xref: /netbsd-src/sys/dev/pci/if_wm.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: if_wm.c,v 1.109 2005/12/11 12:22:50 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.109 2005/12/11 12:22:50 christos Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67 
68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
69 
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78 
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82 
83 #include <netinet/in.h>			/* XXX for struct ip */
84 #include <netinet/in_systm.h>		/* XXX for struct ip */
85 #include <netinet/ip.h>			/* XXX for struct ip */
86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
87 
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99 
100 #include <dev/pci/if_wmreg.h>
101 
102 #ifdef WM_DEBUG
103 #define	WM_DEBUG_LINK		0x01
104 #define	WM_DEBUG_TX		0x02
105 #define	WM_DEBUG_RX		0x04
106 #define	WM_DEBUG_GMII		0x08
107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108 
109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
110 #else
111 #define	DPRINTF(x, y)	/* nothing */
112 #endif /* WM_DEBUG */
113 
114 /*
115  * Transmit descriptor list size.  Due to errata, we can only have
116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
117  * on >= 82544.  We tell the upper layers that they can queue a lot
118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119  * of them at a time.
120  *
121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
122  * chains containing many small mbufs have been observed in zero-copy
123  * situations with jumbo frames.
124  */
125 #define	WM_NTXSEGS		256
126 #define	WM_IFQUEUELEN		256
127 #define	WM_TXQUEUELEN_MAX	64
128 #define	WM_TXQUEUELEN_MAX_82547	16
129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
132 #define	WM_NTXDESC_82542	256
133 #define	WM_NTXDESC_82544	4096
134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139 
140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
141 
142 /*
143  * Receive descriptor list size.  We have one Rx buffer for normal
144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
145  * packet.  We allocate 256 receive descriptors, each with a 2k
146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147  */
148 #define	WM_NRXDESC		256
149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
152 
153 /*
154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
155  * a single clump that maps to a single DMA segment to make several things
156  * easier.
157  */
158 struct wm_control_data_82544 {
159 	/*
160 	 * The receive descriptors.
161 	 */
162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163 
164 	/*
165 	 * The transmit descriptors.  Put these at the end, because
166 	 * we might use a smaller number of them.
167 	 */
168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170 
171 struct wm_control_data_82542 {
172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175 
176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
179 
180 /*
181  * Software state for transmit jobs.
182  */
183 struct wm_txsoft {
184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
186 	int txs_firstdesc;		/* first descriptor in packet */
187 	int txs_lastdesc;		/* last descriptor in packet */
188 	int txs_ndesc;			/* # of descriptors used */
189 };
190 
191 /*
192  * Software state for receive buffers.  Each descriptor gets a
193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
194  * more than one buffer, we chain them together.
195  */
196 struct wm_rxsoft {
197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
199 };
200 
201 typedef enum {
202 	WM_T_unknown		= 0,
203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
205 	WM_T_82543,			/* i82543 */
206 	WM_T_82544,			/* i82544 */
207 	WM_T_82540,			/* i82540 */
208 	WM_T_82545,			/* i82545 */
209 	WM_T_82545_3,			/* i82545 3.0+ */
210 	WM_T_82546,			/* i82546 */
211 	WM_T_82546_3,			/* i82546 3.0+ */
212 	WM_T_82541,			/* i82541 */
213 	WM_T_82541_2,			/* i82541 2.0+ */
214 	WM_T_82547,			/* i82547 */
215 	WM_T_82547_2,			/* i82547 2.0+ */
216 } wm_chip_type;
217 
218 /*
219  * Software state per device.
220  */
221 struct wm_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_space_tag_t sc_iot;		/* I/O space tag */
226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
228 	struct ethercom sc_ethercom;	/* ethernet common data */
229 	void *sc_sdhook;		/* shutdown hook */
230 
231 	wm_chip_type sc_type;		/* chip type */
232 	int sc_flags;			/* flags; see below */
233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
234 	int sc_pcix_offset;		/* PCIX capability register offset */
235 	int sc_flowflags;		/* 802.3x flow control flags */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	int sc_ee_addrbits;		/* EEPROM address bits */
240 
241 	struct mii_data sc_mii;		/* MII/media information */
242 
243 	struct callout sc_tick_ch;	/* tick callout */
244 
245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
247 
248 	int		sc_align_tweak;
249 
250 	/*
251 	 * Software state for the transmit and receive descriptors.
252 	 */
253 	int			sc_txnum;	/* must be a power of two */
254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
256 
257 	/*
258 	 * Control data structures.
259 	 */
260 	int			sc_ntxdesc;	/* must be a power of two */
261 	struct wm_control_data_82544 *sc_control_data;
262 #define	sc_txdescs	sc_control_data->wcd_txdescs
263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
264 
265 #ifdef WM_EVENT_COUNTERS
266 	/* Event counters. */
267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
274 
275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
279 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
280 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
281 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
282 
283 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
284 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
285 
286 	struct evcnt sc_ev_tu;		/* Tx underrun */
287 
288 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
289 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
290 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
291 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
292 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
293 #endif /* WM_EVENT_COUNTERS */
294 
295 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
296 
297 	int	sc_txfree;		/* number of free Tx descriptors */
298 	int	sc_txnext;		/* next ready Tx descriptor */
299 
300 	int	sc_txsfree;		/* number of free Tx jobs */
301 	int	sc_txsnext;		/* next free Tx job */
302 	int	sc_txsdirty;		/* dirty Tx jobs */
303 
304 	/* These 5 variables are used only on the 82547. */
305 	int	sc_txfifo_size;		/* Tx FIFO size */
306 	int	sc_txfifo_head;		/* current head of FIFO */
307 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
308 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
309 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
310 
311 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
312 
313 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
314 	int	sc_rxdiscard;
315 	int	sc_rxlen;
316 	struct mbuf *sc_rxhead;
317 	struct mbuf *sc_rxtail;
318 	struct mbuf **sc_rxtailp;
319 
320 	uint32_t sc_ctrl;		/* prototype CTRL register */
321 #if 0
322 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
323 #endif
324 	uint32_t sc_icr;		/* prototype interrupt bits */
325 	uint32_t sc_itr;		/* prototype intr throttling reg */
326 	uint32_t sc_tctl;		/* prototype TCTL register */
327 	uint32_t sc_rctl;		/* prototype RCTL register */
328 	uint32_t sc_txcw;		/* prototype TXCW register */
329 	uint32_t sc_tipg;		/* prototype TIPG register */
330 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
331 	uint32_t sc_pba;		/* prototype PBA register */
332 
333 	int sc_tbi_linkup;		/* TBI link status */
334 	int sc_tbi_anstate;		/* autonegotiation state */
335 
336 	int sc_mchash_type;		/* multicast filter offset */
337 
338 #if NRND > 0
339 	rndsource_element_t rnd_source;	/* random source */
340 #endif
341 };
342 
343 #define	WM_RXCHAIN_RESET(sc)						\
344 do {									\
345 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
346 	*(sc)->sc_rxtailp = NULL;					\
347 	(sc)->sc_rxlen = 0;						\
348 } while (/*CONSTCOND*/0)
349 
350 #define	WM_RXCHAIN_LINK(sc, m)						\
351 do {									\
352 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
353 	(sc)->sc_rxtailp = &(m)->m_next;				\
354 } while (/*CONSTCOND*/0)
355 
356 /* sc_flags */
357 #define	WM_F_HAS_MII		0x01	/* has MII */
358 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
359 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
360 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
361 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
362 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
363 #define	WM_F_CSA		0x80	/* bus is CSA */
364 
365 #ifdef WM_EVENT_COUNTERS
366 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
367 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
368 #else
369 #define	WM_EVCNT_INCR(ev)	/* nothing */
370 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
371 #endif
372 
373 #define	CSR_READ(sc, reg)						\
374 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
375 #define	CSR_WRITE(sc, reg, val)						\
376 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
377 #define	CSR_WRITE_FLUSH(sc)						\
378 	(void) CSR_READ((sc), WMREG_STATUS)
379 
380 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
381 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
382 
383 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
384 #define	WM_CDTXADDR_HI(sc, x)						\
385 	(sizeof(bus_addr_t) == 8 ?					\
386 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
387 
388 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
389 #define	WM_CDRXADDR_HI(sc, x)						\
390 	(sizeof(bus_addr_t) == 8 ?					\
391 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
392 
393 #define	WM_CDTXSYNC(sc, x, n, ops)					\
394 do {									\
395 	int __x, __n;							\
396 									\
397 	__x = (x);							\
398 	__n = (n);							\
399 									\
400 	/* If it will wrap around, sync to the end of the ring. */	\
401 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
402 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
403 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
404 		    (WM_NTXDESC(sc) - __x), (ops));			\
405 		__n -= (WM_NTXDESC(sc) - __x);				\
406 		__x = 0;						\
407 	}								\
408 									\
409 	/* Now sync whatever is left. */				\
410 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
411 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
412 } while (/*CONSTCOND*/0)
413 
414 #define	WM_CDRXSYNC(sc, x, ops)						\
415 do {									\
416 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
417 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
418 } while (/*CONSTCOND*/0)
419 
420 #define	WM_INIT_RXDESC(sc, x)						\
421 do {									\
422 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
423 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
424 	struct mbuf *__m = __rxs->rxs_mbuf;				\
425 									\
426 	/*								\
427 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
428 	 * so that the payload after the Ethernet header is aligned	\
429 	 * to a 4-byte boundary.					\
430 	 *								\
431 	 * XXX BRAINDAMAGE ALERT!					\
432 	 * The stupid chip uses the same size for every buffer, which	\
433 	 * is set in the Receive Control register.  We are using the 2K	\
434 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
435 	 * reason, we can't "scoot" packets longer than the standard	\
436 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
437 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
438 	 * the upper layer copy the headers.				\
439 	 */								\
440 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
441 									\
442 	wm_set_dma_addr(&__rxd->wrx_addr,				\
443 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
444 	__rxd->wrx_len = 0;						\
445 	__rxd->wrx_cksum = 0;						\
446 	__rxd->wrx_status = 0;						\
447 	__rxd->wrx_errors = 0;						\
448 	__rxd->wrx_special = 0;						\
449 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
450 									\
451 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
452 } while (/*CONSTCOND*/0)
453 
454 static void	wm_start(struct ifnet *);
455 static void	wm_watchdog(struct ifnet *);
456 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
457 static int	wm_init(struct ifnet *);
458 static void	wm_stop(struct ifnet *, int);
459 
460 static void	wm_shutdown(void *);
461 
462 static void	wm_reset(struct wm_softc *);
463 static void	wm_rxdrain(struct wm_softc *);
464 static int	wm_add_rxbuf(struct wm_softc *, int);
465 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
466 static void	wm_tick(void *);
467 
468 static void	wm_set_filter(struct wm_softc *);
469 
470 static int	wm_intr(void *);
471 static void	wm_txintr(struct wm_softc *);
472 static void	wm_rxintr(struct wm_softc *);
473 static void	wm_linkintr(struct wm_softc *, uint32_t);
474 
475 static void	wm_tbi_mediainit(struct wm_softc *);
476 static int	wm_tbi_mediachange(struct ifnet *);
477 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
478 
479 static void	wm_tbi_set_linkled(struct wm_softc *);
480 static void	wm_tbi_check_link(struct wm_softc *);
481 
482 static void	wm_gmii_reset(struct wm_softc *);
483 
484 static int	wm_gmii_i82543_readreg(struct device *, int, int);
485 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
486 
487 static int	wm_gmii_i82544_readreg(struct device *, int, int);
488 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
489 
490 static void	wm_gmii_statchg(struct device *);
491 
492 static void	wm_gmii_mediainit(struct wm_softc *);
493 static int	wm_gmii_mediachange(struct ifnet *);
494 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
495 
496 static int	wm_match(struct device *, struct cfdata *, void *);
497 static void	wm_attach(struct device *, struct device *, void *);
498 
499 CFATTACH_DECL(wm, sizeof(struct wm_softc),
500     wm_match, wm_attach, NULL, NULL);
501 
502 static void	wm_82547_txfifo_stall(void *);
503 
504 /*
505  * Devices supported by this driver.
506  */
507 static const struct wm_product {
508 	pci_vendor_id_t		wmp_vendor;
509 	pci_product_id_t	wmp_product;
510 	const char		*wmp_name;
511 	wm_chip_type		wmp_type;
512 	int			wmp_flags;
513 #define	WMP_F_1000X		0x01
514 #define	WMP_F_1000T		0x02
515 } wm_products[] = {
516 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
517 	  "Intel i82542 1000BASE-X Ethernet",
518 	  WM_T_82542_2_1,	WMP_F_1000X },
519 
520 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
521 	  "Intel i82543GC 1000BASE-X Ethernet",
522 	  WM_T_82543,		WMP_F_1000X },
523 
524 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
525 	  "Intel i82543GC 1000BASE-T Ethernet",
526 	  WM_T_82543,		WMP_F_1000T },
527 
528 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
529 	  "Intel i82544EI 1000BASE-T Ethernet",
530 	  WM_T_82544,		WMP_F_1000T },
531 
532 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
533 	  "Intel i82544EI 1000BASE-X Ethernet",
534 	  WM_T_82544,		WMP_F_1000X },
535 
536 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
537 	  "Intel i82544GC 1000BASE-T Ethernet",
538 	  WM_T_82544,		WMP_F_1000T },
539 
540 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
541 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
542 	  WM_T_82544,		WMP_F_1000T },
543 
544 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
545 	  "Intel i82540EM 1000BASE-T Ethernet",
546 	  WM_T_82540,		WMP_F_1000T },
547 
548 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
549 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
550 	  WM_T_82540,		WMP_F_1000T },
551 
552 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
553 	  "Intel i82540EP 1000BASE-T Ethernet",
554 	  WM_T_82540,		WMP_F_1000T },
555 
556 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
557 	  "Intel i82540EP 1000BASE-T Ethernet",
558 	  WM_T_82540,		WMP_F_1000T },
559 
560 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
561 	  "Intel i82540EP 1000BASE-T Ethernet",
562 	  WM_T_82540,		WMP_F_1000T },
563 
564 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
565 	  "Intel i82545EM 1000BASE-T Ethernet",
566 	  WM_T_82545,		WMP_F_1000T },
567 
568 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
569 	  "Intel i82545GM 1000BASE-T Ethernet",
570 	  WM_T_82545_3,		WMP_F_1000T },
571 
572 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
573 	  "Intel i82545GM 1000BASE-X Ethernet",
574 	  WM_T_82545_3,		WMP_F_1000X },
575 #if 0
576 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
577 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
578 	  WM_T_82545_3,		WMP_F_SERDES },
579 #endif
580 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
581 	  "Intel i82546EB 1000BASE-T Ethernet",
582 	  WM_T_82546,		WMP_F_1000T },
583 
584 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
585 	  "Intel i82546EB 1000BASE-T Ethernet",
586 	  WM_T_82546,		WMP_F_1000T },
587 
588 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
589 	  "Intel i82545EM 1000BASE-X Ethernet",
590 	  WM_T_82545,		WMP_F_1000X },
591 
592 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
593 	  "Intel i82546EB 1000BASE-X Ethernet",
594 	  WM_T_82546,		WMP_F_1000X },
595 
596 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
597 	  "Intel i82546GB 1000BASE-T Ethernet",
598 	  WM_T_82546_3,		WMP_F_1000T },
599 
600 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
601 	  "Intel i82546GB 1000BASE-X Ethernet",
602 	  WM_T_82546_3,		WMP_F_1000X },
603 #if 0
604 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
605 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
606 	  WM_T_82546_3,		WMP_F_SERDES },
607 #endif
608 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
609 	  "Intel i82541EI 1000BASE-T Ethernet",
610 	  WM_T_82541,		WMP_F_1000T },
611 
612 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
613 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
614 	  WM_T_82541,		WMP_F_1000T },
615 
616 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
617 	  "Intel i82541ER 1000BASE-T Ethernet",
618 	  WM_T_82541_2,		WMP_F_1000T },
619 
620 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
621 	  "Intel i82541GI 1000BASE-T Ethernet",
622 	  WM_T_82541_2,		WMP_F_1000T },
623 
624 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
625 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
626 	  WM_T_82541_2,		WMP_F_1000T },
627 
628 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
629 	  "Intel i82541PI 1000BASE-T Ethernet",
630 	  WM_T_82541_2,		WMP_F_1000T },
631 
632 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
633 	  "Intel i82547EI 1000BASE-T Ethernet",
634 	  WM_T_82547,		WMP_F_1000T },
635 
636 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
637 	  "Intel i82547GI 1000BASE-T Ethernet",
638 	  WM_T_82547_2,		WMP_F_1000T },
639 	{ 0,			0,
640 	  NULL,
641 	  0,			0 },
642 };
643 
644 #ifdef WM_EVENT_COUNTERS
645 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
646 #endif /* WM_EVENT_COUNTERS */
647 
648 #if 0 /* Not currently used */
649 static __inline uint32_t
650 wm_io_read(struct wm_softc *sc, int reg)
651 {
652 
653 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
654 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
655 }
656 #endif
657 
658 static __inline void
659 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
660 {
661 
662 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
663 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
664 }
665 
666 static __inline void
667 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
668 {
669 	wa->wa_low = htole32(v & 0xffffffffU);
670 	if (sizeof(bus_addr_t) == 8)
671 		wa->wa_high = htole32((uint64_t) v >> 32);
672 	else
673 		wa->wa_high = 0;
674 }
675 
676 static const struct wm_product *
677 wm_lookup(const struct pci_attach_args *pa)
678 {
679 	const struct wm_product *wmp;
680 
681 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
682 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
683 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
684 			return (wmp);
685 	}
686 	return (NULL);
687 }
688 
689 static int
690 wm_match(struct device *parent, struct cfdata *cf, void *aux)
691 {
692 	struct pci_attach_args *pa = aux;
693 
694 	if (wm_lookup(pa) != NULL)
695 		return (1);
696 
697 	return (0);
698 }
699 
700 static void
701 wm_attach(struct device *parent, struct device *self, void *aux)
702 {
703 	struct wm_softc *sc = (void *) self;
704 	struct pci_attach_args *pa = aux;
705 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
706 	pci_chipset_tag_t pc = pa->pa_pc;
707 	pci_intr_handle_t ih;
708 	size_t cdata_size;
709 	const char *intrstr = NULL;
710 	const char *eetype;
711 	bus_space_tag_t memt;
712 	bus_space_handle_t memh;
713 	bus_dma_segment_t seg;
714 	int memh_valid;
715 	int i, rseg, error;
716 	const struct wm_product *wmp;
717 	uint8_t enaddr[ETHER_ADDR_LEN];
718 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
719 	pcireg_t preg, memtype;
720 	uint32_t reg;
721 	int pmreg;
722 
723 	callout_init(&sc->sc_tick_ch);
724 
725 	wmp = wm_lookup(pa);
726 	if (wmp == NULL) {
727 		printf("\n");
728 		panic("wm_attach: impossible");
729 	}
730 
731 	if (pci_dma64_available(pa))
732 		sc->sc_dmat = pa->pa_dmat64;
733 	else
734 		sc->sc_dmat = pa->pa_dmat;
735 
736 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
737 	aprint_naive(": Ethernet controller\n");
738 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
739 
740 	sc->sc_type = wmp->wmp_type;
741 	if (sc->sc_type < WM_T_82543) {
742 		if (preg < 2) {
743 			aprint_error("%s: i82542 must be at least rev. 2\n",
744 			    sc->sc_dev.dv_xname);
745 			return;
746 		}
747 		if (preg < 3)
748 			sc->sc_type = WM_T_82542_2_0;
749 	}
750 
751 	/*
752 	 * Map the device.  All devices support memory-mapped acccess,
753 	 * and it is really required for normal operation.
754 	 */
755 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
756 	switch (memtype) {
757 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
758 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
759 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
760 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
761 		break;
762 	default:
763 		memh_valid = 0;
764 	}
765 
766 	if (memh_valid) {
767 		sc->sc_st = memt;
768 		sc->sc_sh = memh;
769 	} else {
770 		aprint_error("%s: unable to map device registers\n",
771 		    sc->sc_dev.dv_xname);
772 		return;
773 	}
774 
775 	/*
776 	 * In addition, i82544 and later support I/O mapped indirect
777 	 * register access.  It is not desirable (nor supported in
778 	 * this driver) to use it for normal operation, though it is
779 	 * required to work around bugs in some chip versions.
780 	 */
781 	if (sc->sc_type >= WM_T_82544) {
782 		/* First we have to find the I/O BAR. */
783 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
784 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
785 			    PCI_MAPREG_TYPE_IO)
786 				break;
787 		}
788 		if (i == PCI_MAPREG_END)
789 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
790 			    sc->sc_dev.dv_xname);
791 		else {
792 			/*
793 			 * The i8254x doesn't apparently respond when the
794 			 * I/O BAR is 0, which looks somewhat like it's not
795 			 * been configured.
796 			 */
797 			preg = pci_conf_read(pc, pa->pa_tag, i);
798 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
799 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
800 				    sc->sc_dev.dv_xname);
801 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
802 					0, &sc->sc_iot, &sc->sc_ioh,
803 					NULL, NULL) == 0) {
804 				sc->sc_flags |= WM_F_IOH_VALID;
805 			} else {
806 				aprint_error("%s: WARNING: unable to map "
807 				    "I/O space\n", sc->sc_dev.dv_xname);
808 			}
809 		}
810 
811 	}
812 
813 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
814 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
815 	preg |= PCI_COMMAND_MASTER_ENABLE;
816 	if (sc->sc_type < WM_T_82542_2_1)
817 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
818 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
819 
820 	/* Get it out of power save mode, if needed. */
821 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
822 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
823 		    PCI_PMCSR_STATE_MASK;
824 		if (preg == PCI_PMCSR_STATE_D3) {
825 			/*
826 			 * The card has lost all configuration data in
827 			 * this state, so punt.
828 			 */
829 			aprint_error("%s: unable to wake from power state D3\n",
830 			    sc->sc_dev.dv_xname);
831 			return;
832 		}
833 		if (preg != PCI_PMCSR_STATE_D0) {
834 			aprint_normal("%s: waking up from power state D%d\n",
835 			    sc->sc_dev.dv_xname, preg);
836 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
837 			    PCI_PMCSR_STATE_D0);
838 		}
839 	}
840 
841 	/*
842 	 * Map and establish our interrupt.
843 	 */
844 	if (pci_intr_map(pa, &ih)) {
845 		aprint_error("%s: unable to map interrupt\n",
846 		    sc->sc_dev.dv_xname);
847 		return;
848 	}
849 	intrstr = pci_intr_string(pc, ih);
850 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
851 	if (sc->sc_ih == NULL) {
852 		aprint_error("%s: unable to establish interrupt",
853 		    sc->sc_dev.dv_xname);
854 		if (intrstr != NULL)
855 			aprint_normal(" at %s", intrstr);
856 		aprint_normal("\n");
857 		return;
858 	}
859 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
860 
861 	/*
862 	 * Determine a few things about the bus we're connected to.
863 	 */
864 	if (sc->sc_type < WM_T_82543) {
865 		/* We don't really know the bus characteristics here. */
866 		sc->sc_bus_speed = 33;
867 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
868 		/*
869 		 * CSA (Communication Streaming Architecture) is about as fast
870 		 * a 32-bit 66MHz PCI Bus.
871 		 */
872 		sc->sc_flags |= WM_F_CSA;
873 		sc->sc_bus_speed = 66;
874 		aprint_verbose("%s: Communication Streaming Architecture\n",
875 		    sc->sc_dev.dv_xname);
876 		if (sc->sc_type == WM_T_82547) {
877 			callout_init(&sc->sc_txfifo_ch);
878 			callout_setfunc(&sc->sc_txfifo_ch,
879 					wm_82547_txfifo_stall, sc);
880 			aprint_verbose("%s: using 82547 Tx FIFO stall "
881 				       "work-around\n", sc->sc_dev.dv_xname);
882 		}
883 	} else {
884 		reg = CSR_READ(sc, WMREG_STATUS);
885 		if (reg & STATUS_BUS64)
886 			sc->sc_flags |= WM_F_BUS64;
887 		if (sc->sc_type >= WM_T_82544 &&
888 		    (reg & STATUS_PCIX_MODE) != 0) {
889 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
890 
891 			sc->sc_flags |= WM_F_PCIX;
892 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
893 					       PCI_CAP_PCIX,
894 					       &sc->sc_pcix_offset, NULL) == 0)
895 				aprint_error("%s: unable to find PCIX "
896 				    "capability\n", sc->sc_dev.dv_xname);
897 			else if (sc->sc_type != WM_T_82545_3 &&
898 				 sc->sc_type != WM_T_82546_3) {
899 				/*
900 				 * Work around a problem caused by the BIOS
901 				 * setting the max memory read byte count
902 				 * incorrectly.
903 				 */
904 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
905 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
906 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
907 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
908 
909 				bytecnt =
910 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
911 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
912 				maxb =
913 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
914 				    PCI_PCIX_STATUS_MAXB_SHIFT;
915 				if (bytecnt > maxb) {
916 					aprint_verbose("%s: resetting PCI-X "
917 					    "MMRBC: %d -> %d\n",
918 					    sc->sc_dev.dv_xname,
919 					    512 << bytecnt, 512 << maxb);
920 					pcix_cmd = (pcix_cmd &
921 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
922 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
923 					pci_conf_write(pa->pa_pc, pa->pa_tag,
924 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
925 					    pcix_cmd);
926 				}
927 			}
928 		}
929 		/*
930 		 * The quad port adapter is special; it has a PCIX-PCIX
931 		 * bridge on the board, and can run the secondary bus at
932 		 * a higher speed.
933 		 */
934 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
935 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
936 								      : 66;
937 		} else if (sc->sc_flags & WM_F_PCIX) {
938 			switch (reg & STATUS_PCIXSPD_MASK) {
939 			case STATUS_PCIXSPD_50_66:
940 				sc->sc_bus_speed = 66;
941 				break;
942 			case STATUS_PCIXSPD_66_100:
943 				sc->sc_bus_speed = 100;
944 				break;
945 			case STATUS_PCIXSPD_100_133:
946 				sc->sc_bus_speed = 133;
947 				break;
948 			default:
949 				aprint_error(
950 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
951 				    sc->sc_dev.dv_xname,
952 				    reg & STATUS_PCIXSPD_MASK);
953 				sc->sc_bus_speed = 66;
954 			}
955 		} else
956 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
957 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
958 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
959 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
960 	}
961 
962 	/*
963 	 * Allocate the control data structures, and create and load the
964 	 * DMA map for it.
965 	 *
966 	 * NOTE: All Tx descriptors must be in the same 4G segment of
967 	 * memory.  So must Rx descriptors.  We simplify by allocating
968 	 * both sets within the same 4G segment.
969 	 */
970 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
971 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
972 	cdata_size = sc->sc_type < WM_T_82544 ?
973 	    sizeof(struct wm_control_data_82542) :
974 	    sizeof(struct wm_control_data_82544);
975 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
976 				      (bus_size_t) 0x100000000ULL,
977 				      &seg, 1, &rseg, 0)) != 0) {
978 		aprint_error(
979 		    "%s: unable to allocate control data, error = %d\n",
980 		    sc->sc_dev.dv_xname, error);
981 		goto fail_0;
982 	}
983 
984 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
985 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
986 		aprint_error("%s: unable to map control data, error = %d\n",
987 		    sc->sc_dev.dv_xname, error);
988 		goto fail_1;
989 	}
990 
991 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
992 				       0, 0, &sc->sc_cddmamap)) != 0) {
993 		aprint_error("%s: unable to create control data DMA map, "
994 		    "error = %d\n", sc->sc_dev.dv_xname, error);
995 		goto fail_2;
996 	}
997 
998 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
999 				     sc->sc_control_data, cdata_size, NULL,
1000 				     0)) != 0) {
1001 		aprint_error(
1002 		    "%s: unable to load control data DMA map, error = %d\n",
1003 		    sc->sc_dev.dv_xname, error);
1004 		goto fail_3;
1005 	}
1006 
1007 
1008 	/*
1009 	 * Create the transmit buffer DMA maps.
1010 	 */
1011 	WM_TXQUEUELEN(sc) =
1012 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1013 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1014 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1015 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1016 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1017 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1018 			aprint_error("%s: unable to create Tx DMA map %d, "
1019 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1020 			goto fail_4;
1021 		}
1022 	}
1023 
1024 	/*
1025 	 * Create the receive buffer DMA maps.
1026 	 */
1027 	for (i = 0; i < WM_NRXDESC; i++) {
1028 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1029 					       MCLBYTES, 0, 0,
1030 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1031 			aprint_error("%s: unable to create Rx DMA map %d, "
1032 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1033 			goto fail_5;
1034 		}
1035 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1036 	}
1037 
1038 	/*
1039 	 * Reset the chip to a known state.
1040 	 */
1041 	wm_reset(sc);
1042 
1043 	/*
1044 	 * Get some information about the EEPROM.
1045 	 */
1046 	if (sc->sc_type >= WM_T_82540)
1047 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1048 	if (sc->sc_type <= WM_T_82544)
1049 		sc->sc_ee_addrbits = 6;
1050 	else if (sc->sc_type <= WM_T_82546_3) {
1051 		reg = CSR_READ(sc, WMREG_EECD);
1052 		if (reg & EECD_EE_SIZE)
1053 			sc->sc_ee_addrbits = 8;
1054 		else
1055 			sc->sc_ee_addrbits = 6;
1056 	} else if (sc->sc_type <= WM_T_82547_2) {
1057 		reg = CSR_READ(sc, WMREG_EECD);
1058 		if (reg & EECD_EE_TYPE) {
1059 			sc->sc_flags |= WM_F_EEPROM_SPI;
1060 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1061 		} else
1062 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1063 	} else {
1064 		/* Assume everything else is SPI. */
1065 		reg = CSR_READ(sc, WMREG_EECD);
1066 		sc->sc_flags |= WM_F_EEPROM_SPI;
1067 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1068 	}
1069 	if (sc->sc_flags & WM_F_EEPROM_SPI)
1070 		eetype = "SPI";
1071 	else
1072 		eetype = "MicroWire";
1073 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1074 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1075 	    sc->sc_ee_addrbits, eetype);
1076 
1077 	/*
1078 	 * Read the Ethernet address from the EEPROM.
1079 	 */
1080 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1081 	    sizeof(myea) / sizeof(myea[0]), myea)) {
1082 		aprint_error("%s: unable to read Ethernet address\n",
1083 		    sc->sc_dev.dv_xname);
1084 		return;
1085 	}
1086 	enaddr[0] = myea[0] & 0xff;
1087 	enaddr[1] = myea[0] >> 8;
1088 	enaddr[2] = myea[1] & 0xff;
1089 	enaddr[3] = myea[1] >> 8;
1090 	enaddr[4] = myea[2] & 0xff;
1091 	enaddr[5] = myea[2] >> 8;
1092 
1093 	/*
1094 	 * Toggle the LSB of the MAC address on the second port
1095 	 * of the i82546.
1096 	 */
1097 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1098 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1099 			enaddr[5] ^= 1;
1100 	}
1101 
1102 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1103 	    ether_sprintf(enaddr));
1104 
1105 	/*
1106 	 * Read the config info from the EEPROM, and set up various
1107 	 * bits in the control registers based on their contents.
1108 	 */
1109 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1110 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
1111 		    sc->sc_dev.dv_xname);
1112 		return;
1113 	}
1114 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1115 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
1116 		    sc->sc_dev.dv_xname);
1117 		return;
1118 	}
1119 	if (sc->sc_type >= WM_T_82544) {
1120 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1121 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1122 			    sc->sc_dev.dv_xname);
1123 			return;
1124 		}
1125 	}
1126 
1127 	if (cfg1 & EEPROM_CFG1_ILOS)
1128 		sc->sc_ctrl |= CTRL_ILOS;
1129 	if (sc->sc_type >= WM_T_82544) {
1130 		sc->sc_ctrl |=
1131 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1132 		    CTRL_SWDPIO_SHIFT;
1133 		sc->sc_ctrl |=
1134 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1135 		    CTRL_SWDPINS_SHIFT;
1136 	} else {
1137 		sc->sc_ctrl |=
1138 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1139 		    CTRL_SWDPIO_SHIFT;
1140 	}
1141 
1142 #if 0
1143 	if (sc->sc_type >= WM_T_82544) {
1144 		if (cfg1 & EEPROM_CFG1_IPS0)
1145 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1146 		if (cfg1 & EEPROM_CFG1_IPS1)
1147 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1148 		sc->sc_ctrl_ext |=
1149 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1150 		    CTRL_EXT_SWDPIO_SHIFT;
1151 		sc->sc_ctrl_ext |=
1152 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1153 		    CTRL_EXT_SWDPINS_SHIFT;
1154 	} else {
1155 		sc->sc_ctrl_ext |=
1156 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1157 		    CTRL_EXT_SWDPIO_SHIFT;
1158 	}
1159 #endif
1160 
1161 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1162 #if 0
1163 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1164 #endif
1165 
1166 	/*
1167 	 * Set up some register offsets that are different between
1168 	 * the i82542 and the i82543 and later chips.
1169 	 */
1170 	if (sc->sc_type < WM_T_82543) {
1171 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1172 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1173 	} else {
1174 		sc->sc_rdt_reg = WMREG_RDT;
1175 		sc->sc_tdt_reg = WMREG_TDT;
1176 	}
1177 
1178 	/*
1179 	 * Determine if we're TBI or GMII mode, and initialize the
1180 	 * media structures accordingly.
1181 	 */
1182 	if (sc->sc_type < WM_T_82543 ||
1183 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1184 		if (wmp->wmp_flags & WMP_F_1000T)
1185 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1186 			    "product!\n", sc->sc_dev.dv_xname);
1187 		wm_tbi_mediainit(sc);
1188 	} else {
1189 		if (wmp->wmp_flags & WMP_F_1000X)
1190 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1191 			    "product!\n", sc->sc_dev.dv_xname);
1192 		wm_gmii_mediainit(sc);
1193 	}
1194 
1195 	ifp = &sc->sc_ethercom.ec_if;
1196 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1197 	ifp->if_softc = sc;
1198 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1199 	ifp->if_ioctl = wm_ioctl;
1200 	ifp->if_start = wm_start;
1201 	ifp->if_watchdog = wm_watchdog;
1202 	ifp->if_init = wm_init;
1203 	ifp->if_stop = wm_stop;
1204 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1205 	IFQ_SET_READY(&ifp->if_snd);
1206 
1207 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1208 
1209 	/*
1210 	 * If we're a i82543 or greater, we can support VLANs.
1211 	 */
1212 	if (sc->sc_type >= WM_T_82543)
1213 		sc->sc_ethercom.ec_capabilities |=
1214 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1215 
1216 	/*
1217 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1218 	 * on i82543 and later.
1219 	 */
1220 	if (sc->sc_type >= WM_T_82543)
1221 		ifp->if_capabilities |=
1222 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1223 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1224 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1225 		    IFCAP_CSUM_TCPv6_Tx |
1226 		    IFCAP_CSUM_UDPv6_Tx;
1227 
1228 	/*
1229 	 * If we're a i82544 or greater (except i82547), we can do
1230 	 * TCP segmentation offload.
1231 	 */
1232 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1233 		ifp->if_capabilities |= IFCAP_TSOv4;
1234 
1235 	/*
1236 	 * Attach the interface.
1237 	 */
1238 	if_attach(ifp);
1239 	ether_ifattach(ifp, enaddr);
1240 #if NRND > 0
1241 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1242 	    RND_TYPE_NET, 0);
1243 #endif
1244 
1245 #ifdef WM_EVENT_COUNTERS
1246 	/* Attach event counters. */
1247 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1248 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1249 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1250 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1251 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1252 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1253 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1254 	    NULL, sc->sc_dev.dv_xname, "txdw");
1255 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1256 	    NULL, sc->sc_dev.dv_xname, "txqe");
1257 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1258 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1259 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1260 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1261 
1262 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1263 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1264 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1265 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1266 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1267 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1268 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1269 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1270 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1271 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
1272 
1273 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1274 	    NULL, sc->sc_dev.dv_xname, "txtso");
1275 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1276 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
1277 
1278 	for (i = 0; i < WM_NTXSEGS; i++) {
1279 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1280 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1281 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1282 	}
1283 
1284 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1285 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1286 
1287 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1288 	    NULL, sc->sc_dev.dv_xname, "tu");
1289 
1290 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1291 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1292 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1293 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1294 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1295 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1296 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1297 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1298 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1299 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1300 #endif /* WM_EVENT_COUNTERS */
1301 
1302 	/*
1303 	 * Make sure the interface is shutdown during reboot.
1304 	 */
1305 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1306 	if (sc->sc_sdhook == NULL)
1307 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1308 		    sc->sc_dev.dv_xname);
1309 	return;
1310 
1311 	/*
1312 	 * Free any resources we've allocated during the failed attach
1313 	 * attempt.  Do this in reverse order and fall through.
1314 	 */
1315  fail_5:
1316 	for (i = 0; i < WM_NRXDESC; i++) {
1317 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1318 			bus_dmamap_destroy(sc->sc_dmat,
1319 			    sc->sc_rxsoft[i].rxs_dmamap);
1320 	}
1321  fail_4:
1322 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1323 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1324 			bus_dmamap_destroy(sc->sc_dmat,
1325 			    sc->sc_txsoft[i].txs_dmamap);
1326 	}
1327 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1328  fail_3:
1329 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1330  fail_2:
1331 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1332 	    cdata_size);
1333  fail_1:
1334 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1335  fail_0:
1336 	return;
1337 }
1338 
1339 /*
1340  * wm_shutdown:
1341  *
1342  *	Make sure the interface is stopped at reboot time.
1343  */
1344 static void
1345 wm_shutdown(void *arg)
1346 {
1347 	struct wm_softc *sc = arg;
1348 
1349 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1350 }
1351 
1352 /*
1353  * wm_tx_offload:
1354  *
1355  *	Set up TCP/IP checksumming parameters for the
1356  *	specified packet.
1357  */
1358 static int
1359 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1360     uint8_t *fieldsp)
1361 {
1362 	struct mbuf *m0 = txs->txs_mbuf;
1363 	struct livengood_tcpip_ctxdesc *t;
1364 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
1365 	struct ether_header *eh;
1366 	int offset, iphl;
1367 	uint8_t fields;
1368 
1369 	/*
1370 	 * XXX It would be nice if the mbuf pkthdr had offset
1371 	 * fields for the protocol headers.
1372 	 */
1373 
1374 	eh = mtod(m0, struct ether_header *);
1375 	switch (htons(eh->ether_type)) {
1376 	case ETHERTYPE_IP:
1377 	case ETHERTYPE_IPV6:
1378 		offset = ETHER_HDR_LEN;
1379 		break;
1380 
1381 	case ETHERTYPE_VLAN:
1382 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1383 		break;
1384 
1385 	default:
1386 		/*
1387 		 * Don't support this protocol or encapsulation.
1388 		 */
1389 		*fieldsp = 0;
1390 		*cmdp = 0;
1391 		return (0);
1392 	}
1393 
1394 	if ((m0->m_pkthdr.csum_flags &
1395 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1396 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1397 	} else {
1398 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1399 	}
1400 
1401 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1402 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1403 	seg = 0;
1404 	fields = 0;
1405 
1406 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1407 		int hlen = offset + iphl;
1408 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
1409 		if (__predict_false(m0->m_len <
1410 				    (hlen + sizeof(struct tcphdr)))) {
1411 			/*
1412 			 * TCP/IP headers are not in the first mbuf; we need
1413 			 * to do this the slow and painful way.  Let's just
1414 			 * hope this doesn't happen very often.
1415 			 */
1416 			struct ip ip;
1417 			struct tcphdr th;
1418 
1419 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1420 
1421 			m_copydata(m0, offset, sizeof(ip), &ip);
1422 			m_copydata(m0, hlen, sizeof(th), &th);
1423 
1424 			ip.ip_len = 0;
1425 
1426 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1427 			    sizeof(ip.ip_len), &ip.ip_len);
1428 
1429 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1430 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1431 
1432 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1433 			    sizeof(th.th_sum), &th.th_sum);
1434 
1435 			hlen += th.th_off << 2;
1436 		} else {
1437 			/*
1438 			 * TCP/IP headers are in the first mbuf; we can do
1439 			 * this the easy way.
1440 			 */
1441 			struct ip *ip =
1442 			    (struct ip *) (mtod(m0, caddr_t) + offset);
1443 			struct tcphdr *th =
1444 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1445 
1446 			ip->ip_len = 0;
1447 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1448 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1449 
1450 			hlen += th->th_off << 2;
1451 		}
1452 
1453 		cmd |= WTX_TCPIP_CMD_TSE;
1454 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1455 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1456 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1457 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1458 	}
1459 
1460 	/*
1461 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1462 	 * offload feature, if we load the context descriptor, we
1463 	 * MUST provide valid values for IPCSS and TUCSS fields.
1464 	 */
1465 
1466 	ipcs = WTX_TCPIP_IPCSS(offset) |
1467 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1468 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
1469 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1470 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1471 		fields |= WTX_IXSM;
1472 	}
1473 
1474 	offset += iphl;
1475 
1476 	if (m0->m_pkthdr.csum_flags &
1477 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1478 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1479 		fields |= WTX_TXSM;
1480 		tucs = WTX_TCPIP_TUCSS(offset) |
1481 		    WTX_TCPIP_TUCSO(offset +
1482 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1483 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1484 	} else if ((m0->m_pkthdr.csum_flags &
1485 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1486 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1487 		fields |= WTX_TXSM;
1488 		tucs = WTX_TCPIP_TUCSS(offset) |
1489 		    WTX_TCPIP_TUCSO(offset +
1490 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1491 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1492 	} else {
1493 		/* Just initialize it to a valid TCP context. */
1494 		tucs = WTX_TCPIP_TUCSS(offset) |
1495 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1496 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1497 	}
1498 
1499 	/* Fill in the context descriptor. */
1500 	t = (struct livengood_tcpip_ctxdesc *)
1501 	    &sc->sc_txdescs[sc->sc_txnext];
1502 	t->tcpip_ipcs = htole32(ipcs);
1503 	t->tcpip_tucs = htole32(tucs);
1504 	t->tcpip_cmdlen = htole32(cmdlen);
1505 	t->tcpip_seg = htole32(seg);
1506 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1507 
1508 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1509 	txs->txs_ndesc++;
1510 
1511 	*cmdp = cmd;
1512 	*fieldsp = fields;
1513 
1514 	return (0);
1515 }
1516 
1517 static void
1518 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1519 {
1520 	struct mbuf *m;
1521 	int i;
1522 
1523 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1524 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1525 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1526 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1527 		    m->m_data, m->m_len, m->m_flags);
1528 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1529 	    i, i == 1 ? "" : "s");
1530 }
1531 
1532 /*
1533  * wm_82547_txfifo_stall:
1534  *
1535  *	Callout used to wait for the 82547 Tx FIFO to drain,
1536  *	reset the FIFO pointers, and restart packet transmission.
1537  */
1538 static void
1539 wm_82547_txfifo_stall(void *arg)
1540 {
1541 	struct wm_softc *sc = arg;
1542 	int s;
1543 
1544 	s = splnet();
1545 
1546 	if (sc->sc_txfifo_stall) {
1547 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1548 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1549 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1550 			/*
1551 			 * Packets have drained.  Stop transmitter, reset
1552 			 * FIFO pointers, restart transmitter, and kick
1553 			 * the packet queue.
1554 			 */
1555 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1556 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1557 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1558 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1559 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1560 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1561 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1562 			CSR_WRITE_FLUSH(sc);
1563 
1564 			sc->sc_txfifo_head = 0;
1565 			sc->sc_txfifo_stall = 0;
1566 			wm_start(&sc->sc_ethercom.ec_if);
1567 		} else {
1568 			/*
1569 			 * Still waiting for packets to drain; try again in
1570 			 * another tick.
1571 			 */
1572 			callout_schedule(&sc->sc_txfifo_ch, 1);
1573 		}
1574 	}
1575 
1576 	splx(s);
1577 }
1578 
1579 /*
1580  * wm_82547_txfifo_bugchk:
1581  *
1582  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1583  *	prevent enqueueing a packet that would wrap around the end
1584  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1585  *
1586  *	We do this by checking the amount of space before the end
1587  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1588  *	the Tx FIFO, wait for all remaining packets to drain, reset
1589  *	the internal FIFO pointers to the beginning, and restart
1590  *	transmission on the interface.
1591  */
1592 #define	WM_FIFO_HDR		0x10
1593 #define	WM_82547_PAD_LEN	0x3e0
1594 static int
1595 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1596 {
1597 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1598 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1599 
1600 	/* Just return if already stalled. */
1601 	if (sc->sc_txfifo_stall)
1602 		return (1);
1603 
1604 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1605 		/* Stall only occurs in half-duplex mode. */
1606 		goto send_packet;
1607 	}
1608 
1609 	if (len >= WM_82547_PAD_LEN + space) {
1610 		sc->sc_txfifo_stall = 1;
1611 		callout_schedule(&sc->sc_txfifo_ch, 1);
1612 		return (1);
1613 	}
1614 
1615  send_packet:
1616 	sc->sc_txfifo_head += len;
1617 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1618 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1619 
1620 	return (0);
1621 }
1622 
1623 /*
1624  * wm_start:		[ifnet interface function]
1625  *
1626  *	Start packet transmission on the interface.
1627  */
1628 static void
1629 wm_start(struct ifnet *ifp)
1630 {
1631 	struct wm_softc *sc = ifp->if_softc;
1632 	struct mbuf *m0;
1633 #if 0 /* XXXJRT */
1634 	struct m_tag *mtag;
1635 #endif
1636 	struct wm_txsoft *txs;
1637 	bus_dmamap_t dmamap;
1638 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1639 	bus_addr_t curaddr;
1640 	bus_size_t seglen, curlen;
1641 	uint32_t cksumcmd;
1642 	uint8_t cksumfields;
1643 
1644 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1645 		return;
1646 
1647 	/*
1648 	 * Remember the previous number of free descriptors.
1649 	 */
1650 	ofree = sc->sc_txfree;
1651 
1652 	/*
1653 	 * Loop through the send queue, setting up transmit descriptors
1654 	 * until we drain the queue, or use up all available transmit
1655 	 * descriptors.
1656 	 */
1657 	for (;;) {
1658 		/* Grab a packet off the queue. */
1659 		IFQ_POLL(&ifp->if_snd, m0);
1660 		if (m0 == NULL)
1661 			break;
1662 
1663 		DPRINTF(WM_DEBUG_TX,
1664 		    ("%s: TX: have packet to transmit: %p\n",
1665 		    sc->sc_dev.dv_xname, m0));
1666 
1667 		/* Get a work queue entry. */
1668 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1669 			wm_txintr(sc);
1670 			if (sc->sc_txsfree == 0) {
1671 				DPRINTF(WM_DEBUG_TX,
1672 				    ("%s: TX: no free job descriptors\n",
1673 					sc->sc_dev.dv_xname));
1674 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1675 				break;
1676 			}
1677 		}
1678 
1679 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1680 		dmamap = txs->txs_dmamap;
1681 
1682 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1683 
1684 		/*
1685 		 * So says the Linux driver:
1686 		 * The controller does a simple calculation to make sure
1687 		 * there is enough room in the FIFO before initiating the
1688 		 * DMA for each buffer.  The calc is:
1689 		 *	4 = ceil(buffer len / MSS)
1690 		 * To make sure we don't overrun the FIFO, adjust the max
1691 		 * buffer len if the MSS drops.
1692 		 */
1693 		dmamap->dm_maxsegsz =
1694 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1695 		    ? m0->m_pkthdr.segsz << 2
1696 		    : WTX_MAX_LEN;
1697 
1698 		/*
1699 		 * Load the DMA map.  If this fails, the packet either
1700 		 * didn't fit in the allotted number of segments, or we
1701 		 * were short on resources.  For the too-many-segments
1702 		 * case, we simply report an error and drop the packet,
1703 		 * since we can't sanely copy a jumbo packet to a single
1704 		 * buffer.
1705 		 */
1706 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1707 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1708 		if (error) {
1709 			if (error == EFBIG) {
1710 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1711 				log(LOG_ERR, "%s: Tx packet consumes too many "
1712 				    "DMA segments, dropping...\n",
1713 				    sc->sc_dev.dv_xname);
1714 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1715 				wm_dump_mbuf_chain(sc, m0);
1716 				m_freem(m0);
1717 				continue;
1718 			}
1719 			/*
1720 			 * Short on resources, just stop for now.
1721 			 */
1722 			DPRINTF(WM_DEBUG_TX,
1723 			    ("%s: TX: dmamap load failed: %d\n",
1724 			    sc->sc_dev.dv_xname, error));
1725 			break;
1726 		}
1727 
1728 		segs_needed = dmamap->dm_nsegs;
1729 		if (use_tso) {
1730 			/* For sentinel descriptor; see below. */
1731 			segs_needed++;
1732 		}
1733 
1734 		/*
1735 		 * Ensure we have enough descriptors free to describe
1736 		 * the packet.  Note, we always reserve one descriptor
1737 		 * at the end of the ring due to the semantics of the
1738 		 * TDT register, plus one more in the event we need
1739 		 * to load offload context.
1740 		 */
1741 		if (segs_needed > sc->sc_txfree - 2) {
1742 			/*
1743 			 * Not enough free descriptors to transmit this
1744 			 * packet.  We haven't committed anything yet,
1745 			 * so just unload the DMA map, put the packet
1746 			 * pack on the queue, and punt.  Notify the upper
1747 			 * layer that there are no more slots left.
1748 			 */
1749 			DPRINTF(WM_DEBUG_TX,
1750 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
1751 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1752 			    sc->sc_txfree - 1));
1753 			ifp->if_flags |= IFF_OACTIVE;
1754 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1755 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1756 			break;
1757 		}
1758 
1759 		/*
1760 		 * Check for 82547 Tx FIFO bug.  We need to do this
1761 		 * once we know we can transmit the packet, since we
1762 		 * do some internal FIFO space accounting here.
1763 		 */
1764 		if (sc->sc_type == WM_T_82547 &&
1765 		    wm_82547_txfifo_bugchk(sc, m0)) {
1766 			DPRINTF(WM_DEBUG_TX,
1767 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
1768 			    sc->sc_dev.dv_xname));
1769 			ifp->if_flags |= IFF_OACTIVE;
1770 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1771 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1772 			break;
1773 		}
1774 
1775 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1776 
1777 		/*
1778 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1779 		 */
1780 
1781 		DPRINTF(WM_DEBUG_TX,
1782 		    ("%s: TX: packet has %d (%d) DMA segments\n",
1783 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1784 
1785 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1786 
1787 		/*
1788 		 * Store a pointer to the packet so that we can free it
1789 		 * later.
1790 		 *
1791 		 * Initially, we consider the number of descriptors the
1792 		 * packet uses the number of DMA segments.  This may be
1793 		 * incremented by 1 if we do checksum offload (a descriptor
1794 		 * is used to set the checksum context).
1795 		 */
1796 		txs->txs_mbuf = m0;
1797 		txs->txs_firstdesc = sc->sc_txnext;
1798 		txs->txs_ndesc = segs_needed;
1799 
1800 		/* Set up offload parameters for this packet. */
1801 		if (m0->m_pkthdr.csum_flags &
1802 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
1803 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
1804 			if (wm_tx_offload(sc, txs, &cksumcmd,
1805 					  &cksumfields) != 0) {
1806 				/* Error message already displayed. */
1807 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1808 				continue;
1809 			}
1810 		} else {
1811 			cksumcmd = 0;
1812 			cksumfields = 0;
1813 		}
1814 
1815 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1816 
1817 		/* Sync the DMA map. */
1818 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1819 		    BUS_DMASYNC_PREWRITE);
1820 
1821 		/*
1822 		 * Initialize the transmit descriptor.
1823 		 */
1824 		for (nexttx = sc->sc_txnext, seg = 0;
1825 		     seg < dmamap->dm_nsegs; seg++) {
1826 			for (seglen = dmamap->dm_segs[seg].ds_len,
1827 			     curaddr = dmamap->dm_segs[seg].ds_addr;
1828 			     seglen != 0;
1829 			     curaddr += curlen, seglen -= curlen,
1830 			     nexttx = WM_NEXTTX(sc, nexttx)) {
1831 				curlen = seglen;
1832 
1833 				/*
1834 				 * So says the Linux driver:
1835 				 * Work around for premature descriptor
1836 				 * write-backs in TSO mode.  Append a
1837 				 * 4-byte sentinel descriptor.
1838 				 */
1839 				if (use_tso &&
1840 				    seg == dmamap->dm_nsegs - 1 &&
1841 				    curlen > 8)
1842 					curlen -= 4;
1843 
1844 				wm_set_dma_addr(
1845 				    &sc->sc_txdescs[nexttx].wtx_addr,
1846 				    curaddr);
1847 				sc->sc_txdescs[nexttx].wtx_cmdlen =
1848 				    htole32(cksumcmd | curlen);
1849 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1850 				    0;
1851 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1852 				    cksumfields;
1853 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1854 				lasttx = nexttx;
1855 
1856 				DPRINTF(WM_DEBUG_TX,
1857 				    ("%s: TX: desc %d: low 0x%08lx, "
1858 				     "len 0x%04x\n",
1859 				    sc->sc_dev.dv_xname, nexttx,
1860 				    curaddr & 0xffffffffUL, (unsigned)curlen));
1861 			}
1862 		}
1863 
1864 		KASSERT(lasttx != -1);
1865 
1866 		/*
1867 		 * Set up the command byte on the last descriptor of
1868 		 * the packet.  If we're in the interrupt delay window,
1869 		 * delay the interrupt.
1870 		 */
1871 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
1872 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
1873 
1874 #if 0 /* XXXJRT */
1875 		/*
1876 		 * If VLANs are enabled and the packet has a VLAN tag, set
1877 		 * up the descriptor to encapsulate the packet for us.
1878 		 *
1879 		 * This is only valid on the last descriptor of the packet.
1880 		 */
1881 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1882 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
1883 			    htole32(WTX_CMD_VLE);
1884 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1885 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1886 		}
1887 #endif /* XXXJRT */
1888 
1889 		txs->txs_lastdesc = lasttx;
1890 
1891 		DPRINTF(WM_DEBUG_TX,
1892 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1893 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1894 
1895 		/* Sync the descriptors we're using. */
1896 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1897 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1898 
1899 		/* Give the packet to the chip. */
1900 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1901 
1902 		DPRINTF(WM_DEBUG_TX,
1903 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1904 
1905 		DPRINTF(WM_DEBUG_TX,
1906 		    ("%s: TX: finished transmitting packet, job %d\n",
1907 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
1908 
1909 		/* Advance the tx pointer. */
1910 		sc->sc_txfree -= txs->txs_ndesc;
1911 		sc->sc_txnext = nexttx;
1912 
1913 		sc->sc_txsfree--;
1914 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1915 
1916 #if NBPFILTER > 0
1917 		/* Pass the packet to any BPF listeners. */
1918 		if (ifp->if_bpf)
1919 			bpf_mtap(ifp->if_bpf, m0);
1920 #endif /* NBPFILTER > 0 */
1921 	}
1922 
1923 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1924 		/* No more slots; notify upper layer. */
1925 		ifp->if_flags |= IFF_OACTIVE;
1926 	}
1927 
1928 	if (sc->sc_txfree != ofree) {
1929 		/* Set a watchdog timer in case the chip flakes out. */
1930 		ifp->if_timer = 5;
1931 	}
1932 }
1933 
1934 /*
1935  * wm_watchdog:		[ifnet interface function]
1936  *
1937  *	Watchdog timer handler.
1938  */
1939 static void
1940 wm_watchdog(struct ifnet *ifp)
1941 {
1942 	struct wm_softc *sc = ifp->if_softc;
1943 
1944 	/*
1945 	 * Since we're using delayed interrupts, sweep up
1946 	 * before we report an error.
1947 	 */
1948 	wm_txintr(sc);
1949 
1950 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
1951 		log(LOG_ERR,
1952 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1953 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1954 		    sc->sc_txnext);
1955 		ifp->if_oerrors++;
1956 
1957 		/* Reset the interface. */
1958 		(void) wm_init(ifp);
1959 	}
1960 
1961 	/* Try to get more packets going. */
1962 	wm_start(ifp);
1963 }
1964 
1965 /*
1966  * wm_ioctl:		[ifnet interface function]
1967  *
1968  *	Handle control requests from the operator.
1969  */
1970 static int
1971 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1972 {
1973 	struct wm_softc *sc = ifp->if_softc;
1974 	struct ifreq *ifr = (struct ifreq *) data;
1975 	int s, error;
1976 
1977 	s = splnet();
1978 
1979 	switch (cmd) {
1980 	case SIOCSIFMEDIA:
1981 	case SIOCGIFMEDIA:
1982 		/* Flow control requires full-duplex mode. */
1983 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1984 		    (ifr->ifr_media & IFM_FDX) == 0)
1985 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1986 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1987 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1988 				/* We can do both TXPAUSE and RXPAUSE. */
1989 				ifr->ifr_media |=
1990 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1991 			}
1992 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1993 		}
1994 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1995 		break;
1996 	default:
1997 		error = ether_ioctl(ifp, cmd, data);
1998 		if (error == ENETRESET) {
1999 			/*
2000 			 * Multicast list has changed; set the hardware filter
2001 			 * accordingly.
2002 			 */
2003 			if (ifp->if_flags & IFF_RUNNING)
2004 				wm_set_filter(sc);
2005 			error = 0;
2006 		}
2007 		break;
2008 	}
2009 
2010 	/* Try to get more packets going. */
2011 	wm_start(ifp);
2012 
2013 	splx(s);
2014 	return (error);
2015 }
2016 
2017 /*
2018  * wm_intr:
2019  *
2020  *	Interrupt service routine.
2021  */
2022 static int
2023 wm_intr(void *arg)
2024 {
2025 	struct wm_softc *sc = arg;
2026 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2027 	uint32_t icr;
2028 	int handled = 0;
2029 
2030 	while (1 /* CONSTCOND */) {
2031 		icr = CSR_READ(sc, WMREG_ICR);
2032 		if ((icr & sc->sc_icr) == 0)
2033 			break;
2034 
2035 #if 0 /*NRND > 0*/
2036 		if (RND_ENABLED(&sc->rnd_source))
2037 			rnd_add_uint32(&sc->rnd_source, icr);
2038 #endif
2039 
2040 		handled = 1;
2041 
2042 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2043 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2044 			DPRINTF(WM_DEBUG_RX,
2045 			    ("%s: RX: got Rx intr 0x%08x\n",
2046 			    sc->sc_dev.dv_xname,
2047 			    icr & (ICR_RXDMT0|ICR_RXT0)));
2048 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2049 		}
2050 #endif
2051 		wm_rxintr(sc);
2052 
2053 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2054 		if (icr & ICR_TXDW) {
2055 			DPRINTF(WM_DEBUG_TX,
2056 			    ("%s: TX: got TXDW interrupt\n",
2057 			    sc->sc_dev.dv_xname));
2058 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
2059 		}
2060 #endif
2061 		wm_txintr(sc);
2062 
2063 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2064 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2065 			wm_linkintr(sc, icr);
2066 		}
2067 
2068 		if (icr & ICR_RXO) {
2069 			ifp->if_ierrors++;
2070 #if defined(WM_DEBUG)
2071 			log(LOG_WARNING, "%s: Receive overrun\n",
2072 			    sc->sc_dev.dv_xname);
2073 #endif /* defined(WM_DEBUG) */
2074 		}
2075 	}
2076 
2077 	if (handled) {
2078 		/* Try to get more packets going. */
2079 		wm_start(ifp);
2080 	}
2081 
2082 	return (handled);
2083 }
2084 
2085 /*
2086  * wm_txintr:
2087  *
2088  *	Helper; handle transmit interrupts.
2089  */
2090 static void
2091 wm_txintr(struct wm_softc *sc)
2092 {
2093 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2094 	struct wm_txsoft *txs;
2095 	uint8_t status;
2096 	int i;
2097 
2098 	ifp->if_flags &= ~IFF_OACTIVE;
2099 
2100 	/*
2101 	 * Go through the Tx list and free mbufs for those
2102 	 * frames which have been transmitted.
2103 	 */
2104 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2105 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2106 		txs = &sc->sc_txsoft[i];
2107 
2108 		DPRINTF(WM_DEBUG_TX,
2109 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2110 
2111 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2112 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2113 
2114 		status =
2115 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2116 		if ((status & WTX_ST_DD) == 0) {
2117 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2118 			    BUS_DMASYNC_PREREAD);
2119 			break;
2120 		}
2121 
2122 		DPRINTF(WM_DEBUG_TX,
2123 		    ("%s: TX: job %d done: descs %d..%d\n",
2124 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2125 		    txs->txs_lastdesc));
2126 
2127 		/*
2128 		 * XXX We should probably be using the statistics
2129 		 * XXX registers, but I don't know if they exist
2130 		 * XXX on chips before the i82544.
2131 		 */
2132 
2133 #ifdef WM_EVENT_COUNTERS
2134 		if (status & WTX_ST_TU)
2135 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2136 #endif /* WM_EVENT_COUNTERS */
2137 
2138 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2139 			ifp->if_oerrors++;
2140 			if (status & WTX_ST_LC)
2141 				log(LOG_WARNING, "%s: late collision\n",
2142 				    sc->sc_dev.dv_xname);
2143 			else if (status & WTX_ST_EC) {
2144 				ifp->if_collisions += 16;
2145 				log(LOG_WARNING, "%s: excessive collisions\n",
2146 				    sc->sc_dev.dv_xname);
2147 			}
2148 		} else
2149 			ifp->if_opackets++;
2150 
2151 		sc->sc_txfree += txs->txs_ndesc;
2152 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2153 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2154 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2155 		m_freem(txs->txs_mbuf);
2156 		txs->txs_mbuf = NULL;
2157 	}
2158 
2159 	/* Update the dirty transmit buffer pointer. */
2160 	sc->sc_txsdirty = i;
2161 	DPRINTF(WM_DEBUG_TX,
2162 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2163 
2164 	/*
2165 	 * If there are no more pending transmissions, cancel the watchdog
2166 	 * timer.
2167 	 */
2168 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2169 		ifp->if_timer = 0;
2170 }
2171 
2172 /*
2173  * wm_rxintr:
2174  *
2175  *	Helper; handle receive interrupts.
2176  */
2177 static void
2178 wm_rxintr(struct wm_softc *sc)
2179 {
2180 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2181 	struct wm_rxsoft *rxs;
2182 	struct mbuf *m;
2183 	int i, len;
2184 	uint8_t status, errors;
2185 
2186 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2187 		rxs = &sc->sc_rxsoft[i];
2188 
2189 		DPRINTF(WM_DEBUG_RX,
2190 		    ("%s: RX: checking descriptor %d\n",
2191 		    sc->sc_dev.dv_xname, i));
2192 
2193 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2194 
2195 		status = sc->sc_rxdescs[i].wrx_status;
2196 		errors = sc->sc_rxdescs[i].wrx_errors;
2197 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2198 
2199 		if ((status & WRX_ST_DD) == 0) {
2200 			/*
2201 			 * We have processed all of the receive descriptors.
2202 			 */
2203 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2204 			break;
2205 		}
2206 
2207 		if (__predict_false(sc->sc_rxdiscard)) {
2208 			DPRINTF(WM_DEBUG_RX,
2209 			    ("%s: RX: discarding contents of descriptor %d\n",
2210 			    sc->sc_dev.dv_xname, i));
2211 			WM_INIT_RXDESC(sc, i);
2212 			if (status & WRX_ST_EOP) {
2213 				/* Reset our state. */
2214 				DPRINTF(WM_DEBUG_RX,
2215 				    ("%s: RX: resetting rxdiscard -> 0\n",
2216 				    sc->sc_dev.dv_xname));
2217 				sc->sc_rxdiscard = 0;
2218 			}
2219 			continue;
2220 		}
2221 
2222 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2223 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2224 
2225 		m = rxs->rxs_mbuf;
2226 
2227 		/*
2228 		 * Add a new receive buffer to the ring.
2229 		 */
2230 		if (wm_add_rxbuf(sc, i) != 0) {
2231 			/*
2232 			 * Failed, throw away what we've done so
2233 			 * far, and discard the rest of the packet.
2234 			 */
2235 			ifp->if_ierrors++;
2236 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2237 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2238 			WM_INIT_RXDESC(sc, i);
2239 			if ((status & WRX_ST_EOP) == 0)
2240 				sc->sc_rxdiscard = 1;
2241 			if (sc->sc_rxhead != NULL)
2242 				m_freem(sc->sc_rxhead);
2243 			WM_RXCHAIN_RESET(sc);
2244 			DPRINTF(WM_DEBUG_RX,
2245 			    ("%s: RX: Rx buffer allocation failed, "
2246 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2247 			    sc->sc_rxdiscard ? " (discard)" : ""));
2248 			continue;
2249 		}
2250 
2251 		WM_RXCHAIN_LINK(sc, m);
2252 
2253 		m->m_len = len;
2254 
2255 		DPRINTF(WM_DEBUG_RX,
2256 		    ("%s: RX: buffer at %p len %d\n",
2257 		    sc->sc_dev.dv_xname, m->m_data, len));
2258 
2259 		/*
2260 		 * If this is not the end of the packet, keep
2261 		 * looking.
2262 		 */
2263 		if ((status & WRX_ST_EOP) == 0) {
2264 			sc->sc_rxlen += len;
2265 			DPRINTF(WM_DEBUG_RX,
2266 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2267 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2268 			continue;
2269 		}
2270 
2271 		/*
2272 		 * Okay, we have the entire packet now.  The chip is
2273 		 * configured to include the FCS (not all chips can
2274 		 * be configured to strip it), so we need to trim it.
2275 		 */
2276 		m->m_len -= ETHER_CRC_LEN;
2277 
2278 		*sc->sc_rxtailp = NULL;
2279 		m = sc->sc_rxhead;
2280 		len = m->m_len + sc->sc_rxlen;
2281 
2282 		WM_RXCHAIN_RESET(sc);
2283 
2284 		DPRINTF(WM_DEBUG_RX,
2285 		    ("%s: RX: have entire packet, len -> %d\n",
2286 		    sc->sc_dev.dv_xname, len));
2287 
2288 		/*
2289 		 * If an error occurred, update stats and drop the packet.
2290 		 */
2291 		if (errors &
2292 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2293 			ifp->if_ierrors++;
2294 			if (errors & WRX_ER_SE)
2295 				log(LOG_WARNING, "%s: symbol error\n",
2296 				    sc->sc_dev.dv_xname);
2297 			else if (errors & WRX_ER_SEQ)
2298 				log(LOG_WARNING, "%s: receive sequence error\n",
2299 				    sc->sc_dev.dv_xname);
2300 			else if (errors & WRX_ER_CE)
2301 				log(LOG_WARNING, "%s: CRC error\n",
2302 				    sc->sc_dev.dv_xname);
2303 			m_freem(m);
2304 			continue;
2305 		}
2306 
2307 		/*
2308 		 * No errors.  Receive the packet.
2309 		 */
2310 		m->m_pkthdr.rcvif = ifp;
2311 		m->m_pkthdr.len = len;
2312 
2313 #if 0 /* XXXJRT */
2314 		/*
2315 		 * If VLANs are enabled, VLAN packets have been unwrapped
2316 		 * for us.  Associate the tag with the packet.
2317 		 */
2318 		if ((status & WRX_ST_VP) != 0) {
2319 			VLAN_INPUT_TAG(ifp, m,
2320 			    le16toh(sc->sc_rxdescs[i].wrx_special,
2321 			    continue);
2322 		}
2323 #endif /* XXXJRT */
2324 
2325 		/*
2326 		 * Set up checksum info for this packet.
2327 		 */
2328 		if ((status & WRX_ST_IXSM) == 0) {
2329 			if (status & WRX_ST_IPCS) {
2330 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2331 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2332 				if (errors & WRX_ER_IPE)
2333 					m->m_pkthdr.csum_flags |=
2334 					    M_CSUM_IPv4_BAD;
2335 			}
2336 			if (status & WRX_ST_TCPCS) {
2337 				/*
2338 				 * Note: we don't know if this was TCP or UDP,
2339 				 * so we just set both bits, and expect the
2340 				 * upper layers to deal.
2341 				 */
2342 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2343 				m->m_pkthdr.csum_flags |=
2344 				    M_CSUM_TCPv4|M_CSUM_UDPv4;
2345 				if (errors & WRX_ER_TCPE)
2346 					m->m_pkthdr.csum_flags |=
2347 					    M_CSUM_TCP_UDP_BAD;
2348 			}
2349 		}
2350 
2351 		ifp->if_ipackets++;
2352 
2353 #if NBPFILTER > 0
2354 		/* Pass this up to any BPF listeners. */
2355 		if (ifp->if_bpf)
2356 			bpf_mtap(ifp->if_bpf, m);
2357 #endif /* NBPFILTER > 0 */
2358 
2359 		/* Pass it on. */
2360 		(*ifp->if_input)(ifp, m);
2361 	}
2362 
2363 	/* Update the receive pointer. */
2364 	sc->sc_rxptr = i;
2365 
2366 	DPRINTF(WM_DEBUG_RX,
2367 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2368 }
2369 
2370 /*
2371  * wm_linkintr:
2372  *
2373  *	Helper; handle link interrupts.
2374  */
2375 static void
2376 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2377 {
2378 	uint32_t status;
2379 
2380 	/*
2381 	 * If we get a link status interrupt on a 1000BASE-T
2382 	 * device, just fall into the normal MII tick path.
2383 	 */
2384 	if (sc->sc_flags & WM_F_HAS_MII) {
2385 		if (icr & ICR_LSC) {
2386 			DPRINTF(WM_DEBUG_LINK,
2387 			    ("%s: LINK: LSC -> mii_tick\n",
2388 			    sc->sc_dev.dv_xname));
2389 			mii_tick(&sc->sc_mii);
2390 		} else if (icr & ICR_RXSEQ) {
2391 			DPRINTF(WM_DEBUG_LINK,
2392 			    ("%s: LINK Receive sequence error\n",
2393 			    sc->sc_dev.dv_xname));
2394 		}
2395 		return;
2396 	}
2397 
2398 	/*
2399 	 * If we are now receiving /C/, check for link again in
2400 	 * a couple of link clock ticks.
2401 	 */
2402 	if (icr & ICR_RXCFG) {
2403 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2404 		    sc->sc_dev.dv_xname));
2405 		sc->sc_tbi_anstate = 2;
2406 	}
2407 
2408 	if (icr & ICR_LSC) {
2409 		status = CSR_READ(sc, WMREG_STATUS);
2410 		if (status & STATUS_LU) {
2411 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2412 			    sc->sc_dev.dv_xname,
2413 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2414 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2415 			sc->sc_fcrtl &= ~FCRTL_XONE;
2416 			if (status & STATUS_FD)
2417 				sc->sc_tctl |=
2418 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2419 			else
2420 				sc->sc_tctl |=
2421 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2422 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2423 				sc->sc_fcrtl |= FCRTL_XONE;
2424 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2425 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2426 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2427 				      sc->sc_fcrtl);
2428 			sc->sc_tbi_linkup = 1;
2429 		} else {
2430 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2431 			    sc->sc_dev.dv_xname));
2432 			sc->sc_tbi_linkup = 0;
2433 		}
2434 		sc->sc_tbi_anstate = 2;
2435 		wm_tbi_set_linkled(sc);
2436 	} else if (icr & ICR_RXSEQ) {
2437 		DPRINTF(WM_DEBUG_LINK,
2438 		    ("%s: LINK: Receive sequence error\n",
2439 		    sc->sc_dev.dv_xname));
2440 	}
2441 }
2442 
2443 /*
2444  * wm_tick:
2445  *
2446  *	One second timer, used to check link status, sweep up
2447  *	completed transmit jobs, etc.
2448  */
2449 static void
2450 wm_tick(void *arg)
2451 {
2452 	struct wm_softc *sc = arg;
2453 	int s;
2454 
2455 	s = splnet();
2456 
2457 	if (sc->sc_type >= WM_T_82542_2_1) {
2458 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2459 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2460 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2461 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2462 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2463 	}
2464 
2465 	if (sc->sc_flags & WM_F_HAS_MII)
2466 		mii_tick(&sc->sc_mii);
2467 	else
2468 		wm_tbi_check_link(sc);
2469 
2470 	splx(s);
2471 
2472 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2473 }
2474 
2475 /*
2476  * wm_reset:
2477  *
2478  *	Reset the i82542 chip.
2479  */
2480 static void
2481 wm_reset(struct wm_softc *sc)
2482 {
2483 	int i;
2484 
2485 	/*
2486 	 * Allocate on-chip memory according to the MTU size.
2487 	 * The Packet Buffer Allocation register must be written
2488 	 * before the chip is reset.
2489 	 */
2490 	if (sc->sc_type < WM_T_82547) {
2491 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2492 		    PBA_40K : PBA_48K;
2493 	} else {
2494 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2495 		    PBA_22K : PBA_30K;
2496 		sc->sc_txfifo_head = 0;
2497 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2498 		sc->sc_txfifo_size =
2499 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2500 		sc->sc_txfifo_stall = 0;
2501 	}
2502 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2503 
2504 	switch (sc->sc_type) {
2505 	case WM_T_82544:
2506 	case WM_T_82540:
2507 	case WM_T_82545:
2508 	case WM_T_82546:
2509 	case WM_T_82541:
2510 	case WM_T_82541_2:
2511 		/*
2512 		 * On some chipsets, a reset through a memory-mapped write
2513 		 * cycle can cause the chip to reset before completing the
2514 		 * write cycle.  This causes major headache that can be
2515 		 * avoided by issuing the reset via indirect register writes
2516 		 * through I/O space.
2517 		 *
2518 		 * So, if we successfully mapped the I/O BAR at attach time,
2519 		 * use that.  Otherwise, try our luck with a memory-mapped
2520 		 * reset.
2521 		 */
2522 		if (sc->sc_flags & WM_F_IOH_VALID)
2523 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2524 		else
2525 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2526 		break;
2527 
2528 	case WM_T_82545_3:
2529 	case WM_T_82546_3:
2530 		/* Use the shadow control register on these chips. */
2531 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2532 		break;
2533 
2534 	default:
2535 		/* Everything else can safely use the documented method. */
2536 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2537 		break;
2538 	}
2539 	delay(10000);
2540 
2541 	for (i = 0; i < 1000; i++) {
2542 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2543 			return;
2544 		delay(20);
2545 	}
2546 
2547 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2548 		log(LOG_ERR, "%s: reset failed to complete\n",
2549 		    sc->sc_dev.dv_xname);
2550 }
2551 
2552 /*
2553  * wm_init:		[ifnet interface function]
2554  *
2555  *	Initialize the interface.  Must be called at splnet().
2556  */
2557 static int
2558 wm_init(struct ifnet *ifp)
2559 {
2560 	struct wm_softc *sc = ifp->if_softc;
2561 	struct wm_rxsoft *rxs;
2562 	int i, error = 0;
2563 	uint32_t reg;
2564 
2565 	/*
2566 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2567 	 * There is a small but measurable benefit to avoiding the adjusment
2568 	 * of the descriptor so that the headers are aligned, for normal mtu,
2569 	 * on such platforms.  One possibility is that the DMA itself is
2570 	 * slightly more efficient if the front of the entire packet (instead
2571 	 * of the front of the headers) is aligned.
2572 	 *
2573 	 * Note we must always set align_tweak to 0 if we are using
2574 	 * jumbo frames.
2575 	 */
2576 #ifdef __NO_STRICT_ALIGNMENT
2577 	sc->sc_align_tweak = 0;
2578 #else
2579 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2580 		sc->sc_align_tweak = 0;
2581 	else
2582 		sc->sc_align_tweak = 2;
2583 #endif /* __NO_STRICT_ALIGNMENT */
2584 
2585 	/* Cancel any pending I/O. */
2586 	wm_stop(ifp, 0);
2587 
2588 	/* Reset the chip to a known state. */
2589 	wm_reset(sc);
2590 
2591 	/* Initialize the transmit descriptor ring. */
2592 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2593 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2594 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2595 	sc->sc_txfree = WM_NTXDESC(sc);
2596 	sc->sc_txnext = 0;
2597 
2598 	if (sc->sc_type < WM_T_82543) {
2599 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2600 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2601 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2602 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2603 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2604 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2605 	} else {
2606 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2607 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2608 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2609 		CSR_WRITE(sc, WMREG_TDH, 0);
2610 		CSR_WRITE(sc, WMREG_TDT, 0);
2611 		CSR_WRITE(sc, WMREG_TIDV, 64);
2612 		CSR_WRITE(sc, WMREG_TADV, 128);
2613 
2614 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2615 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2616 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2617 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2618 	}
2619 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2620 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2621 
2622 	/* Initialize the transmit job descriptors. */
2623 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2624 		sc->sc_txsoft[i].txs_mbuf = NULL;
2625 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2626 	sc->sc_txsnext = 0;
2627 	sc->sc_txsdirty = 0;
2628 
2629 	/*
2630 	 * Initialize the receive descriptor and receive job
2631 	 * descriptor rings.
2632 	 */
2633 	if (sc->sc_type < WM_T_82543) {
2634 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2635 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2636 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2637 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2638 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2639 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2640 
2641 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2642 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2643 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2644 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2645 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2646 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2647 	} else {
2648 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2649 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2650 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2651 		CSR_WRITE(sc, WMREG_RDH, 0);
2652 		CSR_WRITE(sc, WMREG_RDT, 0);
2653 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2654 		CSR_WRITE(sc, WMREG_RADV, 128);
2655 	}
2656 	for (i = 0; i < WM_NRXDESC; i++) {
2657 		rxs = &sc->sc_rxsoft[i];
2658 		if (rxs->rxs_mbuf == NULL) {
2659 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2660 				log(LOG_ERR, "%s: unable to allocate or map rx "
2661 				    "buffer %d, error = %d\n",
2662 				    sc->sc_dev.dv_xname, i, error);
2663 				/*
2664 				 * XXX Should attempt to run with fewer receive
2665 				 * XXX buffers instead of just failing.
2666 				 */
2667 				wm_rxdrain(sc);
2668 				goto out;
2669 			}
2670 		} else
2671 			WM_INIT_RXDESC(sc, i);
2672 	}
2673 	sc->sc_rxptr = 0;
2674 	sc->sc_rxdiscard = 0;
2675 	WM_RXCHAIN_RESET(sc);
2676 
2677 	/*
2678 	 * Clear out the VLAN table -- we don't use it (yet).
2679 	 */
2680 	CSR_WRITE(sc, WMREG_VET, 0);
2681 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2682 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2683 
2684 	/*
2685 	 * Set up flow-control parameters.
2686 	 *
2687 	 * XXX Values could probably stand some tuning.
2688 	 */
2689 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2690 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2691 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2692 
2693 	sc->sc_fcrtl = FCRTL_DFLT;
2694 	if (sc->sc_type < WM_T_82543) {
2695 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2696 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2697 	} else {
2698 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2699 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2700 	}
2701 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2702 
2703 #if 0 /* XXXJRT */
2704 	/* Deal with VLAN enables. */
2705 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2706 		sc->sc_ctrl |= CTRL_VME;
2707 	else
2708 #endif /* XXXJRT */
2709 		sc->sc_ctrl &= ~CTRL_VME;
2710 
2711 	/* Write the control registers. */
2712 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2713 #if 0
2714 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2715 #endif
2716 
2717 	/*
2718 	 * Set up checksum offload parameters.
2719 	 */
2720 	reg = CSR_READ(sc, WMREG_RXCSUM);
2721 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2722 		reg |= RXCSUM_IPOFL;
2723 	else
2724 		reg &= ~RXCSUM_IPOFL;
2725 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2726 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2727 	else {
2728 		reg &= ~RXCSUM_TUOFL;
2729 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2730 			reg &= ~RXCSUM_IPOFL;
2731 	}
2732 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2733 
2734 	/*
2735 	 * Set up the interrupt registers.
2736 	 */
2737 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2738 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2739 	    ICR_RXO | ICR_RXT0;
2740 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2741 		sc->sc_icr |= ICR_RXCFG;
2742 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2743 
2744 	/* Set up the inter-packet gap. */
2745 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2746 
2747 	if (sc->sc_type >= WM_T_82543) {
2748 		/* Set up the interrupt throttling register (units of 256ns) */
2749 		sc->sc_itr = 1000000000 / (7000 * 256);
2750 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2751 	}
2752 
2753 #if 0 /* XXXJRT */
2754 	/* Set the VLAN ethernetype. */
2755 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2756 #endif
2757 
2758 	/*
2759 	 * Set up the transmit control register; we start out with
2760 	 * a collision distance suitable for FDX, but update it whe
2761 	 * we resolve the media type.
2762 	 */
2763 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2764 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2765 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2766 
2767 	/* Set the media. */
2768 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2769 
2770 	/*
2771 	 * Set up the receive control register; we actually program
2772 	 * the register when we set the receive filter.  Use multicast
2773 	 * address offset type 0.
2774 	 *
2775 	 * Only the i82544 has the ability to strip the incoming
2776 	 * CRC, so we don't enable that feature.
2777 	 */
2778 	sc->sc_mchash_type = 0;
2779 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2780 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2781 
2782 	if(MCLBYTES == 2048) {
2783 		sc->sc_rctl |= RCTL_2k;
2784 	} else {
2785 		if(sc->sc_type >= WM_T_82543) {
2786 			switch(MCLBYTES) {
2787 			case 4096:
2788 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2789 				break;
2790 			case 8192:
2791 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2792 				break;
2793 			case 16384:
2794 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2795 				break;
2796 			default:
2797 				panic("wm_init: MCLBYTES %d unsupported",
2798 				    MCLBYTES);
2799 				break;
2800 			}
2801 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
2802 	}
2803 
2804 	/* Set the receive filter. */
2805 	wm_set_filter(sc);
2806 
2807 	/* Start the one second link check clock. */
2808 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2809 
2810 	/* ...all done! */
2811 	ifp->if_flags |= IFF_RUNNING;
2812 	ifp->if_flags &= ~IFF_OACTIVE;
2813 
2814  out:
2815 	if (error)
2816 		log(LOG_ERR, "%s: interface not running\n",
2817 		    sc->sc_dev.dv_xname);
2818 	return (error);
2819 }
2820 
2821 /*
2822  * wm_rxdrain:
2823  *
2824  *	Drain the receive queue.
2825  */
2826 static void
2827 wm_rxdrain(struct wm_softc *sc)
2828 {
2829 	struct wm_rxsoft *rxs;
2830 	int i;
2831 
2832 	for (i = 0; i < WM_NRXDESC; i++) {
2833 		rxs = &sc->sc_rxsoft[i];
2834 		if (rxs->rxs_mbuf != NULL) {
2835 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2836 			m_freem(rxs->rxs_mbuf);
2837 			rxs->rxs_mbuf = NULL;
2838 		}
2839 	}
2840 }
2841 
2842 /*
2843  * wm_stop:		[ifnet interface function]
2844  *
2845  *	Stop transmission on the interface.
2846  */
2847 static void
2848 wm_stop(struct ifnet *ifp, int disable)
2849 {
2850 	struct wm_softc *sc = ifp->if_softc;
2851 	struct wm_txsoft *txs;
2852 	int i;
2853 
2854 	/* Stop the one second clock. */
2855 	callout_stop(&sc->sc_tick_ch);
2856 
2857 	/* Stop the 82547 Tx FIFO stall check timer. */
2858 	if (sc->sc_type == WM_T_82547)
2859 		callout_stop(&sc->sc_txfifo_ch);
2860 
2861 	if (sc->sc_flags & WM_F_HAS_MII) {
2862 		/* Down the MII. */
2863 		mii_down(&sc->sc_mii);
2864 	}
2865 
2866 	/* Stop the transmit and receive processes. */
2867 	CSR_WRITE(sc, WMREG_TCTL, 0);
2868 	CSR_WRITE(sc, WMREG_RCTL, 0);
2869 
2870 	/*
2871 	 * Clear the interrupt mask to ensure the device cannot assert its
2872 	 * interrupt line.
2873 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
2874 	 * any currently pending or shared interrupt.
2875 	 */
2876 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2877 	sc->sc_icr = 0;
2878 
2879 	/* Release any queued transmit buffers. */
2880 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2881 		txs = &sc->sc_txsoft[i];
2882 		if (txs->txs_mbuf != NULL) {
2883 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2884 			m_freem(txs->txs_mbuf);
2885 			txs->txs_mbuf = NULL;
2886 		}
2887 	}
2888 
2889 	if (disable)
2890 		wm_rxdrain(sc);
2891 
2892 	/* Mark the interface as down and cancel the watchdog timer. */
2893 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2894 	ifp->if_timer = 0;
2895 }
2896 
2897 /*
2898  * wm_acquire_eeprom:
2899  *
2900  *	Perform the EEPROM handshake required on some chips.
2901  */
2902 static int
2903 wm_acquire_eeprom(struct wm_softc *sc)
2904 {
2905 	uint32_t reg;
2906 	int x;
2907 
2908 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
2909 		reg = CSR_READ(sc, WMREG_EECD);
2910 
2911 		/* Request EEPROM access. */
2912 		reg |= EECD_EE_REQ;
2913 		CSR_WRITE(sc, WMREG_EECD, reg);
2914 
2915 		/* ..and wait for it to be granted. */
2916 		for (x = 0; x < 100; x++) {
2917 			reg = CSR_READ(sc, WMREG_EECD);
2918 			if (reg & EECD_EE_GNT)
2919 				break;
2920 			delay(5);
2921 		}
2922 		if ((reg & EECD_EE_GNT) == 0) {
2923 			aprint_error("%s: could not acquire EEPROM GNT\n",
2924 			    sc->sc_dev.dv_xname);
2925 			reg &= ~EECD_EE_REQ;
2926 			CSR_WRITE(sc, WMREG_EECD, reg);
2927 			return (1);
2928 		}
2929 	}
2930 
2931 	return (0);
2932 }
2933 
2934 /*
2935  * wm_release_eeprom:
2936  *
2937  *	Release the EEPROM mutex.
2938  */
2939 static void
2940 wm_release_eeprom(struct wm_softc *sc)
2941 {
2942 	uint32_t reg;
2943 
2944 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2945 		reg = CSR_READ(sc, WMREG_EECD);
2946 		reg &= ~EECD_EE_REQ;
2947 		CSR_WRITE(sc, WMREG_EECD, reg);
2948 	}
2949 }
2950 
2951 /*
2952  * wm_eeprom_sendbits:
2953  *
2954  *	Send a series of bits to the EEPROM.
2955  */
2956 static void
2957 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2958 {
2959 	uint32_t reg;
2960 	int x;
2961 
2962 	reg = CSR_READ(sc, WMREG_EECD);
2963 
2964 	for (x = nbits; x > 0; x--) {
2965 		if (bits & (1U << (x - 1)))
2966 			reg |= EECD_DI;
2967 		else
2968 			reg &= ~EECD_DI;
2969 		CSR_WRITE(sc, WMREG_EECD, reg);
2970 		delay(2);
2971 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2972 		delay(2);
2973 		CSR_WRITE(sc, WMREG_EECD, reg);
2974 		delay(2);
2975 	}
2976 }
2977 
2978 /*
2979  * wm_eeprom_recvbits:
2980  *
2981  *	Receive a series of bits from the EEPROM.
2982  */
2983 static void
2984 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2985 {
2986 	uint32_t reg, val;
2987 	int x;
2988 
2989 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2990 
2991 	val = 0;
2992 	for (x = nbits; x > 0; x--) {
2993 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2994 		delay(2);
2995 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2996 			val |= (1U << (x - 1));
2997 		CSR_WRITE(sc, WMREG_EECD, reg);
2998 		delay(2);
2999 	}
3000 	*valp = val;
3001 }
3002 
3003 /*
3004  * wm_read_eeprom_uwire:
3005  *
3006  *	Read a word from the EEPROM using the MicroWire protocol.
3007  */
3008 static int
3009 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3010 {
3011 	uint32_t reg, val;
3012 	int i;
3013 
3014 	for (i = 0; i < wordcnt; i++) {
3015 		/* Clear SK and DI. */
3016 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3017 		CSR_WRITE(sc, WMREG_EECD, reg);
3018 
3019 		/* Set CHIP SELECT. */
3020 		reg |= EECD_CS;
3021 		CSR_WRITE(sc, WMREG_EECD, reg);
3022 		delay(2);
3023 
3024 		/* Shift in the READ command. */
3025 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3026 
3027 		/* Shift in address. */
3028 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3029 
3030 		/* Shift out the data. */
3031 		wm_eeprom_recvbits(sc, &val, 16);
3032 		data[i] = val & 0xffff;
3033 
3034 		/* Clear CHIP SELECT. */
3035 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3036 		CSR_WRITE(sc, WMREG_EECD, reg);
3037 		delay(2);
3038 	}
3039 
3040 	return (0);
3041 }
3042 
3043 /*
3044  * wm_spi_eeprom_ready:
3045  *
3046  *	Wait for a SPI EEPROM to be ready for commands.
3047  */
3048 static int
3049 wm_spi_eeprom_ready(struct wm_softc *sc)
3050 {
3051 	uint32_t val;
3052 	int usec;
3053 
3054 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3055 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3056 		wm_eeprom_recvbits(sc, &val, 8);
3057 		if ((val & SPI_SR_RDY) == 0)
3058 			break;
3059 	}
3060 	if (usec >= SPI_MAX_RETRIES) {
3061 		aprint_error("%s: EEPROM failed to become ready\n",
3062 		    sc->sc_dev.dv_xname);
3063 		return (1);
3064 	}
3065 	return (0);
3066 }
3067 
3068 /*
3069  * wm_read_eeprom_spi:
3070  *
3071  *	Read a work from the EEPROM using the SPI protocol.
3072  */
3073 static int
3074 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3075 {
3076 	uint32_t reg, val;
3077 	int i;
3078 	uint8_t opc;
3079 
3080 	/* Clear SK and CS. */
3081 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3082 	CSR_WRITE(sc, WMREG_EECD, reg);
3083 	delay(2);
3084 
3085 	if (wm_spi_eeprom_ready(sc))
3086 		return (1);
3087 
3088 	/* Toggle CS to flush commands. */
3089 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3090 	delay(2);
3091 	CSR_WRITE(sc, WMREG_EECD, reg);
3092 	delay(2);
3093 
3094 	opc = SPI_OPC_READ;
3095 	if (sc->sc_ee_addrbits == 8 && word >= 128)
3096 		opc |= SPI_OPC_A8;
3097 
3098 	wm_eeprom_sendbits(sc, opc, 8);
3099 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3100 
3101 	for (i = 0; i < wordcnt; i++) {
3102 		wm_eeprom_recvbits(sc, &val, 16);
3103 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3104 	}
3105 
3106 	/* Raise CS and clear SK. */
3107 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3108 	CSR_WRITE(sc, WMREG_EECD, reg);
3109 	delay(2);
3110 
3111 	return (0);
3112 }
3113 
3114 /*
3115  * wm_read_eeprom:
3116  *
3117  *	Read data from the serial EEPROM.
3118  */
3119 static int
3120 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3121 {
3122 	int rv;
3123 
3124 	if (wm_acquire_eeprom(sc))
3125 		return (1);
3126 
3127 	if (sc->sc_flags & WM_F_EEPROM_SPI)
3128 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3129 	else
3130 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3131 
3132 	wm_release_eeprom(sc);
3133 	return (rv);
3134 }
3135 
3136 /*
3137  * wm_add_rxbuf:
3138  *
3139  *	Add a receive buffer to the indiciated descriptor.
3140  */
3141 static int
3142 wm_add_rxbuf(struct wm_softc *sc, int idx)
3143 {
3144 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3145 	struct mbuf *m;
3146 	int error;
3147 
3148 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3149 	if (m == NULL)
3150 		return (ENOBUFS);
3151 
3152 	MCLGET(m, M_DONTWAIT);
3153 	if ((m->m_flags & M_EXT) == 0) {
3154 		m_freem(m);
3155 		return (ENOBUFS);
3156 	}
3157 
3158 	if (rxs->rxs_mbuf != NULL)
3159 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3160 
3161 	rxs->rxs_mbuf = m;
3162 
3163 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3164 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3165 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3166 	if (error) {
3167 		/* XXX XXX XXX */
3168 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3169 		    sc->sc_dev.dv_xname, idx, error);
3170 		panic("wm_add_rxbuf");
3171 	}
3172 
3173 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3174 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3175 
3176 	WM_INIT_RXDESC(sc, idx);
3177 
3178 	return (0);
3179 }
3180 
3181 /*
3182  * wm_set_ral:
3183  *
3184  *	Set an entery in the receive address list.
3185  */
3186 static void
3187 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3188 {
3189 	uint32_t ral_lo, ral_hi;
3190 
3191 	if (enaddr != NULL) {
3192 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3193 		    (enaddr[3] << 24);
3194 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3195 		ral_hi |= RAL_AV;
3196 	} else {
3197 		ral_lo = 0;
3198 		ral_hi = 0;
3199 	}
3200 
3201 	if (sc->sc_type >= WM_T_82544) {
3202 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3203 		    ral_lo);
3204 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3205 		    ral_hi);
3206 	} else {
3207 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3208 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3209 	}
3210 }
3211 
3212 /*
3213  * wm_mchash:
3214  *
3215  *	Compute the hash of the multicast address for the 4096-bit
3216  *	multicast filter.
3217  */
3218 static uint32_t
3219 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3220 {
3221 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3222 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3223 	uint32_t hash;
3224 
3225 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3226 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3227 
3228 	return (hash & 0xfff);
3229 }
3230 
3231 /*
3232  * wm_set_filter:
3233  *
3234  *	Set up the receive filter.
3235  */
3236 static void
3237 wm_set_filter(struct wm_softc *sc)
3238 {
3239 	struct ethercom *ec = &sc->sc_ethercom;
3240 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3241 	struct ether_multi *enm;
3242 	struct ether_multistep step;
3243 	bus_addr_t mta_reg;
3244 	uint32_t hash, reg, bit;
3245 	int i;
3246 
3247 	if (sc->sc_type >= WM_T_82544)
3248 		mta_reg = WMREG_CORDOVA_MTA;
3249 	else
3250 		mta_reg = WMREG_MTA;
3251 
3252 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3253 
3254 	if (ifp->if_flags & IFF_BROADCAST)
3255 		sc->sc_rctl |= RCTL_BAM;
3256 	if (ifp->if_flags & IFF_PROMISC) {
3257 		sc->sc_rctl |= RCTL_UPE;
3258 		goto allmulti;
3259 	}
3260 
3261 	/*
3262 	 * Set the station address in the first RAL slot, and
3263 	 * clear the remaining slots.
3264 	 */
3265 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3266 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3267 		wm_set_ral(sc, NULL, i);
3268 
3269 	/* Clear out the multicast table. */
3270 	for (i = 0; i < WM_MC_TABSIZE; i++)
3271 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3272 
3273 	ETHER_FIRST_MULTI(step, ec, enm);
3274 	while (enm != NULL) {
3275 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3276 			/*
3277 			 * We must listen to a range of multicast addresses.
3278 			 * For now, just accept all multicasts, rather than
3279 			 * trying to set only those filter bits needed to match
3280 			 * the range.  (At this time, the only use of address
3281 			 * ranges is for IP multicast routing, for which the
3282 			 * range is big enough to require all bits set.)
3283 			 */
3284 			goto allmulti;
3285 		}
3286 
3287 		hash = wm_mchash(sc, enm->enm_addrlo);
3288 
3289 		reg = (hash >> 5) & 0x7f;
3290 		bit = hash & 0x1f;
3291 
3292 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3293 		hash |= 1U << bit;
3294 
3295 		/* XXX Hardware bug?? */
3296 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3297 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3298 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3299 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3300 		} else
3301 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3302 
3303 		ETHER_NEXT_MULTI(step, enm);
3304 	}
3305 
3306 	ifp->if_flags &= ~IFF_ALLMULTI;
3307 	goto setit;
3308 
3309  allmulti:
3310 	ifp->if_flags |= IFF_ALLMULTI;
3311 	sc->sc_rctl |= RCTL_MPE;
3312 
3313  setit:
3314 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3315 }
3316 
3317 /*
3318  * wm_tbi_mediainit:
3319  *
3320  *	Initialize media for use on 1000BASE-X devices.
3321  */
3322 static void
3323 wm_tbi_mediainit(struct wm_softc *sc)
3324 {
3325 	const char *sep = "";
3326 
3327 	if (sc->sc_type < WM_T_82543)
3328 		sc->sc_tipg = TIPG_WM_DFLT;
3329 	else
3330 		sc->sc_tipg = TIPG_LG_DFLT;
3331 
3332 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3333 	    wm_tbi_mediastatus);
3334 
3335 	/*
3336 	 * SWD Pins:
3337 	 *
3338 	 *	0 = Link LED (output)
3339 	 *	1 = Loss Of Signal (input)
3340 	 */
3341 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3342 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3343 
3344 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3345 
3346 #define	ADD(ss, mm, dd)							\
3347 do {									\
3348 	aprint_normal("%s%s", sep, ss);					\
3349 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3350 	sep = ", ";							\
3351 } while (/*CONSTCOND*/0)
3352 
3353 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
3354 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3355 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3356 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3357 	aprint_normal("\n");
3358 
3359 #undef ADD
3360 
3361 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3362 }
3363 
3364 /*
3365  * wm_tbi_mediastatus:	[ifmedia interface function]
3366  *
3367  *	Get the current interface media status on a 1000BASE-X device.
3368  */
3369 static void
3370 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3371 {
3372 	struct wm_softc *sc = ifp->if_softc;
3373 	uint32_t ctrl;
3374 
3375 	ifmr->ifm_status = IFM_AVALID;
3376 	ifmr->ifm_active = IFM_ETHER;
3377 
3378 	if (sc->sc_tbi_linkup == 0) {
3379 		ifmr->ifm_active |= IFM_NONE;
3380 		return;
3381 	}
3382 
3383 	ifmr->ifm_status |= IFM_ACTIVE;
3384 	ifmr->ifm_active |= IFM_1000_SX;
3385 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3386 		ifmr->ifm_active |= IFM_FDX;
3387 	ctrl = CSR_READ(sc, WMREG_CTRL);
3388 	if (ctrl & CTRL_RFCE)
3389 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3390 	if (ctrl & CTRL_TFCE)
3391 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3392 }
3393 
3394 /*
3395  * wm_tbi_mediachange:	[ifmedia interface function]
3396  *
3397  *	Set hardware to newly-selected media on a 1000BASE-X device.
3398  */
3399 static int
3400 wm_tbi_mediachange(struct ifnet *ifp)
3401 {
3402 	struct wm_softc *sc = ifp->if_softc;
3403 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3404 	uint32_t status;
3405 	int i;
3406 
3407 	sc->sc_txcw = ife->ifm_data;
3408 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3409 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3410 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3411 	sc->sc_txcw |= TXCW_ANE;
3412 
3413 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3414 	delay(10000);
3415 
3416 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3417 
3418 	sc->sc_tbi_anstate = 0;
3419 
3420 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3421 		/* Have signal; wait for the link to come up. */
3422 		for (i = 0; i < 50; i++) {
3423 			delay(10000);
3424 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3425 				break;
3426 		}
3427 
3428 		status = CSR_READ(sc, WMREG_STATUS);
3429 		if (status & STATUS_LU) {
3430 			/* Link is up. */
3431 			DPRINTF(WM_DEBUG_LINK,
3432 			    ("%s: LINK: set media -> link up %s\n",
3433 			    sc->sc_dev.dv_xname,
3434 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3435 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3436 			sc->sc_fcrtl &= ~FCRTL_XONE;
3437 			if (status & STATUS_FD)
3438 				sc->sc_tctl |=
3439 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3440 			else
3441 				sc->sc_tctl |=
3442 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3443 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3444 				sc->sc_fcrtl |= FCRTL_XONE;
3445 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3446 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3447 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3448 				      sc->sc_fcrtl);
3449 			sc->sc_tbi_linkup = 1;
3450 		} else {
3451 			/* Link is down. */
3452 			DPRINTF(WM_DEBUG_LINK,
3453 			    ("%s: LINK: set media -> link down\n",
3454 			    sc->sc_dev.dv_xname));
3455 			sc->sc_tbi_linkup = 0;
3456 		}
3457 	} else {
3458 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3459 		    sc->sc_dev.dv_xname));
3460 		sc->sc_tbi_linkup = 0;
3461 	}
3462 
3463 	wm_tbi_set_linkled(sc);
3464 
3465 	return (0);
3466 }
3467 
3468 /*
3469  * wm_tbi_set_linkled:
3470  *
3471  *	Update the link LED on 1000BASE-X devices.
3472  */
3473 static void
3474 wm_tbi_set_linkled(struct wm_softc *sc)
3475 {
3476 
3477 	if (sc->sc_tbi_linkup)
3478 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3479 	else
3480 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3481 
3482 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3483 }
3484 
3485 /*
3486  * wm_tbi_check_link:
3487  *
3488  *	Check the link on 1000BASE-X devices.
3489  */
3490 static void
3491 wm_tbi_check_link(struct wm_softc *sc)
3492 {
3493 	uint32_t rxcw, ctrl, status;
3494 
3495 	if (sc->sc_tbi_anstate == 0)
3496 		return;
3497 	else if (sc->sc_tbi_anstate > 1) {
3498 		DPRINTF(WM_DEBUG_LINK,
3499 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3500 		    sc->sc_tbi_anstate));
3501 		sc->sc_tbi_anstate--;
3502 		return;
3503 	}
3504 
3505 	sc->sc_tbi_anstate = 0;
3506 
3507 	rxcw = CSR_READ(sc, WMREG_RXCW);
3508 	ctrl = CSR_READ(sc, WMREG_CTRL);
3509 	status = CSR_READ(sc, WMREG_STATUS);
3510 
3511 	if ((status & STATUS_LU) == 0) {
3512 		DPRINTF(WM_DEBUG_LINK,
3513 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3514 		sc->sc_tbi_linkup = 0;
3515 	} else {
3516 		DPRINTF(WM_DEBUG_LINK,
3517 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3518 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3519 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3520 		sc->sc_fcrtl &= ~FCRTL_XONE;
3521 		if (status & STATUS_FD)
3522 			sc->sc_tctl |=
3523 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3524 		else
3525 			sc->sc_tctl |=
3526 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3527 		if (ctrl & CTRL_TFCE)
3528 			sc->sc_fcrtl |= FCRTL_XONE;
3529 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3530 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3531 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3532 			      sc->sc_fcrtl);
3533 		sc->sc_tbi_linkup = 1;
3534 	}
3535 
3536 	wm_tbi_set_linkled(sc);
3537 }
3538 
3539 /*
3540  * wm_gmii_reset:
3541  *
3542  *	Reset the PHY.
3543  */
3544 static void
3545 wm_gmii_reset(struct wm_softc *sc)
3546 {
3547 	uint32_t reg;
3548 
3549 	if (sc->sc_type >= WM_T_82544) {
3550 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3551 		delay(20000);
3552 
3553 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3554 		delay(20000);
3555 	} else {
3556 		/* The PHY reset pin is active-low. */
3557 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3558 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3559 		    CTRL_EXT_SWDPIN(4));
3560 		reg |= CTRL_EXT_SWDPIO(4);
3561 
3562 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3563 		delay(10);
3564 
3565 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3566 		delay(10);
3567 
3568 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3569 		delay(10);
3570 #if 0
3571 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3572 #endif
3573 	}
3574 }
3575 
3576 /*
3577  * wm_gmii_mediainit:
3578  *
3579  *	Initialize media for use on 1000BASE-T devices.
3580  */
3581 static void
3582 wm_gmii_mediainit(struct wm_softc *sc)
3583 {
3584 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3585 
3586 	/* We have MII. */
3587 	sc->sc_flags |= WM_F_HAS_MII;
3588 
3589 	sc->sc_tipg = TIPG_1000T_DFLT;
3590 
3591 	/*
3592 	 * Let the chip set speed/duplex on its own based on
3593 	 * signals from the PHY.
3594 	 */
3595 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3596 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3597 
3598 	/* Initialize our media structures and probe the GMII. */
3599 	sc->sc_mii.mii_ifp = ifp;
3600 
3601 	if (sc->sc_type >= WM_T_82544) {
3602 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3603 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3604 	} else {
3605 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3606 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3607 	}
3608 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
3609 
3610 	wm_gmii_reset(sc);
3611 
3612 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3613 	    wm_gmii_mediastatus);
3614 
3615 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3616 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
3617 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3618 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3619 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3620 	} else
3621 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3622 }
3623 
3624 /*
3625  * wm_gmii_mediastatus:	[ifmedia interface function]
3626  *
3627  *	Get the current interface media status on a 1000BASE-T device.
3628  */
3629 static void
3630 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3631 {
3632 	struct wm_softc *sc = ifp->if_softc;
3633 
3634 	mii_pollstat(&sc->sc_mii);
3635 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3636 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3637 			   sc->sc_flowflags;
3638 }
3639 
3640 /*
3641  * wm_gmii_mediachange:	[ifmedia interface function]
3642  *
3643  *	Set hardware to newly-selected media on a 1000BASE-T device.
3644  */
3645 static int
3646 wm_gmii_mediachange(struct ifnet *ifp)
3647 {
3648 	struct wm_softc *sc = ifp->if_softc;
3649 
3650 	if (ifp->if_flags & IFF_UP)
3651 		mii_mediachg(&sc->sc_mii);
3652 	return (0);
3653 }
3654 
3655 #define	MDI_IO		CTRL_SWDPIN(2)
3656 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
3657 #define	MDI_CLK		CTRL_SWDPIN(3)
3658 
3659 static void
3660 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3661 {
3662 	uint32_t i, v;
3663 
3664 	v = CSR_READ(sc, WMREG_CTRL);
3665 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3666 	v |= MDI_DIR | CTRL_SWDPIO(3);
3667 
3668 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3669 		if (data & i)
3670 			v |= MDI_IO;
3671 		else
3672 			v &= ~MDI_IO;
3673 		CSR_WRITE(sc, WMREG_CTRL, v);
3674 		delay(10);
3675 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3676 		delay(10);
3677 		CSR_WRITE(sc, WMREG_CTRL, v);
3678 		delay(10);
3679 	}
3680 }
3681 
3682 static uint32_t
3683 i82543_mii_recvbits(struct wm_softc *sc)
3684 {
3685 	uint32_t v, i, data = 0;
3686 
3687 	v = CSR_READ(sc, WMREG_CTRL);
3688 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3689 	v |= CTRL_SWDPIO(3);
3690 
3691 	CSR_WRITE(sc, WMREG_CTRL, v);
3692 	delay(10);
3693 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3694 	delay(10);
3695 	CSR_WRITE(sc, WMREG_CTRL, v);
3696 	delay(10);
3697 
3698 	for (i = 0; i < 16; i++) {
3699 		data <<= 1;
3700 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3701 		delay(10);
3702 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3703 			data |= 1;
3704 		CSR_WRITE(sc, WMREG_CTRL, v);
3705 		delay(10);
3706 	}
3707 
3708 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3709 	delay(10);
3710 	CSR_WRITE(sc, WMREG_CTRL, v);
3711 	delay(10);
3712 
3713 	return (data);
3714 }
3715 
3716 #undef MDI_IO
3717 #undef MDI_DIR
3718 #undef MDI_CLK
3719 
3720 /*
3721  * wm_gmii_i82543_readreg:	[mii interface function]
3722  *
3723  *	Read a PHY register on the GMII (i82543 version).
3724  */
3725 static int
3726 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3727 {
3728 	struct wm_softc *sc = (void *) self;
3729 	int rv;
3730 
3731 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3732 	i82543_mii_sendbits(sc, reg | (phy << 5) |
3733 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3734 	rv = i82543_mii_recvbits(sc) & 0xffff;
3735 
3736 	DPRINTF(WM_DEBUG_GMII,
3737 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3738 	    sc->sc_dev.dv_xname, phy, reg, rv));
3739 
3740 	return (rv);
3741 }
3742 
3743 /*
3744  * wm_gmii_i82543_writereg:	[mii interface function]
3745  *
3746  *	Write a PHY register on the GMII (i82543 version).
3747  */
3748 static void
3749 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3750 {
3751 	struct wm_softc *sc = (void *) self;
3752 
3753 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3754 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3755 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3756 	    (MII_COMMAND_START << 30), 32);
3757 }
3758 
3759 /*
3760  * wm_gmii_i82544_readreg:	[mii interface function]
3761  *
3762  *	Read a PHY register on the GMII.
3763  */
3764 static int
3765 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3766 {
3767 	struct wm_softc *sc = (void *) self;
3768 	uint32_t mdic = 0;
3769 	int i, rv;
3770 
3771 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3772 	    MDIC_REGADD(reg));
3773 
3774 	for (i = 0; i < 100; i++) {
3775 		mdic = CSR_READ(sc, WMREG_MDIC);
3776 		if (mdic & MDIC_READY)
3777 			break;
3778 		delay(10);
3779 	}
3780 
3781 	if ((mdic & MDIC_READY) == 0) {
3782 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3783 		    sc->sc_dev.dv_xname, phy, reg);
3784 		rv = 0;
3785 	} else if (mdic & MDIC_E) {
3786 #if 0 /* This is normal if no PHY is present. */
3787 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3788 		    sc->sc_dev.dv_xname, phy, reg);
3789 #endif
3790 		rv = 0;
3791 	} else {
3792 		rv = MDIC_DATA(mdic);
3793 		if (rv == 0xffff)
3794 			rv = 0;
3795 	}
3796 
3797 	return (rv);
3798 }
3799 
3800 /*
3801  * wm_gmii_i82544_writereg:	[mii interface function]
3802  *
3803  *	Write a PHY register on the GMII.
3804  */
3805 static void
3806 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3807 {
3808 	struct wm_softc *sc = (void *) self;
3809 	uint32_t mdic = 0;
3810 	int i;
3811 
3812 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3813 	    MDIC_REGADD(reg) | MDIC_DATA(val));
3814 
3815 	for (i = 0; i < 100; i++) {
3816 		mdic = CSR_READ(sc, WMREG_MDIC);
3817 		if (mdic & MDIC_READY)
3818 			break;
3819 		delay(10);
3820 	}
3821 
3822 	if ((mdic & MDIC_READY) == 0)
3823 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3824 		    sc->sc_dev.dv_xname, phy, reg);
3825 	else if (mdic & MDIC_E)
3826 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3827 		    sc->sc_dev.dv_xname, phy, reg);
3828 }
3829 
3830 /*
3831  * wm_gmii_statchg:	[mii interface function]
3832  *
3833  *	Callback from MII layer when media changes.
3834  */
3835 static void
3836 wm_gmii_statchg(struct device *self)
3837 {
3838 	struct wm_softc *sc = (void *) self;
3839 	struct mii_data *mii = &sc->sc_mii;
3840 
3841 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3842 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3843 	sc->sc_fcrtl &= ~FCRTL_XONE;
3844 
3845 	/*
3846 	 * Get flow control negotiation result.
3847 	 */
3848 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3849 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3850 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3851 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3852 	}
3853 
3854 	if (sc->sc_flowflags & IFM_FLOW) {
3855 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3856 			sc->sc_ctrl |= CTRL_TFCE;
3857 			sc->sc_fcrtl |= FCRTL_XONE;
3858 		}
3859 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3860 			sc->sc_ctrl |= CTRL_RFCE;
3861 	}
3862 
3863 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
3864 		DPRINTF(WM_DEBUG_LINK,
3865 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3866 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3867 	} else  {
3868 		DPRINTF(WM_DEBUG_LINK,
3869 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3870 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3871 	}
3872 
3873 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3874 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3875 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3876 						 : WMREG_FCRTL, sc->sc_fcrtl);
3877 }
3878