xref: /netbsd-src/sys/dev/pci/if_wm.c (revision eb961d0e02b7a46a9acfa877b02df48df6637278)
1 /*	$NetBSD: if_wm.c,v 1.114 2006/02/27 04:50:47 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.114 2006/02/27 04:50:47 thorpej Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67 
68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
69 
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78 
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82 
83 #include <netinet/in.h>			/* XXX for struct ip */
84 #include <netinet/in_systm.h>		/* XXX for struct ip */
85 #include <netinet/ip.h>			/* XXX for struct ip */
86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
87 
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99 
100 #include <dev/pci/if_wmreg.h>
101 
102 #ifdef WM_DEBUG
103 #define	WM_DEBUG_LINK		0x01
104 #define	WM_DEBUG_TX		0x02
105 #define	WM_DEBUG_RX		0x04
106 #define	WM_DEBUG_GMII		0x08
107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108 
109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
110 #else
111 #define	DPRINTF(x, y)	/* nothing */
112 #endif /* WM_DEBUG */
113 
114 /*
115  * Transmit descriptor list size.  Due to errata, we can only have
116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
117  * on >= 82544.  We tell the upper layers that they can queue a lot
118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119  * of them at a time.
120  *
121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
122  * chains containing many small mbufs have been observed in zero-copy
123  * situations with jumbo frames.
124  */
125 #define	WM_NTXSEGS		256
126 #define	WM_IFQUEUELEN		256
127 #define	WM_TXQUEUELEN_MAX	64
128 #define	WM_TXQUEUELEN_MAX_82547	16
129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
132 #define	WM_NTXDESC_82542	256
133 #define	WM_NTXDESC_82544	4096
134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139 
140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
141 
142 /*
143  * Receive descriptor list size.  We have one Rx buffer for normal
144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
145  * packet.  We allocate 256 receive descriptors, each with a 2k
146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147  */
148 #define	WM_NRXDESC		256
149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
152 
153 /*
154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
155  * a single clump that maps to a single DMA segment to make several things
156  * easier.
157  */
158 struct wm_control_data_82544 {
159 	/*
160 	 * The receive descriptors.
161 	 */
162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163 
164 	/*
165 	 * The transmit descriptors.  Put these at the end, because
166 	 * we might use a smaller number of them.
167 	 */
168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170 
171 struct wm_control_data_82542 {
172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175 
176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
179 
180 /*
181  * Software state for transmit jobs.
182  */
183 struct wm_txsoft {
184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
186 	int txs_firstdesc;		/* first descriptor in packet */
187 	int txs_lastdesc;		/* last descriptor in packet */
188 	int txs_ndesc;			/* # of descriptors used */
189 };
190 
191 /*
192  * Software state for receive buffers.  Each descriptor gets a
193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
194  * more than one buffer, we chain them together.
195  */
196 struct wm_rxsoft {
197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
199 };
200 
201 typedef enum {
202 	WM_T_unknown		= 0,
203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
205 	WM_T_82543,			/* i82543 */
206 	WM_T_82544,			/* i82544 */
207 	WM_T_82540,			/* i82540 */
208 	WM_T_82545,			/* i82545 */
209 	WM_T_82545_3,			/* i82545 3.0+ */
210 	WM_T_82546,			/* i82546 */
211 	WM_T_82546_3,			/* i82546 3.0+ */
212 	WM_T_82541,			/* i82541 */
213 	WM_T_82541_2,			/* i82541 2.0+ */
214 	WM_T_82547,			/* i82547 */
215 	WM_T_82547_2,			/* i82547 2.0+ */
216 } wm_chip_type;
217 
218 /*
219  * Software state per device.
220  */
221 struct wm_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_space_tag_t sc_iot;		/* I/O space tag */
226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
228 	struct ethercom sc_ethercom;	/* ethernet common data */
229 	void *sc_sdhook;		/* shutdown hook */
230 
231 	wm_chip_type sc_type;		/* chip type */
232 	int sc_flags;			/* flags; see below */
233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
234 	int sc_pcix_offset;		/* PCIX capability register offset */
235 	int sc_flowflags;		/* 802.3x flow control flags */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	int sc_ee_addrbits;		/* EEPROM address bits */
240 
241 	struct mii_data sc_mii;		/* MII/media information */
242 
243 	struct callout sc_tick_ch;	/* tick callout */
244 
245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
247 
248 	int		sc_align_tweak;
249 
250 	/*
251 	 * Software state for the transmit and receive descriptors.
252 	 */
253 	int			sc_txnum;	/* must be a power of two */
254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
256 
257 	/*
258 	 * Control data structures.
259 	 */
260 	int			sc_ntxdesc;	/* must be a power of two */
261 	struct wm_control_data_82544 *sc_control_data;
262 #define	sc_txdescs	sc_control_data->wcd_txdescs
263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
264 
265 #ifdef WM_EVENT_COUNTERS
266 	/* Event counters. */
267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
274 
275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
279 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
280 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
281 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
282 
283 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
284 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
285 
286 	struct evcnt sc_ev_tu;		/* Tx underrun */
287 
288 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
289 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
290 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
291 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
292 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
293 #endif /* WM_EVENT_COUNTERS */
294 
295 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
296 
297 	int	sc_txfree;		/* number of free Tx descriptors */
298 	int	sc_txnext;		/* next ready Tx descriptor */
299 
300 	int	sc_txsfree;		/* number of free Tx jobs */
301 	int	sc_txsnext;		/* next free Tx job */
302 	int	sc_txsdirty;		/* dirty Tx jobs */
303 
304 	/* These 5 variables are used only on the 82547. */
305 	int	sc_txfifo_size;		/* Tx FIFO size */
306 	int	sc_txfifo_head;		/* current head of FIFO */
307 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
308 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
309 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
310 
311 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
312 
313 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
314 	int	sc_rxdiscard;
315 	int	sc_rxlen;
316 	struct mbuf *sc_rxhead;
317 	struct mbuf *sc_rxtail;
318 	struct mbuf **sc_rxtailp;
319 
320 	uint32_t sc_ctrl;		/* prototype CTRL register */
321 #if 0
322 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
323 #endif
324 	uint32_t sc_icr;		/* prototype interrupt bits */
325 	uint32_t sc_itr;		/* prototype intr throttling reg */
326 	uint32_t sc_tctl;		/* prototype TCTL register */
327 	uint32_t sc_rctl;		/* prototype RCTL register */
328 	uint32_t sc_txcw;		/* prototype TXCW register */
329 	uint32_t sc_tipg;		/* prototype TIPG register */
330 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
331 	uint32_t sc_pba;		/* prototype PBA register */
332 
333 	int sc_tbi_linkup;		/* TBI link status */
334 	int sc_tbi_anstate;		/* autonegotiation state */
335 
336 	int sc_mchash_type;		/* multicast filter offset */
337 
338 #if NRND > 0
339 	rndsource_element_t rnd_source;	/* random source */
340 #endif
341 };
342 
343 #define	WM_RXCHAIN_RESET(sc)						\
344 do {									\
345 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
346 	*(sc)->sc_rxtailp = NULL;					\
347 	(sc)->sc_rxlen = 0;						\
348 } while (/*CONSTCOND*/0)
349 
350 #define	WM_RXCHAIN_LINK(sc, m)						\
351 do {									\
352 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
353 	(sc)->sc_rxtailp = &(m)->m_next;				\
354 } while (/*CONSTCOND*/0)
355 
356 /* sc_flags */
357 #define	WM_F_HAS_MII		0x01	/* has MII */
358 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
359 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
360 #define	WM_F_EEPROM_INVALID	0x08	/* EEPROM not present (bad checksum) */
361 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
362 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
363 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
364 #define	WM_F_CSA		0x80	/* bus is CSA */
365 
366 #ifdef WM_EVENT_COUNTERS
367 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
368 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
369 #else
370 #define	WM_EVCNT_INCR(ev)	/* nothing */
371 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
372 #endif
373 
374 #define	CSR_READ(sc, reg)						\
375 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
376 #define	CSR_WRITE(sc, reg, val)						\
377 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
378 #define	CSR_WRITE_FLUSH(sc)						\
379 	(void) CSR_READ((sc), WMREG_STATUS)
380 
381 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
382 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
383 
384 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
385 #define	WM_CDTXADDR_HI(sc, x)						\
386 	(sizeof(bus_addr_t) == 8 ?					\
387 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
388 
389 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
390 #define	WM_CDRXADDR_HI(sc, x)						\
391 	(sizeof(bus_addr_t) == 8 ?					\
392 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
393 
394 #define	WM_CDTXSYNC(sc, x, n, ops)					\
395 do {									\
396 	int __x, __n;							\
397 									\
398 	__x = (x);							\
399 	__n = (n);							\
400 									\
401 	/* If it will wrap around, sync to the end of the ring. */	\
402 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
403 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
404 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
405 		    (WM_NTXDESC(sc) - __x), (ops));			\
406 		__n -= (WM_NTXDESC(sc) - __x);				\
407 		__x = 0;						\
408 	}								\
409 									\
410 	/* Now sync whatever is left. */				\
411 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
412 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
413 } while (/*CONSTCOND*/0)
414 
415 #define	WM_CDRXSYNC(sc, x, ops)						\
416 do {									\
417 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
418 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
419 } while (/*CONSTCOND*/0)
420 
421 #define	WM_INIT_RXDESC(sc, x)						\
422 do {									\
423 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
424 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
425 	struct mbuf *__m = __rxs->rxs_mbuf;				\
426 									\
427 	/*								\
428 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
429 	 * so that the payload after the Ethernet header is aligned	\
430 	 * to a 4-byte boundary.					\
431 	 *								\
432 	 * XXX BRAINDAMAGE ALERT!					\
433 	 * The stupid chip uses the same size for every buffer, which	\
434 	 * is set in the Receive Control register.  We are using the 2K	\
435 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
436 	 * reason, we can't "scoot" packets longer than the standard	\
437 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
438 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
439 	 * the upper layer copy the headers.				\
440 	 */								\
441 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
442 									\
443 	wm_set_dma_addr(&__rxd->wrx_addr,				\
444 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
445 	__rxd->wrx_len = 0;						\
446 	__rxd->wrx_cksum = 0;						\
447 	__rxd->wrx_status = 0;						\
448 	__rxd->wrx_errors = 0;						\
449 	__rxd->wrx_special = 0;						\
450 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
451 									\
452 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
453 } while (/*CONSTCOND*/0)
454 
455 static void	wm_start(struct ifnet *);
456 static void	wm_watchdog(struct ifnet *);
457 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
458 static int	wm_init(struct ifnet *);
459 static void	wm_stop(struct ifnet *, int);
460 
461 static void	wm_shutdown(void *);
462 
463 static void	wm_reset(struct wm_softc *);
464 static void	wm_rxdrain(struct wm_softc *);
465 static int	wm_add_rxbuf(struct wm_softc *, int);
466 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
467 static int	wm_validate_eeprom_checksum(struct wm_softc *);
468 static void	wm_tick(void *);
469 
470 static void	wm_set_filter(struct wm_softc *);
471 
472 static int	wm_intr(void *);
473 static void	wm_txintr(struct wm_softc *);
474 static void	wm_rxintr(struct wm_softc *);
475 static void	wm_linkintr(struct wm_softc *, uint32_t);
476 
477 static void	wm_tbi_mediainit(struct wm_softc *);
478 static int	wm_tbi_mediachange(struct ifnet *);
479 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
480 
481 static void	wm_tbi_set_linkled(struct wm_softc *);
482 static void	wm_tbi_check_link(struct wm_softc *);
483 
484 static void	wm_gmii_reset(struct wm_softc *);
485 
486 static int	wm_gmii_i82543_readreg(struct device *, int, int);
487 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
488 
489 static int	wm_gmii_i82544_readreg(struct device *, int, int);
490 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
491 
492 static void	wm_gmii_statchg(struct device *);
493 
494 static void	wm_gmii_mediainit(struct wm_softc *);
495 static int	wm_gmii_mediachange(struct ifnet *);
496 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
497 
498 static int	wm_match(struct device *, struct cfdata *, void *);
499 static void	wm_attach(struct device *, struct device *, void *);
500 
501 CFATTACH_DECL(wm, sizeof(struct wm_softc),
502     wm_match, wm_attach, NULL, NULL);
503 
504 static void	wm_82547_txfifo_stall(void *);
505 
506 /*
507  * Devices supported by this driver.
508  */
509 static const struct wm_product {
510 	pci_vendor_id_t		wmp_vendor;
511 	pci_product_id_t	wmp_product;
512 	const char		*wmp_name;
513 	wm_chip_type		wmp_type;
514 	int			wmp_flags;
515 #define	WMP_F_1000X		0x01
516 #define	WMP_F_1000T		0x02
517 } wm_products[] = {
518 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
519 	  "Intel i82542 1000BASE-X Ethernet",
520 	  WM_T_82542_2_1,	WMP_F_1000X },
521 
522 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
523 	  "Intel i82543GC 1000BASE-X Ethernet",
524 	  WM_T_82543,		WMP_F_1000X },
525 
526 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
527 	  "Intel i82543GC 1000BASE-T Ethernet",
528 	  WM_T_82543,		WMP_F_1000T },
529 
530 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
531 	  "Intel i82544EI 1000BASE-T Ethernet",
532 	  WM_T_82544,		WMP_F_1000T },
533 
534 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
535 	  "Intel i82544EI 1000BASE-X Ethernet",
536 	  WM_T_82544,		WMP_F_1000X },
537 
538 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
539 	  "Intel i82544GC 1000BASE-T Ethernet",
540 	  WM_T_82544,		WMP_F_1000T },
541 
542 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
543 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
544 	  WM_T_82544,		WMP_F_1000T },
545 
546 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
547 	  "Intel i82540EM 1000BASE-T Ethernet",
548 	  WM_T_82540,		WMP_F_1000T },
549 
550 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
551 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
552 	  WM_T_82540,		WMP_F_1000T },
553 
554 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
555 	  "Intel i82540EP 1000BASE-T Ethernet",
556 	  WM_T_82540,		WMP_F_1000T },
557 
558 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
559 	  "Intel i82540EP 1000BASE-T Ethernet",
560 	  WM_T_82540,		WMP_F_1000T },
561 
562 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
563 	  "Intel i82540EP 1000BASE-T Ethernet",
564 	  WM_T_82540,		WMP_F_1000T },
565 
566 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
567 	  "Intel i82545EM 1000BASE-T Ethernet",
568 	  WM_T_82545,		WMP_F_1000T },
569 
570 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
571 	  "Intel i82545GM 1000BASE-T Ethernet",
572 	  WM_T_82545_3,		WMP_F_1000T },
573 
574 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
575 	  "Intel i82545GM 1000BASE-X Ethernet",
576 	  WM_T_82545_3,		WMP_F_1000X },
577 #if 0
578 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
579 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
580 	  WM_T_82545_3,		WMP_F_SERDES },
581 #endif
582 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
583 	  "Intel i82546EB 1000BASE-T Ethernet",
584 	  WM_T_82546,		WMP_F_1000T },
585 
586 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
587 	  "Intel i82546EB 1000BASE-T Ethernet",
588 	  WM_T_82546,		WMP_F_1000T },
589 
590 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
591 	  "Intel i82545EM 1000BASE-X Ethernet",
592 	  WM_T_82545,		WMP_F_1000X },
593 
594 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
595 	  "Intel i82546EB 1000BASE-X Ethernet",
596 	  WM_T_82546,		WMP_F_1000X },
597 
598 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
599 	  "Intel i82546GB 1000BASE-T Ethernet",
600 	  WM_T_82546_3,		WMP_F_1000T },
601 
602 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
603 	  "Intel i82546GB 1000BASE-X Ethernet",
604 	  WM_T_82546_3,		WMP_F_1000X },
605 #if 0
606 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
607 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
608 	  WM_T_82546_3,		WMP_F_SERDES },
609 #endif
610 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
611 	  "Intel i82541EI 1000BASE-T Ethernet",
612 	  WM_T_82541,		WMP_F_1000T },
613 
614 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
615 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
616 	  WM_T_82541,		WMP_F_1000T },
617 
618 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
619 	  "Intel i82541ER 1000BASE-T Ethernet",
620 	  WM_T_82541_2,		WMP_F_1000T },
621 
622 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
623 	  "Intel i82541GI 1000BASE-T Ethernet",
624 	  WM_T_82541_2,		WMP_F_1000T },
625 
626 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
627 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
628 	  WM_T_82541_2,		WMP_F_1000T },
629 
630 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
631 	  "Intel i82541PI 1000BASE-T Ethernet",
632 	  WM_T_82541_2,		WMP_F_1000T },
633 
634 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
635 	  "Intel i82547EI 1000BASE-T Ethernet",
636 	  WM_T_82547,		WMP_F_1000T },
637 
638 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
639 	  "Intel i82547GI 1000BASE-T Ethernet",
640 	  WM_T_82547_2,		WMP_F_1000T },
641 	{ 0,			0,
642 	  NULL,
643 	  0,			0 },
644 };
645 
646 #ifdef WM_EVENT_COUNTERS
647 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
648 #endif /* WM_EVENT_COUNTERS */
649 
650 #if 0 /* Not currently used */
651 static inline uint32_t
652 wm_io_read(struct wm_softc *sc, int reg)
653 {
654 
655 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
656 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
657 }
658 #endif
659 
660 static inline void
661 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
662 {
663 
664 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
665 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
666 }
667 
668 static inline void
669 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
670 {
671 	wa->wa_low = htole32(v & 0xffffffffU);
672 	if (sizeof(bus_addr_t) == 8)
673 		wa->wa_high = htole32((uint64_t) v >> 32);
674 	else
675 		wa->wa_high = 0;
676 }
677 
678 static const struct wm_product *
679 wm_lookup(const struct pci_attach_args *pa)
680 {
681 	const struct wm_product *wmp;
682 
683 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
684 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
685 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
686 			return (wmp);
687 	}
688 	return (NULL);
689 }
690 
691 static int
692 wm_match(struct device *parent, struct cfdata *cf, void *aux)
693 {
694 	struct pci_attach_args *pa = aux;
695 
696 	if (wm_lookup(pa) != NULL)
697 		return (1);
698 
699 	return (0);
700 }
701 
702 static void
703 wm_attach(struct device *parent, struct device *self, void *aux)
704 {
705 	struct wm_softc *sc = (void *) self;
706 	struct pci_attach_args *pa = aux;
707 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
708 	pci_chipset_tag_t pc = pa->pa_pc;
709 	pci_intr_handle_t ih;
710 	size_t cdata_size;
711 	const char *intrstr = NULL;
712 	const char *eetype;
713 	bus_space_tag_t memt;
714 	bus_space_handle_t memh;
715 	bus_dma_segment_t seg;
716 	int memh_valid;
717 	int i, rseg, error;
718 	const struct wm_product *wmp;
719 	uint8_t enaddr[ETHER_ADDR_LEN];
720 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
721 	pcireg_t preg, memtype;
722 	uint32_t reg;
723 	int pmreg;
724 
725 	callout_init(&sc->sc_tick_ch);
726 
727 	wmp = wm_lookup(pa);
728 	if (wmp == NULL) {
729 		printf("\n");
730 		panic("wm_attach: impossible");
731 	}
732 
733 	if (pci_dma64_available(pa))
734 		sc->sc_dmat = pa->pa_dmat64;
735 	else
736 		sc->sc_dmat = pa->pa_dmat;
737 
738 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
739 	aprint_naive(": Ethernet controller\n");
740 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
741 
742 	sc->sc_type = wmp->wmp_type;
743 	if (sc->sc_type < WM_T_82543) {
744 		if (preg < 2) {
745 			aprint_error("%s: i82542 must be at least rev. 2\n",
746 			    sc->sc_dev.dv_xname);
747 			return;
748 		}
749 		if (preg < 3)
750 			sc->sc_type = WM_T_82542_2_0;
751 	}
752 
753 	/*
754 	 * Map the device.  All devices support memory-mapped acccess,
755 	 * and it is really required for normal operation.
756 	 */
757 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
758 	switch (memtype) {
759 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
760 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
761 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
762 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
763 		break;
764 	default:
765 		memh_valid = 0;
766 	}
767 
768 	if (memh_valid) {
769 		sc->sc_st = memt;
770 		sc->sc_sh = memh;
771 	} else {
772 		aprint_error("%s: unable to map device registers\n",
773 		    sc->sc_dev.dv_xname);
774 		return;
775 	}
776 
777 	/*
778 	 * In addition, i82544 and later support I/O mapped indirect
779 	 * register access.  It is not desirable (nor supported in
780 	 * this driver) to use it for normal operation, though it is
781 	 * required to work around bugs in some chip versions.
782 	 */
783 	if (sc->sc_type >= WM_T_82544) {
784 		/* First we have to find the I/O BAR. */
785 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
786 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
787 			    PCI_MAPREG_TYPE_IO)
788 				break;
789 		}
790 		if (i == PCI_MAPREG_END)
791 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
792 			    sc->sc_dev.dv_xname);
793 		else {
794 			/*
795 			 * The i8254x doesn't apparently respond when the
796 			 * I/O BAR is 0, which looks somewhat like it's not
797 			 * been configured.
798 			 */
799 			preg = pci_conf_read(pc, pa->pa_tag, i);
800 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
801 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
802 				    sc->sc_dev.dv_xname);
803 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
804 					0, &sc->sc_iot, &sc->sc_ioh,
805 					NULL, NULL) == 0) {
806 				sc->sc_flags |= WM_F_IOH_VALID;
807 			} else {
808 				aprint_error("%s: WARNING: unable to map "
809 				    "I/O space\n", sc->sc_dev.dv_xname);
810 			}
811 		}
812 
813 	}
814 
815 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
816 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
817 	preg |= PCI_COMMAND_MASTER_ENABLE;
818 	if (sc->sc_type < WM_T_82542_2_1)
819 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
820 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
821 
822 	/* Get it out of power save mode, if needed. */
823 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
824 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
825 		    PCI_PMCSR_STATE_MASK;
826 		if (preg == PCI_PMCSR_STATE_D3) {
827 			/*
828 			 * The card has lost all configuration data in
829 			 * this state, so punt.
830 			 */
831 			aprint_error("%s: unable to wake from power state D3\n",
832 			    sc->sc_dev.dv_xname);
833 			return;
834 		}
835 		if (preg != PCI_PMCSR_STATE_D0) {
836 			aprint_normal("%s: waking up from power state D%d\n",
837 			    sc->sc_dev.dv_xname, preg);
838 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
839 			    PCI_PMCSR_STATE_D0);
840 		}
841 	}
842 
843 	/*
844 	 * Map and establish our interrupt.
845 	 */
846 	if (pci_intr_map(pa, &ih)) {
847 		aprint_error("%s: unable to map interrupt\n",
848 		    sc->sc_dev.dv_xname);
849 		return;
850 	}
851 	intrstr = pci_intr_string(pc, ih);
852 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
853 	if (sc->sc_ih == NULL) {
854 		aprint_error("%s: unable to establish interrupt",
855 		    sc->sc_dev.dv_xname);
856 		if (intrstr != NULL)
857 			aprint_normal(" at %s", intrstr);
858 		aprint_normal("\n");
859 		return;
860 	}
861 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
862 
863 	/*
864 	 * Determine a few things about the bus we're connected to.
865 	 */
866 	if (sc->sc_type < WM_T_82543) {
867 		/* We don't really know the bus characteristics here. */
868 		sc->sc_bus_speed = 33;
869 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
870 		/*
871 		 * CSA (Communication Streaming Architecture) is about as fast
872 		 * a 32-bit 66MHz PCI Bus.
873 		 */
874 		sc->sc_flags |= WM_F_CSA;
875 		sc->sc_bus_speed = 66;
876 		aprint_verbose("%s: Communication Streaming Architecture\n",
877 		    sc->sc_dev.dv_xname);
878 		if (sc->sc_type == WM_T_82547) {
879 			callout_init(&sc->sc_txfifo_ch);
880 			callout_setfunc(&sc->sc_txfifo_ch,
881 					wm_82547_txfifo_stall, sc);
882 			aprint_verbose("%s: using 82547 Tx FIFO stall "
883 				       "work-around\n", sc->sc_dev.dv_xname);
884 		}
885 	} else {
886 		reg = CSR_READ(sc, WMREG_STATUS);
887 		if (reg & STATUS_BUS64)
888 			sc->sc_flags |= WM_F_BUS64;
889 		if (sc->sc_type >= WM_T_82544 &&
890 		    (reg & STATUS_PCIX_MODE) != 0) {
891 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
892 
893 			sc->sc_flags |= WM_F_PCIX;
894 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
895 					       PCI_CAP_PCIX,
896 					       &sc->sc_pcix_offset, NULL) == 0)
897 				aprint_error("%s: unable to find PCIX "
898 				    "capability\n", sc->sc_dev.dv_xname);
899 			else if (sc->sc_type != WM_T_82545_3 &&
900 				 sc->sc_type != WM_T_82546_3) {
901 				/*
902 				 * Work around a problem caused by the BIOS
903 				 * setting the max memory read byte count
904 				 * incorrectly.
905 				 */
906 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
907 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
908 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
909 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
910 
911 				bytecnt =
912 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
913 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
914 				maxb =
915 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
916 				    PCI_PCIX_STATUS_MAXB_SHIFT;
917 				if (bytecnt > maxb) {
918 					aprint_verbose("%s: resetting PCI-X "
919 					    "MMRBC: %d -> %d\n",
920 					    sc->sc_dev.dv_xname,
921 					    512 << bytecnt, 512 << maxb);
922 					pcix_cmd = (pcix_cmd &
923 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
924 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
925 					pci_conf_write(pa->pa_pc, pa->pa_tag,
926 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
927 					    pcix_cmd);
928 				}
929 			}
930 		}
931 		/*
932 		 * The quad port adapter is special; it has a PCIX-PCIX
933 		 * bridge on the board, and can run the secondary bus at
934 		 * a higher speed.
935 		 */
936 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
937 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
938 								      : 66;
939 		} else if (sc->sc_flags & WM_F_PCIX) {
940 			switch (reg & STATUS_PCIXSPD_MASK) {
941 			case STATUS_PCIXSPD_50_66:
942 				sc->sc_bus_speed = 66;
943 				break;
944 			case STATUS_PCIXSPD_66_100:
945 				sc->sc_bus_speed = 100;
946 				break;
947 			case STATUS_PCIXSPD_100_133:
948 				sc->sc_bus_speed = 133;
949 				break;
950 			default:
951 				aprint_error(
952 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
953 				    sc->sc_dev.dv_xname,
954 				    reg & STATUS_PCIXSPD_MASK);
955 				sc->sc_bus_speed = 66;
956 			}
957 		} else
958 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
959 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
960 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
961 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
962 	}
963 
964 	/*
965 	 * Allocate the control data structures, and create and load the
966 	 * DMA map for it.
967 	 *
968 	 * NOTE: All Tx descriptors must be in the same 4G segment of
969 	 * memory.  So must Rx descriptors.  We simplify by allocating
970 	 * both sets within the same 4G segment.
971 	 */
972 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
973 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
974 	cdata_size = sc->sc_type < WM_T_82544 ?
975 	    sizeof(struct wm_control_data_82542) :
976 	    sizeof(struct wm_control_data_82544);
977 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
978 				      (bus_size_t) 0x100000000ULL,
979 				      &seg, 1, &rseg, 0)) != 0) {
980 		aprint_error(
981 		    "%s: unable to allocate control data, error = %d\n",
982 		    sc->sc_dev.dv_xname, error);
983 		goto fail_0;
984 	}
985 
986 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
987 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
988 		aprint_error("%s: unable to map control data, error = %d\n",
989 		    sc->sc_dev.dv_xname, error);
990 		goto fail_1;
991 	}
992 
993 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
994 				       0, 0, &sc->sc_cddmamap)) != 0) {
995 		aprint_error("%s: unable to create control data DMA map, "
996 		    "error = %d\n", sc->sc_dev.dv_xname, error);
997 		goto fail_2;
998 	}
999 
1000 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1001 				     sc->sc_control_data, cdata_size, NULL,
1002 				     0)) != 0) {
1003 		aprint_error(
1004 		    "%s: unable to load control data DMA map, error = %d\n",
1005 		    sc->sc_dev.dv_xname, error);
1006 		goto fail_3;
1007 	}
1008 
1009 
1010 	/*
1011 	 * Create the transmit buffer DMA maps.
1012 	 */
1013 	WM_TXQUEUELEN(sc) =
1014 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1015 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1016 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1017 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1018 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1019 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1020 			aprint_error("%s: unable to create Tx DMA map %d, "
1021 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1022 			goto fail_4;
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * Create the receive buffer DMA maps.
1028 	 */
1029 	for (i = 0; i < WM_NRXDESC; i++) {
1030 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1031 					       MCLBYTES, 0, 0,
1032 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1033 			aprint_error("%s: unable to create Rx DMA map %d, "
1034 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1035 			goto fail_5;
1036 		}
1037 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1038 	}
1039 
1040 	/*
1041 	 * Reset the chip to a known state.
1042 	 */
1043 	wm_reset(sc);
1044 
1045 	/*
1046 	 * Get some information about the EEPROM.
1047 	 */
1048 	if (sc->sc_type >= WM_T_82540)
1049 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1050 	if (sc->sc_type <= WM_T_82544)
1051 		sc->sc_ee_addrbits = 6;
1052 	else if (sc->sc_type <= WM_T_82546_3) {
1053 		reg = CSR_READ(sc, WMREG_EECD);
1054 		if (reg & EECD_EE_SIZE)
1055 			sc->sc_ee_addrbits = 8;
1056 		else
1057 			sc->sc_ee_addrbits = 6;
1058 	} else if (sc->sc_type <= WM_T_82547_2) {
1059 		reg = CSR_READ(sc, WMREG_EECD);
1060 		if (reg & EECD_EE_TYPE) {
1061 			sc->sc_flags |= WM_F_EEPROM_SPI;
1062 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1063 		} else
1064 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1065 	} else {
1066 		/* Assume everything else is SPI. */
1067 		reg = CSR_READ(sc, WMREG_EECD);
1068 		sc->sc_flags |= WM_F_EEPROM_SPI;
1069 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1070 	}
1071 
1072 	/*
1073 	 * Defer printing the EEPROM type until after verifying the checksum
1074 	 * This allows the EEPROM type to be printed correctly in the case
1075 	 * that no EEPROM is attached.
1076 	 */
1077 
1078 
1079 	/*
1080 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
1081 	 * later, so we can fail future reads from the EEPROM.
1082 	 */
1083 	if (wm_validate_eeprom_checksum(sc))
1084 		sc->sc_flags |= WM_F_EEPROM_INVALID;
1085 
1086 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
1087 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1088 	else {
1089 		if (sc->sc_flags & WM_F_EEPROM_SPI)
1090 			eetype = "SPI";
1091 		else
1092 			eetype = "MicroWire";
1093 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1094 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1095 		    sc->sc_ee_addrbits, eetype);
1096 	}
1097 
1098 	/*
1099 	 * Read the Ethernet address from the EEPROM, if not first found
1100 	 * in device properties.
1101 	 */
1102 	if (devprop_get(&sc->sc_dev, "mac-addr",
1103 	    enaddr, sizeof(enaddr), NULL) != sizeof(enaddr)) {
1104 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1105 		    sizeof(myea) / sizeof(myea[0]), myea)) {
1106 			aprint_error("%s: unable to read Ethernet address\n",
1107 			    sc->sc_dev.dv_xname);
1108 			return;
1109 		}
1110 		enaddr[0] = myea[0] & 0xff;
1111 		enaddr[1] = myea[0] >> 8;
1112 		enaddr[2] = myea[1] & 0xff;
1113 		enaddr[3] = myea[1] >> 8;
1114 		enaddr[4] = myea[2] & 0xff;
1115 		enaddr[5] = myea[2] >> 8;
1116 	}
1117 
1118 	/*
1119 	 * Toggle the LSB of the MAC address on the second port
1120 	 * of the i82546.
1121 	 */
1122 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1123 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1124 			enaddr[5] ^= 1;
1125 	}
1126 
1127 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1128 	    ether_sprintf(enaddr));
1129 
1130 	/*
1131 	 * Read the config info from the EEPROM, and set up various
1132 	 * bits in the control registers based on their contents.
1133 	 */
1134 	if (devprop_get(&sc->sc_dev, "i82543-cfg1",
1135 	    &cfg1, sizeof(cfg1), NULL) != sizeof(cfg1)) {
1136 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1137 			aprint_error("%s: unable to read CFG1\n",
1138 			    sc->sc_dev.dv_xname);
1139 			return;
1140 		}
1141 	}
1142 	if (devprop_get(&sc->sc_dev, "i82543-cfg2",
1143 	    &cfg2, sizeof(cfg2), NULL) != sizeof(cfg2)) {
1144 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1145 			aprint_error("%s: unable to read CFG2\n",
1146 			    sc->sc_dev.dv_xname);
1147 			return;
1148 		}
1149 	}
1150 	if (sc->sc_type >= WM_T_82544) {
1151 		if (devprop_get(&sc->sc_dev, "i82543-swdpin",
1152 		    &swdpin, sizeof(swdpin), NULL) != sizeof(swdpin)) {
1153 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1154 				aprint_error("%s: unable to read SWDPIN\n",
1155 				    sc->sc_dev.dv_xname);
1156 				return;
1157 			}
1158 		}
1159 	}
1160 
1161 	if (cfg1 & EEPROM_CFG1_ILOS)
1162 		sc->sc_ctrl |= CTRL_ILOS;
1163 	if (sc->sc_type >= WM_T_82544) {
1164 		sc->sc_ctrl |=
1165 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1166 		    CTRL_SWDPIO_SHIFT;
1167 		sc->sc_ctrl |=
1168 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1169 		    CTRL_SWDPINS_SHIFT;
1170 	} else {
1171 		sc->sc_ctrl |=
1172 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1173 		    CTRL_SWDPIO_SHIFT;
1174 	}
1175 
1176 #if 0
1177 	if (sc->sc_type >= WM_T_82544) {
1178 		if (cfg1 & EEPROM_CFG1_IPS0)
1179 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1180 		if (cfg1 & EEPROM_CFG1_IPS1)
1181 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1182 		sc->sc_ctrl_ext |=
1183 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1184 		    CTRL_EXT_SWDPIO_SHIFT;
1185 		sc->sc_ctrl_ext |=
1186 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1187 		    CTRL_EXT_SWDPINS_SHIFT;
1188 	} else {
1189 		sc->sc_ctrl_ext |=
1190 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1191 		    CTRL_EXT_SWDPIO_SHIFT;
1192 	}
1193 #endif
1194 
1195 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1196 #if 0
1197 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1198 #endif
1199 
1200 	/*
1201 	 * Set up some register offsets that are different between
1202 	 * the i82542 and the i82543 and later chips.
1203 	 */
1204 	if (sc->sc_type < WM_T_82543) {
1205 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1206 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1207 	} else {
1208 		sc->sc_rdt_reg = WMREG_RDT;
1209 		sc->sc_tdt_reg = WMREG_TDT;
1210 	}
1211 
1212 	/*
1213 	 * Determine if we're TBI or GMII mode, and initialize the
1214 	 * media structures accordingly.
1215 	 */
1216 	if (sc->sc_type < WM_T_82543 ||
1217 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1218 		if (wmp->wmp_flags & WMP_F_1000T)
1219 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1220 			    "product!\n", sc->sc_dev.dv_xname);
1221 		wm_tbi_mediainit(sc);
1222 	} else {
1223 		if (wmp->wmp_flags & WMP_F_1000X)
1224 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1225 			    "product!\n", sc->sc_dev.dv_xname);
1226 		wm_gmii_mediainit(sc);
1227 	}
1228 
1229 	ifp = &sc->sc_ethercom.ec_if;
1230 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1231 	ifp->if_softc = sc;
1232 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1233 	ifp->if_ioctl = wm_ioctl;
1234 	ifp->if_start = wm_start;
1235 	ifp->if_watchdog = wm_watchdog;
1236 	ifp->if_init = wm_init;
1237 	ifp->if_stop = wm_stop;
1238 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1239 	IFQ_SET_READY(&ifp->if_snd);
1240 
1241 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1242 
1243 	/*
1244 	 * If we're a i82543 or greater, we can support VLANs.
1245 	 */
1246 	if (sc->sc_type >= WM_T_82543)
1247 		sc->sc_ethercom.ec_capabilities |=
1248 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1249 
1250 	/*
1251 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1252 	 * on i82543 and later.
1253 	 */
1254 	if (sc->sc_type >= WM_T_82543)
1255 		ifp->if_capabilities |=
1256 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1257 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1258 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1259 		    IFCAP_CSUM_TCPv6_Tx |
1260 		    IFCAP_CSUM_UDPv6_Tx;
1261 
1262 	/*
1263 	 * If we're a i82544 or greater (except i82547), we can do
1264 	 * TCP segmentation offload.
1265 	 */
1266 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1267 		ifp->if_capabilities |= IFCAP_TSOv4;
1268 
1269 	/*
1270 	 * Attach the interface.
1271 	 */
1272 	if_attach(ifp);
1273 	ether_ifattach(ifp, enaddr);
1274 #if NRND > 0
1275 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1276 	    RND_TYPE_NET, 0);
1277 #endif
1278 
1279 #ifdef WM_EVENT_COUNTERS
1280 	/* Attach event counters. */
1281 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1282 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1283 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1284 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1285 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1286 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1287 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1288 	    NULL, sc->sc_dev.dv_xname, "txdw");
1289 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1290 	    NULL, sc->sc_dev.dv_xname, "txqe");
1291 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1292 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1293 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1294 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1295 
1296 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1297 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1298 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1299 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1300 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1301 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1302 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1303 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1304 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1305 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
1306 
1307 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1308 	    NULL, sc->sc_dev.dv_xname, "txtso");
1309 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1310 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
1311 
1312 	for (i = 0; i < WM_NTXSEGS; i++) {
1313 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1314 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1315 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1316 	}
1317 
1318 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1319 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1320 
1321 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1322 	    NULL, sc->sc_dev.dv_xname, "tu");
1323 
1324 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1325 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1326 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1327 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1328 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1329 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1330 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1331 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1332 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1333 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1334 #endif /* WM_EVENT_COUNTERS */
1335 
1336 	/*
1337 	 * Make sure the interface is shutdown during reboot.
1338 	 */
1339 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1340 	if (sc->sc_sdhook == NULL)
1341 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1342 		    sc->sc_dev.dv_xname);
1343 	return;
1344 
1345 	/*
1346 	 * Free any resources we've allocated during the failed attach
1347 	 * attempt.  Do this in reverse order and fall through.
1348 	 */
1349  fail_5:
1350 	for (i = 0; i < WM_NRXDESC; i++) {
1351 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1352 			bus_dmamap_destroy(sc->sc_dmat,
1353 			    sc->sc_rxsoft[i].rxs_dmamap);
1354 	}
1355  fail_4:
1356 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1357 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1358 			bus_dmamap_destroy(sc->sc_dmat,
1359 			    sc->sc_txsoft[i].txs_dmamap);
1360 	}
1361 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1362  fail_3:
1363 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1364  fail_2:
1365 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1366 	    cdata_size);
1367  fail_1:
1368 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1369  fail_0:
1370 	return;
1371 }
1372 
1373 /*
1374  * wm_shutdown:
1375  *
1376  *	Make sure the interface is stopped at reboot time.
1377  */
1378 static void
1379 wm_shutdown(void *arg)
1380 {
1381 	struct wm_softc *sc = arg;
1382 
1383 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1384 }
1385 
1386 /*
1387  * wm_tx_offload:
1388  *
1389  *	Set up TCP/IP checksumming parameters for the
1390  *	specified packet.
1391  */
1392 static int
1393 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1394     uint8_t *fieldsp)
1395 {
1396 	struct mbuf *m0 = txs->txs_mbuf;
1397 	struct livengood_tcpip_ctxdesc *t;
1398 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
1399 	struct ether_header *eh;
1400 	int offset, iphl;
1401 	uint8_t fields;
1402 
1403 	/*
1404 	 * XXX It would be nice if the mbuf pkthdr had offset
1405 	 * fields for the protocol headers.
1406 	 */
1407 
1408 	eh = mtod(m0, struct ether_header *);
1409 	switch (htons(eh->ether_type)) {
1410 	case ETHERTYPE_IP:
1411 	case ETHERTYPE_IPV6:
1412 		offset = ETHER_HDR_LEN;
1413 		break;
1414 
1415 	case ETHERTYPE_VLAN:
1416 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1417 		break;
1418 
1419 	default:
1420 		/*
1421 		 * Don't support this protocol or encapsulation.
1422 		 */
1423 		*fieldsp = 0;
1424 		*cmdp = 0;
1425 		return (0);
1426 	}
1427 
1428 	if ((m0->m_pkthdr.csum_flags &
1429 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1430 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1431 	} else {
1432 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1433 	}
1434 
1435 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1436 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1437 	seg = 0;
1438 	fields = 0;
1439 
1440 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1441 		int hlen = offset + iphl;
1442 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
1443 		if (__predict_false(m0->m_len <
1444 				    (hlen + sizeof(struct tcphdr)))) {
1445 			/*
1446 			 * TCP/IP headers are not in the first mbuf; we need
1447 			 * to do this the slow and painful way.  Let's just
1448 			 * hope this doesn't happen very often.
1449 			 */
1450 			struct ip ip;
1451 			struct tcphdr th;
1452 
1453 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1454 
1455 			m_copydata(m0, offset, sizeof(ip), &ip);
1456 			m_copydata(m0, hlen, sizeof(th), &th);
1457 
1458 			ip.ip_len = 0;
1459 
1460 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1461 			    sizeof(ip.ip_len), &ip.ip_len);
1462 
1463 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1464 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1465 
1466 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1467 			    sizeof(th.th_sum), &th.th_sum);
1468 
1469 			hlen += th.th_off << 2;
1470 		} else {
1471 			/*
1472 			 * TCP/IP headers are in the first mbuf; we can do
1473 			 * this the easy way.
1474 			 */
1475 			struct ip *ip =
1476 			    (struct ip *) (mtod(m0, caddr_t) + offset);
1477 			struct tcphdr *th =
1478 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1479 
1480 			ip->ip_len = 0;
1481 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1482 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1483 
1484 			hlen += th->th_off << 2;
1485 		}
1486 
1487 		cmd |= WTX_TCPIP_CMD_TSE;
1488 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1489 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1490 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1491 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1492 	}
1493 
1494 	/*
1495 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1496 	 * offload feature, if we load the context descriptor, we
1497 	 * MUST provide valid values for IPCSS and TUCSS fields.
1498 	 */
1499 
1500 	ipcs = WTX_TCPIP_IPCSS(offset) |
1501 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1502 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
1503 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1504 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1505 		fields |= WTX_IXSM;
1506 	}
1507 
1508 	offset += iphl;
1509 
1510 	if (m0->m_pkthdr.csum_flags &
1511 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1512 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1513 		fields |= WTX_TXSM;
1514 		tucs = WTX_TCPIP_TUCSS(offset) |
1515 		    WTX_TCPIP_TUCSO(offset +
1516 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1517 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1518 	} else if ((m0->m_pkthdr.csum_flags &
1519 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1520 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1521 		fields |= WTX_TXSM;
1522 		tucs = WTX_TCPIP_TUCSS(offset) |
1523 		    WTX_TCPIP_TUCSO(offset +
1524 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1525 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1526 	} else {
1527 		/* Just initialize it to a valid TCP context. */
1528 		tucs = WTX_TCPIP_TUCSS(offset) |
1529 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1530 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1531 	}
1532 
1533 	/* Fill in the context descriptor. */
1534 	t = (struct livengood_tcpip_ctxdesc *)
1535 	    &sc->sc_txdescs[sc->sc_txnext];
1536 	t->tcpip_ipcs = htole32(ipcs);
1537 	t->tcpip_tucs = htole32(tucs);
1538 	t->tcpip_cmdlen = htole32(cmdlen);
1539 	t->tcpip_seg = htole32(seg);
1540 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1541 
1542 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1543 	txs->txs_ndesc++;
1544 
1545 	*cmdp = cmd;
1546 	*fieldsp = fields;
1547 
1548 	return (0);
1549 }
1550 
1551 static void
1552 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1553 {
1554 	struct mbuf *m;
1555 	int i;
1556 
1557 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1558 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1559 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1560 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1561 		    m->m_data, m->m_len, m->m_flags);
1562 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1563 	    i, i == 1 ? "" : "s");
1564 }
1565 
1566 /*
1567  * wm_82547_txfifo_stall:
1568  *
1569  *	Callout used to wait for the 82547 Tx FIFO to drain,
1570  *	reset the FIFO pointers, and restart packet transmission.
1571  */
1572 static void
1573 wm_82547_txfifo_stall(void *arg)
1574 {
1575 	struct wm_softc *sc = arg;
1576 	int s;
1577 
1578 	s = splnet();
1579 
1580 	if (sc->sc_txfifo_stall) {
1581 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1582 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1583 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1584 			/*
1585 			 * Packets have drained.  Stop transmitter, reset
1586 			 * FIFO pointers, restart transmitter, and kick
1587 			 * the packet queue.
1588 			 */
1589 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1590 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1591 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1592 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1593 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1594 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1595 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1596 			CSR_WRITE_FLUSH(sc);
1597 
1598 			sc->sc_txfifo_head = 0;
1599 			sc->sc_txfifo_stall = 0;
1600 			wm_start(&sc->sc_ethercom.ec_if);
1601 		} else {
1602 			/*
1603 			 * Still waiting for packets to drain; try again in
1604 			 * another tick.
1605 			 */
1606 			callout_schedule(&sc->sc_txfifo_ch, 1);
1607 		}
1608 	}
1609 
1610 	splx(s);
1611 }
1612 
1613 /*
1614  * wm_82547_txfifo_bugchk:
1615  *
1616  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1617  *	prevent enqueueing a packet that would wrap around the end
1618  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1619  *
1620  *	We do this by checking the amount of space before the end
1621  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1622  *	the Tx FIFO, wait for all remaining packets to drain, reset
1623  *	the internal FIFO pointers to the beginning, and restart
1624  *	transmission on the interface.
1625  */
1626 #define	WM_FIFO_HDR		0x10
1627 #define	WM_82547_PAD_LEN	0x3e0
1628 static int
1629 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1630 {
1631 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1632 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1633 
1634 	/* Just return if already stalled. */
1635 	if (sc->sc_txfifo_stall)
1636 		return (1);
1637 
1638 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1639 		/* Stall only occurs in half-duplex mode. */
1640 		goto send_packet;
1641 	}
1642 
1643 	if (len >= WM_82547_PAD_LEN + space) {
1644 		sc->sc_txfifo_stall = 1;
1645 		callout_schedule(&sc->sc_txfifo_ch, 1);
1646 		return (1);
1647 	}
1648 
1649  send_packet:
1650 	sc->sc_txfifo_head += len;
1651 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1652 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1653 
1654 	return (0);
1655 }
1656 
1657 /*
1658  * wm_start:		[ifnet interface function]
1659  *
1660  *	Start packet transmission on the interface.
1661  */
1662 static void
1663 wm_start(struct ifnet *ifp)
1664 {
1665 	struct wm_softc *sc = ifp->if_softc;
1666 	struct mbuf *m0;
1667 #if 0 /* XXXJRT */
1668 	struct m_tag *mtag;
1669 #endif
1670 	struct wm_txsoft *txs;
1671 	bus_dmamap_t dmamap;
1672 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1673 	bus_addr_t curaddr;
1674 	bus_size_t seglen, curlen;
1675 	uint32_t cksumcmd;
1676 	uint8_t cksumfields;
1677 
1678 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1679 		return;
1680 
1681 	/*
1682 	 * Remember the previous number of free descriptors.
1683 	 */
1684 	ofree = sc->sc_txfree;
1685 
1686 	/*
1687 	 * Loop through the send queue, setting up transmit descriptors
1688 	 * until we drain the queue, or use up all available transmit
1689 	 * descriptors.
1690 	 */
1691 	for (;;) {
1692 		/* Grab a packet off the queue. */
1693 		IFQ_POLL(&ifp->if_snd, m0);
1694 		if (m0 == NULL)
1695 			break;
1696 
1697 		DPRINTF(WM_DEBUG_TX,
1698 		    ("%s: TX: have packet to transmit: %p\n",
1699 		    sc->sc_dev.dv_xname, m0));
1700 
1701 		/* Get a work queue entry. */
1702 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1703 			wm_txintr(sc);
1704 			if (sc->sc_txsfree == 0) {
1705 				DPRINTF(WM_DEBUG_TX,
1706 				    ("%s: TX: no free job descriptors\n",
1707 					sc->sc_dev.dv_xname));
1708 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1709 				break;
1710 			}
1711 		}
1712 
1713 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1714 		dmamap = txs->txs_dmamap;
1715 
1716 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1717 
1718 		/*
1719 		 * So says the Linux driver:
1720 		 * The controller does a simple calculation to make sure
1721 		 * there is enough room in the FIFO before initiating the
1722 		 * DMA for each buffer.  The calc is:
1723 		 *	4 = ceil(buffer len / MSS)
1724 		 * To make sure we don't overrun the FIFO, adjust the max
1725 		 * buffer len if the MSS drops.
1726 		 */
1727 		dmamap->dm_maxsegsz =
1728 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1729 		    ? m0->m_pkthdr.segsz << 2
1730 		    : WTX_MAX_LEN;
1731 
1732 		/*
1733 		 * Load the DMA map.  If this fails, the packet either
1734 		 * didn't fit in the allotted number of segments, or we
1735 		 * were short on resources.  For the too-many-segments
1736 		 * case, we simply report an error and drop the packet,
1737 		 * since we can't sanely copy a jumbo packet to a single
1738 		 * buffer.
1739 		 */
1740 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1741 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1742 		if (error) {
1743 			if (error == EFBIG) {
1744 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1745 				log(LOG_ERR, "%s: Tx packet consumes too many "
1746 				    "DMA segments, dropping...\n",
1747 				    sc->sc_dev.dv_xname);
1748 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1749 				wm_dump_mbuf_chain(sc, m0);
1750 				m_freem(m0);
1751 				continue;
1752 			}
1753 			/*
1754 			 * Short on resources, just stop for now.
1755 			 */
1756 			DPRINTF(WM_DEBUG_TX,
1757 			    ("%s: TX: dmamap load failed: %d\n",
1758 			    sc->sc_dev.dv_xname, error));
1759 			break;
1760 		}
1761 
1762 		segs_needed = dmamap->dm_nsegs;
1763 		if (use_tso) {
1764 			/* For sentinel descriptor; see below. */
1765 			segs_needed++;
1766 		}
1767 
1768 		/*
1769 		 * Ensure we have enough descriptors free to describe
1770 		 * the packet.  Note, we always reserve one descriptor
1771 		 * at the end of the ring due to the semantics of the
1772 		 * TDT register, plus one more in the event we need
1773 		 * to load offload context.
1774 		 */
1775 		if (segs_needed > sc->sc_txfree - 2) {
1776 			/*
1777 			 * Not enough free descriptors to transmit this
1778 			 * packet.  We haven't committed anything yet,
1779 			 * so just unload the DMA map, put the packet
1780 			 * pack on the queue, and punt.  Notify the upper
1781 			 * layer that there are no more slots left.
1782 			 */
1783 			DPRINTF(WM_DEBUG_TX,
1784 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
1785 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1786 			    sc->sc_txfree - 1));
1787 			ifp->if_flags |= IFF_OACTIVE;
1788 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1789 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1790 			break;
1791 		}
1792 
1793 		/*
1794 		 * Check for 82547 Tx FIFO bug.  We need to do this
1795 		 * once we know we can transmit the packet, since we
1796 		 * do some internal FIFO space accounting here.
1797 		 */
1798 		if (sc->sc_type == WM_T_82547 &&
1799 		    wm_82547_txfifo_bugchk(sc, m0)) {
1800 			DPRINTF(WM_DEBUG_TX,
1801 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
1802 			    sc->sc_dev.dv_xname));
1803 			ifp->if_flags |= IFF_OACTIVE;
1804 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1805 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1806 			break;
1807 		}
1808 
1809 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1810 
1811 		/*
1812 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1813 		 */
1814 
1815 		DPRINTF(WM_DEBUG_TX,
1816 		    ("%s: TX: packet has %d (%d) DMA segments\n",
1817 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1818 
1819 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1820 
1821 		/*
1822 		 * Store a pointer to the packet so that we can free it
1823 		 * later.
1824 		 *
1825 		 * Initially, we consider the number of descriptors the
1826 		 * packet uses the number of DMA segments.  This may be
1827 		 * incremented by 1 if we do checksum offload (a descriptor
1828 		 * is used to set the checksum context).
1829 		 */
1830 		txs->txs_mbuf = m0;
1831 		txs->txs_firstdesc = sc->sc_txnext;
1832 		txs->txs_ndesc = segs_needed;
1833 
1834 		/* Set up offload parameters for this packet. */
1835 		if (m0->m_pkthdr.csum_flags &
1836 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
1837 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
1838 			if (wm_tx_offload(sc, txs, &cksumcmd,
1839 					  &cksumfields) != 0) {
1840 				/* Error message already displayed. */
1841 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1842 				continue;
1843 			}
1844 		} else {
1845 			cksumcmd = 0;
1846 			cksumfields = 0;
1847 		}
1848 
1849 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1850 
1851 		/* Sync the DMA map. */
1852 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1853 		    BUS_DMASYNC_PREWRITE);
1854 
1855 		/*
1856 		 * Initialize the transmit descriptor.
1857 		 */
1858 		for (nexttx = sc->sc_txnext, seg = 0;
1859 		     seg < dmamap->dm_nsegs; seg++) {
1860 			for (seglen = dmamap->dm_segs[seg].ds_len,
1861 			     curaddr = dmamap->dm_segs[seg].ds_addr;
1862 			     seglen != 0;
1863 			     curaddr += curlen, seglen -= curlen,
1864 			     nexttx = WM_NEXTTX(sc, nexttx)) {
1865 				curlen = seglen;
1866 
1867 				/*
1868 				 * So says the Linux driver:
1869 				 * Work around for premature descriptor
1870 				 * write-backs in TSO mode.  Append a
1871 				 * 4-byte sentinel descriptor.
1872 				 */
1873 				if (use_tso &&
1874 				    seg == dmamap->dm_nsegs - 1 &&
1875 				    curlen > 8)
1876 					curlen -= 4;
1877 
1878 				wm_set_dma_addr(
1879 				    &sc->sc_txdescs[nexttx].wtx_addr,
1880 				    curaddr);
1881 				sc->sc_txdescs[nexttx].wtx_cmdlen =
1882 				    htole32(cksumcmd | curlen);
1883 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1884 				    0;
1885 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1886 				    cksumfields;
1887 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1888 				lasttx = nexttx;
1889 
1890 				DPRINTF(WM_DEBUG_TX,
1891 				    ("%s: TX: desc %d: low 0x%08lx, "
1892 				     "len 0x%04x\n",
1893 				    sc->sc_dev.dv_xname, nexttx,
1894 				    curaddr & 0xffffffffUL, (unsigned)curlen));
1895 			}
1896 		}
1897 
1898 		KASSERT(lasttx != -1);
1899 
1900 		/*
1901 		 * Set up the command byte on the last descriptor of
1902 		 * the packet.  If we're in the interrupt delay window,
1903 		 * delay the interrupt.
1904 		 */
1905 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
1906 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
1907 
1908 #if 0 /* XXXJRT */
1909 		/*
1910 		 * If VLANs are enabled and the packet has a VLAN tag, set
1911 		 * up the descriptor to encapsulate the packet for us.
1912 		 *
1913 		 * This is only valid on the last descriptor of the packet.
1914 		 */
1915 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1916 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
1917 			    htole32(WTX_CMD_VLE);
1918 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1919 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1920 		}
1921 #endif /* XXXJRT */
1922 
1923 		txs->txs_lastdesc = lasttx;
1924 
1925 		DPRINTF(WM_DEBUG_TX,
1926 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1927 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1928 
1929 		/* Sync the descriptors we're using. */
1930 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1931 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1932 
1933 		/* Give the packet to the chip. */
1934 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1935 
1936 		DPRINTF(WM_DEBUG_TX,
1937 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1938 
1939 		DPRINTF(WM_DEBUG_TX,
1940 		    ("%s: TX: finished transmitting packet, job %d\n",
1941 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
1942 
1943 		/* Advance the tx pointer. */
1944 		sc->sc_txfree -= txs->txs_ndesc;
1945 		sc->sc_txnext = nexttx;
1946 
1947 		sc->sc_txsfree--;
1948 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1949 
1950 #if NBPFILTER > 0
1951 		/* Pass the packet to any BPF listeners. */
1952 		if (ifp->if_bpf)
1953 			bpf_mtap(ifp->if_bpf, m0);
1954 #endif /* NBPFILTER > 0 */
1955 	}
1956 
1957 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1958 		/* No more slots; notify upper layer. */
1959 		ifp->if_flags |= IFF_OACTIVE;
1960 	}
1961 
1962 	if (sc->sc_txfree != ofree) {
1963 		/* Set a watchdog timer in case the chip flakes out. */
1964 		ifp->if_timer = 5;
1965 	}
1966 }
1967 
1968 /*
1969  * wm_watchdog:		[ifnet interface function]
1970  *
1971  *	Watchdog timer handler.
1972  */
1973 static void
1974 wm_watchdog(struct ifnet *ifp)
1975 {
1976 	struct wm_softc *sc = ifp->if_softc;
1977 
1978 	/*
1979 	 * Since we're using delayed interrupts, sweep up
1980 	 * before we report an error.
1981 	 */
1982 	wm_txintr(sc);
1983 
1984 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
1985 		log(LOG_ERR,
1986 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1987 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1988 		    sc->sc_txnext);
1989 		ifp->if_oerrors++;
1990 
1991 		/* Reset the interface. */
1992 		(void) wm_init(ifp);
1993 	}
1994 
1995 	/* Try to get more packets going. */
1996 	wm_start(ifp);
1997 }
1998 
1999 /*
2000  * wm_ioctl:		[ifnet interface function]
2001  *
2002  *	Handle control requests from the operator.
2003  */
2004 static int
2005 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2006 {
2007 	struct wm_softc *sc = ifp->if_softc;
2008 	struct ifreq *ifr = (struct ifreq *) data;
2009 	int s, error;
2010 
2011 	s = splnet();
2012 
2013 	switch (cmd) {
2014 	case SIOCSIFMEDIA:
2015 	case SIOCGIFMEDIA:
2016 		/* Flow control requires full-duplex mode. */
2017 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2018 		    (ifr->ifr_media & IFM_FDX) == 0)
2019 			ifr->ifr_media &= ~IFM_ETH_FMASK;
2020 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2021 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2022 				/* We can do both TXPAUSE and RXPAUSE. */
2023 				ifr->ifr_media |=
2024 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2025 			}
2026 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2027 		}
2028 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2029 		break;
2030 	default:
2031 		error = ether_ioctl(ifp, cmd, data);
2032 		if (error == ENETRESET) {
2033 			/*
2034 			 * Multicast list has changed; set the hardware filter
2035 			 * accordingly.
2036 			 */
2037 			if (ifp->if_flags & IFF_RUNNING)
2038 				wm_set_filter(sc);
2039 			error = 0;
2040 		}
2041 		break;
2042 	}
2043 
2044 	/* Try to get more packets going. */
2045 	wm_start(ifp);
2046 
2047 	splx(s);
2048 	return (error);
2049 }
2050 
2051 /*
2052  * wm_intr:
2053  *
2054  *	Interrupt service routine.
2055  */
2056 static int
2057 wm_intr(void *arg)
2058 {
2059 	struct wm_softc *sc = arg;
2060 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2061 	uint32_t icr;
2062 	int handled = 0;
2063 
2064 	while (1 /* CONSTCOND */) {
2065 		icr = CSR_READ(sc, WMREG_ICR);
2066 		if ((icr & sc->sc_icr) == 0)
2067 			break;
2068 
2069 #if 0 /*NRND > 0*/
2070 		if (RND_ENABLED(&sc->rnd_source))
2071 			rnd_add_uint32(&sc->rnd_source, icr);
2072 #endif
2073 
2074 		handled = 1;
2075 
2076 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2077 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2078 			DPRINTF(WM_DEBUG_RX,
2079 			    ("%s: RX: got Rx intr 0x%08x\n",
2080 			    sc->sc_dev.dv_xname,
2081 			    icr & (ICR_RXDMT0|ICR_RXT0)));
2082 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2083 		}
2084 #endif
2085 		wm_rxintr(sc);
2086 
2087 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2088 		if (icr & ICR_TXDW) {
2089 			DPRINTF(WM_DEBUG_TX,
2090 			    ("%s: TX: got TXDW interrupt\n",
2091 			    sc->sc_dev.dv_xname));
2092 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
2093 		}
2094 #endif
2095 		wm_txintr(sc);
2096 
2097 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2098 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2099 			wm_linkintr(sc, icr);
2100 		}
2101 
2102 		if (icr & ICR_RXO) {
2103 			ifp->if_ierrors++;
2104 #if defined(WM_DEBUG)
2105 			log(LOG_WARNING, "%s: Receive overrun\n",
2106 			    sc->sc_dev.dv_xname);
2107 #endif /* defined(WM_DEBUG) */
2108 		}
2109 	}
2110 
2111 	if (handled) {
2112 		/* Try to get more packets going. */
2113 		wm_start(ifp);
2114 	}
2115 
2116 	return (handled);
2117 }
2118 
2119 /*
2120  * wm_txintr:
2121  *
2122  *	Helper; handle transmit interrupts.
2123  */
2124 static void
2125 wm_txintr(struct wm_softc *sc)
2126 {
2127 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2128 	struct wm_txsoft *txs;
2129 	uint8_t status;
2130 	int i;
2131 
2132 	ifp->if_flags &= ~IFF_OACTIVE;
2133 
2134 	/*
2135 	 * Go through the Tx list and free mbufs for those
2136 	 * frames which have been transmitted.
2137 	 */
2138 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2139 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2140 		txs = &sc->sc_txsoft[i];
2141 
2142 		DPRINTF(WM_DEBUG_TX,
2143 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2144 
2145 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2146 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2147 
2148 		status =
2149 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2150 		if ((status & WTX_ST_DD) == 0) {
2151 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2152 			    BUS_DMASYNC_PREREAD);
2153 			break;
2154 		}
2155 
2156 		DPRINTF(WM_DEBUG_TX,
2157 		    ("%s: TX: job %d done: descs %d..%d\n",
2158 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2159 		    txs->txs_lastdesc));
2160 
2161 		/*
2162 		 * XXX We should probably be using the statistics
2163 		 * XXX registers, but I don't know if they exist
2164 		 * XXX on chips before the i82544.
2165 		 */
2166 
2167 #ifdef WM_EVENT_COUNTERS
2168 		if (status & WTX_ST_TU)
2169 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2170 #endif /* WM_EVENT_COUNTERS */
2171 
2172 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2173 			ifp->if_oerrors++;
2174 			if (status & WTX_ST_LC)
2175 				log(LOG_WARNING, "%s: late collision\n",
2176 				    sc->sc_dev.dv_xname);
2177 			else if (status & WTX_ST_EC) {
2178 				ifp->if_collisions += 16;
2179 				log(LOG_WARNING, "%s: excessive collisions\n",
2180 				    sc->sc_dev.dv_xname);
2181 			}
2182 		} else
2183 			ifp->if_opackets++;
2184 
2185 		sc->sc_txfree += txs->txs_ndesc;
2186 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2187 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2188 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2189 		m_freem(txs->txs_mbuf);
2190 		txs->txs_mbuf = NULL;
2191 	}
2192 
2193 	/* Update the dirty transmit buffer pointer. */
2194 	sc->sc_txsdirty = i;
2195 	DPRINTF(WM_DEBUG_TX,
2196 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2197 
2198 	/*
2199 	 * If there are no more pending transmissions, cancel the watchdog
2200 	 * timer.
2201 	 */
2202 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2203 		ifp->if_timer = 0;
2204 }
2205 
2206 /*
2207  * wm_rxintr:
2208  *
2209  *	Helper; handle receive interrupts.
2210  */
2211 static void
2212 wm_rxintr(struct wm_softc *sc)
2213 {
2214 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2215 	struct wm_rxsoft *rxs;
2216 	struct mbuf *m;
2217 	int i, len;
2218 	uint8_t status, errors;
2219 
2220 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2221 		rxs = &sc->sc_rxsoft[i];
2222 
2223 		DPRINTF(WM_DEBUG_RX,
2224 		    ("%s: RX: checking descriptor %d\n",
2225 		    sc->sc_dev.dv_xname, i));
2226 
2227 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2228 
2229 		status = sc->sc_rxdescs[i].wrx_status;
2230 		errors = sc->sc_rxdescs[i].wrx_errors;
2231 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2232 
2233 		if ((status & WRX_ST_DD) == 0) {
2234 			/*
2235 			 * We have processed all of the receive descriptors.
2236 			 */
2237 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2238 			break;
2239 		}
2240 
2241 		if (__predict_false(sc->sc_rxdiscard)) {
2242 			DPRINTF(WM_DEBUG_RX,
2243 			    ("%s: RX: discarding contents of descriptor %d\n",
2244 			    sc->sc_dev.dv_xname, i));
2245 			WM_INIT_RXDESC(sc, i);
2246 			if (status & WRX_ST_EOP) {
2247 				/* Reset our state. */
2248 				DPRINTF(WM_DEBUG_RX,
2249 				    ("%s: RX: resetting rxdiscard -> 0\n",
2250 				    sc->sc_dev.dv_xname));
2251 				sc->sc_rxdiscard = 0;
2252 			}
2253 			continue;
2254 		}
2255 
2256 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2257 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2258 
2259 		m = rxs->rxs_mbuf;
2260 
2261 		/*
2262 		 * Add a new receive buffer to the ring.
2263 		 */
2264 		if (wm_add_rxbuf(sc, i) != 0) {
2265 			/*
2266 			 * Failed, throw away what we've done so
2267 			 * far, and discard the rest of the packet.
2268 			 */
2269 			ifp->if_ierrors++;
2270 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2271 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2272 			WM_INIT_RXDESC(sc, i);
2273 			if ((status & WRX_ST_EOP) == 0)
2274 				sc->sc_rxdiscard = 1;
2275 			if (sc->sc_rxhead != NULL)
2276 				m_freem(sc->sc_rxhead);
2277 			WM_RXCHAIN_RESET(sc);
2278 			DPRINTF(WM_DEBUG_RX,
2279 			    ("%s: RX: Rx buffer allocation failed, "
2280 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2281 			    sc->sc_rxdiscard ? " (discard)" : ""));
2282 			continue;
2283 		}
2284 
2285 		WM_RXCHAIN_LINK(sc, m);
2286 
2287 		m->m_len = len;
2288 
2289 		DPRINTF(WM_DEBUG_RX,
2290 		    ("%s: RX: buffer at %p len %d\n",
2291 		    sc->sc_dev.dv_xname, m->m_data, len));
2292 
2293 		/*
2294 		 * If this is not the end of the packet, keep
2295 		 * looking.
2296 		 */
2297 		if ((status & WRX_ST_EOP) == 0) {
2298 			sc->sc_rxlen += len;
2299 			DPRINTF(WM_DEBUG_RX,
2300 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2301 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2302 			continue;
2303 		}
2304 
2305 		/*
2306 		 * Okay, we have the entire packet now.  The chip is
2307 		 * configured to include the FCS (not all chips can
2308 		 * be configured to strip it), so we need to trim it.
2309 		 */
2310 		m->m_len -= ETHER_CRC_LEN;
2311 
2312 		*sc->sc_rxtailp = NULL;
2313 		len = m->m_len + sc->sc_rxlen;
2314 		m = sc->sc_rxhead;
2315 
2316 		WM_RXCHAIN_RESET(sc);
2317 
2318 		DPRINTF(WM_DEBUG_RX,
2319 		    ("%s: RX: have entire packet, len -> %d\n",
2320 		    sc->sc_dev.dv_xname, len));
2321 
2322 		/*
2323 		 * If an error occurred, update stats and drop the packet.
2324 		 */
2325 		if (errors &
2326 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2327 			ifp->if_ierrors++;
2328 			if (errors & WRX_ER_SE)
2329 				log(LOG_WARNING, "%s: symbol error\n",
2330 				    sc->sc_dev.dv_xname);
2331 			else if (errors & WRX_ER_SEQ)
2332 				log(LOG_WARNING, "%s: receive sequence error\n",
2333 				    sc->sc_dev.dv_xname);
2334 			else if (errors & WRX_ER_CE)
2335 				log(LOG_WARNING, "%s: CRC error\n",
2336 				    sc->sc_dev.dv_xname);
2337 			m_freem(m);
2338 			continue;
2339 		}
2340 
2341 		/*
2342 		 * No errors.  Receive the packet.
2343 		 */
2344 		m->m_pkthdr.rcvif = ifp;
2345 		m->m_pkthdr.len = len;
2346 
2347 #if 0 /* XXXJRT */
2348 		/*
2349 		 * If VLANs are enabled, VLAN packets have been unwrapped
2350 		 * for us.  Associate the tag with the packet.
2351 		 */
2352 		if ((status & WRX_ST_VP) != 0) {
2353 			VLAN_INPUT_TAG(ifp, m,
2354 			    le16toh(sc->sc_rxdescs[i].wrx_special,
2355 			    continue);
2356 		}
2357 #endif /* XXXJRT */
2358 
2359 		/*
2360 		 * Set up checksum info for this packet.
2361 		 */
2362 		if ((status & WRX_ST_IXSM) == 0) {
2363 			if (status & WRX_ST_IPCS) {
2364 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2365 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2366 				if (errors & WRX_ER_IPE)
2367 					m->m_pkthdr.csum_flags |=
2368 					    M_CSUM_IPv4_BAD;
2369 			}
2370 			if (status & WRX_ST_TCPCS) {
2371 				/*
2372 				 * Note: we don't know if this was TCP or UDP,
2373 				 * so we just set both bits, and expect the
2374 				 * upper layers to deal.
2375 				 */
2376 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2377 				m->m_pkthdr.csum_flags |=
2378 				    M_CSUM_TCPv4|M_CSUM_UDPv4;
2379 				if (errors & WRX_ER_TCPE)
2380 					m->m_pkthdr.csum_flags |=
2381 					    M_CSUM_TCP_UDP_BAD;
2382 			}
2383 		}
2384 
2385 		ifp->if_ipackets++;
2386 
2387 #if NBPFILTER > 0
2388 		/* Pass this up to any BPF listeners. */
2389 		if (ifp->if_bpf)
2390 			bpf_mtap(ifp->if_bpf, m);
2391 #endif /* NBPFILTER > 0 */
2392 
2393 		/* Pass it on. */
2394 		(*ifp->if_input)(ifp, m);
2395 	}
2396 
2397 	/* Update the receive pointer. */
2398 	sc->sc_rxptr = i;
2399 
2400 	DPRINTF(WM_DEBUG_RX,
2401 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2402 }
2403 
2404 /*
2405  * wm_linkintr:
2406  *
2407  *	Helper; handle link interrupts.
2408  */
2409 static void
2410 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2411 {
2412 	uint32_t status;
2413 
2414 	/*
2415 	 * If we get a link status interrupt on a 1000BASE-T
2416 	 * device, just fall into the normal MII tick path.
2417 	 */
2418 	if (sc->sc_flags & WM_F_HAS_MII) {
2419 		if (icr & ICR_LSC) {
2420 			DPRINTF(WM_DEBUG_LINK,
2421 			    ("%s: LINK: LSC -> mii_tick\n",
2422 			    sc->sc_dev.dv_xname));
2423 			mii_tick(&sc->sc_mii);
2424 		} else if (icr & ICR_RXSEQ) {
2425 			DPRINTF(WM_DEBUG_LINK,
2426 			    ("%s: LINK Receive sequence error\n",
2427 			    sc->sc_dev.dv_xname));
2428 		}
2429 		return;
2430 	}
2431 
2432 	/*
2433 	 * If we are now receiving /C/, check for link again in
2434 	 * a couple of link clock ticks.
2435 	 */
2436 	if (icr & ICR_RXCFG) {
2437 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2438 		    sc->sc_dev.dv_xname));
2439 		sc->sc_tbi_anstate = 2;
2440 	}
2441 
2442 	if (icr & ICR_LSC) {
2443 		status = CSR_READ(sc, WMREG_STATUS);
2444 		if (status & STATUS_LU) {
2445 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2446 			    sc->sc_dev.dv_xname,
2447 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2448 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2449 			sc->sc_fcrtl &= ~FCRTL_XONE;
2450 			if (status & STATUS_FD)
2451 				sc->sc_tctl |=
2452 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2453 			else
2454 				sc->sc_tctl |=
2455 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2456 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2457 				sc->sc_fcrtl |= FCRTL_XONE;
2458 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2459 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2460 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2461 				      sc->sc_fcrtl);
2462 			sc->sc_tbi_linkup = 1;
2463 		} else {
2464 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2465 			    sc->sc_dev.dv_xname));
2466 			sc->sc_tbi_linkup = 0;
2467 		}
2468 		sc->sc_tbi_anstate = 2;
2469 		wm_tbi_set_linkled(sc);
2470 	} else if (icr & ICR_RXSEQ) {
2471 		DPRINTF(WM_DEBUG_LINK,
2472 		    ("%s: LINK: Receive sequence error\n",
2473 		    sc->sc_dev.dv_xname));
2474 	}
2475 }
2476 
2477 /*
2478  * wm_tick:
2479  *
2480  *	One second timer, used to check link status, sweep up
2481  *	completed transmit jobs, etc.
2482  */
2483 static void
2484 wm_tick(void *arg)
2485 {
2486 	struct wm_softc *sc = arg;
2487 	int s;
2488 
2489 	s = splnet();
2490 
2491 	if (sc->sc_type >= WM_T_82542_2_1) {
2492 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2493 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2494 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2495 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2496 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2497 	}
2498 
2499 	if (sc->sc_flags & WM_F_HAS_MII)
2500 		mii_tick(&sc->sc_mii);
2501 	else
2502 		wm_tbi_check_link(sc);
2503 
2504 	splx(s);
2505 
2506 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2507 }
2508 
2509 /*
2510  * wm_reset:
2511  *
2512  *	Reset the i82542 chip.
2513  */
2514 static void
2515 wm_reset(struct wm_softc *sc)
2516 {
2517 	int i;
2518 
2519 	/*
2520 	 * Allocate on-chip memory according to the MTU size.
2521 	 * The Packet Buffer Allocation register must be written
2522 	 * before the chip is reset.
2523 	 */
2524 	if (sc->sc_type < WM_T_82547) {
2525 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2526 		    PBA_40K : PBA_48K;
2527 	} else {
2528 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2529 		    PBA_22K : PBA_30K;
2530 		sc->sc_txfifo_head = 0;
2531 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2532 		sc->sc_txfifo_size =
2533 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2534 		sc->sc_txfifo_stall = 0;
2535 	}
2536 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2537 
2538 	switch (sc->sc_type) {
2539 	case WM_T_82544:
2540 	case WM_T_82540:
2541 	case WM_T_82545:
2542 	case WM_T_82546:
2543 	case WM_T_82541:
2544 	case WM_T_82541_2:
2545 		/*
2546 		 * On some chipsets, a reset through a memory-mapped write
2547 		 * cycle can cause the chip to reset before completing the
2548 		 * write cycle.  This causes major headache that can be
2549 		 * avoided by issuing the reset via indirect register writes
2550 		 * through I/O space.
2551 		 *
2552 		 * So, if we successfully mapped the I/O BAR at attach time,
2553 		 * use that.  Otherwise, try our luck with a memory-mapped
2554 		 * reset.
2555 		 */
2556 		if (sc->sc_flags & WM_F_IOH_VALID)
2557 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2558 		else
2559 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2560 		break;
2561 
2562 	case WM_T_82545_3:
2563 	case WM_T_82546_3:
2564 		/* Use the shadow control register on these chips. */
2565 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2566 		break;
2567 
2568 	default:
2569 		/* Everything else can safely use the documented method. */
2570 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2571 		break;
2572 	}
2573 	delay(10000);
2574 
2575 	for (i = 0; i < 1000; i++) {
2576 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2577 			return;
2578 		delay(20);
2579 	}
2580 
2581 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2582 		log(LOG_ERR, "%s: reset failed to complete\n",
2583 		    sc->sc_dev.dv_xname);
2584 }
2585 
2586 /*
2587  * wm_init:		[ifnet interface function]
2588  *
2589  *	Initialize the interface.  Must be called at splnet().
2590  */
2591 static int
2592 wm_init(struct ifnet *ifp)
2593 {
2594 	struct wm_softc *sc = ifp->if_softc;
2595 	struct wm_rxsoft *rxs;
2596 	int i, error = 0;
2597 	uint32_t reg;
2598 
2599 	/*
2600 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2601 	 * There is a small but measurable benefit to avoiding the adjusment
2602 	 * of the descriptor so that the headers are aligned, for normal mtu,
2603 	 * on such platforms.  One possibility is that the DMA itself is
2604 	 * slightly more efficient if the front of the entire packet (instead
2605 	 * of the front of the headers) is aligned.
2606 	 *
2607 	 * Note we must always set align_tweak to 0 if we are using
2608 	 * jumbo frames.
2609 	 */
2610 #ifdef __NO_STRICT_ALIGNMENT
2611 	sc->sc_align_tweak = 0;
2612 #else
2613 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2614 		sc->sc_align_tweak = 0;
2615 	else
2616 		sc->sc_align_tweak = 2;
2617 #endif /* __NO_STRICT_ALIGNMENT */
2618 
2619 	/* Cancel any pending I/O. */
2620 	wm_stop(ifp, 0);
2621 
2622 	/* Reset the chip to a known state. */
2623 	wm_reset(sc);
2624 
2625 	/* Initialize the transmit descriptor ring. */
2626 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2627 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2628 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2629 	sc->sc_txfree = WM_NTXDESC(sc);
2630 	sc->sc_txnext = 0;
2631 
2632 	if (sc->sc_type < WM_T_82543) {
2633 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2634 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2635 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2636 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2637 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2638 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2639 	} else {
2640 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2641 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2642 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2643 		CSR_WRITE(sc, WMREG_TDH, 0);
2644 		CSR_WRITE(sc, WMREG_TDT, 0);
2645 		CSR_WRITE(sc, WMREG_TIDV, 64);
2646 		CSR_WRITE(sc, WMREG_TADV, 128);
2647 
2648 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2649 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2650 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2651 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2652 	}
2653 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2654 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2655 
2656 	/* Initialize the transmit job descriptors. */
2657 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2658 		sc->sc_txsoft[i].txs_mbuf = NULL;
2659 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2660 	sc->sc_txsnext = 0;
2661 	sc->sc_txsdirty = 0;
2662 
2663 	/*
2664 	 * Initialize the receive descriptor and receive job
2665 	 * descriptor rings.
2666 	 */
2667 	if (sc->sc_type < WM_T_82543) {
2668 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2669 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2670 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2671 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2672 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2673 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2674 
2675 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2676 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2677 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2678 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2679 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2680 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2681 	} else {
2682 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2683 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2684 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2685 		CSR_WRITE(sc, WMREG_RDH, 0);
2686 		CSR_WRITE(sc, WMREG_RDT, 0);
2687 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2688 		CSR_WRITE(sc, WMREG_RADV, 128);
2689 	}
2690 	for (i = 0; i < WM_NRXDESC; i++) {
2691 		rxs = &sc->sc_rxsoft[i];
2692 		if (rxs->rxs_mbuf == NULL) {
2693 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2694 				log(LOG_ERR, "%s: unable to allocate or map rx "
2695 				    "buffer %d, error = %d\n",
2696 				    sc->sc_dev.dv_xname, i, error);
2697 				/*
2698 				 * XXX Should attempt to run with fewer receive
2699 				 * XXX buffers instead of just failing.
2700 				 */
2701 				wm_rxdrain(sc);
2702 				goto out;
2703 			}
2704 		} else
2705 			WM_INIT_RXDESC(sc, i);
2706 	}
2707 	sc->sc_rxptr = 0;
2708 	sc->sc_rxdiscard = 0;
2709 	WM_RXCHAIN_RESET(sc);
2710 
2711 	/*
2712 	 * Clear out the VLAN table -- we don't use it (yet).
2713 	 */
2714 	CSR_WRITE(sc, WMREG_VET, 0);
2715 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2716 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2717 
2718 	/*
2719 	 * Set up flow-control parameters.
2720 	 *
2721 	 * XXX Values could probably stand some tuning.
2722 	 */
2723 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2724 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2725 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2726 
2727 	sc->sc_fcrtl = FCRTL_DFLT;
2728 	if (sc->sc_type < WM_T_82543) {
2729 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2730 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2731 	} else {
2732 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2733 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2734 	}
2735 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2736 
2737 #if 0 /* XXXJRT */
2738 	/* Deal with VLAN enables. */
2739 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2740 		sc->sc_ctrl |= CTRL_VME;
2741 	else
2742 #endif /* XXXJRT */
2743 		sc->sc_ctrl &= ~CTRL_VME;
2744 
2745 	/* Write the control registers. */
2746 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2747 #if 0
2748 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2749 #endif
2750 
2751 	/*
2752 	 * Set up checksum offload parameters.
2753 	 */
2754 	reg = CSR_READ(sc, WMREG_RXCSUM);
2755 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2756 		reg |= RXCSUM_IPOFL;
2757 	else
2758 		reg &= ~RXCSUM_IPOFL;
2759 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2760 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2761 	else {
2762 		reg &= ~RXCSUM_TUOFL;
2763 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2764 			reg &= ~RXCSUM_IPOFL;
2765 	}
2766 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2767 
2768 	/*
2769 	 * Set up the interrupt registers.
2770 	 */
2771 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2772 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2773 	    ICR_RXO | ICR_RXT0;
2774 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2775 		sc->sc_icr |= ICR_RXCFG;
2776 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2777 
2778 	/* Set up the inter-packet gap. */
2779 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2780 
2781 	if (sc->sc_type >= WM_T_82543) {
2782 		/* Set up the interrupt throttling register (units of 256ns) */
2783 		sc->sc_itr = 1000000000 / (7000 * 256);
2784 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2785 	}
2786 
2787 #if 0 /* XXXJRT */
2788 	/* Set the VLAN ethernetype. */
2789 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2790 #endif
2791 
2792 	/*
2793 	 * Set up the transmit control register; we start out with
2794 	 * a collision distance suitable for FDX, but update it whe
2795 	 * we resolve the media type.
2796 	 */
2797 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2798 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2799 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2800 
2801 	/* Set the media. */
2802 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2803 
2804 	/*
2805 	 * Set up the receive control register; we actually program
2806 	 * the register when we set the receive filter.  Use multicast
2807 	 * address offset type 0.
2808 	 *
2809 	 * Only the i82544 has the ability to strip the incoming
2810 	 * CRC, so we don't enable that feature.
2811 	 */
2812 	sc->sc_mchash_type = 0;
2813 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2814 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2815 
2816 	if(MCLBYTES == 2048) {
2817 		sc->sc_rctl |= RCTL_2k;
2818 	} else {
2819 		if(sc->sc_type >= WM_T_82543) {
2820 			switch(MCLBYTES) {
2821 			case 4096:
2822 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2823 				break;
2824 			case 8192:
2825 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2826 				break;
2827 			case 16384:
2828 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2829 				break;
2830 			default:
2831 				panic("wm_init: MCLBYTES %d unsupported",
2832 				    MCLBYTES);
2833 				break;
2834 			}
2835 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
2836 	}
2837 
2838 	/* Set the receive filter. */
2839 	wm_set_filter(sc);
2840 
2841 	/* Start the one second link check clock. */
2842 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2843 
2844 	/* ...all done! */
2845 	ifp->if_flags |= IFF_RUNNING;
2846 	ifp->if_flags &= ~IFF_OACTIVE;
2847 
2848  out:
2849 	if (error)
2850 		log(LOG_ERR, "%s: interface not running\n",
2851 		    sc->sc_dev.dv_xname);
2852 	return (error);
2853 }
2854 
2855 /*
2856  * wm_rxdrain:
2857  *
2858  *	Drain the receive queue.
2859  */
2860 static void
2861 wm_rxdrain(struct wm_softc *sc)
2862 {
2863 	struct wm_rxsoft *rxs;
2864 	int i;
2865 
2866 	for (i = 0; i < WM_NRXDESC; i++) {
2867 		rxs = &sc->sc_rxsoft[i];
2868 		if (rxs->rxs_mbuf != NULL) {
2869 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2870 			m_freem(rxs->rxs_mbuf);
2871 			rxs->rxs_mbuf = NULL;
2872 		}
2873 	}
2874 }
2875 
2876 /*
2877  * wm_stop:		[ifnet interface function]
2878  *
2879  *	Stop transmission on the interface.
2880  */
2881 static void
2882 wm_stop(struct ifnet *ifp, int disable)
2883 {
2884 	struct wm_softc *sc = ifp->if_softc;
2885 	struct wm_txsoft *txs;
2886 	int i;
2887 
2888 	/* Stop the one second clock. */
2889 	callout_stop(&sc->sc_tick_ch);
2890 
2891 	/* Stop the 82547 Tx FIFO stall check timer. */
2892 	if (sc->sc_type == WM_T_82547)
2893 		callout_stop(&sc->sc_txfifo_ch);
2894 
2895 	if (sc->sc_flags & WM_F_HAS_MII) {
2896 		/* Down the MII. */
2897 		mii_down(&sc->sc_mii);
2898 	}
2899 
2900 	/* Stop the transmit and receive processes. */
2901 	CSR_WRITE(sc, WMREG_TCTL, 0);
2902 	CSR_WRITE(sc, WMREG_RCTL, 0);
2903 
2904 	/*
2905 	 * Clear the interrupt mask to ensure the device cannot assert its
2906 	 * interrupt line.
2907 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
2908 	 * any currently pending or shared interrupt.
2909 	 */
2910 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2911 	sc->sc_icr = 0;
2912 
2913 	/* Release any queued transmit buffers. */
2914 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2915 		txs = &sc->sc_txsoft[i];
2916 		if (txs->txs_mbuf != NULL) {
2917 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2918 			m_freem(txs->txs_mbuf);
2919 			txs->txs_mbuf = NULL;
2920 		}
2921 	}
2922 
2923 	if (disable)
2924 		wm_rxdrain(sc);
2925 
2926 	/* Mark the interface as down and cancel the watchdog timer. */
2927 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2928 	ifp->if_timer = 0;
2929 }
2930 
2931 /*
2932  * wm_acquire_eeprom:
2933  *
2934  *	Perform the EEPROM handshake required on some chips.
2935  */
2936 static int
2937 wm_acquire_eeprom(struct wm_softc *sc)
2938 {
2939 	uint32_t reg;
2940 	int x;
2941 
2942 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
2943 		reg = CSR_READ(sc, WMREG_EECD);
2944 
2945 		/* Request EEPROM access. */
2946 		reg |= EECD_EE_REQ;
2947 		CSR_WRITE(sc, WMREG_EECD, reg);
2948 
2949 		/* ..and wait for it to be granted. */
2950 		for (x = 0; x < 100; x++) {
2951 			reg = CSR_READ(sc, WMREG_EECD);
2952 			if (reg & EECD_EE_GNT)
2953 				break;
2954 			delay(5);
2955 		}
2956 		if ((reg & EECD_EE_GNT) == 0) {
2957 			aprint_error("%s: could not acquire EEPROM GNT\n",
2958 			    sc->sc_dev.dv_xname);
2959 			reg &= ~EECD_EE_REQ;
2960 			CSR_WRITE(sc, WMREG_EECD, reg);
2961 			return (1);
2962 		}
2963 	}
2964 
2965 	return (0);
2966 }
2967 
2968 /*
2969  * wm_release_eeprom:
2970  *
2971  *	Release the EEPROM mutex.
2972  */
2973 static void
2974 wm_release_eeprom(struct wm_softc *sc)
2975 {
2976 	uint32_t reg;
2977 
2978 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2979 		reg = CSR_READ(sc, WMREG_EECD);
2980 		reg &= ~EECD_EE_REQ;
2981 		CSR_WRITE(sc, WMREG_EECD, reg);
2982 	}
2983 }
2984 
2985 /*
2986  * wm_eeprom_sendbits:
2987  *
2988  *	Send a series of bits to the EEPROM.
2989  */
2990 static void
2991 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2992 {
2993 	uint32_t reg;
2994 	int x;
2995 
2996 	reg = CSR_READ(sc, WMREG_EECD);
2997 
2998 	for (x = nbits; x > 0; x--) {
2999 		if (bits & (1U << (x - 1)))
3000 			reg |= EECD_DI;
3001 		else
3002 			reg &= ~EECD_DI;
3003 		CSR_WRITE(sc, WMREG_EECD, reg);
3004 		delay(2);
3005 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3006 		delay(2);
3007 		CSR_WRITE(sc, WMREG_EECD, reg);
3008 		delay(2);
3009 	}
3010 }
3011 
3012 /*
3013  * wm_eeprom_recvbits:
3014  *
3015  *	Receive a series of bits from the EEPROM.
3016  */
3017 static void
3018 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3019 {
3020 	uint32_t reg, val;
3021 	int x;
3022 
3023 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3024 
3025 	val = 0;
3026 	for (x = nbits; x > 0; x--) {
3027 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3028 		delay(2);
3029 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3030 			val |= (1U << (x - 1));
3031 		CSR_WRITE(sc, WMREG_EECD, reg);
3032 		delay(2);
3033 	}
3034 	*valp = val;
3035 }
3036 
3037 /*
3038  * wm_read_eeprom_uwire:
3039  *
3040  *	Read a word from the EEPROM using the MicroWire protocol.
3041  */
3042 static int
3043 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3044 {
3045 	uint32_t reg, val;
3046 	int i;
3047 
3048 	for (i = 0; i < wordcnt; i++) {
3049 		/* Clear SK and DI. */
3050 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3051 		CSR_WRITE(sc, WMREG_EECD, reg);
3052 
3053 		/* Set CHIP SELECT. */
3054 		reg |= EECD_CS;
3055 		CSR_WRITE(sc, WMREG_EECD, reg);
3056 		delay(2);
3057 
3058 		/* Shift in the READ command. */
3059 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3060 
3061 		/* Shift in address. */
3062 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3063 
3064 		/* Shift out the data. */
3065 		wm_eeprom_recvbits(sc, &val, 16);
3066 		data[i] = val & 0xffff;
3067 
3068 		/* Clear CHIP SELECT. */
3069 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3070 		CSR_WRITE(sc, WMREG_EECD, reg);
3071 		delay(2);
3072 	}
3073 
3074 	return (0);
3075 }
3076 
3077 /*
3078  * wm_spi_eeprom_ready:
3079  *
3080  *	Wait for a SPI EEPROM to be ready for commands.
3081  */
3082 static int
3083 wm_spi_eeprom_ready(struct wm_softc *sc)
3084 {
3085 	uint32_t val;
3086 	int usec;
3087 
3088 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3089 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3090 		wm_eeprom_recvbits(sc, &val, 8);
3091 		if ((val & SPI_SR_RDY) == 0)
3092 			break;
3093 	}
3094 	if (usec >= SPI_MAX_RETRIES) {
3095 		aprint_error("%s: EEPROM failed to become ready\n",
3096 		    sc->sc_dev.dv_xname);
3097 		return (1);
3098 	}
3099 	return (0);
3100 }
3101 
3102 /*
3103  * wm_read_eeprom_spi:
3104  *
3105  *	Read a work from the EEPROM using the SPI protocol.
3106  */
3107 static int
3108 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3109 {
3110 	uint32_t reg, val;
3111 	int i;
3112 	uint8_t opc;
3113 
3114 	/* Clear SK and CS. */
3115 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3116 	CSR_WRITE(sc, WMREG_EECD, reg);
3117 	delay(2);
3118 
3119 	if (wm_spi_eeprom_ready(sc))
3120 		return (1);
3121 
3122 	/* Toggle CS to flush commands. */
3123 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3124 	delay(2);
3125 	CSR_WRITE(sc, WMREG_EECD, reg);
3126 	delay(2);
3127 
3128 	opc = SPI_OPC_READ;
3129 	if (sc->sc_ee_addrbits == 8 && word >= 128)
3130 		opc |= SPI_OPC_A8;
3131 
3132 	wm_eeprom_sendbits(sc, opc, 8);
3133 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3134 
3135 	for (i = 0; i < wordcnt; i++) {
3136 		wm_eeprom_recvbits(sc, &val, 16);
3137 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3138 	}
3139 
3140 	/* Raise CS and clear SK. */
3141 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3142 	CSR_WRITE(sc, WMREG_EECD, reg);
3143 	delay(2);
3144 
3145 	return (0);
3146 }
3147 
3148 #define EEPROM_CHECKSUM		0xBABA
3149 #define EEPROM_SIZE		0x0040
3150 
3151 /*
3152  * wm_validate_eeprom_checksum
3153  *
3154  * The checksum is defined as the sum of the first 64 (16 bit) words.
3155  */
3156 static int
3157 wm_validate_eeprom_checksum(struct wm_softc *sc)
3158 {
3159 	uint16_t checksum;
3160 	uint16_t eeprom_data;
3161 	int i;
3162 
3163 	checksum = 0;
3164 
3165 	for (i = 0; i < EEPROM_SIZE; i++) {
3166 		if(wm_read_eeprom(sc, i, 1, &eeprom_data))
3167 			return 1;
3168 		checksum += eeprom_data;
3169 	}
3170 
3171 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
3172 		return 1;
3173 
3174 	return 0;
3175 }
3176 
3177 /*
3178  * wm_read_eeprom:
3179  *
3180  *	Read data from the serial EEPROM.
3181  */
3182 static int
3183 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3184 {
3185 	int rv;
3186 
3187 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
3188 		return 1;
3189 
3190 	if (wm_acquire_eeprom(sc))
3191 		return 1;
3192 
3193 	if (sc->sc_flags & WM_F_EEPROM_SPI)
3194 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3195 	else
3196 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3197 
3198 	wm_release_eeprom(sc);
3199 	return rv;
3200 }
3201 
3202 /*
3203  * wm_add_rxbuf:
3204  *
3205  *	Add a receive buffer to the indiciated descriptor.
3206  */
3207 static int
3208 wm_add_rxbuf(struct wm_softc *sc, int idx)
3209 {
3210 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3211 	struct mbuf *m;
3212 	int error;
3213 
3214 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3215 	if (m == NULL)
3216 		return (ENOBUFS);
3217 
3218 	MCLGET(m, M_DONTWAIT);
3219 	if ((m->m_flags & M_EXT) == 0) {
3220 		m_freem(m);
3221 		return (ENOBUFS);
3222 	}
3223 
3224 	if (rxs->rxs_mbuf != NULL)
3225 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3226 
3227 	rxs->rxs_mbuf = m;
3228 
3229 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3230 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3231 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3232 	if (error) {
3233 		/* XXX XXX XXX */
3234 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3235 		    sc->sc_dev.dv_xname, idx, error);
3236 		panic("wm_add_rxbuf");
3237 	}
3238 
3239 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3240 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3241 
3242 	WM_INIT_RXDESC(sc, idx);
3243 
3244 	return (0);
3245 }
3246 
3247 /*
3248  * wm_set_ral:
3249  *
3250  *	Set an entery in the receive address list.
3251  */
3252 static void
3253 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3254 {
3255 	uint32_t ral_lo, ral_hi;
3256 
3257 	if (enaddr != NULL) {
3258 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3259 		    (enaddr[3] << 24);
3260 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3261 		ral_hi |= RAL_AV;
3262 	} else {
3263 		ral_lo = 0;
3264 		ral_hi = 0;
3265 	}
3266 
3267 	if (sc->sc_type >= WM_T_82544) {
3268 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3269 		    ral_lo);
3270 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3271 		    ral_hi);
3272 	} else {
3273 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3274 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3275 	}
3276 }
3277 
3278 /*
3279  * wm_mchash:
3280  *
3281  *	Compute the hash of the multicast address for the 4096-bit
3282  *	multicast filter.
3283  */
3284 static uint32_t
3285 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3286 {
3287 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3288 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3289 	uint32_t hash;
3290 
3291 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3292 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3293 
3294 	return (hash & 0xfff);
3295 }
3296 
3297 /*
3298  * wm_set_filter:
3299  *
3300  *	Set up the receive filter.
3301  */
3302 static void
3303 wm_set_filter(struct wm_softc *sc)
3304 {
3305 	struct ethercom *ec = &sc->sc_ethercom;
3306 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3307 	struct ether_multi *enm;
3308 	struct ether_multistep step;
3309 	bus_addr_t mta_reg;
3310 	uint32_t hash, reg, bit;
3311 	int i;
3312 
3313 	if (sc->sc_type >= WM_T_82544)
3314 		mta_reg = WMREG_CORDOVA_MTA;
3315 	else
3316 		mta_reg = WMREG_MTA;
3317 
3318 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3319 
3320 	if (ifp->if_flags & IFF_BROADCAST)
3321 		sc->sc_rctl |= RCTL_BAM;
3322 	if (ifp->if_flags & IFF_PROMISC) {
3323 		sc->sc_rctl |= RCTL_UPE;
3324 		goto allmulti;
3325 	}
3326 
3327 	/*
3328 	 * Set the station address in the first RAL slot, and
3329 	 * clear the remaining slots.
3330 	 */
3331 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3332 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3333 		wm_set_ral(sc, NULL, i);
3334 
3335 	/* Clear out the multicast table. */
3336 	for (i = 0; i < WM_MC_TABSIZE; i++)
3337 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3338 
3339 	ETHER_FIRST_MULTI(step, ec, enm);
3340 	while (enm != NULL) {
3341 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3342 			/*
3343 			 * We must listen to a range of multicast addresses.
3344 			 * For now, just accept all multicasts, rather than
3345 			 * trying to set only those filter bits needed to match
3346 			 * the range.  (At this time, the only use of address
3347 			 * ranges is for IP multicast routing, for which the
3348 			 * range is big enough to require all bits set.)
3349 			 */
3350 			goto allmulti;
3351 		}
3352 
3353 		hash = wm_mchash(sc, enm->enm_addrlo);
3354 
3355 		reg = (hash >> 5) & 0x7f;
3356 		bit = hash & 0x1f;
3357 
3358 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3359 		hash |= 1U << bit;
3360 
3361 		/* XXX Hardware bug?? */
3362 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3363 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3364 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3365 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3366 		} else
3367 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3368 
3369 		ETHER_NEXT_MULTI(step, enm);
3370 	}
3371 
3372 	ifp->if_flags &= ~IFF_ALLMULTI;
3373 	goto setit;
3374 
3375  allmulti:
3376 	ifp->if_flags |= IFF_ALLMULTI;
3377 	sc->sc_rctl |= RCTL_MPE;
3378 
3379  setit:
3380 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3381 }
3382 
3383 /*
3384  * wm_tbi_mediainit:
3385  *
3386  *	Initialize media for use on 1000BASE-X devices.
3387  */
3388 static void
3389 wm_tbi_mediainit(struct wm_softc *sc)
3390 {
3391 	const char *sep = "";
3392 
3393 	if (sc->sc_type < WM_T_82543)
3394 		sc->sc_tipg = TIPG_WM_DFLT;
3395 	else
3396 		sc->sc_tipg = TIPG_LG_DFLT;
3397 
3398 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3399 	    wm_tbi_mediastatus);
3400 
3401 	/*
3402 	 * SWD Pins:
3403 	 *
3404 	 *	0 = Link LED (output)
3405 	 *	1 = Loss Of Signal (input)
3406 	 */
3407 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3408 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3409 
3410 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3411 
3412 #define	ADD(ss, mm, dd)							\
3413 do {									\
3414 	aprint_normal("%s%s", sep, ss);					\
3415 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3416 	sep = ", ";							\
3417 } while (/*CONSTCOND*/0)
3418 
3419 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
3420 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3421 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3422 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3423 	aprint_normal("\n");
3424 
3425 #undef ADD
3426 
3427 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3428 }
3429 
3430 /*
3431  * wm_tbi_mediastatus:	[ifmedia interface function]
3432  *
3433  *	Get the current interface media status on a 1000BASE-X device.
3434  */
3435 static void
3436 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3437 {
3438 	struct wm_softc *sc = ifp->if_softc;
3439 	uint32_t ctrl;
3440 
3441 	ifmr->ifm_status = IFM_AVALID;
3442 	ifmr->ifm_active = IFM_ETHER;
3443 
3444 	if (sc->sc_tbi_linkup == 0) {
3445 		ifmr->ifm_active |= IFM_NONE;
3446 		return;
3447 	}
3448 
3449 	ifmr->ifm_status |= IFM_ACTIVE;
3450 	ifmr->ifm_active |= IFM_1000_SX;
3451 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3452 		ifmr->ifm_active |= IFM_FDX;
3453 	ctrl = CSR_READ(sc, WMREG_CTRL);
3454 	if (ctrl & CTRL_RFCE)
3455 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3456 	if (ctrl & CTRL_TFCE)
3457 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3458 }
3459 
3460 /*
3461  * wm_tbi_mediachange:	[ifmedia interface function]
3462  *
3463  *	Set hardware to newly-selected media on a 1000BASE-X device.
3464  */
3465 static int
3466 wm_tbi_mediachange(struct ifnet *ifp)
3467 {
3468 	struct wm_softc *sc = ifp->if_softc;
3469 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3470 	uint32_t status;
3471 	int i;
3472 
3473 	sc->sc_txcw = ife->ifm_data;
3474 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3475 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3476 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3477 	sc->sc_txcw |= TXCW_ANE;
3478 
3479 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3480 	delay(10000);
3481 
3482 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3483 
3484 	sc->sc_tbi_anstate = 0;
3485 
3486 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3487 		/* Have signal; wait for the link to come up. */
3488 		for (i = 0; i < 50; i++) {
3489 			delay(10000);
3490 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3491 				break;
3492 		}
3493 
3494 		status = CSR_READ(sc, WMREG_STATUS);
3495 		if (status & STATUS_LU) {
3496 			/* Link is up. */
3497 			DPRINTF(WM_DEBUG_LINK,
3498 			    ("%s: LINK: set media -> link up %s\n",
3499 			    sc->sc_dev.dv_xname,
3500 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3501 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3502 			sc->sc_fcrtl &= ~FCRTL_XONE;
3503 			if (status & STATUS_FD)
3504 				sc->sc_tctl |=
3505 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3506 			else
3507 				sc->sc_tctl |=
3508 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3509 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3510 				sc->sc_fcrtl |= FCRTL_XONE;
3511 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3512 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3513 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3514 				      sc->sc_fcrtl);
3515 			sc->sc_tbi_linkup = 1;
3516 		} else {
3517 			/* Link is down. */
3518 			DPRINTF(WM_DEBUG_LINK,
3519 			    ("%s: LINK: set media -> link down\n",
3520 			    sc->sc_dev.dv_xname));
3521 			sc->sc_tbi_linkup = 0;
3522 		}
3523 	} else {
3524 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3525 		    sc->sc_dev.dv_xname));
3526 		sc->sc_tbi_linkup = 0;
3527 	}
3528 
3529 	wm_tbi_set_linkled(sc);
3530 
3531 	return (0);
3532 }
3533 
3534 /*
3535  * wm_tbi_set_linkled:
3536  *
3537  *	Update the link LED on 1000BASE-X devices.
3538  */
3539 static void
3540 wm_tbi_set_linkled(struct wm_softc *sc)
3541 {
3542 
3543 	if (sc->sc_tbi_linkup)
3544 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3545 	else
3546 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3547 
3548 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3549 }
3550 
3551 /*
3552  * wm_tbi_check_link:
3553  *
3554  *	Check the link on 1000BASE-X devices.
3555  */
3556 static void
3557 wm_tbi_check_link(struct wm_softc *sc)
3558 {
3559 	uint32_t rxcw, ctrl, status;
3560 
3561 	if (sc->sc_tbi_anstate == 0)
3562 		return;
3563 	else if (sc->sc_tbi_anstate > 1) {
3564 		DPRINTF(WM_DEBUG_LINK,
3565 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3566 		    sc->sc_tbi_anstate));
3567 		sc->sc_tbi_anstate--;
3568 		return;
3569 	}
3570 
3571 	sc->sc_tbi_anstate = 0;
3572 
3573 	rxcw = CSR_READ(sc, WMREG_RXCW);
3574 	ctrl = CSR_READ(sc, WMREG_CTRL);
3575 	status = CSR_READ(sc, WMREG_STATUS);
3576 
3577 	if ((status & STATUS_LU) == 0) {
3578 		DPRINTF(WM_DEBUG_LINK,
3579 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3580 		sc->sc_tbi_linkup = 0;
3581 	} else {
3582 		DPRINTF(WM_DEBUG_LINK,
3583 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3584 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3585 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3586 		sc->sc_fcrtl &= ~FCRTL_XONE;
3587 		if (status & STATUS_FD)
3588 			sc->sc_tctl |=
3589 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3590 		else
3591 			sc->sc_tctl |=
3592 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3593 		if (ctrl & CTRL_TFCE)
3594 			sc->sc_fcrtl |= FCRTL_XONE;
3595 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3596 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3597 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3598 			      sc->sc_fcrtl);
3599 		sc->sc_tbi_linkup = 1;
3600 	}
3601 
3602 	wm_tbi_set_linkled(sc);
3603 }
3604 
3605 /*
3606  * wm_gmii_reset:
3607  *
3608  *	Reset the PHY.
3609  */
3610 static void
3611 wm_gmii_reset(struct wm_softc *sc)
3612 {
3613 	uint32_t reg;
3614 
3615 	if (sc->sc_type >= WM_T_82544) {
3616 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3617 		delay(20000);
3618 
3619 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3620 		delay(20000);
3621 	} else {
3622 		/* The PHY reset pin is active-low. */
3623 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3624 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3625 		    CTRL_EXT_SWDPIN(4));
3626 		reg |= CTRL_EXT_SWDPIO(4);
3627 
3628 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3629 		delay(10);
3630 
3631 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3632 		delay(10);
3633 
3634 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3635 		delay(10);
3636 #if 0
3637 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3638 #endif
3639 	}
3640 }
3641 
3642 /*
3643  * wm_gmii_mediainit:
3644  *
3645  *	Initialize media for use on 1000BASE-T devices.
3646  */
3647 static void
3648 wm_gmii_mediainit(struct wm_softc *sc)
3649 {
3650 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3651 
3652 	/* We have MII. */
3653 	sc->sc_flags |= WM_F_HAS_MII;
3654 
3655 	sc->sc_tipg = TIPG_1000T_DFLT;
3656 
3657 	/*
3658 	 * Let the chip set speed/duplex on its own based on
3659 	 * signals from the PHY.
3660 	 */
3661 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3662 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3663 
3664 	/* Initialize our media structures and probe the GMII. */
3665 	sc->sc_mii.mii_ifp = ifp;
3666 
3667 	if (sc->sc_type >= WM_T_82544) {
3668 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3669 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3670 	} else {
3671 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3672 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3673 	}
3674 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
3675 
3676 	wm_gmii_reset(sc);
3677 
3678 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3679 	    wm_gmii_mediastatus);
3680 
3681 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3682 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
3683 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3684 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3685 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3686 	} else
3687 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3688 }
3689 
3690 /*
3691  * wm_gmii_mediastatus:	[ifmedia interface function]
3692  *
3693  *	Get the current interface media status on a 1000BASE-T device.
3694  */
3695 static void
3696 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3697 {
3698 	struct wm_softc *sc = ifp->if_softc;
3699 
3700 	mii_pollstat(&sc->sc_mii);
3701 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3702 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3703 			   sc->sc_flowflags;
3704 }
3705 
3706 /*
3707  * wm_gmii_mediachange:	[ifmedia interface function]
3708  *
3709  *	Set hardware to newly-selected media on a 1000BASE-T device.
3710  */
3711 static int
3712 wm_gmii_mediachange(struct ifnet *ifp)
3713 {
3714 	struct wm_softc *sc = ifp->if_softc;
3715 
3716 	if (ifp->if_flags & IFF_UP)
3717 		mii_mediachg(&sc->sc_mii);
3718 	return (0);
3719 }
3720 
3721 #define	MDI_IO		CTRL_SWDPIN(2)
3722 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
3723 #define	MDI_CLK		CTRL_SWDPIN(3)
3724 
3725 static void
3726 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3727 {
3728 	uint32_t i, v;
3729 
3730 	v = CSR_READ(sc, WMREG_CTRL);
3731 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3732 	v |= MDI_DIR | CTRL_SWDPIO(3);
3733 
3734 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3735 		if (data & i)
3736 			v |= MDI_IO;
3737 		else
3738 			v &= ~MDI_IO;
3739 		CSR_WRITE(sc, WMREG_CTRL, v);
3740 		delay(10);
3741 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3742 		delay(10);
3743 		CSR_WRITE(sc, WMREG_CTRL, v);
3744 		delay(10);
3745 	}
3746 }
3747 
3748 static uint32_t
3749 i82543_mii_recvbits(struct wm_softc *sc)
3750 {
3751 	uint32_t v, i, data = 0;
3752 
3753 	v = CSR_READ(sc, WMREG_CTRL);
3754 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3755 	v |= CTRL_SWDPIO(3);
3756 
3757 	CSR_WRITE(sc, WMREG_CTRL, v);
3758 	delay(10);
3759 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3760 	delay(10);
3761 	CSR_WRITE(sc, WMREG_CTRL, v);
3762 	delay(10);
3763 
3764 	for (i = 0; i < 16; i++) {
3765 		data <<= 1;
3766 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3767 		delay(10);
3768 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3769 			data |= 1;
3770 		CSR_WRITE(sc, WMREG_CTRL, v);
3771 		delay(10);
3772 	}
3773 
3774 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3775 	delay(10);
3776 	CSR_WRITE(sc, WMREG_CTRL, v);
3777 	delay(10);
3778 
3779 	return (data);
3780 }
3781 
3782 #undef MDI_IO
3783 #undef MDI_DIR
3784 #undef MDI_CLK
3785 
3786 /*
3787  * wm_gmii_i82543_readreg:	[mii interface function]
3788  *
3789  *	Read a PHY register on the GMII (i82543 version).
3790  */
3791 static int
3792 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3793 {
3794 	struct wm_softc *sc = (void *) self;
3795 	int rv;
3796 
3797 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3798 	i82543_mii_sendbits(sc, reg | (phy << 5) |
3799 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3800 	rv = i82543_mii_recvbits(sc) & 0xffff;
3801 
3802 	DPRINTF(WM_DEBUG_GMII,
3803 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3804 	    sc->sc_dev.dv_xname, phy, reg, rv));
3805 
3806 	return (rv);
3807 }
3808 
3809 /*
3810  * wm_gmii_i82543_writereg:	[mii interface function]
3811  *
3812  *	Write a PHY register on the GMII (i82543 version).
3813  */
3814 static void
3815 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3816 {
3817 	struct wm_softc *sc = (void *) self;
3818 
3819 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3820 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3821 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3822 	    (MII_COMMAND_START << 30), 32);
3823 }
3824 
3825 /*
3826  * wm_gmii_i82544_readreg:	[mii interface function]
3827  *
3828  *	Read a PHY register on the GMII.
3829  */
3830 static int
3831 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3832 {
3833 	struct wm_softc *sc = (void *) self;
3834 	uint32_t mdic = 0;
3835 	int i, rv;
3836 
3837 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3838 	    MDIC_REGADD(reg));
3839 
3840 	for (i = 0; i < 100; i++) {
3841 		mdic = CSR_READ(sc, WMREG_MDIC);
3842 		if (mdic & MDIC_READY)
3843 			break;
3844 		delay(10);
3845 	}
3846 
3847 	if ((mdic & MDIC_READY) == 0) {
3848 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3849 		    sc->sc_dev.dv_xname, phy, reg);
3850 		rv = 0;
3851 	} else if (mdic & MDIC_E) {
3852 #if 0 /* This is normal if no PHY is present. */
3853 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3854 		    sc->sc_dev.dv_xname, phy, reg);
3855 #endif
3856 		rv = 0;
3857 	} else {
3858 		rv = MDIC_DATA(mdic);
3859 		if (rv == 0xffff)
3860 			rv = 0;
3861 	}
3862 
3863 	return (rv);
3864 }
3865 
3866 /*
3867  * wm_gmii_i82544_writereg:	[mii interface function]
3868  *
3869  *	Write a PHY register on the GMII.
3870  */
3871 static void
3872 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3873 {
3874 	struct wm_softc *sc = (void *) self;
3875 	uint32_t mdic = 0;
3876 	int i;
3877 
3878 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3879 	    MDIC_REGADD(reg) | MDIC_DATA(val));
3880 
3881 	for (i = 0; i < 100; i++) {
3882 		mdic = CSR_READ(sc, WMREG_MDIC);
3883 		if (mdic & MDIC_READY)
3884 			break;
3885 		delay(10);
3886 	}
3887 
3888 	if ((mdic & MDIC_READY) == 0)
3889 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3890 		    sc->sc_dev.dv_xname, phy, reg);
3891 	else if (mdic & MDIC_E)
3892 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3893 		    sc->sc_dev.dv_xname, phy, reg);
3894 }
3895 
3896 /*
3897  * wm_gmii_statchg:	[mii interface function]
3898  *
3899  *	Callback from MII layer when media changes.
3900  */
3901 static void
3902 wm_gmii_statchg(struct device *self)
3903 {
3904 	struct wm_softc *sc = (void *) self;
3905 	struct mii_data *mii = &sc->sc_mii;
3906 
3907 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3908 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3909 	sc->sc_fcrtl &= ~FCRTL_XONE;
3910 
3911 	/*
3912 	 * Get flow control negotiation result.
3913 	 */
3914 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3915 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3916 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3917 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3918 	}
3919 
3920 	if (sc->sc_flowflags & IFM_FLOW) {
3921 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3922 			sc->sc_ctrl |= CTRL_TFCE;
3923 			sc->sc_fcrtl |= FCRTL_XONE;
3924 		}
3925 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3926 			sc->sc_ctrl |= CTRL_RFCE;
3927 	}
3928 
3929 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
3930 		DPRINTF(WM_DEBUG_LINK,
3931 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3932 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3933 	} else  {
3934 		DPRINTF(WM_DEBUG_LINK,
3935 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3936 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3937 	}
3938 
3939 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3940 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3941 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3942 						 : WMREG_FCRTL, sc->sc_fcrtl);
3943 }
3944