xref: /netbsd-src/sys/dev/pci/if_wm.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: if_wm.c,v 1.126 2006/10/12 01:31:30 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.126 2006/10/12 01:31:30 christos Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67 
68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
69 
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78 
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82 
83 #include <netinet/in.h>			/* XXX for struct ip */
84 #include <netinet/in_systm.h>		/* XXX for struct ip */
85 #include <netinet/ip.h>			/* XXX for struct ip */
86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
87 
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99 
100 #include <dev/pci/if_wmreg.h>
101 
102 #ifdef WM_DEBUG
103 #define	WM_DEBUG_LINK		0x01
104 #define	WM_DEBUG_TX		0x02
105 #define	WM_DEBUG_RX		0x04
106 #define	WM_DEBUG_GMII		0x08
107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108 
109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
110 #else
111 #define	DPRINTF(x, y)	/* nothing */
112 #endif /* WM_DEBUG */
113 
114 /*
115  * Transmit descriptor list size.  Due to errata, we can only have
116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
117  * on >= 82544.  We tell the upper layers that they can queue a lot
118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119  * of them at a time.
120  *
121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
122  * chains containing many small mbufs have been observed in zero-copy
123  * situations with jumbo frames.
124  */
125 #define	WM_NTXSEGS		256
126 #define	WM_IFQUEUELEN		256
127 #define	WM_TXQUEUELEN_MAX	64
128 #define	WM_TXQUEUELEN_MAX_82547	16
129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
132 #define	WM_NTXDESC_82542	256
133 #define	WM_NTXDESC_82544	4096
134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139 
140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
141 
142 /*
143  * Receive descriptor list size.  We have one Rx buffer for normal
144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
145  * packet.  We allocate 256 receive descriptors, each with a 2k
146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147  */
148 #define	WM_NRXDESC		256
149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
152 
153 /*
154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
155  * a single clump that maps to a single DMA segment to make several things
156  * easier.
157  */
158 struct wm_control_data_82544 {
159 	/*
160 	 * The receive descriptors.
161 	 */
162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163 
164 	/*
165 	 * The transmit descriptors.  Put these at the end, because
166 	 * we might use a smaller number of them.
167 	 */
168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170 
171 struct wm_control_data_82542 {
172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175 
176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
179 
180 /*
181  * Software state for transmit jobs.
182  */
183 struct wm_txsoft {
184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
186 	int txs_firstdesc;		/* first descriptor in packet */
187 	int txs_lastdesc;		/* last descriptor in packet */
188 	int txs_ndesc;			/* # of descriptors used */
189 };
190 
191 /*
192  * Software state for receive buffers.  Each descriptor gets a
193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
194  * more than one buffer, we chain them together.
195  */
196 struct wm_rxsoft {
197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
199 };
200 
201 typedef enum {
202 	WM_T_unknown		= 0,
203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
205 	WM_T_82543,			/* i82543 */
206 	WM_T_82544,			/* i82544 */
207 	WM_T_82540,			/* i82540 */
208 	WM_T_82545,			/* i82545 */
209 	WM_T_82545_3,			/* i82545 3.0+ */
210 	WM_T_82546,			/* i82546 */
211 	WM_T_82546_3,			/* i82546 3.0+ */
212 	WM_T_82541,			/* i82541 */
213 	WM_T_82541_2,			/* i82541 2.0+ */
214 	WM_T_82547,			/* i82547 */
215 	WM_T_82547_2,			/* i82547 2.0+ */
216 	WM_T_82571,			/* i82571 */
217 	WM_T_82572,			/* i82572 */
218 	WM_T_82573,			/* i82573 */
219 } wm_chip_type;
220 
221 /*
222  * Software state per device.
223  */
224 struct wm_softc {
225 	struct device sc_dev;		/* generic device information */
226 	bus_space_tag_t sc_st;		/* bus space tag */
227 	bus_space_handle_t sc_sh;	/* bus space handle */
228 	bus_space_tag_t sc_iot;		/* I/O space tag */
229 	bus_space_handle_t sc_ioh;	/* I/O space handle */
230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
231 	struct ethercom sc_ethercom;	/* ethernet common data */
232 	void *sc_sdhook;		/* shutdown hook */
233 	void *sc_powerhook;		/* power hook */
234 	pci_chipset_tag_t sc_pc;
235 	pcitag_t sc_pcitag;
236 	struct pci_conf_state sc_pciconf;
237 
238 	wm_chip_type sc_type;		/* chip type */
239 	int sc_flags;			/* flags; see below */
240 	int sc_bus_speed;		/* PCI/PCIX bus speed */
241 	int sc_pcix_offset;		/* PCIX capability register offset */
242 	int sc_flowflags;		/* 802.3x flow control flags */
243 
244 	void *sc_ih;			/* interrupt cookie */
245 
246 	int sc_ee_addrbits;		/* EEPROM address bits */
247 
248 	struct mii_data sc_mii;		/* MII/media information */
249 
250 	struct callout sc_tick_ch;	/* tick callout */
251 
252 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
253 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
254 
255 	int		sc_align_tweak;
256 
257 	/*
258 	 * Software state for the transmit and receive descriptors.
259 	 */
260 	int			sc_txnum;	/* must be a power of two */
261 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
262 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
263 
264 	/*
265 	 * Control data structures.
266 	 */
267 	int			sc_ntxdesc;	/* must be a power of two */
268 	struct wm_control_data_82544 *sc_control_data;
269 #define	sc_txdescs	sc_control_data->wcd_txdescs
270 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
271 
272 #ifdef WM_EVENT_COUNTERS
273 	/* Event counters. */
274 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
275 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
276 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
277 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
278 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
279 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
280 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
281 
282 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
283 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
284 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
285 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
286 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
287 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
288 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
289 
290 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
291 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
292 
293 	struct evcnt sc_ev_tu;		/* Tx underrun */
294 
295 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
296 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
297 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
298 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
299 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
300 #endif /* WM_EVENT_COUNTERS */
301 
302 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
303 
304 	int	sc_txfree;		/* number of free Tx descriptors */
305 	int	sc_txnext;		/* next ready Tx descriptor */
306 
307 	int	sc_txsfree;		/* number of free Tx jobs */
308 	int	sc_txsnext;		/* next free Tx job */
309 	int	sc_txsdirty;		/* dirty Tx jobs */
310 
311 	/* These 5 variables are used only on the 82547. */
312 	int	sc_txfifo_size;		/* Tx FIFO size */
313 	int	sc_txfifo_head;		/* current head of FIFO */
314 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
315 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
316 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
317 
318 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
319 
320 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
321 	int	sc_rxdiscard;
322 	int	sc_rxlen;
323 	struct mbuf *sc_rxhead;
324 	struct mbuf *sc_rxtail;
325 	struct mbuf **sc_rxtailp;
326 
327 	uint32_t sc_ctrl;		/* prototype CTRL register */
328 #if 0
329 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
330 #endif
331 	uint32_t sc_icr;		/* prototype interrupt bits */
332 	uint32_t sc_itr;		/* prototype intr throttling reg */
333 	uint32_t sc_tctl;		/* prototype TCTL register */
334 	uint32_t sc_rctl;		/* prototype RCTL register */
335 	uint32_t sc_txcw;		/* prototype TXCW register */
336 	uint32_t sc_tipg;		/* prototype TIPG register */
337 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
338 	uint32_t sc_pba;		/* prototype PBA register */
339 
340 	int sc_tbi_linkup;		/* TBI link status */
341 	int sc_tbi_anstate;		/* autonegotiation state */
342 
343 	int sc_mchash_type;		/* multicast filter offset */
344 
345 #if NRND > 0
346 	rndsource_element_t rnd_source;	/* random source */
347 #endif
348 };
349 
350 #define	WM_RXCHAIN_RESET(sc)						\
351 do {									\
352 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
353 	*(sc)->sc_rxtailp = NULL;					\
354 	(sc)->sc_rxlen = 0;						\
355 } while (/*CONSTCOND*/0)
356 
357 #define	WM_RXCHAIN_LINK(sc, m)						\
358 do {									\
359 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
360 	(sc)->sc_rxtailp = &(m)->m_next;				\
361 } while (/*CONSTCOND*/0)
362 
363 /* sc_flags */
364 #define	WM_F_HAS_MII		0x001	/* has MII */
365 #define	WM_F_EEPROM_HANDSHAKE	0x002	/* requires EEPROM handshake */
366 #define	WM_F_EEPROM_SEMAPHORE	0x004	/* EEPROM with semaphore */
367 #define	WM_F_EEPROM_EERDEEWR	0x008	/* EEPROM access via EERD/EEWR */
368 #define	WM_F_EEPROM_SPI		0x010	/* EEPROM is SPI */
369 #define	WM_F_EEPROM_FLASH	0x020	/* EEPROM is FLASH */
370 #define	WM_F_EEPROM_INVALID	0x040	/* EEPROM not present (bad checksum) */
371 #define	WM_F_IOH_VALID		0x080	/* I/O handle is valid */
372 #define	WM_F_BUS64		0x100	/* bus is 64-bit */
373 #define	WM_F_PCIX		0x200	/* bus is PCI-X */
374 #define	WM_F_CSA		0x400	/* bus is CSA */
375 #define	WM_F_PCIE		0x800	/* bus is PCI-Express */
376 
377 #ifdef WM_EVENT_COUNTERS
378 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
379 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
380 #else
381 #define	WM_EVCNT_INCR(ev)	/* nothing */
382 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
383 #endif
384 
385 #define	CSR_READ(sc, reg)						\
386 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
387 #define	CSR_WRITE(sc, reg, val)						\
388 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
389 #define	CSR_WRITE_FLUSH(sc)						\
390 	(void) CSR_READ((sc), WMREG_STATUS)
391 
392 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
393 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
394 
395 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
396 #define	WM_CDTXADDR_HI(sc, x)						\
397 	(sizeof(bus_addr_t) == 8 ?					\
398 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
399 
400 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
401 #define	WM_CDRXADDR_HI(sc, x)						\
402 	(sizeof(bus_addr_t) == 8 ?					\
403 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
404 
405 #define	WM_CDTXSYNC(sc, x, n, ops)					\
406 do {									\
407 	int __x, __n;							\
408 									\
409 	__x = (x);							\
410 	__n = (n);							\
411 									\
412 	/* If it will wrap around, sync to the end of the ring. */	\
413 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
414 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
415 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
416 		    (WM_NTXDESC(sc) - __x), (ops));			\
417 		__n -= (WM_NTXDESC(sc) - __x);				\
418 		__x = 0;						\
419 	}								\
420 									\
421 	/* Now sync whatever is left. */				\
422 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
423 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
424 } while (/*CONSTCOND*/0)
425 
426 #define	WM_CDRXSYNC(sc, x, ops)						\
427 do {									\
428 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
429 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
430 } while (/*CONSTCOND*/0)
431 
432 #define	WM_INIT_RXDESC(sc, x)						\
433 do {									\
434 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
435 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
436 	struct mbuf *__m = __rxs->rxs_mbuf;				\
437 									\
438 	/*								\
439 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
440 	 * so that the payload after the Ethernet header is aligned	\
441 	 * to a 4-byte boundary.					\
442 	 *								\
443 	 * XXX BRAINDAMAGE ALERT!					\
444 	 * The stupid chip uses the same size for every buffer, which	\
445 	 * is set in the Receive Control register.  We are using the 2K	\
446 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
447 	 * reason, we can't "scoot" packets longer than the standard	\
448 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
449 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
450 	 * the upper layer copy the headers.				\
451 	 */								\
452 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
453 									\
454 	wm_set_dma_addr(&__rxd->wrx_addr,				\
455 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
456 	__rxd->wrx_len = 0;						\
457 	__rxd->wrx_cksum = 0;						\
458 	__rxd->wrx_status = 0;						\
459 	__rxd->wrx_errors = 0;						\
460 	__rxd->wrx_special = 0;						\
461 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
462 									\
463 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
464 } while (/*CONSTCOND*/0)
465 
466 static void	wm_start(struct ifnet *);
467 static void	wm_watchdog(struct ifnet *);
468 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
469 static int	wm_init(struct ifnet *);
470 static void	wm_stop(struct ifnet *, int);
471 
472 static void	wm_shutdown(void *);
473 static void	wm_powerhook(int, void *);
474 
475 static void	wm_reset(struct wm_softc *);
476 static void	wm_rxdrain(struct wm_softc *);
477 static int	wm_add_rxbuf(struct wm_softc *, int);
478 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
479 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
480 static int	wm_validate_eeprom_checksum(struct wm_softc *);
481 static void	wm_tick(void *);
482 
483 static void	wm_set_filter(struct wm_softc *);
484 
485 static int	wm_intr(void *);
486 static void	wm_txintr(struct wm_softc *);
487 static void	wm_rxintr(struct wm_softc *);
488 static void	wm_linkintr(struct wm_softc *, uint32_t);
489 
490 static void	wm_tbi_mediainit(struct wm_softc *);
491 static int	wm_tbi_mediachange(struct ifnet *);
492 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
493 
494 static void	wm_tbi_set_linkled(struct wm_softc *);
495 static void	wm_tbi_check_link(struct wm_softc *);
496 
497 static void	wm_gmii_reset(struct wm_softc *);
498 
499 static int	wm_gmii_i82543_readreg(struct device *, int, int);
500 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
501 
502 static int	wm_gmii_i82544_readreg(struct device *, int, int);
503 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
504 
505 static void	wm_gmii_statchg(struct device *);
506 
507 static void	wm_gmii_mediainit(struct wm_softc *);
508 static int	wm_gmii_mediachange(struct ifnet *);
509 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
510 
511 static int	wm_match(struct device *, struct cfdata *, void *);
512 static void	wm_attach(struct device *, struct device *, void *);
513 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
514 static int	wm_get_eeprom_semaphore(struct wm_softc *);
515 static void	wm_put_eeprom_semaphore(struct wm_softc *);
516 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
517 
518 CFATTACH_DECL(wm, sizeof(struct wm_softc),
519     wm_match, wm_attach, NULL, NULL);
520 
521 static void	wm_82547_txfifo_stall(void *);
522 
523 /*
524  * Devices supported by this driver.
525  */
526 static const struct wm_product {
527 	pci_vendor_id_t		wmp_vendor;
528 	pci_product_id_t	wmp_product;
529 	const char		*wmp_name;
530 	wm_chip_type		wmp_type;
531 	int			wmp_flags;
532 #define	WMP_F_1000X		0x01
533 #define	WMP_F_1000T		0x02
534 } wm_products[] = {
535 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
536 	  "Intel i82542 1000BASE-X Ethernet",
537 	  WM_T_82542_2_1,	WMP_F_1000X },
538 
539 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
540 	  "Intel i82543GC 1000BASE-X Ethernet",
541 	  WM_T_82543,		WMP_F_1000X },
542 
543 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
544 	  "Intel i82543GC 1000BASE-T Ethernet",
545 	  WM_T_82543,		WMP_F_1000T },
546 
547 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
548 	  "Intel i82544EI 1000BASE-T Ethernet",
549 	  WM_T_82544,		WMP_F_1000T },
550 
551 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
552 	  "Intel i82544EI 1000BASE-X Ethernet",
553 	  WM_T_82544,		WMP_F_1000X },
554 
555 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
556 	  "Intel i82544GC 1000BASE-T Ethernet",
557 	  WM_T_82544,		WMP_F_1000T },
558 
559 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
560 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
561 	  WM_T_82544,		WMP_F_1000T },
562 
563 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
564 	  "Intel i82540EM 1000BASE-T Ethernet",
565 	  WM_T_82540,		WMP_F_1000T },
566 
567 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
568 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
569 	  WM_T_82540,		WMP_F_1000T },
570 
571 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
572 	  "Intel i82540EP 1000BASE-T Ethernet",
573 	  WM_T_82540,		WMP_F_1000T },
574 
575 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
576 	  "Intel i82540EP 1000BASE-T Ethernet",
577 	  WM_T_82540,		WMP_F_1000T },
578 
579 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
580 	  "Intel i82540EP 1000BASE-T Ethernet",
581 	  WM_T_82540,		WMP_F_1000T },
582 
583 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
584 	  "Intel i82545EM 1000BASE-T Ethernet",
585 	  WM_T_82545,		WMP_F_1000T },
586 
587 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
588 	  "Intel i82545GM 1000BASE-T Ethernet",
589 	  WM_T_82545_3,		WMP_F_1000T },
590 
591 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
592 	  "Intel i82545GM 1000BASE-X Ethernet",
593 	  WM_T_82545_3,		WMP_F_1000X },
594 #if 0
595 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
596 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
597 	  WM_T_82545_3,		WMP_F_SERDES },
598 #endif
599 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
600 	  "Intel i82546EB 1000BASE-T Ethernet",
601 	  WM_T_82546,		WMP_F_1000T },
602 
603 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
604 	  "Intel i82546EB 1000BASE-T Ethernet",
605 	  WM_T_82546,		WMP_F_1000T },
606 
607 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
608 	  "Intel i82545EM 1000BASE-X Ethernet",
609 	  WM_T_82545,		WMP_F_1000X },
610 
611 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
612 	  "Intel i82546EB 1000BASE-X Ethernet",
613 	  WM_T_82546,		WMP_F_1000X },
614 
615 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
616 	  "Intel i82546GB 1000BASE-T Ethernet",
617 	  WM_T_82546_3,		WMP_F_1000T },
618 
619 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
620 	  "Intel i82546GB 1000BASE-X Ethernet",
621 	  WM_T_82546_3,		WMP_F_1000X },
622 #if 0
623 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
624 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
625 	  WM_T_82546_3,		WMP_F_SERDES },
626 #endif
627 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
628 	  "Intel PRO/1000MT (82546GB)",
629 	  WM_T_82546_3,		WMP_F_1000T },
630 
631 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
632 	  "Intel i82541EI 1000BASE-T Ethernet",
633 	  WM_T_82541,		WMP_F_1000T },
634 
635 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
636 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
637 	  WM_T_82541,		WMP_F_1000T },
638 
639 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
640 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
641 	  WM_T_82541,		WMP_F_1000T },
642 
643 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
644 	  "Intel i82541ER 1000BASE-T Ethernet",
645 	  WM_T_82541_2,		WMP_F_1000T },
646 
647 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
648 	  "Intel i82541GI 1000BASE-T Ethernet",
649 	  WM_T_82541_2,		WMP_F_1000T },
650 
651 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
652 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
653 	  WM_T_82541_2,		WMP_F_1000T },
654 
655 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
656 	  "Intel i82541PI 1000BASE-T Ethernet",
657 	  WM_T_82541_2,		WMP_F_1000T },
658 
659 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
660 	  "Intel i82547EI 1000BASE-T Ethernet",
661 	  WM_T_82547,		WMP_F_1000T },
662 
663 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
664 	  "Intel i82547EI Moblie 1000BASE-T Ethernet",
665 	  WM_T_82547,		WMP_F_1000T },
666 
667 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
668 	  "Intel i82547GI 1000BASE-T Ethernet",
669 	  WM_T_82547_2,		WMP_F_1000T },
670 
671 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
672 	  "Intel PRO/1000 PT (82571EB)",
673 	  WM_T_82571,		WMP_F_1000T },
674 
675 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
676 	  "Intel PRO/1000 PF (82571EB)",
677 	  WM_T_82571,		WMP_F_1000X },
678 #if 0
679 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
680 	  "Intel PRO/1000 PB (82571EB)",
681 	  WM_T_82571,		WMP_F_SERDES },
682 #endif
683 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
684 	  "Intel i82572EI 1000baseT Ethernet",
685 	  WM_T_82572,		WMP_F_1000T },
686 
687 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
688 	  "Intel i82572EI 1000baseX Ethernet",
689 	  WM_T_82572,		WMP_F_1000X },
690 #if 0
691 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
692 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
693 	  WM_T_82572,		WMP_F_SERDES },
694 #endif
695 
696 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
697 	  "Intel i82572EI 1000baseT Ethernet",
698 	  WM_T_82572,		WMP_F_1000T },
699 
700 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
701 	  "Intel i82573E",
702 	  WM_T_82573,		WMP_F_1000T },
703 
704 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
705 	  "Intel i82573E IAMT",
706 	  WM_T_82573,		WMP_F_1000T },
707 
708 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
709 	  "Intel i82573L Gigabit Ethernet",
710 	  WM_T_82573,		WMP_F_1000T },
711 
712 	{ 0,			0,
713 	  NULL,
714 	  0,			0 },
715 };
716 
717 #ifdef WM_EVENT_COUNTERS
718 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
719 #endif /* WM_EVENT_COUNTERS */
720 
721 #if 0 /* Not currently used */
722 static inline uint32_t
723 wm_io_read(struct wm_softc *sc, int reg)
724 {
725 
726 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
727 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
728 }
729 #endif
730 
731 static inline void
732 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
733 {
734 
735 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
736 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
737 }
738 
739 static inline void
740 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
741 {
742 	wa->wa_low = htole32(v & 0xffffffffU);
743 	if (sizeof(bus_addr_t) == 8)
744 		wa->wa_high = htole32((uint64_t) v >> 32);
745 	else
746 		wa->wa_high = 0;
747 }
748 
749 static const struct wm_product *
750 wm_lookup(const struct pci_attach_args *pa)
751 {
752 	const struct wm_product *wmp;
753 
754 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
755 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
756 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
757 			return (wmp);
758 	}
759 	return (NULL);
760 }
761 
762 static int
763 wm_match(struct device *parent __unused, struct cfdata *cf __unused, void *aux)
764 {
765 	struct pci_attach_args *pa = aux;
766 
767 	if (wm_lookup(pa) != NULL)
768 		return (1);
769 
770 	return (0);
771 }
772 
773 static void
774 wm_attach(struct device *parent __unused, struct device *self, void *aux)
775 {
776 	struct wm_softc *sc = (void *) self;
777 	struct pci_attach_args *pa = aux;
778 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
779 	pci_chipset_tag_t pc = pa->pa_pc;
780 	pci_intr_handle_t ih;
781 	size_t cdata_size;
782 	const char *intrstr = NULL;
783 	const char *eetype;
784 	bus_space_tag_t memt;
785 	bus_space_handle_t memh;
786 	bus_dma_segment_t seg;
787 	int memh_valid;
788 	int i, rseg, error;
789 	const struct wm_product *wmp;
790 	prop_data_t ea;
791 	prop_number_t pn;
792 	uint8_t enaddr[ETHER_ADDR_LEN];
793 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
794 	pcireg_t preg, memtype;
795 	uint32_t reg;
796 
797 	callout_init(&sc->sc_tick_ch);
798 
799 	wmp = wm_lookup(pa);
800 	if (wmp == NULL) {
801 		printf("\n");
802 		panic("wm_attach: impossible");
803 	}
804 
805 	sc->sc_pc = pa->pa_pc;
806 	sc->sc_pcitag = pa->pa_tag;
807 
808 	if (pci_dma64_available(pa))
809 		sc->sc_dmat = pa->pa_dmat64;
810 	else
811 		sc->sc_dmat = pa->pa_dmat;
812 
813 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
814 	aprint_naive(": Ethernet controller\n");
815 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
816 
817 	sc->sc_type = wmp->wmp_type;
818 	if (sc->sc_type < WM_T_82543) {
819 		if (preg < 2) {
820 			aprint_error("%s: i82542 must be at least rev. 2\n",
821 			    sc->sc_dev.dv_xname);
822 			return;
823 		}
824 		if (preg < 3)
825 			sc->sc_type = WM_T_82542_2_0;
826 	}
827 
828 	/*
829 	 * Map the device.  All devices support memory-mapped acccess,
830 	 * and it is really required for normal operation.
831 	 */
832 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
833 	switch (memtype) {
834 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
835 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
836 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
837 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
838 		break;
839 	default:
840 		memh_valid = 0;
841 	}
842 
843 	if (memh_valid) {
844 		sc->sc_st = memt;
845 		sc->sc_sh = memh;
846 	} else {
847 		aprint_error("%s: unable to map device registers\n",
848 		    sc->sc_dev.dv_xname);
849 		return;
850 	}
851 
852 	/*
853 	 * In addition, i82544 and later support I/O mapped indirect
854 	 * register access.  It is not desirable (nor supported in
855 	 * this driver) to use it for normal operation, though it is
856 	 * required to work around bugs in some chip versions.
857 	 */
858 	if (sc->sc_type >= WM_T_82544) {
859 		/* First we have to find the I/O BAR. */
860 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
861 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
862 			    PCI_MAPREG_TYPE_IO)
863 				break;
864 		}
865 		if (i == PCI_MAPREG_END)
866 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
867 			    sc->sc_dev.dv_xname);
868 		else {
869 			/*
870 			 * The i8254x doesn't apparently respond when the
871 			 * I/O BAR is 0, which looks somewhat like it's not
872 			 * been configured.
873 			 */
874 			preg = pci_conf_read(pc, pa->pa_tag, i);
875 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
876 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
877 				    sc->sc_dev.dv_xname);
878 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
879 					0, &sc->sc_iot, &sc->sc_ioh,
880 					NULL, NULL) == 0) {
881 				sc->sc_flags |= WM_F_IOH_VALID;
882 			} else {
883 				aprint_error("%s: WARNING: unable to map "
884 				    "I/O space\n", sc->sc_dev.dv_xname);
885 			}
886 		}
887 
888 	}
889 
890 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
891 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
892 	preg |= PCI_COMMAND_MASTER_ENABLE;
893 	if (sc->sc_type < WM_T_82542_2_1)
894 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
895 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
896 
897 	/* power up chip */
898 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
899 	    NULL)) && error != EOPNOTSUPP) {
900 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
901 		    error);
902 		return;
903 	}
904 
905 	/*
906 	 * Map and establish our interrupt.
907 	 */
908 	if (pci_intr_map(pa, &ih)) {
909 		aprint_error("%s: unable to map interrupt\n",
910 		    sc->sc_dev.dv_xname);
911 		return;
912 	}
913 	intrstr = pci_intr_string(pc, ih);
914 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
915 	if (sc->sc_ih == NULL) {
916 		aprint_error("%s: unable to establish interrupt",
917 		    sc->sc_dev.dv_xname);
918 		if (intrstr != NULL)
919 			aprint_normal(" at %s", intrstr);
920 		aprint_normal("\n");
921 		return;
922 	}
923 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
924 
925 	/*
926 	 * Determine a few things about the bus we're connected to.
927 	 */
928 	if (sc->sc_type < WM_T_82543) {
929 		/* We don't really know the bus characteristics here. */
930 		sc->sc_bus_speed = 33;
931 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
932 		/*
933 		 * CSA (Communication Streaming Architecture) is about as fast
934 		 * a 32-bit 66MHz PCI Bus.
935 		 */
936 		sc->sc_flags |= WM_F_CSA;
937 		sc->sc_bus_speed = 66;
938 		aprint_verbose("%s: Communication Streaming Architecture\n",
939 		    sc->sc_dev.dv_xname);
940 		if (sc->sc_type == WM_T_82547) {
941 			callout_init(&sc->sc_txfifo_ch);
942 			callout_setfunc(&sc->sc_txfifo_ch,
943 					wm_82547_txfifo_stall, sc);
944 			aprint_verbose("%s: using 82547 Tx FIFO stall "
945 				       "work-around\n", sc->sc_dev.dv_xname);
946 		}
947 	} else if (sc->sc_type >= WM_T_82571) {
948 		sc->sc_flags |= WM_F_PCIE | WM_F_EEPROM_SEMAPHORE;
949 		aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
950 	} else {
951 		reg = CSR_READ(sc, WMREG_STATUS);
952 		if (reg & STATUS_BUS64)
953 			sc->sc_flags |= WM_F_BUS64;
954 		if (sc->sc_type >= WM_T_82544 &&
955 		    (reg & STATUS_PCIX_MODE) != 0) {
956 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
957 
958 			sc->sc_flags |= WM_F_PCIX;
959 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
960 					       PCI_CAP_PCIX,
961 					       &sc->sc_pcix_offset, NULL) == 0)
962 				aprint_error("%s: unable to find PCIX "
963 				    "capability\n", sc->sc_dev.dv_xname);
964 			else if (sc->sc_type != WM_T_82545_3 &&
965 				 sc->sc_type != WM_T_82546_3) {
966 				/*
967 				 * Work around a problem caused by the BIOS
968 				 * setting the max memory read byte count
969 				 * incorrectly.
970 				 */
971 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
972 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
973 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
974 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
975 
976 				bytecnt =
977 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
978 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
979 				maxb =
980 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
981 				    PCI_PCIX_STATUS_MAXB_SHIFT;
982 				if (bytecnt > maxb) {
983 					aprint_verbose("%s: resetting PCI-X "
984 					    "MMRBC: %d -> %d\n",
985 					    sc->sc_dev.dv_xname,
986 					    512 << bytecnt, 512 << maxb);
987 					pcix_cmd = (pcix_cmd &
988 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
989 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
990 					pci_conf_write(pa->pa_pc, pa->pa_tag,
991 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
992 					    pcix_cmd);
993 				}
994 			}
995 		}
996 		/*
997 		 * The quad port adapter is special; it has a PCIX-PCIX
998 		 * bridge on the board, and can run the secondary bus at
999 		 * a higher speed.
1000 		 */
1001 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1002 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1003 								      : 66;
1004 		} else if (sc->sc_flags & WM_F_PCIX) {
1005 			switch (reg & STATUS_PCIXSPD_MASK) {
1006 			case STATUS_PCIXSPD_50_66:
1007 				sc->sc_bus_speed = 66;
1008 				break;
1009 			case STATUS_PCIXSPD_66_100:
1010 				sc->sc_bus_speed = 100;
1011 				break;
1012 			case STATUS_PCIXSPD_100_133:
1013 				sc->sc_bus_speed = 133;
1014 				break;
1015 			default:
1016 				aprint_error(
1017 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
1018 				    sc->sc_dev.dv_xname,
1019 				    reg & STATUS_PCIXSPD_MASK);
1020 				sc->sc_bus_speed = 66;
1021 			}
1022 		} else
1023 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1024 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
1025 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1026 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1027 	}
1028 
1029 	/*
1030 	 * Allocate the control data structures, and create and load the
1031 	 * DMA map for it.
1032 	 *
1033 	 * NOTE: All Tx descriptors must be in the same 4G segment of
1034 	 * memory.  So must Rx descriptors.  We simplify by allocating
1035 	 * both sets within the same 4G segment.
1036 	 */
1037 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1038 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
1039 	cdata_size = sc->sc_type < WM_T_82544 ?
1040 	    sizeof(struct wm_control_data_82542) :
1041 	    sizeof(struct wm_control_data_82544);
1042 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
1043 				      (bus_size_t) 0x100000000ULL,
1044 				      &seg, 1, &rseg, 0)) != 0) {
1045 		aprint_error(
1046 		    "%s: unable to allocate control data, error = %d\n",
1047 		    sc->sc_dev.dv_xname, error);
1048 		goto fail_0;
1049 	}
1050 
1051 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
1052 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
1053 		aprint_error("%s: unable to map control data, error = %d\n",
1054 		    sc->sc_dev.dv_xname, error);
1055 		goto fail_1;
1056 	}
1057 
1058 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
1059 				       0, 0, &sc->sc_cddmamap)) != 0) {
1060 		aprint_error("%s: unable to create control data DMA map, "
1061 		    "error = %d\n", sc->sc_dev.dv_xname, error);
1062 		goto fail_2;
1063 	}
1064 
1065 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1066 				     sc->sc_control_data, cdata_size, NULL,
1067 				     0)) != 0) {
1068 		aprint_error(
1069 		    "%s: unable to load control data DMA map, error = %d\n",
1070 		    sc->sc_dev.dv_xname, error);
1071 		goto fail_3;
1072 	}
1073 
1074 
1075 	/*
1076 	 * Create the transmit buffer DMA maps.
1077 	 */
1078 	WM_TXQUEUELEN(sc) =
1079 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1080 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1081 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1082 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1083 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1084 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1085 			aprint_error("%s: unable to create Tx DMA map %d, "
1086 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1087 			goto fail_4;
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Create the receive buffer DMA maps.
1093 	 */
1094 	for (i = 0; i < WM_NRXDESC; i++) {
1095 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1096 					       MCLBYTES, 0, 0,
1097 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1098 			aprint_error("%s: unable to create Rx DMA map %d, "
1099 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1100 			goto fail_5;
1101 		}
1102 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1103 	}
1104 
1105 	/*
1106 	 * Reset the chip to a known state.
1107 	 */
1108 	wm_reset(sc);
1109 
1110 	/*
1111 	 * Get some information about the EEPROM.
1112 	 */
1113 	if (sc->sc_type == WM_T_82573)
1114  		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1115 	else if (sc->sc_type > WM_T_82544)
1116 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1117 
1118 	if (sc->sc_type <= WM_T_82544)
1119 		sc->sc_ee_addrbits = 6;
1120 	else if (sc->sc_type <= WM_T_82546_3) {
1121 		reg = CSR_READ(sc, WMREG_EECD);
1122 		if (reg & EECD_EE_SIZE)
1123 			sc->sc_ee_addrbits = 8;
1124 		else
1125 			sc->sc_ee_addrbits = 6;
1126 	} else if (sc->sc_type <= WM_T_82547_2) {
1127 		reg = CSR_READ(sc, WMREG_EECD);
1128 		if (reg & EECD_EE_TYPE) {
1129 			sc->sc_flags |= WM_F_EEPROM_SPI;
1130 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1131 		} else
1132 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1133 	} else if ((sc->sc_type == WM_T_82573) &&
1134 	    (wm_is_onboard_nvm_eeprom(sc) == 0)) {
1135 		sc->sc_flags |= WM_F_EEPROM_FLASH;
1136 	} else {
1137 		/* Assume everything else is SPI. */
1138 		reg = CSR_READ(sc, WMREG_EECD);
1139 		sc->sc_flags |= WM_F_EEPROM_SPI;
1140 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1141 	}
1142 
1143 	/*
1144 	 * Defer printing the EEPROM type until after verifying the checksum
1145 	 * This allows the EEPROM type to be printed correctly in the case
1146 	 * that no EEPROM is attached.
1147 	 */
1148 
1149 
1150 	/*
1151 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
1152 	 * later, so we can fail future reads from the EEPROM.
1153 	 */
1154 	if (wm_validate_eeprom_checksum(sc))
1155 		sc->sc_flags |= WM_F_EEPROM_INVALID;
1156 
1157 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
1158 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1159 	else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1160 		aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
1161 	} else {
1162 		if (sc->sc_flags & WM_F_EEPROM_SPI)
1163 			eetype = "SPI";
1164 		else
1165 			eetype = "MicroWire";
1166 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1167 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1168 		    sc->sc_ee_addrbits, eetype);
1169 	}
1170 
1171 	/*
1172 	 * Read the Ethernet address from the EEPROM, if not first found
1173 	 * in device properties.
1174 	 */
1175 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
1176 	if (ea != NULL) {
1177 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1178 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1179 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1180 	} else {
1181 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1182 		    sizeof(myea) / sizeof(myea[0]), myea)) {
1183 			aprint_error("%s: unable to read Ethernet address\n",
1184 			    sc->sc_dev.dv_xname);
1185 			return;
1186 		}
1187 		enaddr[0] = myea[0] & 0xff;
1188 		enaddr[1] = myea[0] >> 8;
1189 		enaddr[2] = myea[1] & 0xff;
1190 		enaddr[3] = myea[1] >> 8;
1191 		enaddr[4] = myea[2] & 0xff;
1192 		enaddr[5] = myea[2] >> 8;
1193 	}
1194 
1195 	/*
1196 	 * Toggle the LSB of the MAC address on the second port
1197 	 * of the dual port controller.
1198 	 */
1199 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
1200 	    || sc->sc_type ==  WM_T_82571) {
1201 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1202 			enaddr[5] ^= 1;
1203 	}
1204 
1205 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1206 	    ether_sprintf(enaddr));
1207 
1208 	/*
1209 	 * Read the config info from the EEPROM, and set up various
1210 	 * bits in the control registers based on their contents.
1211 	 */
1212 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1213 				 "i82543-cfg1");
1214 	if (pn != NULL) {
1215 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1216 		cfg1 = (uint16_t) prop_number_integer_value(pn);
1217 	} else {
1218 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1219 			aprint_error("%s: unable to read CFG1\n",
1220 			    sc->sc_dev.dv_xname);
1221 			return;
1222 		}
1223 	}
1224 
1225 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1226 				 "i82543-cfg2");
1227 	if (pn != NULL) {
1228 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1229 		cfg2 = (uint16_t) prop_number_integer_value(pn);
1230 	} else {
1231 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1232 			aprint_error("%s: unable to read CFG2\n",
1233 			    sc->sc_dev.dv_xname);
1234 			return;
1235 		}
1236 	}
1237 
1238 	if (sc->sc_type >= WM_T_82544) {
1239 		pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1240 					 "i82543-swdpin");
1241 		if (pn != NULL) {
1242 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1243 			swdpin = (uint16_t) prop_number_integer_value(pn);
1244 		} else {
1245 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1246 				aprint_error("%s: unable to read SWDPIN\n",
1247 				    sc->sc_dev.dv_xname);
1248 				return;
1249 			}
1250 		}
1251 	}
1252 
1253 	if (cfg1 & EEPROM_CFG1_ILOS)
1254 		sc->sc_ctrl |= CTRL_ILOS;
1255 	if (sc->sc_type >= WM_T_82544) {
1256 		sc->sc_ctrl |=
1257 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1258 		    CTRL_SWDPIO_SHIFT;
1259 		sc->sc_ctrl |=
1260 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1261 		    CTRL_SWDPINS_SHIFT;
1262 	} else {
1263 		sc->sc_ctrl |=
1264 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1265 		    CTRL_SWDPIO_SHIFT;
1266 	}
1267 
1268 #if 0
1269 	if (sc->sc_type >= WM_T_82544) {
1270 		if (cfg1 & EEPROM_CFG1_IPS0)
1271 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1272 		if (cfg1 & EEPROM_CFG1_IPS1)
1273 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1274 		sc->sc_ctrl_ext |=
1275 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1276 		    CTRL_EXT_SWDPIO_SHIFT;
1277 		sc->sc_ctrl_ext |=
1278 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1279 		    CTRL_EXT_SWDPINS_SHIFT;
1280 	} else {
1281 		sc->sc_ctrl_ext |=
1282 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1283 		    CTRL_EXT_SWDPIO_SHIFT;
1284 	}
1285 #endif
1286 
1287 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1288 #if 0
1289 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1290 #endif
1291 
1292 	/*
1293 	 * Set up some register offsets that are different between
1294 	 * the i82542 and the i82543 and later chips.
1295 	 */
1296 	if (sc->sc_type < WM_T_82543) {
1297 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1298 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1299 	} else {
1300 		sc->sc_rdt_reg = WMREG_RDT;
1301 		sc->sc_tdt_reg = WMREG_TDT;
1302 	}
1303 
1304 	/*
1305 	 * Determine if we're TBI or GMII mode, and initialize the
1306 	 * media structures accordingly.
1307 	 */
1308 	if (sc->sc_type < WM_T_82543 ||
1309 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1310 		if (wmp->wmp_flags & WMP_F_1000T)
1311 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1312 			    "product!\n", sc->sc_dev.dv_xname);
1313 		wm_tbi_mediainit(sc);
1314 	} else {
1315 		if (wmp->wmp_flags & WMP_F_1000X)
1316 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1317 			    "product!\n", sc->sc_dev.dv_xname);
1318 		wm_gmii_mediainit(sc);
1319 	}
1320 
1321 	ifp = &sc->sc_ethercom.ec_if;
1322 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1323 	ifp->if_softc = sc;
1324 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1325 	ifp->if_ioctl = wm_ioctl;
1326 	ifp->if_start = wm_start;
1327 	ifp->if_watchdog = wm_watchdog;
1328 	ifp->if_init = wm_init;
1329 	ifp->if_stop = wm_stop;
1330 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1331 	IFQ_SET_READY(&ifp->if_snd);
1332 
1333 	if (sc->sc_type != WM_T_82573)
1334 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1335 
1336 	/*
1337 	 * If we're a i82543 or greater, we can support VLANs.
1338 	 */
1339 	if (sc->sc_type >= WM_T_82543)
1340 		sc->sc_ethercom.ec_capabilities |=
1341 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1342 
1343 	/*
1344 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1345 	 * on i82543 and later.
1346 	 */
1347 	if (sc->sc_type >= WM_T_82543)
1348 		ifp->if_capabilities |=
1349 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1350 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1351 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1352 		    IFCAP_CSUM_TCPv6_Tx |
1353 		    IFCAP_CSUM_UDPv6_Tx;
1354 
1355 	/*
1356 	 * If we're a i82544 or greater (except i82547), we can do
1357 	 * TCP segmentation offload.
1358 	 */
1359 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1360 		ifp->if_capabilities |= IFCAP_TSOv4;
1361 
1362 	/*
1363 	 * Attach the interface.
1364 	 */
1365 	if_attach(ifp);
1366 	ether_ifattach(ifp, enaddr);
1367 #if NRND > 0
1368 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1369 	    RND_TYPE_NET, 0);
1370 #endif
1371 
1372 #ifdef WM_EVENT_COUNTERS
1373 	/* Attach event counters. */
1374 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1375 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1376 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1377 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1378 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1379 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1380 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1381 	    NULL, sc->sc_dev.dv_xname, "txdw");
1382 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1383 	    NULL, sc->sc_dev.dv_xname, "txqe");
1384 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1385 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1386 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1387 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1388 
1389 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1390 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1391 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1392 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1393 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1394 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1395 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1396 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1397 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1398 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
1399 
1400 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1401 	    NULL, sc->sc_dev.dv_xname, "txtso");
1402 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1403 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
1404 
1405 	for (i = 0; i < WM_NTXSEGS; i++) {
1406 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1407 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1408 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1409 	}
1410 
1411 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1412 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1413 
1414 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1415 	    NULL, sc->sc_dev.dv_xname, "tu");
1416 
1417 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1418 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1419 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1420 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1421 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1422 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1423 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1424 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1425 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1426 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1427 #endif /* WM_EVENT_COUNTERS */
1428 
1429 	/*
1430 	 * Make sure the interface is shutdown during reboot.
1431 	 */
1432 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1433 	if (sc->sc_sdhook == NULL)
1434 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1435 		    sc->sc_dev.dv_xname);
1436 
1437 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
1438 	    wm_powerhook, sc);
1439 	if (sc->sc_powerhook == NULL)
1440 		aprint_error("%s: can't establish powerhook\n",
1441 		    sc->sc_dev.dv_xname);
1442 	return;
1443 
1444 	/*
1445 	 * Free any resources we've allocated during the failed attach
1446 	 * attempt.  Do this in reverse order and fall through.
1447 	 */
1448  fail_5:
1449 	for (i = 0; i < WM_NRXDESC; i++) {
1450 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1451 			bus_dmamap_destroy(sc->sc_dmat,
1452 			    sc->sc_rxsoft[i].rxs_dmamap);
1453 	}
1454  fail_4:
1455 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1456 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1457 			bus_dmamap_destroy(sc->sc_dmat,
1458 			    sc->sc_txsoft[i].txs_dmamap);
1459 	}
1460 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1461  fail_3:
1462 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1463  fail_2:
1464 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1465 	    cdata_size);
1466  fail_1:
1467 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1468  fail_0:
1469 	return;
1470 }
1471 
1472 /*
1473  * wm_shutdown:
1474  *
1475  *	Make sure the interface is stopped at reboot time.
1476  */
1477 static void
1478 wm_shutdown(void *arg)
1479 {
1480 	struct wm_softc *sc = arg;
1481 
1482 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1483 }
1484 
1485 static void
1486 wm_powerhook(int why, void *arg)
1487 {
1488 	struct wm_softc *sc = arg;
1489 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1490 	pci_chipset_tag_t pc = sc->sc_pc;
1491 	pcitag_t tag = sc->sc_pcitag;
1492 
1493 	switch (why) {
1494 	case PWR_SOFTSUSPEND:
1495 		wm_shutdown(sc);
1496 		break;
1497 	case PWR_SOFTRESUME:
1498 		ifp->if_flags &= ~IFF_RUNNING;
1499 		wm_init(ifp);
1500 		if (ifp->if_flags & IFF_RUNNING)
1501 			wm_start(ifp);
1502 		break;
1503 	case PWR_SUSPEND:
1504 		pci_conf_capture(pc, tag, &sc->sc_pciconf);
1505 		break;
1506 	case PWR_RESUME:
1507 		pci_conf_restore(pc, tag, &sc->sc_pciconf);
1508 		break;
1509 	}
1510 
1511 	return;
1512 }
1513 
1514 /*
1515  * wm_tx_offload:
1516  *
1517  *	Set up TCP/IP checksumming parameters for the
1518  *	specified packet.
1519  */
1520 static int
1521 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1522     uint8_t *fieldsp)
1523 {
1524 	struct mbuf *m0 = txs->txs_mbuf;
1525 	struct livengood_tcpip_ctxdesc *t;
1526 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
1527 	struct ether_header *eh;
1528 	int offset, iphl;
1529 	uint8_t fields;
1530 
1531 	/*
1532 	 * XXX It would be nice if the mbuf pkthdr had offset
1533 	 * fields for the protocol headers.
1534 	 */
1535 
1536 	eh = mtod(m0, struct ether_header *);
1537 	switch (htons(eh->ether_type)) {
1538 	case ETHERTYPE_IP:
1539 	case ETHERTYPE_IPV6:
1540 		offset = ETHER_HDR_LEN;
1541 		break;
1542 
1543 	case ETHERTYPE_VLAN:
1544 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1545 		break;
1546 
1547 	default:
1548 		/*
1549 		 * Don't support this protocol or encapsulation.
1550 		 */
1551 		*fieldsp = 0;
1552 		*cmdp = 0;
1553 		return (0);
1554 	}
1555 
1556 	if ((m0->m_pkthdr.csum_flags &
1557 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1558 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1559 	} else {
1560 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1561 	}
1562 
1563 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1564 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1565 	seg = 0;
1566 	fields = 0;
1567 
1568 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1569 		int hlen = offset + iphl;
1570 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
1571 		if (__predict_false(m0->m_len <
1572 				    (hlen + sizeof(struct tcphdr)))) {
1573 			/*
1574 			 * TCP/IP headers are not in the first mbuf; we need
1575 			 * to do this the slow and painful way.  Let's just
1576 			 * hope this doesn't happen very often.
1577 			 */
1578 			struct ip ip;
1579 			struct tcphdr th;
1580 
1581 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1582 
1583 			m_copydata(m0, offset, sizeof(ip), &ip);
1584 			m_copydata(m0, hlen, sizeof(th), &th);
1585 
1586 			ip.ip_len = 0;
1587 
1588 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1589 			    sizeof(ip.ip_len), &ip.ip_len);
1590 
1591 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1592 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1593 
1594 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1595 			    sizeof(th.th_sum), &th.th_sum);
1596 
1597 			hlen += th.th_off << 2;
1598 		} else {
1599 			/*
1600 			 * TCP/IP headers are in the first mbuf; we can do
1601 			 * this the easy way.
1602 			 */
1603 			struct ip *ip =
1604 			    (struct ip *) (mtod(m0, caddr_t) + offset);
1605 			struct tcphdr *th =
1606 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1607 
1608 			ip->ip_len = 0;
1609 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1610 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1611 
1612 			hlen += th->th_off << 2;
1613 		}
1614 
1615 		cmd |= WTX_TCPIP_CMD_TSE;
1616 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1617 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1618 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1619 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1620 	}
1621 
1622 	/*
1623 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1624 	 * offload feature, if we load the context descriptor, we
1625 	 * MUST provide valid values for IPCSS and TUCSS fields.
1626 	 */
1627 
1628 	ipcs = WTX_TCPIP_IPCSS(offset) |
1629 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1630 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
1631 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1632 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1633 		fields |= WTX_IXSM;
1634 	}
1635 
1636 	offset += iphl;
1637 
1638 	if (m0->m_pkthdr.csum_flags &
1639 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1640 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1641 		fields |= WTX_TXSM;
1642 		tucs = WTX_TCPIP_TUCSS(offset) |
1643 		    WTX_TCPIP_TUCSO(offset +
1644 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1645 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1646 	} else if ((m0->m_pkthdr.csum_flags &
1647 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1648 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1649 		fields |= WTX_TXSM;
1650 		tucs = WTX_TCPIP_TUCSS(offset) |
1651 		    WTX_TCPIP_TUCSO(offset +
1652 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1653 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1654 	} else {
1655 		/* Just initialize it to a valid TCP context. */
1656 		tucs = WTX_TCPIP_TUCSS(offset) |
1657 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1658 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1659 	}
1660 
1661 	/* Fill in the context descriptor. */
1662 	t = (struct livengood_tcpip_ctxdesc *)
1663 	    &sc->sc_txdescs[sc->sc_txnext];
1664 	t->tcpip_ipcs = htole32(ipcs);
1665 	t->tcpip_tucs = htole32(tucs);
1666 	t->tcpip_cmdlen = htole32(cmdlen);
1667 	t->tcpip_seg = htole32(seg);
1668 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1669 
1670 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1671 	txs->txs_ndesc++;
1672 
1673 	*cmdp = cmd;
1674 	*fieldsp = fields;
1675 
1676 	return (0);
1677 }
1678 
1679 static void
1680 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1681 {
1682 	struct mbuf *m;
1683 	int i;
1684 
1685 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1686 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1687 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1688 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1689 		    m->m_data, m->m_len, m->m_flags);
1690 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1691 	    i, i == 1 ? "" : "s");
1692 }
1693 
1694 /*
1695  * wm_82547_txfifo_stall:
1696  *
1697  *	Callout used to wait for the 82547 Tx FIFO to drain,
1698  *	reset the FIFO pointers, and restart packet transmission.
1699  */
1700 static void
1701 wm_82547_txfifo_stall(void *arg)
1702 {
1703 	struct wm_softc *sc = arg;
1704 	int s;
1705 
1706 	s = splnet();
1707 
1708 	if (sc->sc_txfifo_stall) {
1709 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1710 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1711 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1712 			/*
1713 			 * Packets have drained.  Stop transmitter, reset
1714 			 * FIFO pointers, restart transmitter, and kick
1715 			 * the packet queue.
1716 			 */
1717 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1718 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1719 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1720 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1721 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1722 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1723 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1724 			CSR_WRITE_FLUSH(sc);
1725 
1726 			sc->sc_txfifo_head = 0;
1727 			sc->sc_txfifo_stall = 0;
1728 			wm_start(&sc->sc_ethercom.ec_if);
1729 		} else {
1730 			/*
1731 			 * Still waiting for packets to drain; try again in
1732 			 * another tick.
1733 			 */
1734 			callout_schedule(&sc->sc_txfifo_ch, 1);
1735 		}
1736 	}
1737 
1738 	splx(s);
1739 }
1740 
1741 /*
1742  * wm_82547_txfifo_bugchk:
1743  *
1744  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1745  *	prevent enqueueing a packet that would wrap around the end
1746  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1747  *
1748  *	We do this by checking the amount of space before the end
1749  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1750  *	the Tx FIFO, wait for all remaining packets to drain, reset
1751  *	the internal FIFO pointers to the beginning, and restart
1752  *	transmission on the interface.
1753  */
1754 #define	WM_FIFO_HDR		0x10
1755 #define	WM_82547_PAD_LEN	0x3e0
1756 static int
1757 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1758 {
1759 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1760 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1761 
1762 	/* Just return if already stalled. */
1763 	if (sc->sc_txfifo_stall)
1764 		return (1);
1765 
1766 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1767 		/* Stall only occurs in half-duplex mode. */
1768 		goto send_packet;
1769 	}
1770 
1771 	if (len >= WM_82547_PAD_LEN + space) {
1772 		sc->sc_txfifo_stall = 1;
1773 		callout_schedule(&sc->sc_txfifo_ch, 1);
1774 		return (1);
1775 	}
1776 
1777  send_packet:
1778 	sc->sc_txfifo_head += len;
1779 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1780 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1781 
1782 	return (0);
1783 }
1784 
1785 /*
1786  * wm_start:		[ifnet interface function]
1787  *
1788  *	Start packet transmission on the interface.
1789  */
1790 static void
1791 wm_start(struct ifnet *ifp)
1792 {
1793 	struct wm_softc *sc = ifp->if_softc;
1794 	struct mbuf *m0;
1795 #if 0 /* XXXJRT */
1796 	struct m_tag *mtag;
1797 #endif
1798 	struct wm_txsoft *txs;
1799 	bus_dmamap_t dmamap;
1800 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1801 	bus_addr_t curaddr;
1802 	bus_size_t seglen, curlen;
1803 	uint32_t cksumcmd;
1804 	uint8_t cksumfields;
1805 
1806 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1807 		return;
1808 
1809 	/*
1810 	 * Remember the previous number of free descriptors.
1811 	 */
1812 	ofree = sc->sc_txfree;
1813 
1814 	/*
1815 	 * Loop through the send queue, setting up transmit descriptors
1816 	 * until we drain the queue, or use up all available transmit
1817 	 * descriptors.
1818 	 */
1819 	for (;;) {
1820 		/* Grab a packet off the queue. */
1821 		IFQ_POLL(&ifp->if_snd, m0);
1822 		if (m0 == NULL)
1823 			break;
1824 
1825 		DPRINTF(WM_DEBUG_TX,
1826 		    ("%s: TX: have packet to transmit: %p\n",
1827 		    sc->sc_dev.dv_xname, m0));
1828 
1829 		/* Get a work queue entry. */
1830 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1831 			wm_txintr(sc);
1832 			if (sc->sc_txsfree == 0) {
1833 				DPRINTF(WM_DEBUG_TX,
1834 				    ("%s: TX: no free job descriptors\n",
1835 					sc->sc_dev.dv_xname));
1836 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1837 				break;
1838 			}
1839 		}
1840 
1841 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1842 		dmamap = txs->txs_dmamap;
1843 
1844 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1845 
1846 		/*
1847 		 * So says the Linux driver:
1848 		 * The controller does a simple calculation to make sure
1849 		 * there is enough room in the FIFO before initiating the
1850 		 * DMA for each buffer.  The calc is:
1851 		 *	4 = ceil(buffer len / MSS)
1852 		 * To make sure we don't overrun the FIFO, adjust the max
1853 		 * buffer len if the MSS drops.
1854 		 */
1855 		dmamap->dm_maxsegsz =
1856 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1857 		    ? m0->m_pkthdr.segsz << 2
1858 		    : WTX_MAX_LEN;
1859 
1860 		/*
1861 		 * Load the DMA map.  If this fails, the packet either
1862 		 * didn't fit in the allotted number of segments, or we
1863 		 * were short on resources.  For the too-many-segments
1864 		 * case, we simply report an error and drop the packet,
1865 		 * since we can't sanely copy a jumbo packet to a single
1866 		 * buffer.
1867 		 */
1868 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1869 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1870 		if (error) {
1871 			if (error == EFBIG) {
1872 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1873 				log(LOG_ERR, "%s: Tx packet consumes too many "
1874 				    "DMA segments, dropping...\n",
1875 				    sc->sc_dev.dv_xname);
1876 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1877 				wm_dump_mbuf_chain(sc, m0);
1878 				m_freem(m0);
1879 				continue;
1880 			}
1881 			/*
1882 			 * Short on resources, just stop for now.
1883 			 */
1884 			DPRINTF(WM_DEBUG_TX,
1885 			    ("%s: TX: dmamap load failed: %d\n",
1886 			    sc->sc_dev.dv_xname, error));
1887 			break;
1888 		}
1889 
1890 		segs_needed = dmamap->dm_nsegs;
1891 		if (use_tso) {
1892 			/* For sentinel descriptor; see below. */
1893 			segs_needed++;
1894 		}
1895 
1896 		/*
1897 		 * Ensure we have enough descriptors free to describe
1898 		 * the packet.  Note, we always reserve one descriptor
1899 		 * at the end of the ring due to the semantics of the
1900 		 * TDT register, plus one more in the event we need
1901 		 * to load offload context.
1902 		 */
1903 		if (segs_needed > sc->sc_txfree - 2) {
1904 			/*
1905 			 * Not enough free descriptors to transmit this
1906 			 * packet.  We haven't committed anything yet,
1907 			 * so just unload the DMA map, put the packet
1908 			 * pack on the queue, and punt.  Notify the upper
1909 			 * layer that there are no more slots left.
1910 			 */
1911 			DPRINTF(WM_DEBUG_TX,
1912 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
1913 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1914 			    sc->sc_txfree - 1));
1915 			ifp->if_flags |= IFF_OACTIVE;
1916 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1917 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1918 			break;
1919 		}
1920 
1921 		/*
1922 		 * Check for 82547 Tx FIFO bug.  We need to do this
1923 		 * once we know we can transmit the packet, since we
1924 		 * do some internal FIFO space accounting here.
1925 		 */
1926 		if (sc->sc_type == WM_T_82547 &&
1927 		    wm_82547_txfifo_bugchk(sc, m0)) {
1928 			DPRINTF(WM_DEBUG_TX,
1929 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
1930 			    sc->sc_dev.dv_xname));
1931 			ifp->if_flags |= IFF_OACTIVE;
1932 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1933 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1934 			break;
1935 		}
1936 
1937 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1938 
1939 		/*
1940 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1941 		 */
1942 
1943 		DPRINTF(WM_DEBUG_TX,
1944 		    ("%s: TX: packet has %d (%d) DMA segments\n",
1945 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1946 
1947 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1948 
1949 		/*
1950 		 * Store a pointer to the packet so that we can free it
1951 		 * later.
1952 		 *
1953 		 * Initially, we consider the number of descriptors the
1954 		 * packet uses the number of DMA segments.  This may be
1955 		 * incremented by 1 if we do checksum offload (a descriptor
1956 		 * is used to set the checksum context).
1957 		 */
1958 		txs->txs_mbuf = m0;
1959 		txs->txs_firstdesc = sc->sc_txnext;
1960 		txs->txs_ndesc = segs_needed;
1961 
1962 		/* Set up offload parameters for this packet. */
1963 		if (m0->m_pkthdr.csum_flags &
1964 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
1965 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
1966 			if (wm_tx_offload(sc, txs, &cksumcmd,
1967 					  &cksumfields) != 0) {
1968 				/* Error message already displayed. */
1969 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1970 				continue;
1971 			}
1972 		} else {
1973 			cksumcmd = 0;
1974 			cksumfields = 0;
1975 		}
1976 
1977 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1978 
1979 		/* Sync the DMA map. */
1980 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1981 		    BUS_DMASYNC_PREWRITE);
1982 
1983 		/*
1984 		 * Initialize the transmit descriptor.
1985 		 */
1986 		for (nexttx = sc->sc_txnext, seg = 0;
1987 		     seg < dmamap->dm_nsegs; seg++) {
1988 			for (seglen = dmamap->dm_segs[seg].ds_len,
1989 			     curaddr = dmamap->dm_segs[seg].ds_addr;
1990 			     seglen != 0;
1991 			     curaddr += curlen, seglen -= curlen,
1992 			     nexttx = WM_NEXTTX(sc, nexttx)) {
1993 				curlen = seglen;
1994 
1995 				/*
1996 				 * So says the Linux driver:
1997 				 * Work around for premature descriptor
1998 				 * write-backs in TSO mode.  Append a
1999 				 * 4-byte sentinel descriptor.
2000 				 */
2001 				if (use_tso &&
2002 				    seg == dmamap->dm_nsegs - 1 &&
2003 				    curlen > 8)
2004 					curlen -= 4;
2005 
2006 				wm_set_dma_addr(
2007 				    &sc->sc_txdescs[nexttx].wtx_addr,
2008 				    curaddr);
2009 				sc->sc_txdescs[nexttx].wtx_cmdlen =
2010 				    htole32(cksumcmd | curlen);
2011 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2012 				    0;
2013 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2014 				    cksumfields;
2015 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2016 				lasttx = nexttx;
2017 
2018 				DPRINTF(WM_DEBUG_TX,
2019 				    ("%s: TX: desc %d: low 0x%08lx, "
2020 				     "len 0x%04x\n",
2021 				    sc->sc_dev.dv_xname, nexttx,
2022 				    curaddr & 0xffffffffUL, (unsigned)curlen));
2023 			}
2024 		}
2025 
2026 		KASSERT(lasttx != -1);
2027 
2028 		/*
2029 		 * Set up the command byte on the last descriptor of
2030 		 * the packet.  If we're in the interrupt delay window,
2031 		 * delay the interrupt.
2032 		 */
2033 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
2034 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
2035 
2036 #if 0 /* XXXJRT */
2037 		/*
2038 		 * If VLANs are enabled and the packet has a VLAN tag, set
2039 		 * up the descriptor to encapsulate the packet for us.
2040 		 *
2041 		 * This is only valid on the last descriptor of the packet.
2042 		 */
2043 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2044 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
2045 			    htole32(WTX_CMD_VLE);
2046 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2047 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2048 		}
2049 #endif /* XXXJRT */
2050 
2051 		txs->txs_lastdesc = lasttx;
2052 
2053 		DPRINTF(WM_DEBUG_TX,
2054 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
2055 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2056 
2057 		/* Sync the descriptors we're using. */
2058 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2059 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2060 
2061 		/* Give the packet to the chip. */
2062 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2063 
2064 		DPRINTF(WM_DEBUG_TX,
2065 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
2066 
2067 		DPRINTF(WM_DEBUG_TX,
2068 		    ("%s: TX: finished transmitting packet, job %d\n",
2069 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
2070 
2071 		/* Advance the tx pointer. */
2072 		sc->sc_txfree -= txs->txs_ndesc;
2073 		sc->sc_txnext = nexttx;
2074 
2075 		sc->sc_txsfree--;
2076 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2077 
2078 #if NBPFILTER > 0
2079 		/* Pass the packet to any BPF listeners. */
2080 		if (ifp->if_bpf)
2081 			bpf_mtap(ifp->if_bpf, m0);
2082 #endif /* NBPFILTER > 0 */
2083 	}
2084 
2085 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2086 		/* No more slots; notify upper layer. */
2087 		ifp->if_flags |= IFF_OACTIVE;
2088 	}
2089 
2090 	if (sc->sc_txfree != ofree) {
2091 		/* Set a watchdog timer in case the chip flakes out. */
2092 		ifp->if_timer = 5;
2093 	}
2094 }
2095 
2096 /*
2097  * wm_watchdog:		[ifnet interface function]
2098  *
2099  *	Watchdog timer handler.
2100  */
2101 static void
2102 wm_watchdog(struct ifnet *ifp)
2103 {
2104 	struct wm_softc *sc = ifp->if_softc;
2105 
2106 	/*
2107 	 * Since we're using delayed interrupts, sweep up
2108 	 * before we report an error.
2109 	 */
2110 	wm_txintr(sc);
2111 
2112 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
2113 		log(LOG_ERR,
2114 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2115 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
2116 		    sc->sc_txnext);
2117 		ifp->if_oerrors++;
2118 
2119 		/* Reset the interface. */
2120 		(void) wm_init(ifp);
2121 	}
2122 
2123 	/* Try to get more packets going. */
2124 	wm_start(ifp);
2125 }
2126 
2127 /*
2128  * wm_ioctl:		[ifnet interface function]
2129  *
2130  *	Handle control requests from the operator.
2131  */
2132 static int
2133 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2134 {
2135 	struct wm_softc *sc = ifp->if_softc;
2136 	struct ifreq *ifr = (struct ifreq *) data;
2137 	int s, error;
2138 
2139 	s = splnet();
2140 
2141 	switch (cmd) {
2142 	case SIOCSIFMEDIA:
2143 	case SIOCGIFMEDIA:
2144 		/* Flow control requires full-duplex mode. */
2145 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2146 		    (ifr->ifr_media & IFM_FDX) == 0)
2147 			ifr->ifr_media &= ~IFM_ETH_FMASK;
2148 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2149 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2150 				/* We can do both TXPAUSE and RXPAUSE. */
2151 				ifr->ifr_media |=
2152 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2153 			}
2154 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2155 		}
2156 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2157 		break;
2158 	default:
2159 		error = ether_ioctl(ifp, cmd, data);
2160 		if (error == ENETRESET) {
2161 			/*
2162 			 * Multicast list has changed; set the hardware filter
2163 			 * accordingly.
2164 			 */
2165 			if (ifp->if_flags & IFF_RUNNING)
2166 				wm_set_filter(sc);
2167 			error = 0;
2168 		}
2169 		break;
2170 	}
2171 
2172 	/* Try to get more packets going. */
2173 	wm_start(ifp);
2174 
2175 	splx(s);
2176 	return (error);
2177 }
2178 
2179 /*
2180  * wm_intr:
2181  *
2182  *	Interrupt service routine.
2183  */
2184 static int
2185 wm_intr(void *arg)
2186 {
2187 	struct wm_softc *sc = arg;
2188 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2189 	uint32_t icr;
2190 	int handled = 0;
2191 
2192 	while (1 /* CONSTCOND */) {
2193 		icr = CSR_READ(sc, WMREG_ICR);
2194 		if ((icr & sc->sc_icr) == 0)
2195 			break;
2196 
2197 #if 0 /*NRND > 0*/
2198 		if (RND_ENABLED(&sc->rnd_source))
2199 			rnd_add_uint32(&sc->rnd_source, icr);
2200 #endif
2201 
2202 		handled = 1;
2203 
2204 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2205 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2206 			DPRINTF(WM_DEBUG_RX,
2207 			    ("%s: RX: got Rx intr 0x%08x\n",
2208 			    sc->sc_dev.dv_xname,
2209 			    icr & (ICR_RXDMT0|ICR_RXT0)));
2210 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2211 		}
2212 #endif
2213 		wm_rxintr(sc);
2214 
2215 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2216 		if (icr & ICR_TXDW) {
2217 			DPRINTF(WM_DEBUG_TX,
2218 			    ("%s: TX: got TXDW interrupt\n",
2219 			    sc->sc_dev.dv_xname));
2220 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
2221 		}
2222 #endif
2223 		wm_txintr(sc);
2224 
2225 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2226 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2227 			wm_linkintr(sc, icr);
2228 		}
2229 
2230 		if (icr & ICR_RXO) {
2231 			ifp->if_ierrors++;
2232 #if defined(WM_DEBUG)
2233 			log(LOG_WARNING, "%s: Receive overrun\n",
2234 			    sc->sc_dev.dv_xname);
2235 #endif /* defined(WM_DEBUG) */
2236 		}
2237 	}
2238 
2239 	if (handled) {
2240 		/* Try to get more packets going. */
2241 		wm_start(ifp);
2242 	}
2243 
2244 	return (handled);
2245 }
2246 
2247 /*
2248  * wm_txintr:
2249  *
2250  *	Helper; handle transmit interrupts.
2251  */
2252 static void
2253 wm_txintr(struct wm_softc *sc)
2254 {
2255 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2256 	struct wm_txsoft *txs;
2257 	uint8_t status;
2258 	int i;
2259 
2260 	ifp->if_flags &= ~IFF_OACTIVE;
2261 
2262 	/*
2263 	 * Go through the Tx list and free mbufs for those
2264 	 * frames which have been transmitted.
2265 	 */
2266 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2267 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2268 		txs = &sc->sc_txsoft[i];
2269 
2270 		DPRINTF(WM_DEBUG_TX,
2271 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2272 
2273 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2274 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2275 
2276 		status =
2277 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2278 		if ((status & WTX_ST_DD) == 0) {
2279 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2280 			    BUS_DMASYNC_PREREAD);
2281 			break;
2282 		}
2283 
2284 		DPRINTF(WM_DEBUG_TX,
2285 		    ("%s: TX: job %d done: descs %d..%d\n",
2286 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2287 		    txs->txs_lastdesc));
2288 
2289 		/*
2290 		 * XXX We should probably be using the statistics
2291 		 * XXX registers, but I don't know if they exist
2292 		 * XXX on chips before the i82544.
2293 		 */
2294 
2295 #ifdef WM_EVENT_COUNTERS
2296 		if (status & WTX_ST_TU)
2297 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2298 #endif /* WM_EVENT_COUNTERS */
2299 
2300 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2301 			ifp->if_oerrors++;
2302 			if (status & WTX_ST_LC)
2303 				log(LOG_WARNING, "%s: late collision\n",
2304 				    sc->sc_dev.dv_xname);
2305 			else if (status & WTX_ST_EC) {
2306 				ifp->if_collisions += 16;
2307 				log(LOG_WARNING, "%s: excessive collisions\n",
2308 				    sc->sc_dev.dv_xname);
2309 			}
2310 		} else
2311 			ifp->if_opackets++;
2312 
2313 		sc->sc_txfree += txs->txs_ndesc;
2314 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2315 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2316 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2317 		m_freem(txs->txs_mbuf);
2318 		txs->txs_mbuf = NULL;
2319 	}
2320 
2321 	/* Update the dirty transmit buffer pointer. */
2322 	sc->sc_txsdirty = i;
2323 	DPRINTF(WM_DEBUG_TX,
2324 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2325 
2326 	/*
2327 	 * If there are no more pending transmissions, cancel the watchdog
2328 	 * timer.
2329 	 */
2330 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2331 		ifp->if_timer = 0;
2332 }
2333 
2334 /*
2335  * wm_rxintr:
2336  *
2337  *	Helper; handle receive interrupts.
2338  */
2339 static void
2340 wm_rxintr(struct wm_softc *sc)
2341 {
2342 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2343 	struct wm_rxsoft *rxs;
2344 	struct mbuf *m;
2345 	int i, len;
2346 	uint8_t status, errors;
2347 
2348 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2349 		rxs = &sc->sc_rxsoft[i];
2350 
2351 		DPRINTF(WM_DEBUG_RX,
2352 		    ("%s: RX: checking descriptor %d\n",
2353 		    sc->sc_dev.dv_xname, i));
2354 
2355 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2356 
2357 		status = sc->sc_rxdescs[i].wrx_status;
2358 		errors = sc->sc_rxdescs[i].wrx_errors;
2359 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2360 
2361 		if ((status & WRX_ST_DD) == 0) {
2362 			/*
2363 			 * We have processed all of the receive descriptors.
2364 			 */
2365 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2366 			break;
2367 		}
2368 
2369 		if (__predict_false(sc->sc_rxdiscard)) {
2370 			DPRINTF(WM_DEBUG_RX,
2371 			    ("%s: RX: discarding contents of descriptor %d\n",
2372 			    sc->sc_dev.dv_xname, i));
2373 			WM_INIT_RXDESC(sc, i);
2374 			if (status & WRX_ST_EOP) {
2375 				/* Reset our state. */
2376 				DPRINTF(WM_DEBUG_RX,
2377 				    ("%s: RX: resetting rxdiscard -> 0\n",
2378 				    sc->sc_dev.dv_xname));
2379 				sc->sc_rxdiscard = 0;
2380 			}
2381 			continue;
2382 		}
2383 
2384 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2385 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2386 
2387 		m = rxs->rxs_mbuf;
2388 
2389 		/*
2390 		 * Add a new receive buffer to the ring, unless of
2391 		 * course the length is zero. Treat the latter as a
2392 		 * failed mapping.
2393 		 */
2394 		if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
2395 			/*
2396 			 * Failed, throw away what we've done so
2397 			 * far, and discard the rest of the packet.
2398 			 */
2399 			ifp->if_ierrors++;
2400 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2401 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2402 			WM_INIT_RXDESC(sc, i);
2403 			if ((status & WRX_ST_EOP) == 0)
2404 				sc->sc_rxdiscard = 1;
2405 			if (sc->sc_rxhead != NULL)
2406 				m_freem(sc->sc_rxhead);
2407 			WM_RXCHAIN_RESET(sc);
2408 			DPRINTF(WM_DEBUG_RX,
2409 			    ("%s: RX: Rx buffer allocation failed, "
2410 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2411 			    sc->sc_rxdiscard ? " (discard)" : ""));
2412 			continue;
2413 		}
2414 
2415 		WM_RXCHAIN_LINK(sc, m);
2416 
2417 		m->m_len = len;
2418 
2419 		DPRINTF(WM_DEBUG_RX,
2420 		    ("%s: RX: buffer at %p len %d\n",
2421 		    sc->sc_dev.dv_xname, m->m_data, len));
2422 
2423 		/*
2424 		 * If this is not the end of the packet, keep
2425 		 * looking.
2426 		 */
2427 		if ((status & WRX_ST_EOP) == 0) {
2428 			sc->sc_rxlen += len;
2429 			DPRINTF(WM_DEBUG_RX,
2430 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2431 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2432 			continue;
2433 		}
2434 
2435 		/*
2436 		 * Okay, we have the entire packet now.  The chip is
2437 		 * configured to include the FCS (not all chips can
2438 		 * be configured to strip it), so we need to trim it.
2439 		 */
2440 		m->m_len -= ETHER_CRC_LEN;
2441 
2442 		*sc->sc_rxtailp = NULL;
2443 		len = m->m_len + sc->sc_rxlen;
2444 		m = sc->sc_rxhead;
2445 
2446 		WM_RXCHAIN_RESET(sc);
2447 
2448 		DPRINTF(WM_DEBUG_RX,
2449 		    ("%s: RX: have entire packet, len -> %d\n",
2450 		    sc->sc_dev.dv_xname, len));
2451 
2452 		/*
2453 		 * If an error occurred, update stats and drop the packet.
2454 		 */
2455 		if (errors &
2456 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2457 			ifp->if_ierrors++;
2458 			if (errors & WRX_ER_SE)
2459 				log(LOG_WARNING, "%s: symbol error\n",
2460 				    sc->sc_dev.dv_xname);
2461 			else if (errors & WRX_ER_SEQ)
2462 				log(LOG_WARNING, "%s: receive sequence error\n",
2463 				    sc->sc_dev.dv_xname);
2464 			else if (errors & WRX_ER_CE)
2465 				log(LOG_WARNING, "%s: CRC error\n",
2466 				    sc->sc_dev.dv_xname);
2467 			m_freem(m);
2468 			continue;
2469 		}
2470 
2471 		/*
2472 		 * No errors.  Receive the packet.
2473 		 */
2474 		m->m_pkthdr.rcvif = ifp;
2475 		m->m_pkthdr.len = len;
2476 
2477 #if 0 /* XXXJRT */
2478 		/*
2479 		 * If VLANs are enabled, VLAN packets have been unwrapped
2480 		 * for us.  Associate the tag with the packet.
2481 		 */
2482 		if ((status & WRX_ST_VP) != 0) {
2483 			VLAN_INPUT_TAG(ifp, m,
2484 			    le16toh(sc->sc_rxdescs[i].wrx_special,
2485 			    continue);
2486 		}
2487 #endif /* XXXJRT */
2488 
2489 		/*
2490 		 * Set up checksum info for this packet.
2491 		 */
2492 		if ((status & WRX_ST_IXSM) == 0) {
2493 			if (status & WRX_ST_IPCS) {
2494 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2495 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2496 				if (errors & WRX_ER_IPE)
2497 					m->m_pkthdr.csum_flags |=
2498 					    M_CSUM_IPv4_BAD;
2499 			}
2500 			if (status & WRX_ST_TCPCS) {
2501 				/*
2502 				 * Note: we don't know if this was TCP or UDP,
2503 				 * so we just set both bits, and expect the
2504 				 * upper layers to deal.
2505 				 */
2506 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2507 				m->m_pkthdr.csum_flags |=
2508 				    M_CSUM_TCPv4|M_CSUM_UDPv4;
2509 				if (errors & WRX_ER_TCPE)
2510 					m->m_pkthdr.csum_flags |=
2511 					    M_CSUM_TCP_UDP_BAD;
2512 			}
2513 		}
2514 
2515 		ifp->if_ipackets++;
2516 
2517 #if NBPFILTER > 0
2518 		/* Pass this up to any BPF listeners. */
2519 		if (ifp->if_bpf)
2520 			bpf_mtap(ifp->if_bpf, m);
2521 #endif /* NBPFILTER > 0 */
2522 
2523 		/* Pass it on. */
2524 		(*ifp->if_input)(ifp, m);
2525 	}
2526 
2527 	/* Update the receive pointer. */
2528 	sc->sc_rxptr = i;
2529 
2530 	DPRINTF(WM_DEBUG_RX,
2531 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2532 }
2533 
2534 /*
2535  * wm_linkintr:
2536  *
2537  *	Helper; handle link interrupts.
2538  */
2539 static void
2540 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2541 {
2542 	uint32_t status;
2543 
2544 	/*
2545 	 * If we get a link status interrupt on a 1000BASE-T
2546 	 * device, just fall into the normal MII tick path.
2547 	 */
2548 	if (sc->sc_flags & WM_F_HAS_MII) {
2549 		if (icr & ICR_LSC) {
2550 			DPRINTF(WM_DEBUG_LINK,
2551 			    ("%s: LINK: LSC -> mii_tick\n",
2552 			    sc->sc_dev.dv_xname));
2553 			mii_tick(&sc->sc_mii);
2554 		} else if (icr & ICR_RXSEQ) {
2555 			DPRINTF(WM_DEBUG_LINK,
2556 			    ("%s: LINK Receive sequence error\n",
2557 			    sc->sc_dev.dv_xname));
2558 		}
2559 		return;
2560 	}
2561 
2562 	/*
2563 	 * If we are now receiving /C/, check for link again in
2564 	 * a couple of link clock ticks.
2565 	 */
2566 	if (icr & ICR_RXCFG) {
2567 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2568 		    sc->sc_dev.dv_xname));
2569 		sc->sc_tbi_anstate = 2;
2570 	}
2571 
2572 	if (icr & ICR_LSC) {
2573 		status = CSR_READ(sc, WMREG_STATUS);
2574 		if (status & STATUS_LU) {
2575 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2576 			    sc->sc_dev.dv_xname,
2577 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2578 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2579 			sc->sc_fcrtl &= ~FCRTL_XONE;
2580 			if (status & STATUS_FD)
2581 				sc->sc_tctl |=
2582 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2583 			else
2584 				sc->sc_tctl |=
2585 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2586 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2587 				sc->sc_fcrtl |= FCRTL_XONE;
2588 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2589 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2590 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2591 				      sc->sc_fcrtl);
2592 			sc->sc_tbi_linkup = 1;
2593 		} else {
2594 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2595 			    sc->sc_dev.dv_xname));
2596 			sc->sc_tbi_linkup = 0;
2597 		}
2598 		sc->sc_tbi_anstate = 2;
2599 		wm_tbi_set_linkled(sc);
2600 	} else if (icr & ICR_RXSEQ) {
2601 		DPRINTF(WM_DEBUG_LINK,
2602 		    ("%s: LINK: Receive sequence error\n",
2603 		    sc->sc_dev.dv_xname));
2604 	}
2605 }
2606 
2607 /*
2608  * wm_tick:
2609  *
2610  *	One second timer, used to check link status, sweep up
2611  *	completed transmit jobs, etc.
2612  */
2613 static void
2614 wm_tick(void *arg)
2615 {
2616 	struct wm_softc *sc = arg;
2617 	int s;
2618 
2619 	s = splnet();
2620 
2621 	if (sc->sc_type >= WM_T_82542_2_1) {
2622 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2623 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2624 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2625 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2626 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2627 	}
2628 
2629 	if (sc->sc_flags & WM_F_HAS_MII)
2630 		mii_tick(&sc->sc_mii);
2631 	else
2632 		wm_tbi_check_link(sc);
2633 
2634 	splx(s);
2635 
2636 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2637 }
2638 
2639 /*
2640  * wm_reset:
2641  *
2642  *	Reset the i82542 chip.
2643  */
2644 static void
2645 wm_reset(struct wm_softc *sc)
2646 {
2647 	int i;
2648 
2649 	/*
2650 	 * Allocate on-chip memory according to the MTU size.
2651 	 * The Packet Buffer Allocation register must be written
2652 	 * before the chip is reset.
2653 	 */
2654 	switch (sc->sc_type) {
2655 	case WM_T_82547:
2656 	case WM_T_82547_2:
2657 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2658 		    PBA_22K : PBA_30K;
2659 		sc->sc_txfifo_head = 0;
2660 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2661 		sc->sc_txfifo_size =
2662 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2663 		sc->sc_txfifo_stall = 0;
2664 		break;
2665 	case WM_T_82571:
2666 	case WM_T_82572:
2667 		sc->sc_pba = PBA_32K;
2668 		break;
2669 	case WM_T_82573:
2670 		sc->sc_pba = PBA_12K;
2671 		break;
2672 	default:
2673 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2674 		    PBA_40K : PBA_48K;
2675 		break;
2676 	}
2677 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2678 
2679 	switch (sc->sc_type) {
2680 	case WM_T_82544:
2681 	case WM_T_82540:
2682 	case WM_T_82545:
2683 	case WM_T_82546:
2684 	case WM_T_82541:
2685 	case WM_T_82541_2:
2686 		/*
2687 		 * On some chipsets, a reset through a memory-mapped write
2688 		 * cycle can cause the chip to reset before completing the
2689 		 * write cycle.  This causes major headache that can be
2690 		 * avoided by issuing the reset via indirect register writes
2691 		 * through I/O space.
2692 		 *
2693 		 * So, if we successfully mapped the I/O BAR at attach time,
2694 		 * use that.  Otherwise, try our luck with a memory-mapped
2695 		 * reset.
2696 		 */
2697 		if (sc->sc_flags & WM_F_IOH_VALID)
2698 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2699 		else
2700 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2701 		break;
2702 
2703 	case WM_T_82545_3:
2704 	case WM_T_82546_3:
2705 		/* Use the shadow control register on these chips. */
2706 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2707 		break;
2708 
2709 	default:
2710 		/* Everything else can safely use the documented method. */
2711 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2712 		break;
2713 	}
2714 	delay(10000);
2715 
2716 	for (i = 0; i < 1000; i++) {
2717 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2718 			return;
2719 		delay(20);
2720 	}
2721 
2722 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2723 		log(LOG_ERR, "%s: reset failed to complete\n",
2724 		    sc->sc_dev.dv_xname);
2725 }
2726 
2727 /*
2728  * wm_init:		[ifnet interface function]
2729  *
2730  *	Initialize the interface.  Must be called at splnet().
2731  */
2732 static int
2733 wm_init(struct ifnet *ifp)
2734 {
2735 	struct wm_softc *sc = ifp->if_softc;
2736 	struct wm_rxsoft *rxs;
2737 	int i, error = 0;
2738 	uint32_t reg;
2739 
2740 	/*
2741 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2742 	 * There is a small but measurable benefit to avoiding the adjusment
2743 	 * of the descriptor so that the headers are aligned, for normal mtu,
2744 	 * on such platforms.  One possibility is that the DMA itself is
2745 	 * slightly more efficient if the front of the entire packet (instead
2746 	 * of the front of the headers) is aligned.
2747 	 *
2748 	 * Note we must always set align_tweak to 0 if we are using
2749 	 * jumbo frames.
2750 	 */
2751 #ifdef __NO_STRICT_ALIGNMENT
2752 	sc->sc_align_tweak = 0;
2753 #else
2754 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2755 		sc->sc_align_tweak = 0;
2756 	else
2757 		sc->sc_align_tweak = 2;
2758 #endif /* __NO_STRICT_ALIGNMENT */
2759 
2760 	/* Cancel any pending I/O. */
2761 	wm_stop(ifp, 0);
2762 
2763 	/* Reset the chip to a known state. */
2764 	wm_reset(sc);
2765 
2766 	/* Initialize the transmit descriptor ring. */
2767 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2768 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2769 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2770 	sc->sc_txfree = WM_NTXDESC(sc);
2771 	sc->sc_txnext = 0;
2772 
2773 	if (sc->sc_type < WM_T_82543) {
2774 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2775 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2776 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2777 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2778 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2779 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2780 	} else {
2781 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2782 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2783 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2784 		CSR_WRITE(sc, WMREG_TDH, 0);
2785 		CSR_WRITE(sc, WMREG_TDT, 0);
2786 		CSR_WRITE(sc, WMREG_TIDV, 64);
2787 		CSR_WRITE(sc, WMREG_TADV, 128);
2788 
2789 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2790 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2791 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2792 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2793 	}
2794 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2795 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2796 
2797 	/* Initialize the transmit job descriptors. */
2798 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2799 		sc->sc_txsoft[i].txs_mbuf = NULL;
2800 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2801 	sc->sc_txsnext = 0;
2802 	sc->sc_txsdirty = 0;
2803 
2804 	/*
2805 	 * Initialize the receive descriptor and receive job
2806 	 * descriptor rings.
2807 	 */
2808 	if (sc->sc_type < WM_T_82543) {
2809 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2810 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2811 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2812 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2813 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2814 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2815 
2816 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2817 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2818 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2819 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2820 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2821 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2822 	} else {
2823 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2824 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2825 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2826 		CSR_WRITE(sc, WMREG_RDH, 0);
2827 		CSR_WRITE(sc, WMREG_RDT, 0);
2828 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2829 		CSR_WRITE(sc, WMREG_RADV, 128);
2830 	}
2831 	for (i = 0; i < WM_NRXDESC; i++) {
2832 		rxs = &sc->sc_rxsoft[i];
2833 		if (rxs->rxs_mbuf == NULL) {
2834 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2835 				log(LOG_ERR, "%s: unable to allocate or map rx "
2836 				    "buffer %d, error = %d\n",
2837 				    sc->sc_dev.dv_xname, i, error);
2838 				/*
2839 				 * XXX Should attempt to run with fewer receive
2840 				 * XXX buffers instead of just failing.
2841 				 */
2842 				wm_rxdrain(sc);
2843 				goto out;
2844 			}
2845 		} else
2846 			WM_INIT_RXDESC(sc, i);
2847 	}
2848 	sc->sc_rxptr = 0;
2849 	sc->sc_rxdiscard = 0;
2850 	WM_RXCHAIN_RESET(sc);
2851 
2852 	/*
2853 	 * Clear out the VLAN table -- we don't use it (yet).
2854 	 */
2855 	CSR_WRITE(sc, WMREG_VET, 0);
2856 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2857 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2858 
2859 	/*
2860 	 * Set up flow-control parameters.
2861 	 *
2862 	 * XXX Values could probably stand some tuning.
2863 	 */
2864 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2865 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2866 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2867 
2868 	sc->sc_fcrtl = FCRTL_DFLT;
2869 	if (sc->sc_type < WM_T_82543) {
2870 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2871 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2872 	} else {
2873 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2874 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2875 	}
2876 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2877 
2878 #if 0 /* XXXJRT */
2879 	/* Deal with VLAN enables. */
2880 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2881 		sc->sc_ctrl |= CTRL_VME;
2882 	else
2883 #endif /* XXXJRT */
2884 		sc->sc_ctrl &= ~CTRL_VME;
2885 
2886 	/* Write the control registers. */
2887 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2888 #if 0
2889 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2890 #endif
2891 
2892 	/*
2893 	 * Set up checksum offload parameters.
2894 	 */
2895 	reg = CSR_READ(sc, WMREG_RXCSUM);
2896 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2897 		reg |= RXCSUM_IPOFL;
2898 	else
2899 		reg &= ~RXCSUM_IPOFL;
2900 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2901 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2902 	else {
2903 		reg &= ~RXCSUM_TUOFL;
2904 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2905 			reg &= ~RXCSUM_IPOFL;
2906 	}
2907 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2908 
2909 	/*
2910 	 * Set up the interrupt registers.
2911 	 */
2912 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2913 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2914 	    ICR_RXO | ICR_RXT0;
2915 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2916 		sc->sc_icr |= ICR_RXCFG;
2917 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2918 
2919 	/* Set up the inter-packet gap. */
2920 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2921 
2922 	if (sc->sc_type >= WM_T_82543) {
2923 		/* Set up the interrupt throttling register (units of 256ns) */
2924 		sc->sc_itr = 1000000000 / (7000 * 256);
2925 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2926 	}
2927 
2928 #if 0 /* XXXJRT */
2929 	/* Set the VLAN ethernetype. */
2930 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2931 #endif
2932 
2933 	/*
2934 	 * Set up the transmit control register; we start out with
2935 	 * a collision distance suitable for FDX, but update it whe
2936 	 * we resolve the media type.
2937 	 */
2938 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2939 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2940 	if (sc->sc_type >= WM_T_82571)
2941 		sc->sc_tctl |= TCTL_MULR;
2942 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2943 
2944 	/* Set the media. */
2945 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2946 
2947 	/*
2948 	 * Set up the receive control register; we actually program
2949 	 * the register when we set the receive filter.  Use multicast
2950 	 * address offset type 0.
2951 	 *
2952 	 * Only the i82544 has the ability to strip the incoming
2953 	 * CRC, so we don't enable that feature.
2954 	 */
2955 	sc->sc_mchash_type = 0;
2956 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
2957 	    | RCTL_MO(sc->sc_mchash_type);
2958 
2959 	/* 82573 doesn't support jumbo frame */
2960 	if (sc->sc_type != WM_T_82573)
2961 		sc->sc_rctl |= RCTL_LPE;
2962 
2963 	if (MCLBYTES == 2048) {
2964 		sc->sc_rctl |= RCTL_2k;
2965 	} else {
2966 		if (sc->sc_type >= WM_T_82543) {
2967 			switch(MCLBYTES) {
2968 			case 4096:
2969 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2970 				break;
2971 			case 8192:
2972 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2973 				break;
2974 			case 16384:
2975 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2976 				break;
2977 			default:
2978 				panic("wm_init: MCLBYTES %d unsupported",
2979 				    MCLBYTES);
2980 				break;
2981 			}
2982 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
2983 	}
2984 
2985 	/* Set the receive filter. */
2986 	wm_set_filter(sc);
2987 
2988 	/* Start the one second link check clock. */
2989 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2990 
2991 	/* ...all done! */
2992 	ifp->if_flags |= IFF_RUNNING;
2993 	ifp->if_flags &= ~IFF_OACTIVE;
2994 
2995  out:
2996 	if (error)
2997 		log(LOG_ERR, "%s: interface not running\n",
2998 		    sc->sc_dev.dv_xname);
2999 	return (error);
3000 }
3001 
3002 /*
3003  * wm_rxdrain:
3004  *
3005  *	Drain the receive queue.
3006  */
3007 static void
3008 wm_rxdrain(struct wm_softc *sc)
3009 {
3010 	struct wm_rxsoft *rxs;
3011 	int i;
3012 
3013 	for (i = 0; i < WM_NRXDESC; i++) {
3014 		rxs = &sc->sc_rxsoft[i];
3015 		if (rxs->rxs_mbuf != NULL) {
3016 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3017 			m_freem(rxs->rxs_mbuf);
3018 			rxs->rxs_mbuf = NULL;
3019 		}
3020 	}
3021 }
3022 
3023 /*
3024  * wm_stop:		[ifnet interface function]
3025  *
3026  *	Stop transmission on the interface.
3027  */
3028 static void
3029 wm_stop(struct ifnet *ifp, int disable)
3030 {
3031 	struct wm_softc *sc = ifp->if_softc;
3032 	struct wm_txsoft *txs;
3033 	int i;
3034 
3035 	/* Stop the one second clock. */
3036 	callout_stop(&sc->sc_tick_ch);
3037 
3038 	/* Stop the 82547 Tx FIFO stall check timer. */
3039 	if (sc->sc_type == WM_T_82547)
3040 		callout_stop(&sc->sc_txfifo_ch);
3041 
3042 	if (sc->sc_flags & WM_F_HAS_MII) {
3043 		/* Down the MII. */
3044 		mii_down(&sc->sc_mii);
3045 	}
3046 
3047 	/* Stop the transmit and receive processes. */
3048 	CSR_WRITE(sc, WMREG_TCTL, 0);
3049 	CSR_WRITE(sc, WMREG_RCTL, 0);
3050 
3051 	/*
3052 	 * Clear the interrupt mask to ensure the device cannot assert its
3053 	 * interrupt line.
3054 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
3055 	 * any currently pending or shared interrupt.
3056 	 */
3057 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3058 	sc->sc_icr = 0;
3059 
3060 	/* Release any queued transmit buffers. */
3061 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
3062 		txs = &sc->sc_txsoft[i];
3063 		if (txs->txs_mbuf != NULL) {
3064 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3065 			m_freem(txs->txs_mbuf);
3066 			txs->txs_mbuf = NULL;
3067 		}
3068 	}
3069 
3070 	if (disable)
3071 		wm_rxdrain(sc);
3072 
3073 	/* Mark the interface as down and cancel the watchdog timer. */
3074 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3075 	ifp->if_timer = 0;
3076 }
3077 
3078 /*
3079  * wm_acquire_eeprom:
3080  *
3081  *	Perform the EEPROM handshake required on some chips.
3082  */
3083 static int
3084 wm_acquire_eeprom(struct wm_softc *sc)
3085 {
3086 	uint32_t reg;
3087 	int x;
3088 
3089 	/* always success */
3090 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3091 		return 0;
3092 
3093 	if (wm_get_eeprom_semaphore(sc))
3094 		return 1;
3095 
3096 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
3097 		reg = CSR_READ(sc, WMREG_EECD);
3098 
3099 		/* Request EEPROM access. */
3100 		reg |= EECD_EE_REQ;
3101 		CSR_WRITE(sc, WMREG_EECD, reg);
3102 
3103 		/* ..and wait for it to be granted. */
3104 		for (x = 0; x < 1000; x++) {
3105 			reg = CSR_READ(sc, WMREG_EECD);
3106 			if (reg & EECD_EE_GNT)
3107 				break;
3108 			delay(5);
3109 		}
3110 		if ((reg & EECD_EE_GNT) == 0) {
3111 			aprint_error("%s: could not acquire EEPROM GNT\n",
3112 			    sc->sc_dev.dv_xname);
3113 			reg &= ~EECD_EE_REQ;
3114 			CSR_WRITE(sc, WMREG_EECD, reg);
3115 			wm_put_eeprom_semaphore(sc);
3116 			return (1);
3117 		}
3118 	}
3119 
3120 	return (0);
3121 }
3122 
3123 /*
3124  * wm_release_eeprom:
3125  *
3126  *	Release the EEPROM mutex.
3127  */
3128 static void
3129 wm_release_eeprom(struct wm_softc *sc)
3130 {
3131 	uint32_t reg;
3132 
3133 	/* always success */
3134 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3135 		return;
3136 
3137 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3138 		reg = CSR_READ(sc, WMREG_EECD);
3139 		reg &= ~EECD_EE_REQ;
3140 		CSR_WRITE(sc, WMREG_EECD, reg);
3141 	}
3142 
3143 	wm_put_eeprom_semaphore(sc);
3144 }
3145 
3146 /*
3147  * wm_eeprom_sendbits:
3148  *
3149  *	Send a series of bits to the EEPROM.
3150  */
3151 static void
3152 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3153 {
3154 	uint32_t reg;
3155 	int x;
3156 
3157 	reg = CSR_READ(sc, WMREG_EECD);
3158 
3159 	for (x = nbits; x > 0; x--) {
3160 		if (bits & (1U << (x - 1)))
3161 			reg |= EECD_DI;
3162 		else
3163 			reg &= ~EECD_DI;
3164 		CSR_WRITE(sc, WMREG_EECD, reg);
3165 		delay(2);
3166 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3167 		delay(2);
3168 		CSR_WRITE(sc, WMREG_EECD, reg);
3169 		delay(2);
3170 	}
3171 }
3172 
3173 /*
3174  * wm_eeprom_recvbits:
3175  *
3176  *	Receive a series of bits from the EEPROM.
3177  */
3178 static void
3179 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3180 {
3181 	uint32_t reg, val;
3182 	int x;
3183 
3184 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3185 
3186 	val = 0;
3187 	for (x = nbits; x > 0; x--) {
3188 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3189 		delay(2);
3190 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3191 			val |= (1U << (x - 1));
3192 		CSR_WRITE(sc, WMREG_EECD, reg);
3193 		delay(2);
3194 	}
3195 	*valp = val;
3196 }
3197 
3198 /*
3199  * wm_read_eeprom_uwire:
3200  *
3201  *	Read a word from the EEPROM using the MicroWire protocol.
3202  */
3203 static int
3204 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3205 {
3206 	uint32_t reg, val;
3207 	int i;
3208 
3209 	for (i = 0; i < wordcnt; i++) {
3210 		/* Clear SK and DI. */
3211 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3212 		CSR_WRITE(sc, WMREG_EECD, reg);
3213 
3214 		/* Set CHIP SELECT. */
3215 		reg |= EECD_CS;
3216 		CSR_WRITE(sc, WMREG_EECD, reg);
3217 		delay(2);
3218 
3219 		/* Shift in the READ command. */
3220 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3221 
3222 		/* Shift in address. */
3223 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3224 
3225 		/* Shift out the data. */
3226 		wm_eeprom_recvbits(sc, &val, 16);
3227 		data[i] = val & 0xffff;
3228 
3229 		/* Clear CHIP SELECT. */
3230 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3231 		CSR_WRITE(sc, WMREG_EECD, reg);
3232 		delay(2);
3233 	}
3234 
3235 	return (0);
3236 }
3237 
3238 /*
3239  * wm_spi_eeprom_ready:
3240  *
3241  *	Wait for a SPI EEPROM to be ready for commands.
3242  */
3243 static int
3244 wm_spi_eeprom_ready(struct wm_softc *sc)
3245 {
3246 	uint32_t val;
3247 	int usec;
3248 
3249 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3250 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3251 		wm_eeprom_recvbits(sc, &val, 8);
3252 		if ((val & SPI_SR_RDY) == 0)
3253 			break;
3254 	}
3255 	if (usec >= SPI_MAX_RETRIES) {
3256 		aprint_error("%s: EEPROM failed to become ready\n",
3257 		    sc->sc_dev.dv_xname);
3258 		return (1);
3259 	}
3260 	return (0);
3261 }
3262 
3263 /*
3264  * wm_read_eeprom_spi:
3265  *
3266  *	Read a work from the EEPROM using the SPI protocol.
3267  */
3268 static int
3269 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3270 {
3271 	uint32_t reg, val;
3272 	int i;
3273 	uint8_t opc;
3274 
3275 	/* Clear SK and CS. */
3276 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3277 	CSR_WRITE(sc, WMREG_EECD, reg);
3278 	delay(2);
3279 
3280 	if (wm_spi_eeprom_ready(sc))
3281 		return (1);
3282 
3283 	/* Toggle CS to flush commands. */
3284 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3285 	delay(2);
3286 	CSR_WRITE(sc, WMREG_EECD, reg);
3287 	delay(2);
3288 
3289 	opc = SPI_OPC_READ;
3290 	if (sc->sc_ee_addrbits == 8 && word >= 128)
3291 		opc |= SPI_OPC_A8;
3292 
3293 	wm_eeprom_sendbits(sc, opc, 8);
3294 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3295 
3296 	for (i = 0; i < wordcnt; i++) {
3297 		wm_eeprom_recvbits(sc, &val, 16);
3298 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3299 	}
3300 
3301 	/* Raise CS and clear SK. */
3302 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3303 	CSR_WRITE(sc, WMREG_EECD, reg);
3304 	delay(2);
3305 
3306 	return (0);
3307 }
3308 
3309 #define EEPROM_CHECKSUM		0xBABA
3310 #define EEPROM_SIZE		0x0040
3311 
3312 /*
3313  * wm_validate_eeprom_checksum
3314  *
3315  * The checksum is defined as the sum of the first 64 (16 bit) words.
3316  */
3317 static int
3318 wm_validate_eeprom_checksum(struct wm_softc *sc)
3319 {
3320 	uint16_t checksum;
3321 	uint16_t eeprom_data;
3322 	int i;
3323 
3324 	checksum = 0;
3325 
3326 	for (i = 0; i < EEPROM_SIZE; i++) {
3327 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
3328 			return 1;
3329 		checksum += eeprom_data;
3330 	}
3331 
3332 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
3333 		return 1;
3334 
3335 	return 0;
3336 }
3337 
3338 /*
3339  * wm_read_eeprom:
3340  *
3341  *	Read data from the serial EEPROM.
3342  */
3343 static int
3344 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3345 {
3346 	int rv;
3347 
3348 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
3349 		return 1;
3350 
3351 	if (wm_acquire_eeprom(sc))
3352 		return 1;
3353 
3354 	if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
3355 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
3356 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
3357 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3358 	else
3359 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3360 
3361 	wm_release_eeprom(sc);
3362 	return rv;
3363 }
3364 
3365 static int
3366 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
3367     uint16_t *data)
3368 {
3369 	int i, eerd = 0;
3370 	int error = 0;
3371 
3372 	for (i = 0; i < wordcnt; i++) {
3373 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
3374 
3375 		CSR_WRITE(sc, WMREG_EERD, eerd);
3376 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
3377 		if (error != 0)
3378 			break;
3379 
3380 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
3381 	}
3382 
3383 	return error;
3384 }
3385 
3386 static int
3387 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
3388 {
3389 	uint32_t attempts = 100000;
3390 	uint32_t i, reg = 0;
3391 	int32_t done = -1;
3392 
3393 	for (i = 0; i < attempts; i++) {
3394 		reg = CSR_READ(sc, rw);
3395 
3396 		if (reg & EERD_DONE) {
3397 			done = 0;
3398 			break;
3399 		}
3400 		delay(5);
3401 	}
3402 
3403 	return done;
3404 }
3405 
3406 /*
3407  * wm_add_rxbuf:
3408  *
3409  *	Add a receive buffer to the indiciated descriptor.
3410  */
3411 static int
3412 wm_add_rxbuf(struct wm_softc *sc, int idx)
3413 {
3414 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3415 	struct mbuf *m;
3416 	int error;
3417 
3418 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3419 	if (m == NULL)
3420 		return (ENOBUFS);
3421 
3422 	MCLGET(m, M_DONTWAIT);
3423 	if ((m->m_flags & M_EXT) == 0) {
3424 		m_freem(m);
3425 		return (ENOBUFS);
3426 	}
3427 
3428 	if (rxs->rxs_mbuf != NULL)
3429 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3430 
3431 	rxs->rxs_mbuf = m;
3432 
3433 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3434 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3435 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3436 	if (error) {
3437 		/* XXX XXX XXX */
3438 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3439 		    sc->sc_dev.dv_xname, idx, error);
3440 		panic("wm_add_rxbuf");
3441 	}
3442 
3443 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3444 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3445 
3446 	WM_INIT_RXDESC(sc, idx);
3447 
3448 	return (0);
3449 }
3450 
3451 /*
3452  * wm_set_ral:
3453  *
3454  *	Set an entery in the receive address list.
3455  */
3456 static void
3457 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3458 {
3459 	uint32_t ral_lo, ral_hi;
3460 
3461 	if (enaddr != NULL) {
3462 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3463 		    (enaddr[3] << 24);
3464 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3465 		ral_hi |= RAL_AV;
3466 	} else {
3467 		ral_lo = 0;
3468 		ral_hi = 0;
3469 	}
3470 
3471 	if (sc->sc_type >= WM_T_82544) {
3472 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3473 		    ral_lo);
3474 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3475 		    ral_hi);
3476 	} else {
3477 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3478 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3479 	}
3480 }
3481 
3482 /*
3483  * wm_mchash:
3484  *
3485  *	Compute the hash of the multicast address for the 4096-bit
3486  *	multicast filter.
3487  */
3488 static uint32_t
3489 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3490 {
3491 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3492 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3493 	uint32_t hash;
3494 
3495 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3496 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3497 
3498 	return (hash & 0xfff);
3499 }
3500 
3501 /*
3502  * wm_set_filter:
3503  *
3504  *	Set up the receive filter.
3505  */
3506 static void
3507 wm_set_filter(struct wm_softc *sc)
3508 {
3509 	struct ethercom *ec = &sc->sc_ethercom;
3510 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3511 	struct ether_multi *enm;
3512 	struct ether_multistep step;
3513 	bus_addr_t mta_reg;
3514 	uint32_t hash, reg, bit;
3515 	int i;
3516 
3517 	if (sc->sc_type >= WM_T_82544)
3518 		mta_reg = WMREG_CORDOVA_MTA;
3519 	else
3520 		mta_reg = WMREG_MTA;
3521 
3522 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3523 
3524 	if (ifp->if_flags & IFF_BROADCAST)
3525 		sc->sc_rctl |= RCTL_BAM;
3526 	if (ifp->if_flags & IFF_PROMISC) {
3527 		sc->sc_rctl |= RCTL_UPE;
3528 		goto allmulti;
3529 	}
3530 
3531 	/*
3532 	 * Set the station address in the first RAL slot, and
3533 	 * clear the remaining slots.
3534 	 */
3535 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3536 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3537 		wm_set_ral(sc, NULL, i);
3538 
3539 	/* Clear out the multicast table. */
3540 	for (i = 0; i < WM_MC_TABSIZE; i++)
3541 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3542 
3543 	ETHER_FIRST_MULTI(step, ec, enm);
3544 	while (enm != NULL) {
3545 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3546 			/*
3547 			 * We must listen to a range of multicast addresses.
3548 			 * For now, just accept all multicasts, rather than
3549 			 * trying to set only those filter bits needed to match
3550 			 * the range.  (At this time, the only use of address
3551 			 * ranges is for IP multicast routing, for which the
3552 			 * range is big enough to require all bits set.)
3553 			 */
3554 			goto allmulti;
3555 		}
3556 
3557 		hash = wm_mchash(sc, enm->enm_addrlo);
3558 
3559 		reg = (hash >> 5) & 0x7f;
3560 		bit = hash & 0x1f;
3561 
3562 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3563 		hash |= 1U << bit;
3564 
3565 		/* XXX Hardware bug?? */
3566 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3567 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3568 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3569 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3570 		} else
3571 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3572 
3573 		ETHER_NEXT_MULTI(step, enm);
3574 	}
3575 
3576 	ifp->if_flags &= ~IFF_ALLMULTI;
3577 	goto setit;
3578 
3579  allmulti:
3580 	ifp->if_flags |= IFF_ALLMULTI;
3581 	sc->sc_rctl |= RCTL_MPE;
3582 
3583  setit:
3584 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3585 }
3586 
3587 /*
3588  * wm_tbi_mediainit:
3589  *
3590  *	Initialize media for use on 1000BASE-X devices.
3591  */
3592 static void
3593 wm_tbi_mediainit(struct wm_softc *sc)
3594 {
3595 	const char *sep = "";
3596 
3597 	if (sc->sc_type < WM_T_82543)
3598 		sc->sc_tipg = TIPG_WM_DFLT;
3599 	else
3600 		sc->sc_tipg = TIPG_LG_DFLT;
3601 
3602 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3603 	    wm_tbi_mediastatus);
3604 
3605 	/*
3606 	 * SWD Pins:
3607 	 *
3608 	 *	0 = Link LED (output)
3609 	 *	1 = Loss Of Signal (input)
3610 	 */
3611 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3612 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3613 
3614 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3615 
3616 #define	ADD(ss, mm, dd)							\
3617 do {									\
3618 	aprint_normal("%s%s", sep, ss);					\
3619 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3620 	sep = ", ";							\
3621 } while (/*CONSTCOND*/0)
3622 
3623 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
3624 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3625 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3626 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3627 	aprint_normal("\n");
3628 
3629 #undef ADD
3630 
3631 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3632 }
3633 
3634 /*
3635  * wm_tbi_mediastatus:	[ifmedia interface function]
3636  *
3637  *	Get the current interface media status on a 1000BASE-X device.
3638  */
3639 static void
3640 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3641 {
3642 	struct wm_softc *sc = ifp->if_softc;
3643 	uint32_t ctrl;
3644 
3645 	ifmr->ifm_status = IFM_AVALID;
3646 	ifmr->ifm_active = IFM_ETHER;
3647 
3648 	if (sc->sc_tbi_linkup == 0) {
3649 		ifmr->ifm_active |= IFM_NONE;
3650 		return;
3651 	}
3652 
3653 	ifmr->ifm_status |= IFM_ACTIVE;
3654 	ifmr->ifm_active |= IFM_1000_SX;
3655 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3656 		ifmr->ifm_active |= IFM_FDX;
3657 	ctrl = CSR_READ(sc, WMREG_CTRL);
3658 	if (ctrl & CTRL_RFCE)
3659 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3660 	if (ctrl & CTRL_TFCE)
3661 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3662 }
3663 
3664 /*
3665  * wm_tbi_mediachange:	[ifmedia interface function]
3666  *
3667  *	Set hardware to newly-selected media on a 1000BASE-X device.
3668  */
3669 static int
3670 wm_tbi_mediachange(struct ifnet *ifp)
3671 {
3672 	struct wm_softc *sc = ifp->if_softc;
3673 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3674 	uint32_t status;
3675 	int i;
3676 
3677 	sc->sc_txcw = ife->ifm_data;
3678 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3679 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3680 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3681 	sc->sc_txcw |= TXCW_ANE;
3682 
3683 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3684 	delay(10000);
3685 
3686 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3687 
3688 	sc->sc_tbi_anstate = 0;
3689 
3690 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3691 		/* Have signal; wait for the link to come up. */
3692 		for (i = 0; i < 50; i++) {
3693 			delay(10000);
3694 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3695 				break;
3696 		}
3697 
3698 		status = CSR_READ(sc, WMREG_STATUS);
3699 		if (status & STATUS_LU) {
3700 			/* Link is up. */
3701 			DPRINTF(WM_DEBUG_LINK,
3702 			    ("%s: LINK: set media -> link up %s\n",
3703 			    sc->sc_dev.dv_xname,
3704 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3705 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3706 			sc->sc_fcrtl &= ~FCRTL_XONE;
3707 			if (status & STATUS_FD)
3708 				sc->sc_tctl |=
3709 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3710 			else
3711 				sc->sc_tctl |=
3712 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3713 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3714 				sc->sc_fcrtl |= FCRTL_XONE;
3715 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3716 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3717 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3718 				      sc->sc_fcrtl);
3719 			sc->sc_tbi_linkup = 1;
3720 		} else {
3721 			/* Link is down. */
3722 			DPRINTF(WM_DEBUG_LINK,
3723 			    ("%s: LINK: set media -> link down\n",
3724 			    sc->sc_dev.dv_xname));
3725 			sc->sc_tbi_linkup = 0;
3726 		}
3727 	} else {
3728 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3729 		    sc->sc_dev.dv_xname));
3730 		sc->sc_tbi_linkup = 0;
3731 	}
3732 
3733 	wm_tbi_set_linkled(sc);
3734 
3735 	return (0);
3736 }
3737 
3738 /*
3739  * wm_tbi_set_linkled:
3740  *
3741  *	Update the link LED on 1000BASE-X devices.
3742  */
3743 static void
3744 wm_tbi_set_linkled(struct wm_softc *sc)
3745 {
3746 
3747 	if (sc->sc_tbi_linkup)
3748 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3749 	else
3750 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3751 
3752 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3753 }
3754 
3755 /*
3756  * wm_tbi_check_link:
3757  *
3758  *	Check the link on 1000BASE-X devices.
3759  */
3760 static void
3761 wm_tbi_check_link(struct wm_softc *sc)
3762 {
3763 	uint32_t rxcw, ctrl, status;
3764 
3765 	if (sc->sc_tbi_anstate == 0)
3766 		return;
3767 	else if (sc->sc_tbi_anstate > 1) {
3768 		DPRINTF(WM_DEBUG_LINK,
3769 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3770 		    sc->sc_tbi_anstate));
3771 		sc->sc_tbi_anstate--;
3772 		return;
3773 	}
3774 
3775 	sc->sc_tbi_anstate = 0;
3776 
3777 	rxcw = CSR_READ(sc, WMREG_RXCW);
3778 	ctrl = CSR_READ(sc, WMREG_CTRL);
3779 	status = CSR_READ(sc, WMREG_STATUS);
3780 
3781 	if ((status & STATUS_LU) == 0) {
3782 		DPRINTF(WM_DEBUG_LINK,
3783 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3784 		sc->sc_tbi_linkup = 0;
3785 	} else {
3786 		DPRINTF(WM_DEBUG_LINK,
3787 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3788 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3789 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3790 		sc->sc_fcrtl &= ~FCRTL_XONE;
3791 		if (status & STATUS_FD)
3792 			sc->sc_tctl |=
3793 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3794 		else
3795 			sc->sc_tctl |=
3796 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3797 		if (ctrl & CTRL_TFCE)
3798 			sc->sc_fcrtl |= FCRTL_XONE;
3799 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3800 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3801 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3802 			      sc->sc_fcrtl);
3803 		sc->sc_tbi_linkup = 1;
3804 	}
3805 
3806 	wm_tbi_set_linkled(sc);
3807 }
3808 
3809 /*
3810  * wm_gmii_reset:
3811  *
3812  *	Reset the PHY.
3813  */
3814 static void
3815 wm_gmii_reset(struct wm_softc *sc)
3816 {
3817 	uint32_t reg;
3818 
3819 	if (sc->sc_type >= WM_T_82544) {
3820 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3821 		delay(20000);
3822 
3823 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3824 		delay(20000);
3825 	} else {
3826 		/* The PHY reset pin is active-low. */
3827 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3828 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3829 		    CTRL_EXT_SWDPIN(4));
3830 		reg |= CTRL_EXT_SWDPIO(4);
3831 
3832 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3833 		delay(10);
3834 
3835 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3836 		delay(10);
3837 
3838 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3839 		delay(10);
3840 #if 0
3841 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3842 #endif
3843 	}
3844 }
3845 
3846 /*
3847  * wm_gmii_mediainit:
3848  *
3849  *	Initialize media for use on 1000BASE-T devices.
3850  */
3851 static void
3852 wm_gmii_mediainit(struct wm_softc *sc)
3853 {
3854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3855 
3856 	/* We have MII. */
3857 	sc->sc_flags |= WM_F_HAS_MII;
3858 
3859 	sc->sc_tipg = TIPG_1000T_DFLT;
3860 
3861 	/*
3862 	 * Let the chip set speed/duplex on its own based on
3863 	 * signals from the PHY.
3864 	 */
3865 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3866 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3867 
3868 	/* Initialize our media structures and probe the GMII. */
3869 	sc->sc_mii.mii_ifp = ifp;
3870 
3871 	if (sc->sc_type >= WM_T_82544) {
3872 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3873 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3874 	} else {
3875 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3876 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3877 	}
3878 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
3879 
3880 	wm_gmii_reset(sc);
3881 
3882 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3883 	    wm_gmii_mediastatus);
3884 
3885 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3886 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
3887 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3888 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3889 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3890 	} else
3891 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3892 }
3893 
3894 /*
3895  * wm_gmii_mediastatus:	[ifmedia interface function]
3896  *
3897  *	Get the current interface media status on a 1000BASE-T device.
3898  */
3899 static void
3900 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3901 {
3902 	struct wm_softc *sc = ifp->if_softc;
3903 
3904 	mii_pollstat(&sc->sc_mii);
3905 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3906 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3907 			   sc->sc_flowflags;
3908 }
3909 
3910 /*
3911  * wm_gmii_mediachange:	[ifmedia interface function]
3912  *
3913  *	Set hardware to newly-selected media on a 1000BASE-T device.
3914  */
3915 static int
3916 wm_gmii_mediachange(struct ifnet *ifp)
3917 {
3918 	struct wm_softc *sc = ifp->if_softc;
3919 
3920 	if (ifp->if_flags & IFF_UP)
3921 		mii_mediachg(&sc->sc_mii);
3922 	return (0);
3923 }
3924 
3925 #define	MDI_IO		CTRL_SWDPIN(2)
3926 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
3927 #define	MDI_CLK		CTRL_SWDPIN(3)
3928 
3929 static void
3930 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3931 {
3932 	uint32_t i, v;
3933 
3934 	v = CSR_READ(sc, WMREG_CTRL);
3935 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3936 	v |= MDI_DIR | CTRL_SWDPIO(3);
3937 
3938 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3939 		if (data & i)
3940 			v |= MDI_IO;
3941 		else
3942 			v &= ~MDI_IO;
3943 		CSR_WRITE(sc, WMREG_CTRL, v);
3944 		delay(10);
3945 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3946 		delay(10);
3947 		CSR_WRITE(sc, WMREG_CTRL, v);
3948 		delay(10);
3949 	}
3950 }
3951 
3952 static uint32_t
3953 i82543_mii_recvbits(struct wm_softc *sc)
3954 {
3955 	uint32_t v, i, data = 0;
3956 
3957 	v = CSR_READ(sc, WMREG_CTRL);
3958 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3959 	v |= CTRL_SWDPIO(3);
3960 
3961 	CSR_WRITE(sc, WMREG_CTRL, v);
3962 	delay(10);
3963 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3964 	delay(10);
3965 	CSR_WRITE(sc, WMREG_CTRL, v);
3966 	delay(10);
3967 
3968 	for (i = 0; i < 16; i++) {
3969 		data <<= 1;
3970 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3971 		delay(10);
3972 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3973 			data |= 1;
3974 		CSR_WRITE(sc, WMREG_CTRL, v);
3975 		delay(10);
3976 	}
3977 
3978 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3979 	delay(10);
3980 	CSR_WRITE(sc, WMREG_CTRL, v);
3981 	delay(10);
3982 
3983 	return (data);
3984 }
3985 
3986 #undef MDI_IO
3987 #undef MDI_DIR
3988 #undef MDI_CLK
3989 
3990 /*
3991  * wm_gmii_i82543_readreg:	[mii interface function]
3992  *
3993  *	Read a PHY register on the GMII (i82543 version).
3994  */
3995 static int
3996 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3997 {
3998 	struct wm_softc *sc = (void *) self;
3999 	int rv;
4000 
4001 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
4002 	i82543_mii_sendbits(sc, reg | (phy << 5) |
4003 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
4004 	rv = i82543_mii_recvbits(sc) & 0xffff;
4005 
4006 	DPRINTF(WM_DEBUG_GMII,
4007 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
4008 	    sc->sc_dev.dv_xname, phy, reg, rv));
4009 
4010 	return (rv);
4011 }
4012 
4013 /*
4014  * wm_gmii_i82543_writereg:	[mii interface function]
4015  *
4016  *	Write a PHY register on the GMII (i82543 version).
4017  */
4018 static void
4019 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
4020 {
4021 	struct wm_softc *sc = (void *) self;
4022 
4023 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
4024 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
4025 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
4026 	    (MII_COMMAND_START << 30), 32);
4027 }
4028 
4029 /*
4030  * wm_gmii_i82544_readreg:	[mii interface function]
4031  *
4032  *	Read a PHY register on the GMII.
4033  */
4034 static int
4035 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
4036 {
4037 	struct wm_softc *sc = (void *) self;
4038 	uint32_t mdic = 0;
4039 	int i, rv;
4040 
4041 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
4042 	    MDIC_REGADD(reg));
4043 
4044 	for (i = 0; i < 100; i++) {
4045 		mdic = CSR_READ(sc, WMREG_MDIC);
4046 		if (mdic & MDIC_READY)
4047 			break;
4048 		delay(10);
4049 	}
4050 
4051 	if ((mdic & MDIC_READY) == 0) {
4052 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
4053 		    sc->sc_dev.dv_xname, phy, reg);
4054 		rv = 0;
4055 	} else if (mdic & MDIC_E) {
4056 #if 0 /* This is normal if no PHY is present. */
4057 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
4058 		    sc->sc_dev.dv_xname, phy, reg);
4059 #endif
4060 		rv = 0;
4061 	} else {
4062 		rv = MDIC_DATA(mdic);
4063 		if (rv == 0xffff)
4064 			rv = 0;
4065 	}
4066 
4067 	return (rv);
4068 }
4069 
4070 /*
4071  * wm_gmii_i82544_writereg:	[mii interface function]
4072  *
4073  *	Write a PHY register on the GMII.
4074  */
4075 static void
4076 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
4077 {
4078 	struct wm_softc *sc = (void *) self;
4079 	uint32_t mdic = 0;
4080 	int i;
4081 
4082 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
4083 	    MDIC_REGADD(reg) | MDIC_DATA(val));
4084 
4085 	for (i = 0; i < 100; i++) {
4086 		mdic = CSR_READ(sc, WMREG_MDIC);
4087 		if (mdic & MDIC_READY)
4088 			break;
4089 		delay(10);
4090 	}
4091 
4092 	if ((mdic & MDIC_READY) == 0)
4093 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
4094 		    sc->sc_dev.dv_xname, phy, reg);
4095 	else if (mdic & MDIC_E)
4096 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
4097 		    sc->sc_dev.dv_xname, phy, reg);
4098 }
4099 
4100 /*
4101  * wm_gmii_statchg:	[mii interface function]
4102  *
4103  *	Callback from MII layer when media changes.
4104  */
4105 static void
4106 wm_gmii_statchg(struct device *self)
4107 {
4108 	struct wm_softc *sc = (void *) self;
4109 	struct mii_data *mii = &sc->sc_mii;
4110 
4111 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
4112 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4113 	sc->sc_fcrtl &= ~FCRTL_XONE;
4114 
4115 	/*
4116 	 * Get flow control negotiation result.
4117 	 */
4118 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
4119 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
4120 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
4121 		mii->mii_media_active &= ~IFM_ETH_FMASK;
4122 	}
4123 
4124 	if (sc->sc_flowflags & IFM_FLOW) {
4125 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
4126 			sc->sc_ctrl |= CTRL_TFCE;
4127 			sc->sc_fcrtl |= FCRTL_XONE;
4128 		}
4129 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
4130 			sc->sc_ctrl |= CTRL_RFCE;
4131 	}
4132 
4133 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
4134 		DPRINTF(WM_DEBUG_LINK,
4135 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
4136 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4137 	} else  {
4138 		DPRINTF(WM_DEBUG_LINK,
4139 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
4140 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4141 	}
4142 
4143 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4144 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4145 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
4146 						 : WMREG_FCRTL, sc->sc_fcrtl);
4147 }
4148 
4149 static int
4150 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
4151 {
4152 	uint32_t eecd = 0;
4153 
4154 	if (sc->sc_type == WM_T_82573) {
4155 		eecd = CSR_READ(sc, WMREG_EECD);
4156 
4157 		/* Isolate bits 15 & 16 */
4158 		eecd = ((eecd >> 15) & 0x03);
4159 
4160 		/* If both bits are set, device is Flash type */
4161 		if (eecd == 0x03) {
4162 			return 0;
4163 		}
4164 	}
4165 	return 1;
4166 }
4167 
4168 static int
4169 wm_get_eeprom_semaphore(struct wm_softc *sc)
4170 {
4171 	int32_t timeout;
4172 	uint32_t swsm;
4173 
4174 	if ((sc->sc_flags & WM_F_EEPROM_SEMAPHORE) == 0)
4175 		return 0;
4176 
4177 	/* Get the FW semaphore. */
4178 	timeout = 1000 + 1; /* XXX */
4179 	while (timeout) {
4180 		swsm = CSR_READ(sc, WMREG_SWSM);
4181 		swsm |= SWSM_SWESMBI;
4182 		CSR_WRITE(sc, WMREG_SWSM, swsm);
4183 		/* if we managed to set the bit we got the semaphore. */
4184 		swsm = CSR_READ(sc, WMREG_SWSM);
4185 		if (swsm & SWSM_SWESMBI)
4186 			break;
4187 
4188 		delay(50);
4189 		timeout--;
4190 	}
4191 
4192 	if (timeout == 0) {
4193 		/* Release semaphores */
4194 		wm_put_eeprom_semaphore(sc);
4195 		return 1;
4196 	}
4197 
4198 	return 0;
4199 }
4200 
4201 static void
4202 wm_put_eeprom_semaphore(struct wm_softc *sc)
4203 {
4204 	uint32_t swsm;
4205 
4206 	if ((sc->sc_flags & WM_F_EEPROM_SEMAPHORE) == 0)
4207 		return;
4208 
4209 	swsm = CSR_READ(sc, WMREG_SWSM);
4210 	swsm &= ~(SWSM_SWESMBI);
4211 	CSR_WRITE(sc, WMREG_SWSM, swsm);
4212 }
4213