xref: /netbsd-src/sys/dev/pci/if_wpi.c (revision 0df165c04d0a9ca1adde9ed2b890344c937954a6)
1 /*  $NetBSD: if_wpi.c,v 1.30 2007/11/23 22:27:02 plunky Exp $    */
2 
3 /*-
4  * Copyright (c) 2006, 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.30 2007/11/23 22:27:02 plunky Exp $");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include "bpfilter.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48 
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 
68 #include <dev/firmload.h>
69 
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72 
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /*
83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84  */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87 
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 	{ 4, { 2, 4, 11, 22 } };
90 
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93 
94 static int  wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int  wpi_detach(device_t , int);
97 static void wpi_power(int, void *);
98 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 	void **, bus_size_t, bus_size_t, int);
100 static void wpi_dma_contig_free(struct wpi_dma_info *);
101 static int  wpi_alloc_shared(struct wpi_softc *);
102 static void wpi_free_shared(struct wpi_softc *);
103 static int  wpi_alloc_fwmem(struct wpi_softc *);
104 static void wpi_free_fwmem(struct wpi_softc *);
105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 static int  wpi_alloc_rpool(struct wpi_softc *);
108 static void wpi_free_rpool(struct wpi_softc *);
109 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 	int);
114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 static void wpi_newassoc(struct ieee80211_node *, int);
118 static int  wpi_media_change(struct ifnet *);
119 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121 static void wpi_mem_lock(struct wpi_softc *);
122 static void wpi_mem_unlock(struct wpi_softc *);
123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126 								   const uint32_t *, int);
127 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
129 static int  wpi_load_firmware(struct wpi_softc *);
130 static void wpi_calib_timeout(void *);
131 static void wpi_iter_func(void *, struct ieee80211_node *);
132 static void wpi_power_calibration(struct wpi_softc *, int);
133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134 	struct wpi_rx_data *);
135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137 static void wpi_notif_intr(struct wpi_softc *);
138 static int  wpi_intr(void *);
139 static void wpi_read_eeprom(struct wpi_softc *);
140 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141 static void wpi_read_eeprom_group(struct wpi_softc *, int);
142 static uint8_t wpi_plcp_signal(int);
143 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
144 	struct ieee80211_node *, int);
145 static void wpi_start(struct ifnet *);
146 static void wpi_watchdog(struct ifnet *);
147 static int  wpi_ioctl(struct ifnet *, u_long, void *);
148 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149 static int  wpi_wme_update(struct ieee80211com *);
150 static int  wpi_mrr_setup(struct wpi_softc *);
151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153 static int  wpi_set_txpower(struct wpi_softc *,
154 			    struct ieee80211_channel *, int);
155 static int  wpi_get_power_index(struct wpi_softc *,
156 		struct wpi_power_group *, struct ieee80211_channel *, int);
157 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158 static int  wpi_auth(struct wpi_softc *);
159 static int  wpi_scan(struct wpi_softc *, uint16_t);
160 static int  wpi_config(struct wpi_softc *);
161 static void wpi_stop_master(struct wpi_softc *);
162 static int  wpi_power_up(struct wpi_softc *);
163 static int  wpi_reset(struct wpi_softc *);
164 static void wpi_hw_config(struct wpi_softc *);
165 static int  wpi_init(struct ifnet *);
166 static void wpi_stop(struct ifnet *, int);
167 
168 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 	wpi_detach, NULL);
170 
171 static int
172 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
173 {
174 	struct pci_attach_args *pa = aux;
175 
176 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 		return 0;
178 
179 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 		return 1;
182 
183 	return 0;
184 }
185 
186 /* Base Address Register */
187 #define WPI_PCI_BAR0	0x10
188 
189 static void
190 wpi_attach(device_t parent __unused, device_t self, void *aux)
191 {
192 	struct wpi_softc *sc = device_private(self);
193 	struct ieee80211com *ic = &sc->sc_ic;
194 	struct ifnet *ifp = &sc->sc_ec.ec_if;
195 	struct pci_attach_args *pa = aux;
196 	const char *intrstr;
197 	char devinfo[256];
198 	bus_space_tag_t memt;
199 	bus_space_handle_t memh;
200 	pci_intr_handle_t ih;
201 	pcireg_t data;
202 	int error, ac, revision;
203 
204 	sc->sc_dev = self;
205 	sc->sc_pct = pa->pa_pc;
206 	sc->sc_pcitag = pa->pa_tag;
207 
208 	callout_init(&sc->calib_to, 0);
209 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
210 
211 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
212 	revision = PCI_REVISION(pa->pa_class);
213 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
214 
215 	/* clear device specific PCI configuration register 0x41 */
216 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
217 	data &= ~0x0000ff00;
218 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
219 
220 	/* enable bus-mastering */
221 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
222 	data |= PCI_COMMAND_MASTER_ENABLE;
223 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
224 
225 	/* map the register window */
226 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
227 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
228 	if (error != 0) {
229 		aprint_error_dev(self, "could not map memory space\n");
230 		return;
231 	}
232 
233 	sc->sc_st = memt;
234 	sc->sc_sh = memh;
235 	sc->sc_dmat = pa->pa_dmat;
236 
237 	if (pci_intr_map(pa, &ih) != 0) {
238 		aprint_error_dev(self, "could not map interrupt\n");
239 		return;
240 	}
241 
242 	intrstr = pci_intr_string(sc->sc_pct, ih);
243 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
244 	if (sc->sc_ih == NULL) {
245 		aprint_error_dev(self, "could not establish interrupt");
246 		if (intrstr != NULL)
247 			aprint_error(" at %s", intrstr);
248 		aprint_error("\n");
249 		return;
250 	}
251 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
252 
253 	if (wpi_reset(sc) != 0) {
254 		aprint_error_dev(self, "could not reset adapter\n");
255 		return;
256 	}
257 
258  	/*
259 	 * Allocate DMA memory for firmware transfers.
260 	 */
261 	if ((error = wpi_alloc_fwmem(sc)) != 0)
262 		return;
263 
264 	/*
265 	 * Allocate shared page and Tx/Rx rings.
266 	 */
267 	if ((error = wpi_alloc_shared(sc)) != 0) {
268 		aprint_error_dev(self, "could not allocate shared area\n");
269 		goto fail1;
270 	}
271 
272 	if ((error = wpi_alloc_rpool(sc)) != 0) {
273 		aprint_error_dev(self, "could not allocate Rx buffers\n");
274 		goto fail2;
275 	}
276 
277 	for (ac = 0; ac < 4; ac++) {
278 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
279 		if (error != 0) {
280 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
281 			goto fail3;
282 		}
283 	}
284 
285 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
286 	if (error != 0) {
287 		aprint_error_dev(self, "could not allocate command ring\n");
288 		goto fail3;
289 	}
290 
291 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
292 		aprint_error_dev(self, "could not allocate Rx ring\n");
293 		goto fail4;
294 	}
295 
296 	ic->ic_ifp = ifp;
297 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
298 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
299 	ic->ic_state = IEEE80211_S_INIT;
300 
301 	/* set device capabilities */
302 	ic->ic_caps =
303 		IEEE80211_C_IBSS |       /* IBSS mode support */
304 		IEEE80211_C_WPA |        /* 802.11i */
305 		IEEE80211_C_MONITOR |    /* monitor mode supported */
306 		IEEE80211_C_TXPMGT |     /* tx power management */
307 		IEEE80211_C_SHSLOT |     /* short slot time supported */
308 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
309 		IEEE80211_C_WME;         /* 802.11e */
310 
311 	/* read supported channels and MAC address from EEPROM */
312 	wpi_read_eeprom(sc);
313 
314 	/* set supported .11a, .11b, .11g rates */
315 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
316 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
317 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
318 
319 	ic->ic_ibss_chan = &ic->ic_channels[0];
320 
321 	ifp->if_softc = sc;
322 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
323 	ifp->if_init = wpi_init;
324 	ifp->if_stop = wpi_stop;
325 	ifp->if_ioctl = wpi_ioctl;
326 	ifp->if_start = wpi_start;
327 	ifp->if_watchdog = wpi_watchdog;
328 	IFQ_SET_READY(&ifp->if_snd);
329 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
330 
331 	if_attach(ifp);
332 	ieee80211_ifattach(ic);
333 	/* override default methods */
334 	ic->ic_node_alloc = wpi_node_alloc;
335 	ic->ic_newassoc = wpi_newassoc;
336 	ic->ic_wme.wme_update = wpi_wme_update;
337 
338 	/* override state transition machine */
339 	sc->sc_newstate = ic->ic_newstate;
340 	ic->ic_newstate = wpi_newstate;
341 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
342 
343 	sc->amrr.amrr_min_success_threshold = 1;
344 	sc->amrr.amrr_max_success_threshold = 15;
345 
346 	/* set powerhook */
347 	sc->powerhook = powerhook_establish(device_xname(self), wpi_power, sc);
348 
349 #if NBPFILTER > 0
350 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
351 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
352 		&sc->sc_drvbpf);
353 
354 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
355 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
356 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
357 
358 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
359 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
360 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
361 #endif
362 
363 	ieee80211_announce(ic);
364 
365 	return;
366 
367 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
368 fail3:  while (--ac >= 0)
369 			wpi_free_tx_ring(sc, &sc->txq[ac]);
370 	wpi_free_rpool(sc);
371 fail2:	wpi_free_shared(sc);
372 fail1:	wpi_free_fwmem(sc);
373 }
374 
375 static int
376 wpi_detach(device_t self, int flags __unused)
377 {
378 	struct wpi_softc *sc = device_private(self);
379 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
380 	int ac;
381 
382 	wpi_stop(ifp, 1);
383 
384 #if NBPFILTER > 0
385 	if (ifp != NULL)
386 		bpfdetach(ifp);
387 #endif
388 	ieee80211_ifdetach(&sc->sc_ic);
389 	if (ifp != NULL)
390 		if_detach(ifp);
391 
392 	for (ac = 0; ac < 4; ac++)
393 		wpi_free_tx_ring(sc, &sc->txq[ac]);
394 	wpi_free_tx_ring(sc, &sc->cmdq);
395 	wpi_free_rx_ring(sc, &sc->rxq);
396 	wpi_free_rpool(sc);
397 	wpi_free_shared(sc);
398 
399 	if (sc->sc_ih != NULL) {
400 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
401 		sc->sc_ih = NULL;
402 	}
403 
404 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
405 
406 	return 0;
407 }
408 
409 static void
410 wpi_power(int why, void *arg)
411 {
412 	struct wpi_softc *sc = arg;
413 	struct ifnet *ifp;
414 	pcireg_t data;
415 	int s;
416 
417 	if (why != PWR_RESUME)
418 		return;
419 
420 	/* clear device specific PCI configuration register 0x41 */
421 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
422 	data &= ~0x0000ff00;
423 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
424 
425 	s = splnet();
426 	ifp = sc->sc_ic.ic_ifp;
427 	if (ifp->if_flags & IFF_UP) {
428 		ifp->if_init(ifp);
429 		if (ifp->if_flags & IFF_RUNNING)
430 			ifp->if_start(ifp);
431 	}
432 	splx(s);
433 }
434 
435 static int
436 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
437 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
438 {
439 	int nsegs, error;
440 
441 	dma->tag = tag;
442 	dma->size = size;
443 
444 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
445 	if (error != 0)
446 		goto fail;
447 
448 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
449 	    flags);
450 	if (error != 0)
451 		goto fail;
452 
453 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
454 	if (error != 0)
455 		goto fail;
456 
457 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
458 	if (error != 0)
459 		goto fail;
460 
461 	memset(dma->vaddr, 0, size);
462 
463 	dma->paddr = dma->map->dm_segs[0].ds_addr;
464 	if (kvap != NULL)
465 		*kvap = dma->vaddr;
466 
467 	return 0;
468 
469 fail:   wpi_dma_contig_free(dma);
470 	return error;
471 }
472 
473 static void
474 wpi_dma_contig_free(struct wpi_dma_info *dma)
475 {
476 	if (dma->map != NULL) {
477 		if (dma->vaddr != NULL) {
478 			bus_dmamap_unload(dma->tag, dma->map);
479 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
480 			bus_dmamem_free(dma->tag, &dma->seg, 1);
481 			dma->vaddr = NULL;
482 		}
483 		bus_dmamap_destroy(dma->tag, dma->map);
484 		dma->map = NULL;
485 	}
486 }
487 
488 /*
489  * Allocate a shared page between host and NIC.
490  */
491 static int
492 wpi_alloc_shared(struct wpi_softc *sc)
493 {
494 	int error;
495 	/* must be aligned on a 4K-page boundary */
496 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
497 			(void **)&sc->shared, sizeof (struct wpi_shared),
498 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
499 	if (error != 0)
500 		aprint_error_dev(sc->sc_dev,
501 				"could not allocate shared area DMA memory\n");
502 
503 	return error;
504 }
505 
506 static void
507 wpi_free_shared(struct wpi_softc *sc)
508 {
509 	wpi_dma_contig_free(&sc->shared_dma);
510 }
511 
512 /*
513  * Allocate DMA-safe memory for firmware transfer.
514  */
515 static int
516 wpi_alloc_fwmem(struct wpi_softc *sc)
517 {
518 	int error;
519 	/* allocate enough contiguous space to store text and data */
520 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
521 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
522 	    BUS_DMA_NOWAIT);
523 
524 	if (error != 0)
525 		aprint_error_dev(sc->sc_dev,
526 			"could not allocate firmware transfer area"
527 			"DMA memory\n");
528 	return error;
529 }
530 
531 static void
532 wpi_free_fwmem(struct wpi_softc *sc)
533 {
534 	wpi_dma_contig_free(&sc->fw_dma);
535 }
536 
537 
538 static struct wpi_rbuf *
539 wpi_alloc_rbuf(struct wpi_softc *sc)
540 {
541 	struct wpi_rbuf *rbuf;
542 
543 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
544 	if (rbuf == NULL)
545 		return NULL;
546 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
547 	sc->rxq.nb_free_entries --;
548 
549 	return rbuf;
550 }
551 
552 /*
553  * This is called automatically by the network stack when the mbuf to which our
554  * Rx buffer is attached is freed.
555  */
556 static void
557 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
558 {
559 	struct wpi_rbuf *rbuf = arg;
560 	struct wpi_softc *sc = rbuf->sc;
561 
562 	/* put the buffer back in the free list */
563 
564 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
565 	sc->rxq.nb_free_entries ++;
566 
567 	if (__predict_true(m != NULL))
568 		pool_cache_put(mb_cache, m);
569 }
570 
571 static int
572 wpi_alloc_rpool(struct wpi_softc *sc)
573 {
574 	struct wpi_rx_ring *ring = &sc->rxq;
575 	struct wpi_rbuf *rbuf;
576 	int i, error;
577 
578 	/* allocate a big chunk of DMA'able memory.. */
579 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
580 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
581 	if (error != 0) {
582 		aprint_normal_dev(sc->sc_dev,
583 						  "could not allocate Rx buffers DMA memory\n");
584 		return error;
585 	}
586 
587 	/* ..and split it into 3KB chunks */
588 	SLIST_INIT(&ring->freelist);
589 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
590 		rbuf = &ring->rbuf[i];
591 		rbuf->sc = sc;	/* backpointer for callbacks */
592 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
593 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
594 
595 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
596 	}
597 
598 	ring->nb_free_entries = WPI_RBUF_COUNT;
599 	return 0;
600 }
601 
602 static void
603 wpi_free_rpool(struct wpi_softc *sc)
604 {
605 	wpi_dma_contig_free(&sc->rxq.buf_dma);
606 }
607 
608 static int
609 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
610 {
611 	struct wpi_rx_data *data;
612 	struct wpi_rbuf *rbuf;
613 	int i, error;
614 
615 	ring->cur = 0;
616 
617 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
618 		(void **)&ring->desc,
619 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
620 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
621 	if (error != 0) {
622 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
623 		goto fail;
624 	}
625 
626 	/*
627 	 * Setup Rx buffers.
628 	 */
629 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
630 		data = &ring->data[i];
631 
632 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
633 		if (data->m == NULL) {
634 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
635 			error = ENOMEM;
636 			goto fail;
637 		}
638 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
639 			m_freem(data->m);
640 			data->m = NULL;
641 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
642 			error = ENOMEM;
643 			goto fail;
644 		}
645 		/* attach Rx buffer to mbuf */
646 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
647 		    rbuf);
648 		data->m->m_flags |= M_EXT_RW;
649 
650 		ring->desc[i] = htole32(rbuf->paddr);
651 	}
652 
653 	return 0;
654 
655 fail:	wpi_free_rx_ring(sc, ring);
656 	return error;
657 }
658 
659 static void
660 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
661 {
662 	int ntries;
663 
664 	wpi_mem_lock(sc);
665 
666 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
667 	for (ntries = 0; ntries < 100; ntries++) {
668 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
669 			break;
670 		DELAY(10);
671 	}
672 #ifdef WPI_DEBUG
673 	if (ntries == 100 && wpi_debug > 0)
674 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
675 #endif
676 	wpi_mem_unlock(sc);
677 
678 	ring->cur = 0;
679 }
680 
681 static void
682 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
683 {
684 	int i;
685 
686 	wpi_dma_contig_free(&ring->desc_dma);
687 
688 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
689 		if (ring->data[i].m != NULL)
690 			m_freem(ring->data[i].m);
691 	}
692 }
693 
694 static int
695 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
696 	int qid)
697 {
698 	struct wpi_tx_data *data;
699 	int i, error;
700 
701 	ring->qid = qid;
702 	ring->count = count;
703 	ring->queued = 0;
704 	ring->cur = 0;
705 
706 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
707 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
708 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
709 	if (error != 0) {
710 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
711 		goto fail;
712 	}
713 
714 	/* update shared page with ring's base address */
715 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
716 
717 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
718 		(void **)&ring->cmd,
719 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
720 	if (error != 0) {
721 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
722 		goto fail;
723 	}
724 
725 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
726 		M_NOWAIT);
727 	if (ring->data == NULL) {
728 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
729 		goto fail;
730 	}
731 
732 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
733 
734 	for (i = 0; i < count; i++) {
735 		data = &ring->data[i];
736 
737 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
738 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
739 			&data->map);
740 		if (error != 0) {
741 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
742 			goto fail;
743 		}
744 	}
745 
746 	return 0;
747 
748 fail:	wpi_free_tx_ring(sc, ring);
749 	return error;
750 }
751 
752 static void
753 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
754 {
755 	struct wpi_tx_data *data;
756 	int i, ntries;
757 
758 	wpi_mem_lock(sc);
759 
760 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
761 	for (ntries = 0; ntries < 100; ntries++) {
762 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
763 			break;
764 		DELAY(10);
765 	}
766 #ifdef WPI_DEBUG
767 	if (ntries == 100 && wpi_debug > 0) {
768 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
769 									   ring->qid);
770 	}
771 #endif
772 	wpi_mem_unlock(sc);
773 
774 	for (i = 0; i < ring->count; i++) {
775 		data = &ring->data[i];
776 
777 		if (data->m != NULL) {
778 			bus_dmamap_unload(sc->sc_dmat, data->map);
779 			m_freem(data->m);
780 			data->m = NULL;
781 		}
782 	}
783 
784 	ring->queued = 0;
785 	ring->cur = 0;
786 }
787 
788 static void
789 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
790 {
791 	struct wpi_tx_data *data;
792 	int i;
793 
794 	wpi_dma_contig_free(&ring->desc_dma);
795 	wpi_dma_contig_free(&ring->cmd_dma);
796 
797 	if (ring->data != NULL) {
798 		for (i = 0; i < ring->count; i++) {
799 			data = &ring->data[i];
800 
801 			if (data->m != NULL) {
802 				bus_dmamap_unload(sc->sc_dmat, data->map);
803 				m_freem(data->m);
804 			}
805 		}
806 		free(ring->data, M_DEVBUF);
807 	}
808 }
809 
810 /*ARGUSED*/
811 static struct ieee80211_node *
812 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
813 {
814 	struct wpi_node *wn;
815 
816 	wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
817 
818 	if (wn != NULL)
819 		memset(wn, 0, sizeof (struct wpi_node));
820 	return (struct ieee80211_node *)wn;
821 }
822 
823 static void
824 wpi_newassoc(struct ieee80211_node *ni, int isnew)
825 {
826 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
827 	int i;
828 
829 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
830 
831 	/* set rate to some reasonable initial value */
832 	for (i = ni->ni_rates.rs_nrates - 1;
833 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
834 	     i--);
835 	ni->ni_txrate = i;
836 }
837 
838 static int
839 wpi_media_change(struct ifnet *ifp)
840 {
841 	int error;
842 
843 	error = ieee80211_media_change(ifp);
844 	if (error != ENETRESET)
845 		return error;
846 
847 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
848 		wpi_init(ifp);
849 
850 	return 0;
851 }
852 
853 static int
854 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
855 {
856 	struct ifnet *ifp = ic->ic_ifp;
857 	struct wpi_softc *sc = ifp->if_softc;
858 	struct ieee80211_node *ni;
859 	int error;
860 
861 	callout_stop(&sc->calib_to);
862 
863 	switch (nstate) {
864 	case IEEE80211_S_SCAN:
865 
866 		if (sc->is_scanning)
867 			break;
868 
869 		sc->is_scanning = true;
870 		ieee80211_node_table_reset(&ic->ic_scan);
871 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
872 
873 		/* make the link LED blink while we're scanning */
874 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
875 
876 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
877 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
878 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
879 			return error;
880 		}
881 
882 		ic->ic_state = nstate;
883 		return 0;
884 
885 	case IEEE80211_S_ASSOC:
886 		if (ic->ic_state != IEEE80211_S_RUN)
887 			break;
888 		/* FALLTHROUGH */
889 	case IEEE80211_S_AUTH:
890 		sc->config.associd = 0;
891 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
892 		if ((error = wpi_auth(sc)) != 0) {
893 			aprint_error_dev(sc->sc_dev,
894 							"could not send authentication request\n");
895 			return error;
896 		}
897 		break;
898 
899 	case IEEE80211_S_RUN:
900 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
901 			/* link LED blinks while monitoring */
902 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
903 			break;
904 		}
905 
906 		ni = ic->ic_bss;
907 
908 		if (ic->ic_opmode != IEEE80211_M_STA) {
909 			(void) wpi_auth(sc);    /* XXX */
910 			wpi_setup_beacon(sc, ni);
911 		}
912 
913 		wpi_enable_tsf(sc, ni);
914 
915 		/* update adapter's configuration */
916 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
917 		/* short preamble/slot time are negotiated when associating */
918 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
919 			WPI_CONFIG_SHSLOT);
920 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
921 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
922 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
923 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
924 		sc->config.filter |= htole32(WPI_FILTER_BSS);
925 		if (ic->ic_opmode != IEEE80211_M_STA)
926 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
927 
928 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
929 
930 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
931 			sc->config.flags));
932 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
933 			sizeof (struct wpi_config), 1);
934 		if (error != 0) {
935 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
936 			return error;
937 		}
938 
939 		/* configuration has changed, set Tx power accordingly */
940 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
941 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
942 			return error;
943 		}
944 
945 		if (ic->ic_opmode == IEEE80211_M_STA) {
946 			/* fake a join to init the tx rate */
947 			wpi_newassoc(ni, 1);
948 		}
949 
950 		/* start periodic calibration timer */
951 		sc->calib_cnt = 0;
952 		callout_schedule(&sc->calib_to, hz/2);
953 
954 		/* link LED always on while associated */
955 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
956 		break;
957 
958 	case IEEE80211_S_INIT:
959 		sc->is_scanning = false;
960 		break;
961 	}
962 
963 	return sc->sc_newstate(ic, nstate, arg);
964 }
965 
966 /*
967  * XXX: Hack to set the current channel to the value advertised in beacons or
968  * probe responses. Only used during AP detection.
969  * XXX: Duplicated from if_iwi.c
970  */
971 static void
972 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
973 {
974 	struct ieee80211_frame *wh;
975 	uint8_t subtype;
976 	uint8_t *frm, *efrm;
977 
978 	wh = mtod(m, struct ieee80211_frame *);
979 
980 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
981 		return;
982 
983 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
984 
985 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
986 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
987 		return;
988 
989 	frm = (uint8_t *)(wh + 1);
990 	efrm = mtod(m, uint8_t *) + m->m_len;
991 
992 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
993 	while (frm < efrm) {
994 		if (*frm == IEEE80211_ELEMID_DSPARMS)
995 #if IEEE80211_CHAN_MAX < 255
996 		if (frm[2] <= IEEE80211_CHAN_MAX)
997 #endif
998 			ic->ic_curchan = &ic->ic_channels[frm[2]];
999 
1000 		frm += frm[1] + 2;
1001 	}
1002 }
1003 
1004 /*
1005  * Grab exclusive access to NIC memory.
1006  */
1007 static void
1008 wpi_mem_lock(struct wpi_softc *sc)
1009 {
1010 	uint32_t tmp;
1011 	int ntries;
1012 
1013 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1014 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1015 
1016 	/* spin until we actually get the lock */
1017 	for (ntries = 0; ntries < 1000; ntries++) {
1018 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1019 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1020 			break;
1021 		DELAY(10);
1022 	}
1023 	if (ntries == 1000)
1024 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1025 }
1026 
1027 /*
1028  * Release lock on NIC memory.
1029  */
1030 static void
1031 wpi_mem_unlock(struct wpi_softc *sc)
1032 {
1033 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1034 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1035 }
1036 
1037 static uint32_t
1038 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1039 {
1040 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1041 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1042 }
1043 
1044 static void
1045 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1046 {
1047 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1048 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1049 }
1050 
1051 static void
1052 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1053 						const uint32_t *data, int wlen)
1054 {
1055 	for (; wlen > 0; wlen--, data++, addr += 4)
1056 		wpi_mem_write(sc, addr, *data);
1057 }
1058 
1059 
1060 /*
1061  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1062  * instead of using the traditional bit-bang method.
1063  */
1064 static int
1065 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1066 {
1067 	uint8_t *out = data;
1068 	uint32_t val;
1069 	int ntries;
1070 
1071 	wpi_mem_lock(sc);
1072 	for (; len > 0; len -= 2, addr++) {
1073 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1074 
1075 		for (ntries = 0; ntries < 10; ntries++) {
1076 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1077 			    WPI_EEPROM_READY)
1078 				break;
1079 			DELAY(5);
1080 		}
1081 		if (ntries == 10) {
1082 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1083 			return ETIMEDOUT;
1084 		}
1085 		*out++ = val >> 16;
1086 		if (len > 1)
1087 			*out++ = val >> 24;
1088 	}
1089 	wpi_mem_unlock(sc);
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * The firmware boot code is small and is intended to be copied directly into
1096  * the NIC internal memory.
1097  */
1098 int
1099 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1100 {
1101 	int ntries;
1102 
1103 	size /= sizeof (uint32_t);
1104 
1105 	wpi_mem_lock(sc);
1106 
1107 	/* copy microcode image into NIC memory */
1108 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1109 	    (const uint32_t *)ucode, size);
1110 
1111 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1112 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1113 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1114 
1115 	/* run microcode */
1116 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1117 
1118 	/* wait for transfer to complete */
1119 	for (ntries = 0; ntries < 1000; ntries++) {
1120 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1121 			break;
1122 		DELAY(10);
1123 	}
1124 	if (ntries == 1000) {
1125 		wpi_mem_unlock(sc);
1126 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1127 		return ETIMEDOUT;
1128 	}
1129 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1130 
1131 	wpi_mem_unlock(sc);
1132 
1133 	return 0;
1134 }
1135 
1136 static int
1137 wpi_load_firmware(struct wpi_softc *sc)
1138 {
1139 	struct wpi_dma_info *dma = &sc->fw_dma;
1140 	struct wpi_firmware_hdr hdr;
1141 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1142 	const uint8_t *boot_text;
1143 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1144 	uint32_t boot_textsz;
1145 	firmware_handle_t fw;
1146 	u_char *dfw;
1147 	size_t size;
1148 	int error;
1149 
1150 	/* load firmware image from disk */
1151 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1152 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1153 		goto fail1;
1154 	}
1155 
1156 	size = firmware_get_size(fw);
1157 
1158 	/* extract firmware header information */
1159 	if (size < sizeof (struct wpi_firmware_hdr)) {
1160 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1161 		    			 size);
1162 		error = EINVAL;
1163 		goto fail2;
1164 	}
1165 
1166 	if ((error = firmware_read(fw, 0, &hdr,
1167 		sizeof (struct wpi_firmware_hdr))) != 0) {
1168 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1169 		goto fail2;
1170 	}
1171 
1172 	main_textsz = le32toh(hdr.main_textsz);
1173 	main_datasz = le32toh(hdr.main_datasz);
1174 	init_textsz = le32toh(hdr.init_textsz);
1175 	init_datasz = le32toh(hdr.init_datasz);
1176 	boot_textsz = le32toh(hdr.boot_textsz);
1177 
1178 	/* sanity-check firmware segments sizes */
1179 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1180 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1181 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1182 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1183 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1184 	    (boot_textsz & 3) != 0) {
1185 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1186 		error = EINVAL;
1187 		goto fail2;
1188 	}
1189 
1190 	/* check that all firmware segments are present */
1191 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1192 		main_datasz + init_textsz + init_datasz + boot_textsz) {
1193 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1194 		    			 size);
1195 		error = EINVAL;
1196 		goto fail2;
1197 	}
1198 
1199 	dfw = firmware_malloc(size);
1200 	if (dfw == NULL) {
1201 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1202 		error = ENOMEM;
1203 		goto fail2;
1204 	}
1205 
1206 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1207 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1208 		goto fail2;
1209 	}
1210 
1211 	/* get pointers to firmware segments */
1212 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
1213 	main_data = main_text + main_textsz;
1214 	init_text = main_data + main_datasz;
1215 	init_data = init_text + init_textsz;
1216 	boot_text = init_data + init_datasz;
1217 
1218 	/* copy initialization images into pre-allocated DMA-safe memory */
1219 	memcpy(dma->vaddr, init_data, init_datasz);
1220 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1221 
1222 	/* tell adapter where to find initialization images */
1223 	wpi_mem_lock(sc);
1224 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1225 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1226 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1227 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1228 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1229 	wpi_mem_unlock(sc);
1230 
1231 	/* load firmware boot code */
1232 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1233 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1234 		goto fail3;
1235 	}
1236 
1237 	/* now press "execute" ;-) */
1238 	WPI_WRITE(sc, WPI_RESET, 0);
1239 
1240 	/* ..and wait at most one second for adapter to initialize */
1241 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1242 		/* this isn't what was supposed to happen.. */
1243 		aprint_error_dev(sc->sc_dev,
1244 					"timeout waiting for adapter to initialize\n");
1245 	}
1246 
1247 	/* copy runtime images into pre-allocated DMA-safe memory */
1248 	memcpy(dma->vaddr, main_data, main_datasz);
1249 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1250 
1251 	/* tell adapter where to find runtime images */
1252 	wpi_mem_lock(sc);
1253 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1254 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1255 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1256 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1257 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1258 	wpi_mem_unlock(sc);
1259 
1260 	/* wait at most one second for second alive notification */
1261 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1262 		/* this isn't what was supposed to happen.. */
1263 		aprint_error_dev(sc->sc_dev,
1264 						"timeout waiting for adapter to initialize\n");
1265 	}
1266 
1267 
1268 fail3: 	firmware_free(dfw,size);
1269 fail2:	firmware_close(fw);
1270 fail1:	return error;
1271 }
1272 
1273 static void
1274 wpi_calib_timeout(void *arg)
1275 {
1276 	struct wpi_softc *sc = arg;
1277 	struct ieee80211com *ic = &sc->sc_ic;
1278 	int temp, s;
1279 
1280 	/* automatic rate control triggered every 500ms */
1281 	if (ic->ic_fixed_rate == -1) {
1282 		s = splnet();
1283 		if (ic->ic_opmode == IEEE80211_M_STA)
1284 			wpi_iter_func(sc, ic->ic_bss);
1285 		else
1286                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1287 		splx(s);
1288 	}
1289 
1290 	/* update sensor data */
1291 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1292 
1293 	/* automatic power calibration every 60s */
1294 	if (++sc->calib_cnt >= 120) {
1295 		wpi_power_calibration(sc, temp);
1296 		sc->calib_cnt = 0;
1297 	}
1298 
1299 	callout_schedule(&sc->calib_to, hz/2);
1300 }
1301 
1302 static void
1303 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1304 {
1305 	struct wpi_softc *sc = arg;
1306 	struct wpi_node *wn = (struct wpi_node *)ni;
1307 
1308 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1309 }
1310 
1311 /*
1312  * This function is called periodically (every 60 seconds) to adjust output
1313  * power to temperature changes.
1314  */
1315 void
1316 wpi_power_calibration(struct wpi_softc *sc, int temp)
1317 {
1318 	/* sanity-check read value */
1319 	if (temp < -260 || temp > 25) {
1320 		/* this can't be correct, ignore */
1321 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1322 		return;
1323 	}
1324 
1325 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1326 
1327 	/* adjust Tx power if need be */
1328 	if (abs(temp - sc->temp) <= 6)
1329 		return;
1330 
1331 	sc->temp = temp;
1332 
1333 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1334 		/* just warn, too bad for the automatic calibration... */
1335 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1336 	}
1337 }
1338 
1339 static void
1340 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1341 	struct wpi_rx_data *data)
1342 {
1343 	struct ieee80211com *ic = &sc->sc_ic;
1344 	struct ifnet *ifp = ic->ic_ifp;
1345 	struct wpi_rx_ring *ring = &sc->rxq;
1346 	struct wpi_rx_stat *stat;
1347 	struct wpi_rx_head *head;
1348 	struct wpi_rx_tail *tail;
1349 	struct wpi_rbuf *rbuf;
1350 	struct ieee80211_frame *wh;
1351 	struct ieee80211_node *ni;
1352 	struct mbuf *m, *mnew;
1353 	int data_off ;
1354 
1355 	stat = (struct wpi_rx_stat *)(desc + 1);
1356 
1357 	if (stat->len > WPI_STAT_MAXLEN) {
1358 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1359 		ifp->if_ierrors++;
1360 		return;
1361 	}
1362 
1363 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1364 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1365 
1366 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1367 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1368 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1369 		le64toh(tail->tstamp)));
1370 
1371 	/*
1372 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1373 	 * to radiotap in monitor mode).
1374 	 */
1375 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1376 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1377 		ifp->if_ierrors++;
1378 		return;
1379 	}
1380 
1381 	/* Compute where are the useful datas */
1382 	data_off = (char*)(head + 1) - mtod(data->m, char*);
1383 
1384 	/*
1385 	 * If the number of free entry is too low
1386 	 * just dup the data->m socket and reuse the same rbuf entry
1387 	 */
1388 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1389 
1390 		/* Prepare the mbuf for the m_dup */
1391 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1392 		data->m->m_data = (char*) data->m->m_data + data_off;
1393 
1394 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1395 
1396 		/* Restore the m_data pointer for future use */
1397 		data->m->m_data = (char*) data->m->m_data - data_off;
1398 
1399 		if (m == NULL) {
1400 			ifp->if_ierrors++;
1401 			return;
1402 		}
1403 	} else {
1404 
1405 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1406 		if (mnew == NULL) {
1407 			ifp->if_ierrors++;
1408 			return;
1409 		}
1410 
1411 		rbuf = wpi_alloc_rbuf(sc);
1412 		KASSERT(rbuf != NULL);
1413 
1414  		/* attach Rx buffer to mbuf */
1415 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1416 		 	rbuf);
1417 		mnew->m_flags |= M_EXT_RW;
1418 
1419 		m = data->m;
1420 		data->m = mnew;
1421 
1422 		/* update Rx descriptor */
1423 		ring->desc[ring->cur] = htole32(rbuf->paddr);
1424 
1425 		m->m_data = (char*)m->m_data + data_off;
1426 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1427 	}
1428 
1429 	/* finalize mbuf */
1430 	m->m_pkthdr.rcvif = ifp;
1431 
1432 	if (ic->ic_state == IEEE80211_S_SCAN)
1433 		wpi_fix_channel(ic, m);
1434 
1435 #if NBPFILTER > 0
1436 	if (sc->sc_drvbpf != NULL) {
1437 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1438 
1439 		tap->wr_flags = 0;
1440 		tap->wr_chan_freq =
1441 			htole16(ic->ic_channels[head->chan].ic_freq);
1442 		tap->wr_chan_flags =
1443 			htole16(ic->ic_channels[head->chan].ic_flags);
1444 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1445 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1446 		tap->wr_tsft = tail->tstamp;
1447 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1448 		switch (head->rate) {
1449 		/* CCK rates */
1450 		case  10: tap->wr_rate =   2; break;
1451 		case  20: tap->wr_rate =   4; break;
1452 		case  55: tap->wr_rate =  11; break;
1453 		case 110: tap->wr_rate =  22; break;
1454 		/* OFDM rates */
1455 		case 0xd: tap->wr_rate =  12; break;
1456 		case 0xf: tap->wr_rate =  18; break;
1457 		case 0x5: tap->wr_rate =  24; break;
1458 		case 0x7: tap->wr_rate =  36; break;
1459 		case 0x9: tap->wr_rate =  48; break;
1460 		case 0xb: tap->wr_rate =  72; break;
1461 		case 0x1: tap->wr_rate =  96; break;
1462 		case 0x3: tap->wr_rate = 108; break;
1463 		/* unknown rate: should not happen */
1464 		default:  tap->wr_rate =   0;
1465 		}
1466 		if (le16toh(head->flags) & 0x4)
1467 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1468 
1469 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1470 	}
1471 #endif
1472 
1473 	/* grab a reference to the source node */
1474 	wh = mtod(m, struct ieee80211_frame *);
1475 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1476 
1477 	/* send the frame to the 802.11 layer */
1478 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1479 
1480 	/* release node reference */
1481 	ieee80211_free_node(ni);
1482 }
1483 
1484 static void
1485 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1486 {
1487 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1488 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1489 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1490 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1491 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1492 
1493 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1494 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1495 		stat->nkill, stat->rate, le32toh(stat->duration),
1496 		le32toh(stat->status)));
1497 
1498 	/*
1499 	 * Update rate control statistics for the node.
1500 	 * XXX we should not count mgmt frames since they're always sent at
1501 	 * the lowest available bit-rate.
1502 	 */
1503 	wn->amn.amn_txcnt++;
1504 	if (stat->ntries > 0) {
1505 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1506 		wn->amn.amn_retrycnt++;
1507 	}
1508 
1509 	if ((le32toh(stat->status) & 0xff) != 1)
1510 		ifp->if_oerrors++;
1511 	else
1512 		ifp->if_opackets++;
1513 
1514 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1515 	m_freem(txdata->m);
1516 	txdata->m = NULL;
1517 	ieee80211_free_node(txdata->ni);
1518 	txdata->ni = NULL;
1519 
1520 	ring->queued--;
1521 
1522 	sc->sc_tx_timer = 0;
1523 	ifp->if_flags &= ~IFF_OACTIVE;
1524 	wpi_start(ifp);
1525 }
1526 
1527 static void
1528 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1529 {
1530 	struct wpi_tx_ring *ring = &sc->cmdq;
1531 	struct wpi_tx_data *data;
1532 
1533 	if ((desc->qid & 7) != 4)
1534 		return;	/* not a command ack */
1535 
1536 	data = &ring->data[desc->idx];
1537 
1538 	/* if the command was mapped in a mbuf, free it */
1539 	if (data->m != NULL) {
1540 		bus_dmamap_unload(sc->sc_dmat, data->map);
1541 		m_freem(data->m);
1542 		data->m = NULL;
1543 	}
1544 
1545 	wakeup(&ring->cmd[desc->idx]);
1546 }
1547 
1548 static void
1549 wpi_notif_intr(struct wpi_softc *sc)
1550 {
1551 	struct ieee80211com *ic = &sc->sc_ic;
1552 	struct ifnet *ifp =  ic->ic_ifp;
1553 	struct wpi_rx_desc *desc;
1554 	struct wpi_rx_data *data;
1555 	uint32_t hw;
1556 
1557 	hw = le32toh(sc->shared->next);
1558 	while (sc->rxq.cur != hw) {
1559 		data = &sc->rxq.data[sc->rxq.cur];
1560 
1561 		desc = mtod(data->m, struct wpi_rx_desc *);
1562 
1563 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1564 			"len=%d\n", desc->qid, desc->idx, desc->flags,
1565 			desc->type, le32toh(desc->len)));
1566 
1567 		if (!(desc->qid & 0x80))	/* reply to a command */
1568 			wpi_cmd_intr(sc, desc);
1569 
1570 		switch (desc->type) {
1571 		case WPI_RX_DONE:
1572 			/* a 802.11 frame was received */
1573 			wpi_rx_intr(sc, desc, data);
1574 			break;
1575 
1576 		case WPI_TX_DONE:
1577 			/* a 802.11 frame has been transmitted */
1578 			wpi_tx_intr(sc, desc);
1579 			break;
1580 
1581 		case WPI_UC_READY:
1582 		{
1583 			struct wpi_ucode_info *uc =
1584 				(struct wpi_ucode_info *)(desc + 1);
1585 
1586 			/* the microcontroller is ready */
1587 			DPRINTF(("microcode alive notification version %x "
1588 				"alive %x\n", le32toh(uc->version),
1589 				le32toh(uc->valid)));
1590 
1591 			if (le32toh(uc->valid) != 1) {
1592 				aprint_error_dev(sc->sc_dev,
1593 					"microcontroller initialization failed\n");
1594 			}
1595 			break;
1596 		}
1597 		case WPI_STATE_CHANGED:
1598 		{
1599 			uint32_t *status = (uint32_t *)(desc + 1);
1600 
1601 			/* enabled/disabled notification */
1602 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1603 
1604 			if (le32toh(*status) & 1) {
1605 				/* the radio button has to be pushed */
1606 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1607 				/* turn the interface down */
1608 				ifp->if_flags &= ~IFF_UP;
1609 				wpi_stop(ifp, 1);
1610 				return;	/* no further processing */
1611 			}
1612 			break;
1613 		}
1614 		case WPI_START_SCAN:
1615 		{
1616 			struct wpi_start_scan *scan =
1617 				(struct wpi_start_scan *)(desc + 1);
1618 
1619 			DPRINTFN(2, ("scanning channel %d status %x\n",
1620 				scan->chan, le32toh(scan->status)));
1621 
1622 			/* fix current channel */
1623 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1624 			break;
1625 		}
1626 		case WPI_STOP_SCAN:
1627 		{
1628 			struct wpi_stop_scan *scan =
1629 				(struct wpi_stop_scan *)(desc + 1);
1630 
1631 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1632 				scan->nchan, scan->status, scan->chan));
1633 
1634 			if (scan->status == 1 && scan->chan <= 14) {
1635 				/*
1636 				 * We just finished scanning 802.11g channels,
1637 				 * start scanning 802.11a ones.
1638 				 */
1639 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1640 					break;
1641 			}
1642 			sc->is_scanning = false;
1643 			ieee80211_end_scan(ic);
1644 			break;
1645 		}
1646 		}
1647 
1648 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1649 	}
1650 
1651 	/* tell the firmware what we have processed */
1652 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1653 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1654 }
1655 
1656 static int
1657 wpi_intr(void *arg)
1658 {
1659 	struct wpi_softc *sc = arg;
1660 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1661 	uint32_t r;
1662 
1663 	r = WPI_READ(sc, WPI_INTR);
1664 	if (r == 0 || r == 0xffffffff)
1665 		return 0;	/* not for us */
1666 
1667 	DPRINTFN(5, ("interrupt reg %x\n", r));
1668 
1669 	/* disable interrupts */
1670 	WPI_WRITE(sc, WPI_MASK, 0);
1671 	/* ack interrupts */
1672 	WPI_WRITE(sc, WPI_INTR, r);
1673 
1674 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1675 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1676 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1677 		wpi_stop(sc->sc_ic.ic_ifp, 1);
1678 		return 1;
1679 	}
1680 
1681 	if (r & WPI_RX_INTR)
1682 		wpi_notif_intr(sc);
1683 
1684 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1685 		wakeup(sc);
1686 
1687 	/* re-enable interrupts */
1688 	if (ifp->if_flags & IFF_UP)
1689 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1690 
1691 	return 1;
1692 }
1693 
1694 static uint8_t
1695 wpi_plcp_signal(int rate)
1696 {
1697 	switch (rate) {
1698 	/* CCK rates (returned values are device-dependent) */
1699 	case 2:		return 10;
1700 	case 4:		return 20;
1701 	case 11:	return 55;
1702 	case 22:	return 110;
1703 
1704 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1705 	/* R1-R4, (u)ral is R4-R1 */
1706 	case 12:	return 0xd;
1707 	case 18:	return 0xf;
1708 	case 24:	return 0x5;
1709 	case 36:	return 0x7;
1710 	case 48:	return 0x9;
1711 	case 72:	return 0xb;
1712 	case 96:	return 0x1;
1713 	case 108:	return 0x3;
1714 
1715 	/* unsupported rates (should not get there) */
1716 	default:	return 0;
1717 	}
1718 }
1719 
1720 /* quickly determine if a given rate is CCK or OFDM */
1721 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1722 
1723 static int
1724 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1725 	int ac)
1726 {
1727 	struct ieee80211com *ic = &sc->sc_ic;
1728 	struct wpi_tx_ring *ring = &sc->txq[ac];
1729 	struct wpi_tx_desc *desc;
1730 	struct wpi_tx_data *data;
1731 	struct wpi_tx_cmd *cmd;
1732 	struct wpi_cmd_data *tx;
1733 	struct ieee80211_frame *wh;
1734 	struct ieee80211_key *k;
1735 	const struct chanAccParams *cap;
1736 	struct mbuf *mnew;
1737 	int i, error, rate, hdrlen, noack = 0;
1738 
1739 	desc = &ring->desc[ring->cur];
1740 	data = &ring->data[ring->cur];
1741 
1742 	wh = mtod(m0, struct ieee80211_frame *);
1743 
1744 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1745 		cap = &ic->ic_wme.wme_chanParams;
1746 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1747 	}
1748 
1749 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1750 		k = ieee80211_crypto_encap(ic, ni, m0);
1751 		if (k == NULL) {
1752 			m_freem(m0);
1753 			return ENOBUFS;
1754 		}
1755 
1756 		/* packet header may have moved, reset our local pointer */
1757 		wh = mtod(m0, struct ieee80211_frame *);
1758 	}
1759 
1760 	hdrlen = ieee80211_anyhdrsize(wh);
1761 
1762 	/* pickup a rate */
1763 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1764 		IEEE80211_FC0_TYPE_MGT) {
1765 		/* mgmt frames are sent at the lowest available bit-rate */
1766 		rate = ni->ni_rates.rs_rates[0];
1767 	} else {
1768 		if (ic->ic_fixed_rate != -1) {
1769 			rate = ic->ic_sup_rates[ic->ic_curmode].
1770 				rs_rates[ic->ic_fixed_rate];
1771 		} else
1772 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1773 	}
1774 	rate &= IEEE80211_RATE_VAL;
1775 
1776 
1777 #if NBPFILTER > 0
1778 	if (sc->sc_drvbpf != NULL) {
1779 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1780 
1781 		tap->wt_flags = 0;
1782 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1783 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1784 		tap->wt_rate = rate;
1785 		tap->wt_hwqueue = ac;
1786 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1787 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1788 
1789 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1790 	}
1791 #endif
1792 
1793 	cmd = &ring->cmd[ring->cur];
1794 	cmd->code = WPI_CMD_TX_DATA;
1795 	cmd->flags = 0;
1796 	cmd->qid = ring->qid;
1797 	cmd->idx = ring->cur;
1798 
1799 	tx = (struct wpi_cmd_data *)cmd->data;
1800 	tx->flags = 0;
1801 
1802 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1803 		tx->flags |= htole32(WPI_TX_NEED_ACK);
1804 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1805 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1806 
1807 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1808 
1809 	/* retrieve destination node's id */
1810 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1811 		WPI_ID_BSS;
1812 
1813 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1814 		IEEE80211_FC0_TYPE_MGT) {
1815 		/* tell h/w to set timestamp in probe responses */
1816 		if ((wh->i_fc[0] &
1817 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1818 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1819 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1820 
1821 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1822 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1823 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1824 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1825 			tx->timeout = htole16(3);
1826 		else
1827 			tx->timeout = htole16(2);
1828 	} else
1829 		tx->timeout = htole16(0);
1830 
1831 	tx->rate = wpi_plcp_signal(rate);
1832 
1833 	/* be very persistant at sending frames out */
1834 	tx->rts_ntries = 7;
1835 	tx->data_ntries = 15;
1836 
1837 	tx->ofdm_mask = 0xff;
1838 	tx->cck_mask = 0xf;
1839 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1840 
1841 	tx->len = htole16(m0->m_pkthdr.len);
1842 
1843 	/* save and trim IEEE802.11 header */
1844 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1845 	m_adj(m0, hdrlen);
1846 
1847 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1848 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1849 	if (error != 0 && error != EFBIG) {
1850 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1851 		m_freem(m0);
1852 		return error;
1853 	}
1854 	if (error != 0) {
1855 		/* too many fragments, linearize */
1856 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1857 		if (mnew == NULL) {
1858 			m_freem(m0);
1859 			return ENOMEM;
1860 		}
1861 
1862 		M_COPY_PKTHDR(mnew, m0);
1863 		if (m0->m_pkthdr.len > MHLEN) {
1864 			MCLGET(mnew, M_DONTWAIT);
1865 			if (!(mnew->m_flags & M_EXT)) {
1866 				m_freem(m0);
1867 				m_freem(mnew);
1868 				return ENOMEM;
1869 			}
1870 		}
1871 
1872 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1873 		m_freem(m0);
1874 		mnew->m_len = mnew->m_pkthdr.len;
1875 		m0 = mnew;
1876 
1877 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1878 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1879 		if (error != 0) {
1880 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1881 							 error);
1882 			m_freem(m0);
1883 			return error;
1884 		}
1885 	}
1886 
1887 	data->m = m0;
1888 	data->ni = ni;
1889 
1890 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1891 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1892 
1893 	/* first scatter/gather segment is used by the tx data command */
1894 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1895 		(1 + data->map->dm_nsegs) << 24);
1896 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1897 		ring->cur * sizeof (struct wpi_tx_cmd));
1898 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1899 						 ((hdrlen + 3) & ~3));
1900 
1901 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1902 		desc->segs[i].addr =
1903 			htole32(data->map->dm_segs[i - 1].ds_addr);
1904 		desc->segs[i].len  =
1905 			htole32(data->map->dm_segs[i - 1].ds_len);
1906 	}
1907 
1908 	ring->queued++;
1909 
1910 	/* kick ring */
1911 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1912 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1913 
1914 	return 0;
1915 }
1916 
1917 static void
1918 wpi_start(struct ifnet *ifp)
1919 {
1920 	struct wpi_softc *sc = ifp->if_softc;
1921 	struct ieee80211com *ic = &sc->sc_ic;
1922 	struct ieee80211_node *ni;
1923 	struct ether_header *eh;
1924 	struct mbuf *m0;
1925 	int ac;
1926 
1927 	/*
1928 	 * net80211 may still try to send management frames even if the
1929 	 * IFF_RUNNING flag is not set...
1930 	 */
1931 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1932 		return;
1933 
1934 	for (;;) {
1935 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1936 		if (m0 != NULL) {
1937 
1938 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1939 			m0->m_pkthdr.rcvif = NULL;
1940 
1941 			/* management frames go into ring 0 */
1942 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1943 				ifp->if_oerrors++;
1944 				continue;
1945 			}
1946 #if NBPFILTER > 0
1947 			if (ic->ic_rawbpf != NULL)
1948 				bpf_mtap(ic->ic_rawbpf, m0);
1949 #endif
1950 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1951 				ifp->if_oerrors++;
1952 				break;
1953 			}
1954 		} else {
1955 			if (ic->ic_state != IEEE80211_S_RUN)
1956 				break;
1957 			IFQ_POLL(&ifp->if_snd, m0);
1958 			if (m0 == NULL)
1959 				break;
1960 
1961 			if (m0->m_len < sizeof (*eh) &&
1962 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1963 				ifp->if_oerrors++;
1964 				continue;
1965 			}
1966 			eh = mtod(m0, struct ether_header *);
1967 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1968 			if (ni == NULL) {
1969 				m_freem(m0);
1970 				ifp->if_oerrors++;
1971 				continue;
1972 			}
1973 
1974 			/* classify mbuf so we can find which tx ring to use */
1975 			if (ieee80211_classify(ic, m0, ni) != 0) {
1976 				m_freem(m0);
1977 				ieee80211_free_node(ni);
1978 				ifp->if_oerrors++;
1979 				continue;
1980 			}
1981 
1982 			/* no QoS encapsulation for EAPOL frames */
1983 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1984 			    M_WME_GETAC(m0) : WME_AC_BE;
1985 
1986 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1987 				/* there is no place left in this ring */
1988 				ifp->if_flags |= IFF_OACTIVE;
1989 				break;
1990 			}
1991 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1992 #if NBPFILTER > 0
1993 			if (ifp->if_bpf != NULL)
1994 				bpf_mtap(ifp->if_bpf, m0);
1995 #endif
1996 			m0 = ieee80211_encap(ic, m0, ni);
1997 			if (m0 == NULL) {
1998 				ieee80211_free_node(ni);
1999 				ifp->if_oerrors++;
2000 				continue;
2001 			}
2002 #if NBPFILTER > 0
2003 			if (ic->ic_rawbpf != NULL)
2004 				bpf_mtap(ic->ic_rawbpf, m0);
2005 #endif
2006 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2007 				ieee80211_free_node(ni);
2008 				ifp->if_oerrors++;
2009 				break;
2010 			}
2011 		}
2012 
2013 		sc->sc_tx_timer = 5;
2014 		ifp->if_timer = 1;
2015 	}
2016 }
2017 
2018 static void
2019 wpi_watchdog(struct ifnet *ifp)
2020 {
2021 	struct wpi_softc *sc = ifp->if_softc;
2022 
2023 	ifp->if_timer = 0;
2024 
2025 	if (sc->sc_tx_timer > 0) {
2026 		if (--sc->sc_tx_timer == 0) {
2027 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2028 			ifp->if_oerrors++;
2029 			ifp->if_flags &= ~IFF_UP;
2030 			wpi_stop(ifp, 1);
2031 			return;
2032 		}
2033 		ifp->if_timer = 1;
2034 	}
2035 
2036 	ieee80211_watchdog(&sc->sc_ic);
2037 }
2038 
2039 static int
2040 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2041 {
2042 #define IS_RUNNING(ifp) \
2043 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2044 
2045 	struct wpi_softc *sc = ifp->if_softc;
2046 	struct ieee80211com *ic = &sc->sc_ic;
2047 	int s, error = 0;
2048 
2049 	s = splnet();
2050 
2051 	switch (cmd) {
2052 	case SIOCSIFFLAGS:
2053 		if (ifp->if_flags & IFF_UP) {
2054 			if (!(ifp->if_flags & IFF_RUNNING))
2055 				wpi_init(ifp);
2056 		} else {
2057 			if (ifp->if_flags & IFF_RUNNING)
2058 				wpi_stop(ifp, 1);
2059 		}
2060 		break;
2061 
2062 	case SIOCADDMULTI:
2063 	case SIOCDELMULTI:
2064 		/* XXX no h/w multicast filter? --dyoung */
2065 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2066 			/* setup multicast filter, etc */
2067 			error = 0;
2068 		}
2069 		break;
2070 
2071 	default:
2072 		error = ieee80211_ioctl(ic, cmd, data);
2073 	}
2074 
2075 	if (error == ENETRESET) {
2076 		if (IS_RUNNING(ifp) &&
2077 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2078 			wpi_init(ifp);
2079 		error = 0;
2080 	}
2081 
2082 	splx(s);
2083 	return error;
2084 
2085 #undef IS_RUNNING
2086 }
2087 
2088 /*
2089  * Extract various information from EEPROM.
2090  */
2091 static void
2092 wpi_read_eeprom(struct wpi_softc *sc)
2093 {
2094 	struct ieee80211com *ic = &sc->sc_ic;
2095 	char domain[4];
2096 	int i;
2097 
2098 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2099 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2100 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2101 
2102 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2103 	    sc->type));
2104 
2105 	/* read and print regulatory domain */
2106 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2107 	aprint_normal(", %.4s", domain);
2108 
2109 	/* read and print MAC address */
2110 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2111 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2112 
2113 	/* read the list of authorized channels */
2114 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2115 		wpi_read_eeprom_channels(sc, i);
2116 
2117 	/* read the list of power groups */
2118 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2119 		wpi_read_eeprom_group(sc, i);
2120 }
2121 
2122 static void
2123 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2124 {
2125 	struct ieee80211com *ic = &sc->sc_ic;
2126 	const struct wpi_chan_band *band = &wpi_bands[n];
2127 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2128 	int chan, i;
2129 
2130 	wpi_read_prom_data(sc, band->addr, channels,
2131 	    band->nchan * sizeof (struct wpi_eeprom_chan));
2132 
2133 	for (i = 0; i < band->nchan; i++) {
2134 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2135 			continue;
2136 
2137 		chan = band->chan[i];
2138 
2139 		if (n == 0) {	/* 2GHz band */
2140 			ic->ic_channels[chan].ic_freq =
2141 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2142 			ic->ic_channels[chan].ic_flags =
2143 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2144 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2145 
2146 		} else {	/* 5GHz band */
2147 			/*
2148 			 * Some 3945abg adapters support channels 7, 8, 11
2149 			 * and 12 in the 2GHz *and* 5GHz bands.
2150 			 * Because of limitations in our net80211(9) stack,
2151 			 * we can't support these channels in 5GHz band.
2152 			 */
2153 			if (chan <= 14)
2154 				continue;
2155 
2156 			ic->ic_channels[chan].ic_freq =
2157 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2158 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2159 		}
2160 
2161 		/* is active scan allowed on this channel? */
2162 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2163 			ic->ic_channels[chan].ic_flags |=
2164 			    IEEE80211_CHAN_PASSIVE;
2165 		}
2166 
2167 		/* save maximum allowed power for this channel */
2168 		sc->maxpwr[chan] = channels[i].maxpwr;
2169 
2170 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2171 		    chan, channels[i].flags, sc->maxpwr[chan]));
2172 	}
2173 }
2174 
2175 static void
2176 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2177 {
2178 	struct wpi_power_group *group = &sc->groups[n];
2179 	struct wpi_eeprom_group rgroup;
2180 	int i;
2181 
2182 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2183 	    sizeof rgroup);
2184 
2185 	/* save power group information */
2186 	group->chan   = rgroup.chan;
2187 	group->maxpwr = rgroup.maxpwr;
2188 	/* temperature at which the samples were taken */
2189 	group->temp   = (int16_t)le16toh(rgroup.temp);
2190 
2191 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2192 	    group->chan, group->maxpwr, group->temp));
2193 
2194 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2195 		group->samples[i].index = rgroup.samples[i].index;
2196 		group->samples[i].power = rgroup.samples[i].power;
2197 
2198 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2199 		    group->samples[i].index, group->samples[i].power));
2200 	}
2201 }
2202 
2203 /*
2204  * Send a command to the firmware.
2205  */
2206 static int
2207 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2208 {
2209 	struct wpi_tx_ring *ring = &sc->cmdq;
2210 	struct wpi_tx_desc *desc;
2211 	struct wpi_tx_cmd *cmd;
2212 
2213 	KASSERT(size <= sizeof cmd->data);
2214 
2215 	desc = &ring->desc[ring->cur];
2216 	cmd = &ring->cmd[ring->cur];
2217 
2218 	cmd->code = code;
2219 	cmd->flags = 0;
2220 	cmd->qid = ring->qid;
2221 	cmd->idx = ring->cur;
2222 	memcpy(cmd->data, buf, size);
2223 
2224 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2225 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2226 		ring->cur * sizeof (struct wpi_tx_cmd));
2227 	desc->segs[0].len  = htole32(4 + size);
2228 
2229 	/* kick cmd ring */
2230 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2231 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2232 
2233 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2234 }
2235 
2236 static int
2237 wpi_wme_update(struct ieee80211com *ic)
2238 {
2239 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2240 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2241 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2242 	const struct wmeParams *wmep;
2243 	struct wpi_wme_setup wme;
2244 	int ac;
2245 
2246 	/* don't override default WME values if WME is not actually enabled */
2247 	if (!(ic->ic_flags & IEEE80211_F_WME))
2248 		return 0;
2249 
2250 	wme.flags = 0;
2251 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2252 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2253 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2254 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2255 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2256 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2257 
2258 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2259 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2260 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2261 	}
2262 
2263 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2264 #undef WPI_USEC
2265 #undef WPI_EXP2
2266 }
2267 
2268 /*
2269  * Configure h/w multi-rate retries.
2270  */
2271 static int
2272 wpi_mrr_setup(struct wpi_softc *sc)
2273 {
2274 	struct ieee80211com *ic = &sc->sc_ic;
2275 	struct wpi_mrr_setup mrr;
2276 	int i, error;
2277 
2278 	/* CCK rates (not used with 802.11a) */
2279 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2280 		mrr.rates[i].flags = 0;
2281 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2282 		/* fallback to the immediate lower CCK rate (if any) */
2283 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2284 		/* try one time at this rate before falling back to "next" */
2285 		mrr.rates[i].ntries = 1;
2286 	}
2287 
2288 	/* OFDM rates (not used with 802.11b) */
2289 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2290 		mrr.rates[i].flags = 0;
2291 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2292 		/* fallback to the immediate lower rate (if any) */
2293 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2294 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2295 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2296 			WPI_OFDM6 : WPI_CCK2) :
2297 		    i - 1;
2298 		/* try one time at this rate before falling back to "next" */
2299 		mrr.rates[i].ntries = 1;
2300 	}
2301 
2302 	/* setup MRR for control frames */
2303 	mrr.which = htole32(WPI_MRR_CTL);
2304 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2305 	if (error != 0) {
2306 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2307 		return error;
2308 	}
2309 
2310 	/* setup MRR for data frames */
2311 	mrr.which = htole32(WPI_MRR_DATA);
2312 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2313 	if (error != 0) {
2314 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2315 		return error;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 static void
2322 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2323 {
2324 	struct wpi_cmd_led led;
2325 
2326 	led.which = which;
2327 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2328 	led.off = off;
2329 	led.on = on;
2330 
2331 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2332 }
2333 
2334 static void
2335 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2336 {
2337 	struct wpi_cmd_tsf tsf;
2338 	uint64_t val, mod;
2339 
2340 	memset(&tsf, 0, sizeof tsf);
2341 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2342 	tsf.bintval = htole16(ni->ni_intval);
2343 	tsf.lintval = htole16(10);
2344 
2345 	/* compute remaining time until next beacon */
2346 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2347 	mod = le64toh(tsf.tstamp) % val;
2348 	tsf.binitval = htole32((uint32_t)(val - mod));
2349 
2350 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2351 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2352 
2353 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2354 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2355 }
2356 
2357 /*
2358  * Update Tx power to match what is defined for channel `c'.
2359  */
2360 static int
2361 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2362 {
2363 	struct ieee80211com *ic = &sc->sc_ic;
2364 	struct wpi_power_group *group;
2365 	struct wpi_cmd_txpower txpower;
2366 	u_int chan;
2367 	int i;
2368 
2369 	/* get channel number */
2370 	chan = ieee80211_chan2ieee(ic, c);
2371 
2372 	/* find the power group to which this channel belongs */
2373 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2374 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2375 			if (chan <= group->chan)
2376 				break;
2377 	} else
2378 		group = &sc->groups[0];
2379 
2380 	memset(&txpower, 0, sizeof txpower);
2381 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2382 	txpower.chan = htole16(chan);
2383 
2384 	/* set Tx power for all OFDM and CCK rates */
2385 	for (i = 0; i <= 11 ; i++) {
2386 		/* retrieve Tx power for this channel/rate combination */
2387 		int idx = wpi_get_power_index(sc, group, c,
2388 		    wpi_ridx_to_rate[i]);
2389 
2390 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2391 
2392 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2393 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2394 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2395 		} else {
2396 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2397 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2398 		}
2399 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2400 		    wpi_ridx_to_rate[i], idx));
2401 	}
2402 
2403 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2404 }
2405 
2406 /*
2407  * Determine Tx power index for a given channel/rate combination.
2408  * This takes into account the regulatory information from EEPROM and the
2409  * current temperature.
2410  */
2411 static int
2412 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2413     struct ieee80211_channel *c, int rate)
2414 {
2415 /* fixed-point arithmetic division using a n-bit fractional part */
2416 #define fdivround(a, b, n)	\
2417 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2418 
2419 /* linear interpolation */
2420 #define interpolate(x, x1, y1, x2, y2, n)	\
2421 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2422 
2423 	struct ieee80211com *ic = &sc->sc_ic;
2424 	struct wpi_power_sample *sample;
2425 	int pwr, idx;
2426 	u_int chan;
2427 
2428 	/* get channel number */
2429 	chan = ieee80211_chan2ieee(ic, c);
2430 
2431 	/* default power is group's maximum power - 3dB */
2432 	pwr = group->maxpwr / 2;
2433 
2434 	/* decrease power for highest OFDM rates to reduce distortion */
2435 	switch (rate) {
2436 	case 72:	/* 36Mb/s */
2437 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2438 		break;
2439 	case 96:	/* 48Mb/s */
2440 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2441 		break;
2442 	case 108:	/* 54Mb/s */
2443 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2444 		break;
2445 	}
2446 
2447 	/* never exceed channel's maximum allowed Tx power */
2448 	pwr = min(pwr, sc->maxpwr[chan]);
2449 
2450 	/* retrieve power index into gain tables from samples */
2451 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2452 		if (pwr > sample[1].power)
2453 			break;
2454 	/* fixed-point linear interpolation using a 19-bit fractional part */
2455 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2456 	    sample[1].power, sample[1].index, 19);
2457 
2458 	/*
2459 	 * Adjust power index based on current temperature:
2460 	 * - if cooler than factory-calibrated: decrease output power
2461 	 * - if warmer than factory-calibrated: increase output power
2462 	 */
2463 	idx -= (sc->temp - group->temp) * 11 / 100;
2464 
2465 	/* decrease power for CCK rates (-5dB) */
2466 	if (!WPI_RATE_IS_OFDM(rate))
2467 		idx += 10;
2468 
2469 	/* keep power index in a valid range */
2470 	if (idx < 0)
2471 		return 0;
2472 	if (idx > WPI_MAX_PWR_INDEX)
2473 		return WPI_MAX_PWR_INDEX;
2474 	return idx;
2475 
2476 #undef interpolate
2477 #undef fdivround
2478 }
2479 
2480 /*
2481  * Build a beacon frame that the firmware will broadcast periodically in
2482  * IBSS or HostAP modes.
2483  */
2484 static int
2485 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2486 {
2487 	struct ieee80211com *ic = &sc->sc_ic;
2488 	struct wpi_tx_ring *ring = &sc->cmdq;
2489 	struct wpi_tx_desc *desc;
2490 	struct wpi_tx_data *data;
2491 	struct wpi_tx_cmd *cmd;
2492 	struct wpi_cmd_beacon *bcn;
2493 	struct ieee80211_beacon_offsets bo;
2494 	struct mbuf *m0;
2495 	int error;
2496 
2497 	desc = &ring->desc[ring->cur];
2498 	data = &ring->data[ring->cur];
2499 
2500 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2501 	if (m0 == NULL) {
2502 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2503 		return ENOMEM;
2504 	}
2505 
2506 	cmd = &ring->cmd[ring->cur];
2507 	cmd->code = WPI_CMD_SET_BEACON;
2508 	cmd->flags = 0;
2509 	cmd->qid = ring->qid;
2510 	cmd->idx = ring->cur;
2511 
2512 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2513 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2514 	bcn->id = WPI_ID_BROADCAST;
2515 	bcn->ofdm_mask = 0xff;
2516 	bcn->cck_mask = 0x0f;
2517 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2518 	bcn->len = htole16(m0->m_pkthdr.len);
2519 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2520 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2521 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2522 
2523 	/* save and trim IEEE802.11 header */
2524 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2525 	m_adj(m0, sizeof (struct ieee80211_frame));
2526 
2527 	/* assume beacon frame is contiguous */
2528 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2529 		BUS_DMA_READ | BUS_DMA_NOWAIT);
2530 	if (error) {
2531 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2532 		m_freem(m0);
2533 		return error;
2534 	}
2535 
2536 	data->m = m0;
2537 
2538 	/* first scatter/gather segment is used by the beacon command */
2539 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2540 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2541 		ring->cur * sizeof (struct wpi_tx_cmd));
2542 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2543 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2544 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2545 
2546 	/* kick cmd ring */
2547 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2548 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2549 
2550 	return 0;
2551 }
2552 
2553 static int
2554 wpi_auth(struct wpi_softc *sc)
2555 {
2556 	struct ieee80211com *ic = &sc->sc_ic;
2557 	struct ieee80211_node *ni = ic->ic_bss;
2558 	struct wpi_node_info node;
2559 	int error;
2560 
2561 	/* update adapter's configuration */
2562 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2563 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2564 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2565 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2566 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2567 		    WPI_CONFIG_24GHZ);
2568 	}
2569 	switch (ic->ic_curmode) {
2570 	case IEEE80211_MODE_11A:
2571 		sc->config.cck_mask  = 0;
2572 		sc->config.ofdm_mask = 0x15;
2573 		break;
2574 	case IEEE80211_MODE_11B:
2575 		sc->config.cck_mask  = 0x03;
2576 		sc->config.ofdm_mask = 0;
2577 		break;
2578 	default:	/* assume 802.11b/g */
2579 		sc->config.cck_mask  = 0x0f;
2580 		sc->config.ofdm_mask = 0x15;
2581 	}
2582 
2583 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2584 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2585 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2586 		sizeof (struct wpi_config), 1);
2587 	if (error != 0) {
2588 		aprint_error_dev(sc->sc_dev, "could not configure\n");
2589 		return error;
2590 	}
2591 
2592 	/* configuration has changed, set Tx power accordingly */
2593 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2594 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2595 		return error;
2596 	}
2597 
2598 	/* add default node */
2599 	memset(&node, 0, sizeof node);
2600 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2601 	node.id = WPI_ID_BSS;
2602 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2603 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2604 	node.action = htole32(WPI_ACTION_SET_RATE);
2605 	node.antenna = WPI_ANTENNA_BOTH;
2606 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2607 	if (error != 0) {
2608 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2609 		return error;
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 /*
2616  * Send a scan request to the firmware.  Since this command is huge, we map it
2617  * into a mbuf instead of using the pre-allocated set of commands.
2618  */
2619 static int
2620 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2621 {
2622 	struct ieee80211com *ic = &sc->sc_ic;
2623 	struct wpi_tx_ring *ring = &sc->cmdq;
2624 	struct wpi_tx_desc *desc;
2625 	struct wpi_tx_data *data;
2626 	struct wpi_tx_cmd *cmd;
2627 	struct wpi_scan_hdr *hdr;
2628 	struct wpi_scan_chan *chan;
2629 	struct ieee80211_frame *wh;
2630 	struct ieee80211_rateset *rs;
2631 	struct ieee80211_channel *c;
2632 	enum ieee80211_phymode mode;
2633 	uint8_t *frm;
2634 	int nrates, pktlen, error;
2635 
2636 	desc = &ring->desc[ring->cur];
2637 	data = &ring->data[ring->cur];
2638 
2639 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2640 	if (data->m == NULL) {
2641 		aprint_error_dev(sc->sc_dev,
2642 						"could not allocate mbuf for scan command\n");
2643 		return ENOMEM;
2644 	}
2645 
2646 	MCLGET(data->m, M_DONTWAIT);
2647 	if (!(data->m->m_flags & M_EXT)) {
2648 		m_freem(data->m);
2649 		data->m = NULL;
2650 		aprint_error_dev(sc->sc_dev,
2651 						 "could not allocate mbuf for scan command\n");
2652 		return ENOMEM;
2653 	}
2654 
2655 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2656 	cmd->code = WPI_CMD_SCAN;
2657 	cmd->flags = 0;
2658 	cmd->qid = ring->qid;
2659 	cmd->idx = ring->cur;
2660 
2661 	hdr = (struct wpi_scan_hdr *)cmd->data;
2662 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2663 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2664 	hdr->id = WPI_ID_BROADCAST;
2665 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2666 
2667 	/*
2668 	 * Move to the next channel if no packets are received within 5 msecs
2669 	 * after sending the probe request (this helps to reduce the duration
2670 	 * of active scans).
2671 	 */
2672 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2673 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2674 
2675 	if (flags & IEEE80211_CHAN_A) {
2676 		hdr->crc_threshold = htole16(1);
2677 		/* send probe requests at 6Mbps */
2678 		hdr->rate = wpi_plcp_signal(12);
2679 	} else {
2680 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2681 		/* send probe requests at 1Mbps */
2682 		hdr->rate = wpi_plcp_signal(2);
2683 	}
2684 
2685 	/* for directed scans, firmware inserts the essid IE itself */
2686 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2687 	hdr->essid[0].len = ic->ic_des_esslen;
2688 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2689 
2690 	/*
2691 	 * Build a probe request frame.  Most of the following code is a
2692 	 * copy & paste of what is done in net80211.
2693 	 */
2694 	wh = (struct ieee80211_frame *)(hdr + 1);
2695 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2696 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2697 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2698 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2699 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2700 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2701 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2702 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2703 
2704 	frm = (uint8_t *)(wh + 1);
2705 
2706 	/* add empty essid IE (firmware generates it for directed scans) */
2707 	*frm++ = IEEE80211_ELEMID_SSID;
2708 	*frm++ = 0;
2709 
2710 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2711 	rs = &ic->ic_sup_rates[mode];
2712 
2713 	/* add supported rates IE */
2714 	*frm++ = IEEE80211_ELEMID_RATES;
2715 	nrates = rs->rs_nrates;
2716 	if (nrates > IEEE80211_RATE_SIZE)
2717 		nrates = IEEE80211_RATE_SIZE;
2718 	*frm++ = nrates;
2719 	memcpy(frm, rs->rs_rates, nrates);
2720 	frm += nrates;
2721 
2722 	/* add supported xrates IE */
2723 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2724 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2725 		*frm++ = IEEE80211_ELEMID_XRATES;
2726 		*frm++ = nrates;
2727 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2728 		frm += nrates;
2729 	}
2730 
2731 	/* setup length of probe request */
2732 	hdr->paylen = htole16(frm - (uint8_t *)wh);
2733 
2734 	chan = (struct wpi_scan_chan *)frm;
2735 	for (c  = &ic->ic_channels[1];
2736 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2737 		if ((c->ic_flags & flags) != flags)
2738 			continue;
2739 
2740 		chan->chan = ieee80211_chan2ieee(ic, c);
2741 		chan->flags = 0;
2742 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2743 			chan->flags |= WPI_CHAN_ACTIVE;
2744 			if (ic->ic_des_esslen != 0)
2745 				chan->flags |= WPI_CHAN_DIRECT;
2746 		}
2747 		chan->dsp_gain = 0x6e;
2748 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2749 			chan->rf_gain = 0x3b;
2750 			chan->active = htole16(10);
2751 			chan->passive = htole16(110);
2752 		} else {
2753 			chan->rf_gain = 0x28;
2754 			chan->active = htole16(20);
2755 			chan->passive = htole16(120);
2756 		}
2757 		hdr->nchan++;
2758 		chan++;
2759 
2760 		frm += sizeof (struct wpi_scan_chan);
2761 	}
2762 	hdr->len = htole16(frm - (uint8_t *)hdr);
2763 	pktlen = frm - (uint8_t *)cmd;
2764 
2765 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2766 		NULL, BUS_DMA_NOWAIT);
2767 	if (error) {
2768 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2769 		m_freem(data->m);
2770 		data->m = NULL;
2771 		return error;
2772 	}
2773 
2774 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2775 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2776 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2777 
2778 	/* kick cmd ring */
2779 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2780 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2781 
2782 	return 0;	/* will be notified async. of failure/success */
2783 }
2784 
2785 static int
2786 wpi_config(struct wpi_softc *sc)
2787 {
2788 	struct ieee80211com *ic = &sc->sc_ic;
2789 	struct ifnet *ifp = ic->ic_ifp;
2790 	struct wpi_power power;
2791 	struct wpi_bluetooth bluetooth;
2792 	struct wpi_node_info node;
2793 	int error;
2794 
2795 	memset(&power, 0, sizeof power);
2796 	power.flags = htole32(WPI_POWER_CAM | 0x8);
2797 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2798 	if (error != 0) {
2799 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2800 		return error;
2801 	}
2802 
2803 	/* configure bluetooth coexistence */
2804 	memset(&bluetooth, 0, sizeof bluetooth);
2805 	bluetooth.flags = 3;
2806 	bluetooth.lead = 0xaa;
2807 	bluetooth.kill = 1;
2808 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2809 		0);
2810 	if (error != 0) {
2811 		aprint_error_dev(sc->sc_dev,
2812 			"could not configure bluetooth coexistence\n");
2813 		return error;
2814 	}
2815 
2816 	/* configure adapter */
2817 	memset(&sc->config, 0, sizeof (struct wpi_config));
2818 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2819 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2820 	/*set default channel*/
2821 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2822 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2823 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2824 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2825 		    WPI_CONFIG_24GHZ);
2826 	}
2827 	sc->config.filter = 0;
2828 	switch (ic->ic_opmode) {
2829 	case IEEE80211_M_STA:
2830 		sc->config.mode = WPI_MODE_STA;
2831 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2832 		break;
2833 	case IEEE80211_M_IBSS:
2834 	case IEEE80211_M_AHDEMO:
2835 		sc->config.mode = WPI_MODE_IBSS;
2836 		break;
2837 	case IEEE80211_M_HOSTAP:
2838 		sc->config.mode = WPI_MODE_HOSTAP;
2839 		break;
2840 	case IEEE80211_M_MONITOR:
2841 		sc->config.mode = WPI_MODE_MONITOR;
2842 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2843 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2844 		break;
2845 	}
2846 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2847 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2848 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2849 		sizeof (struct wpi_config), 0);
2850 	if (error != 0) {
2851 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2852 		return error;
2853 	}
2854 
2855 	/* configuration has changed, set Tx power accordingly */
2856 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2857 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2858 		return error;
2859 	}
2860 
2861 	/* add broadcast node */
2862 	memset(&node, 0, sizeof node);
2863 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2864 	node.id = WPI_ID_BROADCAST;
2865 	node.rate = wpi_plcp_signal(2);
2866 	node.action = htole32(WPI_ACTION_SET_RATE);
2867 	node.antenna = WPI_ANTENNA_BOTH;
2868 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2869 	if (error != 0) {
2870 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2871 		return error;
2872 	}
2873 
2874 	if ((error = wpi_mrr_setup(sc)) != 0) {
2875 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2876 		return error;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 static void
2883 wpi_stop_master(struct wpi_softc *sc)
2884 {
2885 	uint32_t tmp;
2886 	int ntries;
2887 
2888 	tmp = WPI_READ(sc, WPI_RESET);
2889 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2890 
2891 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2892 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2893 		return;	/* already asleep */
2894 
2895 	for (ntries = 0; ntries < 100; ntries++) {
2896 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2897 			break;
2898 		DELAY(10);
2899 	}
2900 	if (ntries == 100) {
2901 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2902 	}
2903 }
2904 
2905 static int
2906 wpi_power_up(struct wpi_softc *sc)
2907 {
2908 	uint32_t tmp;
2909 	int ntries;
2910 
2911 	wpi_mem_lock(sc);
2912 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2913 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2914 	wpi_mem_unlock(sc);
2915 
2916 	for (ntries = 0; ntries < 5000; ntries++) {
2917 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2918 			break;
2919 		DELAY(10);
2920 	}
2921 	if (ntries == 5000) {
2922 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2923 		return ETIMEDOUT;
2924 	}
2925 	return 0;
2926 }
2927 
2928 static int
2929 wpi_reset(struct wpi_softc *sc)
2930 {
2931 	uint32_t tmp;
2932 	int ntries;
2933 
2934 	/* clear any pending interrupts */
2935 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2936 
2937 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2938 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2939 
2940 	tmp = WPI_READ(sc, WPI_CHICKEN);
2941 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2942 
2943 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2944 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2945 
2946 	/* wait for clock stabilization */
2947 	for (ntries = 0; ntries < 1000; ntries++) {
2948 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2949 			break;
2950 		DELAY(10);
2951 	}
2952 	if (ntries == 1000) {
2953 		aprint_error_dev(sc->sc_dev,
2954 						 "timeout waiting for clock stabilization\n");
2955 		return ETIMEDOUT;
2956 	}
2957 
2958 	/* initialize EEPROM */
2959 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2960 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2961 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2962 		return EIO;
2963 	}
2964 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2965 
2966 	return 0;
2967 }
2968 
2969 static void
2970 wpi_hw_config(struct wpi_softc *sc)
2971 {
2972 	uint32_t rev, hw;
2973 
2974 	/* voodoo from the reference driver */
2975 	hw = WPI_READ(sc, WPI_HWCONFIG);
2976 
2977 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2978 	rev = PCI_REVISION(rev);
2979 	if ((rev & 0xc0) == 0x40)
2980 		hw |= WPI_HW_ALM_MB;
2981 	else if (!(rev & 0x80))
2982 		hw |= WPI_HW_ALM_MM;
2983 
2984 	if (sc->cap == 0x80)
2985 		hw |= WPI_HW_SKU_MRC;
2986 
2987 	hw &= ~WPI_HW_REV_D;
2988 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2989 		hw |= WPI_HW_REV_D;
2990 
2991 	if (sc->type > 1)
2992 		hw |= WPI_HW_TYPE_B;
2993 
2994 	DPRINTF(("setting h/w config %x\n", hw));
2995 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2996 }
2997 
2998 static int
2999 wpi_init(struct ifnet *ifp)
3000 {
3001 	struct wpi_softc *sc = ifp->if_softc;
3002 	struct ieee80211com *ic = &sc->sc_ic;
3003 	uint32_t tmp;
3004 	int qid, ntries, error;
3005 
3006 	wpi_stop(ifp,1);
3007 	(void)wpi_reset(sc);
3008 
3009 	wpi_mem_lock(sc);
3010 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3011 	DELAY(20);
3012 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3013 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3014 	wpi_mem_unlock(sc);
3015 
3016 	(void)wpi_power_up(sc);
3017 	wpi_hw_config(sc);
3018 
3019 	/* init Rx ring */
3020 	wpi_mem_lock(sc);
3021 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3022 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3023 	    offsetof(struct wpi_shared, next));
3024 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3025 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3026 	wpi_mem_unlock(sc);
3027 
3028 	/* init Tx rings */
3029 	wpi_mem_lock(sc);
3030 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3031 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3032 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3033 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3034 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3035 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3036 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3037 
3038 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3039 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3040 
3041 	for (qid = 0; qid < 6; qid++) {
3042 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3043 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3044 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3045 	}
3046 	wpi_mem_unlock(sc);
3047 
3048 	/* clear "radio off" and "disable command" bits (reversed logic) */
3049 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3050 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3051 
3052 	/* clear any pending interrupts */
3053 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3054 	/* enable interrupts */
3055 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3056 
3057 	/* not sure why/if this is necessary... */
3058 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3059 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3060 
3061 	if ((error = wpi_load_firmware(sc)) != 0) {
3062 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3063 		goto fail1;
3064 	}
3065 
3066 	/* wait for thermal sensors to calibrate */
3067 	for (ntries = 0; ntries < 1000; ntries++) {
3068 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3069 			break;
3070 		DELAY(10);
3071 	}
3072 	if (ntries == 1000) {
3073 		aprint_error_dev(sc->sc_dev,
3074 						 "timeout waiting for thermal sensors calibration\n");
3075 		error = ETIMEDOUT;
3076 		goto fail1;
3077 	}
3078 
3079 	DPRINTF(("temperature %d\n", sc->temp));
3080 
3081 	if ((error = wpi_config(sc)) != 0) {
3082 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3083 		goto fail1;
3084 	}
3085 
3086 	ifp->if_flags &= ~IFF_OACTIVE;
3087 	ifp->if_flags |= IFF_RUNNING;
3088 
3089 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3090 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3091 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3092 	}
3093 	else
3094 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3095 
3096 	return 0;
3097 
3098 fail1:	wpi_stop(ifp, 1);
3099 	return error;
3100 }
3101 
3102 
3103 static void
3104 wpi_stop(struct ifnet *ifp, int disable)
3105 {
3106 	struct wpi_softc *sc = ifp->if_softc;
3107 	struct ieee80211com *ic = &sc->sc_ic;
3108 	uint32_t tmp;
3109 	int ac;
3110 
3111 	ifp->if_timer = sc->sc_tx_timer = 0;
3112 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3113 
3114 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3115 
3116 	/* disable interrupts */
3117 	WPI_WRITE(sc, WPI_MASK, 0);
3118 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3119 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3120 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3121 
3122 	wpi_mem_lock(sc);
3123 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3124 	wpi_mem_unlock(sc);
3125 
3126 	/* reset all Tx rings */
3127 	for (ac = 0; ac < 4; ac++)
3128 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3129 	wpi_reset_tx_ring(sc, &sc->cmdq);
3130 
3131 	/* reset Rx ring */
3132 	wpi_reset_rx_ring(sc, &sc->rxq);
3133 
3134 	wpi_mem_lock(sc);
3135 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3136 	wpi_mem_unlock(sc);
3137 
3138 	DELAY(5);
3139 
3140 	wpi_stop_master(sc);
3141 
3142 	tmp = WPI_READ(sc, WPI_RESET);
3143 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3144 }
3145