1 /* $NetBSD: if_wm.c,v 1.96 2005/02/27 00:27:33 perry Exp $ */ 2 3 /* 4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips. 40 * 41 * TODO (in order of importance): 42 * 43 * - Rework how parameters are loaded from the EEPROM. 44 * - Figure out what to do with the i82545GM and i82546GB 45 * SERDES controllers. 46 * - Fix hw VLAN assist. 47 */ 48 49 #include <sys/cdefs.h> 50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.96 2005/02/27 00:27:33 perry Exp $"); 51 52 #include "bpfilter.h" 53 #include "rnd.h" 54 55 #include <sys/param.h> 56 #include <sys/systm.h> 57 #include <sys/callout.h> 58 #include <sys/mbuf.h> 59 #include <sys/malloc.h> 60 #include <sys/kernel.h> 61 #include <sys/socket.h> 62 #include <sys/ioctl.h> 63 #include <sys/errno.h> 64 #include <sys/device.h> 65 #include <sys/queue.h> 66 #include <sys/syslog.h> 67 68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 69 70 #if NRND > 0 71 #include <sys/rnd.h> 72 #endif 73 74 #include <net/if.h> 75 #include <net/if_dl.h> 76 #include <net/if_media.h> 77 #include <net/if_ether.h> 78 79 #if NBPFILTER > 0 80 #include <net/bpf.h> 81 #endif 82 83 #include <netinet/in.h> /* XXX for struct ip */ 84 #include <netinet/in_systm.h> /* XXX for struct ip */ 85 #include <netinet/ip.h> /* XXX for struct ip */ 86 #include <netinet/tcp.h> /* XXX for struct tcphdr */ 87 88 #include <machine/bus.h> 89 #include <machine/intr.h> 90 #include <machine/endian.h> 91 92 #include <dev/mii/mii.h> 93 #include <dev/mii/miivar.h> 94 #include <dev/mii/mii_bitbang.h> 95 96 #include <dev/pci/pcireg.h> 97 #include <dev/pci/pcivar.h> 98 #include <dev/pci/pcidevs.h> 99 100 #include <dev/pci/if_wmreg.h> 101 102 #ifdef WM_DEBUG 103 #define WM_DEBUG_LINK 0x01 104 #define WM_DEBUG_TX 0x02 105 #define WM_DEBUG_RX 0x04 106 #define WM_DEBUG_GMII 0x08 107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK; 108 109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y 110 #else 111 #define DPRINTF(x, y) /* nothing */ 112 #endif /* WM_DEBUG */ 113 114 /* 115 * Transmit descriptor list size. Due to errata, we can only have 116 * 256 hardware descriptors in the ring on < 82544, but we use 4096 117 * on >= 82544. We tell the upper layers that they can queue a lot 118 * of packets, and we go ahead and manage up to 64 (16 for the i82547) 119 * of them at a time. 120 * 121 * We allow up to 256 (!) DMA segments per packet. Pathological packet 122 * chains containing many small mbufs have been observed in zero-copy 123 * situations with jumbo frames. 124 */ 125 #define WM_NTXSEGS 256 126 #define WM_IFQUEUELEN 256 127 #define WM_TXQUEUELEN_MAX 64 128 #define WM_TXQUEUELEN_MAX_82547 16 129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum) 130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1) 131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8) 132 #define WM_NTXDESC_82542 256 133 #define WM_NTXDESC_82544 4096 134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc) 135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1) 136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t)) 137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc)) 138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc)) 139 140 #define WM_MAXTXDMA ETHER_MAX_LEN_JUMBO 141 142 /* 143 * Receive descriptor list size. We have one Rx buffer for normal 144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized 145 * packet. We allocate 256 receive descriptors, each with a 2k 146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets. 147 */ 148 #define WM_NRXDESC 256 149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1) 150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK) 151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK) 152 153 /* 154 * Control structures are DMA'd to the i82542 chip. We allocate them in 155 * a single clump that maps to a single DMA segment to make serveral things 156 * easier. 157 */ 158 struct wm_control_data_82544 { 159 /* 160 * The receive descriptors. 161 */ 162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC]; 163 164 /* 165 * The transmit descriptors. Put these at the end, because 166 * we might use a smaller number of them. 167 */ 168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544]; 169 }; 170 171 struct wm_control_data_82542 { 172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC]; 173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542]; 174 }; 175 176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x) 177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)]) 178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)]) 179 180 /* 181 * Software state for transmit jobs. 182 */ 183 struct wm_txsoft { 184 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 185 bus_dmamap_t txs_dmamap; /* our DMA map */ 186 int txs_firstdesc; /* first descriptor in packet */ 187 int txs_lastdesc; /* last descriptor in packet */ 188 int txs_ndesc; /* # of descriptors used */ 189 }; 190 191 /* 192 * Software state for receive buffers. Each descriptor gets a 193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill 194 * more than one buffer, we chain them together. 195 */ 196 struct wm_rxsoft { 197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 198 bus_dmamap_t rxs_dmamap; /* our DMA map */ 199 }; 200 201 typedef enum { 202 WM_T_unknown = 0, 203 WM_T_82542_2_0, /* i82542 2.0 (really old) */ 204 WM_T_82542_2_1, /* i82542 2.1+ (old) */ 205 WM_T_82543, /* i82543 */ 206 WM_T_82544, /* i82544 */ 207 WM_T_82540, /* i82540 */ 208 WM_T_82545, /* i82545 */ 209 WM_T_82545_3, /* i82545 3.0+ */ 210 WM_T_82546, /* i82546 */ 211 WM_T_82546_3, /* i82546 3.0+ */ 212 WM_T_82541, /* i82541 */ 213 WM_T_82541_2, /* i82541 2.0+ */ 214 WM_T_82547, /* i82547 */ 215 WM_T_82547_2, /* i82547 2.0+ */ 216 } wm_chip_type; 217 218 /* 219 * Software state per device. 220 */ 221 struct wm_softc { 222 struct device sc_dev; /* generic device information */ 223 bus_space_tag_t sc_st; /* bus space tag */ 224 bus_space_handle_t sc_sh; /* bus space handle */ 225 bus_space_tag_t sc_iot; /* I/O space tag */ 226 bus_space_handle_t sc_ioh; /* I/O space handle */ 227 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 228 struct ethercom sc_ethercom; /* ethernet common data */ 229 void *sc_sdhook; /* shutdown hook */ 230 231 wm_chip_type sc_type; /* chip type */ 232 int sc_flags; /* flags; see below */ 233 int sc_bus_speed; /* PCI/PCIX bus speed */ 234 int sc_pcix_offset; /* PCIX capability register offset */ 235 int sc_flowflags; /* 802.3x flow control flags */ 236 237 void *sc_ih; /* interrupt cookie */ 238 239 int sc_ee_addrbits; /* EEPROM address bits */ 240 241 struct mii_data sc_mii; /* MII/media information */ 242 243 struct callout sc_tick_ch; /* tick callout */ 244 245 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 247 248 int sc_align_tweak; 249 250 /* 251 * Software state for the transmit and receive descriptors. 252 */ 253 int sc_txnum; /* must be a power of two */ 254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX]; 255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC]; 256 257 /* 258 * Control data structures. 259 */ 260 int sc_ntxdesc; /* must be a power of two */ 261 struct wm_control_data_82544 *sc_control_data; 262 #define sc_txdescs sc_control_data->wcd_txdescs 263 #define sc_rxdescs sc_control_data->wcd_rxdescs 264 265 #ifdef WM_EVENT_COUNTERS 266 /* Event counters. */ 267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */ 270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */ 271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */ 272 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 273 struct evcnt sc_ev_linkintr; /* Link interrupts */ 274 275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */ 277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */ 279 280 /* m_pullup() needed for Tx offload */ 281 struct evcnt sc_ev_txpullup_needed; 282 /* ...failed due to no memory */ 283 struct evcnt sc_ev_txpullup_nomem; 284 /* ...failed due to lack of space in first mbuf */ 285 struct evcnt sc_ev_txpullup_fail; 286 287 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */ 288 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */ 289 290 struct evcnt sc_ev_tu; /* Tx underrun */ 291 292 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */ 293 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */ 294 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */ 295 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */ 296 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */ 297 #endif /* WM_EVENT_COUNTERS */ 298 299 bus_addr_t sc_tdt_reg; /* offset of TDT register */ 300 301 int sc_txfree; /* number of free Tx descriptors */ 302 int sc_txnext; /* next ready Tx descriptor */ 303 304 int sc_txsfree; /* number of free Tx jobs */ 305 int sc_txsnext; /* next free Tx job */ 306 int sc_txsdirty; /* dirty Tx jobs */ 307 308 /* These 5 variables are used only on the 82547. */ 309 int sc_txfifo_size; /* Tx FIFO size */ 310 int sc_txfifo_head; /* current head of FIFO */ 311 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */ 312 int sc_txfifo_stall; /* Tx FIFO is stalled */ 313 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */ 314 315 bus_addr_t sc_rdt_reg; /* offset of RDT register */ 316 317 int sc_rxptr; /* next ready Rx descriptor/queue ent */ 318 int sc_rxdiscard; 319 int sc_rxlen; 320 struct mbuf *sc_rxhead; 321 struct mbuf *sc_rxtail; 322 struct mbuf **sc_rxtailp; 323 324 uint32_t sc_ctrl; /* prototype CTRL register */ 325 #if 0 326 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */ 327 #endif 328 uint32_t sc_icr; /* prototype interrupt bits */ 329 uint32_t sc_itr; /* prototype intr throttling reg */ 330 uint32_t sc_tctl; /* prototype TCTL register */ 331 uint32_t sc_rctl; /* prototype RCTL register */ 332 uint32_t sc_txcw; /* prototype TXCW register */ 333 uint32_t sc_tipg; /* prototype TIPG register */ 334 uint32_t sc_fcrtl; /* prototype FCRTL register */ 335 uint32_t sc_pba; /* prototype PBA register */ 336 337 int sc_tbi_linkup; /* TBI link status */ 338 int sc_tbi_anstate; /* autonegotiation state */ 339 340 int sc_mchash_type; /* multicast filter offset */ 341 342 #if NRND > 0 343 rndsource_element_t rnd_source; /* random source */ 344 #endif 345 }; 346 347 #define WM_RXCHAIN_RESET(sc) \ 348 do { \ 349 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \ 350 *(sc)->sc_rxtailp = NULL; \ 351 (sc)->sc_rxlen = 0; \ 352 } while (/*CONSTCOND*/0) 353 354 #define WM_RXCHAIN_LINK(sc, m) \ 355 do { \ 356 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \ 357 (sc)->sc_rxtailp = &(m)->m_next; \ 358 } while (/*CONSTCOND*/0) 359 360 /* sc_flags */ 361 #define WM_F_HAS_MII 0x01 /* has MII */ 362 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */ 363 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */ 364 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */ 365 #define WM_F_BUS64 0x20 /* bus is 64-bit */ 366 #define WM_F_PCIX 0x40 /* bus is PCI-X */ 367 #define WM_F_CSA 0x80 /* bus is CSA */ 368 369 #ifdef WM_EVENT_COUNTERS 370 #define WM_EVCNT_INCR(ev) (ev)->ev_count++ 371 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val) 372 #else 373 #define WM_EVCNT_INCR(ev) /* nothing */ 374 #define WM_EVCNT_ADD(ev, val) /* nothing */ 375 #endif 376 377 #define CSR_READ(sc, reg) \ 378 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg)) 379 #define CSR_WRITE(sc, reg, val) \ 380 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val)) 381 #define CSR_WRITE_FLUSH(sc) \ 382 (void) CSR_READ((sc), WMREG_STATUS) 383 384 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x))) 385 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x))) 386 387 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU) 388 #define WM_CDTXADDR_HI(sc, x) \ 389 (sizeof(bus_addr_t) == 8 ? \ 390 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0) 391 392 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU) 393 #define WM_CDRXADDR_HI(sc, x) \ 394 (sizeof(bus_addr_t) == 8 ? \ 395 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0) 396 397 #define WM_CDTXSYNC(sc, x, n, ops) \ 398 do { \ 399 int __x, __n; \ 400 \ 401 __x = (x); \ 402 __n = (n); \ 403 \ 404 /* If it will wrap around, sync to the end of the ring. */ \ 405 if ((__x + __n) > WM_NTXDESC(sc)) { \ 406 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 407 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \ 408 (WM_NTXDESC(sc) - __x), (ops)); \ 409 __n -= (WM_NTXDESC(sc) - __x); \ 410 __x = 0; \ 411 } \ 412 \ 413 /* Now sync whatever is left. */ \ 414 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 415 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \ 416 } while (/*CONSTCOND*/0) 417 418 #define WM_CDRXSYNC(sc, x, ops) \ 419 do { \ 420 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 421 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \ 422 } while (/*CONSTCOND*/0) 423 424 #define WM_INIT_RXDESC(sc, x) \ 425 do { \ 426 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 427 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \ 428 struct mbuf *__m = __rxs->rxs_mbuf; \ 429 \ 430 /* \ 431 * Note: We scoot the packet forward 2 bytes in the buffer \ 432 * so that the payload after the Ethernet header is aligned \ 433 * to a 4-byte boundary. \ 434 * \ 435 * XXX BRAINDAMAGE ALERT! \ 436 * The stupid chip uses the same size for every buffer, which \ 437 * is set in the Receive Control register. We are using the 2K \ 438 * size option, but what we REALLY want is (2K - 2)! For this \ 439 * reason, we can't "scoot" packets longer than the standard \ 440 * Ethernet MTU. On strict-alignment platforms, if the total \ 441 * size exceeds (2K - 2) we set align_tweak to 0 and let \ 442 * the upper layer copy the headers. \ 443 */ \ 444 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \ 445 \ 446 wm_set_dma_addr(&__rxd->wrx_addr, \ 447 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \ 448 __rxd->wrx_len = 0; \ 449 __rxd->wrx_cksum = 0; \ 450 __rxd->wrx_status = 0; \ 451 __rxd->wrx_errors = 0; \ 452 __rxd->wrx_special = 0; \ 453 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ 454 \ 455 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \ 456 } while (/*CONSTCOND*/0) 457 458 static void wm_start(struct ifnet *); 459 static void wm_watchdog(struct ifnet *); 460 static int wm_ioctl(struct ifnet *, u_long, caddr_t); 461 static int wm_init(struct ifnet *); 462 static void wm_stop(struct ifnet *, int); 463 464 static void wm_shutdown(void *); 465 466 static void wm_reset(struct wm_softc *); 467 static void wm_rxdrain(struct wm_softc *); 468 static int wm_add_rxbuf(struct wm_softc *, int); 469 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *); 470 static void wm_tick(void *); 471 472 static void wm_set_filter(struct wm_softc *); 473 474 static int wm_intr(void *); 475 static void wm_txintr(struct wm_softc *); 476 static void wm_rxintr(struct wm_softc *); 477 static void wm_linkintr(struct wm_softc *, uint32_t); 478 479 static void wm_tbi_mediainit(struct wm_softc *); 480 static int wm_tbi_mediachange(struct ifnet *); 481 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *); 482 483 static void wm_tbi_set_linkled(struct wm_softc *); 484 static void wm_tbi_check_link(struct wm_softc *); 485 486 static void wm_gmii_reset(struct wm_softc *); 487 488 static int wm_gmii_i82543_readreg(struct device *, int, int); 489 static void wm_gmii_i82543_writereg(struct device *, int, int, int); 490 491 static int wm_gmii_i82544_readreg(struct device *, int, int); 492 static void wm_gmii_i82544_writereg(struct device *, int, int, int); 493 494 static void wm_gmii_statchg(struct device *); 495 496 static void wm_gmii_mediainit(struct wm_softc *); 497 static int wm_gmii_mediachange(struct ifnet *); 498 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *); 499 500 static int wm_match(struct device *, struct cfdata *, void *); 501 static void wm_attach(struct device *, struct device *, void *); 502 503 CFATTACH_DECL(wm, sizeof(struct wm_softc), 504 wm_match, wm_attach, NULL, NULL); 505 506 static void wm_82547_txfifo_stall(void *); 507 508 /* 509 * Devices supported by this driver. 510 */ 511 static const struct wm_product { 512 pci_vendor_id_t wmp_vendor; 513 pci_product_id_t wmp_product; 514 const char *wmp_name; 515 wm_chip_type wmp_type; 516 int wmp_flags; 517 #define WMP_F_1000X 0x01 518 #define WMP_F_1000T 0x02 519 } wm_products[] = { 520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542, 521 "Intel i82542 1000BASE-X Ethernet", 522 WM_T_82542_2_1, WMP_F_1000X }, 523 524 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER, 525 "Intel i82543GC 1000BASE-X Ethernet", 526 WM_T_82543, WMP_F_1000X }, 527 528 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER, 529 "Intel i82543GC 1000BASE-T Ethernet", 530 WM_T_82543, WMP_F_1000T }, 531 532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER, 533 "Intel i82544EI 1000BASE-T Ethernet", 534 WM_T_82544, WMP_F_1000T }, 535 536 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER, 537 "Intel i82544EI 1000BASE-X Ethernet", 538 WM_T_82544, WMP_F_1000X }, 539 540 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER, 541 "Intel i82544GC 1000BASE-T Ethernet", 542 WM_T_82544, WMP_F_1000T }, 543 544 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM, 545 "Intel i82544GC (LOM) 1000BASE-T Ethernet", 546 WM_T_82544, WMP_F_1000T }, 547 548 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM, 549 "Intel i82540EM 1000BASE-T Ethernet", 550 WM_T_82540, WMP_F_1000T }, 551 552 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM, 553 "Intel i82540EM (LOM) 1000BASE-T Ethernet", 554 WM_T_82540, WMP_F_1000T }, 555 556 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM, 557 "Intel i82540EP 1000BASE-T Ethernet", 558 WM_T_82540, WMP_F_1000T }, 559 560 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP, 561 "Intel i82540EP 1000BASE-T Ethernet", 562 WM_T_82540, WMP_F_1000T }, 563 564 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP, 565 "Intel i82540EP 1000BASE-T Ethernet", 566 WM_T_82540, WMP_F_1000T }, 567 568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER, 569 "Intel i82545EM 1000BASE-T Ethernet", 570 WM_T_82545, WMP_F_1000T }, 571 572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER, 573 "Intel i82545GM 1000BASE-T Ethernet", 574 WM_T_82545_3, WMP_F_1000T }, 575 576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER, 577 "Intel i82545GM 1000BASE-X Ethernet", 578 WM_T_82545_3, WMP_F_1000X }, 579 #if 0 580 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES, 581 "Intel i82545GM Gigabit Ethernet (SERDES)", 582 WM_T_82545_3, WMP_F_SERDES }, 583 #endif 584 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER, 585 "Intel i82546EB 1000BASE-T Ethernet", 586 WM_T_82546, WMP_F_1000T }, 587 588 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD, 589 "Intel i82546EB 1000BASE-T Ethernet", 590 WM_T_82546, WMP_F_1000T }, 591 592 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER, 593 "Intel i82545EM 1000BASE-X Ethernet", 594 WM_T_82545, WMP_F_1000X }, 595 596 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER, 597 "Intel i82546EB 1000BASE-X Ethernet", 598 WM_T_82546, WMP_F_1000X }, 599 600 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER, 601 "Intel i82546GB 1000BASE-T Ethernet", 602 WM_T_82546_3, WMP_F_1000T }, 603 604 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER, 605 "Intel i82546GB 1000BASE-X Ethernet", 606 WM_T_82546_3, WMP_F_1000X }, 607 #if 0 608 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES, 609 "Intel i82546GB Gigabit Ethernet (SERDES)", 610 WM_T_82546_3, WMP_F_SERDES }, 611 #endif 612 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI, 613 "Intel i82541EI 1000BASE-T Ethernet", 614 WM_T_82541, WMP_F_1000T }, 615 616 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE, 617 "Intel i82541EI Mobile 1000BASE-T Ethernet", 618 WM_T_82541, WMP_F_1000T }, 619 620 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER, 621 "Intel i82541ER 1000BASE-T Ethernet", 622 WM_T_82541_2, WMP_F_1000T }, 623 624 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI, 625 "Intel i82541GI 1000BASE-T Ethernet", 626 WM_T_82541_2, WMP_F_1000T }, 627 628 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE, 629 "Intel i82541GI Mobile 1000BASE-T Ethernet", 630 WM_T_82541_2, WMP_F_1000T }, 631 632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI, 633 "Intel i82547EI 1000BASE-T Ethernet", 634 WM_T_82547, WMP_F_1000T }, 635 636 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI, 637 "Intel i82547GI 1000BASE-T Ethernet", 638 WM_T_82547_2, WMP_F_1000T }, 639 { 0, 0, 640 NULL, 641 0, 0 }, 642 }; 643 644 #ifdef WM_EVENT_COUNTERS 645 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")]; 646 #endif /* WM_EVENT_COUNTERS */ 647 648 #if 0 /* Not currently used */ 649 static __inline uint32_t 650 wm_io_read(struct wm_softc *sc, int reg) 651 { 652 653 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg); 654 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4)); 655 } 656 #endif 657 658 static __inline void 659 wm_io_write(struct wm_softc *sc, int reg, uint32_t val) 660 { 661 662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg); 663 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val); 664 } 665 666 static __inline void 667 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v) 668 { 669 wa->wa_low = htole32(v & 0xffffffffU); 670 if (sizeof(bus_addr_t) == 8) 671 wa->wa_high = htole32((uint64_t) v >> 32); 672 else 673 wa->wa_high = 0; 674 } 675 676 static const struct wm_product * 677 wm_lookup(const struct pci_attach_args *pa) 678 { 679 const struct wm_product *wmp; 680 681 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) { 682 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor && 683 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product) 684 return (wmp); 685 } 686 return (NULL); 687 } 688 689 static int 690 wm_match(struct device *parent, struct cfdata *cf, void *aux) 691 { 692 struct pci_attach_args *pa = aux; 693 694 if (wm_lookup(pa) != NULL) 695 return (1); 696 697 return (0); 698 } 699 700 static void 701 wm_attach(struct device *parent, struct device *self, void *aux) 702 { 703 struct wm_softc *sc = (void *) self; 704 struct pci_attach_args *pa = aux; 705 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 706 pci_chipset_tag_t pc = pa->pa_pc; 707 pci_intr_handle_t ih; 708 size_t cdata_size; 709 const char *intrstr = NULL; 710 const char *eetype; 711 bus_space_tag_t memt; 712 bus_space_handle_t memh; 713 bus_dma_segment_t seg; 714 int memh_valid; 715 int i, rseg, error; 716 const struct wm_product *wmp; 717 uint8_t enaddr[ETHER_ADDR_LEN]; 718 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin; 719 pcireg_t preg, memtype; 720 uint32_t reg; 721 int pmreg; 722 723 callout_init(&sc->sc_tick_ch); 724 725 wmp = wm_lookup(pa); 726 if (wmp == NULL) { 727 printf("\n"); 728 panic("wm_attach: impossible"); 729 } 730 731 if (pci_dma64_available(pa)) 732 sc->sc_dmat = pa->pa_dmat64; 733 else 734 sc->sc_dmat = pa->pa_dmat; 735 736 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG)); 737 aprint_naive(": Ethernet controller\n"); 738 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg); 739 740 sc->sc_type = wmp->wmp_type; 741 if (sc->sc_type < WM_T_82543) { 742 if (preg < 2) { 743 aprint_error("%s: i82542 must be at least rev. 2\n", 744 sc->sc_dev.dv_xname); 745 return; 746 } 747 if (preg < 3) 748 sc->sc_type = WM_T_82542_2_0; 749 } 750 751 /* 752 * Map the device. All devices support memory-mapped acccess, 753 * and it is really required for normal operation. 754 */ 755 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA); 756 switch (memtype) { 757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 758 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 759 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA, 760 memtype, 0, &memt, &memh, NULL, NULL) == 0); 761 break; 762 default: 763 memh_valid = 0; 764 } 765 766 if (memh_valid) { 767 sc->sc_st = memt; 768 sc->sc_sh = memh; 769 } else { 770 aprint_error("%s: unable to map device registers\n", 771 sc->sc_dev.dv_xname); 772 return; 773 } 774 775 /* 776 * In addition, i82544 and later support I/O mapped indirect 777 * register access. It is not desirable (nor supported in 778 * this driver) to use it for normal operation, though it is 779 * required to work around bugs in some chip versions. 780 */ 781 if (sc->sc_type >= WM_T_82544) { 782 /* First we have to find the I/O BAR. */ 783 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) { 784 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) == 785 PCI_MAPREG_TYPE_IO) 786 break; 787 } 788 if (i == PCI_MAPREG_END) 789 aprint_error("%s: WARNING: unable to find I/O BAR\n", 790 sc->sc_dev.dv_xname); 791 else { 792 /* 793 * The i8254x doesn't apparently respond when the 794 * I/O BAR is 0, which looks somewhat like it's not 795 * been configured. 796 */ 797 preg = pci_conf_read(pc, pa->pa_tag, i); 798 if (PCI_MAPREG_MEM_ADDR(preg) == 0) { 799 aprint_error("%s: WARNING: I/O BAR at zero.\n", 800 sc->sc_dev.dv_xname); 801 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO, 802 0, &sc->sc_iot, &sc->sc_ioh, 803 NULL, NULL) == 0) { 804 sc->sc_flags |= WM_F_IOH_VALID; 805 } else { 806 aprint_error("%s: WARNING: unable to map " 807 "I/O space\n", sc->sc_dev.dv_xname); 808 } 809 } 810 811 } 812 813 /* Enable bus mastering. Disable MWI on the i82542 2.0. */ 814 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 815 preg |= PCI_COMMAND_MASTER_ENABLE; 816 if (sc->sc_type < WM_T_82542_2_1) 817 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE; 818 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg); 819 820 /* Get it out of power save mode, if needed. */ 821 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { 822 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) & 823 PCI_PMCSR_STATE_MASK; 824 if (preg == PCI_PMCSR_STATE_D3) { 825 /* 826 * The card has lost all configuration data in 827 * this state, so punt. 828 */ 829 aprint_error("%s: unable to wake from power state D3\n", 830 sc->sc_dev.dv_xname); 831 return; 832 } 833 if (preg != PCI_PMCSR_STATE_D0) { 834 aprint_normal("%s: waking up from power state D%d\n", 835 sc->sc_dev.dv_xname, preg); 836 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR, 837 PCI_PMCSR_STATE_D0); 838 } 839 } 840 841 /* 842 * Map and establish our interrupt. 843 */ 844 if (pci_intr_map(pa, &ih)) { 845 aprint_error("%s: unable to map interrupt\n", 846 sc->sc_dev.dv_xname); 847 return; 848 } 849 intrstr = pci_intr_string(pc, ih); 850 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc); 851 if (sc->sc_ih == NULL) { 852 aprint_error("%s: unable to establish interrupt", 853 sc->sc_dev.dv_xname); 854 if (intrstr != NULL) 855 aprint_normal(" at %s", intrstr); 856 aprint_normal("\n"); 857 return; 858 } 859 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 860 861 /* 862 * Determine a few things about the bus we're connected to. 863 */ 864 if (sc->sc_type < WM_T_82543) { 865 /* We don't really know the bus characteristics here. */ 866 sc->sc_bus_speed = 33; 867 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) { 868 /* 869 * CSA (Communication Streaming Architecture) is about as fast 870 * a 32-bit 66MHz PCI Bus. 871 */ 872 sc->sc_flags |= WM_F_CSA; 873 sc->sc_bus_speed = 66; 874 aprint_verbose("%s: Communication Streaming Architecture\n", 875 sc->sc_dev.dv_xname); 876 if (sc->sc_type == WM_T_82547) { 877 callout_init(&sc->sc_txfifo_ch); 878 callout_setfunc(&sc->sc_txfifo_ch, 879 wm_82547_txfifo_stall, sc); 880 aprint_verbose("%s: using 82547 Tx FIFO stall " 881 "work-around\n", sc->sc_dev.dv_xname); 882 } 883 } else { 884 reg = CSR_READ(sc, WMREG_STATUS); 885 if (reg & STATUS_BUS64) 886 sc->sc_flags |= WM_F_BUS64; 887 if (sc->sc_type >= WM_T_82544 && 888 (reg & STATUS_PCIX_MODE) != 0) { 889 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb; 890 891 sc->sc_flags |= WM_F_PCIX; 892 if (pci_get_capability(pa->pa_pc, pa->pa_tag, 893 PCI_CAP_PCIX, 894 &sc->sc_pcix_offset, NULL) == 0) 895 aprint_error("%s: unable to find PCIX " 896 "capability\n", sc->sc_dev.dv_xname); 897 else if (sc->sc_type != WM_T_82545_3 && 898 sc->sc_type != WM_T_82546_3) { 899 /* 900 * Work around a problem caused by the BIOS 901 * setting the max memory read byte count 902 * incorrectly. 903 */ 904 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag, 905 sc->sc_pcix_offset + PCI_PCIX_CMD); 906 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag, 907 sc->sc_pcix_offset + PCI_PCIX_STATUS); 908 909 bytecnt = 910 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >> 911 PCI_PCIX_CMD_BYTECNT_SHIFT; 912 maxb = 913 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >> 914 PCI_PCIX_STATUS_MAXB_SHIFT; 915 if (bytecnt > maxb) { 916 aprint_verbose("%s: resetting PCI-X " 917 "MMRBC: %d -> %d\n", 918 sc->sc_dev.dv_xname, 919 512 << bytecnt, 512 << maxb); 920 pcix_cmd = (pcix_cmd & 921 ~PCI_PCIX_CMD_BYTECNT_MASK) | 922 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT); 923 pci_conf_write(pa->pa_pc, pa->pa_tag, 924 sc->sc_pcix_offset + PCI_PCIX_CMD, 925 pcix_cmd); 926 } 927 } 928 } 929 /* 930 * The quad port adapter is special; it has a PCIX-PCIX 931 * bridge on the board, and can run the secondary bus at 932 * a higher speed. 933 */ 934 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) { 935 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120 936 : 66; 937 } else if (sc->sc_flags & WM_F_PCIX) { 938 switch (reg & STATUS_PCIXSPD_MASK) { 939 case STATUS_PCIXSPD_50_66: 940 sc->sc_bus_speed = 66; 941 break; 942 case STATUS_PCIXSPD_66_100: 943 sc->sc_bus_speed = 100; 944 break; 945 case STATUS_PCIXSPD_100_133: 946 sc->sc_bus_speed = 133; 947 break; 948 default: 949 aprint_error( 950 "%s: unknown PCIXSPD %d; assuming 66MHz\n", 951 sc->sc_dev.dv_xname, 952 reg & STATUS_PCIXSPD_MASK); 953 sc->sc_bus_speed = 66; 954 } 955 } else 956 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33; 957 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname, 958 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed, 959 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI"); 960 } 961 962 /* 963 * Allocate the control data structures, and create and load the 964 * DMA map for it. 965 * 966 * NOTE: All Tx descriptors must be in the same 4G segment of 967 * memory. So must Rx descriptors. We simplify by allocating 968 * both sets within the same 4G segment. 969 */ 970 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ? 971 WM_NTXDESC_82542 : WM_NTXDESC_82544; 972 cdata_size = sc->sc_type < WM_T_82544 ? 973 sizeof(struct wm_control_data_82542) : 974 sizeof(struct wm_control_data_82544); 975 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE, 976 (bus_size_t) 0x100000000ULL, 977 &seg, 1, &rseg, 0)) != 0) { 978 aprint_error( 979 "%s: unable to allocate control data, error = %d\n", 980 sc->sc_dev.dv_xname, error); 981 goto fail_0; 982 } 983 984 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size, 985 (caddr_t *)&sc->sc_control_data, 0)) != 0) { 986 aprint_error("%s: unable to map control data, error = %d\n", 987 sc->sc_dev.dv_xname, error); 988 goto fail_1; 989 } 990 991 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size, 992 0, 0, &sc->sc_cddmamap)) != 0) { 993 aprint_error("%s: unable to create control data DMA map, " 994 "error = %d\n", sc->sc_dev.dv_xname, error); 995 goto fail_2; 996 } 997 998 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 999 sc->sc_control_data, cdata_size, NULL, 1000 0)) != 0) { 1001 aprint_error( 1002 "%s: unable to load control data DMA map, error = %d\n", 1003 sc->sc_dev.dv_xname, error); 1004 goto fail_3; 1005 } 1006 1007 1008 /* 1009 * Create the transmit buffer DMA maps. 1010 */ 1011 WM_TXQUEUELEN(sc) = 1012 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ? 1013 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX; 1014 for (i = 0; i < WM_TXQUEUELEN(sc); i++) { 1015 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA, 1016 WM_NTXSEGS, WTX_MAX_LEN, 0, 0, 1017 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 1018 aprint_error("%s: unable to create Tx DMA map %d, " 1019 "error = %d\n", sc->sc_dev.dv_xname, i, error); 1020 goto fail_4; 1021 } 1022 } 1023 1024 /* 1025 * Create the receive buffer DMA maps. 1026 */ 1027 for (i = 0; i < WM_NRXDESC; i++) { 1028 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1029 MCLBYTES, 0, 0, 1030 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 1031 aprint_error("%s: unable to create Rx DMA map %d, " 1032 "error = %d\n", sc->sc_dev.dv_xname, i, error); 1033 goto fail_5; 1034 } 1035 sc->sc_rxsoft[i].rxs_mbuf = NULL; 1036 } 1037 1038 /* 1039 * Reset the chip to a known state. 1040 */ 1041 wm_reset(sc); 1042 1043 /* 1044 * Get some information about the EEPROM. 1045 */ 1046 if (sc->sc_type >= WM_T_82540) 1047 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE; 1048 if (sc->sc_type <= WM_T_82544) 1049 sc->sc_ee_addrbits = 6; 1050 else if (sc->sc_type <= WM_T_82546_3) { 1051 reg = CSR_READ(sc, WMREG_EECD); 1052 if (reg & EECD_EE_SIZE) 1053 sc->sc_ee_addrbits = 8; 1054 else 1055 sc->sc_ee_addrbits = 6; 1056 } else if (sc->sc_type <= WM_T_82547_2) { 1057 reg = CSR_READ(sc, WMREG_EECD); 1058 if (reg & EECD_EE_TYPE) { 1059 sc->sc_flags |= WM_F_EEPROM_SPI; 1060 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8; 1061 } else 1062 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6; 1063 } else { 1064 /* Assume everything else is SPI. */ 1065 reg = CSR_READ(sc, WMREG_EECD); 1066 sc->sc_flags |= WM_F_EEPROM_SPI; 1067 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8; 1068 } 1069 if (sc->sc_flags & WM_F_EEPROM_SPI) 1070 eetype = "SPI"; 1071 else 1072 eetype = "MicroWire"; 1073 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n", 1074 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits, 1075 sc->sc_ee_addrbits, eetype); 1076 1077 /* 1078 * Read the Ethernet address from the EEPROM. 1079 */ 1080 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR, 1081 sizeof(myea) / sizeof(myea[0]), myea)) { 1082 aprint_error("%s: unable to read Ethernet address\n", 1083 sc->sc_dev.dv_xname); 1084 return; 1085 } 1086 enaddr[0] = myea[0] & 0xff; 1087 enaddr[1] = myea[0] >> 8; 1088 enaddr[2] = myea[1] & 0xff; 1089 enaddr[3] = myea[1] >> 8; 1090 enaddr[4] = myea[2] & 0xff; 1091 enaddr[5] = myea[2] >> 8; 1092 1093 /* 1094 * Toggle the LSB of the MAC address on the second port 1095 * of the i82546. 1096 */ 1097 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) { 1098 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1) 1099 enaddr[5] ^= 1; 1100 } 1101 1102 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, 1103 ether_sprintf(enaddr)); 1104 1105 /* 1106 * Read the config info from the EEPROM, and set up various 1107 * bits in the control registers based on their contents. 1108 */ 1109 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) { 1110 aprint_error("%s: unable to read CFG1 from EEPROM\n", 1111 sc->sc_dev.dv_xname); 1112 return; 1113 } 1114 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) { 1115 aprint_error("%s: unable to read CFG2 from EEPROM\n", 1116 sc->sc_dev.dv_xname); 1117 return; 1118 } 1119 if (sc->sc_type >= WM_T_82544) { 1120 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) { 1121 aprint_error("%s: unable to read SWDPIN from EEPROM\n", 1122 sc->sc_dev.dv_xname); 1123 return; 1124 } 1125 } 1126 1127 if (cfg1 & EEPROM_CFG1_ILOS) 1128 sc->sc_ctrl |= CTRL_ILOS; 1129 if (sc->sc_type >= WM_T_82544) { 1130 sc->sc_ctrl |= 1131 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) << 1132 CTRL_SWDPIO_SHIFT; 1133 sc->sc_ctrl |= 1134 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) << 1135 CTRL_SWDPINS_SHIFT; 1136 } else { 1137 sc->sc_ctrl |= 1138 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) << 1139 CTRL_SWDPIO_SHIFT; 1140 } 1141 1142 #if 0 1143 if (sc->sc_type >= WM_T_82544) { 1144 if (cfg1 & EEPROM_CFG1_IPS0) 1145 sc->sc_ctrl_ext |= CTRL_EXT_IPS; 1146 if (cfg1 & EEPROM_CFG1_IPS1) 1147 sc->sc_ctrl_ext |= CTRL_EXT_IPS1; 1148 sc->sc_ctrl_ext |= 1149 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) << 1150 CTRL_EXT_SWDPIO_SHIFT; 1151 sc->sc_ctrl_ext |= 1152 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) << 1153 CTRL_EXT_SWDPINS_SHIFT; 1154 } else { 1155 sc->sc_ctrl_ext |= 1156 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) << 1157 CTRL_EXT_SWDPIO_SHIFT; 1158 } 1159 #endif 1160 1161 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 1162 #if 0 1163 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext); 1164 #endif 1165 1166 /* 1167 * Set up some register offsets that are different between 1168 * the i82542 and the i82543 and later chips. 1169 */ 1170 if (sc->sc_type < WM_T_82543) { 1171 sc->sc_rdt_reg = WMREG_OLD_RDT0; 1172 sc->sc_tdt_reg = WMREG_OLD_TDT; 1173 } else { 1174 sc->sc_rdt_reg = WMREG_RDT; 1175 sc->sc_tdt_reg = WMREG_TDT; 1176 } 1177 1178 /* 1179 * Determine if we're TBI or GMII mode, and initialize the 1180 * media structures accordingly. 1181 */ 1182 if (sc->sc_type < WM_T_82543 || 1183 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) { 1184 if (wmp->wmp_flags & WMP_F_1000T) 1185 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T " 1186 "product!\n", sc->sc_dev.dv_xname); 1187 wm_tbi_mediainit(sc); 1188 } else { 1189 if (wmp->wmp_flags & WMP_F_1000X) 1190 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X " 1191 "product!\n", sc->sc_dev.dv_xname); 1192 wm_gmii_mediainit(sc); 1193 } 1194 1195 ifp = &sc->sc_ethercom.ec_if; 1196 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 1197 ifp->if_softc = sc; 1198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1199 ifp->if_ioctl = wm_ioctl; 1200 ifp->if_start = wm_start; 1201 ifp->if_watchdog = wm_watchdog; 1202 ifp->if_init = wm_init; 1203 ifp->if_stop = wm_stop; 1204 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN)); 1205 IFQ_SET_READY(&ifp->if_snd); 1206 1207 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 1208 1209 /* 1210 * If we're a i82543 or greater, we can support VLANs. 1211 */ 1212 if (sc->sc_type >= WM_T_82543) 1213 sc->sc_ethercom.ec_capabilities |= 1214 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */; 1215 1216 /* 1217 * We can perform TCPv4 and UDPv4 checkums in-bound. Only 1218 * on i82543 and later. 1219 */ 1220 if (sc->sc_type >= WM_T_82543) 1221 ifp->if_capabilities |= 1222 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; 1223 1224 /* 1225 * Attach the interface. 1226 */ 1227 if_attach(ifp); 1228 ether_ifattach(ifp, enaddr); 1229 #if NRND > 0 1230 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 1231 RND_TYPE_NET, 0); 1232 #endif 1233 1234 #ifdef WM_EVENT_COUNTERS 1235 /* Attach event counters. */ 1236 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 1237 NULL, sc->sc_dev.dv_xname, "txsstall"); 1238 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 1239 NULL, sc->sc_dev.dv_xname, "txdstall"); 1240 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC, 1241 NULL, sc->sc_dev.dv_xname, "txfifo_stall"); 1242 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR, 1243 NULL, sc->sc_dev.dv_xname, "txdw"); 1244 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR, 1245 NULL, sc->sc_dev.dv_xname, "txqe"); 1246 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 1247 NULL, sc->sc_dev.dv_xname, "rxintr"); 1248 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR, 1249 NULL, sc->sc_dev.dv_xname, "linkintr"); 1250 1251 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 1252 NULL, sc->sc_dev.dv_xname, "rxipsum"); 1253 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC, 1254 NULL, sc->sc_dev.dv_xname, "rxtusum"); 1255 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 1256 NULL, sc->sc_dev.dv_xname, "txipsum"); 1257 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC, 1258 NULL, sc->sc_dev.dv_xname, "txtusum"); 1259 1260 evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC, 1261 NULL, sc->sc_dev.dv_xname, "txpullup needed"); 1262 evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC, 1263 NULL, sc->sc_dev.dv_xname, "txpullup nomem"); 1264 evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC, 1265 NULL, sc->sc_dev.dv_xname, "txpullup fail"); 1266 1267 for (i = 0; i < WM_NTXSEGS; i++) { 1268 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i); 1269 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC, 1270 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]); 1271 } 1272 1273 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC, 1274 NULL, sc->sc_dev.dv_xname, "txdrop"); 1275 1276 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC, 1277 NULL, sc->sc_dev.dv_xname, "tu"); 1278 1279 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC, 1280 NULL, sc->sc_dev.dv_xname, "tx_xoff"); 1281 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC, 1282 NULL, sc->sc_dev.dv_xname, "tx_xon"); 1283 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC, 1284 NULL, sc->sc_dev.dv_xname, "rx_xoff"); 1285 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC, 1286 NULL, sc->sc_dev.dv_xname, "rx_xon"); 1287 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC, 1288 NULL, sc->sc_dev.dv_xname, "rx_macctl"); 1289 #endif /* WM_EVENT_COUNTERS */ 1290 1291 /* 1292 * Make sure the interface is shutdown during reboot. 1293 */ 1294 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc); 1295 if (sc->sc_sdhook == NULL) 1296 aprint_error("%s: WARNING: unable to establish shutdown hook\n", 1297 sc->sc_dev.dv_xname); 1298 return; 1299 1300 /* 1301 * Free any resources we've allocated during the failed attach 1302 * attempt. Do this in reverse order and fall through. 1303 */ 1304 fail_5: 1305 for (i = 0; i < WM_NRXDESC; i++) { 1306 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 1307 bus_dmamap_destroy(sc->sc_dmat, 1308 sc->sc_rxsoft[i].rxs_dmamap); 1309 } 1310 fail_4: 1311 for (i = 0; i < WM_TXQUEUELEN(sc); i++) { 1312 if (sc->sc_txsoft[i].txs_dmamap != NULL) 1313 bus_dmamap_destroy(sc->sc_dmat, 1314 sc->sc_txsoft[i].txs_dmamap); 1315 } 1316 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 1317 fail_3: 1318 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 1319 fail_2: 1320 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, 1321 cdata_size); 1322 fail_1: 1323 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 1324 fail_0: 1325 return; 1326 } 1327 1328 /* 1329 * wm_shutdown: 1330 * 1331 * Make sure the interface is stopped at reboot time. 1332 */ 1333 static void 1334 wm_shutdown(void *arg) 1335 { 1336 struct wm_softc *sc = arg; 1337 1338 wm_stop(&sc->sc_ethercom.ec_if, 1); 1339 } 1340 1341 /* 1342 * wm_tx_offload: 1343 * 1344 * Set up TCP/IP checksumming parameters for the 1345 * specified packet. 1346 */ 1347 static int 1348 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp, 1349 uint8_t *fieldsp) 1350 { 1351 struct mbuf *m0 = txs->txs_mbuf; 1352 struct livengood_tcpip_ctxdesc *t; 1353 uint32_t ipcs, tucs; 1354 struct ether_header *eh; 1355 int offset, iphl; 1356 uint8_t fields = 0; 1357 1358 /* 1359 * XXX It would be nice if the mbuf pkthdr had offset 1360 * fields for the protocol headers. 1361 */ 1362 1363 eh = mtod(m0, struct ether_header *); 1364 switch (htons(eh->ether_type)) { 1365 case ETHERTYPE_IP: 1366 offset = ETHER_HDR_LEN; 1367 break; 1368 1369 case ETHERTYPE_VLAN: 1370 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 1371 break; 1372 1373 default: 1374 /* 1375 * Don't support this protocol or encapsulation. 1376 */ 1377 *fieldsp = 0; 1378 *cmdp = 0; 1379 return (0); 1380 } 1381 1382 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 1383 1384 /* 1385 * NOTE: Even if we're not using the IP or TCP/UDP checksum 1386 * offload feature, if we load the context descriptor, we 1387 * MUST provide valid values for IPCSS and TUCSS fields. 1388 */ 1389 1390 ipcs = WTX_TCPIP_IPCSS(offset) | 1391 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) | 1392 WTX_TCPIP_IPCSE(offset + iphl - 1); 1393 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1394 WM_EVCNT_INCR(&sc->sc_ev_txipsum); 1395 fields |= WTX_IXSM; 1396 } 1397 1398 offset += iphl; 1399 1400 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1401 WM_EVCNT_INCR(&sc->sc_ev_txtusum); 1402 fields |= WTX_TXSM; 1403 tucs = WTX_TCPIP_TUCSS(offset) | 1404 WTX_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) | 1405 WTX_TCPIP_TUCSE(0) /* rest of packet */; 1406 } else { 1407 /* Just initialize it to a valid TCP context. */ 1408 tucs = WTX_TCPIP_TUCSS(offset) | 1409 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) | 1410 WTX_TCPIP_TUCSE(0) /* rest of packet */; 1411 } 1412 1413 /* Fill in the context descriptor. */ 1414 t = (struct livengood_tcpip_ctxdesc *) 1415 &sc->sc_txdescs[sc->sc_txnext]; 1416 t->tcpip_ipcs = htole32(ipcs); 1417 t->tcpip_tucs = htole32(tucs); 1418 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C); 1419 t->tcpip_seg = 0; 1420 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE); 1421 1422 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext); 1423 txs->txs_ndesc++; 1424 1425 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D; 1426 *fieldsp = fields; 1427 1428 return (0); 1429 } 1430 1431 static void 1432 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0) 1433 { 1434 struct mbuf *m; 1435 int i; 1436 1437 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname); 1438 for (m = m0, i = 0; m != NULL; m = m->m_next, i++) 1439 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, " 1440 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname, 1441 m->m_data, m->m_len, m->m_flags); 1442 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname, 1443 i, i == 1 ? "" : "s"); 1444 } 1445 1446 /* 1447 * wm_82547_txfifo_stall: 1448 * 1449 * Callout used to wait for the 82547 Tx FIFO to drain, 1450 * reset the FIFO pointers, and restart packet transmission. 1451 */ 1452 static void 1453 wm_82547_txfifo_stall(void *arg) 1454 { 1455 struct wm_softc *sc = arg; 1456 int s; 1457 1458 s = splnet(); 1459 1460 if (sc->sc_txfifo_stall) { 1461 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) && 1462 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) && 1463 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) { 1464 /* 1465 * Packets have drained. Stop transmitter, reset 1466 * FIFO pointers, restart transmitter, and kick 1467 * the packet queue. 1468 */ 1469 uint32_t tctl = CSR_READ(sc, WMREG_TCTL); 1470 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN); 1471 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr); 1472 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr); 1473 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr); 1474 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr); 1475 CSR_WRITE(sc, WMREG_TCTL, tctl); 1476 CSR_WRITE_FLUSH(sc); 1477 1478 sc->sc_txfifo_head = 0; 1479 sc->sc_txfifo_stall = 0; 1480 wm_start(&sc->sc_ethercom.ec_if); 1481 } else { 1482 /* 1483 * Still waiting for packets to drain; try again in 1484 * another tick. 1485 */ 1486 callout_schedule(&sc->sc_txfifo_ch, 1); 1487 } 1488 } 1489 1490 splx(s); 1491 } 1492 1493 /* 1494 * wm_82547_txfifo_bugchk: 1495 * 1496 * Check for bug condition in the 82547 Tx FIFO. We need to 1497 * prevent enqueueing a packet that would wrap around the end 1498 * if the Tx FIFO ring buffer, otherwise the chip will croak. 1499 * 1500 * We do this by checking the amount of space before the end 1501 * of the Tx FIFO buffer. If the packet will not fit, we "stall" 1502 * the Tx FIFO, wait for all remaining packets to drain, reset 1503 * the internal FIFO pointers to the beginning, and restart 1504 * transmission on the interface. 1505 */ 1506 #define WM_FIFO_HDR 0x10 1507 #define WM_82547_PAD_LEN 0x3e0 1508 static int 1509 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0) 1510 { 1511 int space = sc->sc_txfifo_size - sc->sc_txfifo_head; 1512 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR); 1513 1514 /* Just return if already stalled. */ 1515 if (sc->sc_txfifo_stall) 1516 return (1); 1517 1518 if (sc->sc_mii.mii_media_active & IFM_FDX) { 1519 /* Stall only occurs in half-duplex mode. */ 1520 goto send_packet; 1521 } 1522 1523 if (len >= WM_82547_PAD_LEN + space) { 1524 sc->sc_txfifo_stall = 1; 1525 callout_schedule(&sc->sc_txfifo_ch, 1); 1526 return (1); 1527 } 1528 1529 send_packet: 1530 sc->sc_txfifo_head += len; 1531 if (sc->sc_txfifo_head >= sc->sc_txfifo_size) 1532 sc->sc_txfifo_head -= sc->sc_txfifo_size; 1533 1534 return (0); 1535 } 1536 1537 /* 1538 * wm_start: [ifnet interface function] 1539 * 1540 * Start packet transmission on the interface. 1541 */ 1542 static void 1543 wm_start(struct ifnet *ifp) 1544 { 1545 struct wm_softc *sc = ifp->if_softc; 1546 struct mbuf *m0; 1547 #if 0 /* XXXJRT */ 1548 struct m_tag *mtag; 1549 #endif 1550 struct wm_txsoft *txs; 1551 bus_dmamap_t dmamap; 1552 int error, nexttx, lasttx = -1, ofree, seg, segs_needed; 1553 bus_addr_t curaddr; 1554 bus_size_t seglen, curlen; 1555 uint32_t cksumcmd; 1556 uint8_t cksumfields; 1557 1558 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1559 return; 1560 1561 /* 1562 * Remember the previous number of free descriptors. 1563 */ 1564 ofree = sc->sc_txfree; 1565 1566 /* 1567 * Loop through the send queue, setting up transmit descriptors 1568 * until we drain the queue, or use up all available transmit 1569 * descriptors. 1570 */ 1571 for (;;) { 1572 /* Grab a packet off the queue. */ 1573 IFQ_POLL(&ifp->if_snd, m0); 1574 if (m0 == NULL) 1575 break; 1576 1577 DPRINTF(WM_DEBUG_TX, 1578 ("%s: TX: have packet to transmit: %p\n", 1579 sc->sc_dev.dv_xname, m0)); 1580 1581 /* Get a work queue entry. */ 1582 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) { 1583 wm_txintr(sc); 1584 if (sc->sc_txsfree == 0) { 1585 DPRINTF(WM_DEBUG_TX, 1586 ("%s: TX: no free job descriptors\n", 1587 sc->sc_dev.dv_xname)); 1588 WM_EVCNT_INCR(&sc->sc_ev_txsstall); 1589 break; 1590 } 1591 } 1592 1593 txs = &sc->sc_txsoft[sc->sc_txsnext]; 1594 dmamap = txs->txs_dmamap; 1595 1596 /* 1597 * Load the DMA map. If this fails, the packet either 1598 * didn't fit in the allotted number of segments, or we 1599 * were short on resources. For the too-many-segments 1600 * case, we simply report an error and drop the packet, 1601 * since we can't sanely copy a jumbo packet to a single 1602 * buffer. 1603 */ 1604 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1605 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1606 if (error) { 1607 if (error == EFBIG) { 1608 WM_EVCNT_INCR(&sc->sc_ev_txdrop); 1609 log(LOG_ERR, "%s: Tx packet consumes too many " 1610 "DMA segments, dropping...\n", 1611 sc->sc_dev.dv_xname); 1612 IFQ_DEQUEUE(&ifp->if_snd, m0); 1613 wm_dump_mbuf_chain(sc, m0); 1614 m_freem(m0); 1615 continue; 1616 } 1617 /* 1618 * Short on resources, just stop for now. 1619 */ 1620 DPRINTF(WM_DEBUG_TX, 1621 ("%s: TX: dmamap load failed: %d\n", 1622 sc->sc_dev.dv_xname, error)); 1623 break; 1624 } 1625 1626 segs_needed = dmamap->dm_nsegs; 1627 1628 /* 1629 * Ensure we have enough descriptors free to describe 1630 * the packet. Note, we always reserve one descriptor 1631 * at the end of the ring due to the semantics of the 1632 * TDT register, plus one more in the event we need 1633 * to load offload context. 1634 */ 1635 if (segs_needed > sc->sc_txfree - 2) { 1636 /* 1637 * Not enough free descriptors to transmit this 1638 * packet. We haven't committed anything yet, 1639 * so just unload the DMA map, put the packet 1640 * pack on the queue, and punt. Notify the upper 1641 * layer that there are no more slots left. 1642 */ 1643 DPRINTF(WM_DEBUG_TX, 1644 ("%s: TX: need %d (%) descriptors, have %d\n", 1645 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed, 1646 sc->sc_txfree - 1)); 1647 ifp->if_flags |= IFF_OACTIVE; 1648 bus_dmamap_unload(sc->sc_dmat, dmamap); 1649 WM_EVCNT_INCR(&sc->sc_ev_txdstall); 1650 break; 1651 } 1652 1653 /* 1654 * Check for 82547 Tx FIFO bug. We need to do this 1655 * once we know we can transmit the packet, since we 1656 * do some internal FIFO space accounting here. 1657 */ 1658 if (sc->sc_type == WM_T_82547 && 1659 wm_82547_txfifo_bugchk(sc, m0)) { 1660 DPRINTF(WM_DEBUG_TX, 1661 ("%s: TX: 82547 Tx FIFO bug detected\n", 1662 sc->sc_dev.dv_xname)); 1663 ifp->if_flags |= IFF_OACTIVE; 1664 bus_dmamap_unload(sc->sc_dmat, dmamap); 1665 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall); 1666 break; 1667 } 1668 1669 IFQ_DEQUEUE(&ifp->if_snd, m0); 1670 1671 /* 1672 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1673 */ 1674 1675 DPRINTF(WM_DEBUG_TX, 1676 ("%s: TX: packet has %d (%d) DMA segments\n", 1677 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed)); 1678 1679 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]); 1680 1681 /* 1682 * Store a pointer to the packet so that we can free it 1683 * later. 1684 * 1685 * Initially, we consider the number of descriptors the 1686 * packet uses the number of DMA segments. This may be 1687 * incremented by 1 if we do checksum offload (a descriptor 1688 * is used to set the checksum context). 1689 */ 1690 txs->txs_mbuf = m0; 1691 txs->txs_firstdesc = sc->sc_txnext; 1692 txs->txs_ndesc = segs_needed; 1693 1694 /* Set up offload parameters for this packet. */ 1695 if (m0->m_pkthdr.csum_flags & 1696 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1697 if (wm_tx_offload(sc, txs, &cksumcmd, 1698 &cksumfields) != 0) { 1699 /* Error message already displayed. */ 1700 bus_dmamap_unload(sc->sc_dmat, dmamap); 1701 continue; 1702 } 1703 } else { 1704 cksumcmd = 0; 1705 cksumfields = 0; 1706 } 1707 1708 cksumcmd |= WTX_CMD_IDE; 1709 1710 /* Sync the DMA map. */ 1711 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1712 BUS_DMASYNC_PREWRITE); 1713 1714 /* 1715 * Initialize the transmit descriptor. 1716 */ 1717 for (nexttx = sc->sc_txnext, seg = 0; 1718 seg < dmamap->dm_nsegs; seg++) { 1719 for (seglen = dmamap->dm_segs[seg].ds_len, 1720 curaddr = dmamap->dm_segs[seg].ds_addr; 1721 seglen != 0; 1722 curaddr += curlen, seglen -= curlen, 1723 nexttx = WM_NEXTTX(sc, nexttx)) { 1724 curlen = seglen; 1725 1726 wm_set_dma_addr( 1727 &sc->sc_txdescs[nexttx].wtx_addr, 1728 curaddr); 1729 sc->sc_txdescs[nexttx].wtx_cmdlen = 1730 htole32(cksumcmd | curlen); 1731 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status = 1732 0; 1733 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options = 1734 cksumfields; 1735 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0; 1736 lasttx = nexttx; 1737 1738 DPRINTF(WM_DEBUG_TX, 1739 ("%s: TX: desc %d: low 0x%08x, " 1740 "len 0x%04x\n", 1741 sc->sc_dev.dv_xname, nexttx, 1742 curaddr & 0xffffffffU, curlen, curlen)); 1743 } 1744 } 1745 1746 KASSERT(lasttx != -1); 1747 1748 /* 1749 * Set up the command byte on the last descriptor of 1750 * the packet. If we're in the interrupt delay window, 1751 * delay the interrupt. 1752 */ 1753 sc->sc_txdescs[lasttx].wtx_cmdlen |= 1754 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS); 1755 1756 #if 0 /* XXXJRT */ 1757 /* 1758 * If VLANs are enabled and the packet has a VLAN tag, set 1759 * up the descriptor to encapsulate the packet for us. 1760 * 1761 * This is only valid on the last descriptor of the packet. 1762 */ 1763 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) { 1764 sc->sc_txdescs[lasttx].wtx_cmdlen |= 1765 htole32(WTX_CMD_VLE); 1766 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan 1767 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff); 1768 } 1769 #endif /* XXXJRT */ 1770 1771 txs->txs_lastdesc = lasttx; 1772 1773 DPRINTF(WM_DEBUG_TX, 1774 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname, 1775 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen))); 1776 1777 /* Sync the descriptors we're using. */ 1778 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc, 1779 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1780 1781 /* Give the packet to the chip. */ 1782 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx); 1783 1784 DPRINTF(WM_DEBUG_TX, 1785 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx)); 1786 1787 DPRINTF(WM_DEBUG_TX, 1788 ("%s: TX: finished transmitting packet, job %d\n", 1789 sc->sc_dev.dv_xname, sc->sc_txsnext)); 1790 1791 /* Advance the tx pointer. */ 1792 sc->sc_txfree -= txs->txs_ndesc; 1793 sc->sc_txnext = nexttx; 1794 1795 sc->sc_txsfree--; 1796 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext); 1797 1798 #if NBPFILTER > 0 1799 /* Pass the packet to any BPF listeners. */ 1800 if (ifp->if_bpf) 1801 bpf_mtap(ifp->if_bpf, m0); 1802 #endif /* NBPFILTER > 0 */ 1803 } 1804 1805 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) { 1806 /* No more slots; notify upper layer. */ 1807 ifp->if_flags |= IFF_OACTIVE; 1808 } 1809 1810 if (sc->sc_txfree != ofree) { 1811 /* Set a watchdog timer in case the chip flakes out. */ 1812 ifp->if_timer = 5; 1813 } 1814 } 1815 1816 /* 1817 * wm_watchdog: [ifnet interface function] 1818 * 1819 * Watchdog timer handler. 1820 */ 1821 static void 1822 wm_watchdog(struct ifnet *ifp) 1823 { 1824 struct wm_softc *sc = ifp->if_softc; 1825 1826 /* 1827 * Since we're using delayed interrupts, sweep up 1828 * before we report an error. 1829 */ 1830 wm_txintr(sc); 1831 1832 if (sc->sc_txfree != WM_NTXDESC(sc)) { 1833 log(LOG_ERR, 1834 "%s: device timeout (txfree %d txsfree %d txnext %d)\n", 1835 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree, 1836 sc->sc_txnext); 1837 ifp->if_oerrors++; 1838 1839 /* Reset the interface. */ 1840 (void) wm_init(ifp); 1841 } 1842 1843 /* Try to get more packets going. */ 1844 wm_start(ifp); 1845 } 1846 1847 /* 1848 * wm_ioctl: [ifnet interface function] 1849 * 1850 * Handle control requests from the operator. 1851 */ 1852 static int 1853 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1854 { 1855 struct wm_softc *sc = ifp->if_softc; 1856 struct ifreq *ifr = (struct ifreq *) data; 1857 int s, error; 1858 1859 s = splnet(); 1860 1861 switch (cmd) { 1862 case SIOCSIFMEDIA: 1863 case SIOCGIFMEDIA: 1864 /* Flow control requires full-duplex mode. */ 1865 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 1866 (ifr->ifr_media & IFM_FDX) == 0) 1867 ifr->ifr_media &= ~IFM_ETH_FMASK; 1868 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1869 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 1870 /* We can do both TXPAUSE and RXPAUSE. */ 1871 ifr->ifr_media |= 1872 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1873 } 1874 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1875 } 1876 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1877 break; 1878 default: 1879 error = ether_ioctl(ifp, cmd, data); 1880 if (error == ENETRESET) { 1881 /* 1882 * Multicast list has changed; set the hardware filter 1883 * accordingly. 1884 */ 1885 if (ifp->if_flags & IFF_RUNNING) 1886 wm_set_filter(sc); 1887 error = 0; 1888 } 1889 break; 1890 } 1891 1892 /* Try to get more packets going. */ 1893 wm_start(ifp); 1894 1895 splx(s); 1896 return (error); 1897 } 1898 1899 /* 1900 * wm_intr: 1901 * 1902 * Interrupt service routine. 1903 */ 1904 static int 1905 wm_intr(void *arg) 1906 { 1907 struct wm_softc *sc = arg; 1908 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1909 uint32_t icr; 1910 int wantinit, handled = 0; 1911 1912 for (wantinit = 0; wantinit == 0;) { 1913 icr = CSR_READ(sc, WMREG_ICR); 1914 if ((icr & sc->sc_icr) == 0) 1915 break; 1916 1917 #if 0 /*NRND > 0*/ 1918 if (RND_ENABLED(&sc->rnd_source)) 1919 rnd_add_uint32(&sc->rnd_source, icr); 1920 #endif 1921 1922 handled = 1; 1923 1924 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS) 1925 if (icr & (ICR_RXDMT0|ICR_RXT0)) { 1926 DPRINTF(WM_DEBUG_RX, 1927 ("%s: RX: got Rx intr 0x%08x\n", 1928 sc->sc_dev.dv_xname, 1929 icr & (ICR_RXDMT0|ICR_RXT0))); 1930 WM_EVCNT_INCR(&sc->sc_ev_rxintr); 1931 } 1932 #endif 1933 wm_rxintr(sc); 1934 1935 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS) 1936 if (icr & ICR_TXDW) { 1937 DPRINTF(WM_DEBUG_TX, 1938 ("%s: TX: got TXDW interrupt\n", 1939 sc->sc_dev.dv_xname)); 1940 WM_EVCNT_INCR(&sc->sc_ev_txdw); 1941 } 1942 #endif 1943 wm_txintr(sc); 1944 1945 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) { 1946 WM_EVCNT_INCR(&sc->sc_ev_linkintr); 1947 wm_linkintr(sc, icr); 1948 } 1949 1950 if (icr & ICR_RXO) { 1951 log(LOG_WARNING, "%s: Receive overrun\n", 1952 sc->sc_dev.dv_xname); 1953 wantinit = 1; 1954 } 1955 } 1956 1957 if (handled) { 1958 if (wantinit) 1959 wm_init(ifp); 1960 1961 /* Try to get more packets going. */ 1962 wm_start(ifp); 1963 } 1964 1965 return (handled); 1966 } 1967 1968 /* 1969 * wm_txintr: 1970 * 1971 * Helper; handle transmit interrupts. 1972 */ 1973 static void 1974 wm_txintr(struct wm_softc *sc) 1975 { 1976 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1977 struct wm_txsoft *txs; 1978 uint8_t status; 1979 int i; 1980 1981 ifp->if_flags &= ~IFF_OACTIVE; 1982 1983 /* 1984 * Go through the Tx list and free mbufs for those 1985 * frames which have been transmitted. 1986 */ 1987 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc); 1988 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) { 1989 txs = &sc->sc_txsoft[i]; 1990 1991 DPRINTF(WM_DEBUG_TX, 1992 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i)); 1993 1994 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc, 1995 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1996 1997 status = 1998 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status; 1999 if ((status & WTX_ST_DD) == 0) { 2000 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1, 2001 BUS_DMASYNC_PREREAD); 2002 break; 2003 } 2004 2005 DPRINTF(WM_DEBUG_TX, 2006 ("%s: TX: job %d done: descs %d..%d\n", 2007 sc->sc_dev.dv_xname, i, txs->txs_firstdesc, 2008 txs->txs_lastdesc)); 2009 2010 /* 2011 * XXX We should probably be using the statistics 2012 * XXX registers, but I don't know if they exist 2013 * XXX on chips before the i82544. 2014 */ 2015 2016 #ifdef WM_EVENT_COUNTERS 2017 if (status & WTX_ST_TU) 2018 WM_EVCNT_INCR(&sc->sc_ev_tu); 2019 #endif /* WM_EVENT_COUNTERS */ 2020 2021 if (status & (WTX_ST_EC|WTX_ST_LC)) { 2022 ifp->if_oerrors++; 2023 if (status & WTX_ST_LC) 2024 log(LOG_WARNING, "%s: late collision\n", 2025 sc->sc_dev.dv_xname); 2026 else if (status & WTX_ST_EC) { 2027 ifp->if_collisions += 16; 2028 log(LOG_WARNING, "%s: excessive collisions\n", 2029 sc->sc_dev.dv_xname); 2030 } 2031 } else 2032 ifp->if_opackets++; 2033 2034 sc->sc_txfree += txs->txs_ndesc; 2035 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 2036 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2037 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2038 m_freem(txs->txs_mbuf); 2039 txs->txs_mbuf = NULL; 2040 } 2041 2042 /* Update the dirty transmit buffer pointer. */ 2043 sc->sc_txsdirty = i; 2044 DPRINTF(WM_DEBUG_TX, 2045 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i)); 2046 2047 /* 2048 * If there are no more pending transmissions, cancel the watchdog 2049 * timer. 2050 */ 2051 if (sc->sc_txsfree == WM_TXQUEUELEN(sc)) 2052 ifp->if_timer = 0; 2053 } 2054 2055 /* 2056 * wm_rxintr: 2057 * 2058 * Helper; handle receive interrupts. 2059 */ 2060 static void 2061 wm_rxintr(struct wm_softc *sc) 2062 { 2063 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2064 struct wm_rxsoft *rxs; 2065 struct mbuf *m; 2066 int i, len; 2067 uint8_t status, errors; 2068 2069 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) { 2070 rxs = &sc->sc_rxsoft[i]; 2071 2072 DPRINTF(WM_DEBUG_RX, 2073 ("%s: RX: checking descriptor %d\n", 2074 sc->sc_dev.dv_xname, i)); 2075 2076 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2077 2078 status = sc->sc_rxdescs[i].wrx_status; 2079 errors = sc->sc_rxdescs[i].wrx_errors; 2080 len = le16toh(sc->sc_rxdescs[i].wrx_len); 2081 2082 if ((status & WRX_ST_DD) == 0) { 2083 /* 2084 * We have processed all of the receive descriptors. 2085 */ 2086 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); 2087 break; 2088 } 2089 2090 if (__predict_false(sc->sc_rxdiscard)) { 2091 DPRINTF(WM_DEBUG_RX, 2092 ("%s: RX: discarding contents of descriptor %d\n", 2093 sc->sc_dev.dv_xname, i)); 2094 WM_INIT_RXDESC(sc, i); 2095 if (status & WRX_ST_EOP) { 2096 /* Reset our state. */ 2097 DPRINTF(WM_DEBUG_RX, 2098 ("%s: RX: resetting rxdiscard -> 0\n", 2099 sc->sc_dev.dv_xname)); 2100 sc->sc_rxdiscard = 0; 2101 } 2102 continue; 2103 } 2104 2105 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2106 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2107 2108 m = rxs->rxs_mbuf; 2109 2110 /* 2111 * Add a new receive buffer to the ring. 2112 */ 2113 if (wm_add_rxbuf(sc, i) != 0) { 2114 /* 2115 * Failed, throw away what we've done so 2116 * far, and discard the rest of the packet. 2117 */ 2118 ifp->if_ierrors++; 2119 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2120 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2121 WM_INIT_RXDESC(sc, i); 2122 if ((status & WRX_ST_EOP) == 0) 2123 sc->sc_rxdiscard = 1; 2124 if (sc->sc_rxhead != NULL) 2125 m_freem(sc->sc_rxhead); 2126 WM_RXCHAIN_RESET(sc); 2127 DPRINTF(WM_DEBUG_RX, 2128 ("%s: RX: Rx buffer allocation failed, " 2129 "dropping packet%s\n", sc->sc_dev.dv_xname, 2130 sc->sc_rxdiscard ? " (discard)" : "")); 2131 continue; 2132 } 2133 2134 WM_RXCHAIN_LINK(sc, m); 2135 2136 m->m_len = len; 2137 2138 DPRINTF(WM_DEBUG_RX, 2139 ("%s: RX: buffer at %p len %d\n", 2140 sc->sc_dev.dv_xname, m->m_data, len)); 2141 2142 /* 2143 * If this is not the end of the packet, keep 2144 * looking. 2145 */ 2146 if ((status & WRX_ST_EOP) == 0) { 2147 sc->sc_rxlen += len; 2148 DPRINTF(WM_DEBUG_RX, 2149 ("%s: RX: not yet EOP, rxlen -> %d\n", 2150 sc->sc_dev.dv_xname, sc->sc_rxlen)); 2151 continue; 2152 } 2153 2154 /* 2155 * Okay, we have the entire packet now. The chip is 2156 * configured to include the FCS (not all chips can 2157 * be configured to strip it), so we need to trim it. 2158 */ 2159 m->m_len -= ETHER_CRC_LEN; 2160 2161 *sc->sc_rxtailp = NULL; 2162 m = sc->sc_rxhead; 2163 len = m->m_len + sc->sc_rxlen; 2164 2165 WM_RXCHAIN_RESET(sc); 2166 2167 DPRINTF(WM_DEBUG_RX, 2168 ("%s: RX: have entire packet, len -> %d\n", 2169 sc->sc_dev.dv_xname, len)); 2170 2171 /* 2172 * If an error occurred, update stats and drop the packet. 2173 */ 2174 if (errors & 2175 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) { 2176 ifp->if_ierrors++; 2177 if (errors & WRX_ER_SE) 2178 log(LOG_WARNING, "%s: symbol error\n", 2179 sc->sc_dev.dv_xname); 2180 else if (errors & WRX_ER_SEQ) 2181 log(LOG_WARNING, "%s: receive sequence error\n", 2182 sc->sc_dev.dv_xname); 2183 else if (errors & WRX_ER_CE) 2184 log(LOG_WARNING, "%s: CRC error\n", 2185 sc->sc_dev.dv_xname); 2186 m_freem(m); 2187 continue; 2188 } 2189 2190 /* 2191 * No errors. Receive the packet. 2192 */ 2193 m->m_pkthdr.rcvif = ifp; 2194 m->m_pkthdr.len = len; 2195 2196 #if 0 /* XXXJRT */ 2197 /* 2198 * If VLANs are enabled, VLAN packets have been unwrapped 2199 * for us. Associate the tag with the packet. 2200 */ 2201 if ((status & WRX_ST_VP) != 0) { 2202 VLAN_INPUT_TAG(ifp, m, 2203 le16toh(sc->sc_rxdescs[i].wrx_special, 2204 continue); 2205 } 2206 #endif /* XXXJRT */ 2207 2208 /* 2209 * Set up checksum info for this packet. 2210 */ 2211 if (status & WRX_ST_IPCS) { 2212 WM_EVCNT_INCR(&sc->sc_ev_rxipsum); 2213 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 2214 if (errors & WRX_ER_IPE) 2215 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 2216 } 2217 if (status & WRX_ST_TCPCS) { 2218 /* 2219 * Note: we don't know if this was TCP or UDP, 2220 * so we just set both bits, and expect the 2221 * upper layers to deal. 2222 */ 2223 WM_EVCNT_INCR(&sc->sc_ev_rxtusum); 2224 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4; 2225 if (errors & WRX_ER_TCPE) 2226 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; 2227 } 2228 2229 ifp->if_ipackets++; 2230 2231 #if NBPFILTER > 0 2232 /* Pass this up to any BPF listeners. */ 2233 if (ifp->if_bpf) 2234 bpf_mtap(ifp->if_bpf, m); 2235 #endif /* NBPFILTER > 0 */ 2236 2237 /* Pass it on. */ 2238 (*ifp->if_input)(ifp, m); 2239 } 2240 2241 /* Update the receive pointer. */ 2242 sc->sc_rxptr = i; 2243 2244 DPRINTF(WM_DEBUG_RX, 2245 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i)); 2246 } 2247 2248 /* 2249 * wm_linkintr: 2250 * 2251 * Helper; handle link interrupts. 2252 */ 2253 static void 2254 wm_linkintr(struct wm_softc *sc, uint32_t icr) 2255 { 2256 uint32_t status; 2257 2258 /* 2259 * If we get a link status interrupt on a 1000BASE-T 2260 * device, just fall into the normal MII tick path. 2261 */ 2262 if (sc->sc_flags & WM_F_HAS_MII) { 2263 if (icr & ICR_LSC) { 2264 DPRINTF(WM_DEBUG_LINK, 2265 ("%s: LINK: LSC -> mii_tick\n", 2266 sc->sc_dev.dv_xname)); 2267 mii_tick(&sc->sc_mii); 2268 } else if (icr & ICR_RXSEQ) { 2269 DPRINTF(WM_DEBUG_LINK, 2270 ("%s: LINK Receive sequence error\n", 2271 sc->sc_dev.dv_xname)); 2272 } 2273 return; 2274 } 2275 2276 /* 2277 * If we are now receiving /C/, check for link again in 2278 * a couple of link clock ticks. 2279 */ 2280 if (icr & ICR_RXCFG) { 2281 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n", 2282 sc->sc_dev.dv_xname)); 2283 sc->sc_tbi_anstate = 2; 2284 } 2285 2286 if (icr & ICR_LSC) { 2287 status = CSR_READ(sc, WMREG_STATUS); 2288 if (status & STATUS_LU) { 2289 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n", 2290 sc->sc_dev.dv_xname, 2291 (status & STATUS_FD) ? "FDX" : "HDX")); 2292 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 2293 sc->sc_fcrtl &= ~FCRTL_XONE; 2294 if (status & STATUS_FD) 2295 sc->sc_tctl |= 2296 TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 2297 else 2298 sc->sc_tctl |= 2299 TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 2300 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE) 2301 sc->sc_fcrtl |= FCRTL_XONE; 2302 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 2303 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? 2304 WMREG_OLD_FCRTL : WMREG_FCRTL, 2305 sc->sc_fcrtl); 2306 sc->sc_tbi_linkup = 1; 2307 } else { 2308 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n", 2309 sc->sc_dev.dv_xname)); 2310 sc->sc_tbi_linkup = 0; 2311 } 2312 sc->sc_tbi_anstate = 2; 2313 wm_tbi_set_linkled(sc); 2314 } else if (icr & ICR_RXSEQ) { 2315 DPRINTF(WM_DEBUG_LINK, 2316 ("%s: LINK: Receive sequence error\n", 2317 sc->sc_dev.dv_xname)); 2318 } 2319 } 2320 2321 /* 2322 * wm_tick: 2323 * 2324 * One second timer, used to check link status, sweep up 2325 * completed transmit jobs, etc. 2326 */ 2327 static void 2328 wm_tick(void *arg) 2329 { 2330 struct wm_softc *sc = arg; 2331 int s; 2332 2333 s = splnet(); 2334 2335 if (sc->sc_type >= WM_T_82542_2_1) { 2336 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC)); 2337 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC)); 2338 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC)); 2339 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC)); 2340 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC)); 2341 } 2342 2343 if (sc->sc_flags & WM_F_HAS_MII) 2344 mii_tick(&sc->sc_mii); 2345 else 2346 wm_tbi_check_link(sc); 2347 2348 splx(s); 2349 2350 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc); 2351 } 2352 2353 /* 2354 * wm_reset: 2355 * 2356 * Reset the i82542 chip. 2357 */ 2358 static void 2359 wm_reset(struct wm_softc *sc) 2360 { 2361 int i; 2362 2363 /* 2364 * Allocate on-chip memory according to the MTU size. 2365 * The Packet Buffer Allocation register must be written 2366 * before the chip is reset. 2367 */ 2368 if (sc->sc_type < WM_T_82547) { 2369 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ? 2370 PBA_40K : PBA_48K; 2371 } else { 2372 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ? 2373 PBA_22K : PBA_30K; 2374 sc->sc_txfifo_head = 0; 2375 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT; 2376 sc->sc_txfifo_size = 2377 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT; 2378 sc->sc_txfifo_stall = 0; 2379 } 2380 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba); 2381 2382 switch (sc->sc_type) { 2383 case WM_T_82544: 2384 case WM_T_82540: 2385 case WM_T_82545: 2386 case WM_T_82546: 2387 case WM_T_82541: 2388 case WM_T_82541_2: 2389 /* 2390 * On some chipsets, a reset through a memory-mapped write 2391 * cycle can cause the chip to reset before completing the 2392 * write cycle. This causes major headache that can be 2393 * avoided by issuing the reset via indirect register writes 2394 * through I/O space. 2395 * 2396 * So, if we successfully mapped the I/O BAR at attach time, 2397 * use that. Otherwise, try our luck with a memory-mapped 2398 * reset. 2399 */ 2400 if (sc->sc_flags & WM_F_IOH_VALID) 2401 wm_io_write(sc, WMREG_CTRL, CTRL_RST); 2402 else 2403 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST); 2404 break; 2405 2406 case WM_T_82545_3: 2407 case WM_T_82546_3: 2408 /* Use the shadow control register on these chips. */ 2409 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST); 2410 break; 2411 2412 default: 2413 /* Everything else can safely use the documented method. */ 2414 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST); 2415 break; 2416 } 2417 delay(10000); 2418 2419 for (i = 0; i < 1000; i++) { 2420 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0) 2421 return; 2422 delay(20); 2423 } 2424 2425 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST) 2426 log(LOG_ERR, "%s: reset failed to complete\n", 2427 sc->sc_dev.dv_xname); 2428 } 2429 2430 /* 2431 * wm_init: [ifnet interface function] 2432 * 2433 * Initialize the interface. Must be called at splnet(). 2434 */ 2435 static int 2436 wm_init(struct ifnet *ifp) 2437 { 2438 struct wm_softc *sc = ifp->if_softc; 2439 struct wm_rxsoft *rxs; 2440 int i, error = 0; 2441 uint32_t reg; 2442 2443 /* 2444 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set. 2445 * There is a small but measurable benefit to avoiding the adjusment 2446 * of the descriptor so that the headers are aligned, for normal mtu, 2447 * on such platforms. One possibility is that the DMA itself is 2448 * slightly more efficient if the front of the entire packet (instead 2449 * of the front of the headers) is aligned. 2450 * 2451 * Note we must always set align_tweak to 0 if we are using 2452 * jumbo frames. 2453 */ 2454 #ifdef __NO_STRICT_ALIGNMENT 2455 sc->sc_align_tweak = 0; 2456 #else 2457 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2)) 2458 sc->sc_align_tweak = 0; 2459 else 2460 sc->sc_align_tweak = 2; 2461 #endif /* __NO_STRICT_ALIGNMENT */ 2462 2463 /* Cancel any pending I/O. */ 2464 wm_stop(ifp, 0); 2465 2466 /* Reset the chip to a known state. */ 2467 wm_reset(sc); 2468 2469 /* Initialize the transmit descriptor ring. */ 2470 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc)); 2471 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc), 2472 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2473 sc->sc_txfree = WM_NTXDESC(sc); 2474 sc->sc_txnext = 0; 2475 2476 if (sc->sc_type < WM_T_82543) { 2477 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0)); 2478 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0)); 2479 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc)); 2480 CSR_WRITE(sc, WMREG_OLD_TDH, 0); 2481 CSR_WRITE(sc, WMREG_OLD_TDT, 0); 2482 CSR_WRITE(sc, WMREG_OLD_TIDV, 128); 2483 } else { 2484 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0)); 2485 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0)); 2486 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc)); 2487 CSR_WRITE(sc, WMREG_TDH, 0); 2488 CSR_WRITE(sc, WMREG_TDT, 0); 2489 CSR_WRITE(sc, WMREG_TIDV, 64); 2490 CSR_WRITE(sc, WMREG_TADV, 128); 2491 2492 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) | 2493 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0)); 2494 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) | 2495 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1)); 2496 } 2497 CSR_WRITE(sc, WMREG_TQSA_LO, 0); 2498 CSR_WRITE(sc, WMREG_TQSA_HI, 0); 2499 2500 /* Initialize the transmit job descriptors. */ 2501 for (i = 0; i < WM_TXQUEUELEN(sc); i++) 2502 sc->sc_txsoft[i].txs_mbuf = NULL; 2503 sc->sc_txsfree = WM_TXQUEUELEN(sc); 2504 sc->sc_txsnext = 0; 2505 sc->sc_txsdirty = 0; 2506 2507 /* 2508 * Initialize the receive descriptor and receive job 2509 * descriptor rings. 2510 */ 2511 if (sc->sc_type < WM_T_82543) { 2512 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0)); 2513 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0)); 2514 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs)); 2515 CSR_WRITE(sc, WMREG_OLD_RDH0, 0); 2516 CSR_WRITE(sc, WMREG_OLD_RDT0, 0); 2517 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD); 2518 2519 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0); 2520 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0); 2521 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0); 2522 CSR_WRITE(sc, WMREG_OLD_RDH1, 0); 2523 CSR_WRITE(sc, WMREG_OLD_RDT1, 0); 2524 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0); 2525 } else { 2526 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0)); 2527 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0)); 2528 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs)); 2529 CSR_WRITE(sc, WMREG_RDH, 0); 2530 CSR_WRITE(sc, WMREG_RDT, 0); 2531 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD); 2532 CSR_WRITE(sc, WMREG_RADV, 128); 2533 } 2534 for (i = 0; i < WM_NRXDESC; i++) { 2535 rxs = &sc->sc_rxsoft[i]; 2536 if (rxs->rxs_mbuf == NULL) { 2537 if ((error = wm_add_rxbuf(sc, i)) != 0) { 2538 log(LOG_ERR, "%s: unable to allocate or map rx " 2539 "buffer %d, error = %d\n", 2540 sc->sc_dev.dv_xname, i, error); 2541 /* 2542 * XXX Should attempt to run with fewer receive 2543 * XXX buffers instead of just failing. 2544 */ 2545 wm_rxdrain(sc); 2546 goto out; 2547 } 2548 } else 2549 WM_INIT_RXDESC(sc, i); 2550 } 2551 sc->sc_rxptr = 0; 2552 sc->sc_rxdiscard = 0; 2553 WM_RXCHAIN_RESET(sc); 2554 2555 /* 2556 * Clear out the VLAN table -- we don't use it (yet). 2557 */ 2558 CSR_WRITE(sc, WMREG_VET, 0); 2559 for (i = 0; i < WM_VLAN_TABSIZE; i++) 2560 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0); 2561 2562 /* 2563 * Set up flow-control parameters. 2564 * 2565 * XXX Values could probably stand some tuning. 2566 */ 2567 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST); 2568 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST); 2569 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL); 2570 2571 sc->sc_fcrtl = FCRTL_DFLT; 2572 if (sc->sc_type < WM_T_82543) { 2573 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT); 2574 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl); 2575 } else { 2576 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT); 2577 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl); 2578 } 2579 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT); 2580 2581 #if 0 /* XXXJRT */ 2582 /* Deal with VLAN enables. */ 2583 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2584 sc->sc_ctrl |= CTRL_VME; 2585 else 2586 #endif /* XXXJRT */ 2587 sc->sc_ctrl &= ~CTRL_VME; 2588 2589 /* Write the control registers. */ 2590 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 2591 #if 0 2592 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext); 2593 #endif 2594 2595 /* 2596 * Set up checksum offload parameters. 2597 */ 2598 reg = CSR_READ(sc, WMREG_RXCSUM); 2599 if (ifp->if_capenable & IFCAP_CSUM_IPv4) 2600 reg |= RXCSUM_IPOFL; 2601 else 2602 reg &= ~RXCSUM_IPOFL; 2603 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4)) 2604 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL; 2605 else { 2606 reg &= ~RXCSUM_TUOFL; 2607 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0) 2608 reg &= ~RXCSUM_IPOFL; 2609 } 2610 CSR_WRITE(sc, WMREG_RXCSUM, reg); 2611 2612 /* 2613 * Set up the interrupt registers. 2614 */ 2615 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 2616 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 | 2617 ICR_RXO | ICR_RXT0; 2618 if ((sc->sc_flags & WM_F_HAS_MII) == 0) 2619 sc->sc_icr |= ICR_RXCFG; 2620 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr); 2621 2622 /* Set up the inter-packet gap. */ 2623 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg); 2624 2625 if (sc->sc_type >= WM_T_82543) { 2626 /* Set up the interrupt throttling register (units of 256ns) */ 2627 sc->sc_itr = 1000000000 / (7000 * 256); 2628 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr); 2629 } 2630 2631 #if 0 /* XXXJRT */ 2632 /* Set the VLAN ethernetype. */ 2633 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN); 2634 #endif 2635 2636 /* 2637 * Set up the transmit control register; we start out with 2638 * a collision distance suitable for FDX, but update it whe 2639 * we resolve the media type. 2640 */ 2641 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) | 2642 TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 2643 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 2644 2645 /* Set the media. */ 2646 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp); 2647 2648 /* 2649 * Set up the receive control register; we actually program 2650 * the register when we set the receive filter. Use multicast 2651 * address offset type 0. 2652 * 2653 * Only the i82544 has the ability to strip the incoming 2654 * CRC, so we don't enable that feature. 2655 */ 2656 sc->sc_mchash_type = 0; 2657 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE | 2658 RCTL_DPF | RCTL_MO(sc->sc_mchash_type); 2659 2660 if(MCLBYTES == 2048) { 2661 sc->sc_rctl |= RCTL_2k; 2662 } else { 2663 if(sc->sc_type >= WM_T_82543) { 2664 switch(MCLBYTES) { 2665 case 4096: 2666 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k; 2667 break; 2668 case 8192: 2669 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k; 2670 break; 2671 case 16384: 2672 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k; 2673 break; 2674 default: 2675 panic("wm_init: MCLBYTES %d unsupported", 2676 MCLBYTES); 2677 break; 2678 } 2679 } else panic("wm_init: i82542 requires MCLBYTES = 2048"); 2680 } 2681 2682 /* Set the receive filter. */ 2683 wm_set_filter(sc); 2684 2685 /* Start the one second link check clock. */ 2686 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc); 2687 2688 /* ...all done! */ 2689 ifp->if_flags |= IFF_RUNNING; 2690 ifp->if_flags &= ~IFF_OACTIVE; 2691 2692 out: 2693 if (error) 2694 log(LOG_ERR, "%s: interface not running\n", 2695 sc->sc_dev.dv_xname); 2696 return (error); 2697 } 2698 2699 /* 2700 * wm_rxdrain: 2701 * 2702 * Drain the receive queue. 2703 */ 2704 static void 2705 wm_rxdrain(struct wm_softc *sc) 2706 { 2707 struct wm_rxsoft *rxs; 2708 int i; 2709 2710 for (i = 0; i < WM_NRXDESC; i++) { 2711 rxs = &sc->sc_rxsoft[i]; 2712 if (rxs->rxs_mbuf != NULL) { 2713 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2714 m_freem(rxs->rxs_mbuf); 2715 rxs->rxs_mbuf = NULL; 2716 } 2717 } 2718 } 2719 2720 /* 2721 * wm_stop: [ifnet interface function] 2722 * 2723 * Stop transmission on the interface. 2724 */ 2725 static void 2726 wm_stop(struct ifnet *ifp, int disable) 2727 { 2728 struct wm_softc *sc = ifp->if_softc; 2729 struct wm_txsoft *txs; 2730 int i; 2731 2732 /* Stop the one second clock. */ 2733 callout_stop(&sc->sc_tick_ch); 2734 2735 /* Stop the 82547 Tx FIFO stall check timer. */ 2736 if (sc->sc_type == WM_T_82547) 2737 callout_stop(&sc->sc_txfifo_ch); 2738 2739 if (sc->sc_flags & WM_F_HAS_MII) { 2740 /* Down the MII. */ 2741 mii_down(&sc->sc_mii); 2742 } 2743 2744 /* Stop the transmit and receive processes. */ 2745 CSR_WRITE(sc, WMREG_TCTL, 0); 2746 CSR_WRITE(sc, WMREG_RCTL, 0); 2747 2748 /* Release any queued transmit buffers. */ 2749 for (i = 0; i < WM_TXQUEUELEN(sc); i++) { 2750 txs = &sc->sc_txsoft[i]; 2751 if (txs->txs_mbuf != NULL) { 2752 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2753 m_freem(txs->txs_mbuf); 2754 txs->txs_mbuf = NULL; 2755 } 2756 } 2757 2758 if (disable) 2759 wm_rxdrain(sc); 2760 2761 /* Mark the interface as down and cancel the watchdog timer. */ 2762 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2763 ifp->if_timer = 0; 2764 } 2765 2766 /* 2767 * wm_acquire_eeprom: 2768 * 2769 * Perform the EEPROM handshake required on some chips. 2770 */ 2771 static int 2772 wm_acquire_eeprom(struct wm_softc *sc) 2773 { 2774 uint32_t reg; 2775 int x; 2776 2777 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) { 2778 reg = CSR_READ(sc, WMREG_EECD); 2779 2780 /* Request EEPROM access. */ 2781 reg |= EECD_EE_REQ; 2782 CSR_WRITE(sc, WMREG_EECD, reg); 2783 2784 /* ..and wait for it to be granted. */ 2785 for (x = 0; x < 100; x++) { 2786 reg = CSR_READ(sc, WMREG_EECD); 2787 if (reg & EECD_EE_GNT) 2788 break; 2789 delay(5); 2790 } 2791 if ((reg & EECD_EE_GNT) == 0) { 2792 aprint_error("%s: could not acquire EEPROM GNT\n", 2793 sc->sc_dev.dv_xname); 2794 reg &= ~EECD_EE_REQ; 2795 CSR_WRITE(sc, WMREG_EECD, reg); 2796 return (1); 2797 } 2798 } 2799 2800 return (0); 2801 } 2802 2803 /* 2804 * wm_release_eeprom: 2805 * 2806 * Release the EEPROM mutex. 2807 */ 2808 static void 2809 wm_release_eeprom(struct wm_softc *sc) 2810 { 2811 uint32_t reg; 2812 2813 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) { 2814 reg = CSR_READ(sc, WMREG_EECD); 2815 reg &= ~EECD_EE_REQ; 2816 CSR_WRITE(sc, WMREG_EECD, reg); 2817 } 2818 } 2819 2820 /* 2821 * wm_eeprom_sendbits: 2822 * 2823 * Send a series of bits to the EEPROM. 2824 */ 2825 static void 2826 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits) 2827 { 2828 uint32_t reg; 2829 int x; 2830 2831 reg = CSR_READ(sc, WMREG_EECD); 2832 2833 for (x = nbits; x > 0; x--) { 2834 if (bits & (1U << (x - 1))) 2835 reg |= EECD_DI; 2836 else 2837 reg &= ~EECD_DI; 2838 CSR_WRITE(sc, WMREG_EECD, reg); 2839 delay(2); 2840 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK); 2841 delay(2); 2842 CSR_WRITE(sc, WMREG_EECD, reg); 2843 delay(2); 2844 } 2845 } 2846 2847 /* 2848 * wm_eeprom_recvbits: 2849 * 2850 * Receive a series of bits from the EEPROM. 2851 */ 2852 static void 2853 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits) 2854 { 2855 uint32_t reg, val; 2856 int x; 2857 2858 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI; 2859 2860 val = 0; 2861 for (x = nbits; x > 0; x--) { 2862 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK); 2863 delay(2); 2864 if (CSR_READ(sc, WMREG_EECD) & EECD_DO) 2865 val |= (1U << (x - 1)); 2866 CSR_WRITE(sc, WMREG_EECD, reg); 2867 delay(2); 2868 } 2869 *valp = val; 2870 } 2871 2872 /* 2873 * wm_read_eeprom_uwire: 2874 * 2875 * Read a word from the EEPROM using the MicroWire protocol. 2876 */ 2877 static int 2878 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 2879 { 2880 uint32_t reg, val; 2881 int i; 2882 2883 for (i = 0; i < wordcnt; i++) { 2884 /* Clear SK and DI. */ 2885 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI); 2886 CSR_WRITE(sc, WMREG_EECD, reg); 2887 2888 /* Set CHIP SELECT. */ 2889 reg |= EECD_CS; 2890 CSR_WRITE(sc, WMREG_EECD, reg); 2891 delay(2); 2892 2893 /* Shift in the READ command. */ 2894 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3); 2895 2896 /* Shift in address. */ 2897 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits); 2898 2899 /* Shift out the data. */ 2900 wm_eeprom_recvbits(sc, &val, 16); 2901 data[i] = val & 0xffff; 2902 2903 /* Clear CHIP SELECT. */ 2904 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS; 2905 CSR_WRITE(sc, WMREG_EECD, reg); 2906 delay(2); 2907 } 2908 2909 return (0); 2910 } 2911 2912 /* 2913 * wm_spi_eeprom_ready: 2914 * 2915 * Wait for a SPI EEPROM to be ready for commands. 2916 */ 2917 static int 2918 wm_spi_eeprom_ready(struct wm_softc *sc) 2919 { 2920 uint32_t val; 2921 int usec; 2922 2923 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) { 2924 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8); 2925 wm_eeprom_recvbits(sc, &val, 8); 2926 if ((val & SPI_SR_RDY) == 0) 2927 break; 2928 } 2929 if (usec >= SPI_MAX_RETRIES) { 2930 aprint_error("%s: EEPROM failed to become ready\n", 2931 sc->sc_dev.dv_xname); 2932 return (1); 2933 } 2934 return (0); 2935 } 2936 2937 /* 2938 * wm_read_eeprom_spi: 2939 * 2940 * Read a work from the EEPROM using the SPI protocol. 2941 */ 2942 static int 2943 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 2944 { 2945 uint32_t reg, val; 2946 int i; 2947 uint8_t opc; 2948 2949 /* Clear SK and CS. */ 2950 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS); 2951 CSR_WRITE(sc, WMREG_EECD, reg); 2952 delay(2); 2953 2954 if (wm_spi_eeprom_ready(sc)) 2955 return (1); 2956 2957 /* Toggle CS to flush commands. */ 2958 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS); 2959 delay(2); 2960 CSR_WRITE(sc, WMREG_EECD, reg); 2961 delay(2); 2962 2963 opc = SPI_OPC_READ; 2964 if (sc->sc_ee_addrbits == 8 && word >= 128) 2965 opc |= SPI_OPC_A8; 2966 2967 wm_eeprom_sendbits(sc, opc, 8); 2968 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits); 2969 2970 for (i = 0; i < wordcnt; i++) { 2971 wm_eeprom_recvbits(sc, &val, 16); 2972 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8); 2973 } 2974 2975 /* Raise CS and clear SK. */ 2976 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS; 2977 CSR_WRITE(sc, WMREG_EECD, reg); 2978 delay(2); 2979 2980 return (0); 2981 } 2982 2983 /* 2984 * wm_read_eeprom: 2985 * 2986 * Read data from the serial EEPROM. 2987 */ 2988 static int 2989 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 2990 { 2991 int rv; 2992 2993 if (wm_acquire_eeprom(sc)) 2994 return (1); 2995 2996 if (sc->sc_flags & WM_F_EEPROM_SPI) 2997 rv = wm_read_eeprom_spi(sc, word, wordcnt, data); 2998 else 2999 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data); 3000 3001 wm_release_eeprom(sc); 3002 return (rv); 3003 } 3004 3005 /* 3006 * wm_add_rxbuf: 3007 * 3008 * Add a receive buffer to the indiciated descriptor. 3009 */ 3010 static int 3011 wm_add_rxbuf(struct wm_softc *sc, int idx) 3012 { 3013 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx]; 3014 struct mbuf *m; 3015 int error; 3016 3017 MGETHDR(m, M_DONTWAIT, MT_DATA); 3018 if (m == NULL) 3019 return (ENOBUFS); 3020 3021 MCLGET(m, M_DONTWAIT); 3022 if ((m->m_flags & M_EXT) == 0) { 3023 m_freem(m); 3024 return (ENOBUFS); 3025 } 3026 3027 if (rxs->rxs_mbuf != NULL) 3028 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 3029 3030 rxs->rxs_mbuf = m; 3031 3032 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3033 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m, 3034 BUS_DMA_READ|BUS_DMA_NOWAIT); 3035 if (error) { 3036 /* XXX XXX XXX */ 3037 printf("%s: unable to load rx DMA map %d, error = %d\n", 3038 sc->sc_dev.dv_xname, idx, error); 3039 panic("wm_add_rxbuf"); 3040 } 3041 3042 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 3043 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3044 3045 WM_INIT_RXDESC(sc, idx); 3046 3047 return (0); 3048 } 3049 3050 /* 3051 * wm_set_ral: 3052 * 3053 * Set an entery in the receive address list. 3054 */ 3055 static void 3056 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx) 3057 { 3058 uint32_t ral_lo, ral_hi; 3059 3060 if (enaddr != NULL) { 3061 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) | 3062 (enaddr[3] << 24); 3063 ral_hi = enaddr[4] | (enaddr[5] << 8); 3064 ral_hi |= RAL_AV; 3065 } else { 3066 ral_lo = 0; 3067 ral_hi = 0; 3068 } 3069 3070 if (sc->sc_type >= WM_T_82544) { 3071 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx), 3072 ral_lo); 3073 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx), 3074 ral_hi); 3075 } else { 3076 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo); 3077 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi); 3078 } 3079 } 3080 3081 /* 3082 * wm_mchash: 3083 * 3084 * Compute the hash of the multicast address for the 4096-bit 3085 * multicast filter. 3086 */ 3087 static uint32_t 3088 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr) 3089 { 3090 static const int lo_shift[4] = { 4, 3, 2, 0 }; 3091 static const int hi_shift[4] = { 4, 5, 6, 8 }; 3092 uint32_t hash; 3093 3094 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) | 3095 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]); 3096 3097 return (hash & 0xfff); 3098 } 3099 3100 /* 3101 * wm_set_filter: 3102 * 3103 * Set up the receive filter. 3104 */ 3105 static void 3106 wm_set_filter(struct wm_softc *sc) 3107 { 3108 struct ethercom *ec = &sc->sc_ethercom; 3109 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3110 struct ether_multi *enm; 3111 struct ether_multistep step; 3112 bus_addr_t mta_reg; 3113 uint32_t hash, reg, bit; 3114 int i; 3115 3116 if (sc->sc_type >= WM_T_82544) 3117 mta_reg = WMREG_CORDOVA_MTA; 3118 else 3119 mta_reg = WMREG_MTA; 3120 3121 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE); 3122 3123 if (ifp->if_flags & IFF_BROADCAST) 3124 sc->sc_rctl |= RCTL_BAM; 3125 if (ifp->if_flags & IFF_PROMISC) { 3126 sc->sc_rctl |= RCTL_UPE; 3127 goto allmulti; 3128 } 3129 3130 /* 3131 * Set the station address in the first RAL slot, and 3132 * clear the remaining slots. 3133 */ 3134 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0); 3135 for (i = 1; i < WM_RAL_TABSIZE; i++) 3136 wm_set_ral(sc, NULL, i); 3137 3138 /* Clear out the multicast table. */ 3139 for (i = 0; i < WM_MC_TABSIZE; i++) 3140 CSR_WRITE(sc, mta_reg + (i << 2), 0); 3141 3142 ETHER_FIRST_MULTI(step, ec, enm); 3143 while (enm != NULL) { 3144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3145 /* 3146 * We must listen to a range of multicast addresses. 3147 * For now, just accept all multicasts, rather than 3148 * trying to set only those filter bits needed to match 3149 * the range. (At this time, the only use of address 3150 * ranges is for IP multicast routing, for which the 3151 * range is big enough to require all bits set.) 3152 */ 3153 goto allmulti; 3154 } 3155 3156 hash = wm_mchash(sc, enm->enm_addrlo); 3157 3158 reg = (hash >> 5) & 0x7f; 3159 bit = hash & 0x1f; 3160 3161 hash = CSR_READ(sc, mta_reg + (reg << 2)); 3162 hash |= 1U << bit; 3163 3164 /* XXX Hardware bug?? */ 3165 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) { 3166 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2)); 3167 CSR_WRITE(sc, mta_reg + (reg << 2), hash); 3168 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit); 3169 } else 3170 CSR_WRITE(sc, mta_reg + (reg << 2), hash); 3171 3172 ETHER_NEXT_MULTI(step, enm); 3173 } 3174 3175 ifp->if_flags &= ~IFF_ALLMULTI; 3176 goto setit; 3177 3178 allmulti: 3179 ifp->if_flags |= IFF_ALLMULTI; 3180 sc->sc_rctl |= RCTL_MPE; 3181 3182 setit: 3183 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl); 3184 } 3185 3186 /* 3187 * wm_tbi_mediainit: 3188 * 3189 * Initialize media for use on 1000BASE-X devices. 3190 */ 3191 static void 3192 wm_tbi_mediainit(struct wm_softc *sc) 3193 { 3194 const char *sep = ""; 3195 3196 if (sc->sc_type < WM_T_82543) 3197 sc->sc_tipg = TIPG_WM_DFLT; 3198 else 3199 sc->sc_tipg = TIPG_LG_DFLT; 3200 3201 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange, 3202 wm_tbi_mediastatus); 3203 3204 /* 3205 * SWD Pins: 3206 * 3207 * 0 = Link LED (output) 3208 * 1 = Loss Of Signal (input) 3209 */ 3210 sc->sc_ctrl |= CTRL_SWDPIO(0); 3211 sc->sc_ctrl &= ~CTRL_SWDPIO(1); 3212 3213 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 3214 3215 #define ADD(ss, mm, dd) \ 3216 do { \ 3217 aprint_normal("%s%s", sep, ss); \ 3218 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \ 3219 sep = ", "; \ 3220 } while (/*CONSTCOND*/0) 3221 3222 aprint_normal("%s: ", sc->sc_dev.dv_xname); 3223 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD); 3224 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD); 3225 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD); 3226 aprint_normal("\n"); 3227 3228 #undef ADD 3229 3230 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 3231 } 3232 3233 /* 3234 * wm_tbi_mediastatus: [ifmedia interface function] 3235 * 3236 * Get the current interface media status on a 1000BASE-X device. 3237 */ 3238 static void 3239 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 3240 { 3241 struct wm_softc *sc = ifp->if_softc; 3242 uint32_t ctrl; 3243 3244 ifmr->ifm_status = IFM_AVALID; 3245 ifmr->ifm_active = IFM_ETHER; 3246 3247 if (sc->sc_tbi_linkup == 0) { 3248 ifmr->ifm_active |= IFM_NONE; 3249 return; 3250 } 3251 3252 ifmr->ifm_status |= IFM_ACTIVE; 3253 ifmr->ifm_active |= IFM_1000_SX; 3254 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD) 3255 ifmr->ifm_active |= IFM_FDX; 3256 ctrl = CSR_READ(sc, WMREG_CTRL); 3257 if (ctrl & CTRL_RFCE) 3258 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE; 3259 if (ctrl & CTRL_TFCE) 3260 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE; 3261 } 3262 3263 /* 3264 * wm_tbi_mediachange: [ifmedia interface function] 3265 * 3266 * Set hardware to newly-selected media on a 1000BASE-X device. 3267 */ 3268 static int 3269 wm_tbi_mediachange(struct ifnet *ifp) 3270 { 3271 struct wm_softc *sc = ifp->if_softc; 3272 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 3273 uint32_t status; 3274 int i; 3275 3276 sc->sc_txcw = ife->ifm_data; 3277 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO || 3278 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0) 3279 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM; 3280 sc->sc_txcw |= TXCW_ANE; 3281 3282 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw); 3283 delay(10000); 3284 3285 /* NOTE: CTRL will update TFCE and RFCE automatically. */ 3286 3287 sc->sc_tbi_anstate = 0; 3288 3289 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) { 3290 /* Have signal; wait for the link to come up. */ 3291 for (i = 0; i < 50; i++) { 3292 delay(10000); 3293 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU) 3294 break; 3295 } 3296 3297 status = CSR_READ(sc, WMREG_STATUS); 3298 if (status & STATUS_LU) { 3299 /* Link is up. */ 3300 DPRINTF(WM_DEBUG_LINK, 3301 ("%s: LINK: set media -> link up %s\n", 3302 sc->sc_dev.dv_xname, 3303 (status & STATUS_FD) ? "FDX" : "HDX")); 3304 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 3305 sc->sc_fcrtl &= ~FCRTL_XONE; 3306 if (status & STATUS_FD) 3307 sc->sc_tctl |= 3308 TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 3309 else 3310 sc->sc_tctl |= 3311 TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 3312 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE) 3313 sc->sc_fcrtl |= FCRTL_XONE; 3314 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 3315 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? 3316 WMREG_OLD_FCRTL : WMREG_FCRTL, 3317 sc->sc_fcrtl); 3318 sc->sc_tbi_linkup = 1; 3319 } else { 3320 /* Link is down. */ 3321 DPRINTF(WM_DEBUG_LINK, 3322 ("%s: LINK: set media -> link down\n", 3323 sc->sc_dev.dv_xname)); 3324 sc->sc_tbi_linkup = 0; 3325 } 3326 } else { 3327 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n", 3328 sc->sc_dev.dv_xname)); 3329 sc->sc_tbi_linkup = 0; 3330 } 3331 3332 wm_tbi_set_linkled(sc); 3333 3334 return (0); 3335 } 3336 3337 /* 3338 * wm_tbi_set_linkled: 3339 * 3340 * Update the link LED on 1000BASE-X devices. 3341 */ 3342 static void 3343 wm_tbi_set_linkled(struct wm_softc *sc) 3344 { 3345 3346 if (sc->sc_tbi_linkup) 3347 sc->sc_ctrl |= CTRL_SWDPIN(0); 3348 else 3349 sc->sc_ctrl &= ~CTRL_SWDPIN(0); 3350 3351 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 3352 } 3353 3354 /* 3355 * wm_tbi_check_link: 3356 * 3357 * Check the link on 1000BASE-X devices. 3358 */ 3359 static void 3360 wm_tbi_check_link(struct wm_softc *sc) 3361 { 3362 uint32_t rxcw, ctrl, status; 3363 3364 if (sc->sc_tbi_anstate == 0) 3365 return; 3366 else if (sc->sc_tbi_anstate > 1) { 3367 DPRINTF(WM_DEBUG_LINK, 3368 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname, 3369 sc->sc_tbi_anstate)); 3370 sc->sc_tbi_anstate--; 3371 return; 3372 } 3373 3374 sc->sc_tbi_anstate = 0; 3375 3376 rxcw = CSR_READ(sc, WMREG_RXCW); 3377 ctrl = CSR_READ(sc, WMREG_CTRL); 3378 status = CSR_READ(sc, WMREG_STATUS); 3379 3380 if ((status & STATUS_LU) == 0) { 3381 DPRINTF(WM_DEBUG_LINK, 3382 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname)); 3383 sc->sc_tbi_linkup = 0; 3384 } else { 3385 DPRINTF(WM_DEBUG_LINK, 3386 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname, 3387 (status & STATUS_FD) ? "FDX" : "HDX")); 3388 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 3389 sc->sc_fcrtl &= ~FCRTL_XONE; 3390 if (status & STATUS_FD) 3391 sc->sc_tctl |= 3392 TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 3393 else 3394 sc->sc_tctl |= 3395 TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 3396 if (ctrl & CTRL_TFCE) 3397 sc->sc_fcrtl |= FCRTL_XONE; 3398 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 3399 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? 3400 WMREG_OLD_FCRTL : WMREG_FCRTL, 3401 sc->sc_fcrtl); 3402 sc->sc_tbi_linkup = 1; 3403 } 3404 3405 wm_tbi_set_linkled(sc); 3406 } 3407 3408 /* 3409 * wm_gmii_reset: 3410 * 3411 * Reset the PHY. 3412 */ 3413 static void 3414 wm_gmii_reset(struct wm_softc *sc) 3415 { 3416 uint32_t reg; 3417 3418 if (sc->sc_type >= WM_T_82544) { 3419 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET); 3420 delay(20000); 3421 3422 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 3423 delay(20000); 3424 } else { 3425 /* The PHY reset pin is active-low. */ 3426 reg = CSR_READ(sc, WMREG_CTRL_EXT); 3427 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) | 3428 CTRL_EXT_SWDPIN(4)); 3429 reg |= CTRL_EXT_SWDPIO(4); 3430 3431 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4)); 3432 delay(10); 3433 3434 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 3435 delay(10); 3436 3437 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4)); 3438 delay(10); 3439 #if 0 3440 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4); 3441 #endif 3442 } 3443 } 3444 3445 /* 3446 * wm_gmii_mediainit: 3447 * 3448 * Initialize media for use on 1000BASE-T devices. 3449 */ 3450 static void 3451 wm_gmii_mediainit(struct wm_softc *sc) 3452 { 3453 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3454 3455 /* We have MII. */ 3456 sc->sc_flags |= WM_F_HAS_MII; 3457 3458 sc->sc_tipg = TIPG_1000T_DFLT; 3459 3460 /* 3461 * Let the chip set speed/duplex on its own based on 3462 * signals from the PHY. 3463 */ 3464 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE; 3465 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 3466 3467 /* Initialize our media structures and probe the GMII. */ 3468 sc->sc_mii.mii_ifp = ifp; 3469 3470 if (sc->sc_type >= WM_T_82544) { 3471 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg; 3472 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg; 3473 } else { 3474 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg; 3475 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg; 3476 } 3477 sc->sc_mii.mii_statchg = wm_gmii_statchg; 3478 3479 wm_gmii_reset(sc); 3480 3481 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange, 3482 wm_gmii_mediastatus); 3483 3484 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 3485 MII_OFFSET_ANY, MIIF_DOPAUSE); 3486 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 3487 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 3488 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 3489 } else 3490 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 3491 } 3492 3493 /* 3494 * wm_gmii_mediastatus: [ifmedia interface function] 3495 * 3496 * Get the current interface media status on a 1000BASE-T device. 3497 */ 3498 static void 3499 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 3500 { 3501 struct wm_softc *sc = ifp->if_softc; 3502 3503 mii_pollstat(&sc->sc_mii); 3504 ifmr->ifm_status = sc->sc_mii.mii_media_status; 3505 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) | 3506 sc->sc_flowflags; 3507 } 3508 3509 /* 3510 * wm_gmii_mediachange: [ifmedia interface function] 3511 * 3512 * Set hardware to newly-selected media on a 1000BASE-T device. 3513 */ 3514 static int 3515 wm_gmii_mediachange(struct ifnet *ifp) 3516 { 3517 struct wm_softc *sc = ifp->if_softc; 3518 3519 if (ifp->if_flags & IFF_UP) 3520 mii_mediachg(&sc->sc_mii); 3521 return (0); 3522 } 3523 3524 #define MDI_IO CTRL_SWDPIN(2) 3525 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */ 3526 #define MDI_CLK CTRL_SWDPIN(3) 3527 3528 static void 3529 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits) 3530 { 3531 uint32_t i, v; 3532 3533 v = CSR_READ(sc, WMREG_CTRL); 3534 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT)); 3535 v |= MDI_DIR | CTRL_SWDPIO(3); 3536 3537 for (i = 1 << (nbits - 1); i != 0; i >>= 1) { 3538 if (data & i) 3539 v |= MDI_IO; 3540 else 3541 v &= ~MDI_IO; 3542 CSR_WRITE(sc, WMREG_CTRL, v); 3543 delay(10); 3544 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 3545 delay(10); 3546 CSR_WRITE(sc, WMREG_CTRL, v); 3547 delay(10); 3548 } 3549 } 3550 3551 static uint32_t 3552 i82543_mii_recvbits(struct wm_softc *sc) 3553 { 3554 uint32_t v, i, data = 0; 3555 3556 v = CSR_READ(sc, WMREG_CTRL); 3557 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT)); 3558 v |= CTRL_SWDPIO(3); 3559 3560 CSR_WRITE(sc, WMREG_CTRL, v); 3561 delay(10); 3562 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 3563 delay(10); 3564 CSR_WRITE(sc, WMREG_CTRL, v); 3565 delay(10); 3566 3567 for (i = 0; i < 16; i++) { 3568 data <<= 1; 3569 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 3570 delay(10); 3571 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO) 3572 data |= 1; 3573 CSR_WRITE(sc, WMREG_CTRL, v); 3574 delay(10); 3575 } 3576 3577 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 3578 delay(10); 3579 CSR_WRITE(sc, WMREG_CTRL, v); 3580 delay(10); 3581 3582 return (data); 3583 } 3584 3585 #undef MDI_IO 3586 #undef MDI_DIR 3587 #undef MDI_CLK 3588 3589 /* 3590 * wm_gmii_i82543_readreg: [mii interface function] 3591 * 3592 * Read a PHY register on the GMII (i82543 version). 3593 */ 3594 static int 3595 wm_gmii_i82543_readreg(struct device *self, int phy, int reg) 3596 { 3597 struct wm_softc *sc = (void *) self; 3598 int rv; 3599 3600 i82543_mii_sendbits(sc, 0xffffffffU, 32); 3601 i82543_mii_sendbits(sc, reg | (phy << 5) | 3602 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14); 3603 rv = i82543_mii_recvbits(sc) & 0xffff; 3604 3605 DPRINTF(WM_DEBUG_GMII, 3606 ("%s: GMII: read phy %d reg %d -> 0x%04x\n", 3607 sc->sc_dev.dv_xname, phy, reg, rv)); 3608 3609 return (rv); 3610 } 3611 3612 /* 3613 * wm_gmii_i82543_writereg: [mii interface function] 3614 * 3615 * Write a PHY register on the GMII (i82543 version). 3616 */ 3617 static void 3618 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val) 3619 { 3620 struct wm_softc *sc = (void *) self; 3621 3622 i82543_mii_sendbits(sc, 0xffffffffU, 32); 3623 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) | 3624 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) | 3625 (MII_COMMAND_START << 30), 32); 3626 } 3627 3628 /* 3629 * wm_gmii_i82544_readreg: [mii interface function] 3630 * 3631 * Read a PHY register on the GMII. 3632 */ 3633 static int 3634 wm_gmii_i82544_readreg(struct device *self, int phy, int reg) 3635 { 3636 struct wm_softc *sc = (void *) self; 3637 uint32_t mdic = 0; 3638 int i, rv; 3639 3640 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) | 3641 MDIC_REGADD(reg)); 3642 3643 for (i = 0; i < 100; i++) { 3644 mdic = CSR_READ(sc, WMREG_MDIC); 3645 if (mdic & MDIC_READY) 3646 break; 3647 delay(10); 3648 } 3649 3650 if ((mdic & MDIC_READY) == 0) { 3651 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n", 3652 sc->sc_dev.dv_xname, phy, reg); 3653 rv = 0; 3654 } else if (mdic & MDIC_E) { 3655 #if 0 /* This is normal if no PHY is present. */ 3656 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n", 3657 sc->sc_dev.dv_xname, phy, reg); 3658 #endif 3659 rv = 0; 3660 } else { 3661 rv = MDIC_DATA(mdic); 3662 if (rv == 0xffff) 3663 rv = 0; 3664 } 3665 3666 return (rv); 3667 } 3668 3669 /* 3670 * wm_gmii_i82544_writereg: [mii interface function] 3671 * 3672 * Write a PHY register on the GMII. 3673 */ 3674 static void 3675 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val) 3676 { 3677 struct wm_softc *sc = (void *) self; 3678 uint32_t mdic = 0; 3679 int i; 3680 3681 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) | 3682 MDIC_REGADD(reg) | MDIC_DATA(val)); 3683 3684 for (i = 0; i < 100; i++) { 3685 mdic = CSR_READ(sc, WMREG_MDIC); 3686 if (mdic & MDIC_READY) 3687 break; 3688 delay(10); 3689 } 3690 3691 if ((mdic & MDIC_READY) == 0) 3692 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n", 3693 sc->sc_dev.dv_xname, phy, reg); 3694 else if (mdic & MDIC_E) 3695 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n", 3696 sc->sc_dev.dv_xname, phy, reg); 3697 } 3698 3699 /* 3700 * wm_gmii_statchg: [mii interface function] 3701 * 3702 * Callback from MII layer when media changes. 3703 */ 3704 static void 3705 wm_gmii_statchg(struct device *self) 3706 { 3707 struct wm_softc *sc = (void *) self; 3708 struct mii_data *mii = &sc->sc_mii; 3709 3710 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE); 3711 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 3712 sc->sc_fcrtl &= ~FCRTL_XONE; 3713 3714 /* 3715 * Get flow control negotiation result. 3716 */ 3717 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3718 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3719 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3720 mii->mii_media_active &= ~IFM_ETH_FMASK; 3721 } 3722 3723 if (sc->sc_flowflags & IFM_FLOW) { 3724 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) { 3725 sc->sc_ctrl |= CTRL_TFCE; 3726 sc->sc_fcrtl |= FCRTL_XONE; 3727 } 3728 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 3729 sc->sc_ctrl |= CTRL_RFCE; 3730 } 3731 3732 if (sc->sc_mii.mii_media_active & IFM_FDX) { 3733 DPRINTF(WM_DEBUG_LINK, 3734 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname)); 3735 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 3736 } else { 3737 DPRINTF(WM_DEBUG_LINK, 3738 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname)); 3739 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 3740 } 3741 3742 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 3743 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 3744 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL 3745 : WMREG_FCRTL, sc->sc_fcrtl); 3746 } 3747