
2130 	}
2131 }
2132 
2133 static void
2134 wpi_watchdog(struct ifnet *ifp)
2135 {
2136 	struct wpi_softc *sc = ifp->if_softc;
2137 
2138 	ifp->if_timer = 0;
2139 
2140 	if (sc->sc_tx_timer > 0) {
2141 		if (--sc->sc_tx_timer == 0) {
2142 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2143 			ifp->if_flags &= ~IFF_UP;
2144 			wpi_stop(ifp, 1);
2145 			ifp->if_oerrors++;
2146 			return;
2147 		}
2148 		ifp->if_timer = 1;
2149 	}
2150 
2151 	ieee80211_watchdog(&sc->sc_ic);
2152 }
2153 
2154 static int
2155 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2156 {
2157 #define IS_RUNNING(ifp) \
2158 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2159 
2160 	struct wpi_softc *sc = ifp->if_softc;
2161 	struct ieee80211com *ic = &sc->sc_ic;
2162 	int s, error = 0;
2163 
2164 	s = splnet();
2165 
2166 	switch (cmd) {
2167 	case SIOCSIFFLAGS:
2168 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2169 			break;
2170 		if (ifp->if_flags & IFF_UP) {
2171 			if (!(ifp->if_flags & IFF_RUNNING))
2172 				wpi_init(ifp);
2173 		} else {
2174 			if (ifp->if_flags & IFF_RUNNING)
2175 				wpi_stop(ifp, 1);
2176 		}
2177 		break;
2178 
2179 	case SIOCADDMULTI:
2180 	case SIOCDELMULTI:
2181 		/* XXX no h/w multicast filter? --dyoung */
2182 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2183 			/* setup multicast filter, etc */
2184 			error = 0;
2185 		}
2186 		break;
2187 
2188 	default:
2189 		error = ieee80211_ioctl(ic, cmd, data);
2190 	}
2191 
2192 	if (error == ENETRESET) {
2193 		if (IS_RUNNING(ifp) &&
2194 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2195 			wpi_init(ifp);
2196 		error = 0;
2197 	}
2198 
2199 	splx(s);
2200 	return error;
2201 
2202 #undef IS_RUNNING
2203 }
2204 
2205 /*
2206  * Extract various information from EEPROM.
2207  */
2208 static void
2209 wpi_read_eeprom(struct wpi_softc *sc)
2210 {
2211 	struct ieee80211com *ic = &sc->sc_ic;
2212 	char domain[4];
2213 	int i;
2214 
2215 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2216 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2217 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2218 
2219 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2220 	    sc->type));
2221 
2222 	/* read and print regulatory domain */
2223 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2224 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2225 
2226 	/* read and print MAC address */
2227 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2228 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2229 
2230 	/* read the list of authorized channels */
2231 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2232 		wpi_read_eeprom_channels(sc, i);
2233 
2234 	/* read the list of power groups */
2235 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2236 		wpi_read_eeprom_group(sc, i);
2237 }
2238 
2239 static void
2240 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2241 {
2242 	struct ieee80211com *ic = &sc->sc_ic;
2243 	const struct wpi_chan_band *band = &wpi_bands[n];
2244 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2245 	int chan, i;
2246 
2247 	wpi_read_prom_data(sc, band->addr, channels,
2248 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2249 
2250 	for (i = 0; i < band->nchan; i++) {
2251 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2252 			continue;
2253 
2254 		chan = band->chan[i];
2255 
2256 		if (n == 0) {	/* 2GHz band */
2257 			ic->ic_channels[chan].ic_freq =
2258 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2259 			ic->ic_channels[chan].ic_flags =
2260 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2261 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2262 
2263 		} else {	/* 5GHz band */
2264 			/*
2265 			 * Some 3945ABG adapters support channels 7, 8, 11
2266 			 * and 12 in the 2GHz *and* 5GHz bands.
2267 			 * Because of limitations in our net80211(9) stack,
2268 			 * we can't support these channels in 5GHz band.
2269 			 */
2270 			if (chan <= 14)
2271 				continue;
2272 
2273 			ic->ic_channels[chan].ic_freq =
2274 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2275 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2276 		}
2277 
2278 		/* is active scan allowed on this channel? */
2279 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2280 			ic->ic_channels[chan].ic_flags |=
2281 			    IEEE80211_CHAN_PASSIVE;
2282 		}
2283 
2284 		/* save maximum allowed power for this channel */
2285 		sc->maxpwr[chan] = channels[i].maxpwr;
2286 
2287 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2288 		    chan, channels[i].flags, sc->maxpwr[chan]));
2289 	}
2290 }
2291 
2292 static void
2293 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2294 {
2295 	struct wpi_power_group *group = &sc->groups[n];
2296 	struct wpi_eeprom_group rgroup;
2297 	int i;
2298 
2299 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2300 	    sizeof rgroup);
2301 
2302 	/* save power group information */
2303 	group->chan   = rgroup.chan;
2304 	group->maxpwr = rgroup.maxpwr;
2305 	/* temperature at which the samples were taken */
2306 	group->temp   = (int16_t)le16toh(rgroup.temp);
2307 
2308 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2309 	    group->chan, group->maxpwr, group->temp));
2310 
2311 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2312 		group->samples[i].index = rgroup.samples[i].index;
2313 		group->samples[i].power = rgroup.samples[i].power;
2314 
2315 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2316 		    group->samples[i].index, group->samples[i].power));
2317 	}
2318 }
2319 
2320 /*
2321  * Send a command to the firmware.
2322  */
2323 static int
2324 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2325 {
2326 	struct wpi_tx_ring *ring = &sc->cmdq;
2327 	struct wpi_tx_desc *desc;
2328 	struct wpi_tx_cmd *cmd;
2329 	struct wpi_dma_info *dma;
2330 
2331 	KASSERT(size <= sizeof cmd->data);
2332 
2333 	desc = &ring->desc[ring->cur];
2334 	cmd = &ring->cmd[ring->cur];
2335 
2336 	cmd->code = code;
2337 	cmd->flags = 0;
2338 	cmd->qid = ring->qid;
2339 	cmd->idx = ring->cur;
2340 	memcpy(cmd->data, buf, size);
2341 
2342 	dma = &ring->cmd_dma;
2343 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2344 
2345 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2346 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2347 	    ring->cur * sizeof (struct wpi_tx_cmd));
2348 	desc->segs[0].len  = htole32(4 + size);
2349 
2350 	dma = &ring->desc_dma;
2351 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2352 
2353 	/* kick cmd ring */
2354 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2355 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2356 
2357 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2358 }
2359 
2360 static int
2361 wpi_wme_update(struct ieee80211com *ic)
2362 {
2363 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2364 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2365 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2366 	const struct wmeParams *wmep;
2367 	struct wpi_wme_setup wme;
2368 	int ac;
2369 
2370 	/* don't override default WME values if WME is not actually enabled */
2371 	if (!(ic->ic_flags & IEEE80211_F_WME))
2372 		return 0;
2373 
2374 	wme.flags = 0;
2375 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2376 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2377 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2378 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2379 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2380 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2381 
2382 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2383 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2384 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2385 	}
2386 
2387 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2388 #undef WPI_USEC
2389 #undef WPI_EXP2
2390 }
2391 
2392 /*
2393  * Configure h/w multi-rate retries.
2394  */
2395 static int
2396 wpi_mrr_setup(struct wpi_softc *sc)
2397 {
2398 	struct ieee80211com *ic = &sc->sc_ic;
2399 	struct wpi_mrr_setup mrr;
2400 	int i, error;
2401 
2402 	/* CCK rates (not used with 802.11a) */
2403 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2404 		mrr.rates[i].flags = 0;
2405 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2406 		/* fallback to the immediate lower CCK rate (if any) */
2407 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2408 		/* try one time at this rate before falling back to "next" */
2409 		mrr.rates[i].ntries = 1;
2410 	}
2411 
2412 	/* OFDM rates (not used with 802.11b) */
2413 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2414 		mrr.rates[i].flags = 0;
2415 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2416 		/* fallback to the immediate lower rate (if any) */
2417 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2418 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2419 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2420 			WPI_OFDM6 : WPI_CCK2) :
2421 		    i - 1;
2422 		/* try one time at this rate before falling back to "next" */
2423 		mrr.rates[i].ntries = 1;
2424 	}
2425 
2426 	/* setup MRR for control frames */
2427 	mrr.which = htole32(WPI_MRR_CTL);
2428 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2429 	if (error != 0) {
2430 		aprint_error_dev(sc->sc_dev,
2431 		    "could not setup MRR for control frames\n");
2432 		return error;
2433 	}
2434 
2435 	/* setup MRR for data frames */
2436 	mrr.which = htole32(WPI_MRR_DATA);
2437 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2438 	if (error != 0) {
2439 		aprint_error_dev(sc->sc_dev,
2440 		    "could not setup MRR for data frames\n");
2441 		return error;
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 static void
2448 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2449 {
2450 	struct wpi_cmd_led led;
2451 
2452 	led.which = which;
2453 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2454 	led.off = off;
2455 	led.on = on;
2456 
2457 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2458 }
2459 
2460 static void
2461 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2462 {
2463 	struct wpi_cmd_tsf tsf;
2464 	uint64_t val, mod;
2465 
2466 	memset(&tsf, 0, sizeof tsf);
2467 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2468 	tsf.bintval = htole16(ni->ni_intval);
2469 	tsf.lintval = htole16(10);
2470 
2471 	/* compute remaining time until next beacon */
2472 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2473 	mod = le64toh(tsf.tstamp) % val;
2474 	tsf.binitval = htole32((uint32_t)(val - mod));
2475 
2476 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2477 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2478 
2479 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2480 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2481 }
2482 
2483 /*
2484  * Update Tx power to match what is defined for channel `c'.
2485  */
2486 static int
2487 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2488 {
2489 	struct ieee80211com *ic = &sc->sc_ic;
2490 	struct wpi_power_group *group;
2491 	struct wpi_cmd_txpower txpower;
2492 	u_int chan;
2493 	int i;
2494 
2495 	/* get channel number */
2496 	chan = ieee80211_chan2ieee(ic, c);
2497 
2498 	/* find the power group to which this channel belongs */
2499 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2500 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2501 			if (chan <= group->chan)
2502 				break;
2503 	} else
2504 		group = &sc->groups[0];
2505 
2506 	memset(&txpower, 0, sizeof txpower);
2507 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2508 	txpower.chan = htole16(chan);
2509 
2510 	/* set Tx power for all OFDM and CCK rates */
2511 	for (i = 0; i <= 11 ; i++) {
2512 		/* retrieve Tx power for this channel/rate combination */
2513 		int idx = wpi_get_power_index(sc, group, c,
2514 		    wpi_ridx_to_rate[i]);
2515 
2516 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2517 
2518 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2519 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2520 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2521 		} else {
2522 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2523 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2524 		}
2525 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2526 		    wpi_ridx_to_rate[i], idx));
2527 	}
2528 
2529 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2530 }
2531 
2532 /*
2533  * Determine Tx power index for a given channel/rate combination.
2534  * This takes into account the regulatory information from EEPROM and the
2535  * current temperature.
2536  */
2537 static int
2538 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2539     struct ieee80211_channel *c, int rate)
2540 {
2541 /* fixed-point arithmetic division using a n-bit fractional part */
2542 #define fdivround(a, b, n)	\
2543 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2544 
2545 /* linear interpolation */
2546 #define interpolate(x, x1, y1, x2, y2, n)	\
2547 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2548 
2549 	struct ieee80211com *ic = &sc->sc_ic;
2550 	struct wpi_power_sample *sample;
2551 	int pwr, idx;
2552 	u_int chan;
2553 
2554 	/* get channel number */
2555 	chan = ieee80211_chan2ieee(ic, c);
2556 
2557 	/* default power is group's maximum power - 3dB */
2558 	pwr = group->maxpwr / 2;
2559 
2560 	/* decrease power for highest OFDM rates to reduce distortion */
2561 	switch (rate) {
2562 	case 72:	/* 36Mb/s */
2563 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2564 		break;
2565 	case 96:	/* 48Mb/s */
2566 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2567 		break;
2568 	case 108:	/* 54Mb/s */
2569 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2570 		break;
2571 	}
2572 
2573 	/* never exceed channel's maximum allowed Tx power */
2574 	pwr = min(pwr, sc->maxpwr[chan]);
2575 
2576 	/* retrieve power index into gain tables from samples */
2577 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2578 		if (pwr > sample[1].power)
2579 			break;
2580 	/* fixed-point linear interpolation using a 19-bit fractional part */
2581 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2582 	    sample[1].power, sample[1].index, 19);
2583 
2584 	/*-
2585 	 * Adjust power index based on current temperature:
2586 	 * - if cooler than factory-calibrated: decrease output power
2587 	 * - if warmer than factory-calibrated: increase output power
2588 	 */
2589 	idx -= (sc->temp - group->temp) * 11 / 100;
2590 
2591 	/* decrease power for CCK rates (-5dB) */
2592 	if (!WPI_RATE_IS_OFDM(rate))
2593 		idx += 10;
2594 
2595 	/* keep power index in a valid range */
2596 	if (idx < 0)
2597 		return 0;
2598 	if (idx > WPI_MAX_PWR_INDEX)
2599 		return WPI_MAX_PWR_INDEX;
2600 	return idx;
2601 
2602 #undef interpolate
2603 #undef fdivround
2604 }
2605 
2606 /*
2607  * Build a beacon frame that the firmware will broadcast periodically in
2608  * IBSS or HostAP modes.
2609  */
2610 static int
2611 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2612 {
2613 	struct ieee80211com *ic = &sc->sc_ic;
2614 	struct wpi_tx_ring *ring = &sc->cmdq;
2615 	struct wpi_tx_desc *desc;
2616 	struct wpi_tx_data *data;
2617 	struct wpi_tx_cmd *cmd;
2618 	struct wpi_cmd_beacon *bcn;
2619 	struct ieee80211_beacon_offsets bo;
2620 	struct mbuf *m0;
2621 	int error;
2622 
2623 	desc = &ring->desc[ring->cur];
2624 	data = &ring->data[ring->cur];
2625 
2626 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2627 	if (m0 == NULL) {
2628 		aprint_error_dev(sc->sc_dev,
2629 		    "could not allocate beacon frame\n");
2630 		return ENOMEM;
2631 	}
2632 
2633 	cmd = &ring->cmd[ring->cur];
2634 	cmd->code = WPI_CMD_SET_BEACON;
2635 	cmd->flags = 0;
2636 	cmd->qid = ring->qid;
2637 	cmd->idx = ring->cur;
2638 
2639 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2640 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2641 	bcn->id = WPI_ID_BROADCAST;
2642 	bcn->ofdm_mask = 0xff;
2643 	bcn->cck_mask = 0x0f;
2644 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2645 	bcn->len = htole16(m0->m_pkthdr.len);
2646 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2647 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2648 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2649 
2650 	/* save and trim IEEE802.11 header */
2651 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2652 	m_adj(m0, sizeof (struct ieee80211_frame));
2653 
2654 	/* assume beacon frame is contiguous */
2655 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2656 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2657 	if (error != 0) {
2658 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2659 		m_freem(m0);
2660 		return error;
2661 	}
2662 
2663 	data->m = m0;
2664 
2665 	/* first scatter/gather segment is used by the beacon command */
2666 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2667 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2668 	    ring->cur * sizeof (struct wpi_tx_cmd));
2669 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2670 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2671 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2672 
2673 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2674 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2675 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2676 	    BUS_DMASYNC_PREWRITE);
2677 
2678 	/* kick cmd ring */
2679 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2680 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2681 
2682 	return 0;
2683 }
2684 
2685 static int
2686 wpi_auth(struct wpi_softc *sc)
2687 {
2688 	struct ieee80211com *ic = &sc->sc_ic;
2689 	struct ieee80211_node *ni = ic->ic_bss;
2690 	struct wpi_node_info node;
2691 	int error;
2692 
2693 	/* update adapter's configuration */
2694 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2695 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2696 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2697 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2698 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2699 		    WPI_CONFIG_24GHZ);
2700 	}
2701 	switch (ic->ic_curmode) {
2702 	case IEEE80211_MODE_11A:
2703 		sc->config.cck_mask  = 0;
2704 		sc->config.ofdm_mask = 0x15;
2705 		break;
2706 	case IEEE80211_MODE_11B:
2707 		sc->config.cck_mask  = 0x03;
2708 		sc->config.ofdm_mask = 0;
2709 		break;
2710 	default:	/* assume 802.11b/g */
2711 		sc->config.cck_mask  = 0x0f;
2712 		sc->config.ofdm_mask = 0x15;
2713 	}
2714 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2715 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2716 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2717 	    sizeof (struct wpi_config), 1);
2718 	if (error != 0) {
2719 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2720 		return error;
2721 	}
2722 
2723 	/* configuration has changed, set Tx power accordingly */
2724 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2725 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2726 		return error;
2727 	}
2728 
2729 	/* add default node */
2730 	memset(&node, 0, sizeof node);
2731 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2732 	node.id = WPI_ID_BSS;
2733 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2734 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2735 	node.action = htole32(WPI_ACTION_SET_RATE);
2736 	node.antenna = WPI_ANTENNA_BOTH;
2737 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2738 	if (error != 0) {
2739 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2740 		return error;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 /*
2747  * Send a scan request to the firmware.  Since this command is huge, we map it
2748  * into a mbuf instead of using the pre-allocated set of commands.
2749  */
2750 static int
2751 wpi_scan(struct wpi_softc *sc)
2752 {
2753 	struct ieee80211com *ic = &sc->sc_ic;
2754 	struct wpi_tx_ring *ring = &sc->cmdq;
2755 	struct wpi_tx_desc *desc;
2756 	struct wpi_tx_data *data;
2757 	struct wpi_tx_cmd *cmd;
2758 	struct wpi_scan_hdr *hdr;
2759 	struct wpi_scan_chan *chan;
2760 	struct ieee80211_frame *wh;
2761 	struct ieee80211_rateset *rs;
2762 	struct ieee80211_channel *c;
2763 	uint8_t *frm;
2764 	int pktlen, error, nrates;
2765 
2766 	if (ic->ic_curchan == NULL)
2767 		return EIO;
2768 
2769 	desc = &ring->desc[ring->cur];
2770 	data = &ring->data[ring->cur];
2771 
2772 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2773 	if (data->m == NULL) {
2774 		aprint_error_dev(sc->sc_dev,
2775 		    "could not allocate mbuf for scan command\n");
2776 		return ENOMEM;
2777 	}
2778 	MCLGET(data->m, M_DONTWAIT);
2779 	if (!(data->m->m_flags & M_EXT)) {
2780 		m_freem(data->m);
2781 		data->m = NULL;
2782 		aprint_error_dev(sc->sc_dev,
2783 		    "could not allocate mbuf for scan command\n");
2784 		return ENOMEM;
2785 	}
2786 
2787 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2788 	cmd->code = WPI_CMD_SCAN;
2789 	cmd->flags = 0;
2790 	cmd->qid = ring->qid;
2791 	cmd->idx = ring->cur;
2792 
2793 	hdr = (struct wpi_scan_hdr *)cmd->data;
2794 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2795 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2796 	hdr->cmd.id = WPI_ID_BROADCAST;
2797 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2798 	/*
2799 	 * Move to the next channel if no packets are received within 5 msecs
2800 	 * after sending the probe request (this helps to reduce the duration
2801 	 * of active scans).
2802 	 */
2803 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2804 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2805 
2806 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2807 		hdr->crc_threshold = htole16(1);
2808 		/* send probe requests at 6Mbps */
2809 		hdr->cmd.rate = wpi_plcp_signal(12);
2810 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2811 	} else {
2812 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2813 		/* send probe requests at 1Mbps */
2814 		hdr->cmd.rate = wpi_plcp_signal(2);
2815 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2816 	}
2817 
2818 	/* for directed scans, firmware inserts the essid IE itself */
2819 	if (ic->ic_des_esslen != 0) {
2820 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2821 		hdr->essid[0].len = ic->ic_des_esslen;
2822 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2823 	}
2824 
2825 	/*
2826 	 * Build a probe request frame.  Most of the following code is a
2827 	 * copy & paste of what is done in net80211.
2828 	 */
2829 	wh = (struct ieee80211_frame *)(hdr + 1);
2830 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2831 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2832 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2833 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2834 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2835 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2836 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2837 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2838 
2839 	frm = (uint8_t *)(wh + 1);
2840 
2841 	/* add empty essid IE (firmware generates it for directed scans) */
2842 	*frm++ = IEEE80211_ELEMID_SSID;
2843 	*frm++ = 0;
2844 
2845 	/* add supported rates IE */
2846 	*frm++ = IEEE80211_ELEMID_RATES;
2847 	nrates = rs->rs_nrates;
2848 	if (nrates > IEEE80211_RATE_SIZE)
2849 		nrates = IEEE80211_RATE_SIZE;
2850 	*frm++ = nrates;
2851 	memcpy(frm, rs->rs_rates, nrates);
2852 	frm += nrates;
2853 
2854 	/* add supported xrates IE */
2855 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2856 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2857 		*frm++ = IEEE80211_ELEMID_XRATES;
2858 		*frm++ = nrates;
2859 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2860 		frm += nrates;
2861 	}
2862 
2863 	/* setup length of probe request */
2864 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2865 
2866 	chan = (struct wpi_scan_chan *)frm;
2867 	c = ic->ic_curchan;
2868 
2869 	chan->chan = ieee80211_chan2ieee(ic, c);
2870 	chan->flags = 0;
2871 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2872 		chan->flags |= WPI_CHAN_ACTIVE;
2873 		if (ic->ic_des_esslen != 0)
2874 			chan->flags |= WPI_CHAN_DIRECT;
2875 	}
2876 	chan->dsp_gain = 0x6e;
2877 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2878 		chan->rf_gain = 0x3b;
2879 		chan->active  = htole16(10);
2880 		chan->passive = htole16(110);
2881 	} else {
2882 		chan->rf_gain = 0x28;
2883 		chan->active  = htole16(20);
2884 		chan->passive = htole16(120);
2885 	}
2886 	hdr->nchan++;
2887 	chan++;
2888 
2889 	frm += sizeof (struct wpi_scan_chan);
2890 
2891 	hdr->len = htole16(frm - (uint8_t *)hdr);
2892 	pktlen = frm - (uint8_t *)cmd;
2893 
2894 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2895 	    BUS_DMA_NOWAIT);
2896 	if (error != 0) {
2897 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2898 		m_freem(data->m);
2899 		data->m = NULL;
2900 		return error;
2901 	}
2902 
2903 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2904 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2905 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2906 
2907 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2908 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2909 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2910 	    BUS_DMASYNC_PREWRITE);
2911 
2912 	/* kick cmd ring */
2913 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2914 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2915 
2916 	return 0;	/* will be notified async. of failure/success */
2917 }
2918 
2919 static int
2920 wpi_config(struct wpi_softc *sc)
2921 {
2922 	struct ieee80211com *ic = &sc->sc_ic;
2923 	struct ifnet *ifp = ic->ic_ifp;
2924 	struct wpi_power power;
2925 	struct wpi_bluetooth bluetooth;
2926 	struct wpi_node_info node;
2927 	int error;
2928 
2929 	memset(&power, 0, sizeof power);
2930 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2931 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2932 	if (error != 0) {
2933 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2934 		return error;
2935 	}
2936 
2937 	/* configure bluetooth coexistence */
2938 	memset(&bluetooth, 0, sizeof bluetooth);
2939 	bluetooth.flags = 3;
2940 	bluetooth.lead = 0xaa;
2941 	bluetooth.kill = 1;
2942 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2943 	    0);
2944 	if (error != 0) {
2945 		aprint_error_dev(sc->sc_dev,
2946 			"could not configure bluetooth coexistence\n");
2947 		return error;
2948 	}
2949 
2950 	/* configure adapter */
2951 	memset(&sc->config, 0, sizeof (struct wpi_config));
2952 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2953 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2954 	/* set default channel */
2955 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2956 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2957 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2958 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2959 		    WPI_CONFIG_24GHZ);
2960 	}
2961 	sc->config.filter = 0;
2962 	switch (ic->ic_opmode) {
2963 	case IEEE80211_M_STA:
2964 		sc->config.mode = WPI_MODE_STA;
2965 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2966 		break;
2967 	case IEEE80211_M_IBSS:
2968 	case IEEE80211_M_AHDEMO:
2969 		sc->config.mode = WPI_MODE_IBSS;
2970 		break;
2971 	case IEEE80211_M_HOSTAP:
2972 		sc->config.mode = WPI_MODE_HOSTAP;
2973 		break;
2974 	case IEEE80211_M_MONITOR:
2975 		sc->config.mode = WPI_MODE_MONITOR;
2976 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2977 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2978 		break;
2979 	}
2980 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2981 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2982 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2983 	    sizeof (struct wpi_config), 0);
2984 	if (error != 0) {
2985 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2986 		return error;
2987 	}
2988 
2989 	/* configuration has changed, set Tx power accordingly */
2990 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2991 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2992 		return error;
2993 	}
2994 
2995 	/* add broadcast node */
2996 	memset(&node, 0, sizeof node);
2997 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2998 	node.id = WPI_ID_BROADCAST;
2999 	node.rate = wpi_plcp_signal(2);
3000 	node.action = htole32(WPI_ACTION_SET_RATE);
3001 	node.antenna = WPI_ANTENNA_BOTH;
3002 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3003 	if (error != 0) {
3004 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3005 		return error;
3006 	}
3007 
3008 	if ((error = wpi_mrr_setup(sc)) != 0) {
3009 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3010 		return error;
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 static void
3017 wpi_stop_master(struct wpi_softc *sc)
3018 {
3019 	uint32_t tmp;
3020 	int ntries;
3021 
3022 	tmp = WPI_READ(sc, WPI_RESET);
3023 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3024 
3025 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3026 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3027 		return;	/* already asleep */
3028 
3029 	for (ntries = 0; ntries < 100; ntries++) {
3030 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3031 			break;
3032 		DELAY(10);
3033 	}
3034 	if (ntries == 100) {
3035 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3036 	}
3037 }
3038 
3039 static int
3040 wpi_power_up(struct wpi_softc *sc)
3041 {
3042 	uint32_t tmp;
3043 	int ntries;
3044 
3045 	wpi_mem_lock(sc);
3046 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3047 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3048 	wpi_mem_unlock(sc);
3049 
3050 	for (ntries = 0; ntries < 5000; ntries++) {
3051 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3052 			break;
3053 		DELAY(10);
3054 	}
3055 	if (ntries == 5000) {
3056 		aprint_error_dev(sc->sc_dev,
3057 		    "timeout waiting for NIC to power up\n");
3058 		return ETIMEDOUT;
3059 	}
3060 	return 0;
3061 }
3062 
3063 static int
3064 wpi_reset(struct wpi_softc *sc)
3065 {
3066 	uint32_t tmp;
3067 	int ntries;
3068 
3069 	/* clear any pending interrupts */
3070 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3071 
3072 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3073 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3074 
3075 	tmp = WPI_READ(sc, WPI_CHICKEN);
3076 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3077 
3078 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3079 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3080 
3081 	/* wait for clock stabilization */
3082 	for (ntries = 0; ntries < 1000; ntries++) {
3083 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3084 			break;
3085 		DELAY(10);
3086 	}
3087 	if (ntries == 1000) {
3088 		aprint_error_dev(sc->sc_dev,
3089 		    "timeout waiting for clock stabilization\n");
3090 		return ETIMEDOUT;
3091 	}
3092 
3093 	/* initialize EEPROM */
3094 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3095 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3096 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3097 		return EIO;
3098 	}
3099 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3100 
3101 	return 0;
3102 }
3103 
3104 static void
3105 wpi_hw_config(struct wpi_softc *sc)
3106 {
3107 	uint32_t rev, hw;
3108 
3109 	/* voodoo from the reference driver */
3110 	hw = WPI_READ(sc, WPI_HWCONFIG);
3111 
3112 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3113 	rev = PCI_REVISION(rev);
3114 	if ((rev & 0xc0) == 0x40)
3115 		hw |= WPI_HW_ALM_MB;
3116 	else if (!(rev & 0x80))
3117 		hw |= WPI_HW_ALM_MM;
3118 
3119 	if (sc->cap == 0x80)
3120 		hw |= WPI_HW_SKU_MRC;
3121 
3122 	hw &= ~WPI_HW_REV_D;
3123 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3124 		hw |= WPI_HW_REV_D;
3125 
3126 	if (sc->type > 1)
3127 		hw |= WPI_HW_TYPE_B;
3128 
3129 	DPRINTF(("setting h/w config %x\n", hw));
3130 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3131 }
3132 
3133 static int
3134 wpi_init(struct ifnet *ifp)
3135 {
3136 	struct wpi_softc *sc = ifp->if_softc;
3137 	struct ieee80211com *ic = &sc->sc_ic;
3138 	uint32_t tmp;
3139 	int qid, ntries, error;
3140 
3141 	wpi_stop(ifp,1);
3142 	(void)wpi_reset(sc);
3143 
3144 	wpi_mem_lock(sc);
3145 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3146 	DELAY(20);
3147 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3148 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3149 	wpi_mem_unlock(sc);
3150 
3151 	(void)wpi_power_up(sc);
3152 	wpi_hw_config(sc);
3153 
3154 	/* init Rx ring */
3155 	wpi_mem_lock(sc);
3156 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3157 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3158 	    offsetof(struct wpi_shared, next));
3159 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3160 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3161 	wpi_mem_unlock(sc);
3162 
3163 	/* init Tx rings */
3164 	wpi_mem_lock(sc);
3165 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3166 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3167 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3168 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3169 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3170 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3171 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3172 
3173 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3174 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3175 
3176 	for (qid = 0; qid < 6; qid++) {
3177 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3178 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3179 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3180 	}
3181 	wpi_mem_unlock(sc);
3182 
3183 	/* clear "radio off" and "disable command" bits (reversed logic) */
3184 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3185 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3186 
3187 	/* clear any pending interrupts */
3188 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3189 	/* enable interrupts */
3190 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3191 
3192 	/* not sure why/if this is necessary... */
3193 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3194 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3195 
3196 	if ((error = wpi_load_firmware(sc)) != 0)
3197 		/* wpi_load_firmware prints error messages for us.  */
3198 		goto fail1;
3199 
3200 	/* Check the status of the radio switch */
3201 	mutex_enter(&sc->sc_rsw_mtx);
3202 	if (wpi_getrfkill(sc)) {
3203 		mutex_exit(&sc->sc_rsw_mtx);
3204 		aprint_error_dev(sc->sc_dev,
3205 		    "radio is disabled by hardware switch\n");
3206 		ifp->if_flags &= ~IFF_UP;
3207 		error = EBUSY;
3208 		goto fail1;
3209 	}
3210 	mutex_exit(&sc->sc_rsw_mtx);
3211 
3212 	/* wait for thermal sensors to calibrate */
3213 	for (ntries = 0; ntries < 1000; ntries++) {
3214 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3215 			break;
3216 		DELAY(10);
3217 	}
3218 	if (ntries == 1000) {
3219 		aprint_error_dev(sc->sc_dev,
3220 		    "timeout waiting for thermal sensors calibration\n");
3221 		error = ETIMEDOUT;
3222 		goto fail1;
3223 	}
3224 	DPRINTF(("temperature %d\n", sc->temp));
3225 
3226 	if ((error = wpi_config(sc)) != 0) {
3227 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3228 		goto fail1;
3229 	}
3230 
3231 	ifp->if_flags &= ~IFF_OACTIVE;
3232 	ifp->if_flags |= IFF_RUNNING;
3233 
3234 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3235 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3236 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3237 	}
3238 	else
3239 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3240 
3241 	return 0;
3242 
3243 fail1:	wpi_stop(ifp, 1);
3244 	return error;
3245 }
3246 
3247 static void
3248 wpi_stop(struct ifnet *ifp, int disable)
3249 {
3250 	struct wpi_softc *sc = ifp->if_softc;
3251 	struct ieee80211com *ic = &sc->sc_ic;
3252 	uint32_t tmp;
3253 	int ac;
3254 
3255 	ifp->if_timer = sc->sc_tx_timer = 0;
3256 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3257 
3258 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3259 
3260 	/* disable interrupts */
3261 	WPI_WRITE(sc, WPI_MASK, 0);
3262 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3263 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3264 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3265 
3266 	wpi_mem_lock(sc);
3267 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3268 	wpi_mem_unlock(sc);
3269 
3270 	/* reset all Tx rings */
3271 	for (ac = 0; ac < 4; ac++)
3272 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3273 	wpi_reset_tx_ring(sc, &sc->cmdq);
3274 
3275 	/* reset Rx ring */
3276 	wpi_reset_rx_ring(sc, &sc->rxq);
3277 
3278 	wpi_mem_lock(sc);
3279 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3280 	wpi_mem_unlock(sc);
3281 
3282 	DELAY(5);
3283 
3284 	wpi_stop_master(sc);
3285 
3286 	tmp = WPI_READ(sc, WPI_RESET);
3287 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3288 }
3289 
3290 static bool
3291 wpi_resume(device_t dv, const pmf_qual_t *qual)
3292 {
3293 	struct wpi_softc *sc = device_private(dv);
3294 
3295 	(void)wpi_reset(sc);
3296 
3297 	return true;
3298 }
3299 
3300 /*
3301  * Return whether or not the radio is enabled in hardware
3302  * (i.e. the rfkill switch is "off").
3303  */
3304 static int
3305 wpi_getrfkill(struct wpi_softc *sc)
3306 {
3307 	uint32_t tmp;
3308 
3309 	wpi_mem_lock(sc);
3310 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3311 	wpi_mem_unlock(sc);
3312 
3313 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3314 	if (tmp & 0x01) {
3315 		/* switch is on */
3316 		if (sc->sc_rsw_status != WPI_RSW_ON) {
3317 			sc->sc_rsw_status = WPI_RSW_ON;
3318 			sysmon_pswitch_event(&sc->sc_rsw,
3319 			    PSWITCH_EVENT_PRESSED);
3320 		}
3321 	} else {
3322 		/* switch is off */
3323 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
3324 			sc->sc_rsw_status = WPI_RSW_OFF;
3325 			sysmon_pswitch_event(&sc->sc_rsw,
3326 			    PSWITCH_EVENT_RELEASED);
3327 		}
3328 	}
3329 
3330 	return !(tmp & 0x01);
3331 }
3332 
3333 static int
3334 wpi_sysctl_radio(SYSCTLFN_ARGS)
3335 {
3336 	struct sysctlnode node;
3337 	struct wpi_softc *sc;
3338 	int val, error;
3339 
3340 	node = *rnode;
3341 	sc = (struct wpi_softc *)node.sysctl_data;
3342 
3343 	mutex_enter(&sc->sc_rsw_mtx);
3344 	val = !wpi_getrfkill(sc);
3345 	mutex_exit(&sc->sc_rsw_mtx);
3346 
3347 	node.sysctl_data = &val;
3348 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3349 
3350 	if (error || newp == NULL)
3351 		return error;
3352 
3353 	return 0;
3354 }
3355 
3356 static void
3357 wpi_sysctlattach(struct wpi_softc *sc)
3358 {
3359 	int rc;
3360 	const struct sysctlnode *rnode;
3361 	const struct sysctlnode *cnode;
3362 
3363 	struct sysctllog **clog = &sc->sc_sysctllog;
3364 
3365 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3366 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3367 	    SYSCTL_DESCR("wpi controls and statistics"),
3368 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3369 		goto err;
3370 
3371 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3372 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3373 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3374 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3375 		goto err;
3376 
3377 #ifdef WPI_DEBUG
3378 	/* control debugging printfs */
3379 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3380 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3381 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3382 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3383 		goto err;
3384 #endif
3385 
3386 	return;
3387 err:
3388 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3389 }
3390 
3391 static void
3392 wpi_rsw_thread(void *arg)
3393 {
3394 	struct wpi_softc *sc = (struct wpi_softc *)arg;
3395 
3396 	mutex_enter(&sc->sc_rsw_mtx);
3397 	for (;;) {
3398 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3399 		if (sc->sc_dying) {
3400 			sc->sc_rsw_lwp = NULL;
3401 			cv_broadcast(&sc->sc_rsw_cv);
3402 			mutex_exit(&sc->sc_rsw_mtx);
3403 			kthread_exit(0);
3404 		}
3405 		wpi_getrfkill(sc);
3406 	}
3407 }
3408 
3409