xref: /netbsd-src/sys/dev/pci/if_wm.c (revision fd5cb0acea84d278e04e640d37ca2398f894991f)
1 /*	$NetBSD: if_wm.c,v 1.90 2005/01/30 17:33:48 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.90 2005/01/30 17:33:48 thorpej Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67 
68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
69 
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78 
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82 
83 #include <netinet/in.h>			/* XXX for struct ip */
84 #include <netinet/in_systm.h>		/* XXX for struct ip */
85 #include <netinet/ip.h>			/* XXX for struct ip */
86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
87 
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99 
100 #include <dev/pci/if_wmreg.h>
101 
102 #ifdef WM_DEBUG
103 #define	WM_DEBUG_LINK		0x01
104 #define	WM_DEBUG_TX		0x02
105 #define	WM_DEBUG_RX		0x04
106 #define	WM_DEBUG_GMII		0x08
107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108 
109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
110 #else
111 #define	DPRINTF(x, y)	/* nothing */
112 #endif /* WM_DEBUG */
113 
114 /*
115  * Transmit descriptor list size.  Due to errata, we can only have
116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
117  * on >= 82544.  We tell the upper layers that they can queue a lot
118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119  * of them at a time.
120  *
121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
122  * chains containing many small mbufs have been observed in zero-copy
123  * situations with jumbo frames.
124  */
125 #define	WM_NTXSEGS		256
126 #define	WM_IFQUEUELEN		256
127 #define	WM_TXQUEUELEN_MAX	64
128 #define	WM_TXQUEUELEN_MAX_82547	16
129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
132 #define	WM_NTXDESC_82542	256
133 #define	WM_NTXDESC_82544	4096
134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139 
140 #define	WM_MAXTXDMA		ETHER_MAX_LEN_JUMBO
141 
142 /*
143  * Receive descriptor list size.  We have one Rx buffer for normal
144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
145  * packet.  We allocate 256 receive descriptors, each with a 2k
146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147  */
148 #define	WM_NRXDESC		256
149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
152 
153 /*
154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
155  * a single clump that maps to a single DMA segment to make serveral things
156  * easier.
157  */
158 struct wm_control_data_82544 {
159 	/*
160 	 * The receive descriptors.
161 	 */
162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163 
164 	/*
165 	 * The transmit descriptors.  Put these at the end, because
166 	 * we might use a smaller number of them.
167 	 */
168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170 
171 struct wm_control_data_82542 {
172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175 
176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
179 
180 /*
181  * Software state for transmit jobs.
182  */
183 struct wm_txsoft {
184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
186 	int txs_firstdesc;		/* first descriptor in packet */
187 	int txs_lastdesc;		/* last descriptor in packet */
188 	int txs_ndesc;			/* # of descriptors used */
189 };
190 
191 /*
192  * Software state for receive buffers.  Each descriptor gets a
193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
194  * more than one buffer, we chain them together.
195  */
196 struct wm_rxsoft {
197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
199 };
200 
201 typedef enum {
202 	WM_T_unknown		= 0,
203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
205 	WM_T_82543,			/* i82543 */
206 	WM_T_82544,			/* i82544 */
207 	WM_T_82540,			/* i82540 */
208 	WM_T_82545,			/* i82545 */
209 	WM_T_82545_3,			/* i82545 3.0+ */
210 	WM_T_82546,			/* i82546 */
211 	WM_T_82546_3,			/* i82546 3.0+ */
212 	WM_T_82541,			/* i82541 */
213 	WM_T_82541_2,			/* i82541 2.0+ */
214 	WM_T_82547,			/* i82547 */
215 	WM_T_82547_2,			/* i82547 2.0+ */
216 } wm_chip_type;
217 
218 /*
219  * Software state per device.
220  */
221 struct wm_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_space_tag_t sc_iot;		/* I/O space tag */
226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
228 	struct ethercom sc_ethercom;	/* ethernet common data */
229 	void *sc_sdhook;		/* shutdown hook */
230 
231 	wm_chip_type sc_type;		/* chip type */
232 	int sc_flags;			/* flags; see below */
233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
234 	int sc_pcix_offset;		/* PCIX capability register offset */
235 	int sc_flowflags;		/* 802.3x flow control flags */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	int sc_ee_addrbits;		/* EEPROM address bits */
240 
241 	struct mii_data sc_mii;		/* MII/media information */
242 
243 	struct callout sc_tick_ch;	/* tick callout */
244 
245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
247 
248 	int		sc_align_tweak;
249 
250 	/*
251 	 * Software state for the transmit and receive descriptors.
252 	 */
253 	int			sc_txnum;	/* must be a power of two */
254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
256 
257 	/*
258 	 * Control data structures.
259 	 */
260 	int			sc_ntxdesc;	/* must be a power of two */
261 	struct wm_control_data_82544 *sc_control_data;
262 #define	sc_txdescs	sc_control_data->wcd_txdescs
263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
264 
265 #ifdef WM_EVENT_COUNTERS
266 	/* Event counters. */
267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
274 
275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
279 
280 			/* m_pullup() needed for Tx offload */
281 	struct evcnt sc_ev_txpullup_needed;
282 			/* ...failed due to no memory */
283 	struct evcnt sc_ev_txpullup_nomem;
284 			/* ...failed due to lack of space in first mbuf */
285 	struct evcnt sc_ev_txpullup_fail;
286 
287 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
288 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
289 
290 	struct evcnt sc_ev_tu;		/* Tx underrun */
291 
292 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
293 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
294 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
295 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
296 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
297 #endif /* WM_EVENT_COUNTERS */
298 
299 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
300 
301 	int	sc_txfree;		/* number of free Tx descriptors */
302 	int	sc_txnext;		/* next ready Tx descriptor */
303 
304 	int	sc_txsfree;		/* number of free Tx jobs */
305 	int	sc_txsnext;		/* next free Tx job */
306 	int	sc_txsdirty;		/* dirty Tx jobs */
307 
308 	/* These 5 variables are used only on the 82547. */
309 	int	sc_txfifo_size;		/* Tx FIFO size */
310 	int	sc_txfifo_head;		/* current head of FIFO */
311 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
312 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
313 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
314 
315 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
316 
317 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
318 	int	sc_rxdiscard;
319 	int	sc_rxlen;
320 	struct mbuf *sc_rxhead;
321 	struct mbuf *sc_rxtail;
322 	struct mbuf **sc_rxtailp;
323 
324 	uint32_t sc_ctrl;		/* prototype CTRL register */
325 #if 0
326 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
327 #endif
328 	uint32_t sc_icr;		/* prototype interrupt bits */
329 	uint32_t sc_tctl;		/* prototype TCTL register */
330 	uint32_t sc_rctl;		/* prototype RCTL register */
331 	uint32_t sc_txcw;		/* prototype TXCW register */
332 	uint32_t sc_tipg;		/* prototype TIPG register */
333 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
334 	uint32_t sc_pba;		/* prototype PBA register */
335 
336 	int sc_tbi_linkup;		/* TBI link status */
337 	int sc_tbi_anstate;		/* autonegotiation state */
338 
339 	int sc_mchash_type;		/* multicast filter offset */
340 
341 #if NRND > 0
342 	rndsource_element_t rnd_source;	/* random source */
343 #endif
344 };
345 
346 #define	WM_RXCHAIN_RESET(sc)						\
347 do {									\
348 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
349 	*(sc)->sc_rxtailp = NULL;					\
350 	(sc)->sc_rxlen = 0;						\
351 } while (/*CONSTCOND*/0)
352 
353 #define	WM_RXCHAIN_LINK(sc, m)						\
354 do {									\
355 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
356 	(sc)->sc_rxtailp = &(m)->m_next;				\
357 } while (/*CONSTCOND*/0)
358 
359 /* sc_flags */
360 #define	WM_F_HAS_MII		0x01	/* has MII */
361 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
362 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
363 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
364 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
365 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
366 #define	WM_F_CSA		0x80	/* bus is CSA */
367 
368 #ifdef WM_EVENT_COUNTERS
369 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
370 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
371 #else
372 #define	WM_EVCNT_INCR(ev)	/* nothing */
373 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
374 #endif
375 
376 #define	CSR_READ(sc, reg)						\
377 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
378 #define	CSR_WRITE(sc, reg, val)						\
379 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380 #define	CSR_WRITE_FLUSH(sc)						\
381 	(void) CSR_READ((sc), WMREG_STATUS)
382 
383 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
384 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
385 
386 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
387 #define	WM_CDTXADDR_HI(sc, x)						\
388 	(sizeof(bus_addr_t) == 8 ?					\
389 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
390 
391 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
392 #define	WM_CDRXADDR_HI(sc, x)						\
393 	(sizeof(bus_addr_t) == 8 ?					\
394 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
395 
396 #define	WM_CDTXSYNC(sc, x, n, ops)					\
397 do {									\
398 	int __x, __n;							\
399 									\
400 	__x = (x);							\
401 	__n = (n);							\
402 									\
403 	/* If it will wrap around, sync to the end of the ring. */	\
404 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
405 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
406 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
407 		    (WM_NTXDESC(sc) - __x), (ops));			\
408 		__n -= (WM_NTXDESC(sc) - __x);				\
409 		__x = 0;						\
410 	}								\
411 									\
412 	/* Now sync whatever is left. */				\
413 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
414 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
415 } while (/*CONSTCOND*/0)
416 
417 #define	WM_CDRXSYNC(sc, x, ops)						\
418 do {									\
419 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
420 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
421 } while (/*CONSTCOND*/0)
422 
423 #define	WM_INIT_RXDESC(sc, x)						\
424 do {									\
425 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
426 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
427 	struct mbuf *__m = __rxs->rxs_mbuf;				\
428 									\
429 	/*								\
430 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
431 	 * so that the payload after the Ethernet header is aligned	\
432 	 * to a 4-byte boundary.					\
433 	 *								\
434 	 * XXX BRAINDAMAGE ALERT!					\
435 	 * The stupid chip uses the same size for every buffer, which	\
436 	 * is set in the Receive Control register.  We are using the 2K	\
437 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
438 	 * reason, we can't "scoot" packets longer than the standard	\
439 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
440 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
441 	 * the upper layer copy the headers.				\
442 	 */								\
443 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
444 									\
445 	wm_set_dma_addr(&__rxd->wrx_addr,				\
446 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
447 	__rxd->wrx_len = 0;						\
448 	__rxd->wrx_cksum = 0;						\
449 	__rxd->wrx_status = 0;						\
450 	__rxd->wrx_errors = 0;						\
451 	__rxd->wrx_special = 0;						\
452 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
453 									\
454 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
455 } while (/*CONSTCOND*/0)
456 
457 static void	wm_start(struct ifnet *);
458 static void	wm_watchdog(struct ifnet *);
459 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
460 static int	wm_init(struct ifnet *);
461 static void	wm_stop(struct ifnet *, int);
462 
463 static void	wm_shutdown(void *);
464 
465 static void	wm_reset(struct wm_softc *);
466 static void	wm_rxdrain(struct wm_softc *);
467 static int	wm_add_rxbuf(struct wm_softc *, int);
468 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
469 static void	wm_tick(void *);
470 
471 static void	wm_set_filter(struct wm_softc *);
472 
473 static int	wm_intr(void *);
474 static void	wm_txintr(struct wm_softc *);
475 static void	wm_rxintr(struct wm_softc *);
476 static void	wm_linkintr(struct wm_softc *, uint32_t);
477 
478 static void	wm_tbi_mediainit(struct wm_softc *);
479 static int	wm_tbi_mediachange(struct ifnet *);
480 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
481 
482 static void	wm_tbi_set_linkled(struct wm_softc *);
483 static void	wm_tbi_check_link(struct wm_softc *);
484 
485 static void	wm_gmii_reset(struct wm_softc *);
486 
487 static int	wm_gmii_i82543_readreg(struct device *, int, int);
488 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
489 
490 static int	wm_gmii_i82544_readreg(struct device *, int, int);
491 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
492 
493 static void	wm_gmii_statchg(struct device *);
494 
495 static void	wm_gmii_mediainit(struct wm_softc *);
496 static int	wm_gmii_mediachange(struct ifnet *);
497 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
498 
499 static int	wm_match(struct device *, struct cfdata *, void *);
500 static void	wm_attach(struct device *, struct device *, void *);
501 
502 CFATTACH_DECL(wm, sizeof(struct wm_softc),
503     wm_match, wm_attach, NULL, NULL);
504 
505 static void	wm_82547_txfifo_stall(void *);
506 
507 /*
508  * Devices supported by this driver.
509  */
510 static const struct wm_product {
511 	pci_vendor_id_t		wmp_vendor;
512 	pci_product_id_t	wmp_product;
513 	const char		*wmp_name;
514 	wm_chip_type		wmp_type;
515 	int			wmp_flags;
516 #define	WMP_F_1000X		0x01
517 #define	WMP_F_1000T		0x02
518 } wm_products[] = {
519 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
520 	  "Intel i82542 1000BASE-X Ethernet",
521 	  WM_T_82542_2_1,	WMP_F_1000X },
522 
523 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
524 	  "Intel i82543GC 1000BASE-X Ethernet",
525 	  WM_T_82543,		WMP_F_1000X },
526 
527 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
528 	  "Intel i82543GC 1000BASE-T Ethernet",
529 	  WM_T_82543,		WMP_F_1000T },
530 
531 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
532 	  "Intel i82544EI 1000BASE-T Ethernet",
533 	  WM_T_82544,		WMP_F_1000T },
534 
535 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
536 	  "Intel i82544EI 1000BASE-X Ethernet",
537 	  WM_T_82544,		WMP_F_1000X },
538 
539 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
540 	  "Intel i82544GC 1000BASE-T Ethernet",
541 	  WM_T_82544,		WMP_F_1000T },
542 
543 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
544 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
545 	  WM_T_82544,		WMP_F_1000T },
546 
547 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
548 	  "Intel i82540EM 1000BASE-T Ethernet",
549 	  WM_T_82540,		WMP_F_1000T },
550 
551 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
552 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
553 	  WM_T_82540,		WMP_F_1000T },
554 
555 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
556 	  "Intel i82540EP 1000BASE-T Ethernet",
557 	  WM_T_82540,		WMP_F_1000T },
558 
559 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
560 	  "Intel i82540EP 1000BASE-T Ethernet",
561 	  WM_T_82540,		WMP_F_1000T },
562 
563 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
564 	  "Intel i82540EP 1000BASE-T Ethernet",
565 	  WM_T_82540,		WMP_F_1000T },
566 
567 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
568 	  "Intel i82545EM 1000BASE-T Ethernet",
569 	  WM_T_82545,		WMP_F_1000T },
570 
571 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
572 	  "Intel i82545GM 1000BASE-T Ethernet",
573 	  WM_T_82545_3,		WMP_F_1000T },
574 
575 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
576 	  "Intel i82545GM 1000BASE-X Ethernet",
577 	  WM_T_82545_3,		WMP_F_1000X },
578 #if 0
579 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
580 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
581 	  WM_T_82545_3,		WMP_F_SERDES },
582 #endif
583 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
584 	  "Intel i82546EB 1000BASE-T Ethernet",
585 	  WM_T_82546,		WMP_F_1000T },
586 
587 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
588 	  "Intel i82546EB 1000BASE-T Ethernet",
589 	  WM_T_82546,		WMP_F_1000T },
590 
591 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
592 	  "Intel i82545EM 1000BASE-X Ethernet",
593 	  WM_T_82545,		WMP_F_1000X },
594 
595 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
596 	  "Intel i82546EB 1000BASE-X Ethernet",
597 	  WM_T_82546,		WMP_F_1000X },
598 
599 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
600 	  "Intel i82546GB 1000BASE-T Ethernet",
601 	  WM_T_82546_3,		WMP_F_1000T },
602 
603 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
604 	  "Intel i82546GB 1000BASE-X Ethernet",
605 	  WM_T_82546_3,		WMP_F_1000X },
606 #if 0
607 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
608 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
609 	  WM_T_82546_3,		WMP_F_SERDES },
610 #endif
611 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
612 	  "Intel i82541EI 1000BASE-T Ethernet",
613 	  WM_T_82541,		WMP_F_1000T },
614 
615 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
616 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
617 	  WM_T_82541,		WMP_F_1000T },
618 
619 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
620 	  "Intel i82541ER 1000BASE-T Ethernet",
621 	  WM_T_82541_2,		WMP_F_1000T },
622 
623 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
624 	  "Intel i82541GI 1000BASE-T Ethernet",
625 	  WM_T_82541_2,		WMP_F_1000T },
626 
627 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
628 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
629 	  WM_T_82541_2,		WMP_F_1000T },
630 
631 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
632 	  "Intel i82547EI 1000BASE-T Ethernet",
633 	  WM_T_82547,		WMP_F_1000T },
634 
635 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
636 	  "Intel i82547GI 1000BASE-T Ethernet",
637 	  WM_T_82547_2,		WMP_F_1000T },
638 	{ 0,			0,
639 	  NULL,
640 	  0,			0 },
641 };
642 
643 #ifdef WM_EVENT_COUNTERS
644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
645 #endif /* WM_EVENT_COUNTERS */
646 
647 #if 0 /* Not currently used */
648 static __inline uint32_t
649 wm_io_read(struct wm_softc *sc, int reg)
650 {
651 
652 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
653 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
654 }
655 #endif
656 
657 static __inline void
658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
659 {
660 
661 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
662 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
663 }
664 
665 static __inline void
666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
667 {
668 	wa->wa_low = htole32(v & 0xffffffffU);
669 	if (sizeof(bus_addr_t) == 8)
670 		wa->wa_high = htole32((uint64_t) v >> 32);
671 	else
672 		wa->wa_high = 0;
673 }
674 
675 static const struct wm_product *
676 wm_lookup(const struct pci_attach_args *pa)
677 {
678 	const struct wm_product *wmp;
679 
680 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
681 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
682 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
683 			return (wmp);
684 	}
685 	return (NULL);
686 }
687 
688 static int
689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
690 {
691 	struct pci_attach_args *pa = aux;
692 
693 	if (wm_lookup(pa) != NULL)
694 		return (1);
695 
696 	return (0);
697 }
698 
699 static void
700 wm_attach(struct device *parent, struct device *self, void *aux)
701 {
702 	struct wm_softc *sc = (void *) self;
703 	struct pci_attach_args *pa = aux;
704 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 	pci_chipset_tag_t pc = pa->pa_pc;
706 	pci_intr_handle_t ih;
707 	size_t cdata_size;
708 	const char *intrstr = NULL;
709 	const char *eetype;
710 	bus_space_tag_t memt;
711 	bus_space_handle_t memh;
712 	bus_dma_segment_t seg;
713 	int memh_valid;
714 	int i, rseg, error;
715 	const struct wm_product *wmp;
716 	uint8_t enaddr[ETHER_ADDR_LEN];
717 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
718 	pcireg_t preg, memtype;
719 	uint32_t reg;
720 	int pmreg;
721 
722 	callout_init(&sc->sc_tick_ch);
723 
724 	wmp = wm_lookup(pa);
725 	if (wmp == NULL) {
726 		printf("\n");
727 		panic("wm_attach: impossible");
728 	}
729 
730 	if (pci_dma64_available(pa))
731 		sc->sc_dmat = pa->pa_dmat64;
732 	else
733 		sc->sc_dmat = pa->pa_dmat;
734 
735 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
736 	aprint_naive(": Ethernet controller\n");
737 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
738 
739 	sc->sc_type = wmp->wmp_type;
740 	if (sc->sc_type < WM_T_82543) {
741 		if (preg < 2) {
742 			aprint_error("%s: i82542 must be at least rev. 2\n",
743 			    sc->sc_dev.dv_xname);
744 			return;
745 		}
746 		if (preg < 3)
747 			sc->sc_type = WM_T_82542_2_0;
748 	}
749 
750 	/*
751 	 * Map the device.  All devices support memory-mapped acccess,
752 	 * and it is really required for normal operation.
753 	 */
754 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
755 	switch (memtype) {
756 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
757 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
758 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
759 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
760 		break;
761 	default:
762 		memh_valid = 0;
763 	}
764 
765 	if (memh_valid) {
766 		sc->sc_st = memt;
767 		sc->sc_sh = memh;
768 	} else {
769 		aprint_error("%s: unable to map device registers\n",
770 		    sc->sc_dev.dv_xname);
771 		return;
772 	}
773 
774 	/*
775 	 * In addition, i82544 and later support I/O mapped indirect
776 	 * register access.  It is not desirable (nor supported in
777 	 * this driver) to use it for normal operation, though it is
778 	 * required to work around bugs in some chip versions.
779 	 */
780 	if (sc->sc_type >= WM_T_82544) {
781 		/* First we have to find the I/O BAR. */
782 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
783 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
784 			    PCI_MAPREG_TYPE_IO)
785 				break;
786 		}
787 		if (i == PCI_MAPREG_END)
788 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
789 			    sc->sc_dev.dv_xname);
790 		else {
791 			/*
792 			 * The i8254x doesn't apparently respond when the
793 			 * I/O BAR is 0, which looks somewhat like it's not
794 			 * been configured.
795 			 */
796 			preg = pci_conf_read(pc, pa->pa_tag, i);
797 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
798 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
799 				    sc->sc_dev.dv_xname);
800 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
801 					0, &sc->sc_iot, &sc->sc_ioh,
802 					NULL, NULL) == 0) {
803 				sc->sc_flags |= WM_F_IOH_VALID;
804 			} else {
805 				aprint_error("%s: WARNING: unable to map "
806 				    "I/O space\n", sc->sc_dev.dv_xname);
807 			}
808 		}
809 
810 	}
811 
812 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
813 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
814 	preg |= PCI_COMMAND_MASTER_ENABLE;
815 	if (sc->sc_type < WM_T_82542_2_1)
816 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
817 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
818 
819 	/* Get it out of power save mode, if needed. */
820 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
821 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
822 		    PCI_PMCSR_STATE_MASK;
823 		if (preg == PCI_PMCSR_STATE_D3) {
824 			/*
825 			 * The card has lost all configuration data in
826 			 * this state, so punt.
827 			 */
828 			aprint_error("%s: unable to wake from power state D3\n",
829 			    sc->sc_dev.dv_xname);
830 			return;
831 		}
832 		if (preg != PCI_PMCSR_STATE_D0) {
833 			aprint_normal("%s: waking up from power state D%d\n",
834 			    sc->sc_dev.dv_xname, preg);
835 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
836 			    PCI_PMCSR_STATE_D0);
837 		}
838 	}
839 
840 	/*
841 	 * Map and establish our interrupt.
842 	 */
843 	if (pci_intr_map(pa, &ih)) {
844 		aprint_error("%s: unable to map interrupt\n",
845 		    sc->sc_dev.dv_xname);
846 		return;
847 	}
848 	intrstr = pci_intr_string(pc, ih);
849 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
850 	if (sc->sc_ih == NULL) {
851 		aprint_error("%s: unable to establish interrupt",
852 		    sc->sc_dev.dv_xname);
853 		if (intrstr != NULL)
854 			aprint_normal(" at %s", intrstr);
855 		aprint_normal("\n");
856 		return;
857 	}
858 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
859 
860 	/*
861 	 * Determine a few things about the bus we're connected to.
862 	 */
863 	if (sc->sc_type < WM_T_82543) {
864 		/* We don't really know the bus characteristics here. */
865 		sc->sc_bus_speed = 33;
866 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
867 		/*
868 		 * CSA (Communication Streaming Architecture) is about as fast
869 		 * a 32-bit 66MHz PCI Bus.
870 		 */
871 		sc->sc_flags |= WM_F_CSA;
872 		sc->sc_bus_speed = 66;
873 		aprint_verbose("%s: Communication Streaming Architecture\n",
874 		    sc->sc_dev.dv_xname);
875 		if (sc->sc_type == WM_T_82547) {
876 			callout_init(&sc->sc_txfifo_ch);
877 			callout_setfunc(&sc->sc_txfifo_ch,
878 					wm_82547_txfifo_stall, sc);
879 			aprint_verbose("%s: using 82547 Tx FIFO stall "
880 				       "work-around\n", sc->sc_dev.dv_xname);
881 		}
882 	} else {
883 		reg = CSR_READ(sc, WMREG_STATUS);
884 		if (reg & STATUS_BUS64)
885 			sc->sc_flags |= WM_F_BUS64;
886 		if (sc->sc_type >= WM_T_82544 &&
887 		    (reg & STATUS_PCIX_MODE) != 0) {
888 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
889 
890 			sc->sc_flags |= WM_F_PCIX;
891 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
892 					       PCI_CAP_PCIX,
893 					       &sc->sc_pcix_offset, NULL) == 0)
894 				aprint_error("%s: unable to find PCIX "
895 				    "capability\n", sc->sc_dev.dv_xname);
896 			else if (sc->sc_type != WM_T_82545_3 &&
897 				 sc->sc_type != WM_T_82546_3) {
898 				/*
899 				 * Work around a problem caused by the BIOS
900 				 * setting the max memory read byte count
901 				 * incorrectly.
902 				 */
903 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
904 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
905 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
906 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
907 
908 				bytecnt =
909 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
910 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
911 				maxb =
912 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
913 				    PCI_PCIX_STATUS_MAXB_SHIFT;
914 				if (bytecnt > maxb) {
915 					aprint_verbose("%s: resetting PCI-X "
916 					    "MMRBC: %d -> %d\n",
917 					    sc->sc_dev.dv_xname,
918 					    512 << bytecnt, 512 << maxb);
919 					pcix_cmd = (pcix_cmd &
920 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
921 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
922 					pci_conf_write(pa->pa_pc, pa->pa_tag,
923 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
924 					    pcix_cmd);
925 				}
926 			}
927 		}
928 		/*
929 		 * The quad port adapter is special; it has a PCIX-PCIX
930 		 * bridge on the board, and can run the secondary bus at
931 		 * a higher speed.
932 		 */
933 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
934 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
935 								      : 66;
936 		} else if (sc->sc_flags & WM_F_PCIX) {
937 			switch (reg & STATUS_PCIXSPD_MASK) {
938 			case STATUS_PCIXSPD_50_66:
939 				sc->sc_bus_speed = 66;
940 				break;
941 			case STATUS_PCIXSPD_66_100:
942 				sc->sc_bus_speed = 100;
943 				break;
944 			case STATUS_PCIXSPD_100_133:
945 				sc->sc_bus_speed = 133;
946 				break;
947 			default:
948 				aprint_error(
949 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
950 				    sc->sc_dev.dv_xname,
951 				    reg & STATUS_PCIXSPD_MASK);
952 				sc->sc_bus_speed = 66;
953 			}
954 		} else
955 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
956 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
957 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
958 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
959 	}
960 
961 	/*
962 	 * Allocate the control data structures, and create and load the
963 	 * DMA map for it.
964 	 *
965 	 * NOTE: All Tx descriptors must be in the same 4G segment of
966 	 * memory.  So must Rx descriptors.  We simplify by allocating
967 	 * both sets within the same 4G segment.
968 	 */
969 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
970 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
971 	cdata_size = sc->sc_type < WM_T_82544 ?
972 	    sizeof(struct wm_control_data_82542) :
973 	    sizeof(struct wm_control_data_82544);
974 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
975 				      (bus_size_t) 0x100000000ULL,
976 				      &seg, 1, &rseg, 0)) != 0) {
977 		aprint_error(
978 		    "%s: unable to allocate control data, error = %d\n",
979 		    sc->sc_dev.dv_xname, error);
980 		goto fail_0;
981 	}
982 
983 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
984 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
985 		aprint_error("%s: unable to map control data, error = %d\n",
986 		    sc->sc_dev.dv_xname, error);
987 		goto fail_1;
988 	}
989 
990 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
991 				       0, 0, &sc->sc_cddmamap)) != 0) {
992 		aprint_error("%s: unable to create control data DMA map, "
993 		    "error = %d\n", sc->sc_dev.dv_xname, error);
994 		goto fail_2;
995 	}
996 
997 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
998 				     sc->sc_control_data, cdata_size, NULL,
999 				     0)) != 0) {
1000 		aprint_error(
1001 		    "%s: unable to load control data DMA map, error = %d\n",
1002 		    sc->sc_dev.dv_xname, error);
1003 		goto fail_3;
1004 	}
1005 
1006 
1007 	/*
1008 	 * Create the transmit buffer DMA maps.
1009 	 */
1010 	WM_TXQUEUELEN(sc) =
1011 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1012 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1013 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1014 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1015 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1016 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1017 			aprint_error("%s: unable to create Tx DMA map %d, "
1018 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1019 			goto fail_4;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * Create the receive buffer DMA maps.
1025 	 */
1026 	for (i = 0; i < WM_NRXDESC; i++) {
1027 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1028 					       MCLBYTES, 0, 0,
1029 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1030 			aprint_error("%s: unable to create Rx DMA map %d, "
1031 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1032 			goto fail_5;
1033 		}
1034 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1035 	}
1036 
1037 	/*
1038 	 * Reset the chip to a known state.
1039 	 */
1040 	wm_reset(sc);
1041 
1042 	/*
1043 	 * Get some information about the EEPROM.
1044 	 */
1045 	if (sc->sc_type >= WM_T_82540)
1046 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1047 	if (sc->sc_type <= WM_T_82544)
1048 		sc->sc_ee_addrbits = 6;
1049 	else if (sc->sc_type <= WM_T_82546_3) {
1050 		reg = CSR_READ(sc, WMREG_EECD);
1051 		if (reg & EECD_EE_SIZE)
1052 			sc->sc_ee_addrbits = 8;
1053 		else
1054 			sc->sc_ee_addrbits = 6;
1055 	} else if (sc->sc_type <= WM_T_82547_2) {
1056 		reg = CSR_READ(sc, WMREG_EECD);
1057 		if (reg & EECD_EE_TYPE) {
1058 			sc->sc_flags |= WM_F_EEPROM_SPI;
1059 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1060 		} else
1061 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1062 	} else {
1063 		/* Assume everything else is SPI. */
1064 		reg = CSR_READ(sc, WMREG_EECD);
1065 		sc->sc_flags |= WM_F_EEPROM_SPI;
1066 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1067 	}
1068 	if (sc->sc_flags & WM_F_EEPROM_SPI)
1069 		eetype = "SPI";
1070 	else
1071 		eetype = "MicroWire";
1072 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1073 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1074 	    sc->sc_ee_addrbits, eetype);
1075 
1076 	/*
1077 	 * Read the Ethernet address from the EEPROM.
1078 	 */
1079 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1080 	    sizeof(myea) / sizeof(myea[0]), myea)) {
1081 		aprint_error("%s: unable to read Ethernet address\n",
1082 		    sc->sc_dev.dv_xname);
1083 		return;
1084 	}
1085 	enaddr[0] = myea[0] & 0xff;
1086 	enaddr[1] = myea[0] >> 8;
1087 	enaddr[2] = myea[1] & 0xff;
1088 	enaddr[3] = myea[1] >> 8;
1089 	enaddr[4] = myea[2] & 0xff;
1090 	enaddr[5] = myea[2] >> 8;
1091 
1092 	/*
1093 	 * Toggle the LSB of the MAC address on the second port
1094 	 * of the i82546.
1095 	 */
1096 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1097 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1098 			enaddr[5] ^= 1;
1099 	}
1100 
1101 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1102 	    ether_sprintf(enaddr));
1103 
1104 	/*
1105 	 * Read the config info from the EEPROM, and set up various
1106 	 * bits in the control registers based on their contents.
1107 	 */
1108 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1109 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
1110 		    sc->sc_dev.dv_xname);
1111 		return;
1112 	}
1113 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1114 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
1115 		    sc->sc_dev.dv_xname);
1116 		return;
1117 	}
1118 	if (sc->sc_type >= WM_T_82544) {
1119 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1120 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1121 			    sc->sc_dev.dv_xname);
1122 			return;
1123 		}
1124 	}
1125 
1126 	if (cfg1 & EEPROM_CFG1_ILOS)
1127 		sc->sc_ctrl |= CTRL_ILOS;
1128 	if (sc->sc_type >= WM_T_82544) {
1129 		sc->sc_ctrl |=
1130 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1131 		    CTRL_SWDPIO_SHIFT;
1132 		sc->sc_ctrl |=
1133 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1134 		    CTRL_SWDPINS_SHIFT;
1135 	} else {
1136 		sc->sc_ctrl |=
1137 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1138 		    CTRL_SWDPIO_SHIFT;
1139 	}
1140 
1141 #if 0
1142 	if (sc->sc_type >= WM_T_82544) {
1143 		if (cfg1 & EEPROM_CFG1_IPS0)
1144 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1145 		if (cfg1 & EEPROM_CFG1_IPS1)
1146 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1147 		sc->sc_ctrl_ext |=
1148 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1149 		    CTRL_EXT_SWDPIO_SHIFT;
1150 		sc->sc_ctrl_ext |=
1151 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1152 		    CTRL_EXT_SWDPINS_SHIFT;
1153 	} else {
1154 		sc->sc_ctrl_ext |=
1155 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1156 		    CTRL_EXT_SWDPIO_SHIFT;
1157 	}
1158 #endif
1159 
1160 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1161 #if 0
1162 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1163 #endif
1164 
1165 	/*
1166 	 * Set up some register offsets that are different between
1167 	 * the i82542 and the i82543 and later chips.
1168 	 */
1169 	if (sc->sc_type < WM_T_82543) {
1170 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1171 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1172 	} else {
1173 		sc->sc_rdt_reg = WMREG_RDT;
1174 		sc->sc_tdt_reg = WMREG_TDT;
1175 	}
1176 
1177 	/*
1178 	 * Determine if we're TBI or GMII mode, and initialize the
1179 	 * media structures accordingly.
1180 	 */
1181 	if (sc->sc_type < WM_T_82543 ||
1182 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1183 		if (wmp->wmp_flags & WMP_F_1000T)
1184 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1185 			    "product!\n", sc->sc_dev.dv_xname);
1186 		wm_tbi_mediainit(sc);
1187 	} else {
1188 		if (wmp->wmp_flags & WMP_F_1000X)
1189 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1190 			    "product!\n", sc->sc_dev.dv_xname);
1191 		wm_gmii_mediainit(sc);
1192 	}
1193 
1194 	ifp = &sc->sc_ethercom.ec_if;
1195 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1196 	ifp->if_softc = sc;
1197 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1198 	ifp->if_ioctl = wm_ioctl;
1199 	ifp->if_start = wm_start;
1200 	ifp->if_watchdog = wm_watchdog;
1201 	ifp->if_init = wm_init;
1202 	ifp->if_stop = wm_stop;
1203 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1204 	IFQ_SET_READY(&ifp->if_snd);
1205 
1206 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1207 
1208 	/*
1209 	 * If we're a i82543 or greater, we can support VLANs.
1210 	 */
1211 	if (sc->sc_type >= WM_T_82543)
1212 		sc->sc_ethercom.ec_capabilities |=
1213 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1214 
1215 	/*
1216 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1217 	 * on i82543 and later.
1218 	 */
1219 	if (sc->sc_type >= WM_T_82543)
1220 		ifp->if_capabilities |=
1221 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1222 
1223 	/*
1224 	 * Attach the interface.
1225 	 */
1226 	if_attach(ifp);
1227 	ether_ifattach(ifp, enaddr);
1228 #if NRND > 0
1229 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1230 	    RND_TYPE_NET, 0);
1231 #endif
1232 
1233 #ifdef WM_EVENT_COUNTERS
1234 	/* Attach event counters. */
1235 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1236 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1237 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1238 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1239 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1240 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1241 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1242 	    NULL, sc->sc_dev.dv_xname, "txdw");
1243 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1244 	    NULL, sc->sc_dev.dv_xname, "txqe");
1245 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1246 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1247 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1248 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1249 
1250 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1251 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1252 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1253 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1254 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1255 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1256 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1257 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1258 
1259 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC,
1260 	    NULL, sc->sc_dev.dv_xname, "txpullup needed");
1261 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC,
1262 	    NULL, sc->sc_dev.dv_xname, "txpullup nomem");
1263 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC,
1264 	    NULL, sc->sc_dev.dv_xname, "txpullup fail");
1265 
1266 	for (i = 0; i < WM_NTXSEGS; i++) {
1267 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1268 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1269 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1270 	}
1271 
1272 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1273 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1274 
1275 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1276 	    NULL, sc->sc_dev.dv_xname, "tu");
1277 
1278 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1279 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1280 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1281 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1282 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1283 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1284 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1285 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1286 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1287 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1288 #endif /* WM_EVENT_COUNTERS */
1289 
1290 	/*
1291 	 * Make sure the interface is shutdown during reboot.
1292 	 */
1293 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1294 	if (sc->sc_sdhook == NULL)
1295 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1296 		    sc->sc_dev.dv_xname);
1297 	return;
1298 
1299 	/*
1300 	 * Free any resources we've allocated during the failed attach
1301 	 * attempt.  Do this in reverse order and fall through.
1302 	 */
1303  fail_5:
1304 	for (i = 0; i < WM_NRXDESC; i++) {
1305 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1306 			bus_dmamap_destroy(sc->sc_dmat,
1307 			    sc->sc_rxsoft[i].rxs_dmamap);
1308 	}
1309  fail_4:
1310 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1311 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1312 			bus_dmamap_destroy(sc->sc_dmat,
1313 			    sc->sc_txsoft[i].txs_dmamap);
1314 	}
1315 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1316  fail_3:
1317 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1318  fail_2:
1319 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1320 	    cdata_size);
1321  fail_1:
1322 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1323  fail_0:
1324 	return;
1325 }
1326 
1327 /*
1328  * wm_shutdown:
1329  *
1330  *	Make sure the interface is stopped at reboot time.
1331  */
1332 static void
1333 wm_shutdown(void *arg)
1334 {
1335 	struct wm_softc *sc = arg;
1336 
1337 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1338 }
1339 
1340 /*
1341  * wm_tx_offload:
1342  *
1343  *	Set up TCP/IP checksumming parameters for the
1344  *	specified packet.
1345  */
1346 static int
1347 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1348     uint8_t *fieldsp)
1349 {
1350 	struct mbuf *m0 = txs->txs_mbuf;
1351 	struct livengood_tcpip_ctxdesc *t;
1352 	uint32_t ipcs, tucs;
1353 	struct ip *ip;
1354 	struct ether_header *eh;
1355 	int offset, iphl;
1356 	uint8_t fields = 0;
1357 
1358 	/*
1359 	 * XXX It would be nice if the mbuf pkthdr had offset
1360 	 * fields for the protocol headers.
1361 	 */
1362 
1363 	eh = mtod(m0, struct ether_header *);
1364 	switch (htons(eh->ether_type)) {
1365 	case ETHERTYPE_IP:
1366 		iphl = sizeof(struct ip);
1367 		offset = ETHER_HDR_LEN;
1368 		break;
1369 
1370 	case ETHERTYPE_VLAN:
1371 		iphl = sizeof(struct ip);
1372 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1373 		break;
1374 
1375 	default:
1376 		/*
1377 		 * Don't support this protocol or encapsulation.
1378 		 */
1379 		*fieldsp = 0;
1380 		*cmdp = 0;
1381 		return (0);
1382 	}
1383 
1384 	if (m0->m_len < (offset + iphl)) {
1385 		/*
1386 		 * Packet headers aren't in the first mbuf.  Let's hope
1387 		 * there is space at the end if it for them.
1388 		 */
1389 		WM_EVCNT_INCR(&sc->sc_ev_txpullup_needed);
1390 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1391 			WM_EVCNT_INCR(&sc->sc_ev_txpullup_nomem);
1392 			log(LOG_ERR,
1393 			    "%s: wm_tx_offload: mbuf allocation failed, "
1394 			    "packet dropped\n", sc->sc_dev.dv_xname);
1395 			return (ENOMEM);
1396 		} else if (m0 != txs->txs_mbuf) {
1397 			/*
1398 			 * The DMA map has already been loaded, so we
1399 			 * would have to unload and reload it.  But then
1400 			 * if that were to fail, we are already committed
1401 			 * to transmitting the packet (can't put it back
1402 			 * on the queue), so we have to drop the packet.
1403 			 */
1404 			WM_EVCNT_INCR(&sc->sc_ev_txpullup_fail);
1405 			log(LOG_ERR, "%s: wm_tx_offload: packet headers did "
1406 			    "not fit in first mbuf, packet dropped\n",
1407 			    sc->sc_dev.dv_xname);
1408 			m_freem(txs->txs_mbuf);
1409 			txs->txs_mbuf = NULL;
1410 			return (EINVAL);
1411 		}
1412 	}
1413 
1414 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1415 	iphl = ip->ip_hl << 2;
1416 
1417 	/*
1418 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1419 	 * offload feature, if we load the context descriptor, we
1420 	 * MUST provide valid values for IPCSS and TUCSS fields.
1421 	 */
1422 
1423 	ipcs = WTX_TCPIP_IPCSS(offset) |
1424 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1425 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
1426 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1427 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1428 		fields |= WTX_IXSM;
1429 	}
1430 
1431 	offset += iphl;
1432 
1433 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1434 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1435 		fields |= WTX_TXSM;
1436 		tucs = WTX_TCPIP_TUCSS(offset) |
1437 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1438 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1439 	} else {
1440 		/* Just initialize it to a valid TCP context. */
1441 		tucs = WTX_TCPIP_TUCSS(offset) |
1442 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1443 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1444 	}
1445 
1446 	/* Fill in the context descriptor. */
1447 	t = (struct livengood_tcpip_ctxdesc *)
1448 	    &sc->sc_txdescs[sc->sc_txnext];
1449 	t->tcpip_ipcs = htole32(ipcs);
1450 	t->tcpip_tucs = htole32(tucs);
1451 	t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1452 	t->tcpip_seg = 0;
1453 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1454 
1455 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1456 	txs->txs_ndesc++;
1457 
1458 	*cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1459 	*fieldsp = fields;
1460 
1461 	return (0);
1462 }
1463 
1464 static void
1465 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1466 {
1467 	struct mbuf *m;
1468 	int i;
1469 
1470 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1471 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1472 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1473 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1474 		    m->m_data, m->m_len, m->m_flags);
1475 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1476 	    i, i == 1 ? "" : "s");
1477 }
1478 
1479 /*
1480  * wm_82547_txfifo_stall:
1481  *
1482  *	Callout used to wait for the 82547 Tx FIFO to drain,
1483  *	reset the FIFO pointers, and restart packet transmission.
1484  */
1485 static void
1486 wm_82547_txfifo_stall(void *arg)
1487 {
1488 	struct wm_softc *sc = arg;
1489 	int s;
1490 
1491 	s = splnet();
1492 
1493 	if (sc->sc_txfifo_stall) {
1494 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1495 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1496 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1497 			/*
1498 			 * Packets have drained.  Stop transmitter, reset
1499 			 * FIFO pointers, restart transmitter, and kick
1500 			 * the packet queue.
1501 			 */
1502 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1503 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1504 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1505 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1506 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1507 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1508 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1509 			CSR_WRITE_FLUSH(sc);
1510 
1511 			sc->sc_txfifo_head = 0;
1512 			sc->sc_txfifo_stall = 0;
1513 			wm_start(&sc->sc_ethercom.ec_if);
1514 		} else {
1515 			/*
1516 			 * Still waiting for packets to drain; try again in
1517 			 * another tick.
1518 			 */
1519 			callout_schedule(&sc->sc_txfifo_ch, 1);
1520 		}
1521 	}
1522 
1523 	splx(s);
1524 }
1525 
1526 /*
1527  * wm_82547_txfifo_bugchk:
1528  *
1529  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1530  *	prevent enqueueing a packet that would wrap around the end
1531  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1532  *
1533  *	We do this by checking the amount of space before the end
1534  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1535  *	the Tx FIFO, wait for all remaining packets to drain, reset
1536  *	the internal FIFO pointers to the beginning, and restart
1537  *	transmission on the interface.
1538  */
1539 #define	WM_FIFO_HDR		0x10
1540 #define	WM_82547_PAD_LEN	0x3e0
1541 static int
1542 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1543 {
1544 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1545 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1546 
1547 	/* Just return if already stalled. */
1548 	if (sc->sc_txfifo_stall)
1549 		return (1);
1550 
1551 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1552 		/* Stall only occurs in half-duplex mode. */
1553 		goto send_packet;
1554 	}
1555 
1556 	if (len >= WM_82547_PAD_LEN + space) {
1557 		sc->sc_txfifo_stall = 1;
1558 		callout_schedule(&sc->sc_txfifo_ch, 1);
1559 		return (1);
1560 	}
1561 
1562  send_packet:
1563 	sc->sc_txfifo_head += len;
1564 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1565 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1566 
1567 	return (0);
1568 }
1569 
1570 /*
1571  * wm_start:		[ifnet interface function]
1572  *
1573  *	Start packet transmission on the interface.
1574  */
1575 static void
1576 wm_start(struct ifnet *ifp)
1577 {
1578 	struct wm_softc *sc = ifp->if_softc;
1579 	struct mbuf *m0;
1580 #if 0 /* XXXJRT */
1581 	struct m_tag *mtag;
1582 #endif
1583 	struct wm_txsoft *txs;
1584 	bus_dmamap_t dmamap;
1585 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1586 	bus_addr_t curaddr;
1587 	bus_size_t seglen, curlen;
1588 	uint32_t cksumcmd;
1589 	uint8_t cksumfields;
1590 
1591 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1592 		return;
1593 
1594 	/*
1595 	 * Remember the previous number of free descriptors.
1596 	 */
1597 	ofree = sc->sc_txfree;
1598 
1599 	/*
1600 	 * Loop through the send queue, setting up transmit descriptors
1601 	 * until we drain the queue, or use up all available transmit
1602 	 * descriptors.
1603 	 */
1604 	for (;;) {
1605 		/* Grab a packet off the queue. */
1606 		IFQ_POLL(&ifp->if_snd, m0);
1607 		if (m0 == NULL)
1608 			break;
1609 
1610 		DPRINTF(WM_DEBUG_TX,
1611 		    ("%s: TX: have packet to transmit: %p\n",
1612 		    sc->sc_dev.dv_xname, m0));
1613 
1614 		/* Get a work queue entry. */
1615 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1616 			wm_txintr(sc);
1617 			if (sc->sc_txsfree == 0) {
1618 				DPRINTF(WM_DEBUG_TX,
1619 				    ("%s: TX: no free job descriptors\n",
1620 					sc->sc_dev.dv_xname));
1621 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1622 				break;
1623 			}
1624 		}
1625 
1626 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1627 		dmamap = txs->txs_dmamap;
1628 
1629 		/*
1630 		 * Load the DMA map.  If this fails, the packet either
1631 		 * didn't fit in the allotted number of segments, or we
1632 		 * were short on resources.  For the too-many-segments
1633 		 * case, we simply report an error and drop the packet,
1634 		 * since we can't sanely copy a jumbo packet to a single
1635 		 * buffer.
1636 		 */
1637 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1638 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1639 		if (error) {
1640 			if (error == EFBIG) {
1641 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1642 				log(LOG_ERR, "%s: Tx packet consumes too many "
1643 				    "DMA segments, dropping...\n",
1644 				    sc->sc_dev.dv_xname);
1645 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1646 				wm_dump_mbuf_chain(sc, m0);
1647 				m_freem(m0);
1648 				continue;
1649 			}
1650 			/*
1651 			 * Short on resources, just stop for now.
1652 			 */
1653 			DPRINTF(WM_DEBUG_TX,
1654 			    ("%s: TX: dmamap load failed: %d\n",
1655 			    sc->sc_dev.dv_xname, error));
1656 			break;
1657 		}
1658 
1659 		segs_needed = dmamap->dm_nsegs;
1660 
1661 		/*
1662 		 * Ensure we have enough descriptors free to describe
1663 		 * the packet.  Note, we always reserve one descriptor
1664 		 * at the end of the ring due to the semantics of the
1665 		 * TDT register, plus one more in the event we need
1666 		 * to load offload context.
1667 		 */
1668 		if (segs_needed > sc->sc_txfree - 2) {
1669 			/*
1670 			 * Not enough free descriptors to transmit this
1671 			 * packet.  We haven't committed anything yet,
1672 			 * so just unload the DMA map, put the packet
1673 			 * pack on the queue, and punt.  Notify the upper
1674 			 * layer that there are no more slots left.
1675 			 */
1676 			DPRINTF(WM_DEBUG_TX,
1677 			    ("%s: TX: need %d (%) descriptors, have %d\n",
1678 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1679 			    sc->sc_txfree - 1));
1680 			ifp->if_flags |= IFF_OACTIVE;
1681 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1682 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1683 			break;
1684 		}
1685 
1686 		/*
1687 		 * Check for 82547 Tx FIFO bug.  We need to do this
1688 		 * once we know we can transmit the packet, since we
1689 		 * do some internal FIFO space accounting here.
1690 		 */
1691 		if (sc->sc_type == WM_T_82547 &&
1692 		    wm_82547_txfifo_bugchk(sc, m0)) {
1693 			DPRINTF(WM_DEBUG_TX,
1694 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
1695 			    sc->sc_dev.dv_xname));
1696 			ifp->if_flags |= IFF_OACTIVE;
1697 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1698 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1699 			break;
1700 		}
1701 
1702 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1703 
1704 		/*
1705 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1706 		 */
1707 
1708 		DPRINTF(WM_DEBUG_TX,
1709 		    ("%s: TX: packet has %d (%d) DMA segments\n",
1710 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1711 
1712 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1713 
1714 		/*
1715 		 * Store a pointer to the packet so that we can free it
1716 		 * later.
1717 		 *
1718 		 * Initially, we consider the number of descriptors the
1719 		 * packet uses the number of DMA segments.  This may be
1720 		 * incremented by 1 if we do checksum offload (a descriptor
1721 		 * is used to set the checksum context).
1722 		 */
1723 		txs->txs_mbuf = m0;
1724 		txs->txs_firstdesc = sc->sc_txnext;
1725 		txs->txs_ndesc = segs_needed;
1726 
1727 		/* Set up offload parameters for this packet. */
1728 		if (m0->m_pkthdr.csum_flags &
1729 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1730 			if (wm_tx_offload(sc, txs, &cksumcmd,
1731 					  &cksumfields) != 0) {
1732 				/* Error message already displayed. */
1733 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1734 				continue;
1735 			}
1736 		} else {
1737 			cksumcmd = 0;
1738 			cksumfields = 0;
1739 		}
1740 
1741 		cksumcmd |= WTX_CMD_IDE;
1742 
1743 		/* Sync the DMA map. */
1744 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1745 		    BUS_DMASYNC_PREWRITE);
1746 
1747 		/*
1748 		 * Initialize the transmit descriptor.
1749 		 */
1750 		for (nexttx = sc->sc_txnext, seg = 0;
1751 		     seg < dmamap->dm_nsegs; seg++) {
1752 			for (seglen = dmamap->dm_segs[seg].ds_len,
1753 			     curaddr = dmamap->dm_segs[seg].ds_addr;
1754 			     seglen != 0;
1755 			     curaddr += curlen, seglen -= curlen,
1756 			     nexttx = WM_NEXTTX(sc, nexttx)) {
1757 				curlen = seglen;
1758 
1759 				wm_set_dma_addr(
1760 				    &sc->sc_txdescs[nexttx].wtx_addr,
1761 				    curaddr);
1762 				sc->sc_txdescs[nexttx].wtx_cmdlen =
1763 				    htole32(cksumcmd | curlen);
1764 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1765 				    0;
1766 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1767 				    cksumfields;
1768 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1769 				lasttx = nexttx;
1770 
1771 				DPRINTF(WM_DEBUG_TX,
1772 				    ("%s: TX: desc %d: low 0x%08x, "
1773 				     "len 0x%04x\n",
1774 				    sc->sc_dev.dv_xname, nexttx,
1775 				    curaddr & 0xffffffffU, curlen, curlen));
1776 			}
1777 		}
1778 
1779 		KASSERT(lasttx != -1);
1780 
1781 		/*
1782 		 * Set up the command byte on the last descriptor of
1783 		 * the packet.  If we're in the interrupt delay window,
1784 		 * delay the interrupt.
1785 		 */
1786 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
1787 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1788 
1789 #if 0 /* XXXJRT */
1790 		/*
1791 		 * If VLANs are enabled and the packet has a VLAN tag, set
1792 		 * up the descriptor to encapsulate the packet for us.
1793 		 *
1794 		 * This is only valid on the last descriptor of the packet.
1795 		 */
1796 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1797 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1798 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
1799 			    htole32(WTX_CMD_VLE);
1800 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1801 			    = htole16(*(u_int *)(mtag + 1) & 0xffff);
1802 		}
1803 #endif /* XXXJRT */
1804 
1805 		txs->txs_lastdesc = lasttx;
1806 
1807 		DPRINTF(WM_DEBUG_TX,
1808 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1809 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1810 
1811 		/* Sync the descriptors we're using. */
1812 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1813 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1814 
1815 		/* Give the packet to the chip. */
1816 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1817 
1818 		DPRINTF(WM_DEBUG_TX,
1819 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1820 
1821 		DPRINTF(WM_DEBUG_TX,
1822 		    ("%s: TX: finished transmitting packet, job %d\n",
1823 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
1824 
1825 		/* Advance the tx pointer. */
1826 		sc->sc_txfree -= txs->txs_ndesc;
1827 		sc->sc_txnext = nexttx;
1828 
1829 		sc->sc_txsfree--;
1830 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1831 
1832 #if NBPFILTER > 0
1833 		/* Pass the packet to any BPF listeners. */
1834 		if (ifp->if_bpf)
1835 			bpf_mtap(ifp->if_bpf, m0);
1836 #endif /* NBPFILTER > 0 */
1837 	}
1838 
1839 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1840 		/* No more slots; notify upper layer. */
1841 		ifp->if_flags |= IFF_OACTIVE;
1842 	}
1843 
1844 	if (sc->sc_txfree != ofree) {
1845 		/* Set a watchdog timer in case the chip flakes out. */
1846 		ifp->if_timer = 5;
1847 	}
1848 }
1849 
1850 /*
1851  * wm_watchdog:		[ifnet interface function]
1852  *
1853  *	Watchdog timer handler.
1854  */
1855 static void
1856 wm_watchdog(struct ifnet *ifp)
1857 {
1858 	struct wm_softc *sc = ifp->if_softc;
1859 
1860 	/*
1861 	 * Since we're using delayed interrupts, sweep up
1862 	 * before we report an error.
1863 	 */
1864 	wm_txintr(sc);
1865 
1866 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
1867 		log(LOG_ERR,
1868 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1869 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1870 		    sc->sc_txnext);
1871 		ifp->if_oerrors++;
1872 
1873 		/* Reset the interface. */
1874 		(void) wm_init(ifp);
1875 	}
1876 
1877 	/* Try to get more packets going. */
1878 	wm_start(ifp);
1879 }
1880 
1881 /*
1882  * wm_ioctl:		[ifnet interface function]
1883  *
1884  *	Handle control requests from the operator.
1885  */
1886 static int
1887 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1888 {
1889 	struct wm_softc *sc = ifp->if_softc;
1890 	struct ifreq *ifr = (struct ifreq *) data;
1891 	int s, error;
1892 
1893 	s = splnet();
1894 
1895 	switch (cmd) {
1896 	case SIOCSIFMEDIA:
1897 	case SIOCGIFMEDIA:
1898 		/* Flow control requires full-duplex mode. */
1899 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1900 		    (ifr->ifr_media & IFM_FDX) == 0)
1901 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1902 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1903 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1904 				/* We can do both TXPAUSE and RXPAUSE. */
1905 				ifr->ifr_media |=
1906 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1907 			}
1908 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1909 		}
1910 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1911 		break;
1912 	default:
1913 		error = ether_ioctl(ifp, cmd, data);
1914 		if (error == ENETRESET) {
1915 			/*
1916 			 * Multicast list has changed; set the hardware filter
1917 			 * accordingly.
1918 			 */
1919 			if (ifp->if_flags & IFF_RUNNING)
1920 				wm_set_filter(sc);
1921 			error = 0;
1922 		}
1923 		break;
1924 	}
1925 
1926 	/* Try to get more packets going. */
1927 	wm_start(ifp);
1928 
1929 	splx(s);
1930 	return (error);
1931 }
1932 
1933 /*
1934  * wm_intr:
1935  *
1936  *	Interrupt service routine.
1937  */
1938 static int
1939 wm_intr(void *arg)
1940 {
1941 	struct wm_softc *sc = arg;
1942 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1943 	uint32_t icr;
1944 	int wantinit, handled = 0;
1945 
1946 	for (wantinit = 0; wantinit == 0;) {
1947 		icr = CSR_READ(sc, WMREG_ICR);
1948 		if ((icr & sc->sc_icr) == 0)
1949 			break;
1950 
1951 #if 0 /*NRND > 0*/
1952 		if (RND_ENABLED(&sc->rnd_source))
1953 			rnd_add_uint32(&sc->rnd_source, icr);
1954 #endif
1955 
1956 		handled = 1;
1957 
1958 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1959 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1960 			DPRINTF(WM_DEBUG_RX,
1961 			    ("%s: RX: got Rx intr 0x%08x\n",
1962 			    sc->sc_dev.dv_xname,
1963 			    icr & (ICR_RXDMT0|ICR_RXT0)));
1964 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1965 		}
1966 #endif
1967 		wm_rxintr(sc);
1968 
1969 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1970 		if (icr & ICR_TXDW) {
1971 			DPRINTF(WM_DEBUG_TX,
1972 			    ("%s: TX: got TXDW interrupt\n",
1973 			    sc->sc_dev.dv_xname));
1974 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
1975 		}
1976 #endif
1977 		wm_txintr(sc);
1978 
1979 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1980 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1981 			wm_linkintr(sc, icr);
1982 		}
1983 
1984 		if (icr & ICR_RXO) {
1985 			log(LOG_WARNING, "%s: Receive overrun\n",
1986 			    sc->sc_dev.dv_xname);
1987 			wantinit = 1;
1988 		}
1989 	}
1990 
1991 	if (handled) {
1992 		if (wantinit)
1993 			wm_init(ifp);
1994 
1995 		/* Try to get more packets going. */
1996 		wm_start(ifp);
1997 	}
1998 
1999 	return (handled);
2000 }
2001 
2002 /*
2003  * wm_txintr:
2004  *
2005  *	Helper; handle transmit interrupts.
2006  */
2007 static void
2008 wm_txintr(struct wm_softc *sc)
2009 {
2010 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2011 	struct wm_txsoft *txs;
2012 	uint8_t status;
2013 	int i;
2014 
2015 	ifp->if_flags &= ~IFF_OACTIVE;
2016 
2017 	/*
2018 	 * Go through the Tx list and free mbufs for those
2019 	 * frames which have been transmitted.
2020 	 */
2021 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2022 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2023 		txs = &sc->sc_txsoft[i];
2024 
2025 		DPRINTF(WM_DEBUG_TX,
2026 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2027 
2028 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2029 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2030 
2031 		status =
2032 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2033 		if ((status & WTX_ST_DD) == 0) {
2034 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2035 			    BUS_DMASYNC_PREREAD);
2036 			break;
2037 		}
2038 
2039 		DPRINTF(WM_DEBUG_TX,
2040 		    ("%s: TX: job %d done: descs %d..%d\n",
2041 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2042 		    txs->txs_lastdesc));
2043 
2044 		/*
2045 		 * XXX We should probably be using the statistics
2046 		 * XXX registers, but I don't know if they exist
2047 		 * XXX on chips before the i82544.
2048 		 */
2049 
2050 #ifdef WM_EVENT_COUNTERS
2051 		if (status & WTX_ST_TU)
2052 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2053 #endif /* WM_EVENT_COUNTERS */
2054 
2055 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2056 			ifp->if_oerrors++;
2057 			if (status & WTX_ST_LC)
2058 				log(LOG_WARNING, "%s: late collision\n",
2059 				    sc->sc_dev.dv_xname);
2060 			else if (status & WTX_ST_EC) {
2061 				ifp->if_collisions += 16;
2062 				log(LOG_WARNING, "%s: excessive collisions\n",
2063 				    sc->sc_dev.dv_xname);
2064 			}
2065 		} else
2066 			ifp->if_opackets++;
2067 
2068 		sc->sc_txfree += txs->txs_ndesc;
2069 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2070 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2071 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2072 		m_freem(txs->txs_mbuf);
2073 		txs->txs_mbuf = NULL;
2074 	}
2075 
2076 	/* Update the dirty transmit buffer pointer. */
2077 	sc->sc_txsdirty = i;
2078 	DPRINTF(WM_DEBUG_TX,
2079 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2080 
2081 	/*
2082 	 * If there are no more pending transmissions, cancel the watchdog
2083 	 * timer.
2084 	 */
2085 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2086 		ifp->if_timer = 0;
2087 }
2088 
2089 /*
2090  * wm_rxintr:
2091  *
2092  *	Helper; handle receive interrupts.
2093  */
2094 static void
2095 wm_rxintr(struct wm_softc *sc)
2096 {
2097 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2098 	struct wm_rxsoft *rxs;
2099 	struct mbuf *m;
2100 	int i, len;
2101 	uint8_t status, errors;
2102 
2103 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2104 		rxs = &sc->sc_rxsoft[i];
2105 
2106 		DPRINTF(WM_DEBUG_RX,
2107 		    ("%s: RX: checking descriptor %d\n",
2108 		    sc->sc_dev.dv_xname, i));
2109 
2110 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2111 
2112 		status = sc->sc_rxdescs[i].wrx_status;
2113 		errors = sc->sc_rxdescs[i].wrx_errors;
2114 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2115 
2116 		if ((status & WRX_ST_DD) == 0) {
2117 			/*
2118 			 * We have processed all of the receive descriptors.
2119 			 */
2120 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2121 			break;
2122 		}
2123 
2124 		if (__predict_false(sc->sc_rxdiscard)) {
2125 			DPRINTF(WM_DEBUG_RX,
2126 			    ("%s: RX: discarding contents of descriptor %d\n",
2127 			    sc->sc_dev.dv_xname, i));
2128 			WM_INIT_RXDESC(sc, i);
2129 			if (status & WRX_ST_EOP) {
2130 				/* Reset our state. */
2131 				DPRINTF(WM_DEBUG_RX,
2132 				    ("%s: RX: resetting rxdiscard -> 0\n",
2133 				    sc->sc_dev.dv_xname));
2134 				sc->sc_rxdiscard = 0;
2135 			}
2136 			continue;
2137 		}
2138 
2139 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2140 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2141 
2142 		m = rxs->rxs_mbuf;
2143 
2144 		/*
2145 		 * Add a new receive buffer to the ring.
2146 		 */
2147 		if (wm_add_rxbuf(sc, i) != 0) {
2148 			/*
2149 			 * Failed, throw away what we've done so
2150 			 * far, and discard the rest of the packet.
2151 			 */
2152 			ifp->if_ierrors++;
2153 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2154 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2155 			WM_INIT_RXDESC(sc, i);
2156 			if ((status & WRX_ST_EOP) == 0)
2157 				sc->sc_rxdiscard = 1;
2158 			if (sc->sc_rxhead != NULL)
2159 				m_freem(sc->sc_rxhead);
2160 			WM_RXCHAIN_RESET(sc);
2161 			DPRINTF(WM_DEBUG_RX,
2162 			    ("%s: RX: Rx buffer allocation failed, "
2163 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2164 			    sc->sc_rxdiscard ? " (discard)" : ""));
2165 			continue;
2166 		}
2167 
2168 		WM_RXCHAIN_LINK(sc, m);
2169 
2170 		m->m_len = len;
2171 
2172 		DPRINTF(WM_DEBUG_RX,
2173 		    ("%s: RX: buffer at %p len %d\n",
2174 		    sc->sc_dev.dv_xname, m->m_data, len));
2175 
2176 		/*
2177 		 * If this is not the end of the packet, keep
2178 		 * looking.
2179 		 */
2180 		if ((status & WRX_ST_EOP) == 0) {
2181 			sc->sc_rxlen += len;
2182 			DPRINTF(WM_DEBUG_RX,
2183 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2184 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2185 			continue;
2186 		}
2187 
2188 		/*
2189 		 * Okay, we have the entire packet now.  The chip is
2190 		 * configured to include the FCS (not all chips can
2191 		 * be configured to strip it), so we need to trim it.
2192 		 */
2193 		m->m_len -= ETHER_CRC_LEN;
2194 
2195 		*sc->sc_rxtailp = NULL;
2196 		m = sc->sc_rxhead;
2197 		len = m->m_len + sc->sc_rxlen;
2198 
2199 		WM_RXCHAIN_RESET(sc);
2200 
2201 		DPRINTF(WM_DEBUG_RX,
2202 		    ("%s: RX: have entire packet, len -> %d\n",
2203 		    sc->sc_dev.dv_xname, len));
2204 
2205 		/*
2206 		 * If an error occurred, update stats and drop the packet.
2207 		 */
2208 		if (errors &
2209 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2210 			ifp->if_ierrors++;
2211 			if (errors & WRX_ER_SE)
2212 				log(LOG_WARNING, "%s: symbol error\n",
2213 				    sc->sc_dev.dv_xname);
2214 			else if (errors & WRX_ER_SEQ)
2215 				log(LOG_WARNING, "%s: receive sequence error\n",
2216 				    sc->sc_dev.dv_xname);
2217 			else if (errors & WRX_ER_CE)
2218 				log(LOG_WARNING, "%s: CRC error\n",
2219 				    sc->sc_dev.dv_xname);
2220 			m_freem(m);
2221 			continue;
2222 		}
2223 
2224 		/*
2225 		 * No errors.  Receive the packet.
2226 		 */
2227 		m->m_pkthdr.rcvif = ifp;
2228 		m->m_pkthdr.len = len;
2229 
2230 #if 0 /* XXXJRT */
2231 		/*
2232 		 * If VLANs are enabled, VLAN packets have been unwrapped
2233 		 * for us.  Associate the tag with the packet.
2234 		 */
2235 		if (sc->sc_ethercom.ec_nvlans != 0 &&
2236 		    (status & WRX_ST_VP) != 0) {
2237 			struct m_tag *vtag;
2238 
2239 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2240 			    M_NOWAIT);
2241 			if (vtag == NULL) {
2242 				ifp->if_ierrors++;
2243 				log(LOG_ERR,
2244 				    "%s: unable to allocate VLAN tag\n",
2245 				    sc->sc_dev.dv_xname);
2246 				m_freem(m);
2247 				continue;
2248 			}
2249 
2250 			*(u_int *)(vtag + 1) =
2251 			    le16toh(sc->sc_rxdescs[i].wrx_special);
2252 		}
2253 #endif /* XXXJRT */
2254 
2255 		/*
2256 		 * Set up checksum info for this packet.
2257 		 */
2258 		if (status & WRX_ST_IPCS) {
2259 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2260 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2261 			if (errors & WRX_ER_IPE)
2262 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2263 		}
2264 		if (status & WRX_ST_TCPCS) {
2265 			/*
2266 			 * Note: we don't know if this was TCP or UDP,
2267 			 * so we just set both bits, and expect the
2268 			 * upper layers to deal.
2269 			 */
2270 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2271 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2272 			if (errors & WRX_ER_TCPE)
2273 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2274 		}
2275 
2276 		ifp->if_ipackets++;
2277 
2278 #if NBPFILTER > 0
2279 		/* Pass this up to any BPF listeners. */
2280 		if (ifp->if_bpf)
2281 			bpf_mtap(ifp->if_bpf, m);
2282 #endif /* NBPFILTER > 0 */
2283 
2284 		/* Pass it on. */
2285 		(*ifp->if_input)(ifp, m);
2286 	}
2287 
2288 	/* Update the receive pointer. */
2289 	sc->sc_rxptr = i;
2290 
2291 	DPRINTF(WM_DEBUG_RX,
2292 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2293 }
2294 
2295 /*
2296  * wm_linkintr:
2297  *
2298  *	Helper; handle link interrupts.
2299  */
2300 static void
2301 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2302 {
2303 	uint32_t status;
2304 
2305 	/*
2306 	 * If we get a link status interrupt on a 1000BASE-T
2307 	 * device, just fall into the normal MII tick path.
2308 	 */
2309 	if (sc->sc_flags & WM_F_HAS_MII) {
2310 		if (icr & ICR_LSC) {
2311 			DPRINTF(WM_DEBUG_LINK,
2312 			    ("%s: LINK: LSC -> mii_tick\n",
2313 			    sc->sc_dev.dv_xname));
2314 			mii_tick(&sc->sc_mii);
2315 		} else if (icr & ICR_RXSEQ) {
2316 			DPRINTF(WM_DEBUG_LINK,
2317 			    ("%s: LINK Receive sequence error\n",
2318 			    sc->sc_dev.dv_xname));
2319 		}
2320 		return;
2321 	}
2322 
2323 	/*
2324 	 * If we are now receiving /C/, check for link again in
2325 	 * a couple of link clock ticks.
2326 	 */
2327 	if (icr & ICR_RXCFG) {
2328 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2329 		    sc->sc_dev.dv_xname));
2330 		sc->sc_tbi_anstate = 2;
2331 	}
2332 
2333 	if (icr & ICR_LSC) {
2334 		status = CSR_READ(sc, WMREG_STATUS);
2335 		if (status & STATUS_LU) {
2336 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2337 			    sc->sc_dev.dv_xname,
2338 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2339 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2340 			sc->sc_fcrtl &= ~FCRTL_XONE;
2341 			if (status & STATUS_FD)
2342 				sc->sc_tctl |=
2343 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2344 			else
2345 				sc->sc_tctl |=
2346 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2347 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2348 				sc->sc_fcrtl |= FCRTL_XONE;
2349 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2350 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2351 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2352 				      sc->sc_fcrtl);
2353 			sc->sc_tbi_linkup = 1;
2354 		} else {
2355 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2356 			    sc->sc_dev.dv_xname));
2357 			sc->sc_tbi_linkup = 0;
2358 		}
2359 		sc->sc_tbi_anstate = 2;
2360 		wm_tbi_set_linkled(sc);
2361 	} else if (icr & ICR_RXSEQ) {
2362 		DPRINTF(WM_DEBUG_LINK,
2363 		    ("%s: LINK: Receive sequence error\n",
2364 		    sc->sc_dev.dv_xname));
2365 	}
2366 }
2367 
2368 /*
2369  * wm_tick:
2370  *
2371  *	One second timer, used to check link status, sweep up
2372  *	completed transmit jobs, etc.
2373  */
2374 static void
2375 wm_tick(void *arg)
2376 {
2377 	struct wm_softc *sc = arg;
2378 	int s;
2379 
2380 	s = splnet();
2381 
2382 	if (sc->sc_type >= WM_T_82542_2_1) {
2383 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2384 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2385 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2386 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2387 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2388 	}
2389 
2390 	if (sc->sc_flags & WM_F_HAS_MII)
2391 		mii_tick(&sc->sc_mii);
2392 	else
2393 		wm_tbi_check_link(sc);
2394 
2395 	splx(s);
2396 
2397 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2398 }
2399 
2400 /*
2401  * wm_reset:
2402  *
2403  *	Reset the i82542 chip.
2404  */
2405 static void
2406 wm_reset(struct wm_softc *sc)
2407 {
2408 	int i;
2409 
2410 	/*
2411 	 * Allocate on-chip memory according to the MTU size.
2412 	 * The Packet Buffer Allocation register must be written
2413 	 * before the chip is reset.
2414 	 */
2415 	if (sc->sc_type < WM_T_82547) {
2416 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2417 		    PBA_40K : PBA_48K;
2418 	} else {
2419 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2420 		    PBA_22K : PBA_30K;
2421 		sc->sc_txfifo_head = 0;
2422 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2423 		sc->sc_txfifo_size =
2424 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2425 		sc->sc_txfifo_stall = 0;
2426 	}
2427 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2428 
2429 	switch (sc->sc_type) {
2430 	case WM_T_82544:
2431 	case WM_T_82540:
2432 	case WM_T_82545:
2433 	case WM_T_82546:
2434 	case WM_T_82541:
2435 	case WM_T_82541_2:
2436 		/*
2437 		 * On some chipsets, a reset through a memory-mapped write
2438 		 * cycle can cause the chip to reset before completing the
2439 		 * write cycle.  This causes major headache that can be
2440 		 * avoided by issuing the reset via indirect register writes
2441 		 * through I/O space.
2442 		 *
2443 		 * So, if we successfully mapped the I/O BAR at attach time,
2444 		 * use that.  Otherwise, try our luck with a memory-mapped
2445 		 * reset.
2446 		 */
2447 		if (sc->sc_flags & WM_F_IOH_VALID)
2448 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2449 		else
2450 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2451 		break;
2452 
2453 	case WM_T_82545_3:
2454 	case WM_T_82546_3:
2455 		/* Use the shadow control register on these chips. */
2456 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2457 		break;
2458 
2459 	default:
2460 		/* Everything else can safely use the documented method. */
2461 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2462 		break;
2463 	}
2464 	delay(10000);
2465 
2466 	for (i = 0; i < 1000; i++) {
2467 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2468 			return;
2469 		delay(20);
2470 	}
2471 
2472 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2473 		log(LOG_ERR, "%s: reset failed to complete\n",
2474 		    sc->sc_dev.dv_xname);
2475 }
2476 
2477 /*
2478  * wm_init:		[ifnet interface function]
2479  *
2480  *	Initialize the interface.  Must be called at splnet().
2481  */
2482 static int
2483 wm_init(struct ifnet *ifp)
2484 {
2485 	struct wm_softc *sc = ifp->if_softc;
2486 	struct wm_rxsoft *rxs;
2487 	int i, error = 0;
2488 	uint32_t reg;
2489 
2490 	/*
2491 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2492 	 * There is a small but measurable benefit to avoiding the adjusment
2493 	 * of the descriptor so that the headers are aligned, for normal mtu,
2494 	 * on such platforms.  One possibility is that the DMA itself is
2495 	 * slightly more efficient if the front of the entire packet (instead
2496 	 * of the front of the headers) is aligned.
2497 	 *
2498 	 * Note we must always set align_tweak to 0 if we are using
2499 	 * jumbo frames.
2500 	 */
2501 #ifdef __NO_STRICT_ALIGNMENT
2502 	sc->sc_align_tweak = 0;
2503 #else
2504 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2505 		sc->sc_align_tweak = 0;
2506 	else
2507 		sc->sc_align_tweak = 2;
2508 #endif /* __NO_STRICT_ALIGNMENT */
2509 
2510 	/* Cancel any pending I/O. */
2511 	wm_stop(ifp, 0);
2512 
2513 	/* Reset the chip to a known state. */
2514 	wm_reset(sc);
2515 
2516 	/* Initialize the transmit descriptor ring. */
2517 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2518 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2519 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2520 	sc->sc_txfree = WM_NTXDESC(sc);
2521 	sc->sc_txnext = 0;
2522 
2523 	if (sc->sc_type < WM_T_82543) {
2524 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2525 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2526 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2527 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2528 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2529 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2530 	} else {
2531 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2532 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2533 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2534 		CSR_WRITE(sc, WMREG_TDH, 0);
2535 		CSR_WRITE(sc, WMREG_TDT, 0);
2536 		CSR_WRITE(sc, WMREG_TIDV, 128);
2537 
2538 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2539 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2540 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2541 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2542 	}
2543 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2544 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2545 
2546 	/* Initialize the transmit job descriptors. */
2547 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2548 		sc->sc_txsoft[i].txs_mbuf = NULL;
2549 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2550 	sc->sc_txsnext = 0;
2551 	sc->sc_txsdirty = 0;
2552 
2553 	/*
2554 	 * Initialize the receive descriptor and receive job
2555 	 * descriptor rings.
2556 	 */
2557 	if (sc->sc_type < WM_T_82543) {
2558 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2559 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2560 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2561 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2562 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2563 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2564 
2565 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2566 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2567 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2568 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2569 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2570 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2571 	} else {
2572 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2573 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2574 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2575 		CSR_WRITE(sc, WMREG_RDH, 0);
2576 		CSR_WRITE(sc, WMREG_RDT, 0);
2577 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2578 	}
2579 	for (i = 0; i < WM_NRXDESC; i++) {
2580 		rxs = &sc->sc_rxsoft[i];
2581 		if (rxs->rxs_mbuf == NULL) {
2582 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2583 				log(LOG_ERR, "%s: unable to allocate or map rx "
2584 				    "buffer %d, error = %d\n",
2585 				    sc->sc_dev.dv_xname, i, error);
2586 				/*
2587 				 * XXX Should attempt to run with fewer receive
2588 				 * XXX buffers instead of just failing.
2589 				 */
2590 				wm_rxdrain(sc);
2591 				goto out;
2592 			}
2593 		} else
2594 			WM_INIT_RXDESC(sc, i);
2595 	}
2596 	sc->sc_rxptr = 0;
2597 	sc->sc_rxdiscard = 0;
2598 	WM_RXCHAIN_RESET(sc);
2599 
2600 	/*
2601 	 * Clear out the VLAN table -- we don't use it (yet).
2602 	 */
2603 	CSR_WRITE(sc, WMREG_VET, 0);
2604 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2605 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2606 
2607 	/*
2608 	 * Set up flow-control parameters.
2609 	 *
2610 	 * XXX Values could probably stand some tuning.
2611 	 */
2612 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2613 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2614 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2615 
2616 	sc->sc_fcrtl = FCRTL_DFLT;
2617 	if (sc->sc_type < WM_T_82543) {
2618 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2619 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2620 	} else {
2621 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2622 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2623 	}
2624 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2625 
2626 #if 0 /* XXXJRT */
2627 	/* Deal with VLAN enables. */
2628 	if (sc->sc_ethercom.ec_nvlans != 0)
2629 		sc->sc_ctrl |= CTRL_VME;
2630 	else
2631 #endif /* XXXJRT */
2632 		sc->sc_ctrl &= ~CTRL_VME;
2633 
2634 	/* Write the control registers. */
2635 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2636 #if 0
2637 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2638 #endif
2639 
2640 	/*
2641 	 * Set up checksum offload parameters.
2642 	 */
2643 	reg = CSR_READ(sc, WMREG_RXCSUM);
2644 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2645 		reg |= RXCSUM_IPOFL;
2646 	else
2647 		reg &= ~RXCSUM_IPOFL;
2648 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2649 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2650 	else {
2651 		reg &= ~RXCSUM_TUOFL;
2652 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2653 			reg &= ~RXCSUM_IPOFL;
2654 	}
2655 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2656 
2657 	/*
2658 	 * Set up the interrupt registers.
2659 	 */
2660 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2661 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2662 	    ICR_RXO | ICR_RXT0;
2663 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2664 		sc->sc_icr |= ICR_RXCFG;
2665 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2666 
2667 	/* Set up the inter-packet gap. */
2668 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2669 
2670 #if 0 /* XXXJRT */
2671 	/* Set the VLAN ethernetype. */
2672 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2673 #endif
2674 
2675 	/*
2676 	 * Set up the transmit control register; we start out with
2677 	 * a collision distance suitable for FDX, but update it whe
2678 	 * we resolve the media type.
2679 	 */
2680 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2681 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2682 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2683 
2684 	/* Set the media. */
2685 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2686 
2687 	/*
2688 	 * Set up the receive control register; we actually program
2689 	 * the register when we set the receive filter.  Use multicast
2690 	 * address offset type 0.
2691 	 *
2692 	 * Only the i82544 has the ability to strip the incoming
2693 	 * CRC, so we don't enable that feature.
2694 	 */
2695 	sc->sc_mchash_type = 0;
2696 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2697 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2698 
2699 	if(MCLBYTES == 2048) {
2700 		sc->sc_rctl |= RCTL_2k;
2701 	} else {
2702 		if(sc->sc_type >= WM_T_82543) {
2703 			switch(MCLBYTES) {
2704 			case 4096:
2705 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2706 				break;
2707 			case 8192:
2708 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2709 				break;
2710 			case 16384:
2711 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2712 				break;
2713 			default:
2714 				panic("wm_init: MCLBYTES %d unsupported",
2715 				    MCLBYTES);
2716 				break;
2717 			}
2718 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
2719 	}
2720 
2721 	/* Set the receive filter. */
2722 	wm_set_filter(sc);
2723 
2724 	/* Start the one second link check clock. */
2725 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2726 
2727 	/* ...all done! */
2728 	ifp->if_flags |= IFF_RUNNING;
2729 	ifp->if_flags &= ~IFF_OACTIVE;
2730 
2731  out:
2732 	if (error)
2733 		log(LOG_ERR, "%s: interface not running\n",
2734 		    sc->sc_dev.dv_xname);
2735 	return (error);
2736 }
2737 
2738 /*
2739  * wm_rxdrain:
2740  *
2741  *	Drain the receive queue.
2742  */
2743 static void
2744 wm_rxdrain(struct wm_softc *sc)
2745 {
2746 	struct wm_rxsoft *rxs;
2747 	int i;
2748 
2749 	for (i = 0; i < WM_NRXDESC; i++) {
2750 		rxs = &sc->sc_rxsoft[i];
2751 		if (rxs->rxs_mbuf != NULL) {
2752 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2753 			m_freem(rxs->rxs_mbuf);
2754 			rxs->rxs_mbuf = NULL;
2755 		}
2756 	}
2757 }
2758 
2759 /*
2760  * wm_stop:		[ifnet interface function]
2761  *
2762  *	Stop transmission on the interface.
2763  */
2764 static void
2765 wm_stop(struct ifnet *ifp, int disable)
2766 {
2767 	struct wm_softc *sc = ifp->if_softc;
2768 	struct wm_txsoft *txs;
2769 	int i;
2770 
2771 	/* Stop the one second clock. */
2772 	callout_stop(&sc->sc_tick_ch);
2773 
2774 	/* Stop the 82547 Tx FIFO stall check timer. */
2775 	if (sc->sc_type == WM_T_82547)
2776 		callout_stop(&sc->sc_txfifo_ch);
2777 
2778 	if (sc->sc_flags & WM_F_HAS_MII) {
2779 		/* Down the MII. */
2780 		mii_down(&sc->sc_mii);
2781 	}
2782 
2783 	/* Stop the transmit and receive processes. */
2784 	CSR_WRITE(sc, WMREG_TCTL, 0);
2785 	CSR_WRITE(sc, WMREG_RCTL, 0);
2786 
2787 	/* Release any queued transmit buffers. */
2788 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2789 		txs = &sc->sc_txsoft[i];
2790 		if (txs->txs_mbuf != NULL) {
2791 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2792 			m_freem(txs->txs_mbuf);
2793 			txs->txs_mbuf = NULL;
2794 		}
2795 	}
2796 
2797 	if (disable)
2798 		wm_rxdrain(sc);
2799 
2800 	/* Mark the interface as down and cancel the watchdog timer. */
2801 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2802 	ifp->if_timer = 0;
2803 }
2804 
2805 /*
2806  * wm_acquire_eeprom:
2807  *
2808  *	Perform the EEPROM handshake required on some chips.
2809  */
2810 static int
2811 wm_acquire_eeprom(struct wm_softc *sc)
2812 {
2813 	uint32_t reg;
2814 	int x;
2815 
2816 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
2817 		reg = CSR_READ(sc, WMREG_EECD);
2818 
2819 		/* Request EEPROM access. */
2820 		reg |= EECD_EE_REQ;
2821 		CSR_WRITE(sc, WMREG_EECD, reg);
2822 
2823 		/* ..and wait for it to be granted. */
2824 		for (x = 0; x < 100; x++) {
2825 			reg = CSR_READ(sc, WMREG_EECD);
2826 			if (reg & EECD_EE_GNT)
2827 				break;
2828 			delay(5);
2829 		}
2830 		if ((reg & EECD_EE_GNT) == 0) {
2831 			aprint_error("%s: could not acquire EEPROM GNT\n",
2832 			    sc->sc_dev.dv_xname);
2833 			reg &= ~EECD_EE_REQ;
2834 			CSR_WRITE(sc, WMREG_EECD, reg);
2835 			return (1);
2836 		}
2837 	}
2838 
2839 	return (0);
2840 }
2841 
2842 /*
2843  * wm_release_eeprom:
2844  *
2845  *	Release the EEPROM mutex.
2846  */
2847 static void
2848 wm_release_eeprom(struct wm_softc *sc)
2849 {
2850 	uint32_t reg;
2851 
2852 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2853 		reg = CSR_READ(sc, WMREG_EECD);
2854 		reg &= ~EECD_EE_REQ;
2855 		CSR_WRITE(sc, WMREG_EECD, reg);
2856 	}
2857 }
2858 
2859 /*
2860  * wm_eeprom_sendbits:
2861  *
2862  *	Send a series of bits to the EEPROM.
2863  */
2864 static void
2865 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2866 {
2867 	uint32_t reg;
2868 	int x;
2869 
2870 	reg = CSR_READ(sc, WMREG_EECD);
2871 
2872 	for (x = nbits; x > 0; x--) {
2873 		if (bits & (1U << (x - 1)))
2874 			reg |= EECD_DI;
2875 		else
2876 			reg &= ~EECD_DI;
2877 		CSR_WRITE(sc, WMREG_EECD, reg);
2878 		delay(2);
2879 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2880 		delay(2);
2881 		CSR_WRITE(sc, WMREG_EECD, reg);
2882 		delay(2);
2883 	}
2884 }
2885 
2886 /*
2887  * wm_eeprom_recvbits:
2888  *
2889  *	Receive a series of bits from the EEPROM.
2890  */
2891 static void
2892 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2893 {
2894 	uint32_t reg, val;
2895 	int x;
2896 
2897 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2898 
2899 	val = 0;
2900 	for (x = nbits; x > 0; x--) {
2901 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2902 		delay(2);
2903 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2904 			val |= (1U << (x - 1));
2905 		CSR_WRITE(sc, WMREG_EECD, reg);
2906 		delay(2);
2907 	}
2908 	*valp = val;
2909 }
2910 
2911 /*
2912  * wm_read_eeprom_uwire:
2913  *
2914  *	Read a word from the EEPROM using the MicroWire protocol.
2915  */
2916 static int
2917 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2918 {
2919 	uint32_t reg, val;
2920 	int i;
2921 
2922 	for (i = 0; i < wordcnt; i++) {
2923 		/* Clear SK and DI. */
2924 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2925 		CSR_WRITE(sc, WMREG_EECD, reg);
2926 
2927 		/* Set CHIP SELECT. */
2928 		reg |= EECD_CS;
2929 		CSR_WRITE(sc, WMREG_EECD, reg);
2930 		delay(2);
2931 
2932 		/* Shift in the READ command. */
2933 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2934 
2935 		/* Shift in address. */
2936 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2937 
2938 		/* Shift out the data. */
2939 		wm_eeprom_recvbits(sc, &val, 16);
2940 		data[i] = val & 0xffff;
2941 
2942 		/* Clear CHIP SELECT. */
2943 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2944 		CSR_WRITE(sc, WMREG_EECD, reg);
2945 		delay(2);
2946 	}
2947 
2948 	return (0);
2949 }
2950 
2951 /*
2952  * wm_spi_eeprom_ready:
2953  *
2954  *	Wait for a SPI EEPROM to be ready for commands.
2955  */
2956 static int
2957 wm_spi_eeprom_ready(struct wm_softc *sc)
2958 {
2959 	uint32_t val;
2960 	int usec;
2961 
2962 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2963 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2964 		wm_eeprom_recvbits(sc, &val, 8);
2965 		if ((val & SPI_SR_RDY) == 0)
2966 			break;
2967 	}
2968 	if (usec >= SPI_MAX_RETRIES) {
2969 		aprint_error("%s: EEPROM failed to become ready\n",
2970 		    sc->sc_dev.dv_xname);
2971 		return (1);
2972 	}
2973 	return (0);
2974 }
2975 
2976 /*
2977  * wm_read_eeprom_spi:
2978  *
2979  *	Read a work from the EEPROM using the SPI protocol.
2980  */
2981 static int
2982 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2983 {
2984 	uint32_t reg, val;
2985 	int i;
2986 	uint8_t opc;
2987 
2988 	/* Clear SK and CS. */
2989 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2990 	CSR_WRITE(sc, WMREG_EECD, reg);
2991 	delay(2);
2992 
2993 	if (wm_spi_eeprom_ready(sc))
2994 		return (1);
2995 
2996 	/* Toggle CS to flush commands. */
2997 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2998 	delay(2);
2999 	CSR_WRITE(sc, WMREG_EECD, reg);
3000 	delay(2);
3001 
3002 	opc = SPI_OPC_READ;
3003 	if (sc->sc_ee_addrbits == 8 && word >= 128)
3004 		opc |= SPI_OPC_A8;
3005 
3006 	wm_eeprom_sendbits(sc, opc, 8);
3007 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3008 
3009 	for (i = 0; i < wordcnt; i++) {
3010 		wm_eeprom_recvbits(sc, &val, 16);
3011 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3012 	}
3013 
3014 	/* Raise CS and clear SK. */
3015 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3016 	CSR_WRITE(sc, WMREG_EECD, reg);
3017 	delay(2);
3018 
3019 	return (0);
3020 }
3021 
3022 /*
3023  * wm_read_eeprom:
3024  *
3025  *	Read data from the serial EEPROM.
3026  */
3027 static int
3028 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3029 {
3030 	int rv;
3031 
3032 	if (wm_acquire_eeprom(sc))
3033 		return (1);
3034 
3035 	if (sc->sc_flags & WM_F_EEPROM_SPI)
3036 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3037 	else
3038 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3039 
3040 	wm_release_eeprom(sc);
3041 	return (rv);
3042 }
3043 
3044 /*
3045  * wm_add_rxbuf:
3046  *
3047  *	Add a receive buffer to the indiciated descriptor.
3048  */
3049 static int
3050 wm_add_rxbuf(struct wm_softc *sc, int idx)
3051 {
3052 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3053 	struct mbuf *m;
3054 	int error;
3055 
3056 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3057 	if (m == NULL)
3058 		return (ENOBUFS);
3059 
3060 	MCLGET(m, M_DONTWAIT);
3061 	if ((m->m_flags & M_EXT) == 0) {
3062 		m_freem(m);
3063 		return (ENOBUFS);
3064 	}
3065 
3066 	if (rxs->rxs_mbuf != NULL)
3067 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3068 
3069 	rxs->rxs_mbuf = m;
3070 
3071 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3072 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3073 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3074 	if (error) {
3075 		/* XXX XXX XXX */
3076 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3077 		    sc->sc_dev.dv_xname, idx, error);
3078 		panic("wm_add_rxbuf");
3079 	}
3080 
3081 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3082 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3083 
3084 	WM_INIT_RXDESC(sc, idx);
3085 
3086 	return (0);
3087 }
3088 
3089 /*
3090  * wm_set_ral:
3091  *
3092  *	Set an entery in the receive address list.
3093  */
3094 static void
3095 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3096 {
3097 	uint32_t ral_lo, ral_hi;
3098 
3099 	if (enaddr != NULL) {
3100 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3101 		    (enaddr[3] << 24);
3102 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3103 		ral_hi |= RAL_AV;
3104 	} else {
3105 		ral_lo = 0;
3106 		ral_hi = 0;
3107 	}
3108 
3109 	if (sc->sc_type >= WM_T_82544) {
3110 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3111 		    ral_lo);
3112 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3113 		    ral_hi);
3114 	} else {
3115 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3116 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3117 	}
3118 }
3119 
3120 /*
3121  * wm_mchash:
3122  *
3123  *	Compute the hash of the multicast address for the 4096-bit
3124  *	multicast filter.
3125  */
3126 static uint32_t
3127 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3128 {
3129 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3130 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3131 	uint32_t hash;
3132 
3133 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3134 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3135 
3136 	return (hash & 0xfff);
3137 }
3138 
3139 /*
3140  * wm_set_filter:
3141  *
3142  *	Set up the receive filter.
3143  */
3144 static void
3145 wm_set_filter(struct wm_softc *sc)
3146 {
3147 	struct ethercom *ec = &sc->sc_ethercom;
3148 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3149 	struct ether_multi *enm;
3150 	struct ether_multistep step;
3151 	bus_addr_t mta_reg;
3152 	uint32_t hash, reg, bit;
3153 	int i;
3154 
3155 	if (sc->sc_type >= WM_T_82544)
3156 		mta_reg = WMREG_CORDOVA_MTA;
3157 	else
3158 		mta_reg = WMREG_MTA;
3159 
3160 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3161 
3162 	if (ifp->if_flags & IFF_BROADCAST)
3163 		sc->sc_rctl |= RCTL_BAM;
3164 	if (ifp->if_flags & IFF_PROMISC) {
3165 		sc->sc_rctl |= RCTL_UPE;
3166 		goto allmulti;
3167 	}
3168 
3169 	/*
3170 	 * Set the station address in the first RAL slot, and
3171 	 * clear the remaining slots.
3172 	 */
3173 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3174 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3175 		wm_set_ral(sc, NULL, i);
3176 
3177 	/* Clear out the multicast table. */
3178 	for (i = 0; i < WM_MC_TABSIZE; i++)
3179 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3180 
3181 	ETHER_FIRST_MULTI(step, ec, enm);
3182 	while (enm != NULL) {
3183 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3184 			/*
3185 			 * We must listen to a range of multicast addresses.
3186 			 * For now, just accept all multicasts, rather than
3187 			 * trying to set only those filter bits needed to match
3188 			 * the range.  (At this time, the only use of address
3189 			 * ranges is for IP multicast routing, for which the
3190 			 * range is big enough to require all bits set.)
3191 			 */
3192 			goto allmulti;
3193 		}
3194 
3195 		hash = wm_mchash(sc, enm->enm_addrlo);
3196 
3197 		reg = (hash >> 5) & 0x7f;
3198 		bit = hash & 0x1f;
3199 
3200 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3201 		hash |= 1U << bit;
3202 
3203 		/* XXX Hardware bug?? */
3204 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3205 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3206 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3207 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3208 		} else
3209 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3210 
3211 		ETHER_NEXT_MULTI(step, enm);
3212 	}
3213 
3214 	ifp->if_flags &= ~IFF_ALLMULTI;
3215 	goto setit;
3216 
3217  allmulti:
3218 	ifp->if_flags |= IFF_ALLMULTI;
3219 	sc->sc_rctl |= RCTL_MPE;
3220 
3221  setit:
3222 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3223 }
3224 
3225 /*
3226  * wm_tbi_mediainit:
3227  *
3228  *	Initialize media for use on 1000BASE-X devices.
3229  */
3230 static void
3231 wm_tbi_mediainit(struct wm_softc *sc)
3232 {
3233 	const char *sep = "";
3234 
3235 	if (sc->sc_type < WM_T_82543)
3236 		sc->sc_tipg = TIPG_WM_DFLT;
3237 	else
3238 		sc->sc_tipg = TIPG_LG_DFLT;
3239 
3240 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3241 	    wm_tbi_mediastatus);
3242 
3243 	/*
3244 	 * SWD Pins:
3245 	 *
3246 	 *	0 = Link LED (output)
3247 	 *	1 = Loss Of Signal (input)
3248 	 */
3249 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3250 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3251 
3252 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3253 
3254 #define	ADD(ss, mm, dd)							\
3255 do {									\
3256 	aprint_normal("%s%s", sep, ss);					\
3257 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3258 	sep = ", ";							\
3259 } while (/*CONSTCOND*/0)
3260 
3261 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
3262 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3263 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3264 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3265 	aprint_normal("\n");
3266 
3267 #undef ADD
3268 
3269 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3270 }
3271 
3272 /*
3273  * wm_tbi_mediastatus:	[ifmedia interface function]
3274  *
3275  *	Get the current interface media status on a 1000BASE-X device.
3276  */
3277 static void
3278 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3279 {
3280 	struct wm_softc *sc = ifp->if_softc;
3281 	uint32_t ctrl;
3282 
3283 	ifmr->ifm_status = IFM_AVALID;
3284 	ifmr->ifm_active = IFM_ETHER;
3285 
3286 	if (sc->sc_tbi_linkup == 0) {
3287 		ifmr->ifm_active |= IFM_NONE;
3288 		return;
3289 	}
3290 
3291 	ifmr->ifm_status |= IFM_ACTIVE;
3292 	ifmr->ifm_active |= IFM_1000_SX;
3293 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3294 		ifmr->ifm_active |= IFM_FDX;
3295 	ctrl = CSR_READ(sc, WMREG_CTRL);
3296 	if (ctrl & CTRL_RFCE)
3297 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3298 	if (ctrl & CTRL_TFCE)
3299 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3300 }
3301 
3302 /*
3303  * wm_tbi_mediachange:	[ifmedia interface function]
3304  *
3305  *	Set hardware to newly-selected media on a 1000BASE-X device.
3306  */
3307 static int
3308 wm_tbi_mediachange(struct ifnet *ifp)
3309 {
3310 	struct wm_softc *sc = ifp->if_softc;
3311 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3312 	uint32_t status;
3313 	int i;
3314 
3315 	sc->sc_txcw = ife->ifm_data;
3316 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3317 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3318 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3319 	sc->sc_txcw |= TXCW_ANE;
3320 
3321 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3322 	delay(10000);
3323 
3324 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3325 
3326 	sc->sc_tbi_anstate = 0;
3327 
3328 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3329 		/* Have signal; wait for the link to come up. */
3330 		for (i = 0; i < 50; i++) {
3331 			delay(10000);
3332 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3333 				break;
3334 		}
3335 
3336 		status = CSR_READ(sc, WMREG_STATUS);
3337 		if (status & STATUS_LU) {
3338 			/* Link is up. */
3339 			DPRINTF(WM_DEBUG_LINK,
3340 			    ("%s: LINK: set media -> link up %s\n",
3341 			    sc->sc_dev.dv_xname,
3342 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3343 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3344 			sc->sc_fcrtl &= ~FCRTL_XONE;
3345 			if (status & STATUS_FD)
3346 				sc->sc_tctl |=
3347 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3348 			else
3349 				sc->sc_tctl |=
3350 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3351 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3352 				sc->sc_fcrtl |= FCRTL_XONE;
3353 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3354 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3355 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3356 				      sc->sc_fcrtl);
3357 			sc->sc_tbi_linkup = 1;
3358 		} else {
3359 			/* Link is down. */
3360 			DPRINTF(WM_DEBUG_LINK,
3361 			    ("%s: LINK: set media -> link down\n",
3362 			    sc->sc_dev.dv_xname));
3363 			sc->sc_tbi_linkup = 0;
3364 		}
3365 	} else {
3366 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3367 		    sc->sc_dev.dv_xname));
3368 		sc->sc_tbi_linkup = 0;
3369 	}
3370 
3371 	wm_tbi_set_linkled(sc);
3372 
3373 	return (0);
3374 }
3375 
3376 /*
3377  * wm_tbi_set_linkled:
3378  *
3379  *	Update the link LED on 1000BASE-X devices.
3380  */
3381 static void
3382 wm_tbi_set_linkled(struct wm_softc *sc)
3383 {
3384 
3385 	if (sc->sc_tbi_linkup)
3386 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3387 	else
3388 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3389 
3390 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3391 }
3392 
3393 /*
3394  * wm_tbi_check_link:
3395  *
3396  *	Check the link on 1000BASE-X devices.
3397  */
3398 static void
3399 wm_tbi_check_link(struct wm_softc *sc)
3400 {
3401 	uint32_t rxcw, ctrl, status;
3402 
3403 	if (sc->sc_tbi_anstate == 0)
3404 		return;
3405 	else if (sc->sc_tbi_anstate > 1) {
3406 		DPRINTF(WM_DEBUG_LINK,
3407 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3408 		    sc->sc_tbi_anstate));
3409 		sc->sc_tbi_anstate--;
3410 		return;
3411 	}
3412 
3413 	sc->sc_tbi_anstate = 0;
3414 
3415 	rxcw = CSR_READ(sc, WMREG_RXCW);
3416 	ctrl = CSR_READ(sc, WMREG_CTRL);
3417 	status = CSR_READ(sc, WMREG_STATUS);
3418 
3419 	if ((status & STATUS_LU) == 0) {
3420 		DPRINTF(WM_DEBUG_LINK,
3421 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3422 		sc->sc_tbi_linkup = 0;
3423 	} else {
3424 		DPRINTF(WM_DEBUG_LINK,
3425 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3426 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3427 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3428 		sc->sc_fcrtl &= ~FCRTL_XONE;
3429 		if (status & STATUS_FD)
3430 			sc->sc_tctl |=
3431 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3432 		else
3433 			sc->sc_tctl |=
3434 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3435 		if (ctrl & CTRL_TFCE)
3436 			sc->sc_fcrtl |= FCRTL_XONE;
3437 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3438 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3439 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3440 			      sc->sc_fcrtl);
3441 		sc->sc_tbi_linkup = 1;
3442 	}
3443 
3444 	wm_tbi_set_linkled(sc);
3445 }
3446 
3447 /*
3448  * wm_gmii_reset:
3449  *
3450  *	Reset the PHY.
3451  */
3452 static void
3453 wm_gmii_reset(struct wm_softc *sc)
3454 {
3455 	uint32_t reg;
3456 
3457 	if (sc->sc_type >= WM_T_82544) {
3458 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3459 		delay(20000);
3460 
3461 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3462 		delay(20000);
3463 	} else {
3464 		/* The PHY reset pin is active-low. */
3465 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3466 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3467 		    CTRL_EXT_SWDPIN(4));
3468 		reg |= CTRL_EXT_SWDPIO(4);
3469 
3470 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3471 		delay(10);
3472 
3473 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3474 		delay(10);
3475 
3476 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3477 		delay(10);
3478 #if 0
3479 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3480 #endif
3481 	}
3482 }
3483 
3484 /*
3485  * wm_gmii_mediainit:
3486  *
3487  *	Initialize media for use on 1000BASE-T devices.
3488  */
3489 static void
3490 wm_gmii_mediainit(struct wm_softc *sc)
3491 {
3492 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3493 
3494 	/* We have MII. */
3495 	sc->sc_flags |= WM_F_HAS_MII;
3496 
3497 	sc->sc_tipg = TIPG_1000T_DFLT;
3498 
3499 	/*
3500 	 * Let the chip set speed/duplex on its own based on
3501 	 * signals from the PHY.
3502 	 */
3503 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3504 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3505 
3506 	/* Initialize our media structures and probe the GMII. */
3507 	sc->sc_mii.mii_ifp = ifp;
3508 
3509 	if (sc->sc_type >= WM_T_82544) {
3510 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3511 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3512 	} else {
3513 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3514 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3515 	}
3516 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
3517 
3518 	wm_gmii_reset(sc);
3519 
3520 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3521 	    wm_gmii_mediastatus);
3522 
3523 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3524 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
3525 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3526 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3527 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3528 	} else
3529 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3530 }
3531 
3532 /*
3533  * wm_gmii_mediastatus:	[ifmedia interface function]
3534  *
3535  *	Get the current interface media status on a 1000BASE-T device.
3536  */
3537 static void
3538 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3539 {
3540 	struct wm_softc *sc = ifp->if_softc;
3541 
3542 	mii_pollstat(&sc->sc_mii);
3543 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3544 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3545 			   sc->sc_flowflags;
3546 }
3547 
3548 /*
3549  * wm_gmii_mediachange:	[ifmedia interface function]
3550  *
3551  *	Set hardware to newly-selected media on a 1000BASE-T device.
3552  */
3553 static int
3554 wm_gmii_mediachange(struct ifnet *ifp)
3555 {
3556 	struct wm_softc *sc = ifp->if_softc;
3557 
3558 	if (ifp->if_flags & IFF_UP)
3559 		mii_mediachg(&sc->sc_mii);
3560 	return (0);
3561 }
3562 
3563 #define	MDI_IO		CTRL_SWDPIN(2)
3564 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
3565 #define	MDI_CLK		CTRL_SWDPIN(3)
3566 
3567 static void
3568 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3569 {
3570 	uint32_t i, v;
3571 
3572 	v = CSR_READ(sc, WMREG_CTRL);
3573 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3574 	v |= MDI_DIR | CTRL_SWDPIO(3);
3575 
3576 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3577 		if (data & i)
3578 			v |= MDI_IO;
3579 		else
3580 			v &= ~MDI_IO;
3581 		CSR_WRITE(sc, WMREG_CTRL, v);
3582 		delay(10);
3583 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3584 		delay(10);
3585 		CSR_WRITE(sc, WMREG_CTRL, v);
3586 		delay(10);
3587 	}
3588 }
3589 
3590 static uint32_t
3591 i82543_mii_recvbits(struct wm_softc *sc)
3592 {
3593 	uint32_t v, i, data = 0;
3594 
3595 	v = CSR_READ(sc, WMREG_CTRL);
3596 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3597 	v |= CTRL_SWDPIO(3);
3598 
3599 	CSR_WRITE(sc, WMREG_CTRL, v);
3600 	delay(10);
3601 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3602 	delay(10);
3603 	CSR_WRITE(sc, WMREG_CTRL, v);
3604 	delay(10);
3605 
3606 	for (i = 0; i < 16; i++) {
3607 		data <<= 1;
3608 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3609 		delay(10);
3610 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3611 			data |= 1;
3612 		CSR_WRITE(sc, WMREG_CTRL, v);
3613 		delay(10);
3614 	}
3615 
3616 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3617 	delay(10);
3618 	CSR_WRITE(sc, WMREG_CTRL, v);
3619 	delay(10);
3620 
3621 	return (data);
3622 }
3623 
3624 #undef MDI_IO
3625 #undef MDI_DIR
3626 #undef MDI_CLK
3627 
3628 /*
3629  * wm_gmii_i82543_readreg:	[mii interface function]
3630  *
3631  *	Read a PHY register on the GMII (i82543 version).
3632  */
3633 static int
3634 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3635 {
3636 	struct wm_softc *sc = (void *) self;
3637 	int rv;
3638 
3639 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3640 	i82543_mii_sendbits(sc, reg | (phy << 5) |
3641 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3642 	rv = i82543_mii_recvbits(sc) & 0xffff;
3643 
3644 	DPRINTF(WM_DEBUG_GMII,
3645 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3646 	    sc->sc_dev.dv_xname, phy, reg, rv));
3647 
3648 	return (rv);
3649 }
3650 
3651 /*
3652  * wm_gmii_i82543_writereg:	[mii interface function]
3653  *
3654  *	Write a PHY register on the GMII (i82543 version).
3655  */
3656 static void
3657 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3658 {
3659 	struct wm_softc *sc = (void *) self;
3660 
3661 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3662 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3663 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3664 	    (MII_COMMAND_START << 30), 32);
3665 }
3666 
3667 /*
3668  * wm_gmii_i82544_readreg:	[mii interface function]
3669  *
3670  *	Read a PHY register on the GMII.
3671  */
3672 static int
3673 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3674 {
3675 	struct wm_softc *sc = (void *) self;
3676 	uint32_t mdic = 0;
3677 	int i, rv;
3678 
3679 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3680 	    MDIC_REGADD(reg));
3681 
3682 	for (i = 0; i < 100; i++) {
3683 		mdic = CSR_READ(sc, WMREG_MDIC);
3684 		if (mdic & MDIC_READY)
3685 			break;
3686 		delay(10);
3687 	}
3688 
3689 	if ((mdic & MDIC_READY) == 0) {
3690 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3691 		    sc->sc_dev.dv_xname, phy, reg);
3692 		rv = 0;
3693 	} else if (mdic & MDIC_E) {
3694 #if 0 /* This is normal if no PHY is present. */
3695 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3696 		    sc->sc_dev.dv_xname, phy, reg);
3697 #endif
3698 		rv = 0;
3699 	} else {
3700 		rv = MDIC_DATA(mdic);
3701 		if (rv == 0xffff)
3702 			rv = 0;
3703 	}
3704 
3705 	return (rv);
3706 }
3707 
3708 /*
3709  * wm_gmii_i82544_writereg:	[mii interface function]
3710  *
3711  *	Write a PHY register on the GMII.
3712  */
3713 static void
3714 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3715 {
3716 	struct wm_softc *sc = (void *) self;
3717 	uint32_t mdic = 0;
3718 	int i;
3719 
3720 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3721 	    MDIC_REGADD(reg) | MDIC_DATA(val));
3722 
3723 	for (i = 0; i < 100; i++) {
3724 		mdic = CSR_READ(sc, WMREG_MDIC);
3725 		if (mdic & MDIC_READY)
3726 			break;
3727 		delay(10);
3728 	}
3729 
3730 	if ((mdic & MDIC_READY) == 0)
3731 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3732 		    sc->sc_dev.dv_xname, phy, reg);
3733 	else if (mdic & MDIC_E)
3734 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3735 		    sc->sc_dev.dv_xname, phy, reg);
3736 }
3737 
3738 /*
3739  * wm_gmii_statchg:	[mii interface function]
3740  *
3741  *	Callback from MII layer when media changes.
3742  */
3743 static void
3744 wm_gmii_statchg(struct device *self)
3745 {
3746 	struct wm_softc *sc = (void *) self;
3747 	struct mii_data *mii = &sc->sc_mii;
3748 
3749 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3750 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3751 	sc->sc_fcrtl &= ~FCRTL_XONE;
3752 
3753 	/*
3754 	 * Get flow control negotiation result.
3755 	 */
3756 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3757 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3758 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3759 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3760 	}
3761 
3762 	if (sc->sc_flowflags & IFM_FLOW) {
3763 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3764 			sc->sc_ctrl |= CTRL_TFCE;
3765 			sc->sc_fcrtl |= FCRTL_XONE;
3766 		}
3767 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3768 			sc->sc_ctrl |= CTRL_RFCE;
3769 	}
3770 
3771 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
3772 		DPRINTF(WM_DEBUG_LINK,
3773 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3774 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3775 	} else  {
3776 		DPRINTF(WM_DEBUG_LINK,
3777 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3778 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3779 	}
3780 
3781 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3782 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3783 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3784 						 : WMREG_FCRTL, sc->sc_fcrtl);
3785 }
3786