xref: /netbsd-src/sys/dev/pci/if_wm.c (revision 8a5e2a50be13e77dd4df5daf258ddceeeeb47ce6)
1 /*	$NetBSD: if_wm.c,v 1.104 2005/07/25 18:26:24 ross Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.104 2005/07/25 18:26:24 ross Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67 
68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
69 
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78 
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82 
83 #include <netinet/in.h>			/* XXX for struct ip */
84 #include <netinet/in_systm.h>		/* XXX for struct ip */
85 #include <netinet/ip.h>			/* XXX for struct ip */
86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
87 
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99 
100 #include <dev/pci/if_wmreg.h>
101 
102 #ifdef WM_DEBUG
103 #define	WM_DEBUG_LINK		0x01
104 #define	WM_DEBUG_TX		0x02
105 #define	WM_DEBUG_RX		0x04
106 #define	WM_DEBUG_GMII		0x08
107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108 
109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
110 #else
111 #define	DPRINTF(x, y)	/* nothing */
112 #endif /* WM_DEBUG */
113 
114 /*
115  * Transmit descriptor list size.  Due to errata, we can only have
116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
117  * on >= 82544.  We tell the upper layers that they can queue a lot
118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119  * of them at a time.
120  *
121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
122  * chains containing many small mbufs have been observed in zero-copy
123  * situations with jumbo frames.
124  */
125 #define	WM_NTXSEGS		256
126 #define	WM_IFQUEUELEN		256
127 #define	WM_TXQUEUELEN_MAX	64
128 #define	WM_TXQUEUELEN_MAX_82547	16
129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
132 #define	WM_NTXDESC_82542	256
133 #define	WM_NTXDESC_82544	4096
134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139 
140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
141 
142 /*
143  * Receive descriptor list size.  We have one Rx buffer for normal
144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
145  * packet.  We allocate 256 receive descriptors, each with a 2k
146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147  */
148 #define	WM_NRXDESC		256
149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
152 
153 /*
154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
155  * a single clump that maps to a single DMA segment to make serveral things
156  * easier.
157  */
158 struct wm_control_data_82544 {
159 	/*
160 	 * The receive descriptors.
161 	 */
162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163 
164 	/*
165 	 * The transmit descriptors.  Put these at the end, because
166 	 * we might use a smaller number of them.
167 	 */
168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170 
171 struct wm_control_data_82542 {
172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175 
176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
179 
180 /*
181  * Software state for transmit jobs.
182  */
183 struct wm_txsoft {
184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
186 	int txs_firstdesc;		/* first descriptor in packet */
187 	int txs_lastdesc;		/* last descriptor in packet */
188 	int txs_ndesc;			/* # of descriptors used */
189 };
190 
191 /*
192  * Software state for receive buffers.  Each descriptor gets a
193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
194  * more than one buffer, we chain them together.
195  */
196 struct wm_rxsoft {
197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
199 };
200 
201 typedef enum {
202 	WM_T_unknown		= 0,
203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
205 	WM_T_82543,			/* i82543 */
206 	WM_T_82544,			/* i82544 */
207 	WM_T_82540,			/* i82540 */
208 	WM_T_82545,			/* i82545 */
209 	WM_T_82545_3,			/* i82545 3.0+ */
210 	WM_T_82546,			/* i82546 */
211 	WM_T_82546_3,			/* i82546 3.0+ */
212 	WM_T_82541,			/* i82541 */
213 	WM_T_82541_2,			/* i82541 2.0+ */
214 	WM_T_82547,			/* i82547 */
215 	WM_T_82547_2,			/* i82547 2.0+ */
216 } wm_chip_type;
217 
218 /*
219  * Software state per device.
220  */
221 struct wm_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_space_tag_t sc_iot;		/* I/O space tag */
226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
228 	struct ethercom sc_ethercom;	/* ethernet common data */
229 	void *sc_sdhook;		/* shutdown hook */
230 
231 	wm_chip_type sc_type;		/* chip type */
232 	int sc_flags;			/* flags; see below */
233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
234 	int sc_pcix_offset;		/* PCIX capability register offset */
235 	int sc_flowflags;		/* 802.3x flow control flags */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	int sc_ee_addrbits;		/* EEPROM address bits */
240 
241 	struct mii_data sc_mii;		/* MII/media information */
242 
243 	struct callout sc_tick_ch;	/* tick callout */
244 
245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
247 
248 	int		sc_align_tweak;
249 
250 	/*
251 	 * Software state for the transmit and receive descriptors.
252 	 */
253 	int			sc_txnum;	/* must be a power of two */
254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
256 
257 	/*
258 	 * Control data structures.
259 	 */
260 	int			sc_ntxdesc;	/* must be a power of two */
261 	struct wm_control_data_82544 *sc_control_data;
262 #define	sc_txdescs	sc_control_data->wcd_txdescs
263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
264 
265 #ifdef WM_EVENT_COUNTERS
266 	/* Event counters. */
267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
274 
275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
279 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
280 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
281 
282 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
283 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
284 
285 	struct evcnt sc_ev_tu;		/* Tx underrun */
286 
287 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
288 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
289 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
290 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
291 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
292 #endif /* WM_EVENT_COUNTERS */
293 
294 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
295 
296 	int	sc_txfree;		/* number of free Tx descriptors */
297 	int	sc_txnext;		/* next ready Tx descriptor */
298 
299 	int	sc_txsfree;		/* number of free Tx jobs */
300 	int	sc_txsnext;		/* next free Tx job */
301 	int	sc_txsdirty;		/* dirty Tx jobs */
302 
303 	/* These 5 variables are used only on the 82547. */
304 	int	sc_txfifo_size;		/* Tx FIFO size */
305 	int	sc_txfifo_head;		/* current head of FIFO */
306 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
307 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
308 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
309 
310 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
311 
312 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
313 	int	sc_rxdiscard;
314 	int	sc_rxlen;
315 	struct mbuf *sc_rxhead;
316 	struct mbuf *sc_rxtail;
317 	struct mbuf **sc_rxtailp;
318 
319 	uint32_t sc_ctrl;		/* prototype CTRL register */
320 #if 0
321 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
322 #endif
323 	uint32_t sc_icr;		/* prototype interrupt bits */
324 	uint32_t sc_itr;		/* prototype intr throttling reg */
325 	uint32_t sc_tctl;		/* prototype TCTL register */
326 	uint32_t sc_rctl;		/* prototype RCTL register */
327 	uint32_t sc_txcw;		/* prototype TXCW register */
328 	uint32_t sc_tipg;		/* prototype TIPG register */
329 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
330 	uint32_t sc_pba;		/* prototype PBA register */
331 
332 	int sc_tbi_linkup;		/* TBI link status */
333 	int sc_tbi_anstate;		/* autonegotiation state */
334 
335 	int sc_mchash_type;		/* multicast filter offset */
336 
337 #if NRND > 0
338 	rndsource_element_t rnd_source;	/* random source */
339 #endif
340 };
341 
342 #define	WM_RXCHAIN_RESET(sc)						\
343 do {									\
344 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
345 	*(sc)->sc_rxtailp = NULL;					\
346 	(sc)->sc_rxlen = 0;						\
347 } while (/*CONSTCOND*/0)
348 
349 #define	WM_RXCHAIN_LINK(sc, m)						\
350 do {									\
351 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
352 	(sc)->sc_rxtailp = &(m)->m_next;				\
353 } while (/*CONSTCOND*/0)
354 
355 /* sc_flags */
356 #define	WM_F_HAS_MII		0x01	/* has MII */
357 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
358 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
359 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
360 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
361 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
362 #define	WM_F_CSA		0x80	/* bus is CSA */
363 
364 #ifdef WM_EVENT_COUNTERS
365 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
366 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
367 #else
368 #define	WM_EVCNT_INCR(ev)	/* nothing */
369 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
370 #endif
371 
372 #define	CSR_READ(sc, reg)						\
373 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
374 #define	CSR_WRITE(sc, reg, val)						\
375 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
376 #define	CSR_WRITE_FLUSH(sc)						\
377 	(void) CSR_READ((sc), WMREG_STATUS)
378 
379 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
380 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
381 
382 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
383 #define	WM_CDTXADDR_HI(sc, x)						\
384 	(sizeof(bus_addr_t) == 8 ?					\
385 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
386 
387 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
388 #define	WM_CDRXADDR_HI(sc, x)						\
389 	(sizeof(bus_addr_t) == 8 ?					\
390 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
391 
392 #define	WM_CDTXSYNC(sc, x, n, ops)					\
393 do {									\
394 	int __x, __n;							\
395 									\
396 	__x = (x);							\
397 	__n = (n);							\
398 									\
399 	/* If it will wrap around, sync to the end of the ring. */	\
400 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
401 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
402 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
403 		    (WM_NTXDESC(sc) - __x), (ops));			\
404 		__n -= (WM_NTXDESC(sc) - __x);				\
405 		__x = 0;						\
406 	}								\
407 									\
408 	/* Now sync whatever is left. */				\
409 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
410 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
411 } while (/*CONSTCOND*/0)
412 
413 #define	WM_CDRXSYNC(sc, x, ops)						\
414 do {									\
415 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
416 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
417 } while (/*CONSTCOND*/0)
418 
419 #define	WM_INIT_RXDESC(sc, x)						\
420 do {									\
421 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
422 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
423 	struct mbuf *__m = __rxs->rxs_mbuf;				\
424 									\
425 	/*								\
426 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
427 	 * so that the payload after the Ethernet header is aligned	\
428 	 * to a 4-byte boundary.					\
429 	 *								\
430 	 * XXX BRAINDAMAGE ALERT!					\
431 	 * The stupid chip uses the same size for every buffer, which	\
432 	 * is set in the Receive Control register.  We are using the 2K	\
433 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
434 	 * reason, we can't "scoot" packets longer than the standard	\
435 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
436 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
437 	 * the upper layer copy the headers.				\
438 	 */								\
439 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
440 									\
441 	wm_set_dma_addr(&__rxd->wrx_addr,				\
442 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
443 	__rxd->wrx_len = 0;						\
444 	__rxd->wrx_cksum = 0;						\
445 	__rxd->wrx_status = 0;						\
446 	__rxd->wrx_errors = 0;						\
447 	__rxd->wrx_special = 0;						\
448 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
449 									\
450 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
451 } while (/*CONSTCOND*/0)
452 
453 static void	wm_start(struct ifnet *);
454 static void	wm_watchdog(struct ifnet *);
455 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
456 static int	wm_init(struct ifnet *);
457 static void	wm_stop(struct ifnet *, int);
458 
459 static void	wm_shutdown(void *);
460 
461 static void	wm_reset(struct wm_softc *);
462 static void	wm_rxdrain(struct wm_softc *);
463 static int	wm_add_rxbuf(struct wm_softc *, int);
464 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
465 static void	wm_tick(void *);
466 
467 static void	wm_set_filter(struct wm_softc *);
468 
469 static int	wm_intr(void *);
470 static void	wm_txintr(struct wm_softc *);
471 static void	wm_rxintr(struct wm_softc *);
472 static void	wm_linkintr(struct wm_softc *, uint32_t);
473 
474 static void	wm_tbi_mediainit(struct wm_softc *);
475 static int	wm_tbi_mediachange(struct ifnet *);
476 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
477 
478 static void	wm_tbi_set_linkled(struct wm_softc *);
479 static void	wm_tbi_check_link(struct wm_softc *);
480 
481 static void	wm_gmii_reset(struct wm_softc *);
482 
483 static int	wm_gmii_i82543_readreg(struct device *, int, int);
484 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
485 
486 static int	wm_gmii_i82544_readreg(struct device *, int, int);
487 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
488 
489 static void	wm_gmii_statchg(struct device *);
490 
491 static void	wm_gmii_mediainit(struct wm_softc *);
492 static int	wm_gmii_mediachange(struct ifnet *);
493 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
494 
495 static int	wm_match(struct device *, struct cfdata *, void *);
496 static void	wm_attach(struct device *, struct device *, void *);
497 
498 CFATTACH_DECL(wm, sizeof(struct wm_softc),
499     wm_match, wm_attach, NULL, NULL);
500 
501 static void	wm_82547_txfifo_stall(void *);
502 
503 /*
504  * Devices supported by this driver.
505  */
506 static const struct wm_product {
507 	pci_vendor_id_t		wmp_vendor;
508 	pci_product_id_t	wmp_product;
509 	const char		*wmp_name;
510 	wm_chip_type		wmp_type;
511 	int			wmp_flags;
512 #define	WMP_F_1000X		0x01
513 #define	WMP_F_1000T		0x02
514 } wm_products[] = {
515 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
516 	  "Intel i82542 1000BASE-X Ethernet",
517 	  WM_T_82542_2_1,	WMP_F_1000X },
518 
519 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
520 	  "Intel i82543GC 1000BASE-X Ethernet",
521 	  WM_T_82543,		WMP_F_1000X },
522 
523 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
524 	  "Intel i82543GC 1000BASE-T Ethernet",
525 	  WM_T_82543,		WMP_F_1000T },
526 
527 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
528 	  "Intel i82544EI 1000BASE-T Ethernet",
529 	  WM_T_82544,		WMP_F_1000T },
530 
531 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
532 	  "Intel i82544EI 1000BASE-X Ethernet",
533 	  WM_T_82544,		WMP_F_1000X },
534 
535 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
536 	  "Intel i82544GC 1000BASE-T Ethernet",
537 	  WM_T_82544,		WMP_F_1000T },
538 
539 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
540 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
541 	  WM_T_82544,		WMP_F_1000T },
542 
543 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
544 	  "Intel i82540EM 1000BASE-T Ethernet",
545 	  WM_T_82540,		WMP_F_1000T },
546 
547 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
548 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
549 	  WM_T_82540,		WMP_F_1000T },
550 
551 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
552 	  "Intel i82540EP 1000BASE-T Ethernet",
553 	  WM_T_82540,		WMP_F_1000T },
554 
555 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
556 	  "Intel i82540EP 1000BASE-T Ethernet",
557 	  WM_T_82540,		WMP_F_1000T },
558 
559 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
560 	  "Intel i82540EP 1000BASE-T Ethernet",
561 	  WM_T_82540,		WMP_F_1000T },
562 
563 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
564 	  "Intel i82545EM 1000BASE-T Ethernet",
565 	  WM_T_82545,		WMP_F_1000T },
566 
567 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
568 	  "Intel i82545GM 1000BASE-T Ethernet",
569 	  WM_T_82545_3,		WMP_F_1000T },
570 
571 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
572 	  "Intel i82545GM 1000BASE-X Ethernet",
573 	  WM_T_82545_3,		WMP_F_1000X },
574 #if 0
575 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
576 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
577 	  WM_T_82545_3,		WMP_F_SERDES },
578 #endif
579 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
580 	  "Intel i82546EB 1000BASE-T Ethernet",
581 	  WM_T_82546,		WMP_F_1000T },
582 
583 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
584 	  "Intel i82546EB 1000BASE-T Ethernet",
585 	  WM_T_82546,		WMP_F_1000T },
586 
587 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
588 	  "Intel i82545EM 1000BASE-X Ethernet",
589 	  WM_T_82545,		WMP_F_1000X },
590 
591 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
592 	  "Intel i82546EB 1000BASE-X Ethernet",
593 	  WM_T_82546,		WMP_F_1000X },
594 
595 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
596 	  "Intel i82546GB 1000BASE-T Ethernet",
597 	  WM_T_82546_3,		WMP_F_1000T },
598 
599 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
600 	  "Intel i82546GB 1000BASE-X Ethernet",
601 	  WM_T_82546_3,		WMP_F_1000X },
602 #if 0
603 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
604 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
605 	  WM_T_82546_3,		WMP_F_SERDES },
606 #endif
607 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
608 	  "Intel i82541EI 1000BASE-T Ethernet",
609 	  WM_T_82541,		WMP_F_1000T },
610 
611 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
612 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
613 	  WM_T_82541,		WMP_F_1000T },
614 
615 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
616 	  "Intel i82541ER 1000BASE-T Ethernet",
617 	  WM_T_82541_2,		WMP_F_1000T },
618 
619 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
620 	  "Intel i82541GI 1000BASE-T Ethernet",
621 	  WM_T_82541_2,		WMP_F_1000T },
622 
623 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
624 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
625 	  WM_T_82541_2,		WMP_F_1000T },
626 
627 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
628 	  "Intel i82541PI 1000BASE-T Ethernet",
629 	  WM_T_82541_2,		WMP_F_1000T },
630 
631 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
632 	  "Intel i82547EI 1000BASE-T Ethernet",
633 	  WM_T_82547,		WMP_F_1000T },
634 
635 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
636 	  "Intel i82547GI 1000BASE-T Ethernet",
637 	  WM_T_82547_2,		WMP_F_1000T },
638 	{ 0,			0,
639 	  NULL,
640 	  0,			0 },
641 };
642 
643 #ifdef WM_EVENT_COUNTERS
644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
645 #endif /* WM_EVENT_COUNTERS */
646 
647 #if 0 /* Not currently used */
648 static __inline uint32_t
649 wm_io_read(struct wm_softc *sc, int reg)
650 {
651 
652 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
653 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
654 }
655 #endif
656 
657 static __inline void
658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
659 {
660 
661 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
662 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
663 }
664 
665 static __inline void
666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
667 {
668 	wa->wa_low = htole32(v & 0xffffffffU);
669 	if (sizeof(bus_addr_t) == 8)
670 		wa->wa_high = htole32((uint64_t) v >> 32);
671 	else
672 		wa->wa_high = 0;
673 }
674 
675 static const struct wm_product *
676 wm_lookup(const struct pci_attach_args *pa)
677 {
678 	const struct wm_product *wmp;
679 
680 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
681 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
682 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
683 			return (wmp);
684 	}
685 	return (NULL);
686 }
687 
688 static int
689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
690 {
691 	struct pci_attach_args *pa = aux;
692 
693 	if (wm_lookup(pa) != NULL)
694 		return (1);
695 
696 	return (0);
697 }
698 
699 static void
700 wm_attach(struct device *parent, struct device *self, void *aux)
701 {
702 	struct wm_softc *sc = (void *) self;
703 	struct pci_attach_args *pa = aux;
704 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 	pci_chipset_tag_t pc = pa->pa_pc;
706 	pci_intr_handle_t ih;
707 	size_t cdata_size;
708 	const char *intrstr = NULL;
709 	const char *eetype;
710 	bus_space_tag_t memt;
711 	bus_space_handle_t memh;
712 	bus_dma_segment_t seg;
713 	int memh_valid;
714 	int i, rseg, error;
715 	const struct wm_product *wmp;
716 	uint8_t enaddr[ETHER_ADDR_LEN];
717 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
718 	pcireg_t preg, memtype;
719 	uint32_t reg;
720 	int pmreg;
721 
722 	callout_init(&sc->sc_tick_ch);
723 
724 	wmp = wm_lookup(pa);
725 	if (wmp == NULL) {
726 		printf("\n");
727 		panic("wm_attach: impossible");
728 	}
729 
730 	if (pci_dma64_available(pa))
731 		sc->sc_dmat = pa->pa_dmat64;
732 	else
733 		sc->sc_dmat = pa->pa_dmat;
734 
735 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
736 	aprint_naive(": Ethernet controller\n");
737 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
738 
739 	sc->sc_type = wmp->wmp_type;
740 	if (sc->sc_type < WM_T_82543) {
741 		if (preg < 2) {
742 			aprint_error("%s: i82542 must be at least rev. 2\n",
743 			    sc->sc_dev.dv_xname);
744 			return;
745 		}
746 		if (preg < 3)
747 			sc->sc_type = WM_T_82542_2_0;
748 	}
749 
750 	/*
751 	 * Map the device.  All devices support memory-mapped acccess,
752 	 * and it is really required for normal operation.
753 	 */
754 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
755 	switch (memtype) {
756 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
757 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
758 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
759 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
760 		break;
761 	default:
762 		memh_valid = 0;
763 	}
764 
765 	if (memh_valid) {
766 		sc->sc_st = memt;
767 		sc->sc_sh = memh;
768 	} else {
769 		aprint_error("%s: unable to map device registers\n",
770 		    sc->sc_dev.dv_xname);
771 		return;
772 	}
773 
774 	/*
775 	 * In addition, i82544 and later support I/O mapped indirect
776 	 * register access.  It is not desirable (nor supported in
777 	 * this driver) to use it for normal operation, though it is
778 	 * required to work around bugs in some chip versions.
779 	 */
780 	if (sc->sc_type >= WM_T_82544) {
781 		/* First we have to find the I/O BAR. */
782 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
783 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
784 			    PCI_MAPREG_TYPE_IO)
785 				break;
786 		}
787 		if (i == PCI_MAPREG_END)
788 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
789 			    sc->sc_dev.dv_xname);
790 		else {
791 			/*
792 			 * The i8254x doesn't apparently respond when the
793 			 * I/O BAR is 0, which looks somewhat like it's not
794 			 * been configured.
795 			 */
796 			preg = pci_conf_read(pc, pa->pa_tag, i);
797 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
798 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
799 				    sc->sc_dev.dv_xname);
800 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
801 					0, &sc->sc_iot, &sc->sc_ioh,
802 					NULL, NULL) == 0) {
803 				sc->sc_flags |= WM_F_IOH_VALID;
804 			} else {
805 				aprint_error("%s: WARNING: unable to map "
806 				    "I/O space\n", sc->sc_dev.dv_xname);
807 			}
808 		}
809 
810 	}
811 
812 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
813 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
814 	preg |= PCI_COMMAND_MASTER_ENABLE;
815 	if (sc->sc_type < WM_T_82542_2_1)
816 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
817 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
818 
819 	/* Get it out of power save mode, if needed. */
820 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
821 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
822 		    PCI_PMCSR_STATE_MASK;
823 		if (preg == PCI_PMCSR_STATE_D3) {
824 			/*
825 			 * The card has lost all configuration data in
826 			 * this state, so punt.
827 			 */
828 			aprint_error("%s: unable to wake from power state D3\n",
829 			    sc->sc_dev.dv_xname);
830 			return;
831 		}
832 		if (preg != PCI_PMCSR_STATE_D0) {
833 			aprint_normal("%s: waking up from power state D%d\n",
834 			    sc->sc_dev.dv_xname, preg);
835 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
836 			    PCI_PMCSR_STATE_D0);
837 		}
838 	}
839 
840 	/*
841 	 * Map and establish our interrupt.
842 	 */
843 	if (pci_intr_map(pa, &ih)) {
844 		aprint_error("%s: unable to map interrupt\n",
845 		    sc->sc_dev.dv_xname);
846 		return;
847 	}
848 	intrstr = pci_intr_string(pc, ih);
849 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
850 	if (sc->sc_ih == NULL) {
851 		aprint_error("%s: unable to establish interrupt",
852 		    sc->sc_dev.dv_xname);
853 		if (intrstr != NULL)
854 			aprint_normal(" at %s", intrstr);
855 		aprint_normal("\n");
856 		return;
857 	}
858 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
859 
860 	/*
861 	 * Determine a few things about the bus we're connected to.
862 	 */
863 	if (sc->sc_type < WM_T_82543) {
864 		/* We don't really know the bus characteristics here. */
865 		sc->sc_bus_speed = 33;
866 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
867 		/*
868 		 * CSA (Communication Streaming Architecture) is about as fast
869 		 * a 32-bit 66MHz PCI Bus.
870 		 */
871 		sc->sc_flags |= WM_F_CSA;
872 		sc->sc_bus_speed = 66;
873 		aprint_verbose("%s: Communication Streaming Architecture\n",
874 		    sc->sc_dev.dv_xname);
875 		if (sc->sc_type == WM_T_82547) {
876 			callout_init(&sc->sc_txfifo_ch);
877 			callout_setfunc(&sc->sc_txfifo_ch,
878 					wm_82547_txfifo_stall, sc);
879 			aprint_verbose("%s: using 82547 Tx FIFO stall "
880 				       "work-around\n", sc->sc_dev.dv_xname);
881 		}
882 	} else {
883 		reg = CSR_READ(sc, WMREG_STATUS);
884 		if (reg & STATUS_BUS64)
885 			sc->sc_flags |= WM_F_BUS64;
886 		if (sc->sc_type >= WM_T_82544 &&
887 		    (reg & STATUS_PCIX_MODE) != 0) {
888 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
889 
890 			sc->sc_flags |= WM_F_PCIX;
891 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
892 					       PCI_CAP_PCIX,
893 					       &sc->sc_pcix_offset, NULL) == 0)
894 				aprint_error("%s: unable to find PCIX "
895 				    "capability\n", sc->sc_dev.dv_xname);
896 			else if (sc->sc_type != WM_T_82545_3 &&
897 				 sc->sc_type != WM_T_82546_3) {
898 				/*
899 				 * Work around a problem caused by the BIOS
900 				 * setting the max memory read byte count
901 				 * incorrectly.
902 				 */
903 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
904 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
905 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
906 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
907 
908 				bytecnt =
909 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
910 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
911 				maxb =
912 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
913 				    PCI_PCIX_STATUS_MAXB_SHIFT;
914 				if (bytecnt > maxb) {
915 					aprint_verbose("%s: resetting PCI-X "
916 					    "MMRBC: %d -> %d\n",
917 					    sc->sc_dev.dv_xname,
918 					    512 << bytecnt, 512 << maxb);
919 					pcix_cmd = (pcix_cmd &
920 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
921 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
922 					pci_conf_write(pa->pa_pc, pa->pa_tag,
923 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
924 					    pcix_cmd);
925 				}
926 			}
927 		}
928 		/*
929 		 * The quad port adapter is special; it has a PCIX-PCIX
930 		 * bridge on the board, and can run the secondary bus at
931 		 * a higher speed.
932 		 */
933 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
934 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
935 								      : 66;
936 		} else if (sc->sc_flags & WM_F_PCIX) {
937 			switch (reg & STATUS_PCIXSPD_MASK) {
938 			case STATUS_PCIXSPD_50_66:
939 				sc->sc_bus_speed = 66;
940 				break;
941 			case STATUS_PCIXSPD_66_100:
942 				sc->sc_bus_speed = 100;
943 				break;
944 			case STATUS_PCIXSPD_100_133:
945 				sc->sc_bus_speed = 133;
946 				break;
947 			default:
948 				aprint_error(
949 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
950 				    sc->sc_dev.dv_xname,
951 				    reg & STATUS_PCIXSPD_MASK);
952 				sc->sc_bus_speed = 66;
953 			}
954 		} else
955 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
956 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
957 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
958 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
959 	}
960 
961 	/*
962 	 * Allocate the control data structures, and create and load the
963 	 * DMA map for it.
964 	 *
965 	 * NOTE: All Tx descriptors must be in the same 4G segment of
966 	 * memory.  So must Rx descriptors.  We simplify by allocating
967 	 * both sets within the same 4G segment.
968 	 */
969 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
970 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
971 	cdata_size = sc->sc_type < WM_T_82544 ?
972 	    sizeof(struct wm_control_data_82542) :
973 	    sizeof(struct wm_control_data_82544);
974 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
975 				      (bus_size_t) 0x100000000ULL,
976 				      &seg, 1, &rseg, 0)) != 0) {
977 		aprint_error(
978 		    "%s: unable to allocate control data, error = %d\n",
979 		    sc->sc_dev.dv_xname, error);
980 		goto fail_0;
981 	}
982 
983 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
984 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
985 		aprint_error("%s: unable to map control data, error = %d\n",
986 		    sc->sc_dev.dv_xname, error);
987 		goto fail_1;
988 	}
989 
990 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
991 				       0, 0, &sc->sc_cddmamap)) != 0) {
992 		aprint_error("%s: unable to create control data DMA map, "
993 		    "error = %d\n", sc->sc_dev.dv_xname, error);
994 		goto fail_2;
995 	}
996 
997 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
998 				     sc->sc_control_data, cdata_size, NULL,
999 				     0)) != 0) {
1000 		aprint_error(
1001 		    "%s: unable to load control data DMA map, error = %d\n",
1002 		    sc->sc_dev.dv_xname, error);
1003 		goto fail_3;
1004 	}
1005 
1006 
1007 	/*
1008 	 * Create the transmit buffer DMA maps.
1009 	 */
1010 	WM_TXQUEUELEN(sc) =
1011 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1012 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1013 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1014 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1015 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1016 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1017 			aprint_error("%s: unable to create Tx DMA map %d, "
1018 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1019 			goto fail_4;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * Create the receive buffer DMA maps.
1025 	 */
1026 	for (i = 0; i < WM_NRXDESC; i++) {
1027 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1028 					       MCLBYTES, 0, 0,
1029 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1030 			aprint_error("%s: unable to create Rx DMA map %d, "
1031 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1032 			goto fail_5;
1033 		}
1034 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1035 	}
1036 
1037 	/*
1038 	 * Reset the chip to a known state.
1039 	 */
1040 	wm_reset(sc);
1041 
1042 	/*
1043 	 * Get some information about the EEPROM.
1044 	 */
1045 	if (sc->sc_type >= WM_T_82540)
1046 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1047 	if (sc->sc_type <= WM_T_82544)
1048 		sc->sc_ee_addrbits = 6;
1049 	else if (sc->sc_type <= WM_T_82546_3) {
1050 		reg = CSR_READ(sc, WMREG_EECD);
1051 		if (reg & EECD_EE_SIZE)
1052 			sc->sc_ee_addrbits = 8;
1053 		else
1054 			sc->sc_ee_addrbits = 6;
1055 	} else if (sc->sc_type <= WM_T_82547_2) {
1056 		reg = CSR_READ(sc, WMREG_EECD);
1057 		if (reg & EECD_EE_TYPE) {
1058 			sc->sc_flags |= WM_F_EEPROM_SPI;
1059 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1060 		} else
1061 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1062 	} else {
1063 		/* Assume everything else is SPI. */
1064 		reg = CSR_READ(sc, WMREG_EECD);
1065 		sc->sc_flags |= WM_F_EEPROM_SPI;
1066 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1067 	}
1068 	if (sc->sc_flags & WM_F_EEPROM_SPI)
1069 		eetype = "SPI";
1070 	else
1071 		eetype = "MicroWire";
1072 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1073 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1074 	    sc->sc_ee_addrbits, eetype);
1075 
1076 	/*
1077 	 * Read the Ethernet address from the EEPROM.
1078 	 */
1079 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1080 	    sizeof(myea) / sizeof(myea[0]), myea)) {
1081 		aprint_error("%s: unable to read Ethernet address\n",
1082 		    sc->sc_dev.dv_xname);
1083 		return;
1084 	}
1085 	enaddr[0] = myea[0] & 0xff;
1086 	enaddr[1] = myea[0] >> 8;
1087 	enaddr[2] = myea[1] & 0xff;
1088 	enaddr[3] = myea[1] >> 8;
1089 	enaddr[4] = myea[2] & 0xff;
1090 	enaddr[5] = myea[2] >> 8;
1091 
1092 	/*
1093 	 * Toggle the LSB of the MAC address on the second port
1094 	 * of the i82546.
1095 	 */
1096 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1097 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1098 			enaddr[5] ^= 1;
1099 	}
1100 
1101 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1102 	    ether_sprintf(enaddr));
1103 
1104 	/*
1105 	 * Read the config info from the EEPROM, and set up various
1106 	 * bits in the control registers based on their contents.
1107 	 */
1108 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1109 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
1110 		    sc->sc_dev.dv_xname);
1111 		return;
1112 	}
1113 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1114 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
1115 		    sc->sc_dev.dv_xname);
1116 		return;
1117 	}
1118 	if (sc->sc_type >= WM_T_82544) {
1119 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1120 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1121 			    sc->sc_dev.dv_xname);
1122 			return;
1123 		}
1124 	}
1125 
1126 	if (cfg1 & EEPROM_CFG1_ILOS)
1127 		sc->sc_ctrl |= CTRL_ILOS;
1128 	if (sc->sc_type >= WM_T_82544) {
1129 		sc->sc_ctrl |=
1130 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1131 		    CTRL_SWDPIO_SHIFT;
1132 		sc->sc_ctrl |=
1133 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1134 		    CTRL_SWDPINS_SHIFT;
1135 	} else {
1136 		sc->sc_ctrl |=
1137 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1138 		    CTRL_SWDPIO_SHIFT;
1139 	}
1140 
1141 #if 0
1142 	if (sc->sc_type >= WM_T_82544) {
1143 		if (cfg1 & EEPROM_CFG1_IPS0)
1144 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1145 		if (cfg1 & EEPROM_CFG1_IPS1)
1146 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1147 		sc->sc_ctrl_ext |=
1148 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1149 		    CTRL_EXT_SWDPIO_SHIFT;
1150 		sc->sc_ctrl_ext |=
1151 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1152 		    CTRL_EXT_SWDPINS_SHIFT;
1153 	} else {
1154 		sc->sc_ctrl_ext |=
1155 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1156 		    CTRL_EXT_SWDPIO_SHIFT;
1157 	}
1158 #endif
1159 
1160 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1161 #if 0
1162 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1163 #endif
1164 
1165 	/*
1166 	 * Set up some register offsets that are different between
1167 	 * the i82542 and the i82543 and later chips.
1168 	 */
1169 	if (sc->sc_type < WM_T_82543) {
1170 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1171 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1172 	} else {
1173 		sc->sc_rdt_reg = WMREG_RDT;
1174 		sc->sc_tdt_reg = WMREG_TDT;
1175 	}
1176 
1177 	/*
1178 	 * Determine if we're TBI or GMII mode, and initialize the
1179 	 * media structures accordingly.
1180 	 */
1181 	if (sc->sc_type < WM_T_82543 ||
1182 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1183 		if (wmp->wmp_flags & WMP_F_1000T)
1184 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1185 			    "product!\n", sc->sc_dev.dv_xname);
1186 		wm_tbi_mediainit(sc);
1187 	} else {
1188 		if (wmp->wmp_flags & WMP_F_1000X)
1189 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1190 			    "product!\n", sc->sc_dev.dv_xname);
1191 		wm_gmii_mediainit(sc);
1192 	}
1193 
1194 	ifp = &sc->sc_ethercom.ec_if;
1195 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1196 	ifp->if_softc = sc;
1197 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1198 	ifp->if_ioctl = wm_ioctl;
1199 	ifp->if_start = wm_start;
1200 	ifp->if_watchdog = wm_watchdog;
1201 	ifp->if_init = wm_init;
1202 	ifp->if_stop = wm_stop;
1203 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1204 	IFQ_SET_READY(&ifp->if_snd);
1205 
1206 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1207 
1208 	/*
1209 	 * If we're a i82543 or greater, we can support VLANs.
1210 	 */
1211 	if (sc->sc_type >= WM_T_82543)
1212 		sc->sc_ethercom.ec_capabilities |=
1213 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1214 
1215 	/*
1216 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1217 	 * on i82543 and later.
1218 	 */
1219 	if (sc->sc_type >= WM_T_82543)
1220 		ifp->if_capabilities |=
1221 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1222 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1223 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1224 
1225 	/*
1226 	 * If we're a i82544 or greater (except i82547), we can do
1227 	 * TCP segmentation offload.
1228 	 */
1229 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1230 		ifp->if_capabilities |= IFCAP_TSOv4;
1231 
1232 	/*
1233 	 * Attach the interface.
1234 	 */
1235 	if_attach(ifp);
1236 	ether_ifattach(ifp, enaddr);
1237 #if NRND > 0
1238 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1239 	    RND_TYPE_NET, 0);
1240 #endif
1241 
1242 #ifdef WM_EVENT_COUNTERS
1243 	/* Attach event counters. */
1244 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1245 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1246 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1247 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1248 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1249 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1250 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1251 	    NULL, sc->sc_dev.dv_xname, "txdw");
1252 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1253 	    NULL, sc->sc_dev.dv_xname, "txqe");
1254 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1255 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1256 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1257 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1258 
1259 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1260 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1261 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1262 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1263 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1264 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1265 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1266 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1267 
1268 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1269 	    NULL, sc->sc_dev.dv_xname, "txtso");
1270 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1271 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
1272 
1273 	for (i = 0; i < WM_NTXSEGS; i++) {
1274 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1275 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1276 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1277 	}
1278 
1279 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1280 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1281 
1282 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1283 	    NULL, sc->sc_dev.dv_xname, "tu");
1284 
1285 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1286 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1287 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1288 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1289 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1290 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1291 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1292 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1293 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1294 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1295 #endif /* WM_EVENT_COUNTERS */
1296 
1297 	/*
1298 	 * Make sure the interface is shutdown during reboot.
1299 	 */
1300 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1301 	if (sc->sc_sdhook == NULL)
1302 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1303 		    sc->sc_dev.dv_xname);
1304 	return;
1305 
1306 	/*
1307 	 * Free any resources we've allocated during the failed attach
1308 	 * attempt.  Do this in reverse order and fall through.
1309 	 */
1310  fail_5:
1311 	for (i = 0; i < WM_NRXDESC; i++) {
1312 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1313 			bus_dmamap_destroy(sc->sc_dmat,
1314 			    sc->sc_rxsoft[i].rxs_dmamap);
1315 	}
1316  fail_4:
1317 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1318 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1319 			bus_dmamap_destroy(sc->sc_dmat,
1320 			    sc->sc_txsoft[i].txs_dmamap);
1321 	}
1322 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1323  fail_3:
1324 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1325  fail_2:
1326 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1327 	    cdata_size);
1328  fail_1:
1329 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1330  fail_0:
1331 	return;
1332 }
1333 
1334 /*
1335  * wm_shutdown:
1336  *
1337  *	Make sure the interface is stopped at reboot time.
1338  */
1339 static void
1340 wm_shutdown(void *arg)
1341 {
1342 	struct wm_softc *sc = arg;
1343 
1344 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1345 }
1346 
1347 /*
1348  * wm_tx_offload:
1349  *
1350  *	Set up TCP/IP checksumming parameters for the
1351  *	specified packet.
1352  */
1353 static int
1354 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1355     uint8_t *fieldsp)
1356 {
1357 	struct mbuf *m0 = txs->txs_mbuf;
1358 	struct livengood_tcpip_ctxdesc *t;
1359 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
1360 	struct ether_header *eh;
1361 	int offset, iphl;
1362 	uint8_t fields;
1363 
1364 	/*
1365 	 * XXX It would be nice if the mbuf pkthdr had offset
1366 	 * fields for the protocol headers.
1367 	 */
1368 
1369 	eh = mtod(m0, struct ether_header *);
1370 	switch (htons(eh->ether_type)) {
1371 	case ETHERTYPE_IP:
1372 		offset = ETHER_HDR_LEN;
1373 		break;
1374 
1375 	case ETHERTYPE_VLAN:
1376 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1377 		break;
1378 
1379 	default:
1380 		/*
1381 		 * Don't support this protocol or encapsulation.
1382 		 */
1383 		*fieldsp = 0;
1384 		*cmdp = 0;
1385 		return (0);
1386 	}
1387 
1388 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1389 
1390 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1391 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1392 	seg = 0;
1393 	fields = 0;
1394 
1395 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1396 		int hlen = offset + iphl;
1397 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
1398 		if (__predict_false(m0->m_len <
1399 				    (hlen + sizeof(struct tcphdr)))) {
1400 			/*
1401 			 * TCP/IP headers are not in the first mbuf; we need
1402 			 * to do this the slow and painful way.  Let's just
1403 			 * hope this doesn't happen very often.
1404 			 */
1405 			struct ip ip;
1406 			struct tcphdr th;
1407 
1408 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1409 
1410 			m_copydata(m0, offset, sizeof(ip), &ip);
1411 			m_copydata(m0, hlen, sizeof(th), &th);
1412 
1413 			ip.ip_len = 0;
1414 
1415 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1416 			    sizeof(ip.ip_len), &ip.ip_len);
1417 
1418 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1419 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1420 
1421 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1422 			    sizeof(th.th_sum), &th.th_sum);
1423 
1424 			hlen += th.th_off << 2;
1425 		} else {
1426 			/*
1427 			 * TCP/IP headers are in the first mbuf; we can do
1428 			 * this the easy way.
1429 			 */
1430 			struct ip *ip =
1431 			    (struct ip *) (mtod(m0, caddr_t) + offset);
1432 			struct tcphdr *th =
1433 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1434 
1435 			ip->ip_len = 0;
1436 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1437 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1438 
1439 			hlen += th->th_off << 2;
1440 		}
1441 
1442 		cmd |= WTX_TCPIP_CMD_TSE;
1443 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1444 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1445 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1446 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1447 	}
1448 
1449 	/*
1450 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1451 	 * offload feature, if we load the context descriptor, we
1452 	 * MUST provide valid values for IPCSS and TUCSS fields.
1453 	 */
1454 
1455 	ipcs = WTX_TCPIP_IPCSS(offset) |
1456 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1457 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
1458 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1459 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1460 		fields |= WTX_IXSM;
1461 	}
1462 
1463 	offset += iphl;
1464 
1465 	if (m0->m_pkthdr.csum_flags &
1466 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1467 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1468 		fields |= WTX_TXSM;
1469 		tucs = WTX_TCPIP_TUCSS(offset) |
1470 		   WTX_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1471 		   WTX_TCPIP_TUCSE(0) /* rest of packet */;
1472 	} else {
1473 		/* Just initialize it to a valid TCP context. */
1474 		tucs = WTX_TCPIP_TUCSS(offset) |
1475 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1476 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1477 	}
1478 
1479 	/* Fill in the context descriptor. */
1480 	t = (struct livengood_tcpip_ctxdesc *)
1481 	    &sc->sc_txdescs[sc->sc_txnext];
1482 	t->tcpip_ipcs = htole32(ipcs);
1483 	t->tcpip_tucs = htole32(tucs);
1484 	t->tcpip_cmdlen = htole32(cmdlen);
1485 	t->tcpip_seg = htole32(seg);
1486 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1487 
1488 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1489 	txs->txs_ndesc++;
1490 
1491 	*cmdp = cmd;
1492 	*fieldsp = fields;
1493 
1494 	return (0);
1495 }
1496 
1497 static void
1498 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1499 {
1500 	struct mbuf *m;
1501 	int i;
1502 
1503 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1504 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1505 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1506 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1507 		    m->m_data, m->m_len, m->m_flags);
1508 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1509 	    i, i == 1 ? "" : "s");
1510 }
1511 
1512 /*
1513  * wm_82547_txfifo_stall:
1514  *
1515  *	Callout used to wait for the 82547 Tx FIFO to drain,
1516  *	reset the FIFO pointers, and restart packet transmission.
1517  */
1518 static void
1519 wm_82547_txfifo_stall(void *arg)
1520 {
1521 	struct wm_softc *sc = arg;
1522 	int s;
1523 
1524 	s = splnet();
1525 
1526 	if (sc->sc_txfifo_stall) {
1527 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1528 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1529 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1530 			/*
1531 			 * Packets have drained.  Stop transmitter, reset
1532 			 * FIFO pointers, restart transmitter, and kick
1533 			 * the packet queue.
1534 			 */
1535 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1536 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1537 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1538 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1539 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1540 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1541 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1542 			CSR_WRITE_FLUSH(sc);
1543 
1544 			sc->sc_txfifo_head = 0;
1545 			sc->sc_txfifo_stall = 0;
1546 			wm_start(&sc->sc_ethercom.ec_if);
1547 		} else {
1548 			/*
1549 			 * Still waiting for packets to drain; try again in
1550 			 * another tick.
1551 			 */
1552 			callout_schedule(&sc->sc_txfifo_ch, 1);
1553 		}
1554 	}
1555 
1556 	splx(s);
1557 }
1558 
1559 /*
1560  * wm_82547_txfifo_bugchk:
1561  *
1562  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1563  *	prevent enqueueing a packet that would wrap around the end
1564  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1565  *
1566  *	We do this by checking the amount of space before the end
1567  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1568  *	the Tx FIFO, wait for all remaining packets to drain, reset
1569  *	the internal FIFO pointers to the beginning, and restart
1570  *	transmission on the interface.
1571  */
1572 #define	WM_FIFO_HDR		0x10
1573 #define	WM_82547_PAD_LEN	0x3e0
1574 static int
1575 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1576 {
1577 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1578 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1579 
1580 	/* Just return if already stalled. */
1581 	if (sc->sc_txfifo_stall)
1582 		return (1);
1583 
1584 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1585 		/* Stall only occurs in half-duplex mode. */
1586 		goto send_packet;
1587 	}
1588 
1589 	if (len >= WM_82547_PAD_LEN + space) {
1590 		sc->sc_txfifo_stall = 1;
1591 		callout_schedule(&sc->sc_txfifo_ch, 1);
1592 		return (1);
1593 	}
1594 
1595  send_packet:
1596 	sc->sc_txfifo_head += len;
1597 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1598 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1599 
1600 	return (0);
1601 }
1602 
1603 /*
1604  * wm_start:		[ifnet interface function]
1605  *
1606  *	Start packet transmission on the interface.
1607  */
1608 static void
1609 wm_start(struct ifnet *ifp)
1610 {
1611 	struct wm_softc *sc = ifp->if_softc;
1612 	struct mbuf *m0;
1613 #if 0 /* XXXJRT */
1614 	struct m_tag *mtag;
1615 #endif
1616 	struct wm_txsoft *txs;
1617 	bus_dmamap_t dmamap;
1618 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1619 	bus_addr_t curaddr;
1620 	bus_size_t seglen, curlen;
1621 	uint32_t cksumcmd;
1622 	uint8_t cksumfields;
1623 
1624 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1625 		return;
1626 
1627 	/*
1628 	 * Remember the previous number of free descriptors.
1629 	 */
1630 	ofree = sc->sc_txfree;
1631 
1632 	/*
1633 	 * Loop through the send queue, setting up transmit descriptors
1634 	 * until we drain the queue, or use up all available transmit
1635 	 * descriptors.
1636 	 */
1637 	for (;;) {
1638 		/* Grab a packet off the queue. */
1639 		IFQ_POLL(&ifp->if_snd, m0);
1640 		if (m0 == NULL)
1641 			break;
1642 
1643 		DPRINTF(WM_DEBUG_TX,
1644 		    ("%s: TX: have packet to transmit: %p\n",
1645 		    sc->sc_dev.dv_xname, m0));
1646 
1647 		/* Get a work queue entry. */
1648 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1649 			wm_txintr(sc);
1650 			if (sc->sc_txsfree == 0) {
1651 				DPRINTF(WM_DEBUG_TX,
1652 				    ("%s: TX: no free job descriptors\n",
1653 					sc->sc_dev.dv_xname));
1654 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1655 				break;
1656 			}
1657 		}
1658 
1659 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1660 		dmamap = txs->txs_dmamap;
1661 
1662 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1663 
1664 		/*
1665 		 * So says the Linux driver:
1666 		 * The controller does a simple calculation to make sure
1667 		 * there is enough room in the FIFO before initiating the
1668 		 * DMA for each buffer.  The calc is:
1669 		 *	4 = ceil(buffer len / MSS)
1670 		 * To make sure we don't overrun the FIFO, adjust the max
1671 		 * buffer len if the MSS drops.
1672 		 */
1673 		dmamap->dm_maxsegsz =
1674 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1675 		    ? m0->m_pkthdr.segsz << 2
1676 		    : WTX_MAX_LEN;
1677 
1678 		/*
1679 		 * Load the DMA map.  If this fails, the packet either
1680 		 * didn't fit in the allotted number of segments, or we
1681 		 * were short on resources.  For the too-many-segments
1682 		 * case, we simply report an error and drop the packet,
1683 		 * since we can't sanely copy a jumbo packet to a single
1684 		 * buffer.
1685 		 */
1686 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1687 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1688 		if (error) {
1689 			if (error == EFBIG) {
1690 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1691 				log(LOG_ERR, "%s: Tx packet consumes too many "
1692 				    "DMA segments, dropping...\n",
1693 				    sc->sc_dev.dv_xname);
1694 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1695 				wm_dump_mbuf_chain(sc, m0);
1696 				m_freem(m0);
1697 				continue;
1698 			}
1699 			/*
1700 			 * Short on resources, just stop for now.
1701 			 */
1702 			DPRINTF(WM_DEBUG_TX,
1703 			    ("%s: TX: dmamap load failed: %d\n",
1704 			    sc->sc_dev.dv_xname, error));
1705 			break;
1706 		}
1707 
1708 		segs_needed = dmamap->dm_nsegs;
1709 		if (use_tso) {
1710 			/* For sentinel descriptor; see below. */
1711 			segs_needed++;
1712 		}
1713 
1714 		/*
1715 		 * Ensure we have enough descriptors free to describe
1716 		 * the packet.  Note, we always reserve one descriptor
1717 		 * at the end of the ring due to the semantics of the
1718 		 * TDT register, plus one more in the event we need
1719 		 * to load offload context.
1720 		 */
1721 		if (segs_needed > sc->sc_txfree - 2) {
1722 			/*
1723 			 * Not enough free descriptors to transmit this
1724 			 * packet.  We haven't committed anything yet,
1725 			 * so just unload the DMA map, put the packet
1726 			 * pack on the queue, and punt.  Notify the upper
1727 			 * layer that there are no more slots left.
1728 			 */
1729 			DPRINTF(WM_DEBUG_TX,
1730 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
1731 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1732 			    sc->sc_txfree - 1));
1733 			ifp->if_flags |= IFF_OACTIVE;
1734 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1735 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1736 			break;
1737 		}
1738 
1739 		/*
1740 		 * Check for 82547 Tx FIFO bug.  We need to do this
1741 		 * once we know we can transmit the packet, since we
1742 		 * do some internal FIFO space accounting here.
1743 		 */
1744 		if (sc->sc_type == WM_T_82547 &&
1745 		    wm_82547_txfifo_bugchk(sc, m0)) {
1746 			DPRINTF(WM_DEBUG_TX,
1747 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
1748 			    sc->sc_dev.dv_xname));
1749 			ifp->if_flags |= IFF_OACTIVE;
1750 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1751 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1752 			break;
1753 		}
1754 
1755 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1756 
1757 		/*
1758 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1759 		 */
1760 
1761 		DPRINTF(WM_DEBUG_TX,
1762 		    ("%s: TX: packet has %d (%d) DMA segments\n",
1763 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1764 
1765 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1766 
1767 		/*
1768 		 * Store a pointer to the packet so that we can free it
1769 		 * later.
1770 		 *
1771 		 * Initially, we consider the number of descriptors the
1772 		 * packet uses the number of DMA segments.  This may be
1773 		 * incremented by 1 if we do checksum offload (a descriptor
1774 		 * is used to set the checksum context).
1775 		 */
1776 		txs->txs_mbuf = m0;
1777 		txs->txs_firstdesc = sc->sc_txnext;
1778 		txs->txs_ndesc = segs_needed;
1779 
1780 		/* Set up offload parameters for this packet. */
1781 		if (m0->m_pkthdr.csum_flags &
1782 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1783 			if (wm_tx_offload(sc, txs, &cksumcmd,
1784 					  &cksumfields) != 0) {
1785 				/* Error message already displayed. */
1786 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1787 				continue;
1788 			}
1789 		} else {
1790 			cksumcmd = 0;
1791 			cksumfields = 0;
1792 		}
1793 
1794 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1795 
1796 		/* Sync the DMA map. */
1797 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1798 		    BUS_DMASYNC_PREWRITE);
1799 
1800 		/*
1801 		 * Initialize the transmit descriptor.
1802 		 */
1803 		for (nexttx = sc->sc_txnext, seg = 0;
1804 		     seg < dmamap->dm_nsegs; seg++) {
1805 			for (seglen = dmamap->dm_segs[seg].ds_len,
1806 			     curaddr = dmamap->dm_segs[seg].ds_addr;
1807 			     seglen != 0;
1808 			     curaddr += curlen, seglen -= curlen,
1809 			     nexttx = WM_NEXTTX(sc, nexttx)) {
1810 				curlen = seglen;
1811 
1812 				/*
1813 				 * So says the Linux driver:
1814 				 * Work around for premature descriptor
1815 				 * write-backs in TSO mode.  Append a
1816 				 * 4-byte sentinel descriptor.
1817 				 */
1818 				if (use_tso &&
1819 				    seg == dmamap->dm_nsegs - 1 &&
1820 				    curlen > 8)
1821 					curlen -= 4;
1822 
1823 				wm_set_dma_addr(
1824 				    &sc->sc_txdescs[nexttx].wtx_addr,
1825 				    curaddr);
1826 				sc->sc_txdescs[nexttx].wtx_cmdlen =
1827 				    htole32(cksumcmd | curlen);
1828 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1829 				    0;
1830 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1831 				    cksumfields;
1832 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1833 				lasttx = nexttx;
1834 
1835 				DPRINTF(WM_DEBUG_TX,
1836 				    ("%s: TX: desc %d: low 0x%08lx, "
1837 				     "len 0x%04x\n",
1838 				    sc->sc_dev.dv_xname, nexttx,
1839 				    curaddr & 0xffffffffUL, (unsigned)curlen));
1840 			}
1841 		}
1842 
1843 		KASSERT(lasttx != -1);
1844 
1845 		/*
1846 		 * Set up the command byte on the last descriptor of
1847 		 * the packet.  If we're in the interrupt delay window,
1848 		 * delay the interrupt.
1849 		 */
1850 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
1851 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
1852 
1853 #if 0 /* XXXJRT */
1854 		/*
1855 		 * If VLANs are enabled and the packet has a VLAN tag, set
1856 		 * up the descriptor to encapsulate the packet for us.
1857 		 *
1858 		 * This is only valid on the last descriptor of the packet.
1859 		 */
1860 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1861 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
1862 			    htole32(WTX_CMD_VLE);
1863 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1864 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1865 		}
1866 #endif /* XXXJRT */
1867 
1868 		txs->txs_lastdesc = lasttx;
1869 
1870 		DPRINTF(WM_DEBUG_TX,
1871 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1872 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1873 
1874 		/* Sync the descriptors we're using. */
1875 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1876 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1877 
1878 		/* Give the packet to the chip. */
1879 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1880 
1881 		DPRINTF(WM_DEBUG_TX,
1882 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1883 
1884 		DPRINTF(WM_DEBUG_TX,
1885 		    ("%s: TX: finished transmitting packet, job %d\n",
1886 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
1887 
1888 		/* Advance the tx pointer. */
1889 		sc->sc_txfree -= txs->txs_ndesc;
1890 		sc->sc_txnext = nexttx;
1891 
1892 		sc->sc_txsfree--;
1893 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1894 
1895 #if NBPFILTER > 0
1896 		/* Pass the packet to any BPF listeners. */
1897 		if (ifp->if_bpf)
1898 			bpf_mtap(ifp->if_bpf, m0);
1899 #endif /* NBPFILTER > 0 */
1900 	}
1901 
1902 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1903 		/* No more slots; notify upper layer. */
1904 		ifp->if_flags |= IFF_OACTIVE;
1905 	}
1906 
1907 	if (sc->sc_txfree != ofree) {
1908 		/* Set a watchdog timer in case the chip flakes out. */
1909 		ifp->if_timer = 5;
1910 	}
1911 }
1912 
1913 /*
1914  * wm_watchdog:		[ifnet interface function]
1915  *
1916  *	Watchdog timer handler.
1917  */
1918 static void
1919 wm_watchdog(struct ifnet *ifp)
1920 {
1921 	struct wm_softc *sc = ifp->if_softc;
1922 
1923 	/*
1924 	 * Since we're using delayed interrupts, sweep up
1925 	 * before we report an error.
1926 	 */
1927 	wm_txintr(sc);
1928 
1929 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
1930 		log(LOG_ERR,
1931 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1932 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1933 		    sc->sc_txnext);
1934 		ifp->if_oerrors++;
1935 
1936 		/* Reset the interface. */
1937 		(void) wm_init(ifp);
1938 	}
1939 
1940 	/* Try to get more packets going. */
1941 	wm_start(ifp);
1942 }
1943 
1944 /*
1945  * wm_ioctl:		[ifnet interface function]
1946  *
1947  *	Handle control requests from the operator.
1948  */
1949 static int
1950 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1951 {
1952 	struct wm_softc *sc = ifp->if_softc;
1953 	struct ifreq *ifr = (struct ifreq *) data;
1954 	int s, error;
1955 
1956 	s = splnet();
1957 
1958 	switch (cmd) {
1959 	case SIOCSIFMEDIA:
1960 	case SIOCGIFMEDIA:
1961 		/* Flow control requires full-duplex mode. */
1962 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1963 		    (ifr->ifr_media & IFM_FDX) == 0)
1964 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1965 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1966 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1967 				/* We can do both TXPAUSE and RXPAUSE. */
1968 				ifr->ifr_media |=
1969 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1970 			}
1971 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1972 		}
1973 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1974 		break;
1975 	default:
1976 		error = ether_ioctl(ifp, cmd, data);
1977 		if (error == ENETRESET) {
1978 			/*
1979 			 * Multicast list has changed; set the hardware filter
1980 			 * accordingly.
1981 			 */
1982 			if (ifp->if_flags & IFF_RUNNING)
1983 				wm_set_filter(sc);
1984 			error = 0;
1985 		}
1986 		break;
1987 	}
1988 
1989 	/* Try to get more packets going. */
1990 	wm_start(ifp);
1991 
1992 	splx(s);
1993 	return (error);
1994 }
1995 
1996 /*
1997  * wm_intr:
1998  *
1999  *	Interrupt service routine.
2000  */
2001 static int
2002 wm_intr(void *arg)
2003 {
2004 	struct wm_softc *sc = arg;
2005 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2006 	uint32_t icr;
2007 	int wantinit, handled = 0;
2008 
2009 	for (wantinit = 0; wantinit == 0;) {
2010 		icr = CSR_READ(sc, WMREG_ICR);
2011 		if ((icr & sc->sc_icr) == 0)
2012 			break;
2013 
2014 #if 0 /*NRND > 0*/
2015 		if (RND_ENABLED(&sc->rnd_source))
2016 			rnd_add_uint32(&sc->rnd_source, icr);
2017 #endif
2018 
2019 		handled = 1;
2020 
2021 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2022 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2023 			DPRINTF(WM_DEBUG_RX,
2024 			    ("%s: RX: got Rx intr 0x%08x\n",
2025 			    sc->sc_dev.dv_xname,
2026 			    icr & (ICR_RXDMT0|ICR_RXT0)));
2027 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2028 		}
2029 #endif
2030 		wm_rxintr(sc);
2031 
2032 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2033 		if (icr & ICR_TXDW) {
2034 			DPRINTF(WM_DEBUG_TX,
2035 			    ("%s: TX: got TXDW interrupt\n",
2036 			    sc->sc_dev.dv_xname));
2037 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
2038 		}
2039 #endif
2040 		wm_txintr(sc);
2041 
2042 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2043 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2044 			wm_linkintr(sc, icr);
2045 		}
2046 
2047 		if (icr & ICR_RXO) {
2048 			log(LOG_WARNING, "%s: Receive overrun\n",
2049 			    sc->sc_dev.dv_xname);
2050 			wantinit = 1;
2051 		}
2052 	}
2053 
2054 	if (handled) {
2055 		if (wantinit)
2056 			wm_init(ifp);
2057 
2058 		/* Try to get more packets going. */
2059 		wm_start(ifp);
2060 	}
2061 
2062 	return (handled);
2063 }
2064 
2065 /*
2066  * wm_txintr:
2067  *
2068  *	Helper; handle transmit interrupts.
2069  */
2070 static void
2071 wm_txintr(struct wm_softc *sc)
2072 {
2073 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2074 	struct wm_txsoft *txs;
2075 	uint8_t status;
2076 	int i;
2077 
2078 	ifp->if_flags &= ~IFF_OACTIVE;
2079 
2080 	/*
2081 	 * Go through the Tx list and free mbufs for those
2082 	 * frames which have been transmitted.
2083 	 */
2084 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2085 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2086 		txs = &sc->sc_txsoft[i];
2087 
2088 		DPRINTF(WM_DEBUG_TX,
2089 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2090 
2091 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2092 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2093 
2094 		status =
2095 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2096 		if ((status & WTX_ST_DD) == 0) {
2097 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2098 			    BUS_DMASYNC_PREREAD);
2099 			break;
2100 		}
2101 
2102 		DPRINTF(WM_DEBUG_TX,
2103 		    ("%s: TX: job %d done: descs %d..%d\n",
2104 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2105 		    txs->txs_lastdesc));
2106 
2107 		/*
2108 		 * XXX We should probably be using the statistics
2109 		 * XXX registers, but I don't know if they exist
2110 		 * XXX on chips before the i82544.
2111 		 */
2112 
2113 #ifdef WM_EVENT_COUNTERS
2114 		if (status & WTX_ST_TU)
2115 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2116 #endif /* WM_EVENT_COUNTERS */
2117 
2118 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2119 			ifp->if_oerrors++;
2120 			if (status & WTX_ST_LC)
2121 				log(LOG_WARNING, "%s: late collision\n",
2122 				    sc->sc_dev.dv_xname);
2123 			else if (status & WTX_ST_EC) {
2124 				ifp->if_collisions += 16;
2125 				log(LOG_WARNING, "%s: excessive collisions\n",
2126 				    sc->sc_dev.dv_xname);
2127 			}
2128 		} else
2129 			ifp->if_opackets++;
2130 
2131 		sc->sc_txfree += txs->txs_ndesc;
2132 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2133 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2134 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2135 		m_freem(txs->txs_mbuf);
2136 		txs->txs_mbuf = NULL;
2137 	}
2138 
2139 	/* Update the dirty transmit buffer pointer. */
2140 	sc->sc_txsdirty = i;
2141 	DPRINTF(WM_DEBUG_TX,
2142 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2143 
2144 	/*
2145 	 * If there are no more pending transmissions, cancel the watchdog
2146 	 * timer.
2147 	 */
2148 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2149 		ifp->if_timer = 0;
2150 }
2151 
2152 /*
2153  * wm_rxintr:
2154  *
2155  *	Helper; handle receive interrupts.
2156  */
2157 static void
2158 wm_rxintr(struct wm_softc *sc)
2159 {
2160 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2161 	struct wm_rxsoft *rxs;
2162 	struct mbuf *m;
2163 	int i, len;
2164 	uint8_t status, errors;
2165 
2166 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2167 		rxs = &sc->sc_rxsoft[i];
2168 
2169 		DPRINTF(WM_DEBUG_RX,
2170 		    ("%s: RX: checking descriptor %d\n",
2171 		    sc->sc_dev.dv_xname, i));
2172 
2173 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2174 
2175 		status = sc->sc_rxdescs[i].wrx_status;
2176 		errors = sc->sc_rxdescs[i].wrx_errors;
2177 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2178 
2179 		if ((status & WRX_ST_DD) == 0) {
2180 			/*
2181 			 * We have processed all of the receive descriptors.
2182 			 */
2183 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2184 			break;
2185 		}
2186 
2187 		if (__predict_false(sc->sc_rxdiscard)) {
2188 			DPRINTF(WM_DEBUG_RX,
2189 			    ("%s: RX: discarding contents of descriptor %d\n",
2190 			    sc->sc_dev.dv_xname, i));
2191 			WM_INIT_RXDESC(sc, i);
2192 			if (status & WRX_ST_EOP) {
2193 				/* Reset our state. */
2194 				DPRINTF(WM_DEBUG_RX,
2195 				    ("%s: RX: resetting rxdiscard -> 0\n",
2196 				    sc->sc_dev.dv_xname));
2197 				sc->sc_rxdiscard = 0;
2198 			}
2199 			continue;
2200 		}
2201 
2202 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2203 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2204 
2205 		m = rxs->rxs_mbuf;
2206 
2207 		/*
2208 		 * Add a new receive buffer to the ring.
2209 		 */
2210 		if (wm_add_rxbuf(sc, i) != 0) {
2211 			/*
2212 			 * Failed, throw away what we've done so
2213 			 * far, and discard the rest of the packet.
2214 			 */
2215 			ifp->if_ierrors++;
2216 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2217 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2218 			WM_INIT_RXDESC(sc, i);
2219 			if ((status & WRX_ST_EOP) == 0)
2220 				sc->sc_rxdiscard = 1;
2221 			if (sc->sc_rxhead != NULL)
2222 				m_freem(sc->sc_rxhead);
2223 			WM_RXCHAIN_RESET(sc);
2224 			DPRINTF(WM_DEBUG_RX,
2225 			    ("%s: RX: Rx buffer allocation failed, "
2226 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2227 			    sc->sc_rxdiscard ? " (discard)" : ""));
2228 			continue;
2229 		}
2230 
2231 		WM_RXCHAIN_LINK(sc, m);
2232 
2233 		m->m_len = len;
2234 
2235 		DPRINTF(WM_DEBUG_RX,
2236 		    ("%s: RX: buffer at %p len %d\n",
2237 		    sc->sc_dev.dv_xname, m->m_data, len));
2238 
2239 		/*
2240 		 * If this is not the end of the packet, keep
2241 		 * looking.
2242 		 */
2243 		if ((status & WRX_ST_EOP) == 0) {
2244 			sc->sc_rxlen += len;
2245 			DPRINTF(WM_DEBUG_RX,
2246 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2247 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2248 			continue;
2249 		}
2250 
2251 		/*
2252 		 * Okay, we have the entire packet now.  The chip is
2253 		 * configured to include the FCS (not all chips can
2254 		 * be configured to strip it), so we need to trim it.
2255 		 */
2256 		m->m_len -= ETHER_CRC_LEN;
2257 
2258 		*sc->sc_rxtailp = NULL;
2259 		m = sc->sc_rxhead;
2260 		len = m->m_len + sc->sc_rxlen;
2261 
2262 		WM_RXCHAIN_RESET(sc);
2263 
2264 		DPRINTF(WM_DEBUG_RX,
2265 		    ("%s: RX: have entire packet, len -> %d\n",
2266 		    sc->sc_dev.dv_xname, len));
2267 
2268 		/*
2269 		 * If an error occurred, update stats and drop the packet.
2270 		 */
2271 		if (errors &
2272 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2273 			ifp->if_ierrors++;
2274 			if (errors & WRX_ER_SE)
2275 				log(LOG_WARNING, "%s: symbol error\n",
2276 				    sc->sc_dev.dv_xname);
2277 			else if (errors & WRX_ER_SEQ)
2278 				log(LOG_WARNING, "%s: receive sequence error\n",
2279 				    sc->sc_dev.dv_xname);
2280 			else if (errors & WRX_ER_CE)
2281 				log(LOG_WARNING, "%s: CRC error\n",
2282 				    sc->sc_dev.dv_xname);
2283 			m_freem(m);
2284 			continue;
2285 		}
2286 
2287 		/*
2288 		 * No errors.  Receive the packet.
2289 		 */
2290 		m->m_pkthdr.rcvif = ifp;
2291 		m->m_pkthdr.len = len;
2292 
2293 #if 0 /* XXXJRT */
2294 		/*
2295 		 * If VLANs are enabled, VLAN packets have been unwrapped
2296 		 * for us.  Associate the tag with the packet.
2297 		 */
2298 		if ((status & WRX_ST_VP) != 0) {
2299 			VLAN_INPUT_TAG(ifp, m,
2300 			    le16toh(sc->sc_rxdescs[i].wrx_special,
2301 			    continue);
2302 		}
2303 #endif /* XXXJRT */
2304 
2305 		/*
2306 		 * Set up checksum info for this packet.
2307 		 */
2308 		if (status & WRX_ST_IPCS) {
2309 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2310 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2311 			if (errors & WRX_ER_IPE)
2312 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2313 		}
2314 		if (status & WRX_ST_TCPCS) {
2315 			/*
2316 			 * Note: we don't know if this was TCP or UDP,
2317 			 * so we just set both bits, and expect the
2318 			 * upper layers to deal.
2319 			 */
2320 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2321 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2322 			if (errors & WRX_ER_TCPE)
2323 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2324 		}
2325 
2326 		ifp->if_ipackets++;
2327 
2328 #if NBPFILTER > 0
2329 		/* Pass this up to any BPF listeners. */
2330 		if (ifp->if_bpf)
2331 			bpf_mtap(ifp->if_bpf, m);
2332 #endif /* NBPFILTER > 0 */
2333 
2334 		/* Pass it on. */
2335 		(*ifp->if_input)(ifp, m);
2336 	}
2337 
2338 	/* Update the receive pointer. */
2339 	sc->sc_rxptr = i;
2340 
2341 	DPRINTF(WM_DEBUG_RX,
2342 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2343 }
2344 
2345 /*
2346  * wm_linkintr:
2347  *
2348  *	Helper; handle link interrupts.
2349  */
2350 static void
2351 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2352 {
2353 	uint32_t status;
2354 
2355 	/*
2356 	 * If we get a link status interrupt on a 1000BASE-T
2357 	 * device, just fall into the normal MII tick path.
2358 	 */
2359 	if (sc->sc_flags & WM_F_HAS_MII) {
2360 		if (icr & ICR_LSC) {
2361 			DPRINTF(WM_DEBUG_LINK,
2362 			    ("%s: LINK: LSC -> mii_tick\n",
2363 			    sc->sc_dev.dv_xname));
2364 			mii_tick(&sc->sc_mii);
2365 		} else if (icr & ICR_RXSEQ) {
2366 			DPRINTF(WM_DEBUG_LINK,
2367 			    ("%s: LINK Receive sequence error\n",
2368 			    sc->sc_dev.dv_xname));
2369 		}
2370 		return;
2371 	}
2372 
2373 	/*
2374 	 * If we are now receiving /C/, check for link again in
2375 	 * a couple of link clock ticks.
2376 	 */
2377 	if (icr & ICR_RXCFG) {
2378 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2379 		    sc->sc_dev.dv_xname));
2380 		sc->sc_tbi_anstate = 2;
2381 	}
2382 
2383 	if (icr & ICR_LSC) {
2384 		status = CSR_READ(sc, WMREG_STATUS);
2385 		if (status & STATUS_LU) {
2386 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2387 			    sc->sc_dev.dv_xname,
2388 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2389 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2390 			sc->sc_fcrtl &= ~FCRTL_XONE;
2391 			if (status & STATUS_FD)
2392 				sc->sc_tctl |=
2393 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2394 			else
2395 				sc->sc_tctl |=
2396 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2397 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2398 				sc->sc_fcrtl |= FCRTL_XONE;
2399 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2400 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2401 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2402 				      sc->sc_fcrtl);
2403 			sc->sc_tbi_linkup = 1;
2404 		} else {
2405 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2406 			    sc->sc_dev.dv_xname));
2407 			sc->sc_tbi_linkup = 0;
2408 		}
2409 		sc->sc_tbi_anstate = 2;
2410 		wm_tbi_set_linkled(sc);
2411 	} else if (icr & ICR_RXSEQ) {
2412 		DPRINTF(WM_DEBUG_LINK,
2413 		    ("%s: LINK: Receive sequence error\n",
2414 		    sc->sc_dev.dv_xname));
2415 	}
2416 }
2417 
2418 /*
2419  * wm_tick:
2420  *
2421  *	One second timer, used to check link status, sweep up
2422  *	completed transmit jobs, etc.
2423  */
2424 static void
2425 wm_tick(void *arg)
2426 {
2427 	struct wm_softc *sc = arg;
2428 	int s;
2429 
2430 	s = splnet();
2431 
2432 	if (sc->sc_type >= WM_T_82542_2_1) {
2433 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2434 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2435 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2436 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2437 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2438 	}
2439 
2440 	if (sc->sc_flags & WM_F_HAS_MII)
2441 		mii_tick(&sc->sc_mii);
2442 	else
2443 		wm_tbi_check_link(sc);
2444 
2445 	splx(s);
2446 
2447 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2448 }
2449 
2450 /*
2451  * wm_reset:
2452  *
2453  *	Reset the i82542 chip.
2454  */
2455 static void
2456 wm_reset(struct wm_softc *sc)
2457 {
2458 	int i;
2459 
2460 	/*
2461 	 * Allocate on-chip memory according to the MTU size.
2462 	 * The Packet Buffer Allocation register must be written
2463 	 * before the chip is reset.
2464 	 */
2465 	if (sc->sc_type < WM_T_82547) {
2466 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2467 		    PBA_40K : PBA_48K;
2468 	} else {
2469 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2470 		    PBA_22K : PBA_30K;
2471 		sc->sc_txfifo_head = 0;
2472 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2473 		sc->sc_txfifo_size =
2474 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2475 		sc->sc_txfifo_stall = 0;
2476 	}
2477 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2478 
2479 	switch (sc->sc_type) {
2480 	case WM_T_82544:
2481 	case WM_T_82540:
2482 	case WM_T_82545:
2483 	case WM_T_82546:
2484 	case WM_T_82541:
2485 	case WM_T_82541_2:
2486 		/*
2487 		 * On some chipsets, a reset through a memory-mapped write
2488 		 * cycle can cause the chip to reset before completing the
2489 		 * write cycle.  This causes major headache that can be
2490 		 * avoided by issuing the reset via indirect register writes
2491 		 * through I/O space.
2492 		 *
2493 		 * So, if we successfully mapped the I/O BAR at attach time,
2494 		 * use that.  Otherwise, try our luck with a memory-mapped
2495 		 * reset.
2496 		 */
2497 		if (sc->sc_flags & WM_F_IOH_VALID)
2498 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2499 		else
2500 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2501 		break;
2502 
2503 	case WM_T_82545_3:
2504 	case WM_T_82546_3:
2505 		/* Use the shadow control register on these chips. */
2506 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2507 		break;
2508 
2509 	default:
2510 		/* Everything else can safely use the documented method. */
2511 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2512 		break;
2513 	}
2514 	delay(10000);
2515 
2516 	for (i = 0; i < 1000; i++) {
2517 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2518 			return;
2519 		delay(20);
2520 	}
2521 
2522 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2523 		log(LOG_ERR, "%s: reset failed to complete\n",
2524 		    sc->sc_dev.dv_xname);
2525 }
2526 
2527 /*
2528  * wm_init:		[ifnet interface function]
2529  *
2530  *	Initialize the interface.  Must be called at splnet().
2531  */
2532 static int
2533 wm_init(struct ifnet *ifp)
2534 {
2535 	struct wm_softc *sc = ifp->if_softc;
2536 	struct wm_rxsoft *rxs;
2537 	int i, error = 0;
2538 	uint32_t reg;
2539 
2540 	/*
2541 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2542 	 * There is a small but measurable benefit to avoiding the adjusment
2543 	 * of the descriptor so that the headers are aligned, for normal mtu,
2544 	 * on such platforms.  One possibility is that the DMA itself is
2545 	 * slightly more efficient if the front of the entire packet (instead
2546 	 * of the front of the headers) is aligned.
2547 	 *
2548 	 * Note we must always set align_tweak to 0 if we are using
2549 	 * jumbo frames.
2550 	 */
2551 #ifdef __NO_STRICT_ALIGNMENT
2552 	sc->sc_align_tweak = 0;
2553 #else
2554 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2555 		sc->sc_align_tweak = 0;
2556 	else
2557 		sc->sc_align_tweak = 2;
2558 #endif /* __NO_STRICT_ALIGNMENT */
2559 
2560 	/* Cancel any pending I/O. */
2561 	wm_stop(ifp, 0);
2562 
2563 	/* Reset the chip to a known state. */
2564 	wm_reset(sc);
2565 
2566 	/* Initialize the transmit descriptor ring. */
2567 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2568 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2569 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2570 	sc->sc_txfree = WM_NTXDESC(sc);
2571 	sc->sc_txnext = 0;
2572 
2573 	if (sc->sc_type < WM_T_82543) {
2574 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2575 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2576 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2577 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2578 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2579 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2580 	} else {
2581 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2582 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2583 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2584 		CSR_WRITE(sc, WMREG_TDH, 0);
2585 		CSR_WRITE(sc, WMREG_TDT, 0);
2586 		CSR_WRITE(sc, WMREG_TIDV, 64);
2587 		CSR_WRITE(sc, WMREG_TADV, 128);
2588 
2589 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2590 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2591 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2592 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2593 	}
2594 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2595 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2596 
2597 	/* Initialize the transmit job descriptors. */
2598 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2599 		sc->sc_txsoft[i].txs_mbuf = NULL;
2600 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2601 	sc->sc_txsnext = 0;
2602 	sc->sc_txsdirty = 0;
2603 
2604 	/*
2605 	 * Initialize the receive descriptor and receive job
2606 	 * descriptor rings.
2607 	 */
2608 	if (sc->sc_type < WM_T_82543) {
2609 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2610 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2611 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2612 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2613 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2614 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2615 
2616 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2617 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2618 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2619 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2620 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2621 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2622 	} else {
2623 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2624 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2625 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2626 		CSR_WRITE(sc, WMREG_RDH, 0);
2627 		CSR_WRITE(sc, WMREG_RDT, 0);
2628 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2629 		CSR_WRITE(sc, WMREG_RADV, 128);
2630 	}
2631 	for (i = 0; i < WM_NRXDESC; i++) {
2632 		rxs = &sc->sc_rxsoft[i];
2633 		if (rxs->rxs_mbuf == NULL) {
2634 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2635 				log(LOG_ERR, "%s: unable to allocate or map rx "
2636 				    "buffer %d, error = %d\n",
2637 				    sc->sc_dev.dv_xname, i, error);
2638 				/*
2639 				 * XXX Should attempt to run with fewer receive
2640 				 * XXX buffers instead of just failing.
2641 				 */
2642 				wm_rxdrain(sc);
2643 				goto out;
2644 			}
2645 		} else
2646 			WM_INIT_RXDESC(sc, i);
2647 	}
2648 	sc->sc_rxptr = 0;
2649 	sc->sc_rxdiscard = 0;
2650 	WM_RXCHAIN_RESET(sc);
2651 
2652 	/*
2653 	 * Clear out the VLAN table -- we don't use it (yet).
2654 	 */
2655 	CSR_WRITE(sc, WMREG_VET, 0);
2656 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2657 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2658 
2659 	/*
2660 	 * Set up flow-control parameters.
2661 	 *
2662 	 * XXX Values could probably stand some tuning.
2663 	 */
2664 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2665 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2666 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2667 
2668 	sc->sc_fcrtl = FCRTL_DFLT;
2669 	if (sc->sc_type < WM_T_82543) {
2670 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2671 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2672 	} else {
2673 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2674 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2675 	}
2676 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2677 
2678 #if 0 /* XXXJRT */
2679 	/* Deal with VLAN enables. */
2680 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2681 		sc->sc_ctrl |= CTRL_VME;
2682 	else
2683 #endif /* XXXJRT */
2684 		sc->sc_ctrl &= ~CTRL_VME;
2685 
2686 	/* Write the control registers. */
2687 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2688 #if 0
2689 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2690 #endif
2691 
2692 	/*
2693 	 * Set up checksum offload parameters.
2694 	 */
2695 	reg = CSR_READ(sc, WMREG_RXCSUM);
2696 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2697 		reg |= RXCSUM_IPOFL;
2698 	else
2699 		reg &= ~RXCSUM_IPOFL;
2700 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2701 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2702 	else {
2703 		reg &= ~RXCSUM_TUOFL;
2704 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2705 			reg &= ~RXCSUM_IPOFL;
2706 	}
2707 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2708 
2709 	/*
2710 	 * Set up the interrupt registers.
2711 	 */
2712 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2713 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2714 	    ICR_RXO | ICR_RXT0;
2715 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2716 		sc->sc_icr |= ICR_RXCFG;
2717 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2718 
2719 	/* Set up the inter-packet gap. */
2720 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2721 
2722 	if (sc->sc_type >= WM_T_82543) {
2723 		/* Set up the interrupt throttling register (units of 256ns) */
2724 		sc->sc_itr = 1000000000 / (7000 * 256);
2725 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2726 	}
2727 
2728 #if 0 /* XXXJRT */
2729 	/* Set the VLAN ethernetype. */
2730 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2731 #endif
2732 
2733 	/*
2734 	 * Set up the transmit control register; we start out with
2735 	 * a collision distance suitable for FDX, but update it whe
2736 	 * we resolve the media type.
2737 	 */
2738 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2739 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2740 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2741 
2742 	/* Set the media. */
2743 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2744 
2745 	/*
2746 	 * Set up the receive control register; we actually program
2747 	 * the register when we set the receive filter.  Use multicast
2748 	 * address offset type 0.
2749 	 *
2750 	 * Only the i82544 has the ability to strip the incoming
2751 	 * CRC, so we don't enable that feature.
2752 	 */
2753 	sc->sc_mchash_type = 0;
2754 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2755 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2756 
2757 	if(MCLBYTES == 2048) {
2758 		sc->sc_rctl |= RCTL_2k;
2759 	} else {
2760 		if(sc->sc_type >= WM_T_82543) {
2761 			switch(MCLBYTES) {
2762 			case 4096:
2763 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2764 				break;
2765 			case 8192:
2766 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2767 				break;
2768 			case 16384:
2769 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2770 				break;
2771 			default:
2772 				panic("wm_init: MCLBYTES %d unsupported",
2773 				    MCLBYTES);
2774 				break;
2775 			}
2776 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
2777 	}
2778 
2779 	/* Set the receive filter. */
2780 	wm_set_filter(sc);
2781 
2782 	/* Start the one second link check clock. */
2783 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2784 
2785 	/* ...all done! */
2786 	ifp->if_flags |= IFF_RUNNING;
2787 	ifp->if_flags &= ~IFF_OACTIVE;
2788 
2789  out:
2790 	if (error)
2791 		log(LOG_ERR, "%s: interface not running\n",
2792 		    sc->sc_dev.dv_xname);
2793 	return (error);
2794 }
2795 
2796 /*
2797  * wm_rxdrain:
2798  *
2799  *	Drain the receive queue.
2800  */
2801 static void
2802 wm_rxdrain(struct wm_softc *sc)
2803 {
2804 	struct wm_rxsoft *rxs;
2805 	int i;
2806 
2807 	for (i = 0; i < WM_NRXDESC; i++) {
2808 		rxs = &sc->sc_rxsoft[i];
2809 		if (rxs->rxs_mbuf != NULL) {
2810 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2811 			m_freem(rxs->rxs_mbuf);
2812 			rxs->rxs_mbuf = NULL;
2813 		}
2814 	}
2815 }
2816 
2817 /*
2818  * wm_stop:		[ifnet interface function]
2819  *
2820  *	Stop transmission on the interface.
2821  */
2822 static void
2823 wm_stop(struct ifnet *ifp, int disable)
2824 {
2825 	struct wm_softc *sc = ifp->if_softc;
2826 	struct wm_txsoft *txs;
2827 	int i;
2828 
2829 	/* Stop the one second clock. */
2830 	callout_stop(&sc->sc_tick_ch);
2831 
2832 	/* Stop the 82547 Tx FIFO stall check timer. */
2833 	if (sc->sc_type == WM_T_82547)
2834 		callout_stop(&sc->sc_txfifo_ch);
2835 
2836 	if (sc->sc_flags & WM_F_HAS_MII) {
2837 		/* Down the MII. */
2838 		mii_down(&sc->sc_mii);
2839 	}
2840 
2841 	/* Stop the transmit and receive processes. */
2842 	CSR_WRITE(sc, WMREG_TCTL, 0);
2843 	CSR_WRITE(sc, WMREG_RCTL, 0);
2844 
2845 	/*
2846 	 * Clear the interrupt mask to ensure the device cannot assert its
2847 	 * interrupt line.
2848 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
2849 	 * any currently pending or shared interrupt.
2850 	 */
2851 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2852 	sc->sc_icr = 0;
2853 
2854 	/* Release any queued transmit buffers. */
2855 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2856 		txs = &sc->sc_txsoft[i];
2857 		if (txs->txs_mbuf != NULL) {
2858 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2859 			m_freem(txs->txs_mbuf);
2860 			txs->txs_mbuf = NULL;
2861 		}
2862 	}
2863 
2864 	if (disable)
2865 		wm_rxdrain(sc);
2866 
2867 	/* Mark the interface as down and cancel the watchdog timer. */
2868 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2869 	ifp->if_timer = 0;
2870 }
2871 
2872 /*
2873  * wm_acquire_eeprom:
2874  *
2875  *	Perform the EEPROM handshake required on some chips.
2876  */
2877 static int
2878 wm_acquire_eeprom(struct wm_softc *sc)
2879 {
2880 	uint32_t reg;
2881 	int x;
2882 
2883 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
2884 		reg = CSR_READ(sc, WMREG_EECD);
2885 
2886 		/* Request EEPROM access. */
2887 		reg |= EECD_EE_REQ;
2888 		CSR_WRITE(sc, WMREG_EECD, reg);
2889 
2890 		/* ..and wait for it to be granted. */
2891 		for (x = 0; x < 100; x++) {
2892 			reg = CSR_READ(sc, WMREG_EECD);
2893 			if (reg & EECD_EE_GNT)
2894 				break;
2895 			delay(5);
2896 		}
2897 		if ((reg & EECD_EE_GNT) == 0) {
2898 			aprint_error("%s: could not acquire EEPROM GNT\n",
2899 			    sc->sc_dev.dv_xname);
2900 			reg &= ~EECD_EE_REQ;
2901 			CSR_WRITE(sc, WMREG_EECD, reg);
2902 			return (1);
2903 		}
2904 	}
2905 
2906 	return (0);
2907 }
2908 
2909 /*
2910  * wm_release_eeprom:
2911  *
2912  *	Release the EEPROM mutex.
2913  */
2914 static void
2915 wm_release_eeprom(struct wm_softc *sc)
2916 {
2917 	uint32_t reg;
2918 
2919 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2920 		reg = CSR_READ(sc, WMREG_EECD);
2921 		reg &= ~EECD_EE_REQ;
2922 		CSR_WRITE(sc, WMREG_EECD, reg);
2923 	}
2924 }
2925 
2926 /*
2927  * wm_eeprom_sendbits:
2928  *
2929  *	Send a series of bits to the EEPROM.
2930  */
2931 static void
2932 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2933 {
2934 	uint32_t reg;
2935 	int x;
2936 
2937 	reg = CSR_READ(sc, WMREG_EECD);
2938 
2939 	for (x = nbits; x > 0; x--) {
2940 		if (bits & (1U << (x - 1)))
2941 			reg |= EECD_DI;
2942 		else
2943 			reg &= ~EECD_DI;
2944 		CSR_WRITE(sc, WMREG_EECD, reg);
2945 		delay(2);
2946 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2947 		delay(2);
2948 		CSR_WRITE(sc, WMREG_EECD, reg);
2949 		delay(2);
2950 	}
2951 }
2952 
2953 /*
2954  * wm_eeprom_recvbits:
2955  *
2956  *	Receive a series of bits from the EEPROM.
2957  */
2958 static void
2959 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2960 {
2961 	uint32_t reg, val;
2962 	int x;
2963 
2964 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2965 
2966 	val = 0;
2967 	for (x = nbits; x > 0; x--) {
2968 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2969 		delay(2);
2970 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2971 			val |= (1U << (x - 1));
2972 		CSR_WRITE(sc, WMREG_EECD, reg);
2973 		delay(2);
2974 	}
2975 	*valp = val;
2976 }
2977 
2978 /*
2979  * wm_read_eeprom_uwire:
2980  *
2981  *	Read a word from the EEPROM using the MicroWire protocol.
2982  */
2983 static int
2984 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2985 {
2986 	uint32_t reg, val;
2987 	int i;
2988 
2989 	for (i = 0; i < wordcnt; i++) {
2990 		/* Clear SK and DI. */
2991 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2992 		CSR_WRITE(sc, WMREG_EECD, reg);
2993 
2994 		/* Set CHIP SELECT. */
2995 		reg |= EECD_CS;
2996 		CSR_WRITE(sc, WMREG_EECD, reg);
2997 		delay(2);
2998 
2999 		/* Shift in the READ command. */
3000 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3001 
3002 		/* Shift in address. */
3003 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3004 
3005 		/* Shift out the data. */
3006 		wm_eeprom_recvbits(sc, &val, 16);
3007 		data[i] = val & 0xffff;
3008 
3009 		/* Clear CHIP SELECT. */
3010 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3011 		CSR_WRITE(sc, WMREG_EECD, reg);
3012 		delay(2);
3013 	}
3014 
3015 	return (0);
3016 }
3017 
3018 /*
3019  * wm_spi_eeprom_ready:
3020  *
3021  *	Wait for a SPI EEPROM to be ready for commands.
3022  */
3023 static int
3024 wm_spi_eeprom_ready(struct wm_softc *sc)
3025 {
3026 	uint32_t val;
3027 	int usec;
3028 
3029 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3030 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3031 		wm_eeprom_recvbits(sc, &val, 8);
3032 		if ((val & SPI_SR_RDY) == 0)
3033 			break;
3034 	}
3035 	if (usec >= SPI_MAX_RETRIES) {
3036 		aprint_error("%s: EEPROM failed to become ready\n",
3037 		    sc->sc_dev.dv_xname);
3038 		return (1);
3039 	}
3040 	return (0);
3041 }
3042 
3043 /*
3044  * wm_read_eeprom_spi:
3045  *
3046  *	Read a work from the EEPROM using the SPI protocol.
3047  */
3048 static int
3049 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3050 {
3051 	uint32_t reg, val;
3052 	int i;
3053 	uint8_t opc;
3054 
3055 	/* Clear SK and CS. */
3056 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3057 	CSR_WRITE(sc, WMREG_EECD, reg);
3058 	delay(2);
3059 
3060 	if (wm_spi_eeprom_ready(sc))
3061 		return (1);
3062 
3063 	/* Toggle CS to flush commands. */
3064 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3065 	delay(2);
3066 	CSR_WRITE(sc, WMREG_EECD, reg);
3067 	delay(2);
3068 
3069 	opc = SPI_OPC_READ;
3070 	if (sc->sc_ee_addrbits == 8 && word >= 128)
3071 		opc |= SPI_OPC_A8;
3072 
3073 	wm_eeprom_sendbits(sc, opc, 8);
3074 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3075 
3076 	for (i = 0; i < wordcnt; i++) {
3077 		wm_eeprom_recvbits(sc, &val, 16);
3078 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3079 	}
3080 
3081 	/* Raise CS and clear SK. */
3082 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3083 	CSR_WRITE(sc, WMREG_EECD, reg);
3084 	delay(2);
3085 
3086 	return (0);
3087 }
3088 
3089 /*
3090  * wm_read_eeprom:
3091  *
3092  *	Read data from the serial EEPROM.
3093  */
3094 static int
3095 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3096 {
3097 	int rv;
3098 
3099 	if (wm_acquire_eeprom(sc))
3100 		return (1);
3101 
3102 	if (sc->sc_flags & WM_F_EEPROM_SPI)
3103 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3104 	else
3105 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3106 
3107 	wm_release_eeprom(sc);
3108 	return (rv);
3109 }
3110 
3111 /*
3112  * wm_add_rxbuf:
3113  *
3114  *	Add a receive buffer to the indiciated descriptor.
3115  */
3116 static int
3117 wm_add_rxbuf(struct wm_softc *sc, int idx)
3118 {
3119 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3120 	struct mbuf *m;
3121 	int error;
3122 
3123 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3124 	if (m == NULL)
3125 		return (ENOBUFS);
3126 
3127 	MCLGET(m, M_DONTWAIT);
3128 	if ((m->m_flags & M_EXT) == 0) {
3129 		m_freem(m);
3130 		return (ENOBUFS);
3131 	}
3132 
3133 	if (rxs->rxs_mbuf != NULL)
3134 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3135 
3136 	rxs->rxs_mbuf = m;
3137 
3138 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3139 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3140 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3141 	if (error) {
3142 		/* XXX XXX XXX */
3143 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3144 		    sc->sc_dev.dv_xname, idx, error);
3145 		panic("wm_add_rxbuf");
3146 	}
3147 
3148 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3149 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3150 
3151 	WM_INIT_RXDESC(sc, idx);
3152 
3153 	return (0);
3154 }
3155 
3156 /*
3157  * wm_set_ral:
3158  *
3159  *	Set an entery in the receive address list.
3160  */
3161 static void
3162 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3163 {
3164 	uint32_t ral_lo, ral_hi;
3165 
3166 	if (enaddr != NULL) {
3167 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3168 		    (enaddr[3] << 24);
3169 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3170 		ral_hi |= RAL_AV;
3171 	} else {
3172 		ral_lo = 0;
3173 		ral_hi = 0;
3174 	}
3175 
3176 	if (sc->sc_type >= WM_T_82544) {
3177 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3178 		    ral_lo);
3179 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3180 		    ral_hi);
3181 	} else {
3182 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3183 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3184 	}
3185 }
3186 
3187 /*
3188  * wm_mchash:
3189  *
3190  *	Compute the hash of the multicast address for the 4096-bit
3191  *	multicast filter.
3192  */
3193 static uint32_t
3194 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3195 {
3196 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3197 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3198 	uint32_t hash;
3199 
3200 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3201 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3202 
3203 	return (hash & 0xfff);
3204 }
3205 
3206 /*
3207  * wm_set_filter:
3208  *
3209  *	Set up the receive filter.
3210  */
3211 static void
3212 wm_set_filter(struct wm_softc *sc)
3213 {
3214 	struct ethercom *ec = &sc->sc_ethercom;
3215 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3216 	struct ether_multi *enm;
3217 	struct ether_multistep step;
3218 	bus_addr_t mta_reg;
3219 	uint32_t hash, reg, bit;
3220 	int i;
3221 
3222 	if (sc->sc_type >= WM_T_82544)
3223 		mta_reg = WMREG_CORDOVA_MTA;
3224 	else
3225 		mta_reg = WMREG_MTA;
3226 
3227 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3228 
3229 	if (ifp->if_flags & IFF_BROADCAST)
3230 		sc->sc_rctl |= RCTL_BAM;
3231 	if (ifp->if_flags & IFF_PROMISC) {
3232 		sc->sc_rctl |= RCTL_UPE;
3233 		goto allmulti;
3234 	}
3235 
3236 	/*
3237 	 * Set the station address in the first RAL slot, and
3238 	 * clear the remaining slots.
3239 	 */
3240 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3241 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3242 		wm_set_ral(sc, NULL, i);
3243 
3244 	/* Clear out the multicast table. */
3245 	for (i = 0; i < WM_MC_TABSIZE; i++)
3246 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3247 
3248 	ETHER_FIRST_MULTI(step, ec, enm);
3249 	while (enm != NULL) {
3250 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3251 			/*
3252 			 * We must listen to a range of multicast addresses.
3253 			 * For now, just accept all multicasts, rather than
3254 			 * trying to set only those filter bits needed to match
3255 			 * the range.  (At this time, the only use of address
3256 			 * ranges is for IP multicast routing, for which the
3257 			 * range is big enough to require all bits set.)
3258 			 */
3259 			goto allmulti;
3260 		}
3261 
3262 		hash = wm_mchash(sc, enm->enm_addrlo);
3263 
3264 		reg = (hash >> 5) & 0x7f;
3265 		bit = hash & 0x1f;
3266 
3267 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3268 		hash |= 1U << bit;
3269 
3270 		/* XXX Hardware bug?? */
3271 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3272 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3273 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3274 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3275 		} else
3276 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3277 
3278 		ETHER_NEXT_MULTI(step, enm);
3279 	}
3280 
3281 	ifp->if_flags &= ~IFF_ALLMULTI;
3282 	goto setit;
3283 
3284  allmulti:
3285 	ifp->if_flags |= IFF_ALLMULTI;
3286 	sc->sc_rctl |= RCTL_MPE;
3287 
3288  setit:
3289 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3290 }
3291 
3292 /*
3293  * wm_tbi_mediainit:
3294  *
3295  *	Initialize media for use on 1000BASE-X devices.
3296  */
3297 static void
3298 wm_tbi_mediainit(struct wm_softc *sc)
3299 {
3300 	const char *sep = "";
3301 
3302 	if (sc->sc_type < WM_T_82543)
3303 		sc->sc_tipg = TIPG_WM_DFLT;
3304 	else
3305 		sc->sc_tipg = TIPG_LG_DFLT;
3306 
3307 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3308 	    wm_tbi_mediastatus);
3309 
3310 	/*
3311 	 * SWD Pins:
3312 	 *
3313 	 *	0 = Link LED (output)
3314 	 *	1 = Loss Of Signal (input)
3315 	 */
3316 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3317 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3318 
3319 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3320 
3321 #define	ADD(ss, mm, dd)							\
3322 do {									\
3323 	aprint_normal("%s%s", sep, ss);					\
3324 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3325 	sep = ", ";							\
3326 } while (/*CONSTCOND*/0)
3327 
3328 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
3329 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3330 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3331 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3332 	aprint_normal("\n");
3333 
3334 #undef ADD
3335 
3336 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3337 }
3338 
3339 /*
3340  * wm_tbi_mediastatus:	[ifmedia interface function]
3341  *
3342  *	Get the current interface media status on a 1000BASE-X device.
3343  */
3344 static void
3345 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3346 {
3347 	struct wm_softc *sc = ifp->if_softc;
3348 	uint32_t ctrl;
3349 
3350 	ifmr->ifm_status = IFM_AVALID;
3351 	ifmr->ifm_active = IFM_ETHER;
3352 
3353 	if (sc->sc_tbi_linkup == 0) {
3354 		ifmr->ifm_active |= IFM_NONE;
3355 		return;
3356 	}
3357 
3358 	ifmr->ifm_status |= IFM_ACTIVE;
3359 	ifmr->ifm_active |= IFM_1000_SX;
3360 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3361 		ifmr->ifm_active |= IFM_FDX;
3362 	ctrl = CSR_READ(sc, WMREG_CTRL);
3363 	if (ctrl & CTRL_RFCE)
3364 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3365 	if (ctrl & CTRL_TFCE)
3366 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3367 }
3368 
3369 /*
3370  * wm_tbi_mediachange:	[ifmedia interface function]
3371  *
3372  *	Set hardware to newly-selected media on a 1000BASE-X device.
3373  */
3374 static int
3375 wm_tbi_mediachange(struct ifnet *ifp)
3376 {
3377 	struct wm_softc *sc = ifp->if_softc;
3378 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3379 	uint32_t status;
3380 	int i;
3381 
3382 	sc->sc_txcw = ife->ifm_data;
3383 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3384 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3385 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3386 	sc->sc_txcw |= TXCW_ANE;
3387 
3388 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3389 	delay(10000);
3390 
3391 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3392 
3393 	sc->sc_tbi_anstate = 0;
3394 
3395 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3396 		/* Have signal; wait for the link to come up. */
3397 		for (i = 0; i < 50; i++) {
3398 			delay(10000);
3399 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3400 				break;
3401 		}
3402 
3403 		status = CSR_READ(sc, WMREG_STATUS);
3404 		if (status & STATUS_LU) {
3405 			/* Link is up. */
3406 			DPRINTF(WM_DEBUG_LINK,
3407 			    ("%s: LINK: set media -> link up %s\n",
3408 			    sc->sc_dev.dv_xname,
3409 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3410 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3411 			sc->sc_fcrtl &= ~FCRTL_XONE;
3412 			if (status & STATUS_FD)
3413 				sc->sc_tctl |=
3414 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3415 			else
3416 				sc->sc_tctl |=
3417 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3418 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3419 				sc->sc_fcrtl |= FCRTL_XONE;
3420 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3421 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3422 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3423 				      sc->sc_fcrtl);
3424 			sc->sc_tbi_linkup = 1;
3425 		} else {
3426 			/* Link is down. */
3427 			DPRINTF(WM_DEBUG_LINK,
3428 			    ("%s: LINK: set media -> link down\n",
3429 			    sc->sc_dev.dv_xname));
3430 			sc->sc_tbi_linkup = 0;
3431 		}
3432 	} else {
3433 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3434 		    sc->sc_dev.dv_xname));
3435 		sc->sc_tbi_linkup = 0;
3436 	}
3437 
3438 	wm_tbi_set_linkled(sc);
3439 
3440 	return (0);
3441 }
3442 
3443 /*
3444  * wm_tbi_set_linkled:
3445  *
3446  *	Update the link LED on 1000BASE-X devices.
3447  */
3448 static void
3449 wm_tbi_set_linkled(struct wm_softc *sc)
3450 {
3451 
3452 	if (sc->sc_tbi_linkup)
3453 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3454 	else
3455 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3456 
3457 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3458 }
3459 
3460 /*
3461  * wm_tbi_check_link:
3462  *
3463  *	Check the link on 1000BASE-X devices.
3464  */
3465 static void
3466 wm_tbi_check_link(struct wm_softc *sc)
3467 {
3468 	uint32_t rxcw, ctrl, status;
3469 
3470 	if (sc->sc_tbi_anstate == 0)
3471 		return;
3472 	else if (sc->sc_tbi_anstate > 1) {
3473 		DPRINTF(WM_DEBUG_LINK,
3474 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3475 		    sc->sc_tbi_anstate));
3476 		sc->sc_tbi_anstate--;
3477 		return;
3478 	}
3479 
3480 	sc->sc_tbi_anstate = 0;
3481 
3482 	rxcw = CSR_READ(sc, WMREG_RXCW);
3483 	ctrl = CSR_READ(sc, WMREG_CTRL);
3484 	status = CSR_READ(sc, WMREG_STATUS);
3485 
3486 	if ((status & STATUS_LU) == 0) {
3487 		DPRINTF(WM_DEBUG_LINK,
3488 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3489 		sc->sc_tbi_linkup = 0;
3490 	} else {
3491 		DPRINTF(WM_DEBUG_LINK,
3492 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3493 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3494 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3495 		sc->sc_fcrtl &= ~FCRTL_XONE;
3496 		if (status & STATUS_FD)
3497 			sc->sc_tctl |=
3498 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3499 		else
3500 			sc->sc_tctl |=
3501 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3502 		if (ctrl & CTRL_TFCE)
3503 			sc->sc_fcrtl |= FCRTL_XONE;
3504 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3505 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3506 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3507 			      sc->sc_fcrtl);
3508 		sc->sc_tbi_linkup = 1;
3509 	}
3510 
3511 	wm_tbi_set_linkled(sc);
3512 }
3513 
3514 /*
3515  * wm_gmii_reset:
3516  *
3517  *	Reset the PHY.
3518  */
3519 static void
3520 wm_gmii_reset(struct wm_softc *sc)
3521 {
3522 	uint32_t reg;
3523 
3524 	if (sc->sc_type >= WM_T_82544) {
3525 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3526 		delay(20000);
3527 
3528 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3529 		delay(20000);
3530 	} else {
3531 		/* The PHY reset pin is active-low. */
3532 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3533 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3534 		    CTRL_EXT_SWDPIN(4));
3535 		reg |= CTRL_EXT_SWDPIO(4);
3536 
3537 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3538 		delay(10);
3539 
3540 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3541 		delay(10);
3542 
3543 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3544 		delay(10);
3545 #if 0
3546 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3547 #endif
3548 	}
3549 }
3550 
3551 /*
3552  * wm_gmii_mediainit:
3553  *
3554  *	Initialize media for use on 1000BASE-T devices.
3555  */
3556 static void
3557 wm_gmii_mediainit(struct wm_softc *sc)
3558 {
3559 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3560 
3561 	/* We have MII. */
3562 	sc->sc_flags |= WM_F_HAS_MII;
3563 
3564 	sc->sc_tipg = TIPG_1000T_DFLT;
3565 
3566 	/*
3567 	 * Let the chip set speed/duplex on its own based on
3568 	 * signals from the PHY.
3569 	 */
3570 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3571 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3572 
3573 	/* Initialize our media structures and probe the GMII. */
3574 	sc->sc_mii.mii_ifp = ifp;
3575 
3576 	if (sc->sc_type >= WM_T_82544) {
3577 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3578 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3579 	} else {
3580 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3581 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3582 	}
3583 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
3584 
3585 	wm_gmii_reset(sc);
3586 
3587 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3588 	    wm_gmii_mediastatus);
3589 
3590 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3591 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
3592 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3593 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3594 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3595 	} else
3596 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3597 }
3598 
3599 /*
3600  * wm_gmii_mediastatus:	[ifmedia interface function]
3601  *
3602  *	Get the current interface media status on a 1000BASE-T device.
3603  */
3604 static void
3605 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3606 {
3607 	struct wm_softc *sc = ifp->if_softc;
3608 
3609 	mii_pollstat(&sc->sc_mii);
3610 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3611 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3612 			   sc->sc_flowflags;
3613 }
3614 
3615 /*
3616  * wm_gmii_mediachange:	[ifmedia interface function]
3617  *
3618  *	Set hardware to newly-selected media on a 1000BASE-T device.
3619  */
3620 static int
3621 wm_gmii_mediachange(struct ifnet *ifp)
3622 {
3623 	struct wm_softc *sc = ifp->if_softc;
3624 
3625 	if (ifp->if_flags & IFF_UP)
3626 		mii_mediachg(&sc->sc_mii);
3627 	return (0);
3628 }
3629 
3630 #define	MDI_IO		CTRL_SWDPIN(2)
3631 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
3632 #define	MDI_CLK		CTRL_SWDPIN(3)
3633 
3634 static void
3635 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3636 {
3637 	uint32_t i, v;
3638 
3639 	v = CSR_READ(sc, WMREG_CTRL);
3640 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3641 	v |= MDI_DIR | CTRL_SWDPIO(3);
3642 
3643 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3644 		if (data & i)
3645 			v |= MDI_IO;
3646 		else
3647 			v &= ~MDI_IO;
3648 		CSR_WRITE(sc, WMREG_CTRL, v);
3649 		delay(10);
3650 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3651 		delay(10);
3652 		CSR_WRITE(sc, WMREG_CTRL, v);
3653 		delay(10);
3654 	}
3655 }
3656 
3657 static uint32_t
3658 i82543_mii_recvbits(struct wm_softc *sc)
3659 {
3660 	uint32_t v, i, data = 0;
3661 
3662 	v = CSR_READ(sc, WMREG_CTRL);
3663 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3664 	v |= CTRL_SWDPIO(3);
3665 
3666 	CSR_WRITE(sc, WMREG_CTRL, v);
3667 	delay(10);
3668 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3669 	delay(10);
3670 	CSR_WRITE(sc, WMREG_CTRL, v);
3671 	delay(10);
3672 
3673 	for (i = 0; i < 16; i++) {
3674 		data <<= 1;
3675 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3676 		delay(10);
3677 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3678 			data |= 1;
3679 		CSR_WRITE(sc, WMREG_CTRL, v);
3680 		delay(10);
3681 	}
3682 
3683 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3684 	delay(10);
3685 	CSR_WRITE(sc, WMREG_CTRL, v);
3686 	delay(10);
3687 
3688 	return (data);
3689 }
3690 
3691 #undef MDI_IO
3692 #undef MDI_DIR
3693 #undef MDI_CLK
3694 
3695 /*
3696  * wm_gmii_i82543_readreg:	[mii interface function]
3697  *
3698  *	Read a PHY register on the GMII (i82543 version).
3699  */
3700 static int
3701 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3702 {
3703 	struct wm_softc *sc = (void *) self;
3704 	int rv;
3705 
3706 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3707 	i82543_mii_sendbits(sc, reg | (phy << 5) |
3708 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3709 	rv = i82543_mii_recvbits(sc) & 0xffff;
3710 
3711 	DPRINTF(WM_DEBUG_GMII,
3712 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3713 	    sc->sc_dev.dv_xname, phy, reg, rv));
3714 
3715 	return (rv);
3716 }
3717 
3718 /*
3719  * wm_gmii_i82543_writereg:	[mii interface function]
3720  *
3721  *	Write a PHY register on the GMII (i82543 version).
3722  */
3723 static void
3724 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3725 {
3726 	struct wm_softc *sc = (void *) self;
3727 
3728 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3729 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3730 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3731 	    (MII_COMMAND_START << 30), 32);
3732 }
3733 
3734 /*
3735  * wm_gmii_i82544_readreg:	[mii interface function]
3736  *
3737  *	Read a PHY register on the GMII.
3738  */
3739 static int
3740 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3741 {
3742 	struct wm_softc *sc = (void *) self;
3743 	uint32_t mdic = 0;
3744 	int i, rv;
3745 
3746 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3747 	    MDIC_REGADD(reg));
3748 
3749 	for (i = 0; i < 100; i++) {
3750 		mdic = CSR_READ(sc, WMREG_MDIC);
3751 		if (mdic & MDIC_READY)
3752 			break;
3753 		delay(10);
3754 	}
3755 
3756 	if ((mdic & MDIC_READY) == 0) {
3757 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3758 		    sc->sc_dev.dv_xname, phy, reg);
3759 		rv = 0;
3760 	} else if (mdic & MDIC_E) {
3761 #if 0 /* This is normal if no PHY is present. */
3762 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3763 		    sc->sc_dev.dv_xname, phy, reg);
3764 #endif
3765 		rv = 0;
3766 	} else {
3767 		rv = MDIC_DATA(mdic);
3768 		if (rv == 0xffff)
3769 			rv = 0;
3770 	}
3771 
3772 	return (rv);
3773 }
3774 
3775 /*
3776  * wm_gmii_i82544_writereg:	[mii interface function]
3777  *
3778  *	Write a PHY register on the GMII.
3779  */
3780 static void
3781 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3782 {
3783 	struct wm_softc *sc = (void *) self;
3784 	uint32_t mdic = 0;
3785 	int i;
3786 
3787 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3788 	    MDIC_REGADD(reg) | MDIC_DATA(val));
3789 
3790 	for (i = 0; i < 100; i++) {
3791 		mdic = CSR_READ(sc, WMREG_MDIC);
3792 		if (mdic & MDIC_READY)
3793 			break;
3794 		delay(10);
3795 	}
3796 
3797 	if ((mdic & MDIC_READY) == 0)
3798 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3799 		    sc->sc_dev.dv_xname, phy, reg);
3800 	else if (mdic & MDIC_E)
3801 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3802 		    sc->sc_dev.dv_xname, phy, reg);
3803 }
3804 
3805 /*
3806  * wm_gmii_statchg:	[mii interface function]
3807  *
3808  *	Callback from MII layer when media changes.
3809  */
3810 static void
3811 wm_gmii_statchg(struct device *self)
3812 {
3813 	struct wm_softc *sc = (void *) self;
3814 	struct mii_data *mii = &sc->sc_mii;
3815 
3816 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3817 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3818 	sc->sc_fcrtl &= ~FCRTL_XONE;
3819 
3820 	/*
3821 	 * Get flow control negotiation result.
3822 	 */
3823 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3824 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3825 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3826 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3827 	}
3828 
3829 	if (sc->sc_flowflags & IFM_FLOW) {
3830 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3831 			sc->sc_ctrl |= CTRL_TFCE;
3832 			sc->sc_fcrtl |= FCRTL_XONE;
3833 		}
3834 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3835 			sc->sc_ctrl |= CTRL_RFCE;
3836 	}
3837 
3838 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
3839 		DPRINTF(WM_DEBUG_LINK,
3840 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3841 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3842 	} else  {
3843 		DPRINTF(WM_DEBUG_LINK,
3844 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3845 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3846 	}
3847 
3848 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3849 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3850 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3851 						 : WMREG_FCRTL, sc->sc_fcrtl);
3852 }
3853