xref: /netbsd-src/sys/dev/pci/if_wm.c (revision aa73cae19608873cc4d1f712c4a0f8f8435f1ffa)
1 /*	$NetBSD: if_wm.c,v 1.96 2005/02/27 00:27:33 perry Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.96 2005/02/27 00:27:33 perry Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67 
68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
69 
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78 
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82 
83 #include <netinet/in.h>			/* XXX for struct ip */
84 #include <netinet/in_systm.h>		/* XXX for struct ip */
85 #include <netinet/ip.h>			/* XXX for struct ip */
86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
87 
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99 
100 #include <dev/pci/if_wmreg.h>
101 
102 #ifdef WM_DEBUG
103 #define	WM_DEBUG_LINK		0x01
104 #define	WM_DEBUG_TX		0x02
105 #define	WM_DEBUG_RX		0x04
106 #define	WM_DEBUG_GMII		0x08
107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108 
109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
110 #else
111 #define	DPRINTF(x, y)	/* nothing */
112 #endif /* WM_DEBUG */
113 
114 /*
115  * Transmit descriptor list size.  Due to errata, we can only have
116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
117  * on >= 82544.  We tell the upper layers that they can queue a lot
118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119  * of them at a time.
120  *
121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
122  * chains containing many small mbufs have been observed in zero-copy
123  * situations with jumbo frames.
124  */
125 #define	WM_NTXSEGS		256
126 #define	WM_IFQUEUELEN		256
127 #define	WM_TXQUEUELEN_MAX	64
128 #define	WM_TXQUEUELEN_MAX_82547	16
129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
132 #define	WM_NTXDESC_82542	256
133 #define	WM_NTXDESC_82544	4096
134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139 
140 #define	WM_MAXTXDMA		ETHER_MAX_LEN_JUMBO
141 
142 /*
143  * Receive descriptor list size.  We have one Rx buffer for normal
144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
145  * packet.  We allocate 256 receive descriptors, each with a 2k
146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147  */
148 #define	WM_NRXDESC		256
149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
152 
153 /*
154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
155  * a single clump that maps to a single DMA segment to make serveral things
156  * easier.
157  */
158 struct wm_control_data_82544 {
159 	/*
160 	 * The receive descriptors.
161 	 */
162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163 
164 	/*
165 	 * The transmit descriptors.  Put these at the end, because
166 	 * we might use a smaller number of them.
167 	 */
168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170 
171 struct wm_control_data_82542 {
172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175 
176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
179 
180 /*
181  * Software state for transmit jobs.
182  */
183 struct wm_txsoft {
184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
186 	int txs_firstdesc;		/* first descriptor in packet */
187 	int txs_lastdesc;		/* last descriptor in packet */
188 	int txs_ndesc;			/* # of descriptors used */
189 };
190 
191 /*
192  * Software state for receive buffers.  Each descriptor gets a
193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
194  * more than one buffer, we chain them together.
195  */
196 struct wm_rxsoft {
197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
199 };
200 
201 typedef enum {
202 	WM_T_unknown		= 0,
203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
205 	WM_T_82543,			/* i82543 */
206 	WM_T_82544,			/* i82544 */
207 	WM_T_82540,			/* i82540 */
208 	WM_T_82545,			/* i82545 */
209 	WM_T_82545_3,			/* i82545 3.0+ */
210 	WM_T_82546,			/* i82546 */
211 	WM_T_82546_3,			/* i82546 3.0+ */
212 	WM_T_82541,			/* i82541 */
213 	WM_T_82541_2,			/* i82541 2.0+ */
214 	WM_T_82547,			/* i82547 */
215 	WM_T_82547_2,			/* i82547 2.0+ */
216 } wm_chip_type;
217 
218 /*
219  * Software state per device.
220  */
221 struct wm_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_space_tag_t sc_iot;		/* I/O space tag */
226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
228 	struct ethercom sc_ethercom;	/* ethernet common data */
229 	void *sc_sdhook;		/* shutdown hook */
230 
231 	wm_chip_type sc_type;		/* chip type */
232 	int sc_flags;			/* flags; see below */
233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
234 	int sc_pcix_offset;		/* PCIX capability register offset */
235 	int sc_flowflags;		/* 802.3x flow control flags */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	int sc_ee_addrbits;		/* EEPROM address bits */
240 
241 	struct mii_data sc_mii;		/* MII/media information */
242 
243 	struct callout sc_tick_ch;	/* tick callout */
244 
245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
247 
248 	int		sc_align_tweak;
249 
250 	/*
251 	 * Software state for the transmit and receive descriptors.
252 	 */
253 	int			sc_txnum;	/* must be a power of two */
254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
256 
257 	/*
258 	 * Control data structures.
259 	 */
260 	int			sc_ntxdesc;	/* must be a power of two */
261 	struct wm_control_data_82544 *sc_control_data;
262 #define	sc_txdescs	sc_control_data->wcd_txdescs
263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
264 
265 #ifdef WM_EVENT_COUNTERS
266 	/* Event counters. */
267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
274 
275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
279 
280 			/* m_pullup() needed for Tx offload */
281 	struct evcnt sc_ev_txpullup_needed;
282 			/* ...failed due to no memory */
283 	struct evcnt sc_ev_txpullup_nomem;
284 			/* ...failed due to lack of space in first mbuf */
285 	struct evcnt sc_ev_txpullup_fail;
286 
287 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
288 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
289 
290 	struct evcnt sc_ev_tu;		/* Tx underrun */
291 
292 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
293 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
294 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
295 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
296 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
297 #endif /* WM_EVENT_COUNTERS */
298 
299 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
300 
301 	int	sc_txfree;		/* number of free Tx descriptors */
302 	int	sc_txnext;		/* next ready Tx descriptor */
303 
304 	int	sc_txsfree;		/* number of free Tx jobs */
305 	int	sc_txsnext;		/* next free Tx job */
306 	int	sc_txsdirty;		/* dirty Tx jobs */
307 
308 	/* These 5 variables are used only on the 82547. */
309 	int	sc_txfifo_size;		/* Tx FIFO size */
310 	int	sc_txfifo_head;		/* current head of FIFO */
311 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
312 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
313 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
314 
315 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
316 
317 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
318 	int	sc_rxdiscard;
319 	int	sc_rxlen;
320 	struct mbuf *sc_rxhead;
321 	struct mbuf *sc_rxtail;
322 	struct mbuf **sc_rxtailp;
323 
324 	uint32_t sc_ctrl;		/* prototype CTRL register */
325 #if 0
326 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
327 #endif
328 	uint32_t sc_icr;		/* prototype interrupt bits */
329 	uint32_t sc_itr;		/* prototype intr throttling reg */
330 	uint32_t sc_tctl;		/* prototype TCTL register */
331 	uint32_t sc_rctl;		/* prototype RCTL register */
332 	uint32_t sc_txcw;		/* prototype TXCW register */
333 	uint32_t sc_tipg;		/* prototype TIPG register */
334 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
335 	uint32_t sc_pba;		/* prototype PBA register */
336 
337 	int sc_tbi_linkup;		/* TBI link status */
338 	int sc_tbi_anstate;		/* autonegotiation state */
339 
340 	int sc_mchash_type;		/* multicast filter offset */
341 
342 #if NRND > 0
343 	rndsource_element_t rnd_source;	/* random source */
344 #endif
345 };
346 
347 #define	WM_RXCHAIN_RESET(sc)						\
348 do {									\
349 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
350 	*(sc)->sc_rxtailp = NULL;					\
351 	(sc)->sc_rxlen = 0;						\
352 } while (/*CONSTCOND*/0)
353 
354 #define	WM_RXCHAIN_LINK(sc, m)						\
355 do {									\
356 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
357 	(sc)->sc_rxtailp = &(m)->m_next;				\
358 } while (/*CONSTCOND*/0)
359 
360 /* sc_flags */
361 #define	WM_F_HAS_MII		0x01	/* has MII */
362 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
363 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
364 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
365 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
366 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
367 #define	WM_F_CSA		0x80	/* bus is CSA */
368 
369 #ifdef WM_EVENT_COUNTERS
370 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
371 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
372 #else
373 #define	WM_EVCNT_INCR(ev)	/* nothing */
374 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
375 #endif
376 
377 #define	CSR_READ(sc, reg)						\
378 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
379 #define	CSR_WRITE(sc, reg, val)						\
380 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
381 #define	CSR_WRITE_FLUSH(sc)						\
382 	(void) CSR_READ((sc), WMREG_STATUS)
383 
384 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
385 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
386 
387 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
388 #define	WM_CDTXADDR_HI(sc, x)						\
389 	(sizeof(bus_addr_t) == 8 ?					\
390 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
391 
392 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
393 #define	WM_CDRXADDR_HI(sc, x)						\
394 	(sizeof(bus_addr_t) == 8 ?					\
395 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
396 
397 #define	WM_CDTXSYNC(sc, x, n, ops)					\
398 do {									\
399 	int __x, __n;							\
400 									\
401 	__x = (x);							\
402 	__n = (n);							\
403 									\
404 	/* If it will wrap around, sync to the end of the ring. */	\
405 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
406 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
407 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
408 		    (WM_NTXDESC(sc) - __x), (ops));			\
409 		__n -= (WM_NTXDESC(sc) - __x);				\
410 		__x = 0;						\
411 	}								\
412 									\
413 	/* Now sync whatever is left. */				\
414 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
415 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
416 } while (/*CONSTCOND*/0)
417 
418 #define	WM_CDRXSYNC(sc, x, ops)						\
419 do {									\
420 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
421 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
422 } while (/*CONSTCOND*/0)
423 
424 #define	WM_INIT_RXDESC(sc, x)						\
425 do {									\
426 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
427 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
428 	struct mbuf *__m = __rxs->rxs_mbuf;				\
429 									\
430 	/*								\
431 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
432 	 * so that the payload after the Ethernet header is aligned	\
433 	 * to a 4-byte boundary.					\
434 	 *								\
435 	 * XXX BRAINDAMAGE ALERT!					\
436 	 * The stupid chip uses the same size for every buffer, which	\
437 	 * is set in the Receive Control register.  We are using the 2K	\
438 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
439 	 * reason, we can't "scoot" packets longer than the standard	\
440 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
441 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
442 	 * the upper layer copy the headers.				\
443 	 */								\
444 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
445 									\
446 	wm_set_dma_addr(&__rxd->wrx_addr,				\
447 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
448 	__rxd->wrx_len = 0;						\
449 	__rxd->wrx_cksum = 0;						\
450 	__rxd->wrx_status = 0;						\
451 	__rxd->wrx_errors = 0;						\
452 	__rxd->wrx_special = 0;						\
453 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
454 									\
455 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
456 } while (/*CONSTCOND*/0)
457 
458 static void	wm_start(struct ifnet *);
459 static void	wm_watchdog(struct ifnet *);
460 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
461 static int	wm_init(struct ifnet *);
462 static void	wm_stop(struct ifnet *, int);
463 
464 static void	wm_shutdown(void *);
465 
466 static void	wm_reset(struct wm_softc *);
467 static void	wm_rxdrain(struct wm_softc *);
468 static int	wm_add_rxbuf(struct wm_softc *, int);
469 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
470 static void	wm_tick(void *);
471 
472 static void	wm_set_filter(struct wm_softc *);
473 
474 static int	wm_intr(void *);
475 static void	wm_txintr(struct wm_softc *);
476 static void	wm_rxintr(struct wm_softc *);
477 static void	wm_linkintr(struct wm_softc *, uint32_t);
478 
479 static void	wm_tbi_mediainit(struct wm_softc *);
480 static int	wm_tbi_mediachange(struct ifnet *);
481 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
482 
483 static void	wm_tbi_set_linkled(struct wm_softc *);
484 static void	wm_tbi_check_link(struct wm_softc *);
485 
486 static void	wm_gmii_reset(struct wm_softc *);
487 
488 static int	wm_gmii_i82543_readreg(struct device *, int, int);
489 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
490 
491 static int	wm_gmii_i82544_readreg(struct device *, int, int);
492 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
493 
494 static void	wm_gmii_statchg(struct device *);
495 
496 static void	wm_gmii_mediainit(struct wm_softc *);
497 static int	wm_gmii_mediachange(struct ifnet *);
498 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
499 
500 static int	wm_match(struct device *, struct cfdata *, void *);
501 static void	wm_attach(struct device *, struct device *, void *);
502 
503 CFATTACH_DECL(wm, sizeof(struct wm_softc),
504     wm_match, wm_attach, NULL, NULL);
505 
506 static void	wm_82547_txfifo_stall(void *);
507 
508 /*
509  * Devices supported by this driver.
510  */
511 static const struct wm_product {
512 	pci_vendor_id_t		wmp_vendor;
513 	pci_product_id_t	wmp_product;
514 	const char		*wmp_name;
515 	wm_chip_type		wmp_type;
516 	int			wmp_flags;
517 #define	WMP_F_1000X		0x01
518 #define	WMP_F_1000T		0x02
519 } wm_products[] = {
520 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
521 	  "Intel i82542 1000BASE-X Ethernet",
522 	  WM_T_82542_2_1,	WMP_F_1000X },
523 
524 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
525 	  "Intel i82543GC 1000BASE-X Ethernet",
526 	  WM_T_82543,		WMP_F_1000X },
527 
528 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
529 	  "Intel i82543GC 1000BASE-T Ethernet",
530 	  WM_T_82543,		WMP_F_1000T },
531 
532 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
533 	  "Intel i82544EI 1000BASE-T Ethernet",
534 	  WM_T_82544,		WMP_F_1000T },
535 
536 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
537 	  "Intel i82544EI 1000BASE-X Ethernet",
538 	  WM_T_82544,		WMP_F_1000X },
539 
540 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
541 	  "Intel i82544GC 1000BASE-T Ethernet",
542 	  WM_T_82544,		WMP_F_1000T },
543 
544 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
545 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
546 	  WM_T_82544,		WMP_F_1000T },
547 
548 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
549 	  "Intel i82540EM 1000BASE-T Ethernet",
550 	  WM_T_82540,		WMP_F_1000T },
551 
552 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
553 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
554 	  WM_T_82540,		WMP_F_1000T },
555 
556 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
557 	  "Intel i82540EP 1000BASE-T Ethernet",
558 	  WM_T_82540,		WMP_F_1000T },
559 
560 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
561 	  "Intel i82540EP 1000BASE-T Ethernet",
562 	  WM_T_82540,		WMP_F_1000T },
563 
564 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
565 	  "Intel i82540EP 1000BASE-T Ethernet",
566 	  WM_T_82540,		WMP_F_1000T },
567 
568 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
569 	  "Intel i82545EM 1000BASE-T Ethernet",
570 	  WM_T_82545,		WMP_F_1000T },
571 
572 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
573 	  "Intel i82545GM 1000BASE-T Ethernet",
574 	  WM_T_82545_3,		WMP_F_1000T },
575 
576 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
577 	  "Intel i82545GM 1000BASE-X Ethernet",
578 	  WM_T_82545_3,		WMP_F_1000X },
579 #if 0
580 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
581 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
582 	  WM_T_82545_3,		WMP_F_SERDES },
583 #endif
584 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
585 	  "Intel i82546EB 1000BASE-T Ethernet",
586 	  WM_T_82546,		WMP_F_1000T },
587 
588 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
589 	  "Intel i82546EB 1000BASE-T Ethernet",
590 	  WM_T_82546,		WMP_F_1000T },
591 
592 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
593 	  "Intel i82545EM 1000BASE-X Ethernet",
594 	  WM_T_82545,		WMP_F_1000X },
595 
596 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
597 	  "Intel i82546EB 1000BASE-X Ethernet",
598 	  WM_T_82546,		WMP_F_1000X },
599 
600 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
601 	  "Intel i82546GB 1000BASE-T Ethernet",
602 	  WM_T_82546_3,		WMP_F_1000T },
603 
604 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
605 	  "Intel i82546GB 1000BASE-X Ethernet",
606 	  WM_T_82546_3,		WMP_F_1000X },
607 #if 0
608 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
609 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
610 	  WM_T_82546_3,		WMP_F_SERDES },
611 #endif
612 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
613 	  "Intel i82541EI 1000BASE-T Ethernet",
614 	  WM_T_82541,		WMP_F_1000T },
615 
616 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
617 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
618 	  WM_T_82541,		WMP_F_1000T },
619 
620 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
621 	  "Intel i82541ER 1000BASE-T Ethernet",
622 	  WM_T_82541_2,		WMP_F_1000T },
623 
624 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
625 	  "Intel i82541GI 1000BASE-T Ethernet",
626 	  WM_T_82541_2,		WMP_F_1000T },
627 
628 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
629 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
630 	  WM_T_82541_2,		WMP_F_1000T },
631 
632 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
633 	  "Intel i82547EI 1000BASE-T Ethernet",
634 	  WM_T_82547,		WMP_F_1000T },
635 
636 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
637 	  "Intel i82547GI 1000BASE-T Ethernet",
638 	  WM_T_82547_2,		WMP_F_1000T },
639 	{ 0,			0,
640 	  NULL,
641 	  0,			0 },
642 };
643 
644 #ifdef WM_EVENT_COUNTERS
645 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
646 #endif /* WM_EVENT_COUNTERS */
647 
648 #if 0 /* Not currently used */
649 static __inline uint32_t
650 wm_io_read(struct wm_softc *sc, int reg)
651 {
652 
653 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
654 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
655 }
656 #endif
657 
658 static __inline void
659 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
660 {
661 
662 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
663 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
664 }
665 
666 static __inline void
667 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
668 {
669 	wa->wa_low = htole32(v & 0xffffffffU);
670 	if (sizeof(bus_addr_t) == 8)
671 		wa->wa_high = htole32((uint64_t) v >> 32);
672 	else
673 		wa->wa_high = 0;
674 }
675 
676 static const struct wm_product *
677 wm_lookup(const struct pci_attach_args *pa)
678 {
679 	const struct wm_product *wmp;
680 
681 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
682 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
683 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
684 			return (wmp);
685 	}
686 	return (NULL);
687 }
688 
689 static int
690 wm_match(struct device *parent, struct cfdata *cf, void *aux)
691 {
692 	struct pci_attach_args *pa = aux;
693 
694 	if (wm_lookup(pa) != NULL)
695 		return (1);
696 
697 	return (0);
698 }
699 
700 static void
701 wm_attach(struct device *parent, struct device *self, void *aux)
702 {
703 	struct wm_softc *sc = (void *) self;
704 	struct pci_attach_args *pa = aux;
705 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
706 	pci_chipset_tag_t pc = pa->pa_pc;
707 	pci_intr_handle_t ih;
708 	size_t cdata_size;
709 	const char *intrstr = NULL;
710 	const char *eetype;
711 	bus_space_tag_t memt;
712 	bus_space_handle_t memh;
713 	bus_dma_segment_t seg;
714 	int memh_valid;
715 	int i, rseg, error;
716 	const struct wm_product *wmp;
717 	uint8_t enaddr[ETHER_ADDR_LEN];
718 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
719 	pcireg_t preg, memtype;
720 	uint32_t reg;
721 	int pmreg;
722 
723 	callout_init(&sc->sc_tick_ch);
724 
725 	wmp = wm_lookup(pa);
726 	if (wmp == NULL) {
727 		printf("\n");
728 		panic("wm_attach: impossible");
729 	}
730 
731 	if (pci_dma64_available(pa))
732 		sc->sc_dmat = pa->pa_dmat64;
733 	else
734 		sc->sc_dmat = pa->pa_dmat;
735 
736 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
737 	aprint_naive(": Ethernet controller\n");
738 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
739 
740 	sc->sc_type = wmp->wmp_type;
741 	if (sc->sc_type < WM_T_82543) {
742 		if (preg < 2) {
743 			aprint_error("%s: i82542 must be at least rev. 2\n",
744 			    sc->sc_dev.dv_xname);
745 			return;
746 		}
747 		if (preg < 3)
748 			sc->sc_type = WM_T_82542_2_0;
749 	}
750 
751 	/*
752 	 * Map the device.  All devices support memory-mapped acccess,
753 	 * and it is really required for normal operation.
754 	 */
755 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
756 	switch (memtype) {
757 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
758 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
759 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
760 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
761 		break;
762 	default:
763 		memh_valid = 0;
764 	}
765 
766 	if (memh_valid) {
767 		sc->sc_st = memt;
768 		sc->sc_sh = memh;
769 	} else {
770 		aprint_error("%s: unable to map device registers\n",
771 		    sc->sc_dev.dv_xname);
772 		return;
773 	}
774 
775 	/*
776 	 * In addition, i82544 and later support I/O mapped indirect
777 	 * register access.  It is not desirable (nor supported in
778 	 * this driver) to use it for normal operation, though it is
779 	 * required to work around bugs in some chip versions.
780 	 */
781 	if (sc->sc_type >= WM_T_82544) {
782 		/* First we have to find the I/O BAR. */
783 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
784 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
785 			    PCI_MAPREG_TYPE_IO)
786 				break;
787 		}
788 		if (i == PCI_MAPREG_END)
789 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
790 			    sc->sc_dev.dv_xname);
791 		else {
792 			/*
793 			 * The i8254x doesn't apparently respond when the
794 			 * I/O BAR is 0, which looks somewhat like it's not
795 			 * been configured.
796 			 */
797 			preg = pci_conf_read(pc, pa->pa_tag, i);
798 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
799 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
800 				    sc->sc_dev.dv_xname);
801 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
802 					0, &sc->sc_iot, &sc->sc_ioh,
803 					NULL, NULL) == 0) {
804 				sc->sc_flags |= WM_F_IOH_VALID;
805 			} else {
806 				aprint_error("%s: WARNING: unable to map "
807 				    "I/O space\n", sc->sc_dev.dv_xname);
808 			}
809 		}
810 
811 	}
812 
813 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
814 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
815 	preg |= PCI_COMMAND_MASTER_ENABLE;
816 	if (sc->sc_type < WM_T_82542_2_1)
817 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
818 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
819 
820 	/* Get it out of power save mode, if needed. */
821 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
822 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
823 		    PCI_PMCSR_STATE_MASK;
824 		if (preg == PCI_PMCSR_STATE_D3) {
825 			/*
826 			 * The card has lost all configuration data in
827 			 * this state, so punt.
828 			 */
829 			aprint_error("%s: unable to wake from power state D3\n",
830 			    sc->sc_dev.dv_xname);
831 			return;
832 		}
833 		if (preg != PCI_PMCSR_STATE_D0) {
834 			aprint_normal("%s: waking up from power state D%d\n",
835 			    sc->sc_dev.dv_xname, preg);
836 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
837 			    PCI_PMCSR_STATE_D0);
838 		}
839 	}
840 
841 	/*
842 	 * Map and establish our interrupt.
843 	 */
844 	if (pci_intr_map(pa, &ih)) {
845 		aprint_error("%s: unable to map interrupt\n",
846 		    sc->sc_dev.dv_xname);
847 		return;
848 	}
849 	intrstr = pci_intr_string(pc, ih);
850 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
851 	if (sc->sc_ih == NULL) {
852 		aprint_error("%s: unable to establish interrupt",
853 		    sc->sc_dev.dv_xname);
854 		if (intrstr != NULL)
855 			aprint_normal(" at %s", intrstr);
856 		aprint_normal("\n");
857 		return;
858 	}
859 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
860 
861 	/*
862 	 * Determine a few things about the bus we're connected to.
863 	 */
864 	if (sc->sc_type < WM_T_82543) {
865 		/* We don't really know the bus characteristics here. */
866 		sc->sc_bus_speed = 33;
867 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
868 		/*
869 		 * CSA (Communication Streaming Architecture) is about as fast
870 		 * a 32-bit 66MHz PCI Bus.
871 		 */
872 		sc->sc_flags |= WM_F_CSA;
873 		sc->sc_bus_speed = 66;
874 		aprint_verbose("%s: Communication Streaming Architecture\n",
875 		    sc->sc_dev.dv_xname);
876 		if (sc->sc_type == WM_T_82547) {
877 			callout_init(&sc->sc_txfifo_ch);
878 			callout_setfunc(&sc->sc_txfifo_ch,
879 					wm_82547_txfifo_stall, sc);
880 			aprint_verbose("%s: using 82547 Tx FIFO stall "
881 				       "work-around\n", sc->sc_dev.dv_xname);
882 		}
883 	} else {
884 		reg = CSR_READ(sc, WMREG_STATUS);
885 		if (reg & STATUS_BUS64)
886 			sc->sc_flags |= WM_F_BUS64;
887 		if (sc->sc_type >= WM_T_82544 &&
888 		    (reg & STATUS_PCIX_MODE) != 0) {
889 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
890 
891 			sc->sc_flags |= WM_F_PCIX;
892 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
893 					       PCI_CAP_PCIX,
894 					       &sc->sc_pcix_offset, NULL) == 0)
895 				aprint_error("%s: unable to find PCIX "
896 				    "capability\n", sc->sc_dev.dv_xname);
897 			else if (sc->sc_type != WM_T_82545_3 &&
898 				 sc->sc_type != WM_T_82546_3) {
899 				/*
900 				 * Work around a problem caused by the BIOS
901 				 * setting the max memory read byte count
902 				 * incorrectly.
903 				 */
904 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
905 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
906 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
907 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
908 
909 				bytecnt =
910 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
911 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
912 				maxb =
913 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
914 				    PCI_PCIX_STATUS_MAXB_SHIFT;
915 				if (bytecnt > maxb) {
916 					aprint_verbose("%s: resetting PCI-X "
917 					    "MMRBC: %d -> %d\n",
918 					    sc->sc_dev.dv_xname,
919 					    512 << bytecnt, 512 << maxb);
920 					pcix_cmd = (pcix_cmd &
921 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
922 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
923 					pci_conf_write(pa->pa_pc, pa->pa_tag,
924 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
925 					    pcix_cmd);
926 				}
927 			}
928 		}
929 		/*
930 		 * The quad port adapter is special; it has a PCIX-PCIX
931 		 * bridge on the board, and can run the secondary bus at
932 		 * a higher speed.
933 		 */
934 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
935 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
936 								      : 66;
937 		} else if (sc->sc_flags & WM_F_PCIX) {
938 			switch (reg & STATUS_PCIXSPD_MASK) {
939 			case STATUS_PCIXSPD_50_66:
940 				sc->sc_bus_speed = 66;
941 				break;
942 			case STATUS_PCIXSPD_66_100:
943 				sc->sc_bus_speed = 100;
944 				break;
945 			case STATUS_PCIXSPD_100_133:
946 				sc->sc_bus_speed = 133;
947 				break;
948 			default:
949 				aprint_error(
950 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
951 				    sc->sc_dev.dv_xname,
952 				    reg & STATUS_PCIXSPD_MASK);
953 				sc->sc_bus_speed = 66;
954 			}
955 		} else
956 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
957 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
958 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
959 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
960 	}
961 
962 	/*
963 	 * Allocate the control data structures, and create and load the
964 	 * DMA map for it.
965 	 *
966 	 * NOTE: All Tx descriptors must be in the same 4G segment of
967 	 * memory.  So must Rx descriptors.  We simplify by allocating
968 	 * both sets within the same 4G segment.
969 	 */
970 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
971 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
972 	cdata_size = sc->sc_type < WM_T_82544 ?
973 	    sizeof(struct wm_control_data_82542) :
974 	    sizeof(struct wm_control_data_82544);
975 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
976 				      (bus_size_t) 0x100000000ULL,
977 				      &seg, 1, &rseg, 0)) != 0) {
978 		aprint_error(
979 		    "%s: unable to allocate control data, error = %d\n",
980 		    sc->sc_dev.dv_xname, error);
981 		goto fail_0;
982 	}
983 
984 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
985 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
986 		aprint_error("%s: unable to map control data, error = %d\n",
987 		    sc->sc_dev.dv_xname, error);
988 		goto fail_1;
989 	}
990 
991 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
992 				       0, 0, &sc->sc_cddmamap)) != 0) {
993 		aprint_error("%s: unable to create control data DMA map, "
994 		    "error = %d\n", sc->sc_dev.dv_xname, error);
995 		goto fail_2;
996 	}
997 
998 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
999 				     sc->sc_control_data, cdata_size, NULL,
1000 				     0)) != 0) {
1001 		aprint_error(
1002 		    "%s: unable to load control data DMA map, error = %d\n",
1003 		    sc->sc_dev.dv_xname, error);
1004 		goto fail_3;
1005 	}
1006 
1007 
1008 	/*
1009 	 * Create the transmit buffer DMA maps.
1010 	 */
1011 	WM_TXQUEUELEN(sc) =
1012 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1013 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1014 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1015 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1016 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1017 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1018 			aprint_error("%s: unable to create Tx DMA map %d, "
1019 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1020 			goto fail_4;
1021 		}
1022 	}
1023 
1024 	/*
1025 	 * Create the receive buffer DMA maps.
1026 	 */
1027 	for (i = 0; i < WM_NRXDESC; i++) {
1028 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1029 					       MCLBYTES, 0, 0,
1030 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1031 			aprint_error("%s: unable to create Rx DMA map %d, "
1032 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1033 			goto fail_5;
1034 		}
1035 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1036 	}
1037 
1038 	/*
1039 	 * Reset the chip to a known state.
1040 	 */
1041 	wm_reset(sc);
1042 
1043 	/*
1044 	 * Get some information about the EEPROM.
1045 	 */
1046 	if (sc->sc_type >= WM_T_82540)
1047 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1048 	if (sc->sc_type <= WM_T_82544)
1049 		sc->sc_ee_addrbits = 6;
1050 	else if (sc->sc_type <= WM_T_82546_3) {
1051 		reg = CSR_READ(sc, WMREG_EECD);
1052 		if (reg & EECD_EE_SIZE)
1053 			sc->sc_ee_addrbits = 8;
1054 		else
1055 			sc->sc_ee_addrbits = 6;
1056 	} else if (sc->sc_type <= WM_T_82547_2) {
1057 		reg = CSR_READ(sc, WMREG_EECD);
1058 		if (reg & EECD_EE_TYPE) {
1059 			sc->sc_flags |= WM_F_EEPROM_SPI;
1060 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1061 		} else
1062 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1063 	} else {
1064 		/* Assume everything else is SPI. */
1065 		reg = CSR_READ(sc, WMREG_EECD);
1066 		sc->sc_flags |= WM_F_EEPROM_SPI;
1067 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1068 	}
1069 	if (sc->sc_flags & WM_F_EEPROM_SPI)
1070 		eetype = "SPI";
1071 	else
1072 		eetype = "MicroWire";
1073 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1074 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1075 	    sc->sc_ee_addrbits, eetype);
1076 
1077 	/*
1078 	 * Read the Ethernet address from the EEPROM.
1079 	 */
1080 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1081 	    sizeof(myea) / sizeof(myea[0]), myea)) {
1082 		aprint_error("%s: unable to read Ethernet address\n",
1083 		    sc->sc_dev.dv_xname);
1084 		return;
1085 	}
1086 	enaddr[0] = myea[0] & 0xff;
1087 	enaddr[1] = myea[0] >> 8;
1088 	enaddr[2] = myea[1] & 0xff;
1089 	enaddr[3] = myea[1] >> 8;
1090 	enaddr[4] = myea[2] & 0xff;
1091 	enaddr[5] = myea[2] >> 8;
1092 
1093 	/*
1094 	 * Toggle the LSB of the MAC address on the second port
1095 	 * of the i82546.
1096 	 */
1097 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1098 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1099 			enaddr[5] ^= 1;
1100 	}
1101 
1102 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1103 	    ether_sprintf(enaddr));
1104 
1105 	/*
1106 	 * Read the config info from the EEPROM, and set up various
1107 	 * bits in the control registers based on their contents.
1108 	 */
1109 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1110 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
1111 		    sc->sc_dev.dv_xname);
1112 		return;
1113 	}
1114 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1115 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
1116 		    sc->sc_dev.dv_xname);
1117 		return;
1118 	}
1119 	if (sc->sc_type >= WM_T_82544) {
1120 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1121 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1122 			    sc->sc_dev.dv_xname);
1123 			return;
1124 		}
1125 	}
1126 
1127 	if (cfg1 & EEPROM_CFG1_ILOS)
1128 		sc->sc_ctrl |= CTRL_ILOS;
1129 	if (sc->sc_type >= WM_T_82544) {
1130 		sc->sc_ctrl |=
1131 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1132 		    CTRL_SWDPIO_SHIFT;
1133 		sc->sc_ctrl |=
1134 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1135 		    CTRL_SWDPINS_SHIFT;
1136 	} else {
1137 		sc->sc_ctrl |=
1138 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1139 		    CTRL_SWDPIO_SHIFT;
1140 	}
1141 
1142 #if 0
1143 	if (sc->sc_type >= WM_T_82544) {
1144 		if (cfg1 & EEPROM_CFG1_IPS0)
1145 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1146 		if (cfg1 & EEPROM_CFG1_IPS1)
1147 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1148 		sc->sc_ctrl_ext |=
1149 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1150 		    CTRL_EXT_SWDPIO_SHIFT;
1151 		sc->sc_ctrl_ext |=
1152 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1153 		    CTRL_EXT_SWDPINS_SHIFT;
1154 	} else {
1155 		sc->sc_ctrl_ext |=
1156 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1157 		    CTRL_EXT_SWDPIO_SHIFT;
1158 	}
1159 #endif
1160 
1161 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1162 #if 0
1163 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1164 #endif
1165 
1166 	/*
1167 	 * Set up some register offsets that are different between
1168 	 * the i82542 and the i82543 and later chips.
1169 	 */
1170 	if (sc->sc_type < WM_T_82543) {
1171 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1172 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1173 	} else {
1174 		sc->sc_rdt_reg = WMREG_RDT;
1175 		sc->sc_tdt_reg = WMREG_TDT;
1176 	}
1177 
1178 	/*
1179 	 * Determine if we're TBI or GMII mode, and initialize the
1180 	 * media structures accordingly.
1181 	 */
1182 	if (sc->sc_type < WM_T_82543 ||
1183 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1184 		if (wmp->wmp_flags & WMP_F_1000T)
1185 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1186 			    "product!\n", sc->sc_dev.dv_xname);
1187 		wm_tbi_mediainit(sc);
1188 	} else {
1189 		if (wmp->wmp_flags & WMP_F_1000X)
1190 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1191 			    "product!\n", sc->sc_dev.dv_xname);
1192 		wm_gmii_mediainit(sc);
1193 	}
1194 
1195 	ifp = &sc->sc_ethercom.ec_if;
1196 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1197 	ifp->if_softc = sc;
1198 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1199 	ifp->if_ioctl = wm_ioctl;
1200 	ifp->if_start = wm_start;
1201 	ifp->if_watchdog = wm_watchdog;
1202 	ifp->if_init = wm_init;
1203 	ifp->if_stop = wm_stop;
1204 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1205 	IFQ_SET_READY(&ifp->if_snd);
1206 
1207 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1208 
1209 	/*
1210 	 * If we're a i82543 or greater, we can support VLANs.
1211 	 */
1212 	if (sc->sc_type >= WM_T_82543)
1213 		sc->sc_ethercom.ec_capabilities |=
1214 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1215 
1216 	/*
1217 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1218 	 * on i82543 and later.
1219 	 */
1220 	if (sc->sc_type >= WM_T_82543)
1221 		ifp->if_capabilities |=
1222 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1223 
1224 	/*
1225 	 * Attach the interface.
1226 	 */
1227 	if_attach(ifp);
1228 	ether_ifattach(ifp, enaddr);
1229 #if NRND > 0
1230 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1231 	    RND_TYPE_NET, 0);
1232 #endif
1233 
1234 #ifdef WM_EVENT_COUNTERS
1235 	/* Attach event counters. */
1236 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1237 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1238 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1239 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1240 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1241 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1242 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1243 	    NULL, sc->sc_dev.dv_xname, "txdw");
1244 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1245 	    NULL, sc->sc_dev.dv_xname, "txqe");
1246 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1247 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1248 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1249 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1250 
1251 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1252 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1253 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1254 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1255 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1256 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1257 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1258 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1259 
1260 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC,
1261 	    NULL, sc->sc_dev.dv_xname, "txpullup needed");
1262 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC,
1263 	    NULL, sc->sc_dev.dv_xname, "txpullup nomem");
1264 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC,
1265 	    NULL, sc->sc_dev.dv_xname, "txpullup fail");
1266 
1267 	for (i = 0; i < WM_NTXSEGS; i++) {
1268 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1269 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1270 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1271 	}
1272 
1273 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1274 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1275 
1276 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1277 	    NULL, sc->sc_dev.dv_xname, "tu");
1278 
1279 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1280 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1281 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1282 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1283 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1284 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1285 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1286 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1287 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1288 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1289 #endif /* WM_EVENT_COUNTERS */
1290 
1291 	/*
1292 	 * Make sure the interface is shutdown during reboot.
1293 	 */
1294 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1295 	if (sc->sc_sdhook == NULL)
1296 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1297 		    sc->sc_dev.dv_xname);
1298 	return;
1299 
1300 	/*
1301 	 * Free any resources we've allocated during the failed attach
1302 	 * attempt.  Do this in reverse order and fall through.
1303 	 */
1304  fail_5:
1305 	for (i = 0; i < WM_NRXDESC; i++) {
1306 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1307 			bus_dmamap_destroy(sc->sc_dmat,
1308 			    sc->sc_rxsoft[i].rxs_dmamap);
1309 	}
1310  fail_4:
1311 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1312 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1313 			bus_dmamap_destroy(sc->sc_dmat,
1314 			    sc->sc_txsoft[i].txs_dmamap);
1315 	}
1316 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1317  fail_3:
1318 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1319  fail_2:
1320 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1321 	    cdata_size);
1322  fail_1:
1323 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1324  fail_0:
1325 	return;
1326 }
1327 
1328 /*
1329  * wm_shutdown:
1330  *
1331  *	Make sure the interface is stopped at reboot time.
1332  */
1333 static void
1334 wm_shutdown(void *arg)
1335 {
1336 	struct wm_softc *sc = arg;
1337 
1338 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1339 }
1340 
1341 /*
1342  * wm_tx_offload:
1343  *
1344  *	Set up TCP/IP checksumming parameters for the
1345  *	specified packet.
1346  */
1347 static int
1348 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1349     uint8_t *fieldsp)
1350 {
1351 	struct mbuf *m0 = txs->txs_mbuf;
1352 	struct livengood_tcpip_ctxdesc *t;
1353 	uint32_t ipcs, tucs;
1354 	struct ether_header *eh;
1355 	int offset, iphl;
1356 	uint8_t fields = 0;
1357 
1358 	/*
1359 	 * XXX It would be nice if the mbuf pkthdr had offset
1360 	 * fields for the protocol headers.
1361 	 */
1362 
1363 	eh = mtod(m0, struct ether_header *);
1364 	switch (htons(eh->ether_type)) {
1365 	case ETHERTYPE_IP:
1366 		offset = ETHER_HDR_LEN;
1367 		break;
1368 
1369 	case ETHERTYPE_VLAN:
1370 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1371 		break;
1372 
1373 	default:
1374 		/*
1375 		 * Don't support this protocol or encapsulation.
1376 		 */
1377 		*fieldsp = 0;
1378 		*cmdp = 0;
1379 		return (0);
1380 	}
1381 
1382 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1383 
1384 	/*
1385 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1386 	 * offload feature, if we load the context descriptor, we
1387 	 * MUST provide valid values for IPCSS and TUCSS fields.
1388 	 */
1389 
1390 	ipcs = WTX_TCPIP_IPCSS(offset) |
1391 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1392 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
1393 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1394 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1395 		fields |= WTX_IXSM;
1396 	}
1397 
1398 	offset += iphl;
1399 
1400 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1401 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1402 		fields |= WTX_TXSM;
1403 		tucs = WTX_TCPIP_TUCSS(offset) |
1404 		   WTX_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1405 		   WTX_TCPIP_TUCSE(0) /* rest of packet */;
1406 	} else {
1407 		/* Just initialize it to a valid TCP context. */
1408 		tucs = WTX_TCPIP_TUCSS(offset) |
1409 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1410 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1411 	}
1412 
1413 	/* Fill in the context descriptor. */
1414 	t = (struct livengood_tcpip_ctxdesc *)
1415 	    &sc->sc_txdescs[sc->sc_txnext];
1416 	t->tcpip_ipcs = htole32(ipcs);
1417 	t->tcpip_tucs = htole32(tucs);
1418 	t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1419 	t->tcpip_seg = 0;
1420 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1421 
1422 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1423 	txs->txs_ndesc++;
1424 
1425 	*cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1426 	*fieldsp = fields;
1427 
1428 	return (0);
1429 }
1430 
1431 static void
1432 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1433 {
1434 	struct mbuf *m;
1435 	int i;
1436 
1437 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1438 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1439 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1440 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1441 		    m->m_data, m->m_len, m->m_flags);
1442 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1443 	    i, i == 1 ? "" : "s");
1444 }
1445 
1446 /*
1447  * wm_82547_txfifo_stall:
1448  *
1449  *	Callout used to wait for the 82547 Tx FIFO to drain,
1450  *	reset the FIFO pointers, and restart packet transmission.
1451  */
1452 static void
1453 wm_82547_txfifo_stall(void *arg)
1454 {
1455 	struct wm_softc *sc = arg;
1456 	int s;
1457 
1458 	s = splnet();
1459 
1460 	if (sc->sc_txfifo_stall) {
1461 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1462 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1463 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1464 			/*
1465 			 * Packets have drained.  Stop transmitter, reset
1466 			 * FIFO pointers, restart transmitter, and kick
1467 			 * the packet queue.
1468 			 */
1469 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1470 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1471 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1472 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1473 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1474 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1475 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1476 			CSR_WRITE_FLUSH(sc);
1477 
1478 			sc->sc_txfifo_head = 0;
1479 			sc->sc_txfifo_stall = 0;
1480 			wm_start(&sc->sc_ethercom.ec_if);
1481 		} else {
1482 			/*
1483 			 * Still waiting for packets to drain; try again in
1484 			 * another tick.
1485 			 */
1486 			callout_schedule(&sc->sc_txfifo_ch, 1);
1487 		}
1488 	}
1489 
1490 	splx(s);
1491 }
1492 
1493 /*
1494  * wm_82547_txfifo_bugchk:
1495  *
1496  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1497  *	prevent enqueueing a packet that would wrap around the end
1498  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1499  *
1500  *	We do this by checking the amount of space before the end
1501  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1502  *	the Tx FIFO, wait for all remaining packets to drain, reset
1503  *	the internal FIFO pointers to the beginning, and restart
1504  *	transmission on the interface.
1505  */
1506 #define	WM_FIFO_HDR		0x10
1507 #define	WM_82547_PAD_LEN	0x3e0
1508 static int
1509 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1510 {
1511 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1512 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1513 
1514 	/* Just return if already stalled. */
1515 	if (sc->sc_txfifo_stall)
1516 		return (1);
1517 
1518 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1519 		/* Stall only occurs in half-duplex mode. */
1520 		goto send_packet;
1521 	}
1522 
1523 	if (len >= WM_82547_PAD_LEN + space) {
1524 		sc->sc_txfifo_stall = 1;
1525 		callout_schedule(&sc->sc_txfifo_ch, 1);
1526 		return (1);
1527 	}
1528 
1529  send_packet:
1530 	sc->sc_txfifo_head += len;
1531 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1532 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1533 
1534 	return (0);
1535 }
1536 
1537 /*
1538  * wm_start:		[ifnet interface function]
1539  *
1540  *	Start packet transmission on the interface.
1541  */
1542 static void
1543 wm_start(struct ifnet *ifp)
1544 {
1545 	struct wm_softc *sc = ifp->if_softc;
1546 	struct mbuf *m0;
1547 #if 0 /* XXXJRT */
1548 	struct m_tag *mtag;
1549 #endif
1550 	struct wm_txsoft *txs;
1551 	bus_dmamap_t dmamap;
1552 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1553 	bus_addr_t curaddr;
1554 	bus_size_t seglen, curlen;
1555 	uint32_t cksumcmd;
1556 	uint8_t cksumfields;
1557 
1558 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1559 		return;
1560 
1561 	/*
1562 	 * Remember the previous number of free descriptors.
1563 	 */
1564 	ofree = sc->sc_txfree;
1565 
1566 	/*
1567 	 * Loop through the send queue, setting up transmit descriptors
1568 	 * until we drain the queue, or use up all available transmit
1569 	 * descriptors.
1570 	 */
1571 	for (;;) {
1572 		/* Grab a packet off the queue. */
1573 		IFQ_POLL(&ifp->if_snd, m0);
1574 		if (m0 == NULL)
1575 			break;
1576 
1577 		DPRINTF(WM_DEBUG_TX,
1578 		    ("%s: TX: have packet to transmit: %p\n",
1579 		    sc->sc_dev.dv_xname, m0));
1580 
1581 		/* Get a work queue entry. */
1582 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1583 			wm_txintr(sc);
1584 			if (sc->sc_txsfree == 0) {
1585 				DPRINTF(WM_DEBUG_TX,
1586 				    ("%s: TX: no free job descriptors\n",
1587 					sc->sc_dev.dv_xname));
1588 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1589 				break;
1590 			}
1591 		}
1592 
1593 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1594 		dmamap = txs->txs_dmamap;
1595 
1596 		/*
1597 		 * Load the DMA map.  If this fails, the packet either
1598 		 * didn't fit in the allotted number of segments, or we
1599 		 * were short on resources.  For the too-many-segments
1600 		 * case, we simply report an error and drop the packet,
1601 		 * since we can't sanely copy a jumbo packet to a single
1602 		 * buffer.
1603 		 */
1604 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1605 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1606 		if (error) {
1607 			if (error == EFBIG) {
1608 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1609 				log(LOG_ERR, "%s: Tx packet consumes too many "
1610 				    "DMA segments, dropping...\n",
1611 				    sc->sc_dev.dv_xname);
1612 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1613 				wm_dump_mbuf_chain(sc, m0);
1614 				m_freem(m0);
1615 				continue;
1616 			}
1617 			/*
1618 			 * Short on resources, just stop for now.
1619 			 */
1620 			DPRINTF(WM_DEBUG_TX,
1621 			    ("%s: TX: dmamap load failed: %d\n",
1622 			    sc->sc_dev.dv_xname, error));
1623 			break;
1624 		}
1625 
1626 		segs_needed = dmamap->dm_nsegs;
1627 
1628 		/*
1629 		 * Ensure we have enough descriptors free to describe
1630 		 * the packet.  Note, we always reserve one descriptor
1631 		 * at the end of the ring due to the semantics of the
1632 		 * TDT register, plus one more in the event we need
1633 		 * to load offload context.
1634 		 */
1635 		if (segs_needed > sc->sc_txfree - 2) {
1636 			/*
1637 			 * Not enough free descriptors to transmit this
1638 			 * packet.  We haven't committed anything yet,
1639 			 * so just unload the DMA map, put the packet
1640 			 * pack on the queue, and punt.  Notify the upper
1641 			 * layer that there are no more slots left.
1642 			 */
1643 			DPRINTF(WM_DEBUG_TX,
1644 			    ("%s: TX: need %d (%) descriptors, have %d\n",
1645 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1646 			    sc->sc_txfree - 1));
1647 			ifp->if_flags |= IFF_OACTIVE;
1648 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1649 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1650 			break;
1651 		}
1652 
1653 		/*
1654 		 * Check for 82547 Tx FIFO bug.  We need to do this
1655 		 * once we know we can transmit the packet, since we
1656 		 * do some internal FIFO space accounting here.
1657 		 */
1658 		if (sc->sc_type == WM_T_82547 &&
1659 		    wm_82547_txfifo_bugchk(sc, m0)) {
1660 			DPRINTF(WM_DEBUG_TX,
1661 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
1662 			    sc->sc_dev.dv_xname));
1663 			ifp->if_flags |= IFF_OACTIVE;
1664 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1665 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1666 			break;
1667 		}
1668 
1669 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1670 
1671 		/*
1672 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1673 		 */
1674 
1675 		DPRINTF(WM_DEBUG_TX,
1676 		    ("%s: TX: packet has %d (%d) DMA segments\n",
1677 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1678 
1679 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1680 
1681 		/*
1682 		 * Store a pointer to the packet so that we can free it
1683 		 * later.
1684 		 *
1685 		 * Initially, we consider the number of descriptors the
1686 		 * packet uses the number of DMA segments.  This may be
1687 		 * incremented by 1 if we do checksum offload (a descriptor
1688 		 * is used to set the checksum context).
1689 		 */
1690 		txs->txs_mbuf = m0;
1691 		txs->txs_firstdesc = sc->sc_txnext;
1692 		txs->txs_ndesc = segs_needed;
1693 
1694 		/* Set up offload parameters for this packet. */
1695 		if (m0->m_pkthdr.csum_flags &
1696 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1697 			if (wm_tx_offload(sc, txs, &cksumcmd,
1698 					  &cksumfields) != 0) {
1699 				/* Error message already displayed. */
1700 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1701 				continue;
1702 			}
1703 		} else {
1704 			cksumcmd = 0;
1705 			cksumfields = 0;
1706 		}
1707 
1708 		cksumcmd |= WTX_CMD_IDE;
1709 
1710 		/* Sync the DMA map. */
1711 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1712 		    BUS_DMASYNC_PREWRITE);
1713 
1714 		/*
1715 		 * Initialize the transmit descriptor.
1716 		 */
1717 		for (nexttx = sc->sc_txnext, seg = 0;
1718 		     seg < dmamap->dm_nsegs; seg++) {
1719 			for (seglen = dmamap->dm_segs[seg].ds_len,
1720 			     curaddr = dmamap->dm_segs[seg].ds_addr;
1721 			     seglen != 0;
1722 			     curaddr += curlen, seglen -= curlen,
1723 			     nexttx = WM_NEXTTX(sc, nexttx)) {
1724 				curlen = seglen;
1725 
1726 				wm_set_dma_addr(
1727 				    &sc->sc_txdescs[nexttx].wtx_addr,
1728 				    curaddr);
1729 				sc->sc_txdescs[nexttx].wtx_cmdlen =
1730 				    htole32(cksumcmd | curlen);
1731 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1732 				    0;
1733 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1734 				    cksumfields;
1735 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1736 				lasttx = nexttx;
1737 
1738 				DPRINTF(WM_DEBUG_TX,
1739 				    ("%s: TX: desc %d: low 0x%08x, "
1740 				     "len 0x%04x\n",
1741 				    sc->sc_dev.dv_xname, nexttx,
1742 				    curaddr & 0xffffffffU, curlen, curlen));
1743 			}
1744 		}
1745 
1746 		KASSERT(lasttx != -1);
1747 
1748 		/*
1749 		 * Set up the command byte on the last descriptor of
1750 		 * the packet.  If we're in the interrupt delay window,
1751 		 * delay the interrupt.
1752 		 */
1753 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
1754 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1755 
1756 #if 0 /* XXXJRT */
1757 		/*
1758 		 * If VLANs are enabled and the packet has a VLAN tag, set
1759 		 * up the descriptor to encapsulate the packet for us.
1760 		 *
1761 		 * This is only valid on the last descriptor of the packet.
1762 		 */
1763 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1764 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
1765 			    htole32(WTX_CMD_VLE);
1766 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1767 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1768 		}
1769 #endif /* XXXJRT */
1770 
1771 		txs->txs_lastdesc = lasttx;
1772 
1773 		DPRINTF(WM_DEBUG_TX,
1774 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1775 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1776 
1777 		/* Sync the descriptors we're using. */
1778 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1779 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1780 
1781 		/* Give the packet to the chip. */
1782 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1783 
1784 		DPRINTF(WM_DEBUG_TX,
1785 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1786 
1787 		DPRINTF(WM_DEBUG_TX,
1788 		    ("%s: TX: finished transmitting packet, job %d\n",
1789 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
1790 
1791 		/* Advance the tx pointer. */
1792 		sc->sc_txfree -= txs->txs_ndesc;
1793 		sc->sc_txnext = nexttx;
1794 
1795 		sc->sc_txsfree--;
1796 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1797 
1798 #if NBPFILTER > 0
1799 		/* Pass the packet to any BPF listeners. */
1800 		if (ifp->if_bpf)
1801 			bpf_mtap(ifp->if_bpf, m0);
1802 #endif /* NBPFILTER > 0 */
1803 	}
1804 
1805 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1806 		/* No more slots; notify upper layer. */
1807 		ifp->if_flags |= IFF_OACTIVE;
1808 	}
1809 
1810 	if (sc->sc_txfree != ofree) {
1811 		/* Set a watchdog timer in case the chip flakes out. */
1812 		ifp->if_timer = 5;
1813 	}
1814 }
1815 
1816 /*
1817  * wm_watchdog:		[ifnet interface function]
1818  *
1819  *	Watchdog timer handler.
1820  */
1821 static void
1822 wm_watchdog(struct ifnet *ifp)
1823 {
1824 	struct wm_softc *sc = ifp->if_softc;
1825 
1826 	/*
1827 	 * Since we're using delayed interrupts, sweep up
1828 	 * before we report an error.
1829 	 */
1830 	wm_txintr(sc);
1831 
1832 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
1833 		log(LOG_ERR,
1834 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1835 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1836 		    sc->sc_txnext);
1837 		ifp->if_oerrors++;
1838 
1839 		/* Reset the interface. */
1840 		(void) wm_init(ifp);
1841 	}
1842 
1843 	/* Try to get more packets going. */
1844 	wm_start(ifp);
1845 }
1846 
1847 /*
1848  * wm_ioctl:		[ifnet interface function]
1849  *
1850  *	Handle control requests from the operator.
1851  */
1852 static int
1853 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1854 {
1855 	struct wm_softc *sc = ifp->if_softc;
1856 	struct ifreq *ifr = (struct ifreq *) data;
1857 	int s, error;
1858 
1859 	s = splnet();
1860 
1861 	switch (cmd) {
1862 	case SIOCSIFMEDIA:
1863 	case SIOCGIFMEDIA:
1864 		/* Flow control requires full-duplex mode. */
1865 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1866 		    (ifr->ifr_media & IFM_FDX) == 0)
1867 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1868 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1869 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1870 				/* We can do both TXPAUSE and RXPAUSE. */
1871 				ifr->ifr_media |=
1872 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1873 			}
1874 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1875 		}
1876 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1877 		break;
1878 	default:
1879 		error = ether_ioctl(ifp, cmd, data);
1880 		if (error == ENETRESET) {
1881 			/*
1882 			 * Multicast list has changed; set the hardware filter
1883 			 * accordingly.
1884 			 */
1885 			if (ifp->if_flags & IFF_RUNNING)
1886 				wm_set_filter(sc);
1887 			error = 0;
1888 		}
1889 		break;
1890 	}
1891 
1892 	/* Try to get more packets going. */
1893 	wm_start(ifp);
1894 
1895 	splx(s);
1896 	return (error);
1897 }
1898 
1899 /*
1900  * wm_intr:
1901  *
1902  *	Interrupt service routine.
1903  */
1904 static int
1905 wm_intr(void *arg)
1906 {
1907 	struct wm_softc *sc = arg;
1908 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1909 	uint32_t icr;
1910 	int wantinit, handled = 0;
1911 
1912 	for (wantinit = 0; wantinit == 0;) {
1913 		icr = CSR_READ(sc, WMREG_ICR);
1914 		if ((icr & sc->sc_icr) == 0)
1915 			break;
1916 
1917 #if 0 /*NRND > 0*/
1918 		if (RND_ENABLED(&sc->rnd_source))
1919 			rnd_add_uint32(&sc->rnd_source, icr);
1920 #endif
1921 
1922 		handled = 1;
1923 
1924 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1925 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1926 			DPRINTF(WM_DEBUG_RX,
1927 			    ("%s: RX: got Rx intr 0x%08x\n",
1928 			    sc->sc_dev.dv_xname,
1929 			    icr & (ICR_RXDMT0|ICR_RXT0)));
1930 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1931 		}
1932 #endif
1933 		wm_rxintr(sc);
1934 
1935 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1936 		if (icr & ICR_TXDW) {
1937 			DPRINTF(WM_DEBUG_TX,
1938 			    ("%s: TX: got TXDW interrupt\n",
1939 			    sc->sc_dev.dv_xname));
1940 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
1941 		}
1942 #endif
1943 		wm_txintr(sc);
1944 
1945 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1946 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1947 			wm_linkintr(sc, icr);
1948 		}
1949 
1950 		if (icr & ICR_RXO) {
1951 			log(LOG_WARNING, "%s: Receive overrun\n",
1952 			    sc->sc_dev.dv_xname);
1953 			wantinit = 1;
1954 		}
1955 	}
1956 
1957 	if (handled) {
1958 		if (wantinit)
1959 			wm_init(ifp);
1960 
1961 		/* Try to get more packets going. */
1962 		wm_start(ifp);
1963 	}
1964 
1965 	return (handled);
1966 }
1967 
1968 /*
1969  * wm_txintr:
1970  *
1971  *	Helper; handle transmit interrupts.
1972  */
1973 static void
1974 wm_txintr(struct wm_softc *sc)
1975 {
1976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1977 	struct wm_txsoft *txs;
1978 	uint8_t status;
1979 	int i;
1980 
1981 	ifp->if_flags &= ~IFF_OACTIVE;
1982 
1983 	/*
1984 	 * Go through the Tx list and free mbufs for those
1985 	 * frames which have been transmitted.
1986 	 */
1987 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
1988 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
1989 		txs = &sc->sc_txsoft[i];
1990 
1991 		DPRINTF(WM_DEBUG_TX,
1992 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
1993 
1994 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1995 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1996 
1997 		status =
1998 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
1999 		if ((status & WTX_ST_DD) == 0) {
2000 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2001 			    BUS_DMASYNC_PREREAD);
2002 			break;
2003 		}
2004 
2005 		DPRINTF(WM_DEBUG_TX,
2006 		    ("%s: TX: job %d done: descs %d..%d\n",
2007 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2008 		    txs->txs_lastdesc));
2009 
2010 		/*
2011 		 * XXX We should probably be using the statistics
2012 		 * XXX registers, but I don't know if they exist
2013 		 * XXX on chips before the i82544.
2014 		 */
2015 
2016 #ifdef WM_EVENT_COUNTERS
2017 		if (status & WTX_ST_TU)
2018 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2019 #endif /* WM_EVENT_COUNTERS */
2020 
2021 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2022 			ifp->if_oerrors++;
2023 			if (status & WTX_ST_LC)
2024 				log(LOG_WARNING, "%s: late collision\n",
2025 				    sc->sc_dev.dv_xname);
2026 			else if (status & WTX_ST_EC) {
2027 				ifp->if_collisions += 16;
2028 				log(LOG_WARNING, "%s: excessive collisions\n",
2029 				    sc->sc_dev.dv_xname);
2030 			}
2031 		} else
2032 			ifp->if_opackets++;
2033 
2034 		sc->sc_txfree += txs->txs_ndesc;
2035 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2036 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2037 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2038 		m_freem(txs->txs_mbuf);
2039 		txs->txs_mbuf = NULL;
2040 	}
2041 
2042 	/* Update the dirty transmit buffer pointer. */
2043 	sc->sc_txsdirty = i;
2044 	DPRINTF(WM_DEBUG_TX,
2045 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2046 
2047 	/*
2048 	 * If there are no more pending transmissions, cancel the watchdog
2049 	 * timer.
2050 	 */
2051 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2052 		ifp->if_timer = 0;
2053 }
2054 
2055 /*
2056  * wm_rxintr:
2057  *
2058  *	Helper; handle receive interrupts.
2059  */
2060 static void
2061 wm_rxintr(struct wm_softc *sc)
2062 {
2063 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2064 	struct wm_rxsoft *rxs;
2065 	struct mbuf *m;
2066 	int i, len;
2067 	uint8_t status, errors;
2068 
2069 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2070 		rxs = &sc->sc_rxsoft[i];
2071 
2072 		DPRINTF(WM_DEBUG_RX,
2073 		    ("%s: RX: checking descriptor %d\n",
2074 		    sc->sc_dev.dv_xname, i));
2075 
2076 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2077 
2078 		status = sc->sc_rxdescs[i].wrx_status;
2079 		errors = sc->sc_rxdescs[i].wrx_errors;
2080 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2081 
2082 		if ((status & WRX_ST_DD) == 0) {
2083 			/*
2084 			 * We have processed all of the receive descriptors.
2085 			 */
2086 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2087 			break;
2088 		}
2089 
2090 		if (__predict_false(sc->sc_rxdiscard)) {
2091 			DPRINTF(WM_DEBUG_RX,
2092 			    ("%s: RX: discarding contents of descriptor %d\n",
2093 			    sc->sc_dev.dv_xname, i));
2094 			WM_INIT_RXDESC(sc, i);
2095 			if (status & WRX_ST_EOP) {
2096 				/* Reset our state. */
2097 				DPRINTF(WM_DEBUG_RX,
2098 				    ("%s: RX: resetting rxdiscard -> 0\n",
2099 				    sc->sc_dev.dv_xname));
2100 				sc->sc_rxdiscard = 0;
2101 			}
2102 			continue;
2103 		}
2104 
2105 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2106 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2107 
2108 		m = rxs->rxs_mbuf;
2109 
2110 		/*
2111 		 * Add a new receive buffer to the ring.
2112 		 */
2113 		if (wm_add_rxbuf(sc, i) != 0) {
2114 			/*
2115 			 * Failed, throw away what we've done so
2116 			 * far, and discard the rest of the packet.
2117 			 */
2118 			ifp->if_ierrors++;
2119 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2120 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2121 			WM_INIT_RXDESC(sc, i);
2122 			if ((status & WRX_ST_EOP) == 0)
2123 				sc->sc_rxdiscard = 1;
2124 			if (sc->sc_rxhead != NULL)
2125 				m_freem(sc->sc_rxhead);
2126 			WM_RXCHAIN_RESET(sc);
2127 			DPRINTF(WM_DEBUG_RX,
2128 			    ("%s: RX: Rx buffer allocation failed, "
2129 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2130 			    sc->sc_rxdiscard ? " (discard)" : ""));
2131 			continue;
2132 		}
2133 
2134 		WM_RXCHAIN_LINK(sc, m);
2135 
2136 		m->m_len = len;
2137 
2138 		DPRINTF(WM_DEBUG_RX,
2139 		    ("%s: RX: buffer at %p len %d\n",
2140 		    sc->sc_dev.dv_xname, m->m_data, len));
2141 
2142 		/*
2143 		 * If this is not the end of the packet, keep
2144 		 * looking.
2145 		 */
2146 		if ((status & WRX_ST_EOP) == 0) {
2147 			sc->sc_rxlen += len;
2148 			DPRINTF(WM_DEBUG_RX,
2149 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2150 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2151 			continue;
2152 		}
2153 
2154 		/*
2155 		 * Okay, we have the entire packet now.  The chip is
2156 		 * configured to include the FCS (not all chips can
2157 		 * be configured to strip it), so we need to trim it.
2158 		 */
2159 		m->m_len -= ETHER_CRC_LEN;
2160 
2161 		*sc->sc_rxtailp = NULL;
2162 		m = sc->sc_rxhead;
2163 		len = m->m_len + sc->sc_rxlen;
2164 
2165 		WM_RXCHAIN_RESET(sc);
2166 
2167 		DPRINTF(WM_DEBUG_RX,
2168 		    ("%s: RX: have entire packet, len -> %d\n",
2169 		    sc->sc_dev.dv_xname, len));
2170 
2171 		/*
2172 		 * If an error occurred, update stats and drop the packet.
2173 		 */
2174 		if (errors &
2175 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2176 			ifp->if_ierrors++;
2177 			if (errors & WRX_ER_SE)
2178 				log(LOG_WARNING, "%s: symbol error\n",
2179 				    sc->sc_dev.dv_xname);
2180 			else if (errors & WRX_ER_SEQ)
2181 				log(LOG_WARNING, "%s: receive sequence error\n",
2182 				    sc->sc_dev.dv_xname);
2183 			else if (errors & WRX_ER_CE)
2184 				log(LOG_WARNING, "%s: CRC error\n",
2185 				    sc->sc_dev.dv_xname);
2186 			m_freem(m);
2187 			continue;
2188 		}
2189 
2190 		/*
2191 		 * No errors.  Receive the packet.
2192 		 */
2193 		m->m_pkthdr.rcvif = ifp;
2194 		m->m_pkthdr.len = len;
2195 
2196 #if 0 /* XXXJRT */
2197 		/*
2198 		 * If VLANs are enabled, VLAN packets have been unwrapped
2199 		 * for us.  Associate the tag with the packet.
2200 		 */
2201 		if ((status & WRX_ST_VP) != 0) {
2202 			VLAN_INPUT_TAG(ifp, m,
2203 			    le16toh(sc->sc_rxdescs[i].wrx_special,
2204 			    continue);
2205 		}
2206 #endif /* XXXJRT */
2207 
2208 		/*
2209 		 * Set up checksum info for this packet.
2210 		 */
2211 		if (status & WRX_ST_IPCS) {
2212 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2213 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2214 			if (errors & WRX_ER_IPE)
2215 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2216 		}
2217 		if (status & WRX_ST_TCPCS) {
2218 			/*
2219 			 * Note: we don't know if this was TCP or UDP,
2220 			 * so we just set both bits, and expect the
2221 			 * upper layers to deal.
2222 			 */
2223 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2224 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2225 			if (errors & WRX_ER_TCPE)
2226 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2227 		}
2228 
2229 		ifp->if_ipackets++;
2230 
2231 #if NBPFILTER > 0
2232 		/* Pass this up to any BPF listeners. */
2233 		if (ifp->if_bpf)
2234 			bpf_mtap(ifp->if_bpf, m);
2235 #endif /* NBPFILTER > 0 */
2236 
2237 		/* Pass it on. */
2238 		(*ifp->if_input)(ifp, m);
2239 	}
2240 
2241 	/* Update the receive pointer. */
2242 	sc->sc_rxptr = i;
2243 
2244 	DPRINTF(WM_DEBUG_RX,
2245 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2246 }
2247 
2248 /*
2249  * wm_linkintr:
2250  *
2251  *	Helper; handle link interrupts.
2252  */
2253 static void
2254 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2255 {
2256 	uint32_t status;
2257 
2258 	/*
2259 	 * If we get a link status interrupt on a 1000BASE-T
2260 	 * device, just fall into the normal MII tick path.
2261 	 */
2262 	if (sc->sc_flags & WM_F_HAS_MII) {
2263 		if (icr & ICR_LSC) {
2264 			DPRINTF(WM_DEBUG_LINK,
2265 			    ("%s: LINK: LSC -> mii_tick\n",
2266 			    sc->sc_dev.dv_xname));
2267 			mii_tick(&sc->sc_mii);
2268 		} else if (icr & ICR_RXSEQ) {
2269 			DPRINTF(WM_DEBUG_LINK,
2270 			    ("%s: LINK Receive sequence error\n",
2271 			    sc->sc_dev.dv_xname));
2272 		}
2273 		return;
2274 	}
2275 
2276 	/*
2277 	 * If we are now receiving /C/, check for link again in
2278 	 * a couple of link clock ticks.
2279 	 */
2280 	if (icr & ICR_RXCFG) {
2281 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2282 		    sc->sc_dev.dv_xname));
2283 		sc->sc_tbi_anstate = 2;
2284 	}
2285 
2286 	if (icr & ICR_LSC) {
2287 		status = CSR_READ(sc, WMREG_STATUS);
2288 		if (status & STATUS_LU) {
2289 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2290 			    sc->sc_dev.dv_xname,
2291 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2292 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2293 			sc->sc_fcrtl &= ~FCRTL_XONE;
2294 			if (status & STATUS_FD)
2295 				sc->sc_tctl |=
2296 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2297 			else
2298 				sc->sc_tctl |=
2299 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2300 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2301 				sc->sc_fcrtl |= FCRTL_XONE;
2302 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2303 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2304 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2305 				      sc->sc_fcrtl);
2306 			sc->sc_tbi_linkup = 1;
2307 		} else {
2308 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2309 			    sc->sc_dev.dv_xname));
2310 			sc->sc_tbi_linkup = 0;
2311 		}
2312 		sc->sc_tbi_anstate = 2;
2313 		wm_tbi_set_linkled(sc);
2314 	} else if (icr & ICR_RXSEQ) {
2315 		DPRINTF(WM_DEBUG_LINK,
2316 		    ("%s: LINK: Receive sequence error\n",
2317 		    sc->sc_dev.dv_xname));
2318 	}
2319 }
2320 
2321 /*
2322  * wm_tick:
2323  *
2324  *	One second timer, used to check link status, sweep up
2325  *	completed transmit jobs, etc.
2326  */
2327 static void
2328 wm_tick(void *arg)
2329 {
2330 	struct wm_softc *sc = arg;
2331 	int s;
2332 
2333 	s = splnet();
2334 
2335 	if (sc->sc_type >= WM_T_82542_2_1) {
2336 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2337 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2338 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2339 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2340 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2341 	}
2342 
2343 	if (sc->sc_flags & WM_F_HAS_MII)
2344 		mii_tick(&sc->sc_mii);
2345 	else
2346 		wm_tbi_check_link(sc);
2347 
2348 	splx(s);
2349 
2350 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2351 }
2352 
2353 /*
2354  * wm_reset:
2355  *
2356  *	Reset the i82542 chip.
2357  */
2358 static void
2359 wm_reset(struct wm_softc *sc)
2360 {
2361 	int i;
2362 
2363 	/*
2364 	 * Allocate on-chip memory according to the MTU size.
2365 	 * The Packet Buffer Allocation register must be written
2366 	 * before the chip is reset.
2367 	 */
2368 	if (sc->sc_type < WM_T_82547) {
2369 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2370 		    PBA_40K : PBA_48K;
2371 	} else {
2372 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2373 		    PBA_22K : PBA_30K;
2374 		sc->sc_txfifo_head = 0;
2375 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2376 		sc->sc_txfifo_size =
2377 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2378 		sc->sc_txfifo_stall = 0;
2379 	}
2380 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2381 
2382 	switch (sc->sc_type) {
2383 	case WM_T_82544:
2384 	case WM_T_82540:
2385 	case WM_T_82545:
2386 	case WM_T_82546:
2387 	case WM_T_82541:
2388 	case WM_T_82541_2:
2389 		/*
2390 		 * On some chipsets, a reset through a memory-mapped write
2391 		 * cycle can cause the chip to reset before completing the
2392 		 * write cycle.  This causes major headache that can be
2393 		 * avoided by issuing the reset via indirect register writes
2394 		 * through I/O space.
2395 		 *
2396 		 * So, if we successfully mapped the I/O BAR at attach time,
2397 		 * use that.  Otherwise, try our luck with a memory-mapped
2398 		 * reset.
2399 		 */
2400 		if (sc->sc_flags & WM_F_IOH_VALID)
2401 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2402 		else
2403 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2404 		break;
2405 
2406 	case WM_T_82545_3:
2407 	case WM_T_82546_3:
2408 		/* Use the shadow control register on these chips. */
2409 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2410 		break;
2411 
2412 	default:
2413 		/* Everything else can safely use the documented method. */
2414 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2415 		break;
2416 	}
2417 	delay(10000);
2418 
2419 	for (i = 0; i < 1000; i++) {
2420 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2421 			return;
2422 		delay(20);
2423 	}
2424 
2425 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2426 		log(LOG_ERR, "%s: reset failed to complete\n",
2427 		    sc->sc_dev.dv_xname);
2428 }
2429 
2430 /*
2431  * wm_init:		[ifnet interface function]
2432  *
2433  *	Initialize the interface.  Must be called at splnet().
2434  */
2435 static int
2436 wm_init(struct ifnet *ifp)
2437 {
2438 	struct wm_softc *sc = ifp->if_softc;
2439 	struct wm_rxsoft *rxs;
2440 	int i, error = 0;
2441 	uint32_t reg;
2442 
2443 	/*
2444 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2445 	 * There is a small but measurable benefit to avoiding the adjusment
2446 	 * of the descriptor so that the headers are aligned, for normal mtu,
2447 	 * on such platforms.  One possibility is that the DMA itself is
2448 	 * slightly more efficient if the front of the entire packet (instead
2449 	 * of the front of the headers) is aligned.
2450 	 *
2451 	 * Note we must always set align_tweak to 0 if we are using
2452 	 * jumbo frames.
2453 	 */
2454 #ifdef __NO_STRICT_ALIGNMENT
2455 	sc->sc_align_tweak = 0;
2456 #else
2457 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2458 		sc->sc_align_tweak = 0;
2459 	else
2460 		sc->sc_align_tweak = 2;
2461 #endif /* __NO_STRICT_ALIGNMENT */
2462 
2463 	/* Cancel any pending I/O. */
2464 	wm_stop(ifp, 0);
2465 
2466 	/* Reset the chip to a known state. */
2467 	wm_reset(sc);
2468 
2469 	/* Initialize the transmit descriptor ring. */
2470 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2471 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2472 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2473 	sc->sc_txfree = WM_NTXDESC(sc);
2474 	sc->sc_txnext = 0;
2475 
2476 	if (sc->sc_type < WM_T_82543) {
2477 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2478 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2479 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2480 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2481 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2482 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2483 	} else {
2484 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2485 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2486 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2487 		CSR_WRITE(sc, WMREG_TDH, 0);
2488 		CSR_WRITE(sc, WMREG_TDT, 0);
2489 		CSR_WRITE(sc, WMREG_TIDV, 64);
2490 		CSR_WRITE(sc, WMREG_TADV, 128);
2491 
2492 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2493 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2494 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2495 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2496 	}
2497 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2498 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2499 
2500 	/* Initialize the transmit job descriptors. */
2501 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2502 		sc->sc_txsoft[i].txs_mbuf = NULL;
2503 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2504 	sc->sc_txsnext = 0;
2505 	sc->sc_txsdirty = 0;
2506 
2507 	/*
2508 	 * Initialize the receive descriptor and receive job
2509 	 * descriptor rings.
2510 	 */
2511 	if (sc->sc_type < WM_T_82543) {
2512 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2513 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2514 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2515 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2516 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2517 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2518 
2519 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2520 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2521 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2522 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2523 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2524 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2525 	} else {
2526 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2527 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2528 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2529 		CSR_WRITE(sc, WMREG_RDH, 0);
2530 		CSR_WRITE(sc, WMREG_RDT, 0);
2531 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2532 		CSR_WRITE(sc, WMREG_RADV, 128);
2533 	}
2534 	for (i = 0; i < WM_NRXDESC; i++) {
2535 		rxs = &sc->sc_rxsoft[i];
2536 		if (rxs->rxs_mbuf == NULL) {
2537 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2538 				log(LOG_ERR, "%s: unable to allocate or map rx "
2539 				    "buffer %d, error = %d\n",
2540 				    sc->sc_dev.dv_xname, i, error);
2541 				/*
2542 				 * XXX Should attempt to run with fewer receive
2543 				 * XXX buffers instead of just failing.
2544 				 */
2545 				wm_rxdrain(sc);
2546 				goto out;
2547 			}
2548 		} else
2549 			WM_INIT_RXDESC(sc, i);
2550 	}
2551 	sc->sc_rxptr = 0;
2552 	sc->sc_rxdiscard = 0;
2553 	WM_RXCHAIN_RESET(sc);
2554 
2555 	/*
2556 	 * Clear out the VLAN table -- we don't use it (yet).
2557 	 */
2558 	CSR_WRITE(sc, WMREG_VET, 0);
2559 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2560 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2561 
2562 	/*
2563 	 * Set up flow-control parameters.
2564 	 *
2565 	 * XXX Values could probably stand some tuning.
2566 	 */
2567 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2568 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2569 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2570 
2571 	sc->sc_fcrtl = FCRTL_DFLT;
2572 	if (sc->sc_type < WM_T_82543) {
2573 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2574 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2575 	} else {
2576 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2577 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2578 	}
2579 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2580 
2581 #if 0 /* XXXJRT */
2582 	/* Deal with VLAN enables. */
2583 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2584 		sc->sc_ctrl |= CTRL_VME;
2585 	else
2586 #endif /* XXXJRT */
2587 		sc->sc_ctrl &= ~CTRL_VME;
2588 
2589 	/* Write the control registers. */
2590 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2591 #if 0
2592 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2593 #endif
2594 
2595 	/*
2596 	 * Set up checksum offload parameters.
2597 	 */
2598 	reg = CSR_READ(sc, WMREG_RXCSUM);
2599 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2600 		reg |= RXCSUM_IPOFL;
2601 	else
2602 		reg &= ~RXCSUM_IPOFL;
2603 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2604 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2605 	else {
2606 		reg &= ~RXCSUM_TUOFL;
2607 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2608 			reg &= ~RXCSUM_IPOFL;
2609 	}
2610 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2611 
2612 	/*
2613 	 * Set up the interrupt registers.
2614 	 */
2615 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2616 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2617 	    ICR_RXO | ICR_RXT0;
2618 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2619 		sc->sc_icr |= ICR_RXCFG;
2620 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2621 
2622 	/* Set up the inter-packet gap. */
2623 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2624 
2625 	if (sc->sc_type >= WM_T_82543) {
2626 		/* Set up the interrupt throttling register (units of 256ns) */
2627 		sc->sc_itr = 1000000000 / (7000 * 256);
2628 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2629 	}
2630 
2631 #if 0 /* XXXJRT */
2632 	/* Set the VLAN ethernetype. */
2633 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2634 #endif
2635 
2636 	/*
2637 	 * Set up the transmit control register; we start out with
2638 	 * a collision distance suitable for FDX, but update it whe
2639 	 * we resolve the media type.
2640 	 */
2641 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2642 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2643 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2644 
2645 	/* Set the media. */
2646 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2647 
2648 	/*
2649 	 * Set up the receive control register; we actually program
2650 	 * the register when we set the receive filter.  Use multicast
2651 	 * address offset type 0.
2652 	 *
2653 	 * Only the i82544 has the ability to strip the incoming
2654 	 * CRC, so we don't enable that feature.
2655 	 */
2656 	sc->sc_mchash_type = 0;
2657 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2658 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2659 
2660 	if(MCLBYTES == 2048) {
2661 		sc->sc_rctl |= RCTL_2k;
2662 	} else {
2663 		if(sc->sc_type >= WM_T_82543) {
2664 			switch(MCLBYTES) {
2665 			case 4096:
2666 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2667 				break;
2668 			case 8192:
2669 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2670 				break;
2671 			case 16384:
2672 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2673 				break;
2674 			default:
2675 				panic("wm_init: MCLBYTES %d unsupported",
2676 				    MCLBYTES);
2677 				break;
2678 			}
2679 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
2680 	}
2681 
2682 	/* Set the receive filter. */
2683 	wm_set_filter(sc);
2684 
2685 	/* Start the one second link check clock. */
2686 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2687 
2688 	/* ...all done! */
2689 	ifp->if_flags |= IFF_RUNNING;
2690 	ifp->if_flags &= ~IFF_OACTIVE;
2691 
2692  out:
2693 	if (error)
2694 		log(LOG_ERR, "%s: interface not running\n",
2695 		    sc->sc_dev.dv_xname);
2696 	return (error);
2697 }
2698 
2699 /*
2700  * wm_rxdrain:
2701  *
2702  *	Drain the receive queue.
2703  */
2704 static void
2705 wm_rxdrain(struct wm_softc *sc)
2706 {
2707 	struct wm_rxsoft *rxs;
2708 	int i;
2709 
2710 	for (i = 0; i < WM_NRXDESC; i++) {
2711 		rxs = &sc->sc_rxsoft[i];
2712 		if (rxs->rxs_mbuf != NULL) {
2713 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2714 			m_freem(rxs->rxs_mbuf);
2715 			rxs->rxs_mbuf = NULL;
2716 		}
2717 	}
2718 }
2719 
2720 /*
2721  * wm_stop:		[ifnet interface function]
2722  *
2723  *	Stop transmission on the interface.
2724  */
2725 static void
2726 wm_stop(struct ifnet *ifp, int disable)
2727 {
2728 	struct wm_softc *sc = ifp->if_softc;
2729 	struct wm_txsoft *txs;
2730 	int i;
2731 
2732 	/* Stop the one second clock. */
2733 	callout_stop(&sc->sc_tick_ch);
2734 
2735 	/* Stop the 82547 Tx FIFO stall check timer. */
2736 	if (sc->sc_type == WM_T_82547)
2737 		callout_stop(&sc->sc_txfifo_ch);
2738 
2739 	if (sc->sc_flags & WM_F_HAS_MII) {
2740 		/* Down the MII. */
2741 		mii_down(&sc->sc_mii);
2742 	}
2743 
2744 	/* Stop the transmit and receive processes. */
2745 	CSR_WRITE(sc, WMREG_TCTL, 0);
2746 	CSR_WRITE(sc, WMREG_RCTL, 0);
2747 
2748 	/* Release any queued transmit buffers. */
2749 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2750 		txs = &sc->sc_txsoft[i];
2751 		if (txs->txs_mbuf != NULL) {
2752 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2753 			m_freem(txs->txs_mbuf);
2754 			txs->txs_mbuf = NULL;
2755 		}
2756 	}
2757 
2758 	if (disable)
2759 		wm_rxdrain(sc);
2760 
2761 	/* Mark the interface as down and cancel the watchdog timer. */
2762 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2763 	ifp->if_timer = 0;
2764 }
2765 
2766 /*
2767  * wm_acquire_eeprom:
2768  *
2769  *	Perform the EEPROM handshake required on some chips.
2770  */
2771 static int
2772 wm_acquire_eeprom(struct wm_softc *sc)
2773 {
2774 	uint32_t reg;
2775 	int x;
2776 
2777 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
2778 		reg = CSR_READ(sc, WMREG_EECD);
2779 
2780 		/* Request EEPROM access. */
2781 		reg |= EECD_EE_REQ;
2782 		CSR_WRITE(sc, WMREG_EECD, reg);
2783 
2784 		/* ..and wait for it to be granted. */
2785 		for (x = 0; x < 100; x++) {
2786 			reg = CSR_READ(sc, WMREG_EECD);
2787 			if (reg & EECD_EE_GNT)
2788 				break;
2789 			delay(5);
2790 		}
2791 		if ((reg & EECD_EE_GNT) == 0) {
2792 			aprint_error("%s: could not acquire EEPROM GNT\n",
2793 			    sc->sc_dev.dv_xname);
2794 			reg &= ~EECD_EE_REQ;
2795 			CSR_WRITE(sc, WMREG_EECD, reg);
2796 			return (1);
2797 		}
2798 	}
2799 
2800 	return (0);
2801 }
2802 
2803 /*
2804  * wm_release_eeprom:
2805  *
2806  *	Release the EEPROM mutex.
2807  */
2808 static void
2809 wm_release_eeprom(struct wm_softc *sc)
2810 {
2811 	uint32_t reg;
2812 
2813 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2814 		reg = CSR_READ(sc, WMREG_EECD);
2815 		reg &= ~EECD_EE_REQ;
2816 		CSR_WRITE(sc, WMREG_EECD, reg);
2817 	}
2818 }
2819 
2820 /*
2821  * wm_eeprom_sendbits:
2822  *
2823  *	Send a series of bits to the EEPROM.
2824  */
2825 static void
2826 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2827 {
2828 	uint32_t reg;
2829 	int x;
2830 
2831 	reg = CSR_READ(sc, WMREG_EECD);
2832 
2833 	for (x = nbits; x > 0; x--) {
2834 		if (bits & (1U << (x - 1)))
2835 			reg |= EECD_DI;
2836 		else
2837 			reg &= ~EECD_DI;
2838 		CSR_WRITE(sc, WMREG_EECD, reg);
2839 		delay(2);
2840 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2841 		delay(2);
2842 		CSR_WRITE(sc, WMREG_EECD, reg);
2843 		delay(2);
2844 	}
2845 }
2846 
2847 /*
2848  * wm_eeprom_recvbits:
2849  *
2850  *	Receive a series of bits from the EEPROM.
2851  */
2852 static void
2853 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2854 {
2855 	uint32_t reg, val;
2856 	int x;
2857 
2858 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2859 
2860 	val = 0;
2861 	for (x = nbits; x > 0; x--) {
2862 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2863 		delay(2);
2864 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2865 			val |= (1U << (x - 1));
2866 		CSR_WRITE(sc, WMREG_EECD, reg);
2867 		delay(2);
2868 	}
2869 	*valp = val;
2870 }
2871 
2872 /*
2873  * wm_read_eeprom_uwire:
2874  *
2875  *	Read a word from the EEPROM using the MicroWire protocol.
2876  */
2877 static int
2878 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2879 {
2880 	uint32_t reg, val;
2881 	int i;
2882 
2883 	for (i = 0; i < wordcnt; i++) {
2884 		/* Clear SK and DI. */
2885 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2886 		CSR_WRITE(sc, WMREG_EECD, reg);
2887 
2888 		/* Set CHIP SELECT. */
2889 		reg |= EECD_CS;
2890 		CSR_WRITE(sc, WMREG_EECD, reg);
2891 		delay(2);
2892 
2893 		/* Shift in the READ command. */
2894 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2895 
2896 		/* Shift in address. */
2897 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2898 
2899 		/* Shift out the data. */
2900 		wm_eeprom_recvbits(sc, &val, 16);
2901 		data[i] = val & 0xffff;
2902 
2903 		/* Clear CHIP SELECT. */
2904 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2905 		CSR_WRITE(sc, WMREG_EECD, reg);
2906 		delay(2);
2907 	}
2908 
2909 	return (0);
2910 }
2911 
2912 /*
2913  * wm_spi_eeprom_ready:
2914  *
2915  *	Wait for a SPI EEPROM to be ready for commands.
2916  */
2917 static int
2918 wm_spi_eeprom_ready(struct wm_softc *sc)
2919 {
2920 	uint32_t val;
2921 	int usec;
2922 
2923 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2924 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2925 		wm_eeprom_recvbits(sc, &val, 8);
2926 		if ((val & SPI_SR_RDY) == 0)
2927 			break;
2928 	}
2929 	if (usec >= SPI_MAX_RETRIES) {
2930 		aprint_error("%s: EEPROM failed to become ready\n",
2931 		    sc->sc_dev.dv_xname);
2932 		return (1);
2933 	}
2934 	return (0);
2935 }
2936 
2937 /*
2938  * wm_read_eeprom_spi:
2939  *
2940  *	Read a work from the EEPROM using the SPI protocol.
2941  */
2942 static int
2943 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2944 {
2945 	uint32_t reg, val;
2946 	int i;
2947 	uint8_t opc;
2948 
2949 	/* Clear SK and CS. */
2950 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2951 	CSR_WRITE(sc, WMREG_EECD, reg);
2952 	delay(2);
2953 
2954 	if (wm_spi_eeprom_ready(sc))
2955 		return (1);
2956 
2957 	/* Toggle CS to flush commands. */
2958 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2959 	delay(2);
2960 	CSR_WRITE(sc, WMREG_EECD, reg);
2961 	delay(2);
2962 
2963 	opc = SPI_OPC_READ;
2964 	if (sc->sc_ee_addrbits == 8 && word >= 128)
2965 		opc |= SPI_OPC_A8;
2966 
2967 	wm_eeprom_sendbits(sc, opc, 8);
2968 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
2969 
2970 	for (i = 0; i < wordcnt; i++) {
2971 		wm_eeprom_recvbits(sc, &val, 16);
2972 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
2973 	}
2974 
2975 	/* Raise CS and clear SK. */
2976 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
2977 	CSR_WRITE(sc, WMREG_EECD, reg);
2978 	delay(2);
2979 
2980 	return (0);
2981 }
2982 
2983 /*
2984  * wm_read_eeprom:
2985  *
2986  *	Read data from the serial EEPROM.
2987  */
2988 static int
2989 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2990 {
2991 	int rv;
2992 
2993 	if (wm_acquire_eeprom(sc))
2994 		return (1);
2995 
2996 	if (sc->sc_flags & WM_F_EEPROM_SPI)
2997 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
2998 	else
2999 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3000 
3001 	wm_release_eeprom(sc);
3002 	return (rv);
3003 }
3004 
3005 /*
3006  * wm_add_rxbuf:
3007  *
3008  *	Add a receive buffer to the indiciated descriptor.
3009  */
3010 static int
3011 wm_add_rxbuf(struct wm_softc *sc, int idx)
3012 {
3013 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3014 	struct mbuf *m;
3015 	int error;
3016 
3017 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3018 	if (m == NULL)
3019 		return (ENOBUFS);
3020 
3021 	MCLGET(m, M_DONTWAIT);
3022 	if ((m->m_flags & M_EXT) == 0) {
3023 		m_freem(m);
3024 		return (ENOBUFS);
3025 	}
3026 
3027 	if (rxs->rxs_mbuf != NULL)
3028 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3029 
3030 	rxs->rxs_mbuf = m;
3031 
3032 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3033 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3034 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3035 	if (error) {
3036 		/* XXX XXX XXX */
3037 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3038 		    sc->sc_dev.dv_xname, idx, error);
3039 		panic("wm_add_rxbuf");
3040 	}
3041 
3042 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3043 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3044 
3045 	WM_INIT_RXDESC(sc, idx);
3046 
3047 	return (0);
3048 }
3049 
3050 /*
3051  * wm_set_ral:
3052  *
3053  *	Set an entery in the receive address list.
3054  */
3055 static void
3056 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3057 {
3058 	uint32_t ral_lo, ral_hi;
3059 
3060 	if (enaddr != NULL) {
3061 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3062 		    (enaddr[3] << 24);
3063 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3064 		ral_hi |= RAL_AV;
3065 	} else {
3066 		ral_lo = 0;
3067 		ral_hi = 0;
3068 	}
3069 
3070 	if (sc->sc_type >= WM_T_82544) {
3071 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3072 		    ral_lo);
3073 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3074 		    ral_hi);
3075 	} else {
3076 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3077 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3078 	}
3079 }
3080 
3081 /*
3082  * wm_mchash:
3083  *
3084  *	Compute the hash of the multicast address for the 4096-bit
3085  *	multicast filter.
3086  */
3087 static uint32_t
3088 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3089 {
3090 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3091 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3092 	uint32_t hash;
3093 
3094 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3095 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3096 
3097 	return (hash & 0xfff);
3098 }
3099 
3100 /*
3101  * wm_set_filter:
3102  *
3103  *	Set up the receive filter.
3104  */
3105 static void
3106 wm_set_filter(struct wm_softc *sc)
3107 {
3108 	struct ethercom *ec = &sc->sc_ethercom;
3109 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3110 	struct ether_multi *enm;
3111 	struct ether_multistep step;
3112 	bus_addr_t mta_reg;
3113 	uint32_t hash, reg, bit;
3114 	int i;
3115 
3116 	if (sc->sc_type >= WM_T_82544)
3117 		mta_reg = WMREG_CORDOVA_MTA;
3118 	else
3119 		mta_reg = WMREG_MTA;
3120 
3121 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3122 
3123 	if (ifp->if_flags & IFF_BROADCAST)
3124 		sc->sc_rctl |= RCTL_BAM;
3125 	if (ifp->if_flags & IFF_PROMISC) {
3126 		sc->sc_rctl |= RCTL_UPE;
3127 		goto allmulti;
3128 	}
3129 
3130 	/*
3131 	 * Set the station address in the first RAL slot, and
3132 	 * clear the remaining slots.
3133 	 */
3134 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3135 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3136 		wm_set_ral(sc, NULL, i);
3137 
3138 	/* Clear out the multicast table. */
3139 	for (i = 0; i < WM_MC_TABSIZE; i++)
3140 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3141 
3142 	ETHER_FIRST_MULTI(step, ec, enm);
3143 	while (enm != NULL) {
3144 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3145 			/*
3146 			 * We must listen to a range of multicast addresses.
3147 			 * For now, just accept all multicasts, rather than
3148 			 * trying to set only those filter bits needed to match
3149 			 * the range.  (At this time, the only use of address
3150 			 * ranges is for IP multicast routing, for which the
3151 			 * range is big enough to require all bits set.)
3152 			 */
3153 			goto allmulti;
3154 		}
3155 
3156 		hash = wm_mchash(sc, enm->enm_addrlo);
3157 
3158 		reg = (hash >> 5) & 0x7f;
3159 		bit = hash & 0x1f;
3160 
3161 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3162 		hash |= 1U << bit;
3163 
3164 		/* XXX Hardware bug?? */
3165 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3166 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3167 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3168 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3169 		} else
3170 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3171 
3172 		ETHER_NEXT_MULTI(step, enm);
3173 	}
3174 
3175 	ifp->if_flags &= ~IFF_ALLMULTI;
3176 	goto setit;
3177 
3178  allmulti:
3179 	ifp->if_flags |= IFF_ALLMULTI;
3180 	sc->sc_rctl |= RCTL_MPE;
3181 
3182  setit:
3183 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3184 }
3185 
3186 /*
3187  * wm_tbi_mediainit:
3188  *
3189  *	Initialize media for use on 1000BASE-X devices.
3190  */
3191 static void
3192 wm_tbi_mediainit(struct wm_softc *sc)
3193 {
3194 	const char *sep = "";
3195 
3196 	if (sc->sc_type < WM_T_82543)
3197 		sc->sc_tipg = TIPG_WM_DFLT;
3198 	else
3199 		sc->sc_tipg = TIPG_LG_DFLT;
3200 
3201 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3202 	    wm_tbi_mediastatus);
3203 
3204 	/*
3205 	 * SWD Pins:
3206 	 *
3207 	 *	0 = Link LED (output)
3208 	 *	1 = Loss Of Signal (input)
3209 	 */
3210 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3211 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3212 
3213 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3214 
3215 #define	ADD(ss, mm, dd)							\
3216 do {									\
3217 	aprint_normal("%s%s", sep, ss);					\
3218 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3219 	sep = ", ";							\
3220 } while (/*CONSTCOND*/0)
3221 
3222 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
3223 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3224 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3225 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3226 	aprint_normal("\n");
3227 
3228 #undef ADD
3229 
3230 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3231 }
3232 
3233 /*
3234  * wm_tbi_mediastatus:	[ifmedia interface function]
3235  *
3236  *	Get the current interface media status on a 1000BASE-X device.
3237  */
3238 static void
3239 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3240 {
3241 	struct wm_softc *sc = ifp->if_softc;
3242 	uint32_t ctrl;
3243 
3244 	ifmr->ifm_status = IFM_AVALID;
3245 	ifmr->ifm_active = IFM_ETHER;
3246 
3247 	if (sc->sc_tbi_linkup == 0) {
3248 		ifmr->ifm_active |= IFM_NONE;
3249 		return;
3250 	}
3251 
3252 	ifmr->ifm_status |= IFM_ACTIVE;
3253 	ifmr->ifm_active |= IFM_1000_SX;
3254 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3255 		ifmr->ifm_active |= IFM_FDX;
3256 	ctrl = CSR_READ(sc, WMREG_CTRL);
3257 	if (ctrl & CTRL_RFCE)
3258 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3259 	if (ctrl & CTRL_TFCE)
3260 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3261 }
3262 
3263 /*
3264  * wm_tbi_mediachange:	[ifmedia interface function]
3265  *
3266  *	Set hardware to newly-selected media on a 1000BASE-X device.
3267  */
3268 static int
3269 wm_tbi_mediachange(struct ifnet *ifp)
3270 {
3271 	struct wm_softc *sc = ifp->if_softc;
3272 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3273 	uint32_t status;
3274 	int i;
3275 
3276 	sc->sc_txcw = ife->ifm_data;
3277 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3278 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3279 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3280 	sc->sc_txcw |= TXCW_ANE;
3281 
3282 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3283 	delay(10000);
3284 
3285 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3286 
3287 	sc->sc_tbi_anstate = 0;
3288 
3289 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3290 		/* Have signal; wait for the link to come up. */
3291 		for (i = 0; i < 50; i++) {
3292 			delay(10000);
3293 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3294 				break;
3295 		}
3296 
3297 		status = CSR_READ(sc, WMREG_STATUS);
3298 		if (status & STATUS_LU) {
3299 			/* Link is up. */
3300 			DPRINTF(WM_DEBUG_LINK,
3301 			    ("%s: LINK: set media -> link up %s\n",
3302 			    sc->sc_dev.dv_xname,
3303 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3304 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3305 			sc->sc_fcrtl &= ~FCRTL_XONE;
3306 			if (status & STATUS_FD)
3307 				sc->sc_tctl |=
3308 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3309 			else
3310 				sc->sc_tctl |=
3311 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3312 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3313 				sc->sc_fcrtl |= FCRTL_XONE;
3314 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3315 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3316 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3317 				      sc->sc_fcrtl);
3318 			sc->sc_tbi_linkup = 1;
3319 		} else {
3320 			/* Link is down. */
3321 			DPRINTF(WM_DEBUG_LINK,
3322 			    ("%s: LINK: set media -> link down\n",
3323 			    sc->sc_dev.dv_xname));
3324 			sc->sc_tbi_linkup = 0;
3325 		}
3326 	} else {
3327 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3328 		    sc->sc_dev.dv_xname));
3329 		sc->sc_tbi_linkup = 0;
3330 	}
3331 
3332 	wm_tbi_set_linkled(sc);
3333 
3334 	return (0);
3335 }
3336 
3337 /*
3338  * wm_tbi_set_linkled:
3339  *
3340  *	Update the link LED on 1000BASE-X devices.
3341  */
3342 static void
3343 wm_tbi_set_linkled(struct wm_softc *sc)
3344 {
3345 
3346 	if (sc->sc_tbi_linkup)
3347 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3348 	else
3349 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3350 
3351 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3352 }
3353 
3354 /*
3355  * wm_tbi_check_link:
3356  *
3357  *	Check the link on 1000BASE-X devices.
3358  */
3359 static void
3360 wm_tbi_check_link(struct wm_softc *sc)
3361 {
3362 	uint32_t rxcw, ctrl, status;
3363 
3364 	if (sc->sc_tbi_anstate == 0)
3365 		return;
3366 	else if (sc->sc_tbi_anstate > 1) {
3367 		DPRINTF(WM_DEBUG_LINK,
3368 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3369 		    sc->sc_tbi_anstate));
3370 		sc->sc_tbi_anstate--;
3371 		return;
3372 	}
3373 
3374 	sc->sc_tbi_anstate = 0;
3375 
3376 	rxcw = CSR_READ(sc, WMREG_RXCW);
3377 	ctrl = CSR_READ(sc, WMREG_CTRL);
3378 	status = CSR_READ(sc, WMREG_STATUS);
3379 
3380 	if ((status & STATUS_LU) == 0) {
3381 		DPRINTF(WM_DEBUG_LINK,
3382 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3383 		sc->sc_tbi_linkup = 0;
3384 	} else {
3385 		DPRINTF(WM_DEBUG_LINK,
3386 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3387 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3388 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3389 		sc->sc_fcrtl &= ~FCRTL_XONE;
3390 		if (status & STATUS_FD)
3391 			sc->sc_tctl |=
3392 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3393 		else
3394 			sc->sc_tctl |=
3395 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3396 		if (ctrl & CTRL_TFCE)
3397 			sc->sc_fcrtl |= FCRTL_XONE;
3398 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3399 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3400 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3401 			      sc->sc_fcrtl);
3402 		sc->sc_tbi_linkup = 1;
3403 	}
3404 
3405 	wm_tbi_set_linkled(sc);
3406 }
3407 
3408 /*
3409  * wm_gmii_reset:
3410  *
3411  *	Reset the PHY.
3412  */
3413 static void
3414 wm_gmii_reset(struct wm_softc *sc)
3415 {
3416 	uint32_t reg;
3417 
3418 	if (sc->sc_type >= WM_T_82544) {
3419 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3420 		delay(20000);
3421 
3422 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3423 		delay(20000);
3424 	} else {
3425 		/* The PHY reset pin is active-low. */
3426 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3427 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3428 		    CTRL_EXT_SWDPIN(4));
3429 		reg |= CTRL_EXT_SWDPIO(4);
3430 
3431 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3432 		delay(10);
3433 
3434 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3435 		delay(10);
3436 
3437 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3438 		delay(10);
3439 #if 0
3440 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3441 #endif
3442 	}
3443 }
3444 
3445 /*
3446  * wm_gmii_mediainit:
3447  *
3448  *	Initialize media for use on 1000BASE-T devices.
3449  */
3450 static void
3451 wm_gmii_mediainit(struct wm_softc *sc)
3452 {
3453 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3454 
3455 	/* We have MII. */
3456 	sc->sc_flags |= WM_F_HAS_MII;
3457 
3458 	sc->sc_tipg = TIPG_1000T_DFLT;
3459 
3460 	/*
3461 	 * Let the chip set speed/duplex on its own based on
3462 	 * signals from the PHY.
3463 	 */
3464 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3465 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3466 
3467 	/* Initialize our media structures and probe the GMII. */
3468 	sc->sc_mii.mii_ifp = ifp;
3469 
3470 	if (sc->sc_type >= WM_T_82544) {
3471 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3472 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3473 	} else {
3474 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3475 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3476 	}
3477 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
3478 
3479 	wm_gmii_reset(sc);
3480 
3481 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3482 	    wm_gmii_mediastatus);
3483 
3484 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3485 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
3486 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3487 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3488 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3489 	} else
3490 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3491 }
3492 
3493 /*
3494  * wm_gmii_mediastatus:	[ifmedia interface function]
3495  *
3496  *	Get the current interface media status on a 1000BASE-T device.
3497  */
3498 static void
3499 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3500 {
3501 	struct wm_softc *sc = ifp->if_softc;
3502 
3503 	mii_pollstat(&sc->sc_mii);
3504 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3505 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3506 			   sc->sc_flowflags;
3507 }
3508 
3509 /*
3510  * wm_gmii_mediachange:	[ifmedia interface function]
3511  *
3512  *	Set hardware to newly-selected media on a 1000BASE-T device.
3513  */
3514 static int
3515 wm_gmii_mediachange(struct ifnet *ifp)
3516 {
3517 	struct wm_softc *sc = ifp->if_softc;
3518 
3519 	if (ifp->if_flags & IFF_UP)
3520 		mii_mediachg(&sc->sc_mii);
3521 	return (0);
3522 }
3523 
3524 #define	MDI_IO		CTRL_SWDPIN(2)
3525 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
3526 #define	MDI_CLK		CTRL_SWDPIN(3)
3527 
3528 static void
3529 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3530 {
3531 	uint32_t i, v;
3532 
3533 	v = CSR_READ(sc, WMREG_CTRL);
3534 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3535 	v |= MDI_DIR | CTRL_SWDPIO(3);
3536 
3537 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3538 		if (data & i)
3539 			v |= MDI_IO;
3540 		else
3541 			v &= ~MDI_IO;
3542 		CSR_WRITE(sc, WMREG_CTRL, v);
3543 		delay(10);
3544 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3545 		delay(10);
3546 		CSR_WRITE(sc, WMREG_CTRL, v);
3547 		delay(10);
3548 	}
3549 }
3550 
3551 static uint32_t
3552 i82543_mii_recvbits(struct wm_softc *sc)
3553 {
3554 	uint32_t v, i, data = 0;
3555 
3556 	v = CSR_READ(sc, WMREG_CTRL);
3557 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3558 	v |= CTRL_SWDPIO(3);
3559 
3560 	CSR_WRITE(sc, WMREG_CTRL, v);
3561 	delay(10);
3562 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3563 	delay(10);
3564 	CSR_WRITE(sc, WMREG_CTRL, v);
3565 	delay(10);
3566 
3567 	for (i = 0; i < 16; i++) {
3568 		data <<= 1;
3569 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3570 		delay(10);
3571 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3572 			data |= 1;
3573 		CSR_WRITE(sc, WMREG_CTRL, v);
3574 		delay(10);
3575 	}
3576 
3577 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3578 	delay(10);
3579 	CSR_WRITE(sc, WMREG_CTRL, v);
3580 	delay(10);
3581 
3582 	return (data);
3583 }
3584 
3585 #undef MDI_IO
3586 #undef MDI_DIR
3587 #undef MDI_CLK
3588 
3589 /*
3590  * wm_gmii_i82543_readreg:	[mii interface function]
3591  *
3592  *	Read a PHY register on the GMII (i82543 version).
3593  */
3594 static int
3595 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3596 {
3597 	struct wm_softc *sc = (void *) self;
3598 	int rv;
3599 
3600 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3601 	i82543_mii_sendbits(sc, reg | (phy << 5) |
3602 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3603 	rv = i82543_mii_recvbits(sc) & 0xffff;
3604 
3605 	DPRINTF(WM_DEBUG_GMII,
3606 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3607 	    sc->sc_dev.dv_xname, phy, reg, rv));
3608 
3609 	return (rv);
3610 }
3611 
3612 /*
3613  * wm_gmii_i82543_writereg:	[mii interface function]
3614  *
3615  *	Write a PHY register on the GMII (i82543 version).
3616  */
3617 static void
3618 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3619 {
3620 	struct wm_softc *sc = (void *) self;
3621 
3622 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3623 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3624 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3625 	    (MII_COMMAND_START << 30), 32);
3626 }
3627 
3628 /*
3629  * wm_gmii_i82544_readreg:	[mii interface function]
3630  *
3631  *	Read a PHY register on the GMII.
3632  */
3633 static int
3634 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3635 {
3636 	struct wm_softc *sc = (void *) self;
3637 	uint32_t mdic = 0;
3638 	int i, rv;
3639 
3640 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3641 	    MDIC_REGADD(reg));
3642 
3643 	for (i = 0; i < 100; i++) {
3644 		mdic = CSR_READ(sc, WMREG_MDIC);
3645 		if (mdic & MDIC_READY)
3646 			break;
3647 		delay(10);
3648 	}
3649 
3650 	if ((mdic & MDIC_READY) == 0) {
3651 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3652 		    sc->sc_dev.dv_xname, phy, reg);
3653 		rv = 0;
3654 	} else if (mdic & MDIC_E) {
3655 #if 0 /* This is normal if no PHY is present. */
3656 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3657 		    sc->sc_dev.dv_xname, phy, reg);
3658 #endif
3659 		rv = 0;
3660 	} else {
3661 		rv = MDIC_DATA(mdic);
3662 		if (rv == 0xffff)
3663 			rv = 0;
3664 	}
3665 
3666 	return (rv);
3667 }
3668 
3669 /*
3670  * wm_gmii_i82544_writereg:	[mii interface function]
3671  *
3672  *	Write a PHY register on the GMII.
3673  */
3674 static void
3675 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3676 {
3677 	struct wm_softc *sc = (void *) self;
3678 	uint32_t mdic = 0;
3679 	int i;
3680 
3681 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3682 	    MDIC_REGADD(reg) | MDIC_DATA(val));
3683 
3684 	for (i = 0; i < 100; i++) {
3685 		mdic = CSR_READ(sc, WMREG_MDIC);
3686 		if (mdic & MDIC_READY)
3687 			break;
3688 		delay(10);
3689 	}
3690 
3691 	if ((mdic & MDIC_READY) == 0)
3692 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3693 		    sc->sc_dev.dv_xname, phy, reg);
3694 	else if (mdic & MDIC_E)
3695 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3696 		    sc->sc_dev.dv_xname, phy, reg);
3697 }
3698 
3699 /*
3700  * wm_gmii_statchg:	[mii interface function]
3701  *
3702  *	Callback from MII layer when media changes.
3703  */
3704 static void
3705 wm_gmii_statchg(struct device *self)
3706 {
3707 	struct wm_softc *sc = (void *) self;
3708 	struct mii_data *mii = &sc->sc_mii;
3709 
3710 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3711 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3712 	sc->sc_fcrtl &= ~FCRTL_XONE;
3713 
3714 	/*
3715 	 * Get flow control negotiation result.
3716 	 */
3717 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3718 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3719 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3720 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3721 	}
3722 
3723 	if (sc->sc_flowflags & IFM_FLOW) {
3724 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3725 			sc->sc_ctrl |= CTRL_TFCE;
3726 			sc->sc_fcrtl |= FCRTL_XONE;
3727 		}
3728 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3729 			sc->sc_ctrl |= CTRL_RFCE;
3730 	}
3731 
3732 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
3733 		DPRINTF(WM_DEBUG_LINK,
3734 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3735 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3736 	} else  {
3737 		DPRINTF(WM_DEBUG_LINK,
3738 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3739 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3740 	}
3741 
3742 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3743 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3744 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3745 						 : WMREG_FCRTL, sc->sc_fcrtl);
3746 }
3747