xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*  $NetBSD: if_wpi.c,v 1.35 2008/01/19 03:45:08 simonb Exp $    */
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.35 2008/01/19 03:45:08 simonb Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include "bpfilter.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48 
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 
68 #include <dev/firmload.h>
69 
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72 
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /*
83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84  */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87 
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 	{ 4, { 2, 4, 11, 22 } };
90 
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93 
94 static int  wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int  wpi_detach(device_t , int);
97 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
98 	void **, bus_size_t, bus_size_t, int);
99 static void wpi_dma_contig_free(struct wpi_dma_info *);
100 static int  wpi_alloc_shared(struct wpi_softc *);
101 static void wpi_free_shared(struct wpi_softc *);
102 static int  wpi_alloc_fwmem(struct wpi_softc *);
103 static void wpi_free_fwmem(struct wpi_softc *);
104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
106 static int  wpi_alloc_rpool(struct wpi_softc *);
107 static void wpi_free_rpool(struct wpi_softc *);
108 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
112 	int);
113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
116 static void wpi_newassoc(struct ieee80211_node *, int);
117 static int  wpi_media_change(struct ifnet *);
118 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
119 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
120 static void wpi_mem_lock(struct wpi_softc *);
121 static void wpi_mem_unlock(struct wpi_softc *);
122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
125 								   const uint32_t *, int);
126 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
127 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
128 static int  wpi_load_firmware(struct wpi_softc *);
129 static void wpi_calib_timeout(void *);
130 static void wpi_iter_func(void *, struct ieee80211_node *);
131 static void wpi_power_calibration(struct wpi_softc *, int);
132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
133 	struct wpi_rx_data *);
134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_notif_intr(struct wpi_softc *);
137 static int  wpi_intr(void *);
138 static void wpi_read_eeprom(struct wpi_softc *);
139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
141 static uint8_t wpi_plcp_signal(int);
142 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
143 	struct ieee80211_node *, int);
144 static void wpi_start(struct ifnet *);
145 static void wpi_watchdog(struct ifnet *);
146 static int  wpi_ioctl(struct ifnet *, u_long, void *);
147 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
148 static int  wpi_wme_update(struct ieee80211com *);
149 static int  wpi_mrr_setup(struct wpi_softc *);
150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
152 static int  wpi_set_txpower(struct wpi_softc *,
153 			    struct ieee80211_channel *, int);
154 static int  wpi_get_power_index(struct wpi_softc *,
155 		struct wpi_power_group *, struct ieee80211_channel *, int);
156 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
157 static int  wpi_auth(struct wpi_softc *);
158 static int  wpi_scan(struct wpi_softc *, uint16_t);
159 static int  wpi_config(struct wpi_softc *);
160 static void wpi_stop_master(struct wpi_softc *);
161 static int  wpi_power_up(struct wpi_softc *);
162 static int  wpi_reset(struct wpi_softc *);
163 static void wpi_hw_config(struct wpi_softc *);
164 static int  wpi_init(struct ifnet *);
165 static void wpi_stop(struct ifnet *, int);
166 static bool wpi_resume(device_t);
167 static int	wpi_getrfkill(struct wpi_softc *);
168 static void wpi_sysctlattach(struct wpi_softc *);
169 
170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
171 	wpi_detach, NULL);
172 
173 static int
174 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
175 {
176 	struct pci_attach_args *pa = aux;
177 
178 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
179 		return 0;
180 
181 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
182 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
183 		return 1;
184 
185 	return 0;
186 }
187 
188 /* Base Address Register */
189 #define WPI_PCI_BAR0	0x10
190 
191 static void
192 wpi_attach(device_t parent __unused, device_t self, void *aux)
193 {
194 	struct wpi_softc *sc = device_private(self);
195 	struct ieee80211com *ic = &sc->sc_ic;
196 	struct ifnet *ifp = &sc->sc_ec.ec_if;
197 	struct pci_attach_args *pa = aux;
198 	const char *intrstr;
199 	char devinfo[256];
200 	bus_space_tag_t memt;
201 	bus_space_handle_t memh;
202 	pci_intr_handle_t ih;
203 	pcireg_t data;
204 	int error, ac, revision;
205 
206 	sc->sc_dev = self;
207 	sc->sc_pct = pa->pa_pc;
208 	sc->sc_pcitag = pa->pa_tag;
209 
210 	callout_init(&sc->calib_to, 0);
211 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
212 
213 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
214 	revision = PCI_REVISION(pa->pa_class);
215 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
216 
217 	pci_disable_retry(pa->pa_pc, pa->pa_tag);
218 
219 	/* enable bus-mastering */
220 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
221 	data |= PCI_COMMAND_MASTER_ENABLE;
222 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
223 
224 	/* map the register window */
225 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
226 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
227 	if (error != 0) {
228 		aprint_error_dev(self, "could not map memory space\n");
229 		return;
230 	}
231 
232 	sc->sc_st = memt;
233 	sc->sc_sh = memh;
234 	sc->sc_dmat = pa->pa_dmat;
235 
236 	if (pci_intr_map(pa, &ih) != 0) {
237 		aprint_error_dev(self, "could not map interrupt\n");
238 		return;
239 	}
240 
241 	intrstr = pci_intr_string(sc->sc_pct, ih);
242 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
243 	if (sc->sc_ih == NULL) {
244 		aprint_error_dev(self, "could not establish interrupt");
245 		if (intrstr != NULL)
246 			aprint_error(" at %s", intrstr);
247 		aprint_error("\n");
248 		return;
249 	}
250 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
251 
252 	if (wpi_reset(sc) != 0) {
253 		aprint_error_dev(self, "could not reset adapter\n");
254 		return;
255 	}
256 
257  	/*
258 	 * Allocate DMA memory for firmware transfers.
259 	 */
260 	if ((error = wpi_alloc_fwmem(sc)) != 0)
261 		return;
262 
263 	/*
264 	 * Allocate shared page and Tx/Rx rings.
265 	 */
266 	if ((error = wpi_alloc_shared(sc)) != 0) {
267 		aprint_error_dev(self, "could not allocate shared area\n");
268 		goto fail1;
269 	}
270 
271 	if ((error = wpi_alloc_rpool(sc)) != 0) {
272 		aprint_error_dev(self, "could not allocate Rx buffers\n");
273 		goto fail2;
274 	}
275 
276 	for (ac = 0; ac < 4; ac++) {
277 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
278 		if (error != 0) {
279 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
280 			goto fail3;
281 		}
282 	}
283 
284 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
285 	if (error != 0) {
286 		aprint_error_dev(self, "could not allocate command ring\n");
287 		goto fail3;
288 	}
289 
290 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
291 		aprint_error_dev(self, "could not allocate Rx ring\n");
292 		goto fail4;
293 	}
294 
295 	ic->ic_ifp = ifp;
296 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
297 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
298 	ic->ic_state = IEEE80211_S_INIT;
299 
300 	/* set device capabilities */
301 	ic->ic_caps =
302 		IEEE80211_C_IBSS |       /* IBSS mode support */
303 		IEEE80211_C_WPA |        /* 802.11i */
304 		IEEE80211_C_MONITOR |    /* monitor mode supported */
305 		IEEE80211_C_TXPMGT |     /* tx power management */
306 		IEEE80211_C_SHSLOT |     /* short slot time supported */
307 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
308 		IEEE80211_C_WME;         /* 802.11e */
309 
310 	/* read supported channels and MAC address from EEPROM */
311 	wpi_read_eeprom(sc);
312 
313 	/* set supported .11a, .11b, .11g rates */
314 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
315 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
316 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
317 
318 	ic->ic_ibss_chan = &ic->ic_channels[0];
319 
320 	ifp->if_softc = sc;
321 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
322 	ifp->if_init = wpi_init;
323 	ifp->if_stop = wpi_stop;
324 	ifp->if_ioctl = wpi_ioctl;
325 	ifp->if_start = wpi_start;
326 	ifp->if_watchdog = wpi_watchdog;
327 	IFQ_SET_READY(&ifp->if_snd);
328 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
329 
330 	if_attach(ifp);
331 	ieee80211_ifattach(ic);
332 	/* override default methods */
333 	ic->ic_node_alloc = wpi_node_alloc;
334 	ic->ic_newassoc = wpi_newassoc;
335 	ic->ic_wme.wme_update = wpi_wme_update;
336 
337 	/* override state transition machine */
338 	sc->sc_newstate = ic->ic_newstate;
339 	ic->ic_newstate = wpi_newstate;
340 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
341 
342 	sc->amrr.amrr_min_success_threshold = 1;
343 	sc->amrr.amrr_max_success_threshold = 15;
344 
345 	wpi_sysctlattach(sc);
346 
347 	if (!pmf_device_register(self, NULL, wpi_resume))
348 		aprint_error_dev(self, "couldn't establish power handler\n");
349 	else
350 		pmf_class_network_register(self, ifp);
351 
352 #if NBPFILTER > 0
353 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
354 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
355 		&sc->sc_drvbpf);
356 
357 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
358 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
359 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
360 
361 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
362 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
363 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
364 #endif
365 
366 	ieee80211_announce(ic);
367 
368 	return;
369 
370 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
371 fail3:  while (--ac >= 0)
372 			wpi_free_tx_ring(sc, &sc->txq[ac]);
373 	wpi_free_rpool(sc);
374 fail2:	wpi_free_shared(sc);
375 fail1:	wpi_free_fwmem(sc);
376 }
377 
378 static int
379 wpi_detach(device_t self, int flags __unused)
380 {
381 	struct wpi_softc *sc = device_private(self);
382 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
383 	int ac;
384 
385 	wpi_stop(ifp, 1);
386 
387 #if NBPFILTER > 0
388 	if (ifp != NULL)
389 		bpfdetach(ifp);
390 #endif
391 	ieee80211_ifdetach(&sc->sc_ic);
392 	if (ifp != NULL)
393 		if_detach(ifp);
394 
395 	for (ac = 0; ac < 4; ac++)
396 		wpi_free_tx_ring(sc, &sc->txq[ac]);
397 	wpi_free_tx_ring(sc, &sc->cmdq);
398 	wpi_free_rx_ring(sc, &sc->rxq);
399 	wpi_free_rpool(sc);
400 	wpi_free_shared(sc);
401 
402 	if (sc->sc_ih != NULL) {
403 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
404 		sc->sc_ih = NULL;
405 	}
406 
407 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
408 
409 	return 0;
410 }
411 
412 static int
413 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
414 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
415 {
416 	int nsegs, error;
417 
418 	dma->tag = tag;
419 	dma->size = size;
420 
421 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
422 	if (error != 0)
423 		goto fail;
424 
425 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
426 	    flags);
427 	if (error != 0)
428 		goto fail;
429 
430 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
431 	if (error != 0)
432 		goto fail;
433 
434 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
435 	if (error != 0)
436 		goto fail;
437 
438 	memset(dma->vaddr, 0, size);
439 
440 	dma->paddr = dma->map->dm_segs[0].ds_addr;
441 	if (kvap != NULL)
442 		*kvap = dma->vaddr;
443 
444 	return 0;
445 
446 fail:   wpi_dma_contig_free(dma);
447 	return error;
448 }
449 
450 static void
451 wpi_dma_contig_free(struct wpi_dma_info *dma)
452 {
453 	if (dma->map != NULL) {
454 		if (dma->vaddr != NULL) {
455 			bus_dmamap_unload(dma->tag, dma->map);
456 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
457 			bus_dmamem_free(dma->tag, &dma->seg, 1);
458 			dma->vaddr = NULL;
459 		}
460 		bus_dmamap_destroy(dma->tag, dma->map);
461 		dma->map = NULL;
462 	}
463 }
464 
465 /*
466  * Allocate a shared page between host and NIC.
467  */
468 static int
469 wpi_alloc_shared(struct wpi_softc *sc)
470 {
471 	int error;
472 	/* must be aligned on a 4K-page boundary */
473 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
474 			(void **)&sc->shared, sizeof (struct wpi_shared),
475 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
476 	if (error != 0)
477 		aprint_error_dev(sc->sc_dev,
478 				"could not allocate shared area DMA memory\n");
479 
480 	return error;
481 }
482 
483 static void
484 wpi_free_shared(struct wpi_softc *sc)
485 {
486 	wpi_dma_contig_free(&sc->shared_dma);
487 }
488 
489 /*
490  * Allocate DMA-safe memory for firmware transfer.
491  */
492 static int
493 wpi_alloc_fwmem(struct wpi_softc *sc)
494 {
495 	int error;
496 	/* allocate enough contiguous space to store text and data */
497 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
498 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
499 	    BUS_DMA_NOWAIT);
500 
501 	if (error != 0)
502 		aprint_error_dev(sc->sc_dev,
503 			"could not allocate firmware transfer area"
504 			"DMA memory\n");
505 	return error;
506 }
507 
508 static void
509 wpi_free_fwmem(struct wpi_softc *sc)
510 {
511 	wpi_dma_contig_free(&sc->fw_dma);
512 }
513 
514 
515 static struct wpi_rbuf *
516 wpi_alloc_rbuf(struct wpi_softc *sc)
517 {
518 	struct wpi_rbuf *rbuf;
519 
520 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
521 	if (rbuf == NULL)
522 		return NULL;
523 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
524 	sc->rxq.nb_free_entries --;
525 
526 	return rbuf;
527 }
528 
529 /*
530  * This is called automatically by the network stack when the mbuf to which our
531  * Rx buffer is attached is freed.
532  */
533 static void
534 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
535 {
536 	struct wpi_rbuf *rbuf = arg;
537 	struct wpi_softc *sc = rbuf->sc;
538 
539 	/* put the buffer back in the free list */
540 
541 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
542 	sc->rxq.nb_free_entries ++;
543 
544 	if (__predict_true(m != NULL))
545 		pool_cache_put(mb_cache, m);
546 }
547 
548 static int
549 wpi_alloc_rpool(struct wpi_softc *sc)
550 {
551 	struct wpi_rx_ring *ring = &sc->rxq;
552 	struct wpi_rbuf *rbuf;
553 	int i, error;
554 
555 	/* allocate a big chunk of DMA'able memory.. */
556 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
557 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
558 	if (error != 0) {
559 		aprint_normal_dev(sc->sc_dev,
560 						  "could not allocate Rx buffers DMA memory\n");
561 		return error;
562 	}
563 
564 	/* ..and split it into 3KB chunks */
565 	SLIST_INIT(&ring->freelist);
566 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
567 		rbuf = &ring->rbuf[i];
568 		rbuf->sc = sc;	/* backpointer for callbacks */
569 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
570 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
571 
572 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
573 	}
574 
575 	ring->nb_free_entries = WPI_RBUF_COUNT;
576 	return 0;
577 }
578 
579 static void
580 wpi_free_rpool(struct wpi_softc *sc)
581 {
582 	wpi_dma_contig_free(&sc->rxq.buf_dma);
583 }
584 
585 static int
586 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
587 {
588 	struct wpi_rx_data *data;
589 	struct wpi_rbuf *rbuf;
590 	int i, error;
591 
592 	ring->cur = 0;
593 
594 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
595 		(void **)&ring->desc,
596 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
597 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
598 	if (error != 0) {
599 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
600 		goto fail;
601 	}
602 
603 	/*
604 	 * Setup Rx buffers.
605 	 */
606 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
607 		data = &ring->data[i];
608 
609 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 		if (data->m == NULL) {
611 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
612 			error = ENOMEM;
613 			goto fail;
614 		}
615 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
616 			m_freem(data->m);
617 			data->m = NULL;
618 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
619 			error = ENOMEM;
620 			goto fail;
621 		}
622 		/* attach Rx buffer to mbuf */
623 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
624 		    rbuf);
625 		data->m->m_flags |= M_EXT_RW;
626 
627 		ring->desc[i] = htole32(rbuf->paddr);
628 	}
629 
630 	return 0;
631 
632 fail:	wpi_free_rx_ring(sc, ring);
633 	return error;
634 }
635 
636 static void
637 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
638 {
639 	int ntries;
640 
641 	wpi_mem_lock(sc);
642 
643 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
644 	for (ntries = 0; ntries < 100; ntries++) {
645 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
646 			break;
647 		DELAY(10);
648 	}
649 #ifdef WPI_DEBUG
650 	if (ntries == 100 && wpi_debug > 0)
651 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
652 #endif
653 	wpi_mem_unlock(sc);
654 
655 	ring->cur = 0;
656 }
657 
658 static void
659 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
660 {
661 	int i;
662 
663 	wpi_dma_contig_free(&ring->desc_dma);
664 
665 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
666 		if (ring->data[i].m != NULL)
667 			m_freem(ring->data[i].m);
668 	}
669 }
670 
671 static int
672 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
673 	int qid)
674 {
675 	struct wpi_tx_data *data;
676 	int i, error;
677 
678 	ring->qid = qid;
679 	ring->count = count;
680 	ring->queued = 0;
681 	ring->cur = 0;
682 
683 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
684 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
685 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
686 	if (error != 0) {
687 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
688 		goto fail;
689 	}
690 
691 	/* update shared page with ring's base address */
692 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
693 
694 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
695 		(void **)&ring->cmd,
696 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
697 	if (error != 0) {
698 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
699 		goto fail;
700 	}
701 
702 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
703 		M_NOWAIT);
704 	if (ring->data == NULL) {
705 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
706 		goto fail;
707 	}
708 
709 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
710 
711 	for (i = 0; i < count; i++) {
712 		data = &ring->data[i];
713 
714 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
715 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
716 			&data->map);
717 		if (error != 0) {
718 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
719 			goto fail;
720 		}
721 	}
722 
723 	return 0;
724 
725 fail:	wpi_free_tx_ring(sc, ring);
726 	return error;
727 }
728 
729 static void
730 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
731 {
732 	struct wpi_tx_data *data;
733 	int i, ntries;
734 
735 	wpi_mem_lock(sc);
736 
737 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
738 	for (ntries = 0; ntries < 100; ntries++) {
739 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
740 			break;
741 		DELAY(10);
742 	}
743 #ifdef WPI_DEBUG
744 	if (ntries == 100 && wpi_debug > 0) {
745 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
746 									   ring->qid);
747 	}
748 #endif
749 	wpi_mem_unlock(sc);
750 
751 	for (i = 0; i < ring->count; i++) {
752 		data = &ring->data[i];
753 
754 		if (data->m != NULL) {
755 			bus_dmamap_unload(sc->sc_dmat, data->map);
756 			m_freem(data->m);
757 			data->m = NULL;
758 		}
759 	}
760 
761 	ring->queued = 0;
762 	ring->cur = 0;
763 }
764 
765 static void
766 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
767 {
768 	struct wpi_tx_data *data;
769 	int i;
770 
771 	wpi_dma_contig_free(&ring->desc_dma);
772 	wpi_dma_contig_free(&ring->cmd_dma);
773 
774 	if (ring->data != NULL) {
775 		for (i = 0; i < ring->count; i++) {
776 			data = &ring->data[i];
777 
778 			if (data->m != NULL) {
779 				bus_dmamap_unload(sc->sc_dmat, data->map);
780 				m_freem(data->m);
781 			}
782 		}
783 		free(ring->data, M_DEVBUF);
784 	}
785 }
786 
787 /*ARGUSED*/
788 static struct ieee80211_node *
789 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
790 {
791 	struct wpi_node *wn;
792 
793 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
794 
795 	return (struct ieee80211_node *)wn;
796 }
797 
798 static void
799 wpi_newassoc(struct ieee80211_node *ni, int isnew)
800 {
801 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
802 	int i;
803 
804 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
805 
806 	/* set rate to some reasonable initial value */
807 	for (i = ni->ni_rates.rs_nrates - 1;
808 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
809 	     i--);
810 	ni->ni_txrate = i;
811 }
812 
813 static int
814 wpi_media_change(struct ifnet *ifp)
815 {
816 	int error;
817 
818 	error = ieee80211_media_change(ifp);
819 	if (error != ENETRESET)
820 		return error;
821 
822 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
823 		wpi_init(ifp);
824 
825 	return 0;
826 }
827 
828 static int
829 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
830 {
831 	struct ifnet *ifp = ic->ic_ifp;
832 	struct wpi_softc *sc = ifp->if_softc;
833 	struct ieee80211_node *ni;
834 	int error;
835 
836 	callout_stop(&sc->calib_to);
837 
838 	switch (nstate) {
839 	case IEEE80211_S_SCAN:
840 
841 		if (sc->is_scanning)
842 			break;
843 
844 		sc->is_scanning = true;
845 		ieee80211_node_table_reset(&ic->ic_scan);
846 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
847 
848 		/* make the link LED blink while we're scanning */
849 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
850 
851 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
852 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
853 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
854 			return error;
855 		}
856 
857 		ic->ic_state = nstate;
858 		return 0;
859 
860 	case IEEE80211_S_ASSOC:
861 		if (ic->ic_state != IEEE80211_S_RUN)
862 			break;
863 		/* FALLTHROUGH */
864 	case IEEE80211_S_AUTH:
865 		sc->config.associd = 0;
866 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
867 		if ((error = wpi_auth(sc)) != 0) {
868 			aprint_error_dev(sc->sc_dev,
869 							"could not send authentication request\n");
870 			return error;
871 		}
872 		break;
873 
874 	case IEEE80211_S_RUN:
875 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
876 			/* link LED blinks while monitoring */
877 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
878 			break;
879 		}
880 
881 		ni = ic->ic_bss;
882 
883 		if (ic->ic_opmode != IEEE80211_M_STA) {
884 			(void) wpi_auth(sc);    /* XXX */
885 			wpi_setup_beacon(sc, ni);
886 		}
887 
888 		wpi_enable_tsf(sc, ni);
889 
890 		/* update adapter's configuration */
891 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
892 		/* short preamble/slot time are negotiated when associating */
893 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
894 			WPI_CONFIG_SHSLOT);
895 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
896 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
897 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
898 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
899 		sc->config.filter |= htole32(WPI_FILTER_BSS);
900 		if (ic->ic_opmode != IEEE80211_M_STA)
901 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
902 
903 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
904 
905 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
906 			sc->config.flags));
907 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
908 			sizeof (struct wpi_config), 1);
909 		if (error != 0) {
910 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
911 			return error;
912 		}
913 
914 		/* configuration has changed, set Tx power accordingly */
915 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
916 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
917 			return error;
918 		}
919 
920 		if (ic->ic_opmode == IEEE80211_M_STA) {
921 			/* fake a join to init the tx rate */
922 			wpi_newassoc(ni, 1);
923 		}
924 
925 		/* start periodic calibration timer */
926 		sc->calib_cnt = 0;
927 		callout_schedule(&sc->calib_to, hz/2);
928 
929 		/* link LED always on while associated */
930 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
931 		break;
932 
933 	case IEEE80211_S_INIT:
934 		sc->is_scanning = false;
935 		break;
936 	}
937 
938 	return sc->sc_newstate(ic, nstate, arg);
939 }
940 
941 /*
942  * XXX: Hack to set the current channel to the value advertised in beacons or
943  * probe responses. Only used during AP detection.
944  * XXX: Duplicated from if_iwi.c
945  */
946 static void
947 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
948 {
949 	struct ieee80211_frame *wh;
950 	uint8_t subtype;
951 	uint8_t *frm, *efrm;
952 
953 	wh = mtod(m, struct ieee80211_frame *);
954 
955 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
956 		return;
957 
958 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
959 
960 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
961 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
962 		return;
963 
964 	frm = (uint8_t *)(wh + 1);
965 	efrm = mtod(m, uint8_t *) + m->m_len;
966 
967 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
968 	while (frm < efrm) {
969 		if (*frm == IEEE80211_ELEMID_DSPARMS)
970 #if IEEE80211_CHAN_MAX < 255
971 		if (frm[2] <= IEEE80211_CHAN_MAX)
972 #endif
973 			ic->ic_curchan = &ic->ic_channels[frm[2]];
974 
975 		frm += frm[1] + 2;
976 	}
977 }
978 
979 /*
980  * Grab exclusive access to NIC memory.
981  */
982 static void
983 wpi_mem_lock(struct wpi_softc *sc)
984 {
985 	uint32_t tmp;
986 	int ntries;
987 
988 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
989 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
990 
991 	/* spin until we actually get the lock */
992 	for (ntries = 0; ntries < 1000; ntries++) {
993 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
994 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
995 			break;
996 		DELAY(10);
997 	}
998 	if (ntries == 1000)
999 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1000 }
1001 
1002 /*
1003  * Release lock on NIC memory.
1004  */
1005 static void
1006 wpi_mem_unlock(struct wpi_softc *sc)
1007 {
1008 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1009 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1010 }
1011 
1012 static uint32_t
1013 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1014 {
1015 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1016 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1017 }
1018 
1019 static void
1020 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1021 {
1022 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1023 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1024 }
1025 
1026 static void
1027 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1028 						const uint32_t *data, int wlen)
1029 {
1030 	for (; wlen > 0; wlen--, data++, addr += 4)
1031 		wpi_mem_write(sc, addr, *data);
1032 }
1033 
1034 
1035 /*
1036  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1037  * instead of using the traditional bit-bang method.
1038  */
1039 static int
1040 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1041 {
1042 	uint8_t *out = data;
1043 	uint32_t val;
1044 	int ntries;
1045 
1046 	wpi_mem_lock(sc);
1047 	for (; len > 0; len -= 2, addr++) {
1048 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1049 
1050 		for (ntries = 0; ntries < 10; ntries++) {
1051 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1052 			    WPI_EEPROM_READY)
1053 				break;
1054 			DELAY(5);
1055 		}
1056 		if (ntries == 10) {
1057 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1058 			return ETIMEDOUT;
1059 		}
1060 		*out++ = val >> 16;
1061 		if (len > 1)
1062 			*out++ = val >> 24;
1063 	}
1064 	wpi_mem_unlock(sc);
1065 
1066 	return 0;
1067 }
1068 
1069 /*
1070  * The firmware boot code is small and is intended to be copied directly into
1071  * the NIC internal memory.
1072  */
1073 int
1074 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1075 {
1076 	int ntries;
1077 
1078 	size /= sizeof (uint32_t);
1079 
1080 	wpi_mem_lock(sc);
1081 
1082 	/* copy microcode image into NIC memory */
1083 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1084 	    (const uint32_t *)ucode, size);
1085 
1086 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1087 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1088 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1089 
1090 	/* run microcode */
1091 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1092 
1093 	/* wait for transfer to complete */
1094 	for (ntries = 0; ntries < 1000; ntries++) {
1095 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1096 			break;
1097 		DELAY(10);
1098 	}
1099 	if (ntries == 1000) {
1100 		wpi_mem_unlock(sc);
1101 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1102 		return ETIMEDOUT;
1103 	}
1104 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1105 
1106 	wpi_mem_unlock(sc);
1107 
1108 	return 0;
1109 }
1110 
1111 static int
1112 wpi_load_firmware(struct wpi_softc *sc)
1113 {
1114 	struct wpi_dma_info *dma = &sc->fw_dma;
1115 	struct wpi_firmware_hdr hdr;
1116 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1117 	const uint8_t *boot_text;
1118 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1119 	uint32_t boot_textsz;
1120 	firmware_handle_t fw;
1121 	u_char *dfw;
1122 	size_t size;
1123 	int error;
1124 
1125 	/* load firmware image from disk */
1126 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1127 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1128 		goto fail1;
1129 	}
1130 
1131 	size = firmware_get_size(fw);
1132 
1133 	/* extract firmware header information */
1134 	if (size < sizeof (struct wpi_firmware_hdr)) {
1135 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1136 		    			 size);
1137 		error = EINVAL;
1138 		goto fail2;
1139 	}
1140 
1141 	if ((error = firmware_read(fw, 0, &hdr,
1142 		sizeof (struct wpi_firmware_hdr))) != 0) {
1143 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1144 		goto fail2;
1145 	}
1146 
1147 	main_textsz = le32toh(hdr.main_textsz);
1148 	main_datasz = le32toh(hdr.main_datasz);
1149 	init_textsz = le32toh(hdr.init_textsz);
1150 	init_datasz = le32toh(hdr.init_datasz);
1151 	boot_textsz = le32toh(hdr.boot_textsz);
1152 
1153 	/* sanity-check firmware segments sizes */
1154 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1155 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1156 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1157 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1158 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1159 	    (boot_textsz & 3) != 0) {
1160 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1161 		error = EINVAL;
1162 		goto fail2;
1163 	}
1164 
1165 	/* check that all firmware segments are present */
1166 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1167 		main_datasz + init_textsz + init_datasz + boot_textsz) {
1168 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1169 		    			 size);
1170 		error = EINVAL;
1171 		goto fail2;
1172 	}
1173 
1174 	dfw = firmware_malloc(size);
1175 	if (dfw == NULL) {
1176 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1177 		error = ENOMEM;
1178 		goto fail2;
1179 	}
1180 
1181 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1182 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1183 		goto fail2;
1184 	}
1185 
1186 	/* get pointers to firmware segments */
1187 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
1188 	main_data = main_text + main_textsz;
1189 	init_text = main_data + main_datasz;
1190 	init_data = init_text + init_textsz;
1191 	boot_text = init_data + init_datasz;
1192 
1193 	/* copy initialization images into pre-allocated DMA-safe memory */
1194 	memcpy(dma->vaddr, init_data, init_datasz);
1195 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1196 
1197 	/* tell adapter where to find initialization images */
1198 	wpi_mem_lock(sc);
1199 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1200 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1201 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1202 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1203 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1204 	wpi_mem_unlock(sc);
1205 
1206 	/* load firmware boot code */
1207 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1208 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1209 		goto fail3;
1210 	}
1211 
1212 	/* now press "execute" ;-) */
1213 	WPI_WRITE(sc, WPI_RESET, 0);
1214 
1215 	/* ..and wait at most one second for adapter to initialize */
1216 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1217 		/* this isn't what was supposed to happen.. */
1218 		aprint_error_dev(sc->sc_dev,
1219 					"timeout waiting for adapter to initialize\n");
1220 	}
1221 
1222 	/* copy runtime images into pre-allocated DMA-safe memory */
1223 	memcpy(dma->vaddr, main_data, main_datasz);
1224 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1225 
1226 	/* tell adapter where to find runtime images */
1227 	wpi_mem_lock(sc);
1228 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1229 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1230 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1231 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1232 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1233 	wpi_mem_unlock(sc);
1234 
1235 	/* wait at most one second for second alive notification */
1236 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1237 		/* this isn't what was supposed to happen.. */
1238 		aprint_error_dev(sc->sc_dev,
1239 						"timeout waiting for adapter to initialize\n");
1240 	}
1241 
1242 
1243 fail3: 	firmware_free(dfw,size);
1244 fail2:	firmware_close(fw);
1245 fail1:	return error;
1246 }
1247 
1248 static void
1249 wpi_calib_timeout(void *arg)
1250 {
1251 	struct wpi_softc *sc = arg;
1252 	struct ieee80211com *ic = &sc->sc_ic;
1253 	int temp, s;
1254 
1255 	/* automatic rate control triggered every 500ms */
1256 	if (ic->ic_fixed_rate == -1) {
1257 		s = splnet();
1258 		if (ic->ic_opmode == IEEE80211_M_STA)
1259 			wpi_iter_func(sc, ic->ic_bss);
1260 		else
1261                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1262 		splx(s);
1263 	}
1264 
1265 	/* update sensor data */
1266 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1267 
1268 	/* automatic power calibration every 60s */
1269 	if (++sc->calib_cnt >= 120) {
1270 		wpi_power_calibration(sc, temp);
1271 		sc->calib_cnt = 0;
1272 	}
1273 
1274 	callout_schedule(&sc->calib_to, hz/2);
1275 }
1276 
1277 static void
1278 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1279 {
1280 	struct wpi_softc *sc = arg;
1281 	struct wpi_node *wn = (struct wpi_node *)ni;
1282 
1283 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1284 }
1285 
1286 /*
1287  * This function is called periodically (every 60 seconds) to adjust output
1288  * power to temperature changes.
1289  */
1290 void
1291 wpi_power_calibration(struct wpi_softc *sc, int temp)
1292 {
1293 	/* sanity-check read value */
1294 	if (temp < -260 || temp > 25) {
1295 		/* this can't be correct, ignore */
1296 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1297 		return;
1298 	}
1299 
1300 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1301 
1302 	/* adjust Tx power if need be */
1303 	if (abs(temp - sc->temp) <= 6)
1304 		return;
1305 
1306 	sc->temp = temp;
1307 
1308 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1309 		/* just warn, too bad for the automatic calibration... */
1310 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1311 	}
1312 }
1313 
1314 static void
1315 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1316 	struct wpi_rx_data *data)
1317 {
1318 	struct ieee80211com *ic = &sc->sc_ic;
1319 	struct ifnet *ifp = ic->ic_ifp;
1320 	struct wpi_rx_ring *ring = &sc->rxq;
1321 	struct wpi_rx_stat *stat;
1322 	struct wpi_rx_head *head;
1323 	struct wpi_rx_tail *tail;
1324 	struct wpi_rbuf *rbuf;
1325 	struct ieee80211_frame *wh;
1326 	struct ieee80211_node *ni;
1327 	struct mbuf *m, *mnew;
1328 	int data_off ;
1329 
1330 	stat = (struct wpi_rx_stat *)(desc + 1);
1331 
1332 	if (stat->len > WPI_STAT_MAXLEN) {
1333 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1334 		ifp->if_ierrors++;
1335 		return;
1336 	}
1337 
1338 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1339 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1340 
1341 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1342 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1343 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1344 		le64toh(tail->tstamp)));
1345 
1346 	/*
1347 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1348 	 * to radiotap in monitor mode).
1349 	 */
1350 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1351 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1352 		ifp->if_ierrors++;
1353 		return;
1354 	}
1355 
1356 	/* Compute where are the useful datas */
1357 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1358 
1359 	/*
1360 	 * If the number of free entry is too low
1361 	 * just dup the data->m socket and reuse the same rbuf entry
1362 	 */
1363 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1364 
1365 		/* Prepare the mbuf for the m_dup */
1366 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1367 		data->m->m_data = (char*) data->m->m_data + data_off;
1368 
1369 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1370 
1371 		/* Restore the m_data pointer for future use */
1372 		data->m->m_data = (char*) data->m->m_data - data_off;
1373 
1374 		if (m == NULL) {
1375 			ifp->if_ierrors++;
1376 			return;
1377 		}
1378 	} else {
1379 
1380 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1381 		if (mnew == NULL) {
1382 			ifp->if_ierrors++;
1383 			return;
1384 		}
1385 
1386 		rbuf = wpi_alloc_rbuf(sc);
1387 		KASSERT(rbuf != NULL);
1388 
1389  		/* attach Rx buffer to mbuf */
1390 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1391 		 	rbuf);
1392 		mnew->m_flags |= M_EXT_RW;
1393 
1394 		m = data->m;
1395 		data->m = mnew;
1396 
1397 		/* update Rx descriptor */
1398 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1399 
1400 		m->m_data = (char*)m->m_data + data_off;
1401 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1402 	}
1403 
1404 	/* finalize mbuf */
1405 	m->m_pkthdr.rcvif = ifp;
1406 
1407 	if (ic->ic_state == IEEE80211_S_SCAN)
1408 		wpi_fix_channel(ic, m);
1409 
1410 #if NBPFILTER > 0
1411 	if (sc->sc_drvbpf != NULL) {
1412 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1413 
1414 		tap->wr_flags = 0;
1415 		tap->wr_chan_freq =
1416 			htole16(ic->ic_channels[head->chan].ic_freq);
1417 		tap->wr_chan_flags =
1418 			htole16(ic->ic_channels[head->chan].ic_flags);
1419 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1420 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1421 		tap->wr_tsft = tail->tstamp;
1422 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1423 		switch (head->rate) {
1424 		/* CCK rates */
1425 		case  10: tap->wr_rate =   2; break;
1426 		case  20: tap->wr_rate =   4; break;
1427 		case  55: tap->wr_rate =  11; break;
1428 		case 110: tap->wr_rate =  22; break;
1429 		/* OFDM rates */
1430 		case 0xd: tap->wr_rate =  12; break;
1431 		case 0xf: tap->wr_rate =  18; break;
1432 		case 0x5: tap->wr_rate =  24; break;
1433 		case 0x7: tap->wr_rate =  36; break;
1434 		case 0x9: tap->wr_rate =  48; break;
1435 		case 0xb: tap->wr_rate =  72; break;
1436 		case 0x1: tap->wr_rate =  96; break;
1437 		case 0x3: tap->wr_rate = 108; break;
1438 		/* unknown rate: should not happen */
1439 		default:  tap->wr_rate =   0;
1440 		}
1441 		if (le16toh(head->flags) & 0x4)
1442 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1443 
1444 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1445 	}
1446 #endif
1447 
1448 	/* grab a reference to the source node */
1449 	wh = mtod(m, struct ieee80211_frame *);
1450 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1451 
1452 	/* send the frame to the 802.11 layer */
1453 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1454 
1455 	/* release node reference */
1456 	ieee80211_free_node(ni);
1457 }
1458 
1459 static void
1460 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1461 {
1462 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1463 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1464 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1465 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1466 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1467 
1468 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1469 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1470 		stat->nkill, stat->rate, le32toh(stat->duration),
1471 		le32toh(stat->status)));
1472 
1473 	/*
1474 	 * Update rate control statistics for the node.
1475 	 * XXX we should not count mgmt frames since they're always sent at
1476 	 * the lowest available bit-rate.
1477 	 */
1478 	wn->amn.amn_txcnt++;
1479 	if (stat->ntries > 0) {
1480 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1481 		wn->amn.amn_retrycnt++;
1482 	}
1483 
1484 	if ((le32toh(stat->status) & 0xff) != 1)
1485 		ifp->if_oerrors++;
1486 	else
1487 		ifp->if_opackets++;
1488 
1489 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1490 	m_freem(txdata->m);
1491 	txdata->m = NULL;
1492 	ieee80211_free_node(txdata->ni);
1493 	txdata->ni = NULL;
1494 
1495 	ring->queued--;
1496 
1497 	sc->sc_tx_timer = 0;
1498 	ifp->if_flags &= ~IFF_OACTIVE;
1499 	wpi_start(ifp);
1500 }
1501 
1502 static void
1503 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1504 {
1505 	struct wpi_tx_ring *ring = &sc->cmdq;
1506 	struct wpi_tx_data *data;
1507 
1508 	if ((desc->qid & 7) != 4)
1509 		return;	/* not a command ack */
1510 
1511 	data = &ring->data[desc->idx];
1512 
1513 	/* if the command was mapped in a mbuf, free it */
1514 	if (data->m != NULL) {
1515 		bus_dmamap_unload(sc->sc_dmat, data->map);
1516 		m_freem(data->m);
1517 		data->m = NULL;
1518 	}
1519 
1520 	wakeup(&ring->cmd[desc->idx]);
1521 }
1522 
1523 static void
1524 wpi_notif_intr(struct wpi_softc *sc)
1525 {
1526 	struct ieee80211com *ic = &sc->sc_ic;
1527 	struct ifnet *ifp =  ic->ic_ifp;
1528 	struct wpi_rx_desc *desc;
1529 	struct wpi_rx_data *data;
1530 	uint32_t hw;
1531 
1532 	hw = le32toh(sc->shared->next);
1533 	while (sc->rxq.cur != hw) {
1534 		data = &sc->rxq.data[sc->rxq.cur];
1535 
1536 		desc = mtod(data->m, struct wpi_rx_desc *);
1537 
1538 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1539 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1540 			desc->type, le32toh(desc->len)));
1541 
1542 		if (!(desc->qid & 0x80))	/* reply to a command */
1543 			wpi_cmd_intr(sc, desc);
1544 
1545 		switch (desc->type) {
1546 		case WPI_RX_DONE:
1547 			/* a 802.11 frame was received */
1548 			wpi_rx_intr(sc, desc, data);
1549 			break;
1550 
1551 		case WPI_TX_DONE:
1552 			/* a 802.11 frame has been transmitted */
1553 			wpi_tx_intr(sc, desc);
1554 			break;
1555 
1556 		case WPI_UC_READY:
1557 		{
1558 			struct wpi_ucode_info *uc =
1559 				(struct wpi_ucode_info *)(desc + 1);
1560 
1561 			/* the microcontroller is ready */
1562 			DPRINTF(("microcode alive notification version %x "
1563 				"alive %x\n", le32toh(uc->version),
1564 				le32toh(uc->valid)));
1565 
1566 			if (le32toh(uc->valid) != 1) {
1567 				aprint_error_dev(sc->sc_dev,
1568 					"microcontroller initialization failed\n");
1569 			}
1570 			break;
1571 		}
1572 		case WPI_STATE_CHANGED:
1573 		{
1574 			uint32_t *status = (uint32_t *)(desc + 1);
1575 
1576 			/* enabled/disabled notification */
1577 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1578 
1579 			if (le32toh(*status) & 1) {
1580 				/* the radio button has to be pushed */
1581 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1582 				/* turn the interface down */
1583 				ifp->if_flags &= ~IFF_UP;
1584 				wpi_stop(ifp, 1);
1585 				return;	/* no further processing */
1586 			}
1587 			break;
1588 		}
1589 		case WPI_START_SCAN:
1590 		{
1591 			struct wpi_start_scan *scan =
1592 				(struct wpi_start_scan *)(desc + 1);
1593 
1594 			DPRINTFN(2, ("scanning channel %d status %x\n",
1595 				scan->chan, le32toh(scan->status)));
1596 
1597 			/* fix current channel */
1598 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1599 			break;
1600 		}
1601 		case WPI_STOP_SCAN:
1602 		{
1603 			struct wpi_stop_scan *scan =
1604 				(struct wpi_stop_scan *)(desc + 1);
1605 
1606 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1607 				scan->nchan, scan->status, scan->chan));
1608 
1609 			if (scan->status == 1 && scan->chan <= 14) {
1610 				/*
1611 				 * We just finished scanning 802.11g channels,
1612 				 * start scanning 802.11a ones.
1613 				 */
1614 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1615 					break;
1616 			}
1617 			sc->is_scanning = false;
1618 			ieee80211_end_scan(ic);
1619 			break;
1620 		}
1621 		}
1622 
1623 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1624 	}
1625 
1626 	/* tell the firmware what we have processed */
1627 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1628 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1629 }
1630 
1631 static int
1632 wpi_intr(void *arg)
1633 {
1634 	struct wpi_softc *sc = arg;
1635 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1636 	uint32_t r;
1637 
1638 	r = WPI_READ(sc, WPI_INTR);
1639 	if (r == 0 || r == 0xffffffff)
1640 		return 0;	/* not for us */
1641 
1642 	DPRINTFN(5, ("interrupt reg %x\n", r));
1643 
1644 	/* disable interrupts */
1645 	WPI_WRITE(sc, WPI_MASK, 0);
1646 	/* ack interrupts */
1647 	WPI_WRITE(sc, WPI_INTR, r);
1648 
1649 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1650 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1651 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1652 		wpi_stop(sc->sc_ic.ic_ifp, 1);
1653 		return 1;
1654 	}
1655 
1656 	if (r & WPI_RX_INTR)
1657 		wpi_notif_intr(sc);
1658 
1659 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1660 		wakeup(sc);
1661 
1662 	/* re-enable interrupts */
1663 	if (ifp->if_flags & IFF_UP)
1664 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1665 
1666 	return 1;
1667 }
1668 
1669 static uint8_t
1670 wpi_plcp_signal(int rate)
1671 {
1672 	switch (rate) {
1673 	/* CCK rates (returned values are device-dependent) */
1674 	case 2:		return 10;
1675 	case 4:		return 20;
1676 	case 11:	return 55;
1677 	case 22:	return 110;
1678 
1679 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1680 	/* R1-R4, (u)ral is R4-R1 */
1681 	case 12:	return 0xd;
1682 	case 18:	return 0xf;
1683 	case 24:	return 0x5;
1684 	case 36:	return 0x7;
1685 	case 48:	return 0x9;
1686 	case 72:	return 0xb;
1687 	case 96:	return 0x1;
1688 	case 108:	return 0x3;
1689 
1690 	/* unsupported rates (should not get there) */
1691 	default:	return 0;
1692 	}
1693 }
1694 
1695 /* quickly determine if a given rate is CCK or OFDM */
1696 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1697 
1698 static int
1699 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1700 	int ac)
1701 {
1702 	struct ieee80211com *ic = &sc->sc_ic;
1703 	struct wpi_tx_ring *ring = &sc->txq[ac];
1704 	struct wpi_tx_desc *desc;
1705 	struct wpi_tx_data *data;
1706 	struct wpi_tx_cmd *cmd;
1707 	struct wpi_cmd_data *tx;
1708 	struct ieee80211_frame *wh;
1709 	struct ieee80211_key *k;
1710 	const struct chanAccParams *cap;
1711 	struct mbuf *mnew;
1712 	int i, error, rate, hdrlen, noack = 0;
1713 
1714 	desc = &ring->desc[ring->cur];
1715 	data = &ring->data[ring->cur];
1716 
1717 	wh = mtod(m0, struct ieee80211_frame *);
1718 
1719 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1720 		cap = &ic->ic_wme.wme_chanParams;
1721 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1722 	}
1723 
1724 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1725 		k = ieee80211_crypto_encap(ic, ni, m0);
1726 		if (k == NULL) {
1727 			m_freem(m0);
1728 			return ENOBUFS;
1729 		}
1730 
1731 		/* packet header may have moved, reset our local pointer */
1732 		wh = mtod(m0, struct ieee80211_frame *);
1733 	}
1734 
1735 	hdrlen = ieee80211_anyhdrsize(wh);
1736 
1737 	/* pickup a rate */
1738 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1739 		IEEE80211_FC0_TYPE_MGT) {
1740 		/* mgmt frames are sent at the lowest available bit-rate */
1741 		rate = ni->ni_rates.rs_rates[0];
1742 	} else {
1743 		if (ic->ic_fixed_rate != -1) {
1744 			rate = ic->ic_sup_rates[ic->ic_curmode].
1745 				rs_rates[ic->ic_fixed_rate];
1746 		} else
1747 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1748 	}
1749 	rate &= IEEE80211_RATE_VAL;
1750 
1751 
1752 #if NBPFILTER > 0
1753 	if (sc->sc_drvbpf != NULL) {
1754 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1755 
1756 		tap->wt_flags = 0;
1757 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1758 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1759 		tap->wt_rate = rate;
1760 		tap->wt_hwqueue = ac;
1761 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1762 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1763 
1764 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1765 	}
1766 #endif
1767 
1768 	cmd = &ring->cmd[ring->cur];
1769 	cmd->code = WPI_CMD_TX_DATA;
1770 	cmd->flags = 0;
1771 	cmd->qid = ring->qid;
1772 	cmd->idx = ring->cur;
1773 
1774 	tx = (struct wpi_cmd_data *)cmd->data;
1775 	tx->flags = 0;
1776 
1777 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1778 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1779 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1780 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1781 
1782 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1783 
1784 	/* retrieve destination node's id */
1785 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1786 		WPI_ID_BSS;
1787 
1788 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1789 		IEEE80211_FC0_TYPE_MGT) {
1790 		/* tell h/w to set timestamp in probe responses */
1791 		if ((wh->i_fc[0] &
1792 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1793 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1794 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1795 
1796 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1797 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1798 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1799 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1800 			tx->timeout = htole16(3);
1801 		else
1802 			tx->timeout = htole16(2);
1803 	} else
1804 		tx->timeout = htole16(0);
1805 
1806 	tx->rate = wpi_plcp_signal(rate);
1807 
1808 	/* be very persistant at sending frames out */
1809 	tx->rts_ntries = 7;
1810 	tx->data_ntries = 15;
1811 
1812 	tx->ofdm_mask = 0xff;
1813 	tx->cck_mask = 0xf;
1814 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1815 
1816 	tx->len = htole16(m0->m_pkthdr.len);
1817 
1818 	/* save and trim IEEE802.11 header */
1819 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1820 	m_adj(m0, hdrlen);
1821 
1822 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1823 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1824 	if (error != 0 && error != EFBIG) {
1825 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1826 		m_freem(m0);
1827 		return error;
1828 	}
1829 	if (error != 0) {
1830 		/* too many fragments, linearize */
1831 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1832 		if (mnew == NULL) {
1833 			m_freem(m0);
1834 			return ENOMEM;
1835 		}
1836 
1837 		M_COPY_PKTHDR(mnew, m0);
1838 		if (m0->m_pkthdr.len > MHLEN) {
1839 			MCLGET(mnew, M_DONTWAIT);
1840 			if (!(mnew->m_flags & M_EXT)) {
1841 				m_freem(m0);
1842 				m_freem(mnew);
1843 				return ENOMEM;
1844 			}
1845 		}
1846 
1847 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1848 		m_freem(m0);
1849 		mnew->m_len = mnew->m_pkthdr.len;
1850 		m0 = mnew;
1851 
1852 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1853 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1854 		if (error != 0) {
1855 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1856 							 error);
1857 			m_freem(m0);
1858 			return error;
1859 		}
1860 	}
1861 
1862 	data->m = m0;
1863 	data->ni = ni;
1864 
1865 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1866 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1867 
1868 	/* first scatter/gather segment is used by the tx data command */
1869 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1870 		(1 + data->map->dm_nsegs) << 24);
1871 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1872 		ring->cur * sizeof (struct wpi_tx_cmd));
1873 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1874 						 ((hdrlen + 3) & ~3));
1875 
1876 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1877 		desc->segs[i].addr =
1878 			htole32(data->map->dm_segs[i - 1].ds_addr);
1879 		desc->segs[i].len  =
1880 			htole32(data->map->dm_segs[i - 1].ds_len);
1881 	}
1882 
1883 	ring->queued++;
1884 
1885 	/* kick ring */
1886 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1887 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1888 
1889 	return 0;
1890 }
1891 
1892 static void
1893 wpi_start(struct ifnet *ifp)
1894 {
1895 	struct wpi_softc *sc = ifp->if_softc;
1896 	struct ieee80211com *ic = &sc->sc_ic;
1897 	struct ieee80211_node *ni;
1898 	struct ether_header *eh;
1899 	struct mbuf *m0;
1900 	int ac;
1901 
1902 	/*
1903 	 * net80211 may still try to send management frames even if the
1904 	 * IFF_RUNNING flag is not set...
1905 	 */
1906 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1907 		return;
1908 
1909 	for (;;) {
1910 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1911 		if (m0 != NULL) {
1912 
1913 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1914 			m0->m_pkthdr.rcvif = NULL;
1915 
1916 			/* management frames go into ring 0 */
1917 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1918 				ifp->if_oerrors++;
1919 				continue;
1920 			}
1921 #if NBPFILTER > 0
1922 			if (ic->ic_rawbpf != NULL)
1923 				bpf_mtap(ic->ic_rawbpf, m0);
1924 #endif
1925 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1926 				ifp->if_oerrors++;
1927 				break;
1928 			}
1929 		} else {
1930 			if (ic->ic_state != IEEE80211_S_RUN)
1931 				break;
1932 			IFQ_POLL(&ifp->if_snd, m0);
1933 			if (m0 == NULL)
1934 				break;
1935 
1936 			if (m0->m_len < sizeof (*eh) &&
1937 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1938 				ifp->if_oerrors++;
1939 				continue;
1940 			}
1941 			eh = mtod(m0, struct ether_header *);
1942 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1943 			if (ni == NULL) {
1944 				m_freem(m0);
1945 				ifp->if_oerrors++;
1946 				continue;
1947 			}
1948 
1949 			/* classify mbuf so we can find which tx ring to use */
1950 			if (ieee80211_classify(ic, m0, ni) != 0) {
1951 				m_freem(m0);
1952 				ieee80211_free_node(ni);
1953 				ifp->if_oerrors++;
1954 				continue;
1955 			}
1956 
1957 			/* no QoS encapsulation for EAPOL frames */
1958 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1959 			    M_WME_GETAC(m0) : WME_AC_BE;
1960 
1961 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1962 				/* there is no place left in this ring */
1963 				ifp->if_flags |= IFF_OACTIVE;
1964 				break;
1965 			}
1966 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1967 #if NBPFILTER > 0
1968 			if (ifp->if_bpf != NULL)
1969 				bpf_mtap(ifp->if_bpf, m0);
1970 #endif
1971 			m0 = ieee80211_encap(ic, m0, ni);
1972 			if (m0 == NULL) {
1973 				ieee80211_free_node(ni);
1974 				ifp->if_oerrors++;
1975 				continue;
1976 			}
1977 #if NBPFILTER > 0
1978 			if (ic->ic_rawbpf != NULL)
1979 				bpf_mtap(ic->ic_rawbpf, m0);
1980 #endif
1981 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1982 				ieee80211_free_node(ni);
1983 				ifp->if_oerrors++;
1984 				break;
1985 			}
1986 		}
1987 
1988 		sc->sc_tx_timer = 5;
1989 		ifp->if_timer = 1;
1990 	}
1991 }
1992 
1993 static void
1994 wpi_watchdog(struct ifnet *ifp)
1995 {
1996 	struct wpi_softc *sc = ifp->if_softc;
1997 
1998 	ifp->if_timer = 0;
1999 
2000 	if (sc->sc_tx_timer > 0) {
2001 		if (--sc->sc_tx_timer == 0) {
2002 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2003 			ifp->if_oerrors++;
2004 			ifp->if_flags &= ~IFF_UP;
2005 			wpi_stop(ifp, 1);
2006 			return;
2007 		}
2008 		ifp->if_timer = 1;
2009 	}
2010 
2011 	ieee80211_watchdog(&sc->sc_ic);
2012 }
2013 
2014 static int
2015 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2016 {
2017 #define IS_RUNNING(ifp) \
2018 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2019 
2020 	struct wpi_softc *sc = ifp->if_softc;
2021 	struct ieee80211com *ic = &sc->sc_ic;
2022 	int s, error = 0;
2023 
2024 	s = splnet();
2025 
2026 	switch (cmd) {
2027 	case SIOCSIFFLAGS:
2028 		if (ifp->if_flags & IFF_UP) {
2029 			if (!(ifp->if_flags & IFF_RUNNING))
2030 				wpi_init(ifp);
2031 		} else {
2032 			if (ifp->if_flags & IFF_RUNNING)
2033 				wpi_stop(ifp, 1);
2034 		}
2035 		break;
2036 
2037 	case SIOCADDMULTI:
2038 	case SIOCDELMULTI:
2039 		/* XXX no h/w multicast filter? --dyoung */
2040 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2041 			/* setup multicast filter, etc */
2042 			error = 0;
2043 		}
2044 		break;
2045 
2046 	default:
2047 		error = ieee80211_ioctl(ic, cmd, data);
2048 	}
2049 
2050 	if (error == ENETRESET) {
2051 		if (IS_RUNNING(ifp) &&
2052 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2053 			wpi_init(ifp);
2054 		error = 0;
2055 	}
2056 
2057 	splx(s);
2058 	return error;
2059 
2060 #undef IS_RUNNING
2061 }
2062 
2063 /*
2064  * Extract various information from EEPROM.
2065  */
2066 static void
2067 wpi_read_eeprom(struct wpi_softc *sc)
2068 {
2069 	struct ieee80211com *ic = &sc->sc_ic;
2070 	char domain[4];
2071 	int i;
2072 
2073 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2074 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2075 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2076 
2077 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2078 	    sc->type));
2079 
2080 	/* read and print regulatory domain */
2081 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2082 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2083 
2084 	/* read and print MAC address */
2085 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2086 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2087 
2088 	/* read the list of authorized channels */
2089 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2090 		wpi_read_eeprom_channels(sc, i);
2091 
2092 	/* read the list of power groups */
2093 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2094 		wpi_read_eeprom_group(sc, i);
2095 }
2096 
2097 static void
2098 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2099 {
2100 	struct ieee80211com *ic = &sc->sc_ic;
2101 	const struct wpi_chan_band *band = &wpi_bands[n];
2102 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2103 	int chan, i;
2104 
2105 	wpi_read_prom_data(sc, band->addr, channels,
2106 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2107 
2108 	for (i = 0; i < band->nchan; i++) {
2109 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2110 			continue;
2111 
2112 		chan = band->chan[i];
2113 
2114 		if (n == 0) {	/* 2GHz band */
2115 			ic->ic_channels[chan].ic_freq =
2116 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2117 			ic->ic_channels[chan].ic_flags =
2118 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2119 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2120 
2121 		} else {	/* 5GHz band */
2122 			/*
2123 			 * Some 3945abg adapters support channels 7, 8, 11
2124 			 * and 12 in the 2GHz *and* 5GHz bands.
2125 			 * Because of limitations in our net80211(9) stack,
2126 			 * we can't support these channels in 5GHz band.
2127 			 */
2128 			if (chan <= 14)
2129 				continue;
2130 
2131 			ic->ic_channels[chan].ic_freq =
2132 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2133 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2134 		}
2135 
2136 		/* is active scan allowed on this channel? */
2137 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2138 			ic->ic_channels[chan].ic_flags |=
2139 			    IEEE80211_CHAN_PASSIVE;
2140 		}
2141 
2142 		/* save maximum allowed power for this channel */
2143 		sc->maxpwr[chan] = channels[i].maxpwr;
2144 
2145 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2146 		    chan, channels[i].flags, sc->maxpwr[chan]));
2147 	}
2148 }
2149 
2150 static void
2151 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2152 {
2153 	struct wpi_power_group *group = &sc->groups[n];
2154 	struct wpi_eeprom_group rgroup;
2155 	int i;
2156 
2157 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2158 	    sizeof rgroup);
2159 
2160 	/* save power group information */
2161 	group->chan   = rgroup.chan;
2162 	group->maxpwr = rgroup.maxpwr;
2163 	/* temperature at which the samples were taken */
2164 	group->temp   = (int16_t)le16toh(rgroup.temp);
2165 
2166 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2167 	    group->chan, group->maxpwr, group->temp));
2168 
2169 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2170 		group->samples[i].index = rgroup.samples[i].index;
2171 		group->samples[i].power = rgroup.samples[i].power;
2172 
2173 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2174 		    group->samples[i].index, group->samples[i].power));
2175 	}
2176 }
2177 
2178 /*
2179  * Send a command to the firmware.
2180  */
2181 static int
2182 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2183 {
2184 	struct wpi_tx_ring *ring = &sc->cmdq;
2185 	struct wpi_tx_desc *desc;
2186 	struct wpi_tx_cmd *cmd;
2187 
2188 	KASSERT(size <= sizeof cmd->data);
2189 
2190 	desc = &ring->desc[ring->cur];
2191 	cmd = &ring->cmd[ring->cur];
2192 
2193 	cmd->code = code;
2194 	cmd->flags = 0;
2195 	cmd->qid = ring->qid;
2196 	cmd->idx = ring->cur;
2197 	memcpy(cmd->data, buf, size);
2198 
2199 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2200 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2201 		ring->cur * sizeof (struct wpi_tx_cmd));
2202 	desc->segs[0].len  = htole32(4 + size);
2203 
2204 	/* kick cmd ring */
2205 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2206 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2207 
2208 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2209 }
2210 
2211 static int
2212 wpi_wme_update(struct ieee80211com *ic)
2213 {
2214 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2215 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2216 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2217 	const struct wmeParams *wmep;
2218 	struct wpi_wme_setup wme;
2219 	int ac;
2220 
2221 	/* don't override default WME values if WME is not actually enabled */
2222 	if (!(ic->ic_flags & IEEE80211_F_WME))
2223 		return 0;
2224 
2225 	wme.flags = 0;
2226 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2227 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2228 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2229 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2230 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2231 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2232 
2233 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2234 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2235 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2236 	}
2237 
2238 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2239 #undef WPI_USEC
2240 #undef WPI_EXP2
2241 }
2242 
2243 /*
2244  * Configure h/w multi-rate retries.
2245  */
2246 static int
2247 wpi_mrr_setup(struct wpi_softc *sc)
2248 {
2249 	struct ieee80211com *ic = &sc->sc_ic;
2250 	struct wpi_mrr_setup mrr;
2251 	int i, error;
2252 
2253 	/* CCK rates (not used with 802.11a) */
2254 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2255 		mrr.rates[i].flags = 0;
2256 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2257 		/* fallback to the immediate lower CCK rate (if any) */
2258 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2259 		/* try one time at this rate before falling back to "next" */
2260 		mrr.rates[i].ntries = 1;
2261 	}
2262 
2263 	/* OFDM rates (not used with 802.11b) */
2264 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2265 		mrr.rates[i].flags = 0;
2266 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2267 		/* fallback to the immediate lower rate (if any) */
2268 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2269 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2270 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2271 			WPI_OFDM6 : WPI_CCK2) :
2272 		    i - 1;
2273 		/* try one time at this rate before falling back to "next" */
2274 		mrr.rates[i].ntries = 1;
2275 	}
2276 
2277 	/* setup MRR for control frames */
2278 	mrr.which = htole32(WPI_MRR_CTL);
2279 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2280 	if (error != 0) {
2281 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2282 		return error;
2283 	}
2284 
2285 	/* setup MRR for data frames */
2286 	mrr.which = htole32(WPI_MRR_DATA);
2287 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2288 	if (error != 0) {
2289 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2290 		return error;
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 static void
2297 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2298 {
2299 	struct wpi_cmd_led led;
2300 
2301 	led.which = which;
2302 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2303 	led.off = off;
2304 	led.on = on;
2305 
2306 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2307 }
2308 
2309 static void
2310 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2311 {
2312 	struct wpi_cmd_tsf tsf;
2313 	uint64_t val, mod;
2314 
2315 	memset(&tsf, 0, sizeof tsf);
2316 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2317 	tsf.bintval = htole16(ni->ni_intval);
2318 	tsf.lintval = htole16(10);
2319 
2320 	/* compute remaining time until next beacon */
2321 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2322 	mod = le64toh(tsf.tstamp) % val;
2323 	tsf.binitval = htole32((uint32_t)(val - mod));
2324 
2325 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2326 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2327 
2328 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2329 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2330 }
2331 
2332 /*
2333  * Update Tx power to match what is defined for channel `c'.
2334  */
2335 static int
2336 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2337 {
2338 	struct ieee80211com *ic = &sc->sc_ic;
2339 	struct wpi_power_group *group;
2340 	struct wpi_cmd_txpower txpower;
2341 	u_int chan;
2342 	int i;
2343 
2344 	/* get channel number */
2345 	chan = ieee80211_chan2ieee(ic, c);
2346 
2347 	/* find the power group to which this channel belongs */
2348 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2349 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2350 			if (chan <= group->chan)
2351 				break;
2352 	} else
2353 		group = &sc->groups[0];
2354 
2355 	memset(&txpower, 0, sizeof txpower);
2356 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2357 	txpower.chan = htole16(chan);
2358 
2359 	/* set Tx power for all OFDM and CCK rates */
2360 	for (i = 0; i <= 11 ; i++) {
2361 		/* retrieve Tx power for this channel/rate combination */
2362 		int idx = wpi_get_power_index(sc, group, c,
2363 		    wpi_ridx_to_rate[i]);
2364 
2365 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2366 
2367 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2368 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2369 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2370 		} else {
2371 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2372 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2373 		}
2374 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2375 		    wpi_ridx_to_rate[i], idx));
2376 	}
2377 
2378 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2379 }
2380 
2381 /*
2382  * Determine Tx power index for a given channel/rate combination.
2383  * This takes into account the regulatory information from EEPROM and the
2384  * current temperature.
2385  */
2386 static int
2387 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2388     struct ieee80211_channel *c, int rate)
2389 {
2390 /* fixed-point arithmetic division using a n-bit fractional part */
2391 #define fdivround(a, b, n)	\
2392 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2393 
2394 /* linear interpolation */
2395 #define interpolate(x, x1, y1, x2, y2, n)	\
2396 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2397 
2398 	struct ieee80211com *ic = &sc->sc_ic;
2399 	struct wpi_power_sample *sample;
2400 	int pwr, idx;
2401 	u_int chan;
2402 
2403 	/* get channel number */
2404 	chan = ieee80211_chan2ieee(ic, c);
2405 
2406 	/* default power is group's maximum power - 3dB */
2407 	pwr = group->maxpwr / 2;
2408 
2409 	/* decrease power for highest OFDM rates to reduce distortion */
2410 	switch (rate) {
2411 	case 72:	/* 36Mb/s */
2412 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2413 		break;
2414 	case 96:	/* 48Mb/s */
2415 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2416 		break;
2417 	case 108:	/* 54Mb/s */
2418 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2419 		break;
2420 	}
2421 
2422 	/* never exceed channel's maximum allowed Tx power */
2423 	pwr = min(pwr, sc->maxpwr[chan]);
2424 
2425 	/* retrieve power index into gain tables from samples */
2426 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2427 		if (pwr > sample[1].power)
2428 			break;
2429 	/* fixed-point linear interpolation using a 19-bit fractional part */
2430 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2431 	    sample[1].power, sample[1].index, 19);
2432 
2433 	/*
2434 	 * Adjust power index based on current temperature:
2435 	 * - if cooler than factory-calibrated: decrease output power
2436 	 * - if warmer than factory-calibrated: increase output power
2437 	 */
2438 	idx -= (sc->temp - group->temp) * 11 / 100;
2439 
2440 	/* decrease power for CCK rates (-5dB) */
2441 	if (!WPI_RATE_IS_OFDM(rate))
2442 		idx += 10;
2443 
2444 	/* keep power index in a valid range */
2445 	if (idx < 0)
2446 		return 0;
2447 	if (idx > WPI_MAX_PWR_INDEX)
2448 		return WPI_MAX_PWR_INDEX;
2449 	return idx;
2450 
2451 #undef interpolate
2452 #undef fdivround
2453 }
2454 
2455 /*
2456  * Build a beacon frame that the firmware will broadcast periodically in
2457  * IBSS or HostAP modes.
2458  */
2459 static int
2460 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2461 {
2462 	struct ieee80211com *ic = &sc->sc_ic;
2463 	struct wpi_tx_ring *ring = &sc->cmdq;
2464 	struct wpi_tx_desc *desc;
2465 	struct wpi_tx_data *data;
2466 	struct wpi_tx_cmd *cmd;
2467 	struct wpi_cmd_beacon *bcn;
2468 	struct ieee80211_beacon_offsets bo;
2469 	struct mbuf *m0;
2470 	int error;
2471 
2472 	desc = &ring->desc[ring->cur];
2473 	data = &ring->data[ring->cur];
2474 
2475 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2476 	if (m0 == NULL) {
2477 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2478 		return ENOMEM;
2479 	}
2480 
2481 	cmd = &ring->cmd[ring->cur];
2482 	cmd->code = WPI_CMD_SET_BEACON;
2483 	cmd->flags = 0;
2484 	cmd->qid = ring->qid;
2485 	cmd->idx = ring->cur;
2486 
2487 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2488 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2489 	bcn->id = WPI_ID_BROADCAST;
2490 	bcn->ofdm_mask = 0xff;
2491 	bcn->cck_mask = 0x0f;
2492 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2493 	bcn->len = htole16(m0->m_pkthdr.len);
2494 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2495 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2496 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2497 
2498 	/* save and trim IEEE802.11 header */
2499 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2500 	m_adj(m0, sizeof (struct ieee80211_frame));
2501 
2502 	/* assume beacon frame is contiguous */
2503 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2504 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2505 	if (error) {
2506 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2507 		m_freem(m0);
2508 		return error;
2509 	}
2510 
2511 	data->m = m0;
2512 
2513 	/* first scatter/gather segment is used by the beacon command */
2514 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2515 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2516 		ring->cur * sizeof (struct wpi_tx_cmd));
2517 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2518 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2519 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2520 
2521 	/* kick cmd ring */
2522 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2523 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2524 
2525 	return 0;
2526 }
2527 
2528 static int
2529 wpi_auth(struct wpi_softc *sc)
2530 {
2531 	struct ieee80211com *ic = &sc->sc_ic;
2532 	struct ieee80211_node *ni = ic->ic_bss;
2533 	struct wpi_node_info node;
2534 	int error;
2535 
2536 	/* update adapter's configuration */
2537 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2538 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2539 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2540 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2541 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2542 		    WPI_CONFIG_24GHZ);
2543 	}
2544 	switch (ic->ic_curmode) {
2545 	case IEEE80211_MODE_11A:
2546 		sc->config.cck_mask  = 0;
2547 		sc->config.ofdm_mask = 0x15;
2548 		break;
2549 	case IEEE80211_MODE_11B:
2550 		sc->config.cck_mask  = 0x03;
2551 		sc->config.ofdm_mask = 0;
2552 		break;
2553 	default:	/* assume 802.11b/g */
2554 		sc->config.cck_mask  = 0x0f;
2555 		sc->config.ofdm_mask = 0x15;
2556 	}
2557 
2558 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2559 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2560 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2561 		sizeof (struct wpi_config), 1);
2562 	if (error != 0) {
2563 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2564 		return error;
2565 	}
2566 
2567 	/* configuration has changed, set Tx power accordingly */
2568 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2569 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2570 		return error;
2571 	}
2572 
2573 	/* add default node */
2574 	memset(&node, 0, sizeof node);
2575 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2576 	node.id = WPI_ID_BSS;
2577 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2578 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2579 	node.action = htole32(WPI_ACTION_SET_RATE);
2580 	node.antenna = WPI_ANTENNA_BOTH;
2581 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2582 	if (error != 0) {
2583 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2584 		return error;
2585 	}
2586 
2587 	return 0;
2588 }
2589 
2590 /*
2591  * Send a scan request to the firmware.  Since this command is huge, we map it
2592  * into a mbuf instead of using the pre-allocated set of commands.
2593  */
2594 static int
2595 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2596 {
2597 	struct ieee80211com *ic = &sc->sc_ic;
2598 	struct wpi_tx_ring *ring = &sc->cmdq;
2599 	struct wpi_tx_desc *desc;
2600 	struct wpi_tx_data *data;
2601 	struct wpi_tx_cmd *cmd;
2602 	struct wpi_scan_hdr *hdr;
2603 	struct wpi_scan_chan *chan;
2604 	struct ieee80211_frame *wh;
2605 	struct ieee80211_rateset *rs;
2606 	struct ieee80211_channel *c;
2607 	enum ieee80211_phymode mode;
2608 	uint8_t *frm;
2609 	int nrates, pktlen, error;
2610 
2611 	desc = &ring->desc[ring->cur];
2612 	data = &ring->data[ring->cur];
2613 
2614 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2615 	if (data->m == NULL) {
2616 		aprint_error_dev(sc->sc_dev,
2617 						"could not allocate mbuf for scan command\n");
2618 		return ENOMEM;
2619 	}
2620 
2621 	MCLGET(data->m, M_DONTWAIT);
2622 	if (!(data->m->m_flags & M_EXT)) {
2623 		m_freem(data->m);
2624 		data->m = NULL;
2625 		aprint_error_dev(sc->sc_dev,
2626 						 "could not allocate mbuf for scan command\n");
2627 		return ENOMEM;
2628 	}
2629 
2630 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2631 	cmd->code = WPI_CMD_SCAN;
2632 	cmd->flags = 0;
2633 	cmd->qid = ring->qid;
2634 	cmd->idx = ring->cur;
2635 
2636 	hdr = (struct wpi_scan_hdr *)cmd->data;
2637 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2638 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2639 	hdr->id = WPI_ID_BROADCAST;
2640 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2641 
2642 	/*
2643 	 * Move to the next channel if no packets are received within 5 msecs
2644 	 * after sending the probe request (this helps to reduce the duration
2645 	 * of active scans).
2646 	 */
2647 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2648 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2649 
2650 	if (flags & IEEE80211_CHAN_A) {
2651 		hdr->crc_threshold = htole16(1);
2652 		/* send probe requests at 6Mbps */
2653 		hdr->rate = wpi_plcp_signal(12);
2654 	} else {
2655 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2656 		/* send probe requests at 1Mbps */
2657 		hdr->rate = wpi_plcp_signal(2);
2658 	}
2659 
2660 	/* for directed scans, firmware inserts the essid IE itself */
2661 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2662 	hdr->essid[0].len = ic->ic_des_esslen;
2663 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2664 
2665 	/*
2666 	 * Build a probe request frame.  Most of the following code is a
2667 	 * copy & paste of what is done in net80211.
2668 	 */
2669 	wh = (struct ieee80211_frame *)(hdr + 1);
2670 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2671 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2672 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2673 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2674 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2675 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2676 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2677 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2678 
2679 	frm = (uint8_t *)(wh + 1);
2680 
2681 	/* add empty essid IE (firmware generates it for directed scans) */
2682 	*frm++ = IEEE80211_ELEMID_SSID;
2683 	*frm++ = 0;
2684 
2685 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2686 	rs = &ic->ic_sup_rates[mode];
2687 
2688 	/* add supported rates IE */
2689 	*frm++ = IEEE80211_ELEMID_RATES;
2690 	nrates = rs->rs_nrates;
2691 	if (nrates > IEEE80211_RATE_SIZE)
2692 		nrates = IEEE80211_RATE_SIZE;
2693 	*frm++ = nrates;
2694 	memcpy(frm, rs->rs_rates, nrates);
2695 	frm += nrates;
2696 
2697 	/* add supported xrates IE */
2698 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2699 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2700 		*frm++ = IEEE80211_ELEMID_XRATES;
2701 		*frm++ = nrates;
2702 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2703 		frm += nrates;
2704 	}
2705 
2706 	/* setup length of probe request */
2707 	hdr->paylen = htole16(frm - (uint8_t *)wh);
2708 
2709 	chan = (struct wpi_scan_chan *)frm;
2710 	for (c  = &ic->ic_channels[1];
2711 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2712 		if ((c->ic_flags & flags) != flags)
2713 			continue;
2714 
2715 		chan->chan = ieee80211_chan2ieee(ic, c);
2716 		chan->flags = 0;
2717 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2718 			chan->flags |= WPI_CHAN_ACTIVE;
2719 			if (ic->ic_des_esslen != 0)
2720 				chan->flags |= WPI_CHAN_DIRECT;
2721 		}
2722 		chan->dsp_gain = 0x6e;
2723 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2724 			chan->rf_gain = 0x3b;
2725 			chan->active = htole16(10);
2726 			chan->passive = htole16(110);
2727 		} else {
2728 			chan->rf_gain = 0x28;
2729 			chan->active = htole16(20);
2730 			chan->passive = htole16(120);
2731 		}
2732 		hdr->nchan++;
2733 		chan++;
2734 
2735 		frm += sizeof (struct wpi_scan_chan);
2736 	}
2737 	hdr->len = htole16(frm - (uint8_t *)hdr);
2738 	pktlen = frm - (uint8_t *)cmd;
2739 
2740 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2741 		NULL, BUS_DMA_NOWAIT);
2742 	if (error) {
2743 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2744 		m_freem(data->m);
2745 		data->m = NULL;
2746 		return error;
2747 	}
2748 
2749 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2750 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2751 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2752 
2753 	/* kick cmd ring */
2754 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2755 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2756 
2757 	return 0;	/* will be notified async. of failure/success */
2758 }
2759 
2760 static int
2761 wpi_config(struct wpi_softc *sc)
2762 {
2763 	struct ieee80211com *ic = &sc->sc_ic;
2764 	struct ifnet *ifp = ic->ic_ifp;
2765 	struct wpi_power power;
2766 	struct wpi_bluetooth bluetooth;
2767 	struct wpi_node_info node;
2768 	int error;
2769 
2770 	memset(&power, 0, sizeof power);
2771 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2772 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2773 	if (error != 0) {
2774 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2775 		return error;
2776 	}
2777 
2778 	/* configure bluetooth coexistence */
2779 	memset(&bluetooth, 0, sizeof bluetooth);
2780 	bluetooth.flags = 3;
2781 	bluetooth.lead = 0xaa;
2782 	bluetooth.kill = 1;
2783 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2784 		0);
2785 	if (error != 0) {
2786 		aprint_error_dev(sc->sc_dev,
2787 			"could not configure bluetooth coexistence\n");
2788 		return error;
2789 	}
2790 
2791 	/* configure adapter */
2792 	memset(&sc->config, 0, sizeof (struct wpi_config));
2793 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2794 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2795 	/*set default channel*/
2796 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2797 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2798 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2799 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2800 		    WPI_CONFIG_24GHZ);
2801 	}
2802 	sc->config.filter = 0;
2803 	switch (ic->ic_opmode) {
2804 	case IEEE80211_M_STA:
2805 		sc->config.mode = WPI_MODE_STA;
2806 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2807 		break;
2808 	case IEEE80211_M_IBSS:
2809 	case IEEE80211_M_AHDEMO:
2810 		sc->config.mode = WPI_MODE_IBSS;
2811 		break;
2812 	case IEEE80211_M_HOSTAP:
2813 		sc->config.mode = WPI_MODE_HOSTAP;
2814 		break;
2815 	case IEEE80211_M_MONITOR:
2816 		sc->config.mode = WPI_MODE_MONITOR;
2817 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2818 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2819 		break;
2820 	}
2821 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2822 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2823 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2824 		sizeof (struct wpi_config), 0);
2825 	if (error != 0) {
2826 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2827 		return error;
2828 	}
2829 
2830 	/* configuration has changed, set Tx power accordingly */
2831 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2832 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2833 		return error;
2834 	}
2835 
2836 	/* add broadcast node */
2837 	memset(&node, 0, sizeof node);
2838 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2839 	node.id = WPI_ID_BROADCAST;
2840 	node.rate = wpi_plcp_signal(2);
2841 	node.action = htole32(WPI_ACTION_SET_RATE);
2842 	node.antenna = WPI_ANTENNA_BOTH;
2843 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2844 	if (error != 0) {
2845 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2846 		return error;
2847 	}
2848 
2849 	if ((error = wpi_mrr_setup(sc)) != 0) {
2850 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2851 		return error;
2852 	}
2853 
2854 	return 0;
2855 }
2856 
2857 static void
2858 wpi_stop_master(struct wpi_softc *sc)
2859 {
2860 	uint32_t tmp;
2861 	int ntries;
2862 
2863 	tmp = WPI_READ(sc, WPI_RESET);
2864 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2865 
2866 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2867 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2868 		return;	/* already asleep */
2869 
2870 	for (ntries = 0; ntries < 100; ntries++) {
2871 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2872 			break;
2873 		DELAY(10);
2874 	}
2875 	if (ntries == 100) {
2876 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2877 	}
2878 }
2879 
2880 static int
2881 wpi_power_up(struct wpi_softc *sc)
2882 {
2883 	uint32_t tmp;
2884 	int ntries;
2885 
2886 	wpi_mem_lock(sc);
2887 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2888 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2889 	wpi_mem_unlock(sc);
2890 
2891 	for (ntries = 0; ntries < 5000; ntries++) {
2892 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2893 			break;
2894 		DELAY(10);
2895 	}
2896 	if (ntries == 5000) {
2897 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2898 		return ETIMEDOUT;
2899 	}
2900 	return 0;
2901 }
2902 
2903 static int
2904 wpi_reset(struct wpi_softc *sc)
2905 {
2906 	uint32_t tmp;
2907 	int ntries;
2908 
2909 	/* clear any pending interrupts */
2910 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2911 
2912 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2913 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2914 
2915 	tmp = WPI_READ(sc, WPI_CHICKEN);
2916 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2917 
2918 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2919 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2920 
2921 	/* wait for clock stabilization */
2922 	for (ntries = 0; ntries < 1000; ntries++) {
2923 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2924 			break;
2925 		DELAY(10);
2926 	}
2927 	if (ntries == 1000) {
2928 		aprint_error_dev(sc->sc_dev,
2929 						 "timeout waiting for clock stabilization\n");
2930 		return ETIMEDOUT;
2931 	}
2932 
2933 	/* initialize EEPROM */
2934 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2935 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2936 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2937 		return EIO;
2938 	}
2939 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2940 
2941 	return 0;
2942 }
2943 
2944 static void
2945 wpi_hw_config(struct wpi_softc *sc)
2946 {
2947 	uint32_t rev, hw;
2948 
2949 	/* voodoo from the reference driver */
2950 	hw = WPI_READ(sc, WPI_HWCONFIG);
2951 
2952 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2953 	rev = PCI_REVISION(rev);
2954 	if ((rev & 0xc0) == 0x40)
2955 		hw |= WPI_HW_ALM_MB;
2956 	else if (!(rev & 0x80))
2957 		hw |= WPI_HW_ALM_MM;
2958 
2959 	if (sc->cap == 0x80)
2960 		hw |= WPI_HW_SKU_MRC;
2961 
2962 	hw &= ~WPI_HW_REV_D;
2963 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2964 		hw |= WPI_HW_REV_D;
2965 
2966 	if (sc->type > 1)
2967 		hw |= WPI_HW_TYPE_B;
2968 
2969 	DPRINTF(("setting h/w config %x\n", hw));
2970 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2971 }
2972 
2973 static int
2974 wpi_init(struct ifnet *ifp)
2975 {
2976 	struct wpi_softc *sc = ifp->if_softc;
2977 	struct ieee80211com *ic = &sc->sc_ic;
2978 	uint32_t tmp;
2979 	int qid, ntries, error;
2980 
2981 	wpi_stop(ifp,1);
2982 	(void)wpi_reset(sc);
2983 
2984 	wpi_mem_lock(sc);
2985 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2986 	DELAY(20);
2987 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2988 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2989 	wpi_mem_unlock(sc);
2990 
2991 	(void)wpi_power_up(sc);
2992 	wpi_hw_config(sc);
2993 
2994 	/* init Rx ring */
2995 	wpi_mem_lock(sc);
2996 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2997 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2998 	    offsetof(struct wpi_shared, next));
2999 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3000 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3001 	wpi_mem_unlock(sc);
3002 
3003 	/* init Tx rings */
3004 	wpi_mem_lock(sc);
3005 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3006 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3007 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3008 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3009 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3010 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3011 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3012 
3013 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3014 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3015 
3016 	for (qid = 0; qid < 6; qid++) {
3017 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3018 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3019 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3020 	}
3021 	wpi_mem_unlock(sc);
3022 
3023 	/* clear "radio off" and "disable command" bits (reversed logic) */
3024 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3025 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3026 
3027 	/* clear any pending interrupts */
3028 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3029 	/* enable interrupts */
3030 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3031 
3032 	/* not sure why/if this is necessary... */
3033 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3034 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3035 
3036 	if ((error = wpi_load_firmware(sc)) != 0) {
3037 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3038 		goto fail1;
3039 	}
3040 
3041 	/* Check the status of the radio switch */
3042 	if (wpi_getrfkill(sc)) {
3043 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3044 		error = EBUSY;
3045 		goto fail1;
3046 	}
3047 
3048 	/* wait for thermal sensors to calibrate */
3049 	for (ntries = 0; ntries < 1000; ntries++) {
3050 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3051 			break;
3052 		DELAY(10);
3053 	}
3054 	if (ntries == 1000) {
3055 		aprint_error_dev(sc->sc_dev,
3056 						 "timeout waiting for thermal sensors calibration\n");
3057 		error = ETIMEDOUT;
3058 		goto fail1;
3059 	}
3060 
3061 	DPRINTF(("temperature %d\n", sc->temp));
3062 
3063 	if ((error = wpi_config(sc)) != 0) {
3064 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3065 		goto fail1;
3066 	}
3067 
3068 	ifp->if_flags &= ~IFF_OACTIVE;
3069 	ifp->if_flags |= IFF_RUNNING;
3070 
3071 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3072 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3073 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3074 	}
3075 	else
3076 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3077 
3078 	return 0;
3079 
3080 fail1:	wpi_stop(ifp, 1);
3081 	return error;
3082 }
3083 
3084 
3085 static void
3086 wpi_stop(struct ifnet *ifp, int disable)
3087 {
3088 	struct wpi_softc *sc = ifp->if_softc;
3089 	struct ieee80211com *ic = &sc->sc_ic;
3090 	uint32_t tmp;
3091 	int ac;
3092 
3093 	ifp->if_timer = sc->sc_tx_timer = 0;
3094 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3095 
3096 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3097 
3098 	/* disable interrupts */
3099 	WPI_WRITE(sc, WPI_MASK, 0);
3100 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3101 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3102 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3103 
3104 	wpi_mem_lock(sc);
3105 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3106 	wpi_mem_unlock(sc);
3107 
3108 	/* reset all Tx rings */
3109 	for (ac = 0; ac < 4; ac++)
3110 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3111 	wpi_reset_tx_ring(sc, &sc->cmdq);
3112 
3113 	/* reset Rx ring */
3114 	wpi_reset_rx_ring(sc, &sc->rxq);
3115 
3116 	wpi_mem_lock(sc);
3117 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3118 	wpi_mem_unlock(sc);
3119 
3120 	DELAY(5);
3121 
3122 	wpi_stop_master(sc);
3123 
3124 	tmp = WPI_READ(sc, WPI_RESET);
3125 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3126 }
3127 
3128 static bool
3129 wpi_resume(device_t dv)
3130 {
3131 	struct wpi_softc *sc = device_private(dv);
3132 
3133 	pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
3134 	(void)wpi_reset(sc);
3135 
3136 	return true;
3137 }
3138 
3139 /*
3140  * Return whether or not the radio is enabled in hardware
3141  * (i.e. the rfkill switch is "off").
3142  */
3143 static int
3144 wpi_getrfkill(struct wpi_softc *sc)
3145 {
3146 	uint32_t tmp;
3147 
3148 	wpi_mem_lock(sc);
3149 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3150 	wpi_mem_unlock(sc);
3151 
3152 	return !(tmp & 0x01);
3153 }
3154 
3155 static int
3156 wpi_sysctl_radio(SYSCTLFN_ARGS)
3157 {
3158 	struct sysctlnode node;
3159 	struct wpi_softc *sc;
3160 	int val, error;
3161 
3162 	node = *rnode;
3163 	sc = (struct wpi_softc *)node.sysctl_data;
3164 
3165 	val = !wpi_getrfkill(sc);
3166 
3167 	node.sysctl_data = &val;
3168 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3169 
3170 	if (error || newp == NULL)
3171 		return error;
3172 
3173 	return 0;
3174 }
3175 
3176 static void
3177 wpi_sysctlattach(struct wpi_softc *sc)
3178 {
3179 	int rc;
3180 	const struct sysctlnode *rnode;
3181 	const struct sysctlnode *cnode;
3182 
3183 	struct sysctllog **clog = &sc->sc_sysctllog;
3184 
3185 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3186 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3187 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3188 		goto err;
3189 
3190 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3191 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3192 	    SYSCTL_DESCR("wpi controls and statistics"),
3193 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3194 		goto err;
3195 
3196 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3197 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3198 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3199 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3200 		goto err;
3201 
3202 #ifdef WPI_DEBUG
3203 	/* control debugging printfs */
3204 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3205 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3206 	    "debug", SYSCTL_DESCR("Enable debugging output"),
3207 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3208 		goto err;
3209 #endif
3210 
3211 	return;
3212 err:
3213 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3214 }
3215