xref: /netbsd-src/sys/dev/pci/if_wm.c (revision c0179c282a5968435315a82f4128c61372c68fc3)
1 /*	$NetBSD: if_wm.c,v 1.131 2006/11/23 19:42:59 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.131 2006/11/23 19:42:59 yamt Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67 
68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
69 
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78 
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82 
83 #include <netinet/in.h>			/* XXX for struct ip */
84 #include <netinet/in_systm.h>		/* XXX for struct ip */
85 #include <netinet/ip.h>			/* XXX for struct ip */
86 #include <netinet/ip6.h>		/* XXX for struct ip6_hdr */
87 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
88 
89 #include <machine/bus.h>
90 #include <machine/intr.h>
91 #include <machine/endian.h>
92 
93 #include <dev/mii/mii.h>
94 #include <dev/mii/miivar.h>
95 #include <dev/mii/mii_bitbang.h>
96 #include <dev/mii/ikphyreg.h>
97 
98 #include <dev/pci/pcireg.h>
99 #include <dev/pci/pcivar.h>
100 #include <dev/pci/pcidevs.h>
101 
102 #include <dev/pci/if_wmreg.h>
103 
104 #ifdef WM_DEBUG
105 #define	WM_DEBUG_LINK		0x01
106 #define	WM_DEBUG_TX		0x02
107 #define	WM_DEBUG_RX		0x04
108 #define	WM_DEBUG_GMII		0x08
109 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
110 
111 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
112 #else
113 #define	DPRINTF(x, y)	/* nothing */
114 #endif /* WM_DEBUG */
115 
116 /*
117  * Transmit descriptor list size.  Due to errata, we can only have
118  * 256 hardware descriptors in the ring on < 82544, but we use 4096
119  * on >= 82544.  We tell the upper layers that they can queue a lot
120  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
121  * of them at a time.
122  *
123  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
124  * chains containing many small mbufs have been observed in zero-copy
125  * situations with jumbo frames.
126  */
127 #define	WM_NTXSEGS		256
128 #define	WM_IFQUEUELEN		256
129 #define	WM_TXQUEUELEN_MAX	64
130 #define	WM_TXQUEUELEN_MAX_82547	16
131 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
132 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
133 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
134 #define	WM_NTXDESC_82542	256
135 #define	WM_NTXDESC_82544	4096
136 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
137 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
138 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
139 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
140 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
141 
142 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
143 
144 /*
145  * Receive descriptor list size.  We have one Rx buffer for normal
146  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
147  * packet.  We allocate 256 receive descriptors, each with a 2k
148  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
149  */
150 #define	WM_NRXDESC		256
151 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
152 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
153 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
154 
155 /*
156  * Control structures are DMA'd to the i82542 chip.  We allocate them in
157  * a single clump that maps to a single DMA segment to make several things
158  * easier.
159  */
160 struct wm_control_data_82544 {
161 	/*
162 	 * The receive descriptors.
163 	 */
164 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
165 
166 	/*
167 	 * The transmit descriptors.  Put these at the end, because
168 	 * we might use a smaller number of them.
169 	 */
170 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
171 };
172 
173 struct wm_control_data_82542 {
174 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
175 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
176 };
177 
178 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
179 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
180 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
181 
182 /*
183  * Software state for transmit jobs.
184  */
185 struct wm_txsoft {
186 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
187 	bus_dmamap_t txs_dmamap;	/* our DMA map */
188 	int txs_firstdesc;		/* first descriptor in packet */
189 	int txs_lastdesc;		/* last descriptor in packet */
190 	int txs_ndesc;			/* # of descriptors used */
191 };
192 
193 /*
194  * Software state for receive buffers.  Each descriptor gets a
195  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
196  * more than one buffer, we chain them together.
197  */
198 struct wm_rxsoft {
199 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
200 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
201 };
202 
203 typedef enum {
204 	WM_T_unknown		= 0,
205 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
206 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
207 	WM_T_82543,			/* i82543 */
208 	WM_T_82544,			/* i82544 */
209 	WM_T_82540,			/* i82540 */
210 	WM_T_82545,			/* i82545 */
211 	WM_T_82545_3,			/* i82545 3.0+ */
212 	WM_T_82546,			/* i82546 */
213 	WM_T_82546_3,			/* i82546 3.0+ */
214 	WM_T_82541,			/* i82541 */
215 	WM_T_82541_2,			/* i82541 2.0+ */
216 	WM_T_82547,			/* i82547 */
217 	WM_T_82547_2,			/* i82547 2.0+ */
218 	WM_T_82571,			/* i82571 */
219 	WM_T_82572,			/* i82572 */
220 	WM_T_82573,			/* i82573 */
221 	WM_T_80003,			/* i80003 */
222 } wm_chip_type;
223 
224 /*
225  * Software state per device.
226  */
227 struct wm_softc {
228 	struct device sc_dev;		/* generic device information */
229 	bus_space_tag_t sc_st;		/* bus space tag */
230 	bus_space_handle_t sc_sh;	/* bus space handle */
231 	bus_space_tag_t sc_iot;		/* I/O space tag */
232 	bus_space_handle_t sc_ioh;	/* I/O space handle */
233 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
234 	struct ethercom sc_ethercom;	/* ethernet common data */
235 	void *sc_sdhook;		/* shutdown hook */
236 	void *sc_powerhook;		/* power hook */
237 	pci_chipset_tag_t sc_pc;
238 	pcitag_t sc_pcitag;
239 	struct pci_conf_state sc_pciconf;
240 
241 	wm_chip_type sc_type;		/* chip type */
242 	int sc_flags;			/* flags; see below */
243 	int sc_bus_speed;		/* PCI/PCIX bus speed */
244 	int sc_pcix_offset;		/* PCIX capability register offset */
245 	int sc_flowflags;		/* 802.3x flow control flags */
246 
247 	void *sc_ih;			/* interrupt cookie */
248 
249 	int sc_ee_addrbits;		/* EEPROM address bits */
250 
251 	struct mii_data sc_mii;		/* MII/media information */
252 
253 	struct callout sc_tick_ch;	/* tick callout */
254 
255 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
256 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
257 
258 	int		sc_align_tweak;
259 
260 	/*
261 	 * Software state for the transmit and receive descriptors.
262 	 */
263 	int			sc_txnum;	/* must be a power of two */
264 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
265 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
266 
267 	/*
268 	 * Control data structures.
269 	 */
270 	int			sc_ntxdesc;	/* must be a power of two */
271 	struct wm_control_data_82544 *sc_control_data;
272 #define	sc_txdescs	sc_control_data->wcd_txdescs
273 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
274 
275 #ifdef WM_EVENT_COUNTERS
276 	/* Event counters. */
277 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
278 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
279 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
280 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
281 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
282 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
283 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
284 
285 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
286 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
287 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
288 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
289 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
290 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound (IPv4) */
291 	struct evcnt sc_ev_txtso6;	/* TCP seg offload out-bound (IPv6) */
292 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
293 
294 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
295 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
296 
297 	struct evcnt sc_ev_tu;		/* Tx underrun */
298 
299 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
300 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
301 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
302 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
303 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
304 #endif /* WM_EVENT_COUNTERS */
305 
306 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
307 
308 	int	sc_txfree;		/* number of free Tx descriptors */
309 	int	sc_txnext;		/* next ready Tx descriptor */
310 
311 	int	sc_txsfree;		/* number of free Tx jobs */
312 	int	sc_txsnext;		/* next free Tx job */
313 	int	sc_txsdirty;		/* dirty Tx jobs */
314 
315 	/* These 5 variables are used only on the 82547. */
316 	int	sc_txfifo_size;		/* Tx FIFO size */
317 	int	sc_txfifo_head;		/* current head of FIFO */
318 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
319 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
320 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
321 
322 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
323 
324 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
325 	int	sc_rxdiscard;
326 	int	sc_rxlen;
327 	struct mbuf *sc_rxhead;
328 	struct mbuf *sc_rxtail;
329 	struct mbuf **sc_rxtailp;
330 
331 	uint32_t sc_ctrl;		/* prototype CTRL register */
332 #if 0
333 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
334 #endif
335 	uint32_t sc_icr;		/* prototype interrupt bits */
336 	uint32_t sc_itr;		/* prototype intr throttling reg */
337 	uint32_t sc_tctl;		/* prototype TCTL register */
338 	uint32_t sc_rctl;		/* prototype RCTL register */
339 	uint32_t sc_txcw;		/* prototype TXCW register */
340 	uint32_t sc_tipg;		/* prototype TIPG register */
341 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
342 	uint32_t sc_pba;		/* prototype PBA register */
343 
344 	int sc_tbi_linkup;		/* TBI link status */
345 	int sc_tbi_anstate;		/* autonegotiation state */
346 
347 	int sc_mchash_type;		/* multicast filter offset */
348 
349 #if NRND > 0
350 	rndsource_element_t rnd_source;	/* random source */
351 #endif
352 };
353 
354 #define	WM_RXCHAIN_RESET(sc)						\
355 do {									\
356 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
357 	*(sc)->sc_rxtailp = NULL;					\
358 	(sc)->sc_rxlen = 0;						\
359 } while (/*CONSTCOND*/0)
360 
361 #define	WM_RXCHAIN_LINK(sc, m)						\
362 do {									\
363 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
364 	(sc)->sc_rxtailp = &(m)->m_next;				\
365 } while (/*CONSTCOND*/0)
366 
367 /* sc_flags */
368 #define	WM_F_HAS_MII		0x0001	/* has MII */
369 #define	WM_F_EEPROM_HANDSHAKE	0x0002	/* requires EEPROM handshake */
370 #define	WM_F_EEPROM_SEMAPHORE	0x0004	/* EEPROM with semaphore */
371 #define	WM_F_EEPROM_EERDEEWR	0x0008	/* EEPROM access via EERD/EEWR */
372 #define	WM_F_EEPROM_SPI		0x0010	/* EEPROM is SPI */
373 #define	WM_F_EEPROM_FLASH	0x0020	/* EEPROM is FLASH */
374 #define	WM_F_EEPROM_INVALID	0x0040	/* EEPROM not present (bad checksum) */
375 #define	WM_F_IOH_VALID		0x0080	/* I/O handle is valid */
376 #define	WM_F_BUS64		0x0100	/* bus is 64-bit */
377 #define	WM_F_PCIX		0x0200	/* bus is PCI-X */
378 #define	WM_F_CSA		0x0400	/* bus is CSA */
379 #define	WM_F_PCIE		0x0800	/* bus is PCI-Express */
380 #define WM_F_SWFW_SYNC		0x1000  /* Software-Firmware synchronisation */
381 
382 #ifdef WM_EVENT_COUNTERS
383 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
384 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
385 #else
386 #define	WM_EVCNT_INCR(ev)	/* nothing */
387 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
388 #endif
389 
390 #define	CSR_READ(sc, reg)						\
391 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
392 #define	CSR_WRITE(sc, reg, val)						\
393 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
394 #define	CSR_WRITE_FLUSH(sc)						\
395 	(void) CSR_READ((sc), WMREG_STATUS)
396 
397 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
398 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
399 
400 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
401 #define	WM_CDTXADDR_HI(sc, x)						\
402 	(sizeof(bus_addr_t) == 8 ?					\
403 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
404 
405 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
406 #define	WM_CDRXADDR_HI(sc, x)						\
407 	(sizeof(bus_addr_t) == 8 ?					\
408 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
409 
410 #define	WM_CDTXSYNC(sc, x, n, ops)					\
411 do {									\
412 	int __x, __n;							\
413 									\
414 	__x = (x);							\
415 	__n = (n);							\
416 									\
417 	/* If it will wrap around, sync to the end of the ring. */	\
418 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
419 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
420 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
421 		    (WM_NTXDESC(sc) - __x), (ops));			\
422 		__n -= (WM_NTXDESC(sc) - __x);				\
423 		__x = 0;						\
424 	}								\
425 									\
426 	/* Now sync whatever is left. */				\
427 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
428 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
429 } while (/*CONSTCOND*/0)
430 
431 #define	WM_CDRXSYNC(sc, x, ops)						\
432 do {									\
433 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
434 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
435 } while (/*CONSTCOND*/0)
436 
437 #define	WM_INIT_RXDESC(sc, x)						\
438 do {									\
439 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
440 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
441 	struct mbuf *__m = __rxs->rxs_mbuf;				\
442 									\
443 	/*								\
444 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
445 	 * so that the payload after the Ethernet header is aligned	\
446 	 * to a 4-byte boundary.					\
447 	 *								\
448 	 * XXX BRAINDAMAGE ALERT!					\
449 	 * The stupid chip uses the same size for every buffer, which	\
450 	 * is set in the Receive Control register.  We are using the 2K	\
451 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
452 	 * reason, we can't "scoot" packets longer than the standard	\
453 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
454 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
455 	 * the upper layer copy the headers.				\
456 	 */								\
457 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
458 									\
459 	wm_set_dma_addr(&__rxd->wrx_addr,				\
460 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
461 	__rxd->wrx_len = 0;						\
462 	__rxd->wrx_cksum = 0;						\
463 	__rxd->wrx_status = 0;						\
464 	__rxd->wrx_errors = 0;						\
465 	__rxd->wrx_special = 0;						\
466 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
467 									\
468 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
469 } while (/*CONSTCOND*/0)
470 
471 static void	wm_start(struct ifnet *);
472 static void	wm_watchdog(struct ifnet *);
473 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
474 static int	wm_init(struct ifnet *);
475 static void	wm_stop(struct ifnet *, int);
476 
477 static void	wm_shutdown(void *);
478 static void	wm_powerhook(int, void *);
479 
480 static void	wm_reset(struct wm_softc *);
481 static void	wm_rxdrain(struct wm_softc *);
482 static int	wm_add_rxbuf(struct wm_softc *, int);
483 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
484 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
485 static int	wm_validate_eeprom_checksum(struct wm_softc *);
486 static void	wm_tick(void *);
487 
488 static void	wm_set_filter(struct wm_softc *);
489 
490 static int	wm_intr(void *);
491 static void	wm_txintr(struct wm_softc *);
492 static void	wm_rxintr(struct wm_softc *);
493 static void	wm_linkintr(struct wm_softc *, uint32_t);
494 
495 static void	wm_tbi_mediainit(struct wm_softc *);
496 static int	wm_tbi_mediachange(struct ifnet *);
497 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
498 
499 static void	wm_tbi_set_linkled(struct wm_softc *);
500 static void	wm_tbi_check_link(struct wm_softc *);
501 
502 static void	wm_gmii_reset(struct wm_softc *);
503 
504 static int	wm_gmii_i82543_readreg(struct device *, int, int);
505 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
506 
507 static int	wm_gmii_i82544_readreg(struct device *, int, int);
508 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
509 
510 static int	wm_gmii_i80003_readreg(struct device *, int, int);
511 static void	wm_gmii_i80003_writereg(struct device *, int, int, int);
512 
513 static void	wm_gmii_statchg(struct device *);
514 
515 static void	wm_gmii_mediainit(struct wm_softc *);
516 static int	wm_gmii_mediachange(struct ifnet *);
517 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
518 
519 static int	wm_kmrn_i80003_readreg(struct wm_softc *, int);
520 static void	wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
521 
522 static int	wm_match(struct device *, struct cfdata *, void *);
523 static void	wm_attach(struct device *, struct device *, void *);
524 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
525 static int	wm_get_swsm_semaphore(struct wm_softc *);
526 static void	wm_put_swsm_semaphore(struct wm_softc *);
527 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
528 static int	wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
529 static void	wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
530 
531 CFATTACH_DECL(wm, sizeof(struct wm_softc),
532     wm_match, wm_attach, NULL, NULL);
533 
534 static void	wm_82547_txfifo_stall(void *);
535 
536 /*
537  * Devices supported by this driver.
538  */
539 static const struct wm_product {
540 	pci_vendor_id_t		wmp_vendor;
541 	pci_product_id_t	wmp_product;
542 	const char		*wmp_name;
543 	wm_chip_type		wmp_type;
544 	int			wmp_flags;
545 #define	WMP_F_1000X		0x01
546 #define	WMP_F_1000T		0x02
547 } wm_products[] = {
548 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
549 	  "Intel i82542 1000BASE-X Ethernet",
550 	  WM_T_82542_2_1,	WMP_F_1000X },
551 
552 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
553 	  "Intel i82543GC 1000BASE-X Ethernet",
554 	  WM_T_82543,		WMP_F_1000X },
555 
556 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
557 	  "Intel i82543GC 1000BASE-T Ethernet",
558 	  WM_T_82543,		WMP_F_1000T },
559 
560 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
561 	  "Intel i82544EI 1000BASE-T Ethernet",
562 	  WM_T_82544,		WMP_F_1000T },
563 
564 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
565 	  "Intel i82544EI 1000BASE-X Ethernet",
566 	  WM_T_82544,		WMP_F_1000X },
567 
568 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
569 	  "Intel i82544GC 1000BASE-T Ethernet",
570 	  WM_T_82544,		WMP_F_1000T },
571 
572 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
573 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
574 	  WM_T_82544,		WMP_F_1000T },
575 
576 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
577 	  "Intel i82540EM 1000BASE-T Ethernet",
578 	  WM_T_82540,		WMP_F_1000T },
579 
580 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
581 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
582 	  WM_T_82540,		WMP_F_1000T },
583 
584 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
585 	  "Intel i82540EP 1000BASE-T Ethernet",
586 	  WM_T_82540,		WMP_F_1000T },
587 
588 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
589 	  "Intel i82540EP 1000BASE-T Ethernet",
590 	  WM_T_82540,		WMP_F_1000T },
591 
592 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
593 	  "Intel i82540EP 1000BASE-T Ethernet",
594 	  WM_T_82540,		WMP_F_1000T },
595 
596 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
597 	  "Intel i82545EM 1000BASE-T Ethernet",
598 	  WM_T_82545,		WMP_F_1000T },
599 
600 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
601 	  "Intel i82545GM 1000BASE-T Ethernet",
602 	  WM_T_82545_3,		WMP_F_1000T },
603 
604 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
605 	  "Intel i82545GM 1000BASE-X Ethernet",
606 	  WM_T_82545_3,		WMP_F_1000X },
607 #if 0
608 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
609 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
610 	  WM_T_82545_3,		WMP_F_SERDES },
611 #endif
612 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
613 	  "Intel i82546EB 1000BASE-T Ethernet",
614 	  WM_T_82546,		WMP_F_1000T },
615 
616 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
617 	  "Intel i82546EB 1000BASE-T Ethernet",
618 	  WM_T_82546,		WMP_F_1000T },
619 
620 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
621 	  "Intel i82545EM 1000BASE-X Ethernet",
622 	  WM_T_82545,		WMP_F_1000X },
623 
624 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
625 	  "Intel i82546EB 1000BASE-X Ethernet",
626 	  WM_T_82546,		WMP_F_1000X },
627 
628 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
629 	  "Intel i82546GB 1000BASE-T Ethernet",
630 	  WM_T_82546_3,		WMP_F_1000T },
631 
632 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
633 	  "Intel i82546GB 1000BASE-X Ethernet",
634 	  WM_T_82546_3,		WMP_F_1000X },
635 #if 0
636 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
637 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
638 	  WM_T_82546_3,		WMP_F_SERDES },
639 #endif
640 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
641 	  "i82546GB quad-port Gigabit Ethernet",
642 	  WM_T_82546_3,		WMP_F_1000T },
643 
644 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
645 	  "i82546GB quad-port Gigabit Ethernet (KSP3)",
646 	  WM_T_82546_3,		WMP_F_1000T },
647 
648 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
649 	  "Intel PRO/1000MT (82546GB)",
650 	  WM_T_82546_3,		WMP_F_1000T },
651 
652 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
653 	  "Intel i82541EI 1000BASE-T Ethernet",
654 	  WM_T_82541,		WMP_F_1000T },
655 
656 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
657 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
658 	  WM_T_82541,		WMP_F_1000T },
659 
660 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
661 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
662 	  WM_T_82541,		WMP_F_1000T },
663 
664 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
665 	  "Intel i82541ER 1000BASE-T Ethernet",
666 	  WM_T_82541_2,		WMP_F_1000T },
667 
668 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
669 	  "Intel i82541GI 1000BASE-T Ethernet",
670 	  WM_T_82541_2,		WMP_F_1000T },
671 
672 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
673 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
674 	  WM_T_82541_2,		WMP_F_1000T },
675 
676 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
677 	  "Intel i82541PI 1000BASE-T Ethernet",
678 	  WM_T_82541_2,		WMP_F_1000T },
679 
680 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
681 	  "Intel i82547EI 1000BASE-T Ethernet",
682 	  WM_T_82547,		WMP_F_1000T },
683 
684 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
685 	  "Intel i82547EI Moblie 1000BASE-T Ethernet",
686 	  WM_T_82547,		WMP_F_1000T },
687 
688 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
689 	  "Intel i82547GI 1000BASE-T Ethernet",
690 	  WM_T_82547_2,		WMP_F_1000T },
691 
692 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
693 	  "Intel PRO/1000 PT (82571EB)",
694 	  WM_T_82571,		WMP_F_1000T },
695 
696 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
697 	  "Intel PRO/1000 PF (82571EB)",
698 	  WM_T_82571,		WMP_F_1000X },
699 #if 0
700 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
701 	  "Intel PRO/1000 PB (82571EB)",
702 	  WM_T_82571,		WMP_F_SERDES },
703 #endif
704 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
705 	  "Intel PRO/1000 QT (82571EB)",
706 	  WM_T_82571,		WMP_F_1000T },
707 
708 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
709 	  "Intel i82572EI 1000baseT Ethernet",
710 	  WM_T_82572,		WMP_F_1000T },
711 
712 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
713 	  "Intel i82572EI 1000baseX Ethernet",
714 	  WM_T_82572,		WMP_F_1000X },
715 #if 0
716 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
717 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
718 	  WM_T_82572,		WMP_F_SERDES },
719 #endif
720 
721 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
722 	  "Intel i82572EI 1000baseT Ethernet",
723 	  WM_T_82572,		WMP_F_1000T },
724 
725 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
726 	  "Intel i82573E",
727 	  WM_T_82573,		WMP_F_1000T },
728 
729 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
730 	  "Intel i82573E IAMT",
731 	  WM_T_82573,		WMP_F_1000T },
732 
733 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
734 	  "Intel i82573L Gigabit Ethernet",
735 	  WM_T_82573,		WMP_F_1000T },
736 
737 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
738 	  "i80003 dual 1000baseT Ethernet",
739 	  WM_T_80003,		WMP_F_1000T },
740 
741 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
742 	  "i80003 dual 1000baseX Ethernet",
743 	  WM_T_80003,		WMP_F_1000T },
744 #if 0
745 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
746 	  "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
747 	  WM_T_80003,		WMP_F_SERDES },
748 #endif
749 
750 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
751 	  "Intel i80003 1000baseT Ethernet",
752 	  WM_T_80003,		WMP_F_1000T },
753 #if 0
754 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
755 	  "Intel i80003 Gigabit Ethernet (SERDES)",
756 	  WM_T_80003,		WMP_F_SERDES },
757 #endif
758 
759 	{ 0,			0,
760 	  NULL,
761 	  0,			0 },
762 };
763 
764 #ifdef WM_EVENT_COUNTERS
765 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
766 #endif /* WM_EVENT_COUNTERS */
767 
768 #if 0 /* Not currently used */
769 static inline uint32_t
770 wm_io_read(struct wm_softc *sc, int reg)
771 {
772 
773 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
774 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
775 }
776 #endif
777 
778 static inline void
779 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
780 {
781 
782 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
783 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
784 }
785 
786 static inline void
787 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
788 {
789 	wa->wa_low = htole32(v & 0xffffffffU);
790 	if (sizeof(bus_addr_t) == 8)
791 		wa->wa_high = htole32((uint64_t) v >> 32);
792 	else
793 		wa->wa_high = 0;
794 }
795 
796 static const struct wm_product *
797 wm_lookup(const struct pci_attach_args *pa)
798 {
799 	const struct wm_product *wmp;
800 
801 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
802 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
803 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
804 			return (wmp);
805 	}
806 	return (NULL);
807 }
808 
809 static int
810 wm_match(struct device *parent, struct cfdata *cf, void *aux)
811 {
812 	struct pci_attach_args *pa = aux;
813 
814 	if (wm_lookup(pa) != NULL)
815 		return (1);
816 
817 	return (0);
818 }
819 
820 static void
821 wm_attach(struct device *parent, struct device *self, void *aux)
822 {
823 	struct wm_softc *sc = (void *) self;
824 	struct pci_attach_args *pa = aux;
825 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
826 	pci_chipset_tag_t pc = pa->pa_pc;
827 	pci_intr_handle_t ih;
828 	size_t cdata_size;
829 	const char *intrstr = NULL;
830 	const char *eetype;
831 	bus_space_tag_t memt;
832 	bus_space_handle_t memh;
833 	bus_dma_segment_t seg;
834 	int memh_valid;
835 	int i, rseg, error;
836 	const struct wm_product *wmp;
837 	prop_data_t ea;
838 	prop_number_t pn;
839 	uint8_t enaddr[ETHER_ADDR_LEN];
840 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
841 	pcireg_t preg, memtype;
842 	uint32_t reg;
843 
844 	callout_init(&sc->sc_tick_ch);
845 
846 	wmp = wm_lookup(pa);
847 	if (wmp == NULL) {
848 		printf("\n");
849 		panic("wm_attach: impossible");
850 	}
851 
852 	sc->sc_pc = pa->pa_pc;
853 	sc->sc_pcitag = pa->pa_tag;
854 
855 	if (pci_dma64_available(pa))
856 		sc->sc_dmat = pa->pa_dmat64;
857 	else
858 		sc->sc_dmat = pa->pa_dmat;
859 
860 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
861 	aprint_naive(": Ethernet controller\n");
862 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
863 
864 	sc->sc_type = wmp->wmp_type;
865 	if (sc->sc_type < WM_T_82543) {
866 		if (preg < 2) {
867 			aprint_error("%s: i82542 must be at least rev. 2\n",
868 			    sc->sc_dev.dv_xname);
869 			return;
870 		}
871 		if (preg < 3)
872 			sc->sc_type = WM_T_82542_2_0;
873 	}
874 
875 	/*
876 	 * Map the device.  All devices support memory-mapped acccess,
877 	 * and it is really required for normal operation.
878 	 */
879 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
880 	switch (memtype) {
881 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
882 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
883 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
884 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
885 		break;
886 	default:
887 		memh_valid = 0;
888 	}
889 
890 	if (memh_valid) {
891 		sc->sc_st = memt;
892 		sc->sc_sh = memh;
893 	} else {
894 		aprint_error("%s: unable to map device registers\n",
895 		    sc->sc_dev.dv_xname);
896 		return;
897 	}
898 
899 	/*
900 	 * In addition, i82544 and later support I/O mapped indirect
901 	 * register access.  It is not desirable (nor supported in
902 	 * this driver) to use it for normal operation, though it is
903 	 * required to work around bugs in some chip versions.
904 	 */
905 	if (sc->sc_type >= WM_T_82544) {
906 		/* First we have to find the I/O BAR. */
907 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
908 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
909 			    PCI_MAPREG_TYPE_IO)
910 				break;
911 		}
912 		if (i == PCI_MAPREG_END)
913 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
914 			    sc->sc_dev.dv_xname);
915 		else {
916 			/*
917 			 * The i8254x doesn't apparently respond when the
918 			 * I/O BAR is 0, which looks somewhat like it's not
919 			 * been configured.
920 			 */
921 			preg = pci_conf_read(pc, pa->pa_tag, i);
922 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
923 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
924 				    sc->sc_dev.dv_xname);
925 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
926 					0, &sc->sc_iot, &sc->sc_ioh,
927 					NULL, NULL) == 0) {
928 				sc->sc_flags |= WM_F_IOH_VALID;
929 			} else {
930 				aprint_error("%s: WARNING: unable to map "
931 				    "I/O space\n", sc->sc_dev.dv_xname);
932 			}
933 		}
934 
935 	}
936 
937 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
938 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
939 	preg |= PCI_COMMAND_MASTER_ENABLE;
940 	if (sc->sc_type < WM_T_82542_2_1)
941 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
942 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
943 
944 	/* power up chip */
945 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
946 	    NULL)) && error != EOPNOTSUPP) {
947 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
948 		    error);
949 		return;
950 	}
951 
952 	/*
953 	 * Map and establish our interrupt.
954 	 */
955 	if (pci_intr_map(pa, &ih)) {
956 		aprint_error("%s: unable to map interrupt\n",
957 		    sc->sc_dev.dv_xname);
958 		return;
959 	}
960 	intrstr = pci_intr_string(pc, ih);
961 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
962 	if (sc->sc_ih == NULL) {
963 		aprint_error("%s: unable to establish interrupt",
964 		    sc->sc_dev.dv_xname);
965 		if (intrstr != NULL)
966 			aprint_normal(" at %s", intrstr);
967 		aprint_normal("\n");
968 		return;
969 	}
970 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
971 
972 	/*
973 	 * Determine a few things about the bus we're connected to.
974 	 */
975 	if (sc->sc_type < WM_T_82543) {
976 		/* We don't really know the bus characteristics here. */
977 		sc->sc_bus_speed = 33;
978 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
979 		/*
980 		 * CSA (Communication Streaming Architecture) is about as fast
981 		 * a 32-bit 66MHz PCI Bus.
982 		 */
983 		sc->sc_flags |= WM_F_CSA;
984 		sc->sc_bus_speed = 66;
985 		aprint_verbose("%s: Communication Streaming Architecture\n",
986 		    sc->sc_dev.dv_xname);
987 		if (sc->sc_type == WM_T_82547) {
988 			callout_init(&sc->sc_txfifo_ch);
989 			callout_setfunc(&sc->sc_txfifo_ch,
990 					wm_82547_txfifo_stall, sc);
991 			aprint_verbose("%s: using 82547 Tx FIFO stall "
992 				       "work-around\n", sc->sc_dev.dv_xname);
993 		}
994 	} else if (sc->sc_type >= WM_T_82571) {
995 		sc->sc_flags |= WM_F_PCIE | WM_F_EEPROM_SEMAPHORE;
996 		aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
997 	} else {
998 		reg = CSR_READ(sc, WMREG_STATUS);
999 		if (reg & STATUS_BUS64)
1000 			sc->sc_flags |= WM_F_BUS64;
1001 		if (sc->sc_type >= WM_T_82544 &&
1002 		    (reg & STATUS_PCIX_MODE) != 0) {
1003 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1004 
1005 			sc->sc_flags |= WM_F_PCIX;
1006 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1007 					       PCI_CAP_PCIX,
1008 					       &sc->sc_pcix_offset, NULL) == 0)
1009 				aprint_error("%s: unable to find PCIX "
1010 				    "capability\n", sc->sc_dev.dv_xname);
1011 			else if (sc->sc_type != WM_T_82545_3 &&
1012 				 sc->sc_type != WM_T_82546_3) {
1013 				/*
1014 				 * Work around a problem caused by the BIOS
1015 				 * setting the max memory read byte count
1016 				 * incorrectly.
1017 				 */
1018 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1019 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
1020 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1021 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
1022 
1023 				bytecnt =
1024 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
1025 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
1026 				maxb =
1027 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
1028 				    PCI_PCIX_STATUS_MAXB_SHIFT;
1029 				if (bytecnt > maxb) {
1030 					aprint_verbose("%s: resetting PCI-X "
1031 					    "MMRBC: %d -> %d\n",
1032 					    sc->sc_dev.dv_xname,
1033 					    512 << bytecnt, 512 << maxb);
1034 					pcix_cmd = (pcix_cmd &
1035 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
1036 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
1037 					pci_conf_write(pa->pa_pc, pa->pa_tag,
1038 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
1039 					    pcix_cmd);
1040 				}
1041 			}
1042 		}
1043 		/*
1044 		 * The quad port adapter is special; it has a PCIX-PCIX
1045 		 * bridge on the board, and can run the secondary bus at
1046 		 * a higher speed.
1047 		 */
1048 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1049 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1050 								      : 66;
1051 		} else if (sc->sc_flags & WM_F_PCIX) {
1052 			switch (reg & STATUS_PCIXSPD_MASK) {
1053 			case STATUS_PCIXSPD_50_66:
1054 				sc->sc_bus_speed = 66;
1055 				break;
1056 			case STATUS_PCIXSPD_66_100:
1057 				sc->sc_bus_speed = 100;
1058 				break;
1059 			case STATUS_PCIXSPD_100_133:
1060 				sc->sc_bus_speed = 133;
1061 				break;
1062 			default:
1063 				aprint_error(
1064 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
1065 				    sc->sc_dev.dv_xname,
1066 				    reg & STATUS_PCIXSPD_MASK);
1067 				sc->sc_bus_speed = 66;
1068 			}
1069 		} else
1070 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1071 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
1072 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1073 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1074 	}
1075 
1076 	/*
1077 	 * Allocate the control data structures, and create and load the
1078 	 * DMA map for it.
1079 	 *
1080 	 * NOTE: All Tx descriptors must be in the same 4G segment of
1081 	 * memory.  So must Rx descriptors.  We simplify by allocating
1082 	 * both sets within the same 4G segment.
1083 	 */
1084 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1085 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
1086 	cdata_size = sc->sc_type < WM_T_82544 ?
1087 	    sizeof(struct wm_control_data_82542) :
1088 	    sizeof(struct wm_control_data_82544);
1089 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
1090 				      (bus_size_t) 0x100000000ULL,
1091 				      &seg, 1, &rseg, 0)) != 0) {
1092 		aprint_error(
1093 		    "%s: unable to allocate control data, error = %d\n",
1094 		    sc->sc_dev.dv_xname, error);
1095 		goto fail_0;
1096 	}
1097 
1098 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
1099 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
1100 		aprint_error("%s: unable to map control data, error = %d\n",
1101 		    sc->sc_dev.dv_xname, error);
1102 		goto fail_1;
1103 	}
1104 
1105 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
1106 				       0, 0, &sc->sc_cddmamap)) != 0) {
1107 		aprint_error("%s: unable to create control data DMA map, "
1108 		    "error = %d\n", sc->sc_dev.dv_xname, error);
1109 		goto fail_2;
1110 	}
1111 
1112 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1113 				     sc->sc_control_data, cdata_size, NULL,
1114 				     0)) != 0) {
1115 		aprint_error(
1116 		    "%s: unable to load control data DMA map, error = %d\n",
1117 		    sc->sc_dev.dv_xname, error);
1118 		goto fail_3;
1119 	}
1120 
1121 
1122 	/*
1123 	 * Create the transmit buffer DMA maps.
1124 	 */
1125 	WM_TXQUEUELEN(sc) =
1126 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1127 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1128 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1129 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1130 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1131 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1132 			aprint_error("%s: unable to create Tx DMA map %d, "
1133 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1134 			goto fail_4;
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * Create the receive buffer DMA maps.
1140 	 */
1141 	for (i = 0; i < WM_NRXDESC; i++) {
1142 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1143 					       MCLBYTES, 0, 0,
1144 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1145 			aprint_error("%s: unable to create Rx DMA map %d, "
1146 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1147 			goto fail_5;
1148 		}
1149 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1150 	}
1151 
1152 	/* clear interesting stat counters */
1153 	CSR_READ(sc, WMREG_COLC);
1154 	CSR_READ(sc, WMREG_RXERRC);
1155 
1156 	/*
1157 	 * Reset the chip to a known state.
1158 	 */
1159 	wm_reset(sc);
1160 
1161 	/*
1162 	 * Get some information about the EEPROM.
1163 	 */
1164 	if (sc->sc_type == WM_T_80003)
1165  		sc->sc_flags |= WM_F_EEPROM_EERDEEWR |  WM_F_SWFW_SYNC;
1166 	else if (sc->sc_type == WM_T_82573)
1167  		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1168 	else if (sc->sc_type > WM_T_82544)
1169 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1170 
1171 	if (sc->sc_type <= WM_T_82544)
1172 		sc->sc_ee_addrbits = 6;
1173 	else if (sc->sc_type <= WM_T_82546_3) {
1174 		reg = CSR_READ(sc, WMREG_EECD);
1175 		if (reg & EECD_EE_SIZE)
1176 			sc->sc_ee_addrbits = 8;
1177 		else
1178 			sc->sc_ee_addrbits = 6;
1179 	} else if (sc->sc_type <= WM_T_82547_2) {
1180 		reg = CSR_READ(sc, WMREG_EECD);
1181 		if (reg & EECD_EE_TYPE) {
1182 			sc->sc_flags |= WM_F_EEPROM_SPI;
1183 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1184 		} else
1185 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1186 	} else if ((sc->sc_type == WM_T_82573) &&
1187 	    (wm_is_onboard_nvm_eeprom(sc) == 0)) {
1188 		sc->sc_flags |= WM_F_EEPROM_FLASH;
1189 	} else {
1190 		/* Assume everything else is SPI. */
1191 		reg = CSR_READ(sc, WMREG_EECD);
1192 		sc->sc_flags |= WM_F_EEPROM_SPI;
1193 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1194 	}
1195 
1196 	/*
1197 	 * Defer printing the EEPROM type until after verifying the checksum
1198 	 * This allows the EEPROM type to be printed correctly in the case
1199 	 * that no EEPROM is attached.
1200 	 */
1201 
1202 
1203 	/*
1204 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
1205 	 * later, so we can fail future reads from the EEPROM.
1206 	 */
1207 	if (wm_validate_eeprom_checksum(sc))
1208 		sc->sc_flags |= WM_F_EEPROM_INVALID;
1209 
1210 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
1211 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1212 	else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1213 		aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
1214 	} else {
1215 		if (sc->sc_flags & WM_F_EEPROM_SPI)
1216 			eetype = "SPI";
1217 		else
1218 			eetype = "MicroWire";
1219 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1220 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1221 		    sc->sc_ee_addrbits, eetype);
1222 	}
1223 
1224 	/*
1225 	 * Read the Ethernet address from the EEPROM, if not first found
1226 	 * in device properties.
1227 	 */
1228 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
1229 	if (ea != NULL) {
1230 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1231 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1232 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1233 	} else {
1234 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1235 		    sizeof(myea) / sizeof(myea[0]), myea)) {
1236 			aprint_error("%s: unable to read Ethernet address\n",
1237 			    sc->sc_dev.dv_xname);
1238 			return;
1239 		}
1240 		enaddr[0] = myea[0] & 0xff;
1241 		enaddr[1] = myea[0] >> 8;
1242 		enaddr[2] = myea[1] & 0xff;
1243 		enaddr[3] = myea[1] >> 8;
1244 		enaddr[4] = myea[2] & 0xff;
1245 		enaddr[5] = myea[2] >> 8;
1246 	}
1247 
1248 	/*
1249 	 * Toggle the LSB of the MAC address on the second port
1250 	 * of the dual port controller.
1251 	 */
1252 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
1253 	    || sc->sc_type ==  WM_T_82571 || sc->sc_type == WM_T_80003) {
1254 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1255 			enaddr[5] ^= 1;
1256 	}
1257 
1258 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1259 	    ether_sprintf(enaddr));
1260 
1261 	/*
1262 	 * Read the config info from the EEPROM, and set up various
1263 	 * bits in the control registers based on their contents.
1264 	 */
1265 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1266 				 "i82543-cfg1");
1267 	if (pn != NULL) {
1268 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1269 		cfg1 = (uint16_t) prop_number_integer_value(pn);
1270 	} else {
1271 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1272 			aprint_error("%s: unable to read CFG1\n",
1273 			    sc->sc_dev.dv_xname);
1274 			return;
1275 		}
1276 	}
1277 
1278 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1279 				 "i82543-cfg2");
1280 	if (pn != NULL) {
1281 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1282 		cfg2 = (uint16_t) prop_number_integer_value(pn);
1283 	} else {
1284 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1285 			aprint_error("%s: unable to read CFG2\n",
1286 			    sc->sc_dev.dv_xname);
1287 			return;
1288 		}
1289 	}
1290 
1291 	if (sc->sc_type >= WM_T_82544) {
1292 		pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1293 					 "i82543-swdpin");
1294 		if (pn != NULL) {
1295 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1296 			swdpin = (uint16_t) prop_number_integer_value(pn);
1297 		} else {
1298 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1299 				aprint_error("%s: unable to read SWDPIN\n",
1300 				    sc->sc_dev.dv_xname);
1301 				return;
1302 			}
1303 		}
1304 	}
1305 
1306 	if (cfg1 & EEPROM_CFG1_ILOS)
1307 		sc->sc_ctrl |= CTRL_ILOS;
1308 	if (sc->sc_type >= WM_T_82544) {
1309 		sc->sc_ctrl |=
1310 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1311 		    CTRL_SWDPIO_SHIFT;
1312 		sc->sc_ctrl |=
1313 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1314 		    CTRL_SWDPINS_SHIFT;
1315 	} else {
1316 		sc->sc_ctrl |=
1317 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1318 		    CTRL_SWDPIO_SHIFT;
1319 	}
1320 
1321 #if 0
1322 	if (sc->sc_type >= WM_T_82544) {
1323 		if (cfg1 & EEPROM_CFG1_IPS0)
1324 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1325 		if (cfg1 & EEPROM_CFG1_IPS1)
1326 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1327 		sc->sc_ctrl_ext |=
1328 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1329 		    CTRL_EXT_SWDPIO_SHIFT;
1330 		sc->sc_ctrl_ext |=
1331 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1332 		    CTRL_EXT_SWDPINS_SHIFT;
1333 	} else {
1334 		sc->sc_ctrl_ext |=
1335 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1336 		    CTRL_EXT_SWDPIO_SHIFT;
1337 	}
1338 #endif
1339 
1340 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1341 #if 0
1342 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1343 #endif
1344 
1345 	/*
1346 	 * Set up some register offsets that are different between
1347 	 * the i82542 and the i82543 and later chips.
1348 	 */
1349 	if (sc->sc_type < WM_T_82543) {
1350 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1351 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1352 	} else {
1353 		sc->sc_rdt_reg = WMREG_RDT;
1354 		sc->sc_tdt_reg = WMREG_TDT;
1355 	}
1356 
1357 	/*
1358 	 * Determine if we're TBI or GMII mode, and initialize the
1359 	 * media structures accordingly.
1360 	 */
1361 	if (sc->sc_type < WM_T_82543 ||
1362 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1363 		if (wmp->wmp_flags & WMP_F_1000T)
1364 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1365 			    "product!\n", sc->sc_dev.dv_xname);
1366 		wm_tbi_mediainit(sc);
1367 	} else {
1368 		if (wmp->wmp_flags & WMP_F_1000X)
1369 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1370 			    "product!\n", sc->sc_dev.dv_xname);
1371 		wm_gmii_mediainit(sc);
1372 	}
1373 
1374 	ifp = &sc->sc_ethercom.ec_if;
1375 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1376 	ifp->if_softc = sc;
1377 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1378 	ifp->if_ioctl = wm_ioctl;
1379 	ifp->if_start = wm_start;
1380 	ifp->if_watchdog = wm_watchdog;
1381 	ifp->if_init = wm_init;
1382 	ifp->if_stop = wm_stop;
1383 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1384 	IFQ_SET_READY(&ifp->if_snd);
1385 
1386 	if (sc->sc_type != WM_T_82573)
1387 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1388 
1389 	/*
1390 	 * If we're a i82543 or greater, we can support VLANs.
1391 	 */
1392 	if (sc->sc_type >= WM_T_82543)
1393 		sc->sc_ethercom.ec_capabilities |=
1394 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1395 
1396 	/*
1397 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1398 	 * on i82543 and later.
1399 	 */
1400 	if (sc->sc_type >= WM_T_82543) {
1401 		ifp->if_capabilities |=
1402 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1403 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1404 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1405 		    IFCAP_CSUM_TCPv6_Tx |
1406 		    IFCAP_CSUM_UDPv6_Tx;
1407 	}
1408 
1409 	/*
1410 	 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
1411 	 *
1412 	 *	82541GI (8086:1076) ... no
1413 	 *	82572EI (8086:10b9) ... yes
1414 	 */
1415 	if (sc->sc_type >= WM_T_82571) {
1416 		ifp->if_capabilities |=
1417 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
1418 	}
1419 
1420 	/*
1421 	 * If we're a i82544 or greater (except i82547), we can do
1422 	 * TCP segmentation offload.
1423 	 */
1424 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
1425 		ifp->if_capabilities |= IFCAP_TSOv4;
1426 	}
1427 
1428 	if (sc->sc_type >= WM_T_82571) {
1429 		ifp->if_capabilities |= IFCAP_TSOv6;
1430 	}
1431 
1432 	/*
1433 	 * Attach the interface.
1434 	 */
1435 	if_attach(ifp);
1436 	ether_ifattach(ifp, enaddr);
1437 #if NRND > 0
1438 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1439 	    RND_TYPE_NET, 0);
1440 #endif
1441 
1442 #ifdef WM_EVENT_COUNTERS
1443 	/* Attach event counters. */
1444 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1445 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1446 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1447 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1448 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1449 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1450 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1451 	    NULL, sc->sc_dev.dv_xname, "txdw");
1452 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1453 	    NULL, sc->sc_dev.dv_xname, "txqe");
1454 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1455 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1456 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1457 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1458 
1459 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1460 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1461 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1462 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1463 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1464 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1465 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1466 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1467 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1468 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
1469 
1470 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1471 	    NULL, sc->sc_dev.dv_xname, "txtso");
1472 	evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
1473 	    NULL, sc->sc_dev.dv_xname, "txtso6");
1474 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1475 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
1476 
1477 	for (i = 0; i < WM_NTXSEGS; i++) {
1478 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1479 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1480 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1481 	}
1482 
1483 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1484 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1485 
1486 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1487 	    NULL, sc->sc_dev.dv_xname, "tu");
1488 
1489 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1490 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1491 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1492 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1493 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1494 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1495 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1496 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1497 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1498 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1499 #endif /* WM_EVENT_COUNTERS */
1500 
1501 	/*
1502 	 * Make sure the interface is shutdown during reboot.
1503 	 */
1504 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1505 	if (sc->sc_sdhook == NULL)
1506 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1507 		    sc->sc_dev.dv_xname);
1508 
1509 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
1510 	    wm_powerhook, sc);
1511 	if (sc->sc_powerhook == NULL)
1512 		aprint_error("%s: can't establish powerhook\n",
1513 		    sc->sc_dev.dv_xname);
1514 	return;
1515 
1516 	/*
1517 	 * Free any resources we've allocated during the failed attach
1518 	 * attempt.  Do this in reverse order and fall through.
1519 	 */
1520  fail_5:
1521 	for (i = 0; i < WM_NRXDESC; i++) {
1522 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1523 			bus_dmamap_destroy(sc->sc_dmat,
1524 			    sc->sc_rxsoft[i].rxs_dmamap);
1525 	}
1526  fail_4:
1527 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1528 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1529 			bus_dmamap_destroy(sc->sc_dmat,
1530 			    sc->sc_txsoft[i].txs_dmamap);
1531 	}
1532 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1533  fail_3:
1534 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1535  fail_2:
1536 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1537 	    cdata_size);
1538  fail_1:
1539 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1540  fail_0:
1541 	return;
1542 }
1543 
1544 /*
1545  * wm_shutdown:
1546  *
1547  *	Make sure the interface is stopped at reboot time.
1548  */
1549 static void
1550 wm_shutdown(void *arg)
1551 {
1552 	struct wm_softc *sc = arg;
1553 
1554 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1555 }
1556 
1557 static void
1558 wm_powerhook(int why, void *arg)
1559 {
1560 	struct wm_softc *sc = arg;
1561 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1562 	pci_chipset_tag_t pc = sc->sc_pc;
1563 	pcitag_t tag = sc->sc_pcitag;
1564 
1565 	switch (why) {
1566 	case PWR_SOFTSUSPEND:
1567 		wm_shutdown(sc);
1568 		break;
1569 	case PWR_SOFTRESUME:
1570 		ifp->if_flags &= ~IFF_RUNNING;
1571 		wm_init(ifp);
1572 		if (ifp->if_flags & IFF_RUNNING)
1573 			wm_start(ifp);
1574 		break;
1575 	case PWR_SUSPEND:
1576 		pci_conf_capture(pc, tag, &sc->sc_pciconf);
1577 		break;
1578 	case PWR_RESUME:
1579 		pci_conf_restore(pc, tag, &sc->sc_pciconf);
1580 		break;
1581 	}
1582 
1583 	return;
1584 }
1585 
1586 /*
1587  * wm_tx_offload:
1588  *
1589  *	Set up TCP/IP checksumming parameters for the
1590  *	specified packet.
1591  */
1592 static int
1593 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1594     uint8_t *fieldsp)
1595 {
1596 	struct mbuf *m0 = txs->txs_mbuf;
1597 	struct livengood_tcpip_ctxdesc *t;
1598 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
1599 	uint32_t ipcse;
1600 	struct ether_header *eh;
1601 	int offset, iphl;
1602 	uint8_t fields;
1603 
1604 	/*
1605 	 * XXX It would be nice if the mbuf pkthdr had offset
1606 	 * fields for the protocol headers.
1607 	 */
1608 
1609 	eh = mtod(m0, struct ether_header *);
1610 	switch (htons(eh->ether_type)) {
1611 	case ETHERTYPE_IP:
1612 	case ETHERTYPE_IPV6:
1613 		offset = ETHER_HDR_LEN;
1614 		break;
1615 
1616 	case ETHERTYPE_VLAN:
1617 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1618 		break;
1619 
1620 	default:
1621 		/*
1622 		 * Don't support this protocol or encapsulation.
1623 		 */
1624 		*fieldsp = 0;
1625 		*cmdp = 0;
1626 		return (0);
1627 	}
1628 
1629 	if ((m0->m_pkthdr.csum_flags &
1630 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1631 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1632 	} else {
1633 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1634 	}
1635 	ipcse = offset + iphl - 1;
1636 
1637 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1638 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1639 	seg = 0;
1640 	fields = 0;
1641 
1642 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1643 		int hlen = offset + iphl;
1644 		boolean_t v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1645 
1646 		if (__predict_false(m0->m_len <
1647 				    (hlen + sizeof(struct tcphdr)))) {
1648 			/*
1649 			 * TCP/IP headers are not in the first mbuf; we need
1650 			 * to do this the slow and painful way.  Let's just
1651 			 * hope this doesn't happen very often.
1652 			 */
1653 			struct tcphdr th;
1654 
1655 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1656 
1657 			m_copydata(m0, hlen, sizeof(th), &th);
1658 			if (v4) {
1659 				struct ip ip;
1660 
1661 				m_copydata(m0, offset, sizeof(ip), &ip);
1662 				ip.ip_len = 0;
1663 				m_copyback(m0,
1664 				    offset + offsetof(struct ip, ip_len),
1665 				    sizeof(ip.ip_len), &ip.ip_len);
1666 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1667 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1668 			} else {
1669 				struct ip6_hdr ip6;
1670 
1671 				m_copydata(m0, offset, sizeof(ip6), &ip6);
1672 				ip6.ip6_plen = 0;
1673 				m_copyback(m0,
1674 				    offset + offsetof(struct ip6_hdr, ip6_plen),
1675 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1676 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1677 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1678 			}
1679 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1680 			    sizeof(th.th_sum), &th.th_sum);
1681 
1682 			hlen += th.th_off << 2;
1683 		} else {
1684 			/*
1685 			 * TCP/IP headers are in the first mbuf; we can do
1686 			 * this the easy way.
1687 			 */
1688 			struct tcphdr *th;
1689 
1690 			if (v4) {
1691 				struct ip *ip =
1692 				    (void *)(mtod(m0, caddr_t) + offset);
1693 				th = (void *)(mtod(m0, caddr_t) + hlen);
1694 
1695 				ip->ip_len = 0;
1696 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1697 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1698 			} else {
1699 				struct ip6_hdr *ip6 =
1700 				    (void *)(mtod(m0, char *) + offset);
1701 				th = (void *)(mtod(m0, char *) + hlen);
1702 
1703 				ip6->ip6_plen = 0;
1704 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1705 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1706 			}
1707 			hlen += th->th_off << 2;
1708 		}
1709 
1710 		if (v4) {
1711 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
1712 			cmdlen |= WTX_TCPIP_CMD_IP;
1713 		} else {
1714 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
1715 			ipcse = 0;
1716 		}
1717 		cmd |= WTX_TCPIP_CMD_TSE;
1718 		cmdlen |= WTX_TCPIP_CMD_TSE |
1719 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1720 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1721 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1722 	}
1723 
1724 	/*
1725 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1726 	 * offload feature, if we load the context descriptor, we
1727 	 * MUST provide valid values for IPCSS and TUCSS fields.
1728 	 */
1729 
1730 	ipcs = WTX_TCPIP_IPCSS(offset) |
1731 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1732 	    WTX_TCPIP_IPCSE(ipcse);
1733 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1734 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1735 		fields |= WTX_IXSM;
1736 	}
1737 
1738 	offset += iphl;
1739 
1740 	if (m0->m_pkthdr.csum_flags &
1741 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1742 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1743 		fields |= WTX_TXSM;
1744 		tucs = WTX_TCPIP_TUCSS(offset) |
1745 		    WTX_TCPIP_TUCSO(offset +
1746 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1747 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1748 	} else if ((m0->m_pkthdr.csum_flags &
1749 	    (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
1750 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1751 		fields |= WTX_TXSM;
1752 		tucs = WTX_TCPIP_TUCSS(offset) |
1753 		    WTX_TCPIP_TUCSO(offset +
1754 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1755 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1756 	} else {
1757 		/* Just initialize it to a valid TCP context. */
1758 		tucs = WTX_TCPIP_TUCSS(offset) |
1759 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1760 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1761 	}
1762 
1763 	/* Fill in the context descriptor. */
1764 	t = (struct livengood_tcpip_ctxdesc *)
1765 	    &sc->sc_txdescs[sc->sc_txnext];
1766 	t->tcpip_ipcs = htole32(ipcs);
1767 	t->tcpip_tucs = htole32(tucs);
1768 	t->tcpip_cmdlen = htole32(cmdlen);
1769 	t->tcpip_seg = htole32(seg);
1770 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1771 
1772 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1773 	txs->txs_ndesc++;
1774 
1775 	*cmdp = cmd;
1776 	*fieldsp = fields;
1777 
1778 	return (0);
1779 }
1780 
1781 static void
1782 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1783 {
1784 	struct mbuf *m;
1785 	int i;
1786 
1787 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1788 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1789 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1790 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1791 		    m->m_data, m->m_len, m->m_flags);
1792 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1793 	    i, i == 1 ? "" : "s");
1794 }
1795 
1796 /*
1797  * wm_82547_txfifo_stall:
1798  *
1799  *	Callout used to wait for the 82547 Tx FIFO to drain,
1800  *	reset the FIFO pointers, and restart packet transmission.
1801  */
1802 static void
1803 wm_82547_txfifo_stall(void *arg)
1804 {
1805 	struct wm_softc *sc = arg;
1806 	int s;
1807 
1808 	s = splnet();
1809 
1810 	if (sc->sc_txfifo_stall) {
1811 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1812 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1813 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1814 			/*
1815 			 * Packets have drained.  Stop transmitter, reset
1816 			 * FIFO pointers, restart transmitter, and kick
1817 			 * the packet queue.
1818 			 */
1819 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1820 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1821 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1822 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1823 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1824 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1825 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1826 			CSR_WRITE_FLUSH(sc);
1827 
1828 			sc->sc_txfifo_head = 0;
1829 			sc->sc_txfifo_stall = 0;
1830 			wm_start(&sc->sc_ethercom.ec_if);
1831 		} else {
1832 			/*
1833 			 * Still waiting for packets to drain; try again in
1834 			 * another tick.
1835 			 */
1836 			callout_schedule(&sc->sc_txfifo_ch, 1);
1837 		}
1838 	}
1839 
1840 	splx(s);
1841 }
1842 
1843 /*
1844  * wm_82547_txfifo_bugchk:
1845  *
1846  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1847  *	prevent enqueueing a packet that would wrap around the end
1848  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1849  *
1850  *	We do this by checking the amount of space before the end
1851  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1852  *	the Tx FIFO, wait for all remaining packets to drain, reset
1853  *	the internal FIFO pointers to the beginning, and restart
1854  *	transmission on the interface.
1855  */
1856 #define	WM_FIFO_HDR		0x10
1857 #define	WM_82547_PAD_LEN	0x3e0
1858 static int
1859 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1860 {
1861 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1862 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1863 
1864 	/* Just return if already stalled. */
1865 	if (sc->sc_txfifo_stall)
1866 		return (1);
1867 
1868 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1869 		/* Stall only occurs in half-duplex mode. */
1870 		goto send_packet;
1871 	}
1872 
1873 	if (len >= WM_82547_PAD_LEN + space) {
1874 		sc->sc_txfifo_stall = 1;
1875 		callout_schedule(&sc->sc_txfifo_ch, 1);
1876 		return (1);
1877 	}
1878 
1879  send_packet:
1880 	sc->sc_txfifo_head += len;
1881 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1882 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1883 
1884 	return (0);
1885 }
1886 
1887 /*
1888  * wm_start:		[ifnet interface function]
1889  *
1890  *	Start packet transmission on the interface.
1891  */
1892 static void
1893 wm_start(struct ifnet *ifp)
1894 {
1895 	struct wm_softc *sc = ifp->if_softc;
1896 	struct mbuf *m0;
1897 #if 0 /* XXXJRT */
1898 	struct m_tag *mtag;
1899 #endif
1900 	struct wm_txsoft *txs;
1901 	bus_dmamap_t dmamap;
1902 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1903 	bus_addr_t curaddr;
1904 	bus_size_t seglen, curlen;
1905 	uint32_t cksumcmd;
1906 	uint8_t cksumfields;
1907 
1908 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1909 		return;
1910 
1911 	/*
1912 	 * Remember the previous number of free descriptors.
1913 	 */
1914 	ofree = sc->sc_txfree;
1915 
1916 	/*
1917 	 * Loop through the send queue, setting up transmit descriptors
1918 	 * until we drain the queue, or use up all available transmit
1919 	 * descriptors.
1920 	 */
1921 	for (;;) {
1922 		/* Grab a packet off the queue. */
1923 		IFQ_POLL(&ifp->if_snd, m0);
1924 		if (m0 == NULL)
1925 			break;
1926 
1927 		DPRINTF(WM_DEBUG_TX,
1928 		    ("%s: TX: have packet to transmit: %p\n",
1929 		    sc->sc_dev.dv_xname, m0));
1930 
1931 		/* Get a work queue entry. */
1932 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1933 			wm_txintr(sc);
1934 			if (sc->sc_txsfree == 0) {
1935 				DPRINTF(WM_DEBUG_TX,
1936 				    ("%s: TX: no free job descriptors\n",
1937 					sc->sc_dev.dv_xname));
1938 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1939 				break;
1940 			}
1941 		}
1942 
1943 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1944 		dmamap = txs->txs_dmamap;
1945 
1946 		use_tso = (m0->m_pkthdr.csum_flags &
1947 		    (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
1948 
1949 		/*
1950 		 * So says the Linux driver:
1951 		 * The controller does a simple calculation to make sure
1952 		 * there is enough room in the FIFO before initiating the
1953 		 * DMA for each buffer.  The calc is:
1954 		 *	4 = ceil(buffer len / MSS)
1955 		 * To make sure we don't overrun the FIFO, adjust the max
1956 		 * buffer len if the MSS drops.
1957 		 */
1958 		dmamap->dm_maxsegsz =
1959 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1960 		    ? m0->m_pkthdr.segsz << 2
1961 		    : WTX_MAX_LEN;
1962 
1963 		/*
1964 		 * Load the DMA map.  If this fails, the packet either
1965 		 * didn't fit in the allotted number of segments, or we
1966 		 * were short on resources.  For the too-many-segments
1967 		 * case, we simply report an error and drop the packet,
1968 		 * since we can't sanely copy a jumbo packet to a single
1969 		 * buffer.
1970 		 */
1971 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1972 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1973 		if (error) {
1974 			if (error == EFBIG) {
1975 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1976 				log(LOG_ERR, "%s: Tx packet consumes too many "
1977 				    "DMA segments, dropping...\n",
1978 				    sc->sc_dev.dv_xname);
1979 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1980 				wm_dump_mbuf_chain(sc, m0);
1981 				m_freem(m0);
1982 				continue;
1983 			}
1984 			/*
1985 			 * Short on resources, just stop for now.
1986 			 */
1987 			DPRINTF(WM_DEBUG_TX,
1988 			    ("%s: TX: dmamap load failed: %d\n",
1989 			    sc->sc_dev.dv_xname, error));
1990 			break;
1991 		}
1992 
1993 		segs_needed = dmamap->dm_nsegs;
1994 		if (use_tso) {
1995 			/* For sentinel descriptor; see below. */
1996 			segs_needed++;
1997 		}
1998 
1999 		/*
2000 		 * Ensure we have enough descriptors free to describe
2001 		 * the packet.  Note, we always reserve one descriptor
2002 		 * at the end of the ring due to the semantics of the
2003 		 * TDT register, plus one more in the event we need
2004 		 * to load offload context.
2005 		 */
2006 		if (segs_needed > sc->sc_txfree - 2) {
2007 			/*
2008 			 * Not enough free descriptors to transmit this
2009 			 * packet.  We haven't committed anything yet,
2010 			 * so just unload the DMA map, put the packet
2011 			 * pack on the queue, and punt.  Notify the upper
2012 			 * layer that there are no more slots left.
2013 			 */
2014 			DPRINTF(WM_DEBUG_TX,
2015 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
2016 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
2017 			    sc->sc_txfree - 1));
2018 			ifp->if_flags |= IFF_OACTIVE;
2019 			bus_dmamap_unload(sc->sc_dmat, dmamap);
2020 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
2021 			break;
2022 		}
2023 
2024 		/*
2025 		 * Check for 82547 Tx FIFO bug.  We need to do this
2026 		 * once we know we can transmit the packet, since we
2027 		 * do some internal FIFO space accounting here.
2028 		 */
2029 		if (sc->sc_type == WM_T_82547 &&
2030 		    wm_82547_txfifo_bugchk(sc, m0)) {
2031 			DPRINTF(WM_DEBUG_TX,
2032 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
2033 			    sc->sc_dev.dv_xname));
2034 			ifp->if_flags |= IFF_OACTIVE;
2035 			bus_dmamap_unload(sc->sc_dmat, dmamap);
2036 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
2037 			break;
2038 		}
2039 
2040 		IFQ_DEQUEUE(&ifp->if_snd, m0);
2041 
2042 		/*
2043 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
2044 		 */
2045 
2046 		DPRINTF(WM_DEBUG_TX,
2047 		    ("%s: TX: packet has %d (%d) DMA segments\n",
2048 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
2049 
2050 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
2051 
2052 		/*
2053 		 * Store a pointer to the packet so that we can free it
2054 		 * later.
2055 		 *
2056 		 * Initially, we consider the number of descriptors the
2057 		 * packet uses the number of DMA segments.  This may be
2058 		 * incremented by 1 if we do checksum offload (a descriptor
2059 		 * is used to set the checksum context).
2060 		 */
2061 		txs->txs_mbuf = m0;
2062 		txs->txs_firstdesc = sc->sc_txnext;
2063 		txs->txs_ndesc = segs_needed;
2064 
2065 		/* Set up offload parameters for this packet. */
2066 		if (m0->m_pkthdr.csum_flags &
2067 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
2068 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
2069 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2070 			if (wm_tx_offload(sc, txs, &cksumcmd,
2071 					  &cksumfields) != 0) {
2072 				/* Error message already displayed. */
2073 				bus_dmamap_unload(sc->sc_dmat, dmamap);
2074 				continue;
2075 			}
2076 		} else {
2077 			cksumcmd = 0;
2078 			cksumfields = 0;
2079 		}
2080 
2081 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
2082 
2083 		/* Sync the DMA map. */
2084 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2085 		    BUS_DMASYNC_PREWRITE);
2086 
2087 		/*
2088 		 * Initialize the transmit descriptor.
2089 		 */
2090 		for (nexttx = sc->sc_txnext, seg = 0;
2091 		     seg < dmamap->dm_nsegs; seg++) {
2092 			for (seglen = dmamap->dm_segs[seg].ds_len,
2093 			     curaddr = dmamap->dm_segs[seg].ds_addr;
2094 			     seglen != 0;
2095 			     curaddr += curlen, seglen -= curlen,
2096 			     nexttx = WM_NEXTTX(sc, nexttx)) {
2097 				curlen = seglen;
2098 
2099 				/*
2100 				 * So says the Linux driver:
2101 				 * Work around for premature descriptor
2102 				 * write-backs in TSO mode.  Append a
2103 				 * 4-byte sentinel descriptor.
2104 				 */
2105 				if (use_tso &&
2106 				    seg == dmamap->dm_nsegs - 1 &&
2107 				    curlen > 8)
2108 					curlen -= 4;
2109 
2110 				wm_set_dma_addr(
2111 				    &sc->sc_txdescs[nexttx].wtx_addr,
2112 				    curaddr);
2113 				sc->sc_txdescs[nexttx].wtx_cmdlen =
2114 				    htole32(cksumcmd | curlen);
2115 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2116 				    0;
2117 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2118 				    cksumfields;
2119 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2120 				lasttx = nexttx;
2121 
2122 				DPRINTF(WM_DEBUG_TX,
2123 				    ("%s: TX: desc %d: low 0x%08lx, "
2124 				     "len 0x%04x\n",
2125 				    sc->sc_dev.dv_xname, nexttx,
2126 				    curaddr & 0xffffffffUL, (unsigned)curlen));
2127 			}
2128 		}
2129 
2130 		KASSERT(lasttx != -1);
2131 
2132 		/*
2133 		 * Set up the command byte on the last descriptor of
2134 		 * the packet.  If we're in the interrupt delay window,
2135 		 * delay the interrupt.
2136 		 */
2137 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
2138 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
2139 
2140 #if 0 /* XXXJRT */
2141 		/*
2142 		 * If VLANs are enabled and the packet has a VLAN tag, set
2143 		 * up the descriptor to encapsulate the packet for us.
2144 		 *
2145 		 * This is only valid on the last descriptor of the packet.
2146 		 */
2147 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2148 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
2149 			    htole32(WTX_CMD_VLE);
2150 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2151 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2152 		}
2153 #endif /* XXXJRT */
2154 
2155 		txs->txs_lastdesc = lasttx;
2156 
2157 		DPRINTF(WM_DEBUG_TX,
2158 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
2159 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2160 
2161 		/* Sync the descriptors we're using. */
2162 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2163 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2164 
2165 		/* Give the packet to the chip. */
2166 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2167 
2168 		DPRINTF(WM_DEBUG_TX,
2169 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
2170 
2171 		DPRINTF(WM_DEBUG_TX,
2172 		    ("%s: TX: finished transmitting packet, job %d\n",
2173 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
2174 
2175 		/* Advance the tx pointer. */
2176 		sc->sc_txfree -= txs->txs_ndesc;
2177 		sc->sc_txnext = nexttx;
2178 
2179 		sc->sc_txsfree--;
2180 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2181 
2182 #if NBPFILTER > 0
2183 		/* Pass the packet to any BPF listeners. */
2184 		if (ifp->if_bpf)
2185 			bpf_mtap(ifp->if_bpf, m0);
2186 #endif /* NBPFILTER > 0 */
2187 	}
2188 
2189 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2190 		/* No more slots; notify upper layer. */
2191 		ifp->if_flags |= IFF_OACTIVE;
2192 	}
2193 
2194 	if (sc->sc_txfree != ofree) {
2195 		/* Set a watchdog timer in case the chip flakes out. */
2196 		ifp->if_timer = 5;
2197 	}
2198 }
2199 
2200 /*
2201  * wm_watchdog:		[ifnet interface function]
2202  *
2203  *	Watchdog timer handler.
2204  */
2205 static void
2206 wm_watchdog(struct ifnet *ifp)
2207 {
2208 	struct wm_softc *sc = ifp->if_softc;
2209 
2210 	/*
2211 	 * Since we're using delayed interrupts, sweep up
2212 	 * before we report an error.
2213 	 */
2214 	wm_txintr(sc);
2215 
2216 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
2217 		log(LOG_ERR,
2218 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2219 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
2220 		    sc->sc_txnext);
2221 		ifp->if_oerrors++;
2222 
2223 		/* Reset the interface. */
2224 		(void) wm_init(ifp);
2225 	}
2226 
2227 	/* Try to get more packets going. */
2228 	wm_start(ifp);
2229 }
2230 
2231 /*
2232  * wm_ioctl:		[ifnet interface function]
2233  *
2234  *	Handle control requests from the operator.
2235  */
2236 static int
2237 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2238 {
2239 	struct wm_softc *sc = ifp->if_softc;
2240 	struct ifreq *ifr = (struct ifreq *) data;
2241 	int s, error;
2242 
2243 	s = splnet();
2244 
2245 	switch (cmd) {
2246 	case SIOCSIFMEDIA:
2247 	case SIOCGIFMEDIA:
2248 		/* Flow control requires full-duplex mode. */
2249 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2250 		    (ifr->ifr_media & IFM_FDX) == 0)
2251 			ifr->ifr_media &= ~IFM_ETH_FMASK;
2252 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2253 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2254 				/* We can do both TXPAUSE and RXPAUSE. */
2255 				ifr->ifr_media |=
2256 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2257 			}
2258 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2259 		}
2260 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2261 		break;
2262 	default:
2263 		error = ether_ioctl(ifp, cmd, data);
2264 		if (error == ENETRESET) {
2265 			/*
2266 			 * Multicast list has changed; set the hardware filter
2267 			 * accordingly.
2268 			 */
2269 			if (ifp->if_flags & IFF_RUNNING)
2270 				wm_set_filter(sc);
2271 			error = 0;
2272 		}
2273 		break;
2274 	}
2275 
2276 	/* Try to get more packets going. */
2277 	wm_start(ifp);
2278 
2279 	splx(s);
2280 	return (error);
2281 }
2282 
2283 /*
2284  * wm_intr:
2285  *
2286  *	Interrupt service routine.
2287  */
2288 static int
2289 wm_intr(void *arg)
2290 {
2291 	struct wm_softc *sc = arg;
2292 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2293 	uint32_t icr;
2294 	int handled = 0;
2295 
2296 	while (1 /* CONSTCOND */) {
2297 		icr = CSR_READ(sc, WMREG_ICR);
2298 		if ((icr & sc->sc_icr) == 0)
2299 			break;
2300 #if 0 /*NRND > 0*/
2301 		if (RND_ENABLED(&sc->rnd_source))
2302 			rnd_add_uint32(&sc->rnd_source, icr);
2303 #endif
2304 
2305 		handled = 1;
2306 
2307 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2308 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2309 			DPRINTF(WM_DEBUG_RX,
2310 			    ("%s: RX: got Rx intr 0x%08x\n",
2311 			    sc->sc_dev.dv_xname,
2312 			    icr & (ICR_RXDMT0|ICR_RXT0)));
2313 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2314 		}
2315 #endif
2316 		wm_rxintr(sc);
2317 
2318 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2319 		if (icr & ICR_TXDW) {
2320 			DPRINTF(WM_DEBUG_TX,
2321 			    ("%s: TX: got TXDW interrupt\n",
2322 			    sc->sc_dev.dv_xname));
2323 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
2324 		}
2325 #endif
2326 		wm_txintr(sc);
2327 
2328 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2329 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2330 			wm_linkintr(sc, icr);
2331 		}
2332 
2333 		if (icr & ICR_RXO) {
2334 			ifp->if_ierrors++;
2335 #if defined(WM_DEBUG)
2336 			log(LOG_WARNING, "%s: Receive overrun\n",
2337 			    sc->sc_dev.dv_xname);
2338 #endif /* defined(WM_DEBUG) */
2339 		}
2340 	}
2341 
2342 	if (handled) {
2343 		/* Try to get more packets going. */
2344 		wm_start(ifp);
2345 	}
2346 
2347 	return (handled);
2348 }
2349 
2350 /*
2351  * wm_txintr:
2352  *
2353  *	Helper; handle transmit interrupts.
2354  */
2355 static void
2356 wm_txintr(struct wm_softc *sc)
2357 {
2358 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2359 	struct wm_txsoft *txs;
2360 	uint8_t status;
2361 	int i;
2362 
2363 	ifp->if_flags &= ~IFF_OACTIVE;
2364 
2365 	/*
2366 	 * Go through the Tx list and free mbufs for those
2367 	 * frames which have been transmitted.
2368 	 */
2369 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2370 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2371 		txs = &sc->sc_txsoft[i];
2372 
2373 		DPRINTF(WM_DEBUG_TX,
2374 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2375 
2376 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2377 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2378 
2379 		status =
2380 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2381 		if ((status & WTX_ST_DD) == 0) {
2382 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2383 			    BUS_DMASYNC_PREREAD);
2384 			break;
2385 		}
2386 
2387 		DPRINTF(WM_DEBUG_TX,
2388 		    ("%s: TX: job %d done: descs %d..%d\n",
2389 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2390 		    txs->txs_lastdesc));
2391 
2392 		/*
2393 		 * XXX We should probably be using the statistics
2394 		 * XXX registers, but I don't know if they exist
2395 		 * XXX on chips before the i82544.
2396 		 */
2397 
2398 #ifdef WM_EVENT_COUNTERS
2399 		if (status & WTX_ST_TU)
2400 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2401 #endif /* WM_EVENT_COUNTERS */
2402 
2403 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2404 			ifp->if_oerrors++;
2405 			if (status & WTX_ST_LC)
2406 				log(LOG_WARNING, "%s: late collision\n",
2407 				    sc->sc_dev.dv_xname);
2408 			else if (status & WTX_ST_EC) {
2409 				ifp->if_collisions += 16;
2410 				log(LOG_WARNING, "%s: excessive collisions\n",
2411 				    sc->sc_dev.dv_xname);
2412 			}
2413 		} else
2414 			ifp->if_opackets++;
2415 
2416 		sc->sc_txfree += txs->txs_ndesc;
2417 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2418 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2419 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2420 		m_freem(txs->txs_mbuf);
2421 		txs->txs_mbuf = NULL;
2422 	}
2423 
2424 	/* Update the dirty transmit buffer pointer. */
2425 	sc->sc_txsdirty = i;
2426 	DPRINTF(WM_DEBUG_TX,
2427 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2428 
2429 	/*
2430 	 * If there are no more pending transmissions, cancel the watchdog
2431 	 * timer.
2432 	 */
2433 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2434 		ifp->if_timer = 0;
2435 }
2436 
2437 /*
2438  * wm_rxintr:
2439  *
2440  *	Helper; handle receive interrupts.
2441  */
2442 static void
2443 wm_rxintr(struct wm_softc *sc)
2444 {
2445 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2446 	struct wm_rxsoft *rxs;
2447 	struct mbuf *m;
2448 	int i, len;
2449 	uint8_t status, errors;
2450 
2451 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2452 		rxs = &sc->sc_rxsoft[i];
2453 
2454 		DPRINTF(WM_DEBUG_RX,
2455 		    ("%s: RX: checking descriptor %d\n",
2456 		    sc->sc_dev.dv_xname, i));
2457 
2458 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2459 
2460 		status = sc->sc_rxdescs[i].wrx_status;
2461 		errors = sc->sc_rxdescs[i].wrx_errors;
2462 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2463 
2464 		if ((status & WRX_ST_DD) == 0) {
2465 			/*
2466 			 * We have processed all of the receive descriptors.
2467 			 */
2468 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2469 			break;
2470 		}
2471 
2472 		if (__predict_false(sc->sc_rxdiscard)) {
2473 			DPRINTF(WM_DEBUG_RX,
2474 			    ("%s: RX: discarding contents of descriptor %d\n",
2475 			    sc->sc_dev.dv_xname, i));
2476 			WM_INIT_RXDESC(sc, i);
2477 			if (status & WRX_ST_EOP) {
2478 				/* Reset our state. */
2479 				DPRINTF(WM_DEBUG_RX,
2480 				    ("%s: RX: resetting rxdiscard -> 0\n",
2481 				    sc->sc_dev.dv_xname));
2482 				sc->sc_rxdiscard = 0;
2483 			}
2484 			continue;
2485 		}
2486 
2487 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2488 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2489 
2490 		m = rxs->rxs_mbuf;
2491 
2492 		/*
2493 		 * Add a new receive buffer to the ring, unless of
2494 		 * course the length is zero. Treat the latter as a
2495 		 * failed mapping.
2496 		 */
2497 		if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
2498 			/*
2499 			 * Failed, throw away what we've done so
2500 			 * far, and discard the rest of the packet.
2501 			 */
2502 			ifp->if_ierrors++;
2503 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2504 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2505 			WM_INIT_RXDESC(sc, i);
2506 			if ((status & WRX_ST_EOP) == 0)
2507 				sc->sc_rxdiscard = 1;
2508 			if (sc->sc_rxhead != NULL)
2509 				m_freem(sc->sc_rxhead);
2510 			WM_RXCHAIN_RESET(sc);
2511 			DPRINTF(WM_DEBUG_RX,
2512 			    ("%s: RX: Rx buffer allocation failed, "
2513 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2514 			    sc->sc_rxdiscard ? " (discard)" : ""));
2515 			continue;
2516 		}
2517 
2518 		WM_RXCHAIN_LINK(sc, m);
2519 
2520 		m->m_len = len;
2521 
2522 		DPRINTF(WM_DEBUG_RX,
2523 		    ("%s: RX: buffer at %p len %d\n",
2524 		    sc->sc_dev.dv_xname, m->m_data, len));
2525 
2526 		/*
2527 		 * If this is not the end of the packet, keep
2528 		 * looking.
2529 		 */
2530 		if ((status & WRX_ST_EOP) == 0) {
2531 			sc->sc_rxlen += len;
2532 			DPRINTF(WM_DEBUG_RX,
2533 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2534 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2535 			continue;
2536 		}
2537 
2538 		/*
2539 		 * Okay, we have the entire packet now.  The chip is
2540 		 * configured to include the FCS (not all chips can
2541 		 * be configured to strip it), so we need to trim it.
2542 		 */
2543 		m->m_len -= ETHER_CRC_LEN;
2544 
2545 		*sc->sc_rxtailp = NULL;
2546 		len = m->m_len + sc->sc_rxlen;
2547 		m = sc->sc_rxhead;
2548 
2549 		WM_RXCHAIN_RESET(sc);
2550 
2551 		DPRINTF(WM_DEBUG_RX,
2552 		    ("%s: RX: have entire packet, len -> %d\n",
2553 		    sc->sc_dev.dv_xname, len));
2554 
2555 		/*
2556 		 * If an error occurred, update stats and drop the packet.
2557 		 */
2558 		if (errors &
2559 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2560 			ifp->if_ierrors++;
2561 			if (errors & WRX_ER_SE)
2562 				log(LOG_WARNING, "%s: symbol error\n",
2563 				    sc->sc_dev.dv_xname);
2564 			else if (errors & WRX_ER_SEQ)
2565 				log(LOG_WARNING, "%s: receive sequence error\n",
2566 				    sc->sc_dev.dv_xname);
2567 			else if (errors & WRX_ER_CE)
2568 				log(LOG_WARNING, "%s: CRC error\n",
2569 				    sc->sc_dev.dv_xname);
2570 			m_freem(m);
2571 			continue;
2572 		}
2573 
2574 		/*
2575 		 * No errors.  Receive the packet.
2576 		 */
2577 		m->m_pkthdr.rcvif = ifp;
2578 		m->m_pkthdr.len = len;
2579 
2580 #if 0 /* XXXJRT */
2581 		/*
2582 		 * If VLANs are enabled, VLAN packets have been unwrapped
2583 		 * for us.  Associate the tag with the packet.
2584 		 */
2585 		if ((status & WRX_ST_VP) != 0) {
2586 			VLAN_INPUT_TAG(ifp, m,
2587 			    le16toh(sc->sc_rxdescs[i].wrx_special,
2588 			    continue);
2589 		}
2590 #endif /* XXXJRT */
2591 
2592 		/*
2593 		 * Set up checksum info for this packet.
2594 		 */
2595 		if ((status & WRX_ST_IXSM) == 0) {
2596 			if (status & WRX_ST_IPCS) {
2597 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2598 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2599 				if (errors & WRX_ER_IPE)
2600 					m->m_pkthdr.csum_flags |=
2601 					    M_CSUM_IPv4_BAD;
2602 			}
2603 			if (status & WRX_ST_TCPCS) {
2604 				/*
2605 				 * Note: we don't know if this was TCP or UDP,
2606 				 * so we just set both bits, and expect the
2607 				 * upper layers to deal.
2608 				 */
2609 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2610 				m->m_pkthdr.csum_flags |=
2611 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
2612 				    M_CSUM_TCPv6 | M_CSUM_UDPv6;
2613 				if (errors & WRX_ER_TCPE)
2614 					m->m_pkthdr.csum_flags |=
2615 					    M_CSUM_TCP_UDP_BAD;
2616 			}
2617 		}
2618 
2619 		ifp->if_ipackets++;
2620 
2621 #if NBPFILTER > 0
2622 		/* Pass this up to any BPF listeners. */
2623 		if (ifp->if_bpf)
2624 			bpf_mtap(ifp->if_bpf, m);
2625 #endif /* NBPFILTER > 0 */
2626 
2627 		/* Pass it on. */
2628 		(*ifp->if_input)(ifp, m);
2629 	}
2630 
2631 	/* Update the receive pointer. */
2632 	sc->sc_rxptr = i;
2633 
2634 	DPRINTF(WM_DEBUG_RX,
2635 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2636 }
2637 
2638 /*
2639  * wm_linkintr:
2640  *
2641  *	Helper; handle link interrupts.
2642  */
2643 static void
2644 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2645 {
2646 	uint32_t status;
2647 
2648 	/*
2649 	 * If we get a link status interrupt on a 1000BASE-T
2650 	 * device, just fall into the normal MII tick path.
2651 	 */
2652 	if (sc->sc_flags & WM_F_HAS_MII) {
2653 		if (icr & ICR_LSC) {
2654 			DPRINTF(WM_DEBUG_LINK,
2655 			    ("%s: LINK: LSC -> mii_tick\n",
2656 			    sc->sc_dev.dv_xname));
2657 			mii_tick(&sc->sc_mii);
2658 		} else if (icr & ICR_RXSEQ) {
2659 			DPRINTF(WM_DEBUG_LINK,
2660 			    ("%s: LINK Receive sequence error\n",
2661 			    sc->sc_dev.dv_xname));
2662 		}
2663 		return;
2664 	}
2665 
2666 	/*
2667 	 * If we are now receiving /C/, check for link again in
2668 	 * a couple of link clock ticks.
2669 	 */
2670 	if (icr & ICR_RXCFG) {
2671 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2672 		    sc->sc_dev.dv_xname));
2673 		sc->sc_tbi_anstate = 2;
2674 	}
2675 
2676 	if (icr & ICR_LSC) {
2677 		status = CSR_READ(sc, WMREG_STATUS);
2678 		if (status & STATUS_LU) {
2679 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2680 			    sc->sc_dev.dv_xname,
2681 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2682 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2683 			sc->sc_fcrtl &= ~FCRTL_XONE;
2684 			if (status & STATUS_FD)
2685 				sc->sc_tctl |=
2686 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2687 			else
2688 				sc->sc_tctl |=
2689 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2690 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2691 				sc->sc_fcrtl |= FCRTL_XONE;
2692 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2693 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2694 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2695 				      sc->sc_fcrtl);
2696 			sc->sc_tbi_linkup = 1;
2697 		} else {
2698 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2699 			    sc->sc_dev.dv_xname));
2700 			sc->sc_tbi_linkup = 0;
2701 		}
2702 		sc->sc_tbi_anstate = 2;
2703 		wm_tbi_set_linkled(sc);
2704 	} else if (icr & ICR_RXSEQ) {
2705 		DPRINTF(WM_DEBUG_LINK,
2706 		    ("%s: LINK: Receive sequence error\n",
2707 		    sc->sc_dev.dv_xname));
2708 	}
2709 }
2710 
2711 /*
2712  * wm_tick:
2713  *
2714  *	One second timer, used to check link status, sweep up
2715  *	completed transmit jobs, etc.
2716  */
2717 static void
2718 wm_tick(void *arg)
2719 {
2720 	struct wm_softc *sc = arg;
2721 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2722 	int s;
2723 
2724 	s = splnet();
2725 
2726 	if (sc->sc_type >= WM_T_82542_2_1) {
2727 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2728 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2729 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2730 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2731 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2732 	}
2733 
2734 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2735 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
2736 
2737 
2738 	if (sc->sc_flags & WM_F_HAS_MII)
2739 		mii_tick(&sc->sc_mii);
2740 	else
2741 		wm_tbi_check_link(sc);
2742 
2743 	splx(s);
2744 
2745 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2746 }
2747 
2748 /*
2749  * wm_reset:
2750  *
2751  *	Reset the i82542 chip.
2752  */
2753 static void
2754 wm_reset(struct wm_softc *sc)
2755 {
2756 	int i;
2757 
2758 	/*
2759 	 * Allocate on-chip memory according to the MTU size.
2760 	 * The Packet Buffer Allocation register must be written
2761 	 * before the chip is reset.
2762 	 */
2763 	switch (sc->sc_type) {
2764 	case WM_T_82547:
2765 	case WM_T_82547_2:
2766 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2767 		    PBA_22K : PBA_30K;
2768 		sc->sc_txfifo_head = 0;
2769 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2770 		sc->sc_txfifo_size =
2771 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2772 		sc->sc_txfifo_stall = 0;
2773 		break;
2774 	case WM_T_82571:
2775 	case WM_T_82572:
2776 	case WM_T_80003:
2777 		sc->sc_pba = PBA_32K;
2778 		break;
2779 	case WM_T_82573:
2780 		sc->sc_pba = PBA_12K;
2781 		break;
2782 	default:
2783 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2784 		    PBA_40K : PBA_48K;
2785 		break;
2786 	}
2787 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2788 
2789 	switch (sc->sc_type) {
2790 	case WM_T_82544:
2791 	case WM_T_82540:
2792 	case WM_T_82545:
2793 	case WM_T_82546:
2794 	case WM_T_82541:
2795 	case WM_T_82541_2:
2796 		/*
2797 		 * On some chipsets, a reset through a memory-mapped write
2798 		 * cycle can cause the chip to reset before completing the
2799 		 * write cycle.  This causes major headache that can be
2800 		 * avoided by issuing the reset via indirect register writes
2801 		 * through I/O space.
2802 		 *
2803 		 * So, if we successfully mapped the I/O BAR at attach time,
2804 		 * use that.  Otherwise, try our luck with a memory-mapped
2805 		 * reset.
2806 		 */
2807 		if (sc->sc_flags & WM_F_IOH_VALID)
2808 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2809 		else
2810 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2811 		break;
2812 
2813 	case WM_T_82545_3:
2814 	case WM_T_82546_3:
2815 		/* Use the shadow control register on these chips. */
2816 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2817 		break;
2818 
2819 	default:
2820 		/* Everything else can safely use the documented method. */
2821 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2822 		break;
2823 	}
2824 	delay(10000);
2825 
2826 	for (i = 0; i < 1000; i++) {
2827 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2828 			return;
2829 		delay(20);
2830 	}
2831 
2832 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2833 		log(LOG_ERR, "%s: reset failed to complete\n",
2834 		    sc->sc_dev.dv_xname);
2835 
2836 	if (sc->sc_type == WM_T_80003) {
2837 		/* wait for eeprom to reload */
2838 		for (i = 1000; i > 0; i--) {
2839 			if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
2840 				break;
2841 		}
2842 		if (i == 0) {
2843 			log(LOG_ERR, "%s: auto read from eeprom failed to "
2844 			    "complete\n", sc->sc_dev.dv_xname);
2845 		}
2846 	}
2847 }
2848 
2849 /*
2850  * wm_init:		[ifnet interface function]
2851  *
2852  *	Initialize the interface.  Must be called at splnet().
2853  */
2854 static int
2855 wm_init(struct ifnet *ifp)
2856 {
2857 	struct wm_softc *sc = ifp->if_softc;
2858 	struct wm_rxsoft *rxs;
2859 	int i, error = 0;
2860 	uint32_t reg;
2861 
2862 	/*
2863 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2864 	 * There is a small but measurable benefit to avoiding the adjusment
2865 	 * of the descriptor so that the headers are aligned, for normal mtu,
2866 	 * on such platforms.  One possibility is that the DMA itself is
2867 	 * slightly more efficient if the front of the entire packet (instead
2868 	 * of the front of the headers) is aligned.
2869 	 *
2870 	 * Note we must always set align_tweak to 0 if we are using
2871 	 * jumbo frames.
2872 	 */
2873 #ifdef __NO_STRICT_ALIGNMENT
2874 	sc->sc_align_tweak = 0;
2875 #else
2876 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2877 		sc->sc_align_tweak = 0;
2878 	else
2879 		sc->sc_align_tweak = 2;
2880 #endif /* __NO_STRICT_ALIGNMENT */
2881 
2882 	/* Cancel any pending I/O. */
2883 	wm_stop(ifp, 0);
2884 
2885 	/* update statistics before reset */
2886 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2887 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
2888 
2889 	/* Reset the chip to a known state. */
2890 	wm_reset(sc);
2891 
2892 	/* Initialize the transmit descriptor ring. */
2893 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2894 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2895 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2896 	sc->sc_txfree = WM_NTXDESC(sc);
2897 	sc->sc_txnext = 0;
2898 
2899 	if (sc->sc_type < WM_T_82543) {
2900 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2901 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2902 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2903 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2904 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2905 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2906 	} else {
2907 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2908 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2909 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2910 		CSR_WRITE(sc, WMREG_TDH, 0);
2911 		CSR_WRITE(sc, WMREG_TDT, 0);
2912 		CSR_WRITE(sc, WMREG_TIDV, 64);
2913 		CSR_WRITE(sc, WMREG_TADV, 128);
2914 
2915 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2916 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2917 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2918 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2919 	}
2920 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2921 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2922 
2923 	/* Initialize the transmit job descriptors. */
2924 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2925 		sc->sc_txsoft[i].txs_mbuf = NULL;
2926 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2927 	sc->sc_txsnext = 0;
2928 	sc->sc_txsdirty = 0;
2929 
2930 	/*
2931 	 * Initialize the receive descriptor and receive job
2932 	 * descriptor rings.
2933 	 */
2934 	if (sc->sc_type < WM_T_82543) {
2935 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2936 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2937 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2938 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2939 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2940 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2941 
2942 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2943 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2944 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2945 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2946 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2947 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2948 	} else {
2949 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2950 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2951 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2952 		CSR_WRITE(sc, WMREG_RDH, 0);
2953 		CSR_WRITE(sc, WMREG_RDT, 0);
2954 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2955 		CSR_WRITE(sc, WMREG_RADV, 128);
2956 	}
2957 	for (i = 0; i < WM_NRXDESC; i++) {
2958 		rxs = &sc->sc_rxsoft[i];
2959 		if (rxs->rxs_mbuf == NULL) {
2960 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2961 				log(LOG_ERR, "%s: unable to allocate or map rx "
2962 				    "buffer %d, error = %d\n",
2963 				    sc->sc_dev.dv_xname, i, error);
2964 				/*
2965 				 * XXX Should attempt to run with fewer receive
2966 				 * XXX buffers instead of just failing.
2967 				 */
2968 				wm_rxdrain(sc);
2969 				goto out;
2970 			}
2971 		} else
2972 			WM_INIT_RXDESC(sc, i);
2973 	}
2974 	sc->sc_rxptr = 0;
2975 	sc->sc_rxdiscard = 0;
2976 	WM_RXCHAIN_RESET(sc);
2977 
2978 	/*
2979 	 * Clear out the VLAN table -- we don't use it (yet).
2980 	 */
2981 	CSR_WRITE(sc, WMREG_VET, 0);
2982 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2983 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2984 
2985 	/*
2986 	 * Set up flow-control parameters.
2987 	 *
2988 	 * XXX Values could probably stand some tuning.
2989 	 */
2990 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2991 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2992 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2993 
2994 	sc->sc_fcrtl = FCRTL_DFLT;
2995 	if (sc->sc_type < WM_T_82543) {
2996 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2997 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2998 	} else {
2999 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
3000 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
3001 	}
3002 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
3003 
3004 #if 0 /* XXXJRT */
3005 	/* Deal with VLAN enables. */
3006 	if (VLAN_ATTACHED(&sc->sc_ethercom))
3007 		sc->sc_ctrl |= CTRL_VME;
3008 	else
3009 #endif /* XXXJRT */
3010 		sc->sc_ctrl &= ~CTRL_VME;
3011 
3012 	/* Write the control registers. */
3013 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3014 	if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
3015 		int val;
3016 		val = CSR_READ(sc, WMREG_CTRL_EXT);
3017 		val &= ~CTRL_EXT_LINK_MODE_MASK;
3018 		CSR_WRITE(sc, WMREG_CTRL_EXT, val);
3019 
3020 		/* Bypass RX and TX FIFO's */
3021 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
3022 		    KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
3023 		    KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
3024 
3025 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
3026 		    KUMCTRLSTA_INB_CTRL_DIS_PADDING |
3027 		    KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
3028 		/*
3029 		 * Set the mac to wait the maximum time between each
3030 		 * iteration and increase the max iterations when
3031 		 * polling the phy; this fixes erroneous timeouts at 10Mbps.
3032 		 */
3033 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
3034 		val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
3035 		val |= 0x3F;
3036 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
3037 	}
3038 #if 0
3039 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
3040 #endif
3041 
3042 	/*
3043 	 * Set up checksum offload parameters.
3044 	 */
3045 	reg = CSR_READ(sc, WMREG_RXCSUM);
3046 	reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
3047 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3048 		reg |= RXCSUM_IPOFL;
3049 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
3050 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
3051 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3052 		reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
3053 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
3054 
3055 	/*
3056 	 * Set up the interrupt registers.
3057 	 */
3058 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3059 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
3060 	    ICR_RXO | ICR_RXT0;
3061 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
3062 		sc->sc_icr |= ICR_RXCFG;
3063 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
3064 
3065 	/* Set up the inter-packet gap. */
3066 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
3067 
3068 	if (sc->sc_type >= WM_T_82543) {
3069 		/* Set up the interrupt throttling register (units of 256ns) */
3070 		sc->sc_itr = 1000000000 / (7000 * 256);
3071 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
3072 	}
3073 
3074 #if 0 /* XXXJRT */
3075 	/* Set the VLAN ethernetype. */
3076 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
3077 #endif
3078 
3079 	/*
3080 	 * Set up the transmit control register; we start out with
3081 	 * a collision distance suitable for FDX, but update it whe
3082 	 * we resolve the media type.
3083 	 */
3084 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
3085 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3086 	if (sc->sc_type >= WM_T_82571)
3087 		sc->sc_tctl |= TCTL_MULR;
3088 	if (sc->sc_type >= WM_T_80003)
3089 		sc->sc_tctl |= TCTL_RTLC;
3090 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3091 
3092 	/* Set the media. */
3093 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
3094 
3095 	/*
3096 	 * Set up the receive control register; we actually program
3097 	 * the register when we set the receive filter.  Use multicast
3098 	 * address offset type 0.
3099 	 *
3100 	 * Only the i82544 has the ability to strip the incoming
3101 	 * CRC, so we don't enable that feature.
3102 	 */
3103 	sc->sc_mchash_type = 0;
3104 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
3105 	    | RCTL_MO(sc->sc_mchash_type);
3106 
3107 	/* 82573 doesn't support jumbo frame */
3108 	if (sc->sc_type != WM_T_82573)
3109 		sc->sc_rctl |= RCTL_LPE;
3110 
3111 	if (MCLBYTES == 2048) {
3112 		sc->sc_rctl |= RCTL_2k;
3113 	} else {
3114 		if (sc->sc_type >= WM_T_82543) {
3115 			switch(MCLBYTES) {
3116 			case 4096:
3117 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
3118 				break;
3119 			case 8192:
3120 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
3121 				break;
3122 			case 16384:
3123 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
3124 				break;
3125 			default:
3126 				panic("wm_init: MCLBYTES %d unsupported",
3127 				    MCLBYTES);
3128 				break;
3129 			}
3130 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
3131 	}
3132 
3133 	/* Set the receive filter. */
3134 	wm_set_filter(sc);
3135 
3136 	/* Start the one second link check clock. */
3137 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
3138 
3139 	/* ...all done! */
3140 	ifp->if_flags |= IFF_RUNNING;
3141 	ifp->if_flags &= ~IFF_OACTIVE;
3142 
3143  out:
3144 	if (error)
3145 		log(LOG_ERR, "%s: interface not running\n",
3146 		    sc->sc_dev.dv_xname);
3147 	return (error);
3148 }
3149 
3150 /*
3151  * wm_rxdrain:
3152  *
3153  *	Drain the receive queue.
3154  */
3155 static void
3156 wm_rxdrain(struct wm_softc *sc)
3157 {
3158 	struct wm_rxsoft *rxs;
3159 	int i;
3160 
3161 	for (i = 0; i < WM_NRXDESC; i++) {
3162 		rxs = &sc->sc_rxsoft[i];
3163 		if (rxs->rxs_mbuf != NULL) {
3164 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3165 			m_freem(rxs->rxs_mbuf);
3166 			rxs->rxs_mbuf = NULL;
3167 		}
3168 	}
3169 }
3170 
3171 /*
3172  * wm_stop:		[ifnet interface function]
3173  *
3174  *	Stop transmission on the interface.
3175  */
3176 static void
3177 wm_stop(struct ifnet *ifp, int disable)
3178 {
3179 	struct wm_softc *sc = ifp->if_softc;
3180 	struct wm_txsoft *txs;
3181 	int i;
3182 
3183 	/* Stop the one second clock. */
3184 	callout_stop(&sc->sc_tick_ch);
3185 
3186 	/* Stop the 82547 Tx FIFO stall check timer. */
3187 	if (sc->sc_type == WM_T_82547)
3188 		callout_stop(&sc->sc_txfifo_ch);
3189 
3190 	if (sc->sc_flags & WM_F_HAS_MII) {
3191 		/* Down the MII. */
3192 		mii_down(&sc->sc_mii);
3193 	}
3194 
3195 	/* Stop the transmit and receive processes. */
3196 	CSR_WRITE(sc, WMREG_TCTL, 0);
3197 	CSR_WRITE(sc, WMREG_RCTL, 0);
3198 
3199 	/*
3200 	 * Clear the interrupt mask to ensure the device cannot assert its
3201 	 * interrupt line.
3202 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
3203 	 * any currently pending or shared interrupt.
3204 	 */
3205 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3206 	sc->sc_icr = 0;
3207 
3208 	/* Release any queued transmit buffers. */
3209 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
3210 		txs = &sc->sc_txsoft[i];
3211 		if (txs->txs_mbuf != NULL) {
3212 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3213 			m_freem(txs->txs_mbuf);
3214 			txs->txs_mbuf = NULL;
3215 		}
3216 	}
3217 
3218 	if (disable)
3219 		wm_rxdrain(sc);
3220 
3221 	/* Mark the interface as down and cancel the watchdog timer. */
3222 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3223 	ifp->if_timer = 0;
3224 }
3225 
3226 /*
3227  * wm_acquire_eeprom:
3228  *
3229  *	Perform the EEPROM handshake required on some chips.
3230  */
3231 static int
3232 wm_acquire_eeprom(struct wm_softc *sc)
3233 {
3234 	uint32_t reg;
3235 	int x;
3236 	int ret = 0;
3237 
3238 	/* always success */
3239 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3240 		return 0;
3241 
3242 	if (sc->sc_flags & WM_F_SWFW_SYNC) {
3243 		/* this will also do wm_get_swsm_semaphore() if needed */
3244 		ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
3245 	} else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
3246 		ret = wm_get_swsm_semaphore(sc);
3247 	}
3248 
3249 	if (ret)
3250 		return 1;
3251 
3252 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
3253 		reg = CSR_READ(sc, WMREG_EECD);
3254 
3255 		/* Request EEPROM access. */
3256 		reg |= EECD_EE_REQ;
3257 		CSR_WRITE(sc, WMREG_EECD, reg);
3258 
3259 		/* ..and wait for it to be granted. */
3260 		for (x = 0; x < 1000; x++) {
3261 			reg = CSR_READ(sc, WMREG_EECD);
3262 			if (reg & EECD_EE_GNT)
3263 				break;
3264 			delay(5);
3265 		}
3266 		if ((reg & EECD_EE_GNT) == 0) {
3267 			aprint_error("%s: could not acquire EEPROM GNT\n",
3268 			    sc->sc_dev.dv_xname);
3269 			reg &= ~EECD_EE_REQ;
3270 			CSR_WRITE(sc, WMREG_EECD, reg);
3271 			if (sc->sc_flags & WM_F_SWFW_SYNC)
3272 				wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3273 			else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3274 				wm_put_swsm_semaphore(sc);
3275 			return (1);
3276 		}
3277 	}
3278 
3279 	return (0);
3280 }
3281 
3282 /*
3283  * wm_release_eeprom:
3284  *
3285  *	Release the EEPROM mutex.
3286  */
3287 static void
3288 wm_release_eeprom(struct wm_softc *sc)
3289 {
3290 	uint32_t reg;
3291 
3292 	/* always success */
3293 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3294 		return;
3295 
3296 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3297 		reg = CSR_READ(sc, WMREG_EECD);
3298 		reg &= ~EECD_EE_REQ;
3299 		CSR_WRITE(sc, WMREG_EECD, reg);
3300 	}
3301 
3302 	if (sc->sc_flags & WM_F_SWFW_SYNC)
3303 		wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3304 	else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3305 		wm_put_swsm_semaphore(sc);
3306 }
3307 
3308 /*
3309  * wm_eeprom_sendbits:
3310  *
3311  *	Send a series of bits to the EEPROM.
3312  */
3313 static void
3314 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3315 {
3316 	uint32_t reg;
3317 	int x;
3318 
3319 	reg = CSR_READ(sc, WMREG_EECD);
3320 
3321 	for (x = nbits; x > 0; x--) {
3322 		if (bits & (1U << (x - 1)))
3323 			reg |= EECD_DI;
3324 		else
3325 			reg &= ~EECD_DI;
3326 		CSR_WRITE(sc, WMREG_EECD, reg);
3327 		delay(2);
3328 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3329 		delay(2);
3330 		CSR_WRITE(sc, WMREG_EECD, reg);
3331 		delay(2);
3332 	}
3333 }
3334 
3335 /*
3336  * wm_eeprom_recvbits:
3337  *
3338  *	Receive a series of bits from the EEPROM.
3339  */
3340 static void
3341 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3342 {
3343 	uint32_t reg, val;
3344 	int x;
3345 
3346 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3347 
3348 	val = 0;
3349 	for (x = nbits; x > 0; x--) {
3350 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3351 		delay(2);
3352 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3353 			val |= (1U << (x - 1));
3354 		CSR_WRITE(sc, WMREG_EECD, reg);
3355 		delay(2);
3356 	}
3357 	*valp = val;
3358 }
3359 
3360 /*
3361  * wm_read_eeprom_uwire:
3362  *
3363  *	Read a word from the EEPROM using the MicroWire protocol.
3364  */
3365 static int
3366 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3367 {
3368 	uint32_t reg, val;
3369 	int i;
3370 
3371 	for (i = 0; i < wordcnt; i++) {
3372 		/* Clear SK and DI. */
3373 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3374 		CSR_WRITE(sc, WMREG_EECD, reg);
3375 
3376 		/* Set CHIP SELECT. */
3377 		reg |= EECD_CS;
3378 		CSR_WRITE(sc, WMREG_EECD, reg);
3379 		delay(2);
3380 
3381 		/* Shift in the READ command. */
3382 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3383 
3384 		/* Shift in address. */
3385 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3386 
3387 		/* Shift out the data. */
3388 		wm_eeprom_recvbits(sc, &val, 16);
3389 		data[i] = val & 0xffff;
3390 
3391 		/* Clear CHIP SELECT. */
3392 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3393 		CSR_WRITE(sc, WMREG_EECD, reg);
3394 		delay(2);
3395 	}
3396 
3397 	return (0);
3398 }
3399 
3400 /*
3401  * wm_spi_eeprom_ready:
3402  *
3403  *	Wait for a SPI EEPROM to be ready for commands.
3404  */
3405 static int
3406 wm_spi_eeprom_ready(struct wm_softc *sc)
3407 {
3408 	uint32_t val;
3409 	int usec;
3410 
3411 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3412 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3413 		wm_eeprom_recvbits(sc, &val, 8);
3414 		if ((val & SPI_SR_RDY) == 0)
3415 			break;
3416 	}
3417 	if (usec >= SPI_MAX_RETRIES) {
3418 		aprint_error("%s: EEPROM failed to become ready\n",
3419 		    sc->sc_dev.dv_xname);
3420 		return (1);
3421 	}
3422 	return (0);
3423 }
3424 
3425 /*
3426  * wm_read_eeprom_spi:
3427  *
3428  *	Read a work from the EEPROM using the SPI protocol.
3429  */
3430 static int
3431 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3432 {
3433 	uint32_t reg, val;
3434 	int i;
3435 	uint8_t opc;
3436 
3437 	/* Clear SK and CS. */
3438 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3439 	CSR_WRITE(sc, WMREG_EECD, reg);
3440 	delay(2);
3441 
3442 	if (wm_spi_eeprom_ready(sc))
3443 		return (1);
3444 
3445 	/* Toggle CS to flush commands. */
3446 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3447 	delay(2);
3448 	CSR_WRITE(sc, WMREG_EECD, reg);
3449 	delay(2);
3450 
3451 	opc = SPI_OPC_READ;
3452 	if (sc->sc_ee_addrbits == 8 && word >= 128)
3453 		opc |= SPI_OPC_A8;
3454 
3455 	wm_eeprom_sendbits(sc, opc, 8);
3456 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3457 
3458 	for (i = 0; i < wordcnt; i++) {
3459 		wm_eeprom_recvbits(sc, &val, 16);
3460 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3461 	}
3462 
3463 	/* Raise CS and clear SK. */
3464 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3465 	CSR_WRITE(sc, WMREG_EECD, reg);
3466 	delay(2);
3467 
3468 	return (0);
3469 }
3470 
3471 #define EEPROM_CHECKSUM		0xBABA
3472 #define EEPROM_SIZE		0x0040
3473 
3474 /*
3475  * wm_validate_eeprom_checksum
3476  *
3477  * The checksum is defined as the sum of the first 64 (16 bit) words.
3478  */
3479 static int
3480 wm_validate_eeprom_checksum(struct wm_softc *sc)
3481 {
3482 	uint16_t checksum;
3483 	uint16_t eeprom_data;
3484 	int i;
3485 
3486 	checksum = 0;
3487 
3488 	for (i = 0; i < EEPROM_SIZE; i++) {
3489 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
3490 			return 1;
3491 		checksum += eeprom_data;
3492 	}
3493 
3494 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
3495 		return 1;
3496 
3497 	return 0;
3498 }
3499 
3500 /*
3501  * wm_read_eeprom:
3502  *
3503  *	Read data from the serial EEPROM.
3504  */
3505 static int
3506 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3507 {
3508 	int rv;
3509 
3510 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
3511 		return 1;
3512 
3513 	if (wm_acquire_eeprom(sc))
3514 		return 1;
3515 
3516 	if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
3517 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
3518 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
3519 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3520 	else
3521 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3522 
3523 	wm_release_eeprom(sc);
3524 	return rv;
3525 }
3526 
3527 static int
3528 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
3529     uint16_t *data)
3530 {
3531 	int i, eerd = 0;
3532 	int error = 0;
3533 
3534 	for (i = 0; i < wordcnt; i++) {
3535 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
3536 
3537 		CSR_WRITE(sc, WMREG_EERD, eerd);
3538 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
3539 		if (error != 0)
3540 			break;
3541 
3542 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
3543 	}
3544 
3545 	return error;
3546 }
3547 
3548 static int
3549 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
3550 {
3551 	uint32_t attempts = 100000;
3552 	uint32_t i, reg = 0;
3553 	int32_t done = -1;
3554 
3555 	for (i = 0; i < attempts; i++) {
3556 		reg = CSR_READ(sc, rw);
3557 
3558 		if (reg & EERD_DONE) {
3559 			done = 0;
3560 			break;
3561 		}
3562 		delay(5);
3563 	}
3564 
3565 	return done;
3566 }
3567 
3568 /*
3569  * wm_add_rxbuf:
3570  *
3571  *	Add a receive buffer to the indiciated descriptor.
3572  */
3573 static int
3574 wm_add_rxbuf(struct wm_softc *sc, int idx)
3575 {
3576 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3577 	struct mbuf *m;
3578 	int error;
3579 
3580 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3581 	if (m == NULL)
3582 		return (ENOBUFS);
3583 
3584 	MCLGET(m, M_DONTWAIT);
3585 	if ((m->m_flags & M_EXT) == 0) {
3586 		m_freem(m);
3587 		return (ENOBUFS);
3588 	}
3589 
3590 	if (rxs->rxs_mbuf != NULL)
3591 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3592 
3593 	rxs->rxs_mbuf = m;
3594 
3595 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3596 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3597 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3598 	if (error) {
3599 		/* XXX XXX XXX */
3600 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3601 		    sc->sc_dev.dv_xname, idx, error);
3602 		panic("wm_add_rxbuf");
3603 	}
3604 
3605 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3606 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3607 
3608 	WM_INIT_RXDESC(sc, idx);
3609 
3610 	return (0);
3611 }
3612 
3613 /*
3614  * wm_set_ral:
3615  *
3616  *	Set an entery in the receive address list.
3617  */
3618 static void
3619 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3620 {
3621 	uint32_t ral_lo, ral_hi;
3622 
3623 	if (enaddr != NULL) {
3624 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3625 		    (enaddr[3] << 24);
3626 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3627 		ral_hi |= RAL_AV;
3628 	} else {
3629 		ral_lo = 0;
3630 		ral_hi = 0;
3631 	}
3632 
3633 	if (sc->sc_type >= WM_T_82544) {
3634 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3635 		    ral_lo);
3636 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3637 		    ral_hi);
3638 	} else {
3639 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3640 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3641 	}
3642 }
3643 
3644 /*
3645  * wm_mchash:
3646  *
3647  *	Compute the hash of the multicast address for the 4096-bit
3648  *	multicast filter.
3649  */
3650 static uint32_t
3651 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3652 {
3653 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3654 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3655 	uint32_t hash;
3656 
3657 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3658 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3659 
3660 	return (hash & 0xfff);
3661 }
3662 
3663 /*
3664  * wm_set_filter:
3665  *
3666  *	Set up the receive filter.
3667  */
3668 static void
3669 wm_set_filter(struct wm_softc *sc)
3670 {
3671 	struct ethercom *ec = &sc->sc_ethercom;
3672 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3673 	struct ether_multi *enm;
3674 	struct ether_multistep step;
3675 	bus_addr_t mta_reg;
3676 	uint32_t hash, reg, bit;
3677 	int i;
3678 
3679 	if (sc->sc_type >= WM_T_82544)
3680 		mta_reg = WMREG_CORDOVA_MTA;
3681 	else
3682 		mta_reg = WMREG_MTA;
3683 
3684 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3685 
3686 	if (ifp->if_flags & IFF_BROADCAST)
3687 		sc->sc_rctl |= RCTL_BAM;
3688 	if (ifp->if_flags & IFF_PROMISC) {
3689 		sc->sc_rctl |= RCTL_UPE;
3690 		goto allmulti;
3691 	}
3692 
3693 	/*
3694 	 * Set the station address in the first RAL slot, and
3695 	 * clear the remaining slots.
3696 	 */
3697 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3698 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3699 		wm_set_ral(sc, NULL, i);
3700 
3701 	/* Clear out the multicast table. */
3702 	for (i = 0; i < WM_MC_TABSIZE; i++)
3703 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3704 
3705 	ETHER_FIRST_MULTI(step, ec, enm);
3706 	while (enm != NULL) {
3707 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3708 			/*
3709 			 * We must listen to a range of multicast addresses.
3710 			 * For now, just accept all multicasts, rather than
3711 			 * trying to set only those filter bits needed to match
3712 			 * the range.  (At this time, the only use of address
3713 			 * ranges is for IP multicast routing, for which the
3714 			 * range is big enough to require all bits set.)
3715 			 */
3716 			goto allmulti;
3717 		}
3718 
3719 		hash = wm_mchash(sc, enm->enm_addrlo);
3720 
3721 		reg = (hash >> 5) & 0x7f;
3722 		bit = hash & 0x1f;
3723 
3724 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3725 		hash |= 1U << bit;
3726 
3727 		/* XXX Hardware bug?? */
3728 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3729 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3730 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3731 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3732 		} else
3733 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3734 
3735 		ETHER_NEXT_MULTI(step, enm);
3736 	}
3737 
3738 	ifp->if_flags &= ~IFF_ALLMULTI;
3739 	goto setit;
3740 
3741  allmulti:
3742 	ifp->if_flags |= IFF_ALLMULTI;
3743 	sc->sc_rctl |= RCTL_MPE;
3744 
3745  setit:
3746 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3747 }
3748 
3749 /*
3750  * wm_tbi_mediainit:
3751  *
3752  *	Initialize media for use on 1000BASE-X devices.
3753  */
3754 static void
3755 wm_tbi_mediainit(struct wm_softc *sc)
3756 {
3757 	const char *sep = "";
3758 
3759 	if (sc->sc_type < WM_T_82543)
3760 		sc->sc_tipg = TIPG_WM_DFLT;
3761 	else
3762 		sc->sc_tipg = TIPG_LG_DFLT;
3763 
3764 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3765 	    wm_tbi_mediastatus);
3766 
3767 	/*
3768 	 * SWD Pins:
3769 	 *
3770 	 *	0 = Link LED (output)
3771 	 *	1 = Loss Of Signal (input)
3772 	 */
3773 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3774 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3775 
3776 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3777 
3778 #define	ADD(ss, mm, dd)							\
3779 do {									\
3780 	aprint_normal("%s%s", sep, ss);					\
3781 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3782 	sep = ", ";							\
3783 } while (/*CONSTCOND*/0)
3784 
3785 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
3786 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3787 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3788 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3789 	aprint_normal("\n");
3790 
3791 #undef ADD
3792 
3793 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3794 }
3795 
3796 /*
3797  * wm_tbi_mediastatus:	[ifmedia interface function]
3798  *
3799  *	Get the current interface media status on a 1000BASE-X device.
3800  */
3801 static void
3802 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3803 {
3804 	struct wm_softc *sc = ifp->if_softc;
3805 	uint32_t ctrl;
3806 
3807 	ifmr->ifm_status = IFM_AVALID;
3808 	ifmr->ifm_active = IFM_ETHER;
3809 
3810 	if (sc->sc_tbi_linkup == 0) {
3811 		ifmr->ifm_active |= IFM_NONE;
3812 		return;
3813 	}
3814 
3815 	ifmr->ifm_status |= IFM_ACTIVE;
3816 	ifmr->ifm_active |= IFM_1000_SX;
3817 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3818 		ifmr->ifm_active |= IFM_FDX;
3819 	ctrl = CSR_READ(sc, WMREG_CTRL);
3820 	if (ctrl & CTRL_RFCE)
3821 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3822 	if (ctrl & CTRL_TFCE)
3823 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3824 }
3825 
3826 /*
3827  * wm_tbi_mediachange:	[ifmedia interface function]
3828  *
3829  *	Set hardware to newly-selected media on a 1000BASE-X device.
3830  */
3831 static int
3832 wm_tbi_mediachange(struct ifnet *ifp)
3833 {
3834 	struct wm_softc *sc = ifp->if_softc;
3835 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3836 	uint32_t status;
3837 	int i;
3838 
3839 	sc->sc_txcw = ife->ifm_data;
3840 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3841 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3842 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3843 	sc->sc_txcw |= TXCW_ANE;
3844 
3845 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3846 	delay(10000);
3847 
3848 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3849 
3850 	sc->sc_tbi_anstate = 0;
3851 
3852 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3853 		/* Have signal; wait for the link to come up. */
3854 		for (i = 0; i < 50; i++) {
3855 			delay(10000);
3856 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3857 				break;
3858 		}
3859 
3860 		status = CSR_READ(sc, WMREG_STATUS);
3861 		if (status & STATUS_LU) {
3862 			/* Link is up. */
3863 			DPRINTF(WM_DEBUG_LINK,
3864 			    ("%s: LINK: set media -> link up %s\n",
3865 			    sc->sc_dev.dv_xname,
3866 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3867 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3868 			sc->sc_fcrtl &= ~FCRTL_XONE;
3869 			if (status & STATUS_FD)
3870 				sc->sc_tctl |=
3871 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3872 			else
3873 				sc->sc_tctl |=
3874 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3875 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3876 				sc->sc_fcrtl |= FCRTL_XONE;
3877 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3878 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3879 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3880 				      sc->sc_fcrtl);
3881 			sc->sc_tbi_linkup = 1;
3882 		} else {
3883 			/* Link is down. */
3884 			DPRINTF(WM_DEBUG_LINK,
3885 			    ("%s: LINK: set media -> link down\n",
3886 			    sc->sc_dev.dv_xname));
3887 			sc->sc_tbi_linkup = 0;
3888 		}
3889 	} else {
3890 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3891 		    sc->sc_dev.dv_xname));
3892 		sc->sc_tbi_linkup = 0;
3893 	}
3894 
3895 	wm_tbi_set_linkled(sc);
3896 
3897 	return (0);
3898 }
3899 
3900 /*
3901  * wm_tbi_set_linkled:
3902  *
3903  *	Update the link LED on 1000BASE-X devices.
3904  */
3905 static void
3906 wm_tbi_set_linkled(struct wm_softc *sc)
3907 {
3908 
3909 	if (sc->sc_tbi_linkup)
3910 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3911 	else
3912 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3913 
3914 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3915 }
3916 
3917 /*
3918  * wm_tbi_check_link:
3919  *
3920  *	Check the link on 1000BASE-X devices.
3921  */
3922 static void
3923 wm_tbi_check_link(struct wm_softc *sc)
3924 {
3925 	uint32_t rxcw, ctrl, status;
3926 
3927 	if (sc->sc_tbi_anstate == 0)
3928 		return;
3929 	else if (sc->sc_tbi_anstate > 1) {
3930 		DPRINTF(WM_DEBUG_LINK,
3931 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3932 		    sc->sc_tbi_anstate));
3933 		sc->sc_tbi_anstate--;
3934 		return;
3935 	}
3936 
3937 	sc->sc_tbi_anstate = 0;
3938 
3939 	rxcw = CSR_READ(sc, WMREG_RXCW);
3940 	ctrl = CSR_READ(sc, WMREG_CTRL);
3941 	status = CSR_READ(sc, WMREG_STATUS);
3942 
3943 	if ((status & STATUS_LU) == 0) {
3944 		DPRINTF(WM_DEBUG_LINK,
3945 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3946 		sc->sc_tbi_linkup = 0;
3947 	} else {
3948 		DPRINTF(WM_DEBUG_LINK,
3949 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3950 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3951 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3952 		sc->sc_fcrtl &= ~FCRTL_XONE;
3953 		if (status & STATUS_FD)
3954 			sc->sc_tctl |=
3955 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3956 		else
3957 			sc->sc_tctl |=
3958 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3959 		if (ctrl & CTRL_TFCE)
3960 			sc->sc_fcrtl |= FCRTL_XONE;
3961 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3962 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3963 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3964 			      sc->sc_fcrtl);
3965 		sc->sc_tbi_linkup = 1;
3966 	}
3967 
3968 	wm_tbi_set_linkled(sc);
3969 }
3970 
3971 /*
3972  * wm_gmii_reset:
3973  *
3974  *	Reset the PHY.
3975  */
3976 static void
3977 wm_gmii_reset(struct wm_softc *sc)
3978 {
3979 	uint32_t reg;
3980 	int func = 0; /* XXX gcc */
3981 
3982 	if (sc->sc_type >= WM_T_80003) {
3983 		func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
3984 		if (wm_get_swfw_semaphore(sc,
3985 		    func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
3986 			return;
3987 	}
3988 	if (sc->sc_type >= WM_T_82544) {
3989 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3990 		delay(20000);
3991 
3992 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3993 		delay(20000);
3994 	} else {
3995 		/* The PHY reset pin is active-low. */
3996 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3997 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3998 		    CTRL_EXT_SWDPIN(4));
3999 		reg |= CTRL_EXT_SWDPIO(4);
4000 
4001 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
4002 		delay(10);
4003 
4004 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4005 		delay(10);
4006 
4007 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
4008 		delay(10);
4009 #if 0
4010 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
4011 #endif
4012 	}
4013 	if (sc->sc_type >= WM_T_80003)
4014 		wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4015 }
4016 
4017 /*
4018  * wm_gmii_mediainit:
4019  *
4020  *	Initialize media for use on 1000BASE-T devices.
4021  */
4022 static void
4023 wm_gmii_mediainit(struct wm_softc *sc)
4024 {
4025 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4026 
4027 	/* We have MII. */
4028 	sc->sc_flags |= WM_F_HAS_MII;
4029 
4030 	if (sc->sc_type >= WM_T_80003)
4031 		sc->sc_tipg =  TIPG_1000T_80003_DFLT;
4032 	else
4033 		sc->sc_tipg = TIPG_1000T_DFLT;
4034 
4035 	/*
4036 	 * Let the chip set speed/duplex on its own based on
4037 	 * signals from the PHY.
4038 	 * XXXbouyer - I'm not sure this is right for the 80003,
4039 	 * the em driver only sets CTRL_SLU here - but it seems to work.
4040 	 */
4041 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
4042 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4043 
4044 	/* Initialize our media structures and probe the GMII. */
4045 	sc->sc_mii.mii_ifp = ifp;
4046 
4047 	if (sc->sc_type >= WM_T_80003) {
4048 		sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
4049 		sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
4050 	} else if (sc->sc_type >= WM_T_82544) {
4051 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
4052 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
4053 	} else {
4054 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
4055 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
4056 	}
4057 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
4058 
4059 	wm_gmii_reset(sc);
4060 
4061 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
4062 	    wm_gmii_mediastatus);
4063 
4064 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4065 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
4066 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4067 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4068 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4069 	} else
4070 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4071 }
4072 
4073 /*
4074  * wm_gmii_mediastatus:	[ifmedia interface function]
4075  *
4076  *	Get the current interface media status on a 1000BASE-T device.
4077  */
4078 static void
4079 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4080 {
4081 	struct wm_softc *sc = ifp->if_softc;
4082 
4083 	mii_pollstat(&sc->sc_mii);
4084 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
4085 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
4086 			   sc->sc_flowflags;
4087 }
4088 
4089 /*
4090  * wm_gmii_mediachange:	[ifmedia interface function]
4091  *
4092  *	Set hardware to newly-selected media on a 1000BASE-T device.
4093  */
4094 static int
4095 wm_gmii_mediachange(struct ifnet *ifp)
4096 {
4097 	struct wm_softc *sc = ifp->if_softc;
4098 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4099 
4100 	if (ifp->if_flags & IFF_UP) {
4101 		sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
4102 		sc->sc_ctrl |= CTRL_SLU;
4103 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
4104 			sc->sc_ctrl |= CTRL_ASDE;
4105 		} else {
4106 			sc->sc_ctrl &= ~CTRL_ASDE;
4107 			sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
4108 			if (ife->ifm_media & IFM_FDX)
4109 				sc->sc_ctrl |= CTRL_FD;
4110 			switch(IFM_SUBTYPE(ife->ifm_media)) {
4111 			case IFM_10_T:
4112 				sc->sc_ctrl |= CTRL_SPEED_10;
4113 				break;
4114 			case IFM_100_TX:
4115 				sc->sc_ctrl |= CTRL_SPEED_100;
4116 				break;
4117 			case IFM_1000_T:
4118 				sc->sc_ctrl |= CTRL_SPEED_1000;
4119 				break;
4120 			default:
4121 				panic("wm_gmii_mediachange: bad media 0x%x",
4122 				    ife->ifm_media);
4123 			}
4124 		}
4125 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4126 		mii_mediachg(&sc->sc_mii);
4127 	}
4128 	return (0);
4129 }
4130 
4131 #define	MDI_IO		CTRL_SWDPIN(2)
4132 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
4133 #define	MDI_CLK		CTRL_SWDPIN(3)
4134 
4135 static void
4136 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
4137 {
4138 	uint32_t i, v;
4139 
4140 	v = CSR_READ(sc, WMREG_CTRL);
4141 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4142 	v |= MDI_DIR | CTRL_SWDPIO(3);
4143 
4144 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
4145 		if (data & i)
4146 			v |= MDI_IO;
4147 		else
4148 			v &= ~MDI_IO;
4149 		CSR_WRITE(sc, WMREG_CTRL, v);
4150 		delay(10);
4151 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4152 		delay(10);
4153 		CSR_WRITE(sc, WMREG_CTRL, v);
4154 		delay(10);
4155 	}
4156 }
4157 
4158 static uint32_t
4159 i82543_mii_recvbits(struct wm_softc *sc)
4160 {
4161 	uint32_t v, i, data = 0;
4162 
4163 	v = CSR_READ(sc, WMREG_CTRL);
4164 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4165 	v |= CTRL_SWDPIO(3);
4166 
4167 	CSR_WRITE(sc, WMREG_CTRL, v);
4168 	delay(10);
4169 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4170 	delay(10);
4171 	CSR_WRITE(sc, WMREG_CTRL, v);
4172 	delay(10);
4173 
4174 	for (i = 0; i < 16; i++) {
4175 		data <<= 1;
4176 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4177 		delay(10);
4178 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
4179 			data |= 1;
4180 		CSR_WRITE(sc, WMREG_CTRL, v);
4181 		delay(10);
4182 	}
4183 
4184 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4185 	delay(10);
4186 	CSR_WRITE(sc, WMREG_CTRL, v);
4187 	delay(10);
4188 
4189 	return (data);
4190 }
4191 
4192 #undef MDI_IO
4193 #undef MDI_DIR
4194 #undef MDI_CLK
4195 
4196 /*
4197  * wm_gmii_i82543_readreg:	[mii interface function]
4198  *
4199  *	Read a PHY register on the GMII (i82543 version).
4200  */
4201 static int
4202 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
4203 {
4204 	struct wm_softc *sc = (void *) self;
4205 	int rv;
4206 
4207 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
4208 	i82543_mii_sendbits(sc, reg | (phy << 5) |
4209 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
4210 	rv = i82543_mii_recvbits(sc) & 0xffff;
4211 
4212 	DPRINTF(WM_DEBUG_GMII,
4213 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
4214 	    sc->sc_dev.dv_xname, phy, reg, rv));
4215 
4216 	return (rv);
4217 }
4218 
4219 /*
4220  * wm_gmii_i82543_writereg:	[mii interface function]
4221  *
4222  *	Write a PHY register on the GMII (i82543 version).
4223  */
4224 static void
4225 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
4226 {
4227 	struct wm_softc *sc = (void *) self;
4228 
4229 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
4230 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
4231 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
4232 	    (MII_COMMAND_START << 30), 32);
4233 }
4234 
4235 /*
4236  * wm_gmii_i82544_readreg:	[mii interface function]
4237  *
4238  *	Read a PHY register on the GMII.
4239  */
4240 static int
4241 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
4242 {
4243 	struct wm_softc *sc = (void *) self;
4244 	uint32_t mdic = 0;
4245 	int i, rv;
4246 
4247 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
4248 	    MDIC_REGADD(reg));
4249 
4250 	for (i = 0; i < 320; i++) {
4251 		mdic = CSR_READ(sc, WMREG_MDIC);
4252 		if (mdic & MDIC_READY)
4253 			break;
4254 		delay(10);
4255 	}
4256 
4257 	if ((mdic & MDIC_READY) == 0) {
4258 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
4259 		    sc->sc_dev.dv_xname, phy, reg);
4260 		rv = 0;
4261 	} else if (mdic & MDIC_E) {
4262 #if 0 /* This is normal if no PHY is present. */
4263 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
4264 		    sc->sc_dev.dv_xname, phy, reg);
4265 #endif
4266 		rv = 0;
4267 	} else {
4268 		rv = MDIC_DATA(mdic);
4269 		if (rv == 0xffff)
4270 			rv = 0;
4271 	}
4272 
4273 	return (rv);
4274 }
4275 
4276 /*
4277  * wm_gmii_i82544_writereg:	[mii interface function]
4278  *
4279  *	Write a PHY register on the GMII.
4280  */
4281 static void
4282 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
4283 {
4284 	struct wm_softc *sc = (void *) self;
4285 	uint32_t mdic = 0;
4286 	int i;
4287 
4288 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
4289 	    MDIC_REGADD(reg) | MDIC_DATA(val));
4290 
4291 	for (i = 0; i < 320; i++) {
4292 		mdic = CSR_READ(sc, WMREG_MDIC);
4293 		if (mdic & MDIC_READY)
4294 			break;
4295 		delay(10);
4296 	}
4297 
4298 	if ((mdic & MDIC_READY) == 0)
4299 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
4300 		    sc->sc_dev.dv_xname, phy, reg);
4301 	else if (mdic & MDIC_E)
4302 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
4303 		    sc->sc_dev.dv_xname, phy, reg);
4304 }
4305 
4306 /*
4307  * wm_gmii_i80003_readreg:	[mii interface function]
4308  *
4309  *	Read a PHY register on the kumeran
4310  * This could be handled by the PHY layer if we didn't have to lock the
4311  * ressource ...
4312  */
4313 static int
4314 wm_gmii_i80003_readreg(struct device *self, int phy, int reg)
4315 {
4316 	struct wm_softc *sc = (void *) self;
4317 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4318 	int rv;
4319 
4320 	if (phy != 1) /* only one PHY on kumeran bus */
4321 		return 0;
4322 
4323 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4324 		return 0;
4325 
4326 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4327 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4328 		    reg >> GG82563_PAGE_SHIFT);
4329 	} else {
4330 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4331 		    reg >> GG82563_PAGE_SHIFT);
4332 	}
4333 
4334 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
4335 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4336 	return (rv);
4337 }
4338 
4339 /*
4340  * wm_gmii_i80003_writereg:	[mii interface function]
4341  *
4342  *	Write a PHY register on the kumeran.
4343  * This could be handled by the PHY layer if we didn't have to lock the
4344  * ressource ...
4345  */
4346 static void
4347 wm_gmii_i80003_writereg(struct device *self, int phy, int reg, int val)
4348 {
4349 	struct wm_softc *sc = (void *) self;
4350 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4351 
4352 	if (phy != 1) /* only one PHY on kumeran bus */
4353 		return;
4354 
4355 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4356 		return;
4357 
4358 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4359 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4360 		    reg >> GG82563_PAGE_SHIFT);
4361 	} else {
4362 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4363 		    reg >> GG82563_PAGE_SHIFT);
4364 	}
4365 
4366 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
4367 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4368 }
4369 
4370 /*
4371  * wm_gmii_statchg:	[mii interface function]
4372  *
4373  *	Callback from MII layer when media changes.
4374  */
4375 static void
4376 wm_gmii_statchg(struct device *self)
4377 {
4378 	struct wm_softc *sc = (void *) self;
4379 	struct mii_data *mii = &sc->sc_mii;
4380 
4381 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
4382 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4383 	sc->sc_fcrtl &= ~FCRTL_XONE;
4384 
4385 	/*
4386 	 * Get flow control negotiation result.
4387 	 */
4388 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
4389 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
4390 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
4391 		mii->mii_media_active &= ~IFM_ETH_FMASK;
4392 	}
4393 
4394 	if (sc->sc_flowflags & IFM_FLOW) {
4395 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
4396 			sc->sc_ctrl |= CTRL_TFCE;
4397 			sc->sc_fcrtl |= FCRTL_XONE;
4398 		}
4399 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
4400 			sc->sc_ctrl |= CTRL_RFCE;
4401 	}
4402 
4403 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
4404 		DPRINTF(WM_DEBUG_LINK,
4405 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
4406 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4407 	} else  {
4408 		DPRINTF(WM_DEBUG_LINK,
4409 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
4410 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4411 	}
4412 
4413 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4414 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4415 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
4416 						 : WMREG_FCRTL, sc->sc_fcrtl);
4417 	if (sc->sc_type >= WM_T_80003) {
4418 		switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
4419 		case IFM_1000_T:
4420 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4421 			    KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
4422 			sc->sc_tipg =  TIPG_1000T_80003_DFLT;
4423 			break;
4424 		default:
4425 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4426 			    KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
4427 			sc->sc_tipg =  TIPG_10_100_80003_DFLT;
4428 			break;
4429 		}
4430 		CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4431 	}
4432 }
4433 
4434 /*
4435  * wm_kmrn_i80003_readreg:
4436  *
4437  *	Read a kumeran register
4438  */
4439 static int
4440 wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
4441 {
4442 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4443 	int rv;
4444 
4445 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4446 		return 0;
4447 
4448 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4449 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4450 	    KUMCTRLSTA_REN);
4451 	delay(2);
4452 
4453 	rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
4454 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4455 	return (rv);
4456 }
4457 
4458 /*
4459  * wm_kmrn_i80003_writereg:
4460  *
4461  *	Write a kumeran register
4462  */
4463 static void
4464 wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
4465 {
4466 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4467 
4468 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4469 		return;
4470 
4471 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4472 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4473 	    (val & KUMCTRLSTA_MASK));
4474 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4475 }
4476 
4477 static int
4478 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
4479 {
4480 	uint32_t eecd = 0;
4481 
4482 	if (sc->sc_type == WM_T_82573) {
4483 		eecd = CSR_READ(sc, WMREG_EECD);
4484 
4485 		/* Isolate bits 15 & 16 */
4486 		eecd = ((eecd >> 15) & 0x03);
4487 
4488 		/* If both bits are set, device is Flash type */
4489 		if (eecd == 0x03) {
4490 			return 0;
4491 		}
4492 	}
4493 	return 1;
4494 }
4495 
4496 static int
4497 wm_get_swsm_semaphore(struct wm_softc *sc)
4498 {
4499 	int32_t timeout;
4500 	uint32_t swsm;
4501 
4502 	/* Get the FW semaphore. */
4503 	timeout = 1000 + 1; /* XXX */
4504 	while (timeout) {
4505 		swsm = CSR_READ(sc, WMREG_SWSM);
4506 		swsm |= SWSM_SWESMBI;
4507 		CSR_WRITE(sc, WMREG_SWSM, swsm);
4508 		/* if we managed to set the bit we got the semaphore. */
4509 		swsm = CSR_READ(sc, WMREG_SWSM);
4510 		if (swsm & SWSM_SWESMBI)
4511 			break;
4512 
4513 		delay(50);
4514 		timeout--;
4515 	}
4516 
4517 	if (timeout == 0) {
4518 		aprint_error("%s: could not acquire EEPROM GNT\n",
4519 		    sc->sc_dev.dv_xname);
4520 		/* Release semaphores */
4521 		wm_put_swsm_semaphore(sc);
4522 		return 1;
4523 	}
4524 	return 0;
4525 }
4526 
4527 static void
4528 wm_put_swsm_semaphore(struct wm_softc *sc)
4529 {
4530 	uint32_t swsm;
4531 
4532 	swsm = CSR_READ(sc, WMREG_SWSM);
4533 	swsm &= ~(SWSM_SWESMBI);
4534 	CSR_WRITE(sc, WMREG_SWSM, swsm);
4535 }
4536 
4537 static int
4538 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask) {
4539 	uint32_t swfw_sync;
4540 	uint32_t swmask = mask << SWFW_SOFT_SHIFT;
4541 	uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
4542 	int timeout = 200;
4543 
4544 	for(timeout = 0; timeout < 200; timeout++) {
4545 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
4546 			if (wm_get_swsm_semaphore(sc))
4547 				return 1;
4548 		}
4549 		swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
4550 		if ((swfw_sync & (swmask | fwmask)) == 0) {
4551 			swfw_sync |= swmask;
4552 			CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
4553 			if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4554 				wm_put_swsm_semaphore(sc);
4555 			return 0;
4556 		}
4557 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4558 			wm_put_swsm_semaphore(sc);
4559 		delay(5000);
4560 	}
4561 	printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
4562 	    sc->sc_dev.dv_xname, mask, swfw_sync);
4563 	return 1;
4564 }
4565 
4566 static void
4567 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask) {
4568 	uint32_t swfw_sync;
4569 
4570 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
4571 		while (wm_get_swsm_semaphore(sc) != 0)
4572 			continue;
4573 	}
4574 	swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
4575 	swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
4576 	CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
4577 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4578 		wm_put_swsm_semaphore(sc);
4579 }
4580