1 /* $NetBSD: if_wpi.c,v 1.58 2014/03/29 19:28:25 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.58 2014/03/29 19:28:25 christos Exp $"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 */ 26 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/sysctl.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/mutex.h> 37 #include <sys/once.h> 38 #include <sys/conf.h> 39 #include <sys/kauth.h> 40 #include <sys/callout.h> 41 #include <sys/proc.h> 42 43 #include <sys/bus.h> 44 #include <machine/endian.h> 45 #include <sys/intr.h> 46 47 #include <dev/pci/pcireg.h> 48 #include <dev/pci/pcivar.h> 49 #include <dev/pci/pcidevs.h> 50 51 #include <net/bpf.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_dl.h> 55 #include <net/if_ether.h> 56 #include <net/if_media.h> 57 #include <net/if_types.h> 58 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_amrr.h> 61 #include <net80211/ieee80211_radiotap.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <netinet/ip.h> 67 68 #include <dev/firmload.h> 69 70 #include <dev/pci/if_wpireg.h> 71 #include <dev/pci/if_wpivar.h> 72 73 #ifdef WPI_DEBUG 74 #define DPRINTF(x) if (wpi_debug > 0) printf x 75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x 76 int wpi_debug = 1; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 /* 83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 84 */ 85 static const struct ieee80211_rateset wpi_rateset_11a = 86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 87 88 static const struct ieee80211_rateset wpi_rateset_11b = 89 { 4, { 2, 4, 11, 22 } }; 90 91 static const struct ieee80211_rateset wpi_rateset_11g = 92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 93 94 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode"; 95 static once_t wpi_firmware_init; 96 static kmutex_t wpi_firmware_mutex; 97 static size_t wpi_firmware_users; 98 static uint8_t *wpi_firmware_image; 99 static size_t wpi_firmware_size; 100 101 static int wpi_match(device_t, cfdata_t, void *); 102 static void wpi_attach(device_t, device_t, void *); 103 static int wpi_detach(device_t , int); 104 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *, 105 void **, bus_size_t, bus_size_t, int); 106 static void wpi_dma_contig_free(struct wpi_dma_info *); 107 static int wpi_alloc_shared(struct wpi_softc *); 108 static void wpi_free_shared(struct wpi_softc *); 109 static int wpi_alloc_fwmem(struct wpi_softc *); 110 static void wpi_free_fwmem(struct wpi_softc *); 111 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *); 112 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *); 113 static int wpi_alloc_rpool(struct wpi_softc *); 114 static void wpi_free_rpool(struct wpi_softc *); 115 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 116 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 117 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 118 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int, 119 int); 120 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 121 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 122 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *); 123 static void wpi_newassoc(struct ieee80211_node *, int); 124 static int wpi_media_change(struct ifnet *); 125 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 126 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *); 127 static void wpi_mem_lock(struct wpi_softc *); 128 static void wpi_mem_unlock(struct wpi_softc *); 129 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 130 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 131 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 132 const uint32_t *, int); 133 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 134 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 135 static int wpi_cache_firmware(struct wpi_softc *); 136 static void wpi_release_firmware(void); 137 static int wpi_load_firmware(struct wpi_softc *); 138 static void wpi_calib_timeout(void *); 139 static void wpi_iter_func(void *, struct ieee80211_node *); 140 static void wpi_power_calibration(struct wpi_softc *, int); 141 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 142 struct wpi_rx_data *); 143 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 144 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 145 static void wpi_notif_intr(struct wpi_softc *); 146 static int wpi_intr(void *); 147 static void wpi_read_eeprom(struct wpi_softc *); 148 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 149 static void wpi_read_eeprom_group(struct wpi_softc *, int); 150 static uint8_t wpi_plcp_signal(int); 151 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 152 struct ieee80211_node *, int); 153 static void wpi_start(struct ifnet *); 154 static void wpi_watchdog(struct ifnet *); 155 static int wpi_ioctl(struct ifnet *, u_long, void *); 156 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 157 static int wpi_wme_update(struct ieee80211com *); 158 static int wpi_mrr_setup(struct wpi_softc *); 159 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 160 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 161 static int wpi_set_txpower(struct wpi_softc *, 162 struct ieee80211_channel *, int); 163 static int wpi_get_power_index(struct wpi_softc *, 164 struct wpi_power_group *, struct ieee80211_channel *, int); 165 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 166 static int wpi_auth(struct wpi_softc *); 167 static int wpi_scan(struct wpi_softc *, uint16_t); 168 static int wpi_config(struct wpi_softc *); 169 static void wpi_stop_master(struct wpi_softc *); 170 static int wpi_power_up(struct wpi_softc *); 171 static int wpi_reset(struct wpi_softc *); 172 static void wpi_hw_config(struct wpi_softc *); 173 static int wpi_init(struct ifnet *); 174 static void wpi_stop(struct ifnet *, int); 175 static bool wpi_resume(device_t, const pmf_qual_t *); 176 static int wpi_getrfkill(struct wpi_softc *); 177 static void wpi_sysctlattach(struct wpi_softc *); 178 179 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach, 180 wpi_detach, NULL); 181 182 static int 183 wpi_match(device_t parent, cfdata_t match __unused, void *aux) 184 { 185 struct pci_attach_args *pa = aux; 186 187 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 188 return 0; 189 190 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 || 191 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2) 192 return 1; 193 194 return 0; 195 } 196 197 /* Base Address Register */ 198 #define WPI_PCI_BAR0 0x10 199 200 static int 201 wpi_attach_once(void) 202 { 203 204 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE); 205 return 0; 206 } 207 208 static void 209 wpi_attach(device_t parent __unused, device_t self, void *aux) 210 { 211 struct wpi_softc *sc = device_private(self); 212 struct ieee80211com *ic = &sc->sc_ic; 213 struct ifnet *ifp = &sc->sc_ec.ec_if; 214 struct pci_attach_args *pa = aux; 215 const char *intrstr; 216 bus_space_tag_t memt; 217 bus_space_handle_t memh; 218 pci_intr_handle_t ih; 219 pcireg_t data; 220 int error, ac; 221 char intrbuf[PCI_INTRSTR_LEN]; 222 223 RUN_ONCE(&wpi_firmware_init, wpi_attach_once); 224 sc->fw_used = false; 225 226 sc->sc_dev = self; 227 sc->sc_pct = pa->pa_pc; 228 sc->sc_pcitag = pa->pa_tag; 229 230 callout_init(&sc->calib_to, 0); 231 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc); 232 233 pci_aprint_devinfo(pa, NULL); 234 235 /* enable bus-mastering */ 236 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 237 data |= PCI_COMMAND_MASTER_ENABLE; 238 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data); 239 240 /* map the register window */ 241 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | 242 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz); 243 if (error != 0) { 244 aprint_error_dev(self, "could not map memory space\n"); 245 return; 246 } 247 248 sc->sc_st = memt; 249 sc->sc_sh = memh; 250 sc->sc_dmat = pa->pa_dmat; 251 252 if (pci_intr_map(pa, &ih) != 0) { 253 aprint_error_dev(self, "could not map interrupt\n"); 254 return; 255 } 256 257 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf)); 258 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc); 259 if (sc->sc_ih == NULL) { 260 aprint_error_dev(self, "could not establish interrupt"); 261 if (intrstr != NULL) 262 aprint_error(" at %s", intrstr); 263 aprint_error("\n"); 264 return; 265 } 266 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 267 268 if (wpi_reset(sc) != 0) { 269 aprint_error_dev(self, "could not reset adapter\n"); 270 return; 271 } 272 273 /* 274 * Allocate DMA memory for firmware transfers. 275 */ 276 if ((error = wpi_alloc_fwmem(sc)) != 0) 277 return; 278 279 /* 280 * Allocate shared page and Tx/Rx rings. 281 */ 282 if ((error = wpi_alloc_shared(sc)) != 0) { 283 aprint_error_dev(self, "could not allocate shared area\n"); 284 goto fail1; 285 } 286 287 if ((error = wpi_alloc_rpool(sc)) != 0) { 288 aprint_error_dev(self, "could not allocate Rx buffers\n"); 289 goto fail2; 290 } 291 292 for (ac = 0; ac < 4; ac++) { 293 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 294 if (error != 0) { 295 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac); 296 goto fail3; 297 } 298 } 299 300 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 301 if (error != 0) { 302 aprint_error_dev(self, "could not allocate command ring\n"); 303 goto fail3; 304 } 305 306 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) { 307 aprint_error_dev(self, "could not allocate Rx ring\n"); 308 goto fail4; 309 } 310 311 ic->ic_ifp = ifp; 312 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 313 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 314 ic->ic_state = IEEE80211_S_INIT; 315 316 /* set device capabilities */ 317 ic->ic_caps = 318 #ifdef netyet 319 IEEE80211_C_IBSS | /* IBSS mode support */ 320 #endif 321 IEEE80211_C_WPA | /* 802.11i */ 322 IEEE80211_C_MONITOR | /* monitor mode supported */ 323 IEEE80211_C_TXPMGT | /* tx power management */ 324 IEEE80211_C_SHSLOT | /* short slot time supported */ 325 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 326 IEEE80211_C_WME; /* 802.11e */ 327 328 /* read supported channels and MAC address from EEPROM */ 329 wpi_read_eeprom(sc); 330 331 /* set supported .11a, .11b, .11g rates */ 332 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a; 333 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b; 334 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g; 335 336 ic->ic_ibss_chan = &ic->ic_channels[0]; 337 338 ifp->if_softc = sc; 339 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 340 ifp->if_init = wpi_init; 341 ifp->if_stop = wpi_stop; 342 ifp->if_ioctl = wpi_ioctl; 343 ifp->if_start = wpi_start; 344 ifp->if_watchdog = wpi_watchdog; 345 IFQ_SET_READY(&ifp->if_snd); 346 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 347 348 if_attach(ifp); 349 ieee80211_ifattach(ic); 350 /* override default methods */ 351 ic->ic_node_alloc = wpi_node_alloc; 352 ic->ic_newassoc = wpi_newassoc; 353 ic->ic_wme.wme_update = wpi_wme_update; 354 355 /* override state transition machine */ 356 sc->sc_newstate = ic->ic_newstate; 357 ic->ic_newstate = wpi_newstate; 358 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status); 359 360 sc->amrr.amrr_min_success_threshold = 1; 361 sc->amrr.amrr_max_success_threshold = 15; 362 363 wpi_sysctlattach(sc); 364 365 if (pmf_device_register(self, NULL, wpi_resume)) 366 pmf_class_network_register(self, ifp); 367 else 368 aprint_error_dev(self, "couldn't establish power handler\n"); 369 370 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 371 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 372 &sc->sc_drvbpf); 373 374 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 375 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 376 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 377 378 sc->sc_txtap_len = sizeof sc->sc_txtapu; 379 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 380 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 381 382 ieee80211_announce(ic); 383 384 return; 385 386 fail4: wpi_free_tx_ring(sc, &sc->cmdq); 387 fail3: while (--ac >= 0) 388 wpi_free_tx_ring(sc, &sc->txq[ac]); 389 wpi_free_rpool(sc); 390 fail2: wpi_free_shared(sc); 391 fail1: wpi_free_fwmem(sc); 392 } 393 394 static int 395 wpi_detach(device_t self, int flags __unused) 396 { 397 struct wpi_softc *sc = device_private(self); 398 struct ifnet *ifp = sc->sc_ic.ic_ifp; 399 int ac; 400 401 wpi_stop(ifp, 1); 402 403 if (ifp != NULL) 404 bpf_detach(ifp); 405 ieee80211_ifdetach(&sc->sc_ic); 406 if (ifp != NULL) 407 if_detach(ifp); 408 409 for (ac = 0; ac < 4; ac++) 410 wpi_free_tx_ring(sc, &sc->txq[ac]); 411 wpi_free_tx_ring(sc, &sc->cmdq); 412 wpi_free_rx_ring(sc, &sc->rxq); 413 wpi_free_rpool(sc); 414 wpi_free_shared(sc); 415 416 if (sc->sc_ih != NULL) { 417 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 418 sc->sc_ih = NULL; 419 } 420 421 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 422 423 if (sc->fw_used) { 424 sc->fw_used = false; 425 wpi_release_firmware(); 426 } 427 428 return 0; 429 } 430 431 static int 432 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, 433 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 434 { 435 int nsegs, error; 436 437 dma->tag = tag; 438 dma->size = size; 439 440 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map); 441 if (error != 0) 442 goto fail; 443 444 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 445 flags); 446 if (error != 0) 447 goto fail; 448 449 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags); 450 if (error != 0) 451 goto fail; 452 453 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags); 454 if (error != 0) 455 goto fail; 456 457 memset(dma->vaddr, 0, size); 458 459 dma->paddr = dma->map->dm_segs[0].ds_addr; 460 if (kvap != NULL) 461 *kvap = dma->vaddr; 462 463 return 0; 464 465 fail: wpi_dma_contig_free(dma); 466 return error; 467 } 468 469 static void 470 wpi_dma_contig_free(struct wpi_dma_info *dma) 471 { 472 if (dma->map != NULL) { 473 if (dma->vaddr != NULL) { 474 bus_dmamap_unload(dma->tag, dma->map); 475 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 476 bus_dmamem_free(dma->tag, &dma->seg, 1); 477 dma->vaddr = NULL; 478 } 479 bus_dmamap_destroy(dma->tag, dma->map); 480 dma->map = NULL; 481 } 482 } 483 484 /* 485 * Allocate a shared page between host and NIC. 486 */ 487 static int 488 wpi_alloc_shared(struct wpi_softc *sc) 489 { 490 int error; 491 /* must be aligned on a 4K-page boundary */ 492 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, 493 (void **)&sc->shared, sizeof (struct wpi_shared), 494 WPI_BUF_ALIGN,BUS_DMA_NOWAIT); 495 if (error != 0) 496 aprint_error_dev(sc->sc_dev, 497 "could not allocate shared area DMA memory\n"); 498 499 return error; 500 } 501 502 static void 503 wpi_free_shared(struct wpi_softc *sc) 504 { 505 wpi_dma_contig_free(&sc->shared_dma); 506 } 507 508 /* 509 * Allocate DMA-safe memory for firmware transfer. 510 */ 511 static int 512 wpi_alloc_fwmem(struct wpi_softc *sc) 513 { 514 int error; 515 /* allocate enough contiguous space to store text and data */ 516 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 517 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0, 518 BUS_DMA_NOWAIT); 519 520 if (error != 0) 521 aprint_error_dev(sc->sc_dev, 522 "could not allocate firmware transfer area" 523 "DMA memory\n"); 524 return error; 525 } 526 527 static void 528 wpi_free_fwmem(struct wpi_softc *sc) 529 { 530 wpi_dma_contig_free(&sc->fw_dma); 531 } 532 533 534 static struct wpi_rbuf * 535 wpi_alloc_rbuf(struct wpi_softc *sc) 536 { 537 struct wpi_rbuf *rbuf; 538 539 mutex_enter(&sc->rxq.freelist_mtx); 540 rbuf = SLIST_FIRST(&sc->rxq.freelist); 541 if (rbuf != NULL) { 542 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 543 sc->rxq.nb_free_entries --; 544 } 545 mutex_exit(&sc->rxq.freelist_mtx); 546 547 return rbuf; 548 } 549 550 /* 551 * This is called automatically by the network stack when the mbuf to which our 552 * Rx buffer is attached is freed. 553 */ 554 static void 555 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 556 { 557 struct wpi_rbuf *rbuf = arg; 558 struct wpi_softc *sc = rbuf->sc; 559 560 /* put the buffer back in the free list */ 561 562 mutex_enter(&sc->rxq.freelist_mtx); 563 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 564 mutex_exit(&sc->rxq.freelist_mtx); 565 /* No need to protect this with a mutex, see wpi_rx_intr */ 566 sc->rxq.nb_free_entries ++; 567 568 if (__predict_true(m != NULL)) 569 pool_cache_put(mb_cache, m); 570 } 571 572 static int 573 wpi_alloc_rpool(struct wpi_softc *sc) 574 { 575 struct wpi_rx_ring *ring = &sc->rxq; 576 struct wpi_rbuf *rbuf; 577 int i, error; 578 579 /* allocate a big chunk of DMA'able memory.. */ 580 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 581 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT); 582 if (error != 0) { 583 aprint_normal_dev(sc->sc_dev, 584 "could not allocate Rx buffers DMA memory\n"); 585 return error; 586 } 587 588 /* ..and split it into 3KB chunks */ 589 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 590 SLIST_INIT(&ring->freelist); 591 for (i = 0; i < WPI_RBUF_COUNT; i++) { 592 rbuf = &ring->rbuf[i]; 593 rbuf->sc = sc; /* backpointer for callbacks */ 594 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE; 595 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE; 596 597 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 598 } 599 600 ring->nb_free_entries = WPI_RBUF_COUNT; 601 return 0; 602 } 603 604 static void 605 wpi_free_rpool(struct wpi_softc *sc) 606 { 607 wpi_dma_contig_free(&sc->rxq.buf_dma); 608 } 609 610 static int 611 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 612 { 613 struct wpi_rx_data *data; 614 struct wpi_rbuf *rbuf; 615 int i, error; 616 617 ring->cur = 0; 618 619 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 620 (void **)&ring->desc, 621 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc), 622 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 623 if (error != 0) { 624 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n"); 625 goto fail; 626 } 627 628 /* 629 * Setup Rx buffers. 630 */ 631 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 632 data = &ring->data[i]; 633 634 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 635 if (data->m == NULL) { 636 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n"); 637 error = ENOMEM; 638 goto fail; 639 } 640 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) { 641 m_freem(data->m); 642 data->m = NULL; 643 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n"); 644 error = ENOMEM; 645 goto fail; 646 } 647 /* attach Rx buffer to mbuf */ 648 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 649 rbuf); 650 data->m->m_flags |= M_EXT_RW; 651 652 ring->desc[i] = htole32(rbuf->paddr); 653 } 654 655 return 0; 656 657 fail: wpi_free_rx_ring(sc, ring); 658 return error; 659 } 660 661 static void 662 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 663 { 664 int ntries; 665 666 wpi_mem_lock(sc); 667 668 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 669 for (ntries = 0; ntries < 100; ntries++) { 670 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 671 break; 672 DELAY(10); 673 } 674 #ifdef WPI_DEBUG 675 if (ntries == 100 && wpi_debug > 0) 676 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n"); 677 #endif 678 wpi_mem_unlock(sc); 679 680 ring->cur = 0; 681 } 682 683 static void 684 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 685 { 686 int i; 687 688 wpi_dma_contig_free(&ring->desc_dma); 689 690 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 691 if (ring->data[i].m != NULL) 692 m_freem(ring->data[i].m); 693 } 694 } 695 696 static int 697 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 698 int qid) 699 { 700 struct wpi_tx_data *data; 701 int i, error; 702 703 ring->qid = qid; 704 ring->count = count; 705 ring->queued = 0; 706 ring->cur = 0; 707 708 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 709 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 710 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 711 if (error != 0) { 712 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n"); 713 goto fail; 714 } 715 716 /* update shared page with ring's base address */ 717 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 718 719 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 720 (void **)&ring->cmd, 721 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT); 722 if (error != 0) { 723 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n"); 724 goto fail; 725 } 726 727 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 728 M_NOWAIT); 729 if (ring->data == NULL) { 730 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n"); 731 goto fail; 732 } 733 734 memset(ring->data, 0, count * sizeof (struct wpi_tx_data)); 735 736 for (i = 0; i < count; i++) { 737 data = &ring->data[i]; 738 739 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 740 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 741 &data->map); 742 if (error != 0) { 743 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n"); 744 goto fail; 745 } 746 } 747 748 return 0; 749 750 fail: wpi_free_tx_ring(sc, ring); 751 return error; 752 } 753 754 static void 755 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 756 { 757 struct wpi_tx_data *data; 758 int i, ntries; 759 760 wpi_mem_lock(sc); 761 762 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 763 for (ntries = 0; ntries < 100; ntries++) { 764 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 765 break; 766 DELAY(10); 767 } 768 #ifdef WPI_DEBUG 769 if (ntries == 100 && wpi_debug > 0) { 770 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", 771 ring->qid); 772 } 773 #endif 774 wpi_mem_unlock(sc); 775 776 for (i = 0; i < ring->count; i++) { 777 data = &ring->data[i]; 778 779 if (data->m != NULL) { 780 bus_dmamap_unload(sc->sc_dmat, data->map); 781 m_freem(data->m); 782 data->m = NULL; 783 } 784 } 785 786 ring->queued = 0; 787 ring->cur = 0; 788 } 789 790 static void 791 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 792 { 793 struct wpi_tx_data *data; 794 int i; 795 796 wpi_dma_contig_free(&ring->desc_dma); 797 wpi_dma_contig_free(&ring->cmd_dma); 798 799 if (ring->data != NULL) { 800 for (i = 0; i < ring->count; i++) { 801 data = &ring->data[i]; 802 803 if (data->m != NULL) { 804 bus_dmamap_unload(sc->sc_dmat, data->map); 805 m_freem(data->m); 806 } 807 } 808 free(ring->data, M_DEVBUF); 809 } 810 } 811 812 /*ARGUSED*/ 813 static struct ieee80211_node * 814 wpi_node_alloc(struct ieee80211_node_table *nt __unused) 815 { 816 struct wpi_node *wn; 817 818 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 819 820 return (struct ieee80211_node *)wn; 821 } 822 823 static void 824 wpi_newassoc(struct ieee80211_node *ni, int isnew) 825 { 826 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 827 int i; 828 829 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn); 830 831 /* set rate to some reasonable initial value */ 832 for (i = ni->ni_rates.rs_nrates - 1; 833 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 834 i--); 835 ni->ni_txrate = i; 836 } 837 838 static int 839 wpi_media_change(struct ifnet *ifp) 840 { 841 int error; 842 843 error = ieee80211_media_change(ifp); 844 if (error != ENETRESET) 845 return error; 846 847 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 848 wpi_init(ifp); 849 850 return 0; 851 } 852 853 static int 854 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 855 { 856 struct ifnet *ifp = ic->ic_ifp; 857 struct wpi_softc *sc = ifp->if_softc; 858 struct ieee80211_node *ni; 859 int error; 860 861 callout_stop(&sc->calib_to); 862 863 switch (nstate) { 864 case IEEE80211_S_SCAN: 865 866 if (sc->is_scanning) 867 break; 868 869 sc->is_scanning = true; 870 ieee80211_node_table_reset(&ic->ic_scan); 871 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 872 873 /* make the link LED blink while we're scanning */ 874 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 875 876 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) { 877 aprint_error_dev(sc->sc_dev, "could not initiate scan\n"); 878 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN); 879 return error; 880 } 881 882 ic->ic_state = nstate; 883 return 0; 884 885 case IEEE80211_S_ASSOC: 886 if (ic->ic_state != IEEE80211_S_RUN) 887 break; 888 /* FALLTHROUGH */ 889 case IEEE80211_S_AUTH: 890 sc->config.associd = 0; 891 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 892 if ((error = wpi_auth(sc)) != 0) { 893 aprint_error_dev(sc->sc_dev, 894 "could not send authentication request\n"); 895 return error; 896 } 897 break; 898 899 case IEEE80211_S_RUN: 900 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 901 /* link LED blinks while monitoring */ 902 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 903 break; 904 } 905 906 ni = ic->ic_bss; 907 908 if (ic->ic_opmode != IEEE80211_M_STA) { 909 (void) wpi_auth(sc); /* XXX */ 910 wpi_setup_beacon(sc, ni); 911 } 912 913 wpi_enable_tsf(sc, ni); 914 915 /* update adapter's configuration */ 916 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 917 /* short preamble/slot time are negotiated when associating */ 918 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 919 WPI_CONFIG_SHSLOT); 920 if (ic->ic_flags & IEEE80211_F_SHSLOT) 921 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 922 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 923 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 924 sc->config.filter |= htole32(WPI_FILTER_BSS); 925 if (ic->ic_opmode != IEEE80211_M_STA) 926 sc->config.filter |= htole32(WPI_FILTER_BEACON); 927 928 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 929 930 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 931 sc->config.flags)); 932 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 933 sizeof (struct wpi_config), 1); 934 if (error != 0) { 935 aprint_error_dev(sc->sc_dev, "could not update configuration\n"); 936 return error; 937 } 938 939 /* configuration has changed, set Tx power accordingly */ 940 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 941 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 942 return error; 943 } 944 945 if (ic->ic_opmode == IEEE80211_M_STA) { 946 /* fake a join to init the tx rate */ 947 wpi_newassoc(ni, 1); 948 } 949 950 /* start periodic calibration timer */ 951 sc->calib_cnt = 0; 952 callout_schedule(&sc->calib_to, hz/2); 953 954 /* link LED always on while associated */ 955 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 956 break; 957 958 case IEEE80211_S_INIT: 959 sc->is_scanning = false; 960 break; 961 } 962 963 return sc->sc_newstate(ic, nstate, arg); 964 } 965 966 /* 967 * XXX: Hack to set the current channel to the value advertised in beacons or 968 * probe responses. Only used during AP detection. 969 * XXX: Duplicated from if_iwi.c 970 */ 971 static void 972 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m) 973 { 974 struct ieee80211_frame *wh; 975 uint8_t subtype; 976 uint8_t *frm, *efrm; 977 978 wh = mtod(m, struct ieee80211_frame *); 979 980 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 981 return; 982 983 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 984 985 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 986 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 987 return; 988 989 frm = (uint8_t *)(wh + 1); 990 efrm = mtod(m, uint8_t *) + m->m_len; 991 992 frm += 12; /* skip tstamp, bintval and capinfo fields */ 993 while (frm < efrm) { 994 if (*frm == IEEE80211_ELEMID_DSPARMS) 995 #if IEEE80211_CHAN_MAX < 255 996 if (frm[2] <= IEEE80211_CHAN_MAX) 997 #endif 998 ic->ic_curchan = &ic->ic_channels[frm[2]]; 999 1000 frm += frm[1] + 2; 1001 } 1002 } 1003 1004 /* 1005 * Grab exclusive access to NIC memory. 1006 */ 1007 static void 1008 wpi_mem_lock(struct wpi_softc *sc) 1009 { 1010 uint32_t tmp; 1011 int ntries; 1012 1013 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1014 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1015 1016 /* spin until we actually get the lock */ 1017 for (ntries = 0; ntries < 1000; ntries++) { 1018 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1019 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1020 break; 1021 DELAY(10); 1022 } 1023 if (ntries == 1000) 1024 aprint_error_dev(sc->sc_dev, "could not lock memory\n"); 1025 } 1026 1027 /* 1028 * Release lock on NIC memory. 1029 */ 1030 static void 1031 wpi_mem_unlock(struct wpi_softc *sc) 1032 { 1033 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1034 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1035 } 1036 1037 static uint32_t 1038 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1039 { 1040 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1041 return WPI_READ(sc, WPI_READ_MEM_DATA); 1042 } 1043 1044 static void 1045 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1046 { 1047 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1048 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1049 } 1050 1051 static void 1052 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1053 const uint32_t *data, int wlen) 1054 { 1055 for (; wlen > 0; wlen--, data++, addr += 4) 1056 wpi_mem_write(sc, addr, *data); 1057 } 1058 1059 1060 /* 1061 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC 1062 * instead of using the traditional bit-bang method. 1063 */ 1064 static int 1065 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1066 { 1067 uint8_t *out = data; 1068 uint32_t val; 1069 int ntries; 1070 1071 wpi_mem_lock(sc); 1072 for (; len > 0; len -= 2, addr++) { 1073 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1074 1075 for (ntries = 0; ntries < 10; ntries++) { 1076 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & 1077 WPI_EEPROM_READY) 1078 break; 1079 DELAY(5); 1080 } 1081 if (ntries == 10) { 1082 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 1083 return ETIMEDOUT; 1084 } 1085 *out++ = val >> 16; 1086 if (len > 1) 1087 *out++ = val >> 24; 1088 } 1089 wpi_mem_unlock(sc); 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * The firmware boot code is small and is intended to be copied directly into 1096 * the NIC internal memory. 1097 */ 1098 int 1099 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size) 1100 { 1101 int ntries; 1102 1103 size /= sizeof (uint32_t); 1104 1105 wpi_mem_lock(sc); 1106 1107 /* copy microcode image into NIC memory */ 1108 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1109 (const uint32_t *)ucode, size); 1110 1111 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1112 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1113 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1114 1115 /* run microcode */ 1116 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1117 1118 /* wait for transfer to complete */ 1119 for (ntries = 0; ntries < 1000; ntries++) { 1120 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN)) 1121 break; 1122 DELAY(10); 1123 } 1124 if (ntries == 1000) { 1125 wpi_mem_unlock(sc); 1126 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n"); 1127 return ETIMEDOUT; 1128 } 1129 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1130 1131 wpi_mem_unlock(sc); 1132 1133 return 0; 1134 } 1135 1136 static int 1137 wpi_cache_firmware(struct wpi_softc *sc) 1138 { 1139 const char *const fwname = wpi_firmware_name; 1140 firmware_handle_t fw; 1141 int error; 1142 1143 /* sc is used here only to report error messages. */ 1144 1145 mutex_enter(&wpi_firmware_mutex); 1146 1147 if (wpi_firmware_users == SIZE_MAX) { 1148 mutex_exit(&wpi_firmware_mutex); 1149 return ENFILE; /* Too many of something in the system... */ 1150 } 1151 if (wpi_firmware_users++) { 1152 KASSERT(wpi_firmware_image != NULL); 1153 KASSERT(wpi_firmware_size > 0); 1154 mutex_exit(&wpi_firmware_mutex); 1155 return 0; /* Already good to go. */ 1156 } 1157 1158 KASSERT(wpi_firmware_image == NULL); 1159 KASSERT(wpi_firmware_size == 0); 1160 1161 /* load firmware image from disk */ 1162 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) { 1163 aprint_error_dev(sc->sc_dev, 1164 "could not open firmware file %s: %d\n", fwname, error); 1165 goto fail0; 1166 } 1167 1168 wpi_firmware_size = firmware_get_size(fw); 1169 1170 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) + 1171 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ + 1172 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ + 1173 WPI_FW_BOOT_TEXT_MAXSZ) { 1174 aprint_error_dev(sc->sc_dev, 1175 "firmware file %s too large: %zu bytes\n", 1176 fwname, wpi_firmware_size); 1177 error = EFBIG; 1178 goto fail1; 1179 } 1180 1181 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) { 1182 aprint_error_dev(sc->sc_dev, 1183 "firmware file %s too small: %zu bytes\n", 1184 fwname, wpi_firmware_size); 1185 error = EINVAL; 1186 goto fail1; 1187 } 1188 1189 wpi_firmware_image = firmware_malloc(wpi_firmware_size); 1190 if (wpi_firmware_image == NULL) { 1191 aprint_error_dev(sc->sc_dev, 1192 "not enough memory for firmware file %s\n", fwname); 1193 error = ENOMEM; 1194 goto fail1; 1195 } 1196 1197 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size); 1198 if (error != 0) { 1199 aprint_error_dev(sc->sc_dev, 1200 "error reading firmware file %s: %d\n", fwname, error); 1201 goto fail2; 1202 } 1203 1204 /* Success! */ 1205 firmware_close(fw); 1206 mutex_exit(&wpi_firmware_mutex); 1207 return 0; 1208 1209 fail2: 1210 firmware_free(wpi_firmware_image, wpi_firmware_size); 1211 wpi_firmware_image = NULL; 1212 fail1: 1213 wpi_firmware_size = 0; 1214 firmware_close(fw); 1215 fail0: 1216 KASSERT(wpi_firmware_users == 1); 1217 wpi_firmware_users = 0; 1218 KASSERT(wpi_firmware_image == NULL); 1219 KASSERT(wpi_firmware_size == 0); 1220 1221 mutex_exit(&wpi_firmware_mutex); 1222 return error; 1223 } 1224 1225 static void 1226 wpi_release_firmware(void) 1227 { 1228 1229 mutex_enter(&wpi_firmware_mutex); 1230 1231 KASSERT(wpi_firmware_users > 0); 1232 KASSERT(wpi_firmware_image != NULL); 1233 KASSERT(wpi_firmware_size != 0); 1234 1235 if (--wpi_firmware_users == 0) { 1236 firmware_free(wpi_firmware_image, wpi_firmware_size); 1237 wpi_firmware_image = NULL; 1238 wpi_firmware_size = 0; 1239 } 1240 1241 mutex_exit(&wpi_firmware_mutex); 1242 } 1243 1244 static int 1245 wpi_load_firmware(struct wpi_softc *sc) 1246 { 1247 struct wpi_dma_info *dma = &sc->fw_dma; 1248 struct wpi_firmware_hdr hdr; 1249 const uint8_t *init_text, *init_data, *main_text, *main_data; 1250 const uint8_t *boot_text; 1251 uint32_t init_textsz, init_datasz, main_textsz, main_datasz; 1252 uint32_t boot_textsz; 1253 size_t size; 1254 int error; 1255 1256 if (!sc->fw_used) { 1257 if ((error = wpi_cache_firmware(sc)) != 0) 1258 return error; 1259 sc->fw_used = true; 1260 } 1261 1262 KASSERT(sc->fw_used); 1263 KASSERT(wpi_firmware_image != NULL); 1264 KASSERT(wpi_firmware_size > sizeof(hdr)); 1265 1266 memcpy(&hdr, wpi_firmware_image, sizeof(hdr)); 1267 1268 main_textsz = le32toh(hdr.main_textsz); 1269 main_datasz = le32toh(hdr.main_datasz); 1270 init_textsz = le32toh(hdr.init_textsz); 1271 init_datasz = le32toh(hdr.init_datasz); 1272 boot_textsz = le32toh(hdr.boot_textsz); 1273 1274 /* sanity-check firmware segments sizes */ 1275 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ || 1276 main_datasz > WPI_FW_MAIN_DATA_MAXSZ || 1277 init_textsz > WPI_FW_INIT_TEXT_MAXSZ || 1278 init_datasz > WPI_FW_INIT_DATA_MAXSZ || 1279 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ || 1280 (boot_textsz & 3) != 0) { 1281 aprint_error_dev(sc->sc_dev, "invalid firmware header\n"); 1282 error = EINVAL; 1283 goto free_firmware; 1284 } 1285 1286 /* check that all firmware segments are present */ 1287 size = sizeof (struct wpi_firmware_hdr) + main_textsz + 1288 main_datasz + init_textsz + init_datasz + boot_textsz; 1289 if (wpi_firmware_size < size) { 1290 aprint_error_dev(sc->sc_dev, 1291 "firmware file truncated: %zu bytes, expected %zu bytes\n", 1292 wpi_firmware_size, size); 1293 error = EINVAL; 1294 goto free_firmware; 1295 } 1296 1297 /* get pointers to firmware segments */ 1298 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr); 1299 main_data = main_text + main_textsz; 1300 init_text = main_data + main_datasz; 1301 init_data = init_text + init_textsz; 1302 boot_text = init_data + init_datasz; 1303 1304 /* copy initialization images into pre-allocated DMA-safe memory */ 1305 memcpy(dma->vaddr, init_data, init_datasz); 1306 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, 1307 init_textsz); 1308 1309 /* tell adapter where to find initialization images */ 1310 wpi_mem_lock(sc); 1311 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1312 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz); 1313 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1314 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 1315 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz); 1316 wpi_mem_unlock(sc); 1317 1318 /* load firmware boot code */ 1319 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) { 1320 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n"); 1321 return error; 1322 } 1323 1324 /* now press "execute" ;-) */ 1325 WPI_WRITE(sc, WPI_RESET, 0); 1326 1327 /* ..and wait at most one second for adapter to initialize */ 1328 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1329 /* this isn't what was supposed to happen.. */ 1330 aprint_error_dev(sc->sc_dev, 1331 "timeout waiting for adapter to initialize\n"); 1332 } 1333 1334 /* copy runtime images into pre-allocated DMA-safe memory */ 1335 memcpy(dma->vaddr, main_data, main_datasz); 1336 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, 1337 main_textsz); 1338 1339 /* tell adapter where to find runtime images */ 1340 wpi_mem_lock(sc); 1341 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1342 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz); 1343 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1344 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 1345 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz); 1346 wpi_mem_unlock(sc); 1347 1348 /* wait at most one second for second alive notification */ 1349 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1350 /* this isn't what was supposed to happen.. */ 1351 aprint_error_dev(sc->sc_dev, 1352 "timeout waiting for adapter to initialize\n"); 1353 } 1354 1355 return error; 1356 1357 free_firmware: 1358 sc->fw_used = false; 1359 wpi_release_firmware(); 1360 return error; 1361 } 1362 1363 static void 1364 wpi_calib_timeout(void *arg) 1365 { 1366 struct wpi_softc *sc = arg; 1367 struct ieee80211com *ic = &sc->sc_ic; 1368 int temp, s; 1369 1370 /* automatic rate control triggered every 500ms */ 1371 if (ic->ic_fixed_rate == -1) { 1372 s = splnet(); 1373 if (ic->ic_opmode == IEEE80211_M_STA) 1374 wpi_iter_func(sc, ic->ic_bss); 1375 else 1376 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc); 1377 splx(s); 1378 } 1379 1380 /* update sensor data */ 1381 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 1382 1383 /* automatic power calibration every 60s */ 1384 if (++sc->calib_cnt >= 120) { 1385 wpi_power_calibration(sc, temp); 1386 sc->calib_cnt = 0; 1387 } 1388 1389 callout_schedule(&sc->calib_to, hz/2); 1390 } 1391 1392 static void 1393 wpi_iter_func(void *arg, struct ieee80211_node *ni) 1394 { 1395 struct wpi_softc *sc = arg; 1396 struct wpi_node *wn = (struct wpi_node *)ni; 1397 1398 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1399 } 1400 1401 /* 1402 * This function is called periodically (every 60 seconds) to adjust output 1403 * power to temperature changes. 1404 */ 1405 void 1406 wpi_power_calibration(struct wpi_softc *sc, int temp) 1407 { 1408 /* sanity-check read value */ 1409 if (temp < -260 || temp > 25) { 1410 /* this can't be correct, ignore */ 1411 DPRINTF(("out-of-range temperature reported: %d\n", temp)); 1412 return; 1413 } 1414 1415 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 1416 1417 /* adjust Tx power if need be */ 1418 if (abs(temp - sc->temp) <= 6) 1419 return; 1420 1421 sc->temp = temp; 1422 1423 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) { 1424 /* just warn, too bad for the automatic calibration... */ 1425 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n"); 1426 } 1427 } 1428 1429 static void 1430 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1431 struct wpi_rx_data *data) 1432 { 1433 struct ieee80211com *ic = &sc->sc_ic; 1434 struct ifnet *ifp = ic->ic_ifp; 1435 struct wpi_rx_ring *ring = &sc->rxq; 1436 struct wpi_rx_stat *stat; 1437 struct wpi_rx_head *head; 1438 struct wpi_rx_tail *tail; 1439 struct wpi_rbuf *rbuf; 1440 struct ieee80211_frame *wh; 1441 struct ieee80211_node *ni; 1442 struct mbuf *m, *mnew; 1443 int data_off ; 1444 1445 stat = (struct wpi_rx_stat *)(desc + 1); 1446 1447 if (stat->len > WPI_STAT_MAXLEN) { 1448 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n"); 1449 ifp->if_ierrors++; 1450 return; 1451 } 1452 1453 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len); 1454 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len)); 1455 1456 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x " 1457 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len), 1458 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1459 le64toh(tail->tstamp))); 1460 1461 /* 1462 * Discard Rx frames with bad CRC early (XXX we may want to pass them 1463 * to radiotap in monitor mode). 1464 */ 1465 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1466 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags))); 1467 ifp->if_ierrors++; 1468 return; 1469 } 1470 1471 /* Compute where are the useful datas */ 1472 data_off = (char*)(head + 1) - mtod(data->m, char*); 1473 1474 /* 1475 * If the number of free entry is too low 1476 * just dup the data->m socket and reuse the same rbuf entry 1477 * Note that thi test is not protected by a mutex because the 1478 * only path that causes nb_free_entries to decrease is through 1479 * this interrupt routine, which is not re-entrent. 1480 * What may not be obvious is that the safe path is if that test 1481 * evaluates as true, so nb_free_entries can grow any time. 1482 */ 1483 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) { 1484 1485 /* Prepare the mbuf for the m_dup */ 1486 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len); 1487 data->m->m_data = (char*) data->m->m_data + data_off; 1488 1489 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT); 1490 1491 /* Restore the m_data pointer for future use */ 1492 data->m->m_data = (char*) data->m->m_data - data_off; 1493 1494 if (m == NULL) { 1495 ifp->if_ierrors++; 1496 return; 1497 } 1498 } else { 1499 1500 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1501 if (mnew == NULL) { 1502 ifp->if_ierrors++; 1503 return; 1504 } 1505 1506 rbuf = wpi_alloc_rbuf(sc); 1507 KASSERT(rbuf != NULL); 1508 1509 /* attach Rx buffer to mbuf */ 1510 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 1511 rbuf); 1512 mnew->m_flags |= M_EXT_RW; 1513 1514 m = data->m; 1515 data->m = mnew; 1516 1517 /* update Rx descriptor */ 1518 ring->desc[ring->cur] = htole32(rbuf->paddr); 1519 1520 m->m_data = (char*)m->m_data + data_off; 1521 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1522 } 1523 1524 /* finalize mbuf */ 1525 m->m_pkthdr.rcvif = ifp; 1526 1527 if (ic->ic_state == IEEE80211_S_SCAN) 1528 wpi_fix_channel(ic, m); 1529 1530 if (sc->sc_drvbpf != NULL) { 1531 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1532 1533 tap->wr_flags = 0; 1534 tap->wr_chan_freq = 1535 htole16(ic->ic_channels[head->chan].ic_freq); 1536 tap->wr_chan_flags = 1537 htole16(ic->ic_channels[head->chan].ic_flags); 1538 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1539 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1540 tap->wr_tsft = tail->tstamp; 1541 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1542 switch (head->rate) { 1543 /* CCK rates */ 1544 case 10: tap->wr_rate = 2; break; 1545 case 20: tap->wr_rate = 4; break; 1546 case 55: tap->wr_rate = 11; break; 1547 case 110: tap->wr_rate = 22; break; 1548 /* OFDM rates */ 1549 case 0xd: tap->wr_rate = 12; break; 1550 case 0xf: tap->wr_rate = 18; break; 1551 case 0x5: tap->wr_rate = 24; break; 1552 case 0x7: tap->wr_rate = 36; break; 1553 case 0x9: tap->wr_rate = 48; break; 1554 case 0xb: tap->wr_rate = 72; break; 1555 case 0x1: tap->wr_rate = 96; break; 1556 case 0x3: tap->wr_rate = 108; break; 1557 /* unknown rate: should not happen */ 1558 default: tap->wr_rate = 0; 1559 } 1560 if (le16toh(head->flags) & 0x4) 1561 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1562 1563 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1564 } 1565 1566 /* grab a reference to the source node */ 1567 wh = mtod(m, struct ieee80211_frame *); 1568 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1569 1570 /* send the frame to the 802.11 layer */ 1571 ieee80211_input(ic, m, ni, stat->rssi, 0); 1572 1573 /* release node reference */ 1574 ieee80211_free_node(ni); 1575 } 1576 1577 static void 1578 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1579 { 1580 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1581 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1582 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1583 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1584 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1585 1586 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x " 1587 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries, 1588 stat->nkill, stat->rate, le32toh(stat->duration), 1589 le32toh(stat->status))); 1590 1591 /* 1592 * Update rate control statistics for the node. 1593 * XXX we should not count mgmt frames since they're always sent at 1594 * the lowest available bit-rate. 1595 */ 1596 wn->amn.amn_txcnt++; 1597 if (stat->ntries > 0) { 1598 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries)); 1599 wn->amn.amn_retrycnt++; 1600 } 1601 1602 if ((le32toh(stat->status) & 0xff) != 1) 1603 ifp->if_oerrors++; 1604 else 1605 ifp->if_opackets++; 1606 1607 bus_dmamap_unload(sc->sc_dmat, txdata->map); 1608 m_freem(txdata->m); 1609 txdata->m = NULL; 1610 ieee80211_free_node(txdata->ni); 1611 txdata->ni = NULL; 1612 1613 ring->queued--; 1614 1615 sc->sc_tx_timer = 0; 1616 ifp->if_flags &= ~IFF_OACTIVE; 1617 wpi_start(ifp); 1618 } 1619 1620 static void 1621 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1622 { 1623 struct wpi_tx_ring *ring = &sc->cmdq; 1624 struct wpi_tx_data *data; 1625 1626 if ((desc->qid & 7) != 4) 1627 return; /* not a command ack */ 1628 1629 data = &ring->data[desc->idx]; 1630 1631 /* if the command was mapped in a mbuf, free it */ 1632 if (data->m != NULL) { 1633 bus_dmamap_unload(sc->sc_dmat, data->map); 1634 m_freem(data->m); 1635 data->m = NULL; 1636 } 1637 1638 wakeup(&ring->cmd[desc->idx]); 1639 } 1640 1641 static void 1642 wpi_notif_intr(struct wpi_softc *sc) 1643 { 1644 struct ieee80211com *ic = &sc->sc_ic; 1645 struct ifnet *ifp = ic->ic_ifp; 1646 struct wpi_rx_desc *desc; 1647 struct wpi_rx_data *data; 1648 uint32_t hw; 1649 1650 hw = le32toh(sc->shared->next); 1651 while (sc->rxq.cur != hw) { 1652 data = &sc->rxq.data[sc->rxq.cur]; 1653 1654 desc = mtod(data->m, struct wpi_rx_desc *); 1655 1656 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1657 "len=%d\n", desc->qid, desc->idx, desc->flags, 1658 desc->type, le32toh(desc->len))); 1659 1660 if (!(desc->qid & 0x80)) /* reply to a command */ 1661 wpi_cmd_intr(sc, desc); 1662 1663 switch (desc->type) { 1664 case WPI_RX_DONE: 1665 /* a 802.11 frame was received */ 1666 wpi_rx_intr(sc, desc, data); 1667 break; 1668 1669 case WPI_TX_DONE: 1670 /* a 802.11 frame has been transmitted */ 1671 wpi_tx_intr(sc, desc); 1672 break; 1673 1674 case WPI_UC_READY: 1675 { 1676 struct wpi_ucode_info *uc = 1677 (struct wpi_ucode_info *)(desc + 1); 1678 1679 /* the microcontroller is ready */ 1680 DPRINTF(("microcode alive notification version %x " 1681 "alive %x\n", le32toh(uc->version), 1682 le32toh(uc->valid))); 1683 1684 if (le32toh(uc->valid) != 1) { 1685 aprint_error_dev(sc->sc_dev, 1686 "microcontroller initialization failed\n"); 1687 } 1688 break; 1689 } 1690 case WPI_STATE_CHANGED: 1691 { 1692 uint32_t *status = (uint32_t *)(desc + 1); 1693 1694 /* enabled/disabled notification */ 1695 DPRINTF(("state changed to %x\n", le32toh(*status))); 1696 1697 if (le32toh(*status) & 1) { 1698 /* the radio button has to be pushed */ 1699 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n"); 1700 /* turn the interface down */ 1701 ifp->if_flags &= ~IFF_UP; 1702 wpi_stop(ifp, 1); 1703 return; /* no further processing */ 1704 } 1705 break; 1706 } 1707 case WPI_START_SCAN: 1708 { 1709 struct wpi_start_scan *scan = 1710 (struct wpi_start_scan *)(desc + 1); 1711 1712 DPRINTFN(2, ("scanning channel %d status %x\n", 1713 scan->chan, le32toh(scan->status))); 1714 1715 /* fix current channel */ 1716 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 1717 break; 1718 } 1719 case WPI_STOP_SCAN: 1720 { 1721 struct wpi_stop_scan *scan = 1722 (struct wpi_stop_scan *)(desc + 1); 1723 1724 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1725 scan->nchan, scan->status, scan->chan)); 1726 1727 if (scan->status == 1 && scan->chan <= 14) { 1728 /* 1729 * We just finished scanning 802.11g channels, 1730 * start scanning 802.11a ones. 1731 */ 1732 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0) 1733 break; 1734 } 1735 sc->is_scanning = false; 1736 ieee80211_end_scan(ic); 1737 break; 1738 } 1739 } 1740 1741 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1742 } 1743 1744 /* tell the firmware what we have processed */ 1745 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1746 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1747 } 1748 1749 static int 1750 wpi_intr(void *arg) 1751 { 1752 struct wpi_softc *sc = arg; 1753 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1754 uint32_t r; 1755 1756 r = WPI_READ(sc, WPI_INTR); 1757 if (r == 0 || r == 0xffffffff) 1758 return 0; /* not for us */ 1759 1760 DPRINTFN(5, ("interrupt reg %x\n", r)); 1761 1762 /* disable interrupts */ 1763 WPI_WRITE(sc, WPI_MASK, 0); 1764 /* ack interrupts */ 1765 WPI_WRITE(sc, WPI_INTR, r); 1766 1767 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1768 aprint_error_dev(sc->sc_dev, "fatal firmware error\n"); 1769 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; 1770 wpi_stop(sc->sc_ic.ic_ifp, 1); 1771 return 1; 1772 } 1773 1774 if (r & WPI_RX_INTR) 1775 wpi_notif_intr(sc); 1776 1777 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1778 wakeup(sc); 1779 1780 /* re-enable interrupts */ 1781 if (ifp->if_flags & IFF_UP) 1782 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1783 1784 return 1; 1785 } 1786 1787 static uint8_t 1788 wpi_plcp_signal(int rate) 1789 { 1790 switch (rate) { 1791 /* CCK rates (returned values are device-dependent) */ 1792 case 2: return 10; 1793 case 4: return 20; 1794 case 11: return 55; 1795 case 22: return 110; 1796 1797 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1798 /* R1-R4, (u)ral is R4-R1 */ 1799 case 12: return 0xd; 1800 case 18: return 0xf; 1801 case 24: return 0x5; 1802 case 36: return 0x7; 1803 case 48: return 0x9; 1804 case 72: return 0xb; 1805 case 96: return 0x1; 1806 case 108: return 0x3; 1807 1808 /* unsupported rates (should not get there) */ 1809 default: return 0; 1810 } 1811 } 1812 1813 /* quickly determine if a given rate is CCK or OFDM */ 1814 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1815 1816 static int 1817 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1818 int ac) 1819 { 1820 struct ieee80211com *ic = &sc->sc_ic; 1821 struct wpi_tx_ring *ring = &sc->txq[ac]; 1822 struct wpi_tx_desc *desc; 1823 struct wpi_tx_data *data; 1824 struct wpi_tx_cmd *cmd; 1825 struct wpi_cmd_data *tx; 1826 struct ieee80211_frame *wh; 1827 struct ieee80211_key *k; 1828 const struct chanAccParams *cap; 1829 struct mbuf *mnew; 1830 int i, error, rate, hdrlen, noack = 0; 1831 1832 desc = &ring->desc[ring->cur]; 1833 data = &ring->data[ring->cur]; 1834 1835 wh = mtod(m0, struct ieee80211_frame *); 1836 1837 if (ieee80211_has_qos(wh)) { 1838 cap = &ic->ic_wme.wme_chanParams; 1839 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1840 } 1841 1842 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1843 k = ieee80211_crypto_encap(ic, ni, m0); 1844 if (k == NULL) { 1845 m_freem(m0); 1846 return ENOBUFS; 1847 } 1848 1849 /* packet header may have moved, reset our local pointer */ 1850 wh = mtod(m0, struct ieee80211_frame *); 1851 } 1852 1853 hdrlen = ieee80211_anyhdrsize(wh); 1854 1855 /* pickup a rate */ 1856 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1857 IEEE80211_FC0_TYPE_MGT) { 1858 /* mgmt frames are sent at the lowest available bit-rate */ 1859 rate = ni->ni_rates.rs_rates[0]; 1860 } else { 1861 if (ic->ic_fixed_rate != -1) { 1862 rate = ic->ic_sup_rates[ic->ic_curmode]. 1863 rs_rates[ic->ic_fixed_rate]; 1864 } else 1865 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1866 } 1867 rate &= IEEE80211_RATE_VAL; 1868 1869 1870 if (sc->sc_drvbpf != NULL) { 1871 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1872 1873 tap->wt_flags = 0; 1874 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1875 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1876 tap->wt_rate = rate; 1877 tap->wt_hwqueue = ac; 1878 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1879 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1880 1881 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1882 } 1883 1884 cmd = &ring->cmd[ring->cur]; 1885 cmd->code = WPI_CMD_TX_DATA; 1886 cmd->flags = 0; 1887 cmd->qid = ring->qid; 1888 cmd->idx = ring->cur; 1889 1890 tx = (struct wpi_cmd_data *)cmd->data; 1891 tx->flags = 0; 1892 1893 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1894 tx->flags |= htole32(WPI_TX_NEED_ACK); 1895 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) 1896 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP); 1897 1898 tx->flags |= htole32(WPI_TX_AUTO_SEQ); 1899 1900 /* retrieve destination node's id */ 1901 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST : 1902 WPI_ID_BSS; 1903 1904 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1905 IEEE80211_FC0_TYPE_MGT) { 1906 /* tell h/w to set timestamp in probe responses */ 1907 if ((wh->i_fc[0] & 1908 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1909 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1910 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1911 1912 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1913 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) || 1914 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1915 IEEE80211_FC0_SUBTYPE_REASSOC_REQ)) 1916 tx->timeout = htole16(3); 1917 else 1918 tx->timeout = htole16(2); 1919 } else 1920 tx->timeout = htole16(0); 1921 1922 tx->rate = wpi_plcp_signal(rate); 1923 1924 /* be very persistant at sending frames out */ 1925 tx->rts_ntries = 7; 1926 tx->data_ntries = 15; 1927 1928 tx->ofdm_mask = 0xff; 1929 tx->cck_mask = 0xf; 1930 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1931 1932 tx->len = htole16(m0->m_pkthdr.len); 1933 1934 /* save and trim IEEE802.11 header */ 1935 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 1936 m_adj(m0, hdrlen); 1937 1938 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1939 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1940 if (error != 0 && error != EFBIG) { 1941 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error); 1942 m_freem(m0); 1943 return error; 1944 } 1945 if (error != 0) { 1946 /* too many fragments, linearize */ 1947 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1948 if (mnew == NULL) { 1949 m_freem(m0); 1950 return ENOMEM; 1951 } 1952 1953 M_COPY_PKTHDR(mnew, m0); 1954 if (m0->m_pkthdr.len > MHLEN) { 1955 MCLGET(mnew, M_DONTWAIT); 1956 if (!(mnew->m_flags & M_EXT)) { 1957 m_freem(m0); 1958 m_freem(mnew); 1959 return ENOMEM; 1960 } 1961 } 1962 1963 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 1964 m_freem(m0); 1965 mnew->m_len = mnew->m_pkthdr.len; 1966 m0 = mnew; 1967 1968 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1969 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1970 if (error != 0) { 1971 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", 1972 error); 1973 m_freem(m0); 1974 return error; 1975 } 1976 } 1977 1978 data->m = m0; 1979 data->ni = ni; 1980 1981 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1982 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs)); 1983 1984 /* first scatter/gather segment is used by the tx data command */ 1985 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1986 (1 + data->map->dm_nsegs) << 24); 1987 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1988 ring->cur * sizeof (struct wpi_tx_cmd)); 1989 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) + 1990 ((hdrlen + 3) & ~3)); 1991 1992 for (i = 1; i <= data->map->dm_nsegs; i++) { 1993 desc->segs[i].addr = 1994 htole32(data->map->dm_segs[i - 1].ds_addr); 1995 desc->segs[i].len = 1996 htole32(data->map->dm_segs[i - 1].ds_len); 1997 } 1998 1999 ring->queued++; 2000 2001 /* kick ring */ 2002 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2003 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2004 2005 return 0; 2006 } 2007 2008 static void 2009 wpi_start(struct ifnet *ifp) 2010 { 2011 struct wpi_softc *sc = ifp->if_softc; 2012 struct ieee80211com *ic = &sc->sc_ic; 2013 struct ieee80211_node *ni; 2014 struct ether_header *eh; 2015 struct mbuf *m0; 2016 int ac; 2017 2018 /* 2019 * net80211 may still try to send management frames even if the 2020 * IFF_RUNNING flag is not set... 2021 */ 2022 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 2023 return; 2024 2025 for (;;) { 2026 IF_DEQUEUE(&ic->ic_mgtq, m0); 2027 if (m0 != NULL) { 2028 2029 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2030 m0->m_pkthdr.rcvif = NULL; 2031 2032 /* management frames go into ring 0 */ 2033 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2034 ifp->if_oerrors++; 2035 continue; 2036 } 2037 bpf_mtap3(ic->ic_rawbpf, m0); 2038 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 2039 ifp->if_oerrors++; 2040 break; 2041 } 2042 } else { 2043 if (ic->ic_state != IEEE80211_S_RUN) 2044 break; 2045 IFQ_POLL(&ifp->if_snd, m0); 2046 if (m0 == NULL) 2047 break; 2048 2049 if (m0->m_len < sizeof (*eh) && 2050 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) { 2051 ifp->if_oerrors++; 2052 continue; 2053 } 2054 eh = mtod(m0, struct ether_header *); 2055 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2056 if (ni == NULL) { 2057 m_freem(m0); 2058 ifp->if_oerrors++; 2059 continue; 2060 } 2061 2062 /* classify mbuf so we can find which tx ring to use */ 2063 if (ieee80211_classify(ic, m0, ni) != 0) { 2064 m_freem(m0); 2065 ieee80211_free_node(ni); 2066 ifp->if_oerrors++; 2067 continue; 2068 } 2069 2070 /* no QoS encapsulation for EAPOL frames */ 2071 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 2072 M_WME_GETAC(m0) : WME_AC_BE; 2073 2074 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2075 /* there is no place left in this ring */ 2076 ifp->if_flags |= IFF_OACTIVE; 2077 break; 2078 } 2079 IFQ_DEQUEUE(&ifp->if_snd, m0); 2080 bpf_mtap(ifp, m0); 2081 m0 = ieee80211_encap(ic, m0, ni); 2082 if (m0 == NULL) { 2083 ieee80211_free_node(ni); 2084 ifp->if_oerrors++; 2085 continue; 2086 } 2087 bpf_mtap3(ic->ic_rawbpf, m0); 2088 if (wpi_tx_data(sc, m0, ni, ac) != 0) { 2089 ieee80211_free_node(ni); 2090 ifp->if_oerrors++; 2091 break; 2092 } 2093 } 2094 2095 sc->sc_tx_timer = 5; 2096 ifp->if_timer = 1; 2097 } 2098 } 2099 2100 static void 2101 wpi_watchdog(struct ifnet *ifp) 2102 { 2103 struct wpi_softc *sc = ifp->if_softc; 2104 2105 ifp->if_timer = 0; 2106 2107 if (sc->sc_tx_timer > 0) { 2108 if (--sc->sc_tx_timer == 0) { 2109 aprint_error_dev(sc->sc_dev, "device timeout\n"); 2110 ifp->if_oerrors++; 2111 ifp->if_flags &= ~IFF_UP; 2112 wpi_stop(ifp, 1); 2113 return; 2114 } 2115 ifp->if_timer = 1; 2116 } 2117 2118 ieee80211_watchdog(&sc->sc_ic); 2119 } 2120 2121 static int 2122 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2123 { 2124 #define IS_RUNNING(ifp) \ 2125 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 2126 2127 struct wpi_softc *sc = ifp->if_softc; 2128 struct ieee80211com *ic = &sc->sc_ic; 2129 int s, error = 0; 2130 2131 s = splnet(); 2132 2133 switch (cmd) { 2134 case SIOCSIFFLAGS: 2135 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2136 break; 2137 if (ifp->if_flags & IFF_UP) { 2138 if (!(ifp->if_flags & IFF_RUNNING)) 2139 wpi_init(ifp); 2140 } else { 2141 if (ifp->if_flags & IFF_RUNNING) 2142 wpi_stop(ifp, 1); 2143 } 2144 break; 2145 2146 case SIOCADDMULTI: 2147 case SIOCDELMULTI: 2148 /* XXX no h/w multicast filter? --dyoung */ 2149 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2150 /* setup multicast filter, etc */ 2151 error = 0; 2152 } 2153 break; 2154 2155 default: 2156 error = ieee80211_ioctl(ic, cmd, data); 2157 } 2158 2159 if (error == ENETRESET) { 2160 if (IS_RUNNING(ifp) && 2161 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2162 wpi_init(ifp); 2163 error = 0; 2164 } 2165 2166 splx(s); 2167 return error; 2168 2169 #undef IS_RUNNING 2170 } 2171 2172 /* 2173 * Extract various information from EEPROM. 2174 */ 2175 static void 2176 wpi_read_eeprom(struct wpi_softc *sc) 2177 { 2178 struct ieee80211com *ic = &sc->sc_ic; 2179 char domain[4]; 2180 int i; 2181 2182 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1); 2183 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2); 2184 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2185 2186 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev), 2187 sc->type)); 2188 2189 /* read and print regulatory domain */ 2190 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4); 2191 aprint_normal_dev(sc->sc_dev, "%.4s", domain); 2192 2193 /* read and print MAC address */ 2194 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2195 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr)); 2196 2197 /* read the list of authorized channels */ 2198 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2199 wpi_read_eeprom_channels(sc, i); 2200 2201 /* read the list of power groups */ 2202 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2203 wpi_read_eeprom_group(sc, i); 2204 } 2205 2206 static void 2207 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 2208 { 2209 struct ieee80211com *ic = &sc->sc_ic; 2210 const struct wpi_chan_band *band = &wpi_bands[n]; 2211 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 2212 int chan, i; 2213 2214 wpi_read_prom_data(sc, band->addr, channels, 2215 band->nchan * sizeof (struct wpi_eeprom_chan)); 2216 2217 for (i = 0; i < band->nchan; i++) { 2218 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) 2219 continue; 2220 2221 chan = band->chan[i]; 2222 2223 if (n == 0) { /* 2GHz band */ 2224 ic->ic_channels[chan].ic_freq = 2225 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 2226 ic->ic_channels[chan].ic_flags = 2227 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 2228 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 2229 2230 } else { /* 5GHz band */ 2231 /* 2232 * Some 3945abg adapters support channels 7, 8, 11 2233 * and 12 in the 2GHz *and* 5GHz bands. 2234 * Because of limitations in our net80211(9) stack, 2235 * we can't support these channels in 5GHz band. 2236 */ 2237 if (chan <= 14) 2238 continue; 2239 2240 ic->ic_channels[chan].ic_freq = 2241 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 2242 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 2243 } 2244 2245 /* is active scan allowed on this channel? */ 2246 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 2247 ic->ic_channels[chan].ic_flags |= 2248 IEEE80211_CHAN_PASSIVE; 2249 } 2250 2251 /* save maximum allowed power for this channel */ 2252 sc->maxpwr[chan] = channels[i].maxpwr; 2253 2254 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 2255 chan, channels[i].flags, sc->maxpwr[chan])); 2256 } 2257 } 2258 2259 static void 2260 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 2261 { 2262 struct wpi_power_group *group = &sc->groups[n]; 2263 struct wpi_eeprom_group rgroup; 2264 int i; 2265 2266 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 2267 sizeof rgroup); 2268 2269 /* save power group information */ 2270 group->chan = rgroup.chan; 2271 group->maxpwr = rgroup.maxpwr; 2272 /* temperature at which the samples were taken */ 2273 group->temp = (int16_t)le16toh(rgroup.temp); 2274 2275 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 2276 group->chan, group->maxpwr, group->temp)); 2277 2278 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 2279 group->samples[i].index = rgroup.samples[i].index; 2280 group->samples[i].power = rgroup.samples[i].power; 2281 2282 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 2283 group->samples[i].index, group->samples[i].power)); 2284 } 2285 } 2286 2287 /* 2288 * Send a command to the firmware. 2289 */ 2290 static int 2291 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2292 { 2293 struct wpi_tx_ring *ring = &sc->cmdq; 2294 struct wpi_tx_desc *desc; 2295 struct wpi_tx_cmd *cmd; 2296 2297 KASSERT(size <= sizeof cmd->data); 2298 2299 desc = &ring->desc[ring->cur]; 2300 cmd = &ring->cmd[ring->cur]; 2301 2302 cmd->code = code; 2303 cmd->flags = 0; 2304 cmd->qid = ring->qid; 2305 cmd->idx = ring->cur; 2306 memcpy(cmd->data, buf, size); 2307 2308 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2309 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2310 ring->cur * sizeof (struct wpi_tx_cmd)); 2311 desc->segs[0].len = htole32(4 + size); 2312 2313 /* kick cmd ring */ 2314 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2315 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2316 2317 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz); 2318 } 2319 2320 static int 2321 wpi_wme_update(struct ieee80211com *ic) 2322 { 2323 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2324 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2325 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2326 const struct wmeParams *wmep; 2327 struct wpi_wme_setup wme; 2328 int ac; 2329 2330 /* don't override default WME values if WME is not actually enabled */ 2331 if (!(ic->ic_flags & IEEE80211_F_WME)) 2332 return 0; 2333 2334 wme.flags = 0; 2335 for (ac = 0; ac < WME_NUM_AC; ac++) { 2336 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2337 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2338 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2339 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2340 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2341 2342 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2343 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2344 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2345 } 2346 2347 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2348 #undef WPI_USEC 2349 #undef WPI_EXP2 2350 } 2351 2352 /* 2353 * Configure h/w multi-rate retries. 2354 */ 2355 static int 2356 wpi_mrr_setup(struct wpi_softc *sc) 2357 { 2358 struct ieee80211com *ic = &sc->sc_ic; 2359 struct wpi_mrr_setup mrr; 2360 int i, error; 2361 2362 /* CCK rates (not used with 802.11a) */ 2363 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2364 mrr.rates[i].flags = 0; 2365 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2366 /* fallback to the immediate lower CCK rate (if any) */ 2367 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2368 /* try one time at this rate before falling back to "next" */ 2369 mrr.rates[i].ntries = 1; 2370 } 2371 2372 /* OFDM rates (not used with 802.11b) */ 2373 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2374 mrr.rates[i].flags = 0; 2375 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2376 /* fallback to the immediate lower rate (if any) */ 2377 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2378 mrr.rates[i].next = (i == WPI_OFDM6) ? 2379 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2380 WPI_OFDM6 : WPI_CCK2) : 2381 i - 1; 2382 /* try one time at this rate before falling back to "next" */ 2383 mrr.rates[i].ntries = 1; 2384 } 2385 2386 /* setup MRR for control frames */ 2387 mrr.which = htole32(WPI_MRR_CTL); 2388 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2389 if (error != 0) { 2390 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n"); 2391 return error; 2392 } 2393 2394 /* setup MRR for data frames */ 2395 mrr.which = htole32(WPI_MRR_DATA); 2396 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2397 if (error != 0) { 2398 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n"); 2399 return error; 2400 } 2401 2402 return 0; 2403 } 2404 2405 static void 2406 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2407 { 2408 struct wpi_cmd_led led; 2409 2410 led.which = which; 2411 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2412 led.off = off; 2413 led.on = on; 2414 2415 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2416 } 2417 2418 static void 2419 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2420 { 2421 struct wpi_cmd_tsf tsf; 2422 uint64_t val, mod; 2423 2424 memset(&tsf, 0, sizeof tsf); 2425 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2426 tsf.bintval = htole16(ni->ni_intval); 2427 tsf.lintval = htole16(10); 2428 2429 /* compute remaining time until next beacon */ 2430 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2431 mod = le64toh(tsf.tstamp) % val; 2432 tsf.binitval = htole32((uint32_t)(val - mod)); 2433 2434 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n", 2435 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod))); 2436 2437 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2438 aprint_error_dev(sc->sc_dev, "could not enable TSF\n"); 2439 } 2440 2441 /* 2442 * Update Tx power to match what is defined for channel `c'. 2443 */ 2444 static int 2445 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 2446 { 2447 struct ieee80211com *ic = &sc->sc_ic; 2448 struct wpi_power_group *group; 2449 struct wpi_cmd_txpower txpower; 2450 u_int chan; 2451 int i; 2452 2453 /* get channel number */ 2454 chan = ieee80211_chan2ieee(ic, c); 2455 2456 /* find the power group to which this channel belongs */ 2457 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2458 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 2459 if (chan <= group->chan) 2460 break; 2461 } else 2462 group = &sc->groups[0]; 2463 2464 memset(&txpower, 0, sizeof txpower); 2465 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 2466 txpower.chan = htole16(chan); 2467 2468 /* set Tx power for all OFDM and CCK rates */ 2469 for (i = 0; i <= 11 ; i++) { 2470 /* retrieve Tx power for this channel/rate combination */ 2471 int idx = wpi_get_power_index(sc, group, c, 2472 wpi_ridx_to_rate[i]); 2473 2474 txpower.rates[i].plcp = wpi_ridx_to_plcp[i]; 2475 2476 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2477 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 2478 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 2479 } else { 2480 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 2481 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 2482 } 2483 DPRINTF(("chan %d/rate %d: power index %d\n", chan, 2484 wpi_ridx_to_rate[i], idx)); 2485 } 2486 2487 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 2488 } 2489 2490 /* 2491 * Determine Tx power index for a given channel/rate combination. 2492 * This takes into account the regulatory information from EEPROM and the 2493 * current temperature. 2494 */ 2495 static int 2496 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 2497 struct ieee80211_channel *c, int rate) 2498 { 2499 /* fixed-point arithmetic division using a n-bit fractional part */ 2500 #define fdivround(a, b, n) \ 2501 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 2502 2503 /* linear interpolation */ 2504 #define interpolate(x, x1, y1, x2, y2, n) \ 2505 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 2506 2507 struct ieee80211com *ic = &sc->sc_ic; 2508 struct wpi_power_sample *sample; 2509 int pwr, idx; 2510 u_int chan; 2511 2512 /* get channel number */ 2513 chan = ieee80211_chan2ieee(ic, c); 2514 2515 /* default power is group's maximum power - 3dB */ 2516 pwr = group->maxpwr / 2; 2517 2518 /* decrease power for highest OFDM rates to reduce distortion */ 2519 switch (rate) { 2520 case 72: /* 36Mb/s */ 2521 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 2522 break; 2523 case 96: /* 48Mb/s */ 2524 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 2525 break; 2526 case 108: /* 54Mb/s */ 2527 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 2528 break; 2529 } 2530 2531 /* never exceed channel's maximum allowed Tx power */ 2532 pwr = min(pwr, sc->maxpwr[chan]); 2533 2534 /* retrieve power index into gain tables from samples */ 2535 for (sample = group->samples; sample < &group->samples[3]; sample++) 2536 if (pwr > sample[1].power) 2537 break; 2538 /* fixed-point linear interpolation using a 19-bit fractional part */ 2539 idx = interpolate(pwr, sample[0].power, sample[0].index, 2540 sample[1].power, sample[1].index, 19); 2541 2542 /* 2543 * Adjust power index based on current temperature: 2544 * - if cooler than factory-calibrated: decrease output power 2545 * - if warmer than factory-calibrated: increase output power 2546 */ 2547 idx -= (sc->temp - group->temp) * 11 / 100; 2548 2549 /* decrease power for CCK rates (-5dB) */ 2550 if (!WPI_RATE_IS_OFDM(rate)) 2551 idx += 10; 2552 2553 /* keep power index in a valid range */ 2554 if (idx < 0) 2555 return 0; 2556 if (idx > WPI_MAX_PWR_INDEX) 2557 return WPI_MAX_PWR_INDEX; 2558 return idx; 2559 2560 #undef interpolate 2561 #undef fdivround 2562 } 2563 2564 /* 2565 * Build a beacon frame that the firmware will broadcast periodically in 2566 * IBSS or HostAP modes. 2567 */ 2568 static int 2569 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2570 { 2571 struct ieee80211com *ic = &sc->sc_ic; 2572 struct wpi_tx_ring *ring = &sc->cmdq; 2573 struct wpi_tx_desc *desc; 2574 struct wpi_tx_data *data; 2575 struct wpi_tx_cmd *cmd; 2576 struct wpi_cmd_beacon *bcn; 2577 struct ieee80211_beacon_offsets bo; 2578 struct mbuf *m0; 2579 int error; 2580 2581 desc = &ring->desc[ring->cur]; 2582 data = &ring->data[ring->cur]; 2583 2584 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2585 if (m0 == NULL) { 2586 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n"); 2587 return ENOMEM; 2588 } 2589 2590 cmd = &ring->cmd[ring->cur]; 2591 cmd->code = WPI_CMD_SET_BEACON; 2592 cmd->flags = 0; 2593 cmd->qid = ring->qid; 2594 cmd->idx = ring->cur; 2595 2596 bcn = (struct wpi_cmd_beacon *)cmd->data; 2597 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2598 bcn->id = WPI_ID_BROADCAST; 2599 bcn->ofdm_mask = 0xff; 2600 bcn->cck_mask = 0x0f; 2601 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2602 bcn->len = htole16(m0->m_pkthdr.len); 2603 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2604 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2605 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2606 2607 /* save and trim IEEE802.11 header */ 2608 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh); 2609 m_adj(m0, sizeof (struct ieee80211_frame)); 2610 2611 /* assume beacon frame is contiguous */ 2612 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 2613 BUS_DMA_READ | BUS_DMA_NOWAIT); 2614 if (error) { 2615 aprint_error_dev(sc->sc_dev, "could not map beacon\n"); 2616 m_freem(m0); 2617 return error; 2618 } 2619 2620 data->m = m0; 2621 2622 /* first scatter/gather segment is used by the beacon command */ 2623 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2624 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2625 ring->cur * sizeof (struct wpi_tx_cmd)); 2626 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2627 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr); 2628 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len); 2629 2630 /* kick cmd ring */ 2631 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2632 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2633 2634 return 0; 2635 } 2636 2637 static int 2638 wpi_auth(struct wpi_softc *sc) 2639 { 2640 struct ieee80211com *ic = &sc->sc_ic; 2641 struct ieee80211_node *ni = ic->ic_bss; 2642 struct wpi_node_info node; 2643 int error; 2644 2645 /* update adapter's configuration */ 2646 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2647 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2648 sc->config.flags = htole32(WPI_CONFIG_TSF); 2649 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2650 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2651 WPI_CONFIG_24GHZ); 2652 } 2653 switch (ic->ic_curmode) { 2654 case IEEE80211_MODE_11A: 2655 sc->config.cck_mask = 0; 2656 sc->config.ofdm_mask = 0x15; 2657 break; 2658 case IEEE80211_MODE_11B: 2659 sc->config.cck_mask = 0x03; 2660 sc->config.ofdm_mask = 0; 2661 break; 2662 default: /* assume 802.11b/g */ 2663 sc->config.cck_mask = 0x0f; 2664 sc->config.ofdm_mask = 0x15; 2665 } 2666 2667 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2668 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2669 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2670 sizeof (struct wpi_config), 1); 2671 if (error != 0) { 2672 aprint_error_dev(sc->sc_dev, "could not configure\n"); 2673 return error; 2674 } 2675 2676 /* configuration has changed, set Tx power accordingly */ 2677 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2678 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 2679 return error; 2680 } 2681 2682 /* add default node */ 2683 memset(&node, 0, sizeof node); 2684 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2685 node.id = WPI_ID_BSS; 2686 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2687 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2688 node.action = htole32(WPI_ACTION_SET_RATE); 2689 node.antenna = WPI_ANTENNA_BOTH; 2690 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2691 if (error != 0) { 2692 aprint_error_dev(sc->sc_dev, "could not add BSS node\n"); 2693 return error; 2694 } 2695 2696 return 0; 2697 } 2698 2699 /* 2700 * Send a scan request to the firmware. Since this command is huge, we map it 2701 * into a mbuf instead of using the pre-allocated set of commands. 2702 */ 2703 static int 2704 wpi_scan(struct wpi_softc *sc, uint16_t flags) 2705 { 2706 struct ieee80211com *ic = &sc->sc_ic; 2707 struct wpi_tx_ring *ring = &sc->cmdq; 2708 struct wpi_tx_desc *desc; 2709 struct wpi_tx_data *data; 2710 struct wpi_tx_cmd *cmd; 2711 struct wpi_scan_hdr *hdr; 2712 struct wpi_scan_chan *chan; 2713 struct ieee80211_frame *wh; 2714 struct ieee80211_rateset *rs; 2715 struct ieee80211_channel *c; 2716 enum ieee80211_phymode mode; 2717 uint8_t *frm; 2718 int nrates, pktlen, error; 2719 2720 desc = &ring->desc[ring->cur]; 2721 data = &ring->data[ring->cur]; 2722 2723 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 2724 if (data->m == NULL) { 2725 aprint_error_dev(sc->sc_dev, 2726 "could not allocate mbuf for scan command\n"); 2727 return ENOMEM; 2728 } 2729 2730 MCLGET(data->m, M_DONTWAIT); 2731 if (!(data->m->m_flags & M_EXT)) { 2732 m_freem(data->m); 2733 data->m = NULL; 2734 aprint_error_dev(sc->sc_dev, 2735 "could not allocate mbuf for scan command\n"); 2736 return ENOMEM; 2737 } 2738 2739 cmd = mtod(data->m, struct wpi_tx_cmd *); 2740 cmd->code = WPI_CMD_SCAN; 2741 cmd->flags = 0; 2742 cmd->qid = ring->qid; 2743 cmd->idx = ring->cur; 2744 2745 hdr = (struct wpi_scan_hdr *)cmd->data; 2746 memset(hdr, 0, sizeof (struct wpi_scan_hdr)); 2747 hdr->txflags = htole32(WPI_TX_AUTO_SEQ); 2748 hdr->id = WPI_ID_BROADCAST; 2749 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE); 2750 2751 /* 2752 * Move to the next channel if no packets are received within 5 msecs 2753 * after sending the probe request (this helps to reduce the duration 2754 * of active scans). 2755 */ 2756 hdr->quiet = htole16(5); /* timeout in milliseconds */ 2757 hdr->plcp_threshold = htole16(1); /* min # of packets */ 2758 2759 if (flags & IEEE80211_CHAN_A) { 2760 hdr->crc_threshold = htole16(1); 2761 /* send probe requests at 6Mbps */ 2762 hdr->rate = wpi_plcp_signal(12); 2763 } else { 2764 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2765 /* send probe requests at 1Mbps */ 2766 hdr->rate = wpi_plcp_signal(2); 2767 } 2768 2769 /* for directed scans, firmware inserts the essid IE itself */ 2770 hdr->essid[0].id = IEEE80211_ELEMID_SSID; 2771 hdr->essid[0].len = ic->ic_des_esslen; 2772 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 2773 2774 /* 2775 * Build a probe request frame. Most of the following code is a 2776 * copy & paste of what is done in net80211. 2777 */ 2778 wh = (struct ieee80211_frame *)(hdr + 1); 2779 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2780 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2781 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2782 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2783 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2784 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2785 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2786 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2787 2788 frm = (uint8_t *)(wh + 1); 2789 2790 /* add empty essid IE (firmware generates it for directed scans) */ 2791 *frm++ = IEEE80211_ELEMID_SSID; 2792 *frm++ = 0; 2793 2794 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan); 2795 rs = &ic->ic_sup_rates[mode]; 2796 2797 /* add supported rates IE */ 2798 *frm++ = IEEE80211_ELEMID_RATES; 2799 nrates = rs->rs_nrates; 2800 if (nrates > IEEE80211_RATE_SIZE) 2801 nrates = IEEE80211_RATE_SIZE; 2802 *frm++ = nrates; 2803 memcpy(frm, rs->rs_rates, nrates); 2804 frm += nrates; 2805 2806 /* add supported xrates IE */ 2807 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2808 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2809 *frm++ = IEEE80211_ELEMID_XRATES; 2810 *frm++ = nrates; 2811 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2812 frm += nrates; 2813 } 2814 2815 /* setup length of probe request */ 2816 hdr->paylen = htole16(frm - (uint8_t *)wh); 2817 2818 chan = (struct wpi_scan_chan *)frm; 2819 for (c = &ic->ic_channels[1]; 2820 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2821 if ((c->ic_flags & flags) != flags) 2822 continue; 2823 2824 chan->chan = ieee80211_chan2ieee(ic, c); 2825 chan->flags = 0; 2826 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2827 chan->flags |= WPI_CHAN_ACTIVE; 2828 if (ic->ic_des_esslen != 0) 2829 chan->flags |= WPI_CHAN_DIRECT; 2830 } 2831 chan->dsp_gain = 0x6e; 2832 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2833 chan->rf_gain = 0x3b; 2834 chan->active = htole16(10); 2835 chan->passive = htole16(110); 2836 } else { 2837 chan->rf_gain = 0x28; 2838 chan->active = htole16(20); 2839 chan->passive = htole16(120); 2840 } 2841 hdr->nchan++; 2842 chan++; 2843 2844 frm += sizeof (struct wpi_scan_chan); 2845 } 2846 hdr->len = htole16(frm - (uint8_t *)hdr); 2847 pktlen = frm - (uint8_t *)cmd; 2848 2849 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, 2850 NULL, BUS_DMA_NOWAIT); 2851 if (error) { 2852 aprint_error_dev(sc->sc_dev, "could not map scan command\n"); 2853 m_freem(data->m); 2854 data->m = NULL; 2855 return error; 2856 } 2857 2858 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2859 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr); 2860 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len); 2861 2862 /* kick cmd ring */ 2863 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2864 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2865 2866 return 0; /* will be notified async. of failure/success */ 2867 } 2868 2869 static int 2870 wpi_config(struct wpi_softc *sc) 2871 { 2872 struct ieee80211com *ic = &sc->sc_ic; 2873 struct ifnet *ifp = ic->ic_ifp; 2874 struct wpi_power power; 2875 struct wpi_bluetooth bluetooth; 2876 struct wpi_node_info node; 2877 int error; 2878 2879 memset(&power, 0, sizeof power); 2880 power.flags = htole32(WPI_POWER_CAM | 0x8); 2881 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2882 if (error != 0) { 2883 aprint_error_dev(sc->sc_dev, "could not set power mode\n"); 2884 return error; 2885 } 2886 2887 /* configure bluetooth coexistence */ 2888 memset(&bluetooth, 0, sizeof bluetooth); 2889 bluetooth.flags = 3; 2890 bluetooth.lead = 0xaa; 2891 bluetooth.kill = 1; 2892 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2893 0); 2894 if (error != 0) { 2895 aprint_error_dev(sc->sc_dev, 2896 "could not configure bluetooth coexistence\n"); 2897 return error; 2898 } 2899 2900 /* configure adapter */ 2901 memset(&sc->config, 0, sizeof (struct wpi_config)); 2902 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2903 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2904 /*set default channel*/ 2905 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 2906 sc->config.flags = htole32(WPI_CONFIG_TSF); 2907 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) { 2908 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2909 WPI_CONFIG_24GHZ); 2910 } 2911 sc->config.filter = 0; 2912 switch (ic->ic_opmode) { 2913 case IEEE80211_M_STA: 2914 sc->config.mode = WPI_MODE_STA; 2915 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2916 break; 2917 case IEEE80211_M_IBSS: 2918 case IEEE80211_M_AHDEMO: 2919 sc->config.mode = WPI_MODE_IBSS; 2920 break; 2921 case IEEE80211_M_HOSTAP: 2922 sc->config.mode = WPI_MODE_HOSTAP; 2923 break; 2924 case IEEE80211_M_MONITOR: 2925 sc->config.mode = WPI_MODE_MONITOR; 2926 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2927 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2928 break; 2929 } 2930 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2931 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2932 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2933 sizeof (struct wpi_config), 0); 2934 if (error != 0) { 2935 aprint_error_dev(sc->sc_dev, "configure command failed\n"); 2936 return error; 2937 } 2938 2939 /* configuration has changed, set Tx power accordingly */ 2940 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) { 2941 aprint_error_dev(sc->sc_dev, "could not set Tx power\n"); 2942 return error; 2943 } 2944 2945 /* add broadcast node */ 2946 memset(&node, 0, sizeof node); 2947 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr); 2948 node.id = WPI_ID_BROADCAST; 2949 node.rate = wpi_plcp_signal(2); 2950 node.action = htole32(WPI_ACTION_SET_RATE); 2951 node.antenna = WPI_ANTENNA_BOTH; 2952 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2953 if (error != 0) { 2954 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n"); 2955 return error; 2956 } 2957 2958 if ((error = wpi_mrr_setup(sc)) != 0) { 2959 aprint_error_dev(sc->sc_dev, "could not setup MRR\n"); 2960 return error; 2961 } 2962 2963 return 0; 2964 } 2965 2966 static void 2967 wpi_stop_master(struct wpi_softc *sc) 2968 { 2969 uint32_t tmp; 2970 int ntries; 2971 2972 tmp = WPI_READ(sc, WPI_RESET); 2973 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER); 2974 2975 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2976 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2977 return; /* already asleep */ 2978 2979 for (ntries = 0; ntries < 100; ntries++) { 2980 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2981 break; 2982 DELAY(10); 2983 } 2984 if (ntries == 100) { 2985 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); 2986 } 2987 } 2988 2989 static int 2990 wpi_power_up(struct wpi_softc *sc) 2991 { 2992 uint32_t tmp; 2993 int ntries; 2994 2995 wpi_mem_lock(sc); 2996 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2997 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2998 wpi_mem_unlock(sc); 2999 3000 for (ntries = 0; ntries < 5000; ntries++) { 3001 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 3002 break; 3003 DELAY(10); 3004 } 3005 if (ntries == 5000) { 3006 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n"); 3007 return ETIMEDOUT; 3008 } 3009 return 0; 3010 } 3011 3012 static int 3013 wpi_reset(struct wpi_softc *sc) 3014 { 3015 uint32_t tmp; 3016 int ntries; 3017 3018 /* clear any pending interrupts */ 3019 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3020 3021 tmp = WPI_READ(sc, WPI_PLL_CTL); 3022 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 3023 3024 tmp = WPI_READ(sc, WPI_CHICKEN); 3025 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 3026 3027 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3028 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 3029 3030 /* wait for clock stabilization */ 3031 for (ntries = 0; ntries < 1000; ntries++) { 3032 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 3033 break; 3034 DELAY(10); 3035 } 3036 if (ntries == 1000) { 3037 aprint_error_dev(sc->sc_dev, 3038 "timeout waiting for clock stabilization\n"); 3039 return ETIMEDOUT; 3040 } 3041 3042 /* initialize EEPROM */ 3043 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 3044 if ((tmp & WPI_EEPROM_VERSION) == 0) { 3045 aprint_error_dev(sc->sc_dev, "EEPROM not found\n"); 3046 return EIO; 3047 } 3048 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3049 3050 return 0; 3051 } 3052 3053 static void 3054 wpi_hw_config(struct wpi_softc *sc) 3055 { 3056 uint32_t rev, hw; 3057 3058 /* voodoo from the reference driver */ 3059 hw = WPI_READ(sc, WPI_HWCONFIG); 3060 3061 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 3062 rev = PCI_REVISION(rev); 3063 if ((rev & 0xc0) == 0x40) 3064 hw |= WPI_HW_ALM_MB; 3065 else if (!(rev & 0x80)) 3066 hw |= WPI_HW_ALM_MM; 3067 3068 if (sc->cap == 0x80) 3069 hw |= WPI_HW_SKU_MRC; 3070 3071 hw &= ~WPI_HW_REV_D; 3072 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 3073 hw |= WPI_HW_REV_D; 3074 3075 if (sc->type > 1) 3076 hw |= WPI_HW_TYPE_B; 3077 3078 DPRINTF(("setting h/w config %x\n", hw)); 3079 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3080 } 3081 3082 static int 3083 wpi_init(struct ifnet *ifp) 3084 { 3085 struct wpi_softc *sc = ifp->if_softc; 3086 struct ieee80211com *ic = &sc->sc_ic; 3087 uint32_t tmp; 3088 int qid, ntries, error; 3089 3090 wpi_stop(ifp,1); 3091 (void)wpi_reset(sc); 3092 3093 wpi_mem_lock(sc); 3094 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3095 DELAY(20); 3096 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3097 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3098 wpi_mem_unlock(sc); 3099 3100 (void)wpi_power_up(sc); 3101 wpi_hw_config(sc); 3102 3103 /* init Rx ring */ 3104 wpi_mem_lock(sc); 3105 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3106 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3107 offsetof(struct wpi_shared, next)); 3108 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3109 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3110 wpi_mem_unlock(sc); 3111 3112 /* init Tx rings */ 3113 wpi_mem_lock(sc); 3114 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3115 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3116 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3117 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3118 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3119 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3120 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3121 3122 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3123 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3124 3125 for (qid = 0; qid < 6; qid++) { 3126 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3127 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3128 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3129 } 3130 wpi_mem_unlock(sc); 3131 3132 /* clear "radio off" and "disable command" bits (reversed logic) */ 3133 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3134 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3135 3136 /* clear any pending interrupts */ 3137 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3138 /* enable interrupts */ 3139 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3140 3141 /* not sure why/if this is necessary... */ 3142 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3143 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3144 3145 if ((error = wpi_load_firmware(sc)) != 0) 3146 /* wpi_load_firmware prints error messages for us. */ 3147 goto fail1; 3148 3149 /* Check the status of the radio switch */ 3150 if (wpi_getrfkill(sc)) { 3151 aprint_error_dev(sc->sc_dev, 3152 "radio is disabled by hardware switch\n"); 3153 error = EBUSY; 3154 goto fail1; 3155 } 3156 3157 /* wait for thermal sensors to calibrate */ 3158 for (ntries = 0; ntries < 1000; ntries++) { 3159 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3160 break; 3161 DELAY(10); 3162 } 3163 if (ntries == 1000) { 3164 aprint_error_dev(sc->sc_dev, 3165 "timeout waiting for thermal sensors calibration\n"); 3166 error = ETIMEDOUT; 3167 goto fail1; 3168 } 3169 3170 DPRINTF(("temperature %d\n", sc->temp)); 3171 3172 if ((error = wpi_config(sc)) != 0) { 3173 aprint_error_dev(sc->sc_dev, "could not configure device\n"); 3174 goto fail1; 3175 } 3176 3177 ifp->if_flags &= ~IFF_OACTIVE; 3178 ifp->if_flags |= IFF_RUNNING; 3179 3180 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3181 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 3182 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3183 } 3184 else 3185 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3186 3187 return 0; 3188 3189 fail1: wpi_stop(ifp, 1); 3190 return error; 3191 } 3192 3193 3194 static void 3195 wpi_stop(struct ifnet *ifp, int disable) 3196 { 3197 struct wpi_softc *sc = ifp->if_softc; 3198 struct ieee80211com *ic = &sc->sc_ic; 3199 uint32_t tmp; 3200 int ac; 3201 3202 ifp->if_timer = sc->sc_tx_timer = 0; 3203 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3204 3205 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3206 3207 /* disable interrupts */ 3208 WPI_WRITE(sc, WPI_MASK, 0); 3209 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3210 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3211 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3212 3213 wpi_mem_lock(sc); 3214 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3215 wpi_mem_unlock(sc); 3216 3217 /* reset all Tx rings */ 3218 for (ac = 0; ac < 4; ac++) 3219 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3220 wpi_reset_tx_ring(sc, &sc->cmdq); 3221 3222 /* reset Rx ring */ 3223 wpi_reset_rx_ring(sc, &sc->rxq); 3224 3225 wpi_mem_lock(sc); 3226 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3227 wpi_mem_unlock(sc); 3228 3229 DELAY(5); 3230 3231 wpi_stop_master(sc); 3232 3233 tmp = WPI_READ(sc, WPI_RESET); 3234 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3235 } 3236 3237 static bool 3238 wpi_resume(device_t dv, const pmf_qual_t *qual) 3239 { 3240 struct wpi_softc *sc = device_private(dv); 3241 3242 (void)wpi_reset(sc); 3243 3244 return true; 3245 } 3246 3247 /* 3248 * Return whether or not the radio is enabled in hardware 3249 * (i.e. the rfkill switch is "off"). 3250 */ 3251 static int 3252 wpi_getrfkill(struct wpi_softc *sc) 3253 { 3254 uint32_t tmp; 3255 3256 wpi_mem_lock(sc); 3257 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL); 3258 wpi_mem_unlock(sc); 3259 3260 return !(tmp & 0x01); 3261 } 3262 3263 static int 3264 wpi_sysctl_radio(SYSCTLFN_ARGS) 3265 { 3266 struct sysctlnode node; 3267 struct wpi_softc *sc; 3268 int val, error; 3269 3270 node = *rnode; 3271 sc = (struct wpi_softc *)node.sysctl_data; 3272 3273 val = !wpi_getrfkill(sc); 3274 3275 node.sysctl_data = &val; 3276 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3277 3278 if (error || newp == NULL) 3279 return error; 3280 3281 return 0; 3282 } 3283 3284 static void 3285 wpi_sysctlattach(struct wpi_softc *sc) 3286 { 3287 int rc; 3288 const struct sysctlnode *rnode; 3289 const struct sysctlnode *cnode; 3290 3291 struct sysctllog **clog = &sc->sc_sysctllog; 3292 3293 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 3294 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev), 3295 SYSCTL_DESCR("wpi controls and statistics"), 3296 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) 3297 goto err; 3298 3299 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 3300 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio", 3301 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"), 3302 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0) 3303 goto err; 3304 3305 #ifdef WPI_DEBUG 3306 /* control debugging printfs */ 3307 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 3308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 3309 "debug", SYSCTL_DESCR("Enable debugging output"), 3310 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) 3311 goto err; 3312 #endif 3313 3314 return; 3315 err: 3316 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 3317 } 3318