1 /* $NetBSD: if_wm.c,v 1.189 2010/01/07 17:45:58 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /******************************************************************************* 39 40 Copyright (c) 2001-2005, Intel Corporation 41 All rights reserved. 42 43 Redistribution and use in source and binary forms, with or without 44 modification, are permitted provided that the following conditions are met: 45 46 1. Redistributions of source code must retain the above copyright notice, 47 this list of conditions and the following disclaimer. 48 49 2. Redistributions in binary form must reproduce the above copyright 50 notice, this list of conditions and the following disclaimer in the 51 documentation and/or other materials provided with the distribution. 52 53 3. Neither the name of the Intel Corporation nor the names of its 54 contributors may be used to endorse or promote products derived from 55 this software without specific prior written permission. 56 57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 67 POSSIBILITY OF SUCH DAMAGE. 68 69 *******************************************************************************/ 70 /* 71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips. 72 * 73 * TODO (in order of importance): 74 * 75 * - Rework how parameters are loaded from the EEPROM. 76 */ 77 78 #include <sys/cdefs.h> 79 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.189 2010/01/07 17:45:58 msaitoh Exp $"); 80 81 #include "bpfilter.h" 82 #include "rnd.h" 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/callout.h> 87 #include <sys/mbuf.h> 88 #include <sys/malloc.h> 89 #include <sys/kernel.h> 90 #include <sys/socket.h> 91 #include <sys/ioctl.h> 92 #include <sys/errno.h> 93 #include <sys/device.h> 94 #include <sys/queue.h> 95 #include <sys/syslog.h> 96 97 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 98 99 #if NRND > 0 100 #include <sys/rnd.h> 101 #endif 102 103 #include <net/if.h> 104 #include <net/if_dl.h> 105 #include <net/if_media.h> 106 #include <net/if_ether.h> 107 108 #if NBPFILTER > 0 109 #include <net/bpf.h> 110 #endif 111 112 #include <netinet/in.h> /* XXX for struct ip */ 113 #include <netinet/in_systm.h> /* XXX for struct ip */ 114 #include <netinet/ip.h> /* XXX for struct ip */ 115 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */ 116 #include <netinet/tcp.h> /* XXX for struct tcphdr */ 117 118 #include <sys/bus.h> 119 #include <sys/intr.h> 120 #include <machine/endian.h> 121 122 #include <dev/mii/mii.h> 123 #include <dev/mii/miivar.h> 124 #include <dev/mii/mii_bitbang.h> 125 #include <dev/mii/ikphyreg.h> 126 127 #include <dev/pci/pcireg.h> 128 #include <dev/pci/pcivar.h> 129 #include <dev/pci/pcidevs.h> 130 131 #include <dev/pci/if_wmreg.h> 132 #include <dev/pci/if_wmvar.h> 133 134 #ifdef WM_DEBUG 135 #define WM_DEBUG_LINK 0x01 136 #define WM_DEBUG_TX 0x02 137 #define WM_DEBUG_RX 0x04 138 #define WM_DEBUG_GMII 0x08 139 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII; 140 141 #define DPRINTF(x, y) if (wm_debug & (x)) printf y 142 #else 143 #define DPRINTF(x, y) /* nothing */ 144 #endif /* WM_DEBUG */ 145 146 /* 147 * Transmit descriptor list size. Due to errata, we can only have 148 * 256 hardware descriptors in the ring on < 82544, but we use 4096 149 * on >= 82544. We tell the upper layers that they can queue a lot 150 * of packets, and we go ahead and manage up to 64 (16 for the i82547) 151 * of them at a time. 152 * 153 * We allow up to 256 (!) DMA segments per packet. Pathological packet 154 * chains containing many small mbufs have been observed in zero-copy 155 * situations with jumbo frames. 156 */ 157 #define WM_NTXSEGS 256 158 #define WM_IFQUEUELEN 256 159 #define WM_TXQUEUELEN_MAX 64 160 #define WM_TXQUEUELEN_MAX_82547 16 161 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum) 162 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1) 163 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8) 164 #define WM_NTXDESC_82542 256 165 #define WM_NTXDESC_82544 4096 166 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc) 167 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1) 168 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t)) 169 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc)) 170 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc)) 171 172 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */ 173 174 /* 175 * Receive descriptor list size. We have one Rx buffer for normal 176 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized 177 * packet. We allocate 256 receive descriptors, each with a 2k 178 * buffer (MCLBYTES), which gives us room for 50 jumbo packets. 179 */ 180 #define WM_NRXDESC 256 181 #define WM_NRXDESC_MASK (WM_NRXDESC - 1) 182 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK) 183 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK) 184 185 /* 186 * Control structures are DMA'd to the i82542 chip. We allocate them in 187 * a single clump that maps to a single DMA segment to make several things 188 * easier. 189 */ 190 struct wm_control_data_82544 { 191 /* 192 * The receive descriptors. 193 */ 194 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC]; 195 196 /* 197 * The transmit descriptors. Put these at the end, because 198 * we might use a smaller number of them. 199 */ 200 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544]; 201 }; 202 203 struct wm_control_data_82542 { 204 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC]; 205 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542]; 206 }; 207 208 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x) 209 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)]) 210 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)]) 211 212 /* 213 * Software state for transmit jobs. 214 */ 215 struct wm_txsoft { 216 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 217 bus_dmamap_t txs_dmamap; /* our DMA map */ 218 int txs_firstdesc; /* first descriptor in packet */ 219 int txs_lastdesc; /* last descriptor in packet */ 220 int txs_ndesc; /* # of descriptors used */ 221 }; 222 223 /* 224 * Software state for receive buffers. Each descriptor gets a 225 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill 226 * more than one buffer, we chain them together. 227 */ 228 struct wm_rxsoft { 229 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 230 bus_dmamap_t rxs_dmamap; /* our DMA map */ 231 }; 232 233 #define WM_LINKUP_TIMEOUT 50 234 235 /* 236 * Software state per device. 237 */ 238 struct wm_softc { 239 device_t sc_dev; /* generic device information */ 240 bus_space_tag_t sc_st; /* bus space tag */ 241 bus_space_handle_t sc_sh; /* bus space handle */ 242 bus_space_tag_t sc_iot; /* I/O space tag */ 243 bus_space_handle_t sc_ioh; /* I/O space handle */ 244 bus_space_tag_t sc_flasht; /* flash registers space tag */ 245 bus_space_handle_t sc_flashh; /* flash registers space handle */ 246 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 247 struct ethercom sc_ethercom; /* ethernet common data */ 248 pci_chipset_tag_t sc_pc; 249 pcitag_t sc_pcitag; 250 251 wm_chip_type sc_type; /* chip type */ 252 int sc_flags; /* flags; see below */ 253 int sc_if_flags; /* last if_flags */ 254 int sc_bus_speed; /* PCI/PCIX bus speed */ 255 int sc_pcix_offset; /* PCIX capability register offset */ 256 int sc_flowflags; /* 802.3x flow control flags */ 257 258 void *sc_ih; /* interrupt cookie */ 259 260 int sc_ee_addrbits; /* EEPROM address bits */ 261 262 struct mii_data sc_mii; /* MII/media information */ 263 264 callout_t sc_tick_ch; /* tick callout */ 265 266 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 267 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 268 269 int sc_align_tweak; 270 271 /* 272 * Software state for the transmit and receive descriptors. 273 */ 274 int sc_txnum; /* must be a power of two */ 275 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX]; 276 struct wm_rxsoft sc_rxsoft[WM_NRXDESC]; 277 278 /* 279 * Control data structures. 280 */ 281 int sc_ntxdesc; /* must be a power of two */ 282 struct wm_control_data_82544 *sc_control_data; 283 #define sc_txdescs sc_control_data->wcd_txdescs 284 #define sc_rxdescs sc_control_data->wcd_rxdescs 285 286 #ifdef WM_EVENT_COUNTERS 287 /* Event counters. */ 288 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 289 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 290 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */ 291 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */ 292 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */ 293 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 294 struct evcnt sc_ev_linkintr; /* Link interrupts */ 295 296 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 297 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */ 298 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 299 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */ 300 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */ 301 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound (IPv4) */ 302 struct evcnt sc_ev_txtso6; /* TCP seg offload out-bound (IPv6) */ 303 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */ 304 305 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */ 306 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */ 307 308 struct evcnt sc_ev_tu; /* Tx underrun */ 309 310 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */ 311 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */ 312 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */ 313 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */ 314 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */ 315 #endif /* WM_EVENT_COUNTERS */ 316 317 bus_addr_t sc_tdt_reg; /* offset of TDT register */ 318 319 int sc_txfree; /* number of free Tx descriptors */ 320 int sc_txnext; /* next ready Tx descriptor */ 321 322 int sc_txsfree; /* number of free Tx jobs */ 323 int sc_txsnext; /* next free Tx job */ 324 int sc_txsdirty; /* dirty Tx jobs */ 325 326 /* These 5 variables are used only on the 82547. */ 327 int sc_txfifo_size; /* Tx FIFO size */ 328 int sc_txfifo_head; /* current head of FIFO */ 329 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */ 330 int sc_txfifo_stall; /* Tx FIFO is stalled */ 331 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */ 332 333 bus_addr_t sc_rdt_reg; /* offset of RDT register */ 334 335 int sc_rxptr; /* next ready Rx descriptor/queue ent */ 336 int sc_rxdiscard; 337 int sc_rxlen; 338 struct mbuf *sc_rxhead; 339 struct mbuf *sc_rxtail; 340 struct mbuf **sc_rxtailp; 341 342 uint32_t sc_ctrl; /* prototype CTRL register */ 343 #if 0 344 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */ 345 #endif 346 uint32_t sc_icr; /* prototype interrupt bits */ 347 uint32_t sc_itr; /* prototype intr throttling reg */ 348 uint32_t sc_tctl; /* prototype TCTL register */ 349 uint32_t sc_rctl; /* prototype RCTL register */ 350 uint32_t sc_txcw; /* prototype TXCW register */ 351 uint32_t sc_tipg; /* prototype TIPG register */ 352 uint32_t sc_fcrtl; /* prototype FCRTL register */ 353 uint32_t sc_pba; /* prototype PBA register */ 354 355 int sc_tbi_linkup; /* TBI link status */ 356 int sc_tbi_anegticks; /* autonegotiation ticks */ 357 int sc_tbi_ticks; /* tbi ticks */ 358 int sc_tbi_nrxcfg; /* count of ICR_RXCFG */ 359 int sc_tbi_lastnrxcfg; /* count of ICR_RXCFG (on last tick) */ 360 361 int sc_mchash_type; /* multicast filter offset */ 362 363 #if NRND > 0 364 rndsource_element_t rnd_source; /* random source */ 365 #endif 366 int sc_ich8_flash_base; 367 int sc_ich8_flash_bank_size; 368 }; 369 370 #define WM_RXCHAIN_RESET(sc) \ 371 do { \ 372 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \ 373 *(sc)->sc_rxtailp = NULL; \ 374 (sc)->sc_rxlen = 0; \ 375 } while (/*CONSTCOND*/0) 376 377 #define WM_RXCHAIN_LINK(sc, m) \ 378 do { \ 379 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \ 380 (sc)->sc_rxtailp = &(m)->m_next; \ 381 } while (/*CONSTCOND*/0) 382 383 #ifdef WM_EVENT_COUNTERS 384 #define WM_EVCNT_INCR(ev) (ev)->ev_count++ 385 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val) 386 #else 387 #define WM_EVCNT_INCR(ev) /* nothing */ 388 #define WM_EVCNT_ADD(ev, val) /* nothing */ 389 #endif 390 391 #define CSR_READ(sc, reg) \ 392 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg)) 393 #define CSR_WRITE(sc, reg, val) \ 394 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val)) 395 #define CSR_WRITE_FLUSH(sc) \ 396 (void) CSR_READ((sc), WMREG_STATUS) 397 398 #define ICH8_FLASH_READ32(sc, reg) \ 399 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg)) 400 #define ICH8_FLASH_WRITE32(sc, reg, data) \ 401 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data)) 402 403 #define ICH8_FLASH_READ16(sc, reg) \ 404 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg)) 405 #define ICH8_FLASH_WRITE16(sc, reg, data) \ 406 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data)) 407 408 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x))) 409 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x))) 410 411 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU) 412 #define WM_CDTXADDR_HI(sc, x) \ 413 (sizeof(bus_addr_t) == 8 ? \ 414 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0) 415 416 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU) 417 #define WM_CDRXADDR_HI(sc, x) \ 418 (sizeof(bus_addr_t) == 8 ? \ 419 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0) 420 421 #define WM_CDTXSYNC(sc, x, n, ops) \ 422 do { \ 423 int __x, __n; \ 424 \ 425 __x = (x); \ 426 __n = (n); \ 427 \ 428 /* If it will wrap around, sync to the end of the ring. */ \ 429 if ((__x + __n) > WM_NTXDESC(sc)) { \ 430 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 431 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \ 432 (WM_NTXDESC(sc) - __x), (ops)); \ 433 __n -= (WM_NTXDESC(sc) - __x); \ 434 __x = 0; \ 435 } \ 436 \ 437 /* Now sync whatever is left. */ \ 438 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 439 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \ 440 } while (/*CONSTCOND*/0) 441 442 #define WM_CDRXSYNC(sc, x, ops) \ 443 do { \ 444 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 445 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \ 446 } while (/*CONSTCOND*/0) 447 448 #define WM_INIT_RXDESC(sc, x) \ 449 do { \ 450 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 451 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \ 452 struct mbuf *__m = __rxs->rxs_mbuf; \ 453 \ 454 /* \ 455 * Note: We scoot the packet forward 2 bytes in the buffer \ 456 * so that the payload after the Ethernet header is aligned \ 457 * to a 4-byte boundary. \ 458 * \ 459 * XXX BRAINDAMAGE ALERT! \ 460 * The stupid chip uses the same size for every buffer, which \ 461 * is set in the Receive Control register. We are using the 2K \ 462 * size option, but what we REALLY want is (2K - 2)! For this \ 463 * reason, we can't "scoot" packets longer than the standard \ 464 * Ethernet MTU. On strict-alignment platforms, if the total \ 465 * size exceeds (2K - 2) we set align_tweak to 0 and let \ 466 * the upper layer copy the headers. \ 467 */ \ 468 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \ 469 \ 470 wm_set_dma_addr(&__rxd->wrx_addr, \ 471 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \ 472 __rxd->wrx_len = 0; \ 473 __rxd->wrx_cksum = 0; \ 474 __rxd->wrx_status = 0; \ 475 __rxd->wrx_errors = 0; \ 476 __rxd->wrx_special = 0; \ 477 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ 478 \ 479 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \ 480 } while (/*CONSTCOND*/0) 481 482 static void wm_start(struct ifnet *); 483 static void wm_watchdog(struct ifnet *); 484 static int wm_ioctl(struct ifnet *, u_long, void *); 485 static int wm_init(struct ifnet *); 486 static void wm_stop(struct ifnet *, int); 487 488 static void wm_reset(struct wm_softc *); 489 static void wm_rxdrain(struct wm_softc *); 490 static int wm_add_rxbuf(struct wm_softc *, int); 491 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *); 492 static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *); 493 static int wm_validate_eeprom_checksum(struct wm_softc *); 494 static void wm_tick(void *); 495 496 static void wm_set_filter(struct wm_softc *); 497 498 static int wm_intr(void *); 499 static void wm_txintr(struct wm_softc *); 500 static void wm_rxintr(struct wm_softc *); 501 static void wm_linkintr(struct wm_softc *, uint32_t); 502 503 static void wm_tbi_mediainit(struct wm_softc *); 504 static int wm_tbi_mediachange(struct ifnet *); 505 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *); 506 507 static void wm_tbi_set_linkled(struct wm_softc *); 508 static void wm_tbi_check_link(struct wm_softc *); 509 510 static void wm_gmii_reset(struct wm_softc *); 511 512 static int wm_gmii_i82543_readreg(device_t, int, int); 513 static void wm_gmii_i82543_writereg(device_t, int, int, int); 514 515 static int wm_gmii_i82544_readreg(device_t, int, int); 516 static void wm_gmii_i82544_writereg(device_t, int, int, int); 517 518 static int wm_gmii_i80003_readreg(device_t, int, int); 519 static void wm_gmii_i80003_writereg(device_t, int, int, int); 520 521 static int wm_gmii_bm_readreg(device_t, int, int); 522 static void wm_gmii_bm_writereg(device_t, int, int, int); 523 524 static void wm_gmii_statchg(device_t); 525 526 static void wm_gmii_mediainit(struct wm_softc *); 527 static int wm_gmii_mediachange(struct ifnet *); 528 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *); 529 530 static int wm_kmrn_readreg(struct wm_softc *, int); 531 static void wm_kmrn_writereg(struct wm_softc *, int, int); 532 533 static void wm_set_spiaddrsize(struct wm_softc *); 534 static int wm_match(device_t, cfdata_t, void *); 535 static void wm_attach(device_t, device_t, void *); 536 static int wm_is_onboard_nvm_eeprom(struct wm_softc *); 537 static void wm_get_auto_rd_done(struct wm_softc *); 538 static void wm_lan_init_done(struct wm_softc *); 539 static void wm_get_cfg_done(struct wm_softc *); 540 static int wm_get_swsm_semaphore(struct wm_softc *); 541 static void wm_put_swsm_semaphore(struct wm_softc *); 542 static int wm_poll_eerd_eewr_done(struct wm_softc *, int); 543 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t); 544 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t); 545 static int wm_get_swfwhw_semaphore(struct wm_softc *); 546 static void wm_put_swfwhw_semaphore(struct wm_softc *); 547 548 static int wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *); 549 static int32_t wm_ich8_cycle_init(struct wm_softc *); 550 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t); 551 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t, 552 uint32_t, uint16_t *); 553 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *); 554 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *); 555 static void wm_82547_txfifo_stall(void *); 556 static int wm_check_mng_mode(struct wm_softc *); 557 static int wm_check_mng_mode_ich8lan(struct wm_softc *); 558 static int wm_check_mng_mode_82574(struct wm_softc *); 559 static int wm_check_mng_mode_generic(struct wm_softc *); 560 static int wm_check_reset_block(struct wm_softc *); 561 static void wm_get_hw_control(struct wm_softc *); 562 static int wm_check_for_link(struct wm_softc *); 563 564 CFATTACH_DECL_NEW(wm, sizeof(struct wm_softc), 565 wm_match, wm_attach, NULL, NULL); 566 567 /* 568 * Devices supported by this driver. 569 */ 570 static const struct wm_product { 571 pci_vendor_id_t wmp_vendor; 572 pci_product_id_t wmp_product; 573 const char *wmp_name; 574 wm_chip_type wmp_type; 575 int wmp_flags; 576 #define WMP_F_1000X 0x01 577 #define WMP_F_1000T 0x02 578 } wm_products[] = { 579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542, 580 "Intel i82542 1000BASE-X Ethernet", 581 WM_T_82542_2_1, WMP_F_1000X }, 582 583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER, 584 "Intel i82543GC 1000BASE-X Ethernet", 585 WM_T_82543, WMP_F_1000X }, 586 587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER, 588 "Intel i82543GC 1000BASE-T Ethernet", 589 WM_T_82543, WMP_F_1000T }, 590 591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER, 592 "Intel i82544EI 1000BASE-T Ethernet", 593 WM_T_82544, WMP_F_1000T }, 594 595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER, 596 "Intel i82544EI 1000BASE-X Ethernet", 597 WM_T_82544, WMP_F_1000X }, 598 599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER, 600 "Intel i82544GC 1000BASE-T Ethernet", 601 WM_T_82544, WMP_F_1000T }, 602 603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM, 604 "Intel i82544GC (LOM) 1000BASE-T Ethernet", 605 WM_T_82544, WMP_F_1000T }, 606 607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM, 608 "Intel i82540EM 1000BASE-T Ethernet", 609 WM_T_82540, WMP_F_1000T }, 610 611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM, 612 "Intel i82540EM (LOM) 1000BASE-T Ethernet", 613 WM_T_82540, WMP_F_1000T }, 614 615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM, 616 "Intel i82540EP 1000BASE-T Ethernet", 617 WM_T_82540, WMP_F_1000T }, 618 619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP, 620 "Intel i82540EP 1000BASE-T Ethernet", 621 WM_T_82540, WMP_F_1000T }, 622 623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP, 624 "Intel i82540EP 1000BASE-T Ethernet", 625 WM_T_82540, WMP_F_1000T }, 626 627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER, 628 "Intel i82545EM 1000BASE-T Ethernet", 629 WM_T_82545, WMP_F_1000T }, 630 631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER, 632 "Intel i82545GM 1000BASE-T Ethernet", 633 WM_T_82545_3, WMP_F_1000T }, 634 635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER, 636 "Intel i82545GM 1000BASE-X Ethernet", 637 WM_T_82545_3, WMP_F_1000X }, 638 #if 0 639 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES, 640 "Intel i82545GM Gigabit Ethernet (SERDES)", 641 WM_T_82545_3, WMP_F_SERDES }, 642 #endif 643 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER, 644 "Intel i82546EB 1000BASE-T Ethernet", 645 WM_T_82546, WMP_F_1000T }, 646 647 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD, 648 "Intel i82546EB 1000BASE-T Ethernet", 649 WM_T_82546, WMP_F_1000T }, 650 651 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER, 652 "Intel i82545EM 1000BASE-X Ethernet", 653 WM_T_82545, WMP_F_1000X }, 654 655 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER, 656 "Intel i82546EB 1000BASE-X Ethernet", 657 WM_T_82546, WMP_F_1000X }, 658 659 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER, 660 "Intel i82546GB 1000BASE-T Ethernet", 661 WM_T_82546_3, WMP_F_1000T }, 662 663 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER, 664 "Intel i82546GB 1000BASE-X Ethernet", 665 WM_T_82546_3, WMP_F_1000X }, 666 #if 0 667 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES, 668 "Intel i82546GB Gigabit Ethernet (SERDES)", 669 WM_T_82546_3, WMP_F_SERDES }, 670 #endif 671 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER, 672 "i82546GB quad-port Gigabit Ethernet", 673 WM_T_82546_3, WMP_F_1000T }, 674 675 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3, 676 "i82546GB quad-port Gigabit Ethernet (KSP3)", 677 WM_T_82546_3, WMP_F_1000T }, 678 679 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE, 680 "Intel PRO/1000MT (82546GB)", 681 WM_T_82546_3, WMP_F_1000T }, 682 683 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI, 684 "Intel i82541EI 1000BASE-T Ethernet", 685 WM_T_82541, WMP_F_1000T }, 686 687 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM, 688 "Intel i82541ER (LOM) 1000BASE-T Ethernet", 689 WM_T_82541, WMP_F_1000T }, 690 691 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE, 692 "Intel i82541EI Mobile 1000BASE-T Ethernet", 693 WM_T_82541, WMP_F_1000T }, 694 695 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER, 696 "Intel i82541ER 1000BASE-T Ethernet", 697 WM_T_82541_2, WMP_F_1000T }, 698 699 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI, 700 "Intel i82541GI 1000BASE-T Ethernet", 701 WM_T_82541_2, WMP_F_1000T }, 702 703 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE, 704 "Intel i82541GI Mobile 1000BASE-T Ethernet", 705 WM_T_82541_2, WMP_F_1000T }, 706 707 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI, 708 "Intel i82541PI 1000BASE-T Ethernet", 709 WM_T_82541_2, WMP_F_1000T }, 710 711 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI, 712 "Intel i82547EI 1000BASE-T Ethernet", 713 WM_T_82547, WMP_F_1000T }, 714 715 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE, 716 "Intel i82547EI Mobile 1000BASE-T Ethernet", 717 WM_T_82547, WMP_F_1000T }, 718 719 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI, 720 "Intel i82547GI 1000BASE-T Ethernet", 721 WM_T_82547_2, WMP_F_1000T }, 722 723 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER, 724 "Intel PRO/1000 PT (82571EB)", 725 WM_T_82571, WMP_F_1000T }, 726 727 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER, 728 "Intel PRO/1000 PF (82571EB)", 729 WM_T_82571, WMP_F_1000X }, 730 #if 0 731 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES, 732 "Intel PRO/1000 PB (82571EB)", 733 WM_T_82571, WMP_F_SERDES }, 734 #endif 735 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER, 736 "Intel PRO/1000 QT (82571EB)", 737 WM_T_82571, WMP_F_1000T }, 738 739 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER, 740 "Intel i82572EI 1000baseT Ethernet", 741 WM_T_82572, WMP_F_1000T }, 742 743 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER, 744 "Intel� PRO/1000 PT Quad Port Server Adapter", 745 WM_T_82571, WMP_F_1000T, }, 746 747 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER, 748 "Intel i82572EI 1000baseX Ethernet", 749 WM_T_82572, WMP_F_1000X }, 750 #if 0 751 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES, 752 "Intel i82572EI Gigabit Ethernet (SERDES)", 753 WM_T_82572, WMP_F_SERDES }, 754 #endif 755 756 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI, 757 "Intel i82572EI 1000baseT Ethernet", 758 WM_T_82572, WMP_F_1000T }, 759 760 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E, 761 "Intel i82573E", 762 WM_T_82573, WMP_F_1000T }, 763 764 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT, 765 "Intel i82573E IAMT", 766 WM_T_82573, WMP_F_1000T }, 767 768 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L, 769 "Intel i82573L Gigabit Ethernet", 770 WM_T_82573, WMP_F_1000T }, 771 772 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L, 773 "Intel i82574L", 774 WM_T_82574, WMP_F_1000T }, 775 776 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V, 777 "Intel i82583V", 778 WM_T_82583, WMP_F_1000T }, 779 780 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT, 781 "i80003 dual 1000baseT Ethernet", 782 WM_T_80003, WMP_F_1000T }, 783 784 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT, 785 "i80003 dual 1000baseX Ethernet", 786 WM_T_80003, WMP_F_1000T }, 787 #if 0 788 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT, 789 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)", 790 WM_T_80003, WMP_F_SERDES }, 791 #endif 792 793 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT, 794 "Intel i80003 1000baseT Ethernet", 795 WM_T_80003, WMP_F_1000T }, 796 #if 0 797 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT, 798 "Intel i80003 Gigabit Ethernet (SERDES)", 799 WM_T_80003, WMP_F_SERDES }, 800 #endif 801 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT, 802 "Intel i82801H (M_AMT) LAN Controller", 803 WM_T_ICH8, WMP_F_1000T }, 804 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT, 805 "Intel i82801H (AMT) LAN Controller", 806 WM_T_ICH8, WMP_F_1000T }, 807 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN, 808 "Intel i82801H LAN Controller", 809 WM_T_ICH8, WMP_F_1000T }, 810 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN, 811 "Intel i82801H (IFE) LAN Controller", 812 WM_T_ICH8, WMP_F_1000T }, 813 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN, 814 "Intel i82801H (M) LAN Controller", 815 WM_T_ICH8, WMP_F_1000T }, 816 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT, 817 "Intel i82801H IFE (GT) LAN Controller", 818 WM_T_ICH8, WMP_F_1000T }, 819 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G, 820 "Intel i82801H IFE (G) LAN Controller", 821 WM_T_ICH8, WMP_F_1000T }, 822 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT, 823 "82801I (AMT) LAN Controller", 824 WM_T_ICH9, WMP_F_1000T }, 825 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE, 826 "82801I LAN Controller", 827 WM_T_ICH9, WMP_F_1000T }, 828 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G, 829 "82801I (G) LAN Controller", 830 WM_T_ICH9, WMP_F_1000T }, 831 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT, 832 "82801I (GT) LAN Controller", 833 WM_T_ICH9, WMP_F_1000T }, 834 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C, 835 "82801I (C) LAN Controller", 836 WM_T_ICH9, WMP_F_1000T }, 837 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M, 838 "82801I mobile LAN Controller", 839 WM_T_ICH9, WMP_F_1000T }, 840 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IGP_M_V, 841 "82801I mobile (V) LAN Controller", 842 WM_T_ICH9, WMP_F_1000T }, 843 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT, 844 "82801I mobile (AMT) LAN Controller", 845 WM_T_ICH9, WMP_F_1000T }, 846 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82567LM_3, 847 "82567LM-3 LAN Controller", 848 WM_T_ICH10, WMP_F_1000T }, 849 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82567LF_3, 850 "82567LF-3 LAN Controller", 851 WM_T_ICH10, WMP_F_1000T }, 852 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF, 853 "i82801J (LF) LAN Controller", 854 WM_T_ICH10, WMP_F_1000T }, 855 { 0, 0, 856 NULL, 857 0, 0 }, 858 }; 859 860 #ifdef WM_EVENT_COUNTERS 861 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")]; 862 #endif /* WM_EVENT_COUNTERS */ 863 864 #if 0 /* Not currently used */ 865 static inline uint32_t 866 wm_io_read(struct wm_softc *sc, int reg) 867 { 868 869 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg); 870 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4)); 871 } 872 #endif 873 874 static inline void 875 wm_io_write(struct wm_softc *sc, int reg, uint32_t val) 876 { 877 878 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg); 879 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val); 880 } 881 882 static inline void 883 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v) 884 { 885 wa->wa_low = htole32(v & 0xffffffffU); 886 if (sizeof(bus_addr_t) == 8) 887 wa->wa_high = htole32((uint64_t) v >> 32); 888 else 889 wa->wa_high = 0; 890 } 891 892 static void 893 wm_set_spiaddrsize(struct wm_softc *sc) 894 { 895 uint32_t reg; 896 897 sc->sc_flags |= WM_F_EEPROM_SPI; 898 reg = CSR_READ(sc, WMREG_EECD); 899 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8; 900 } 901 902 static const struct wm_product * 903 wm_lookup(const struct pci_attach_args *pa) 904 { 905 const struct wm_product *wmp; 906 907 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) { 908 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor && 909 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product) 910 return (wmp); 911 } 912 return (NULL); 913 } 914 915 static int 916 wm_match(device_t parent, cfdata_t cf, void *aux) 917 { 918 struct pci_attach_args *pa = aux; 919 920 if (wm_lookup(pa) != NULL) 921 return (1); 922 923 return (0); 924 } 925 926 static void 927 wm_attach(device_t parent, device_t self, void *aux) 928 { 929 struct wm_softc *sc = device_private(self); 930 struct pci_attach_args *pa = aux; 931 prop_dictionary_t dict; 932 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 933 pci_chipset_tag_t pc = pa->pa_pc; 934 pci_intr_handle_t ih; 935 size_t cdata_size; 936 const char *intrstr = NULL; 937 const char *eetype, *xname; 938 bus_space_tag_t memt; 939 bus_space_handle_t memh; 940 bus_dma_segment_t seg; 941 int memh_valid; 942 int i, rseg, error; 943 const struct wm_product *wmp; 944 prop_data_t ea; 945 prop_number_t pn; 946 uint8_t enaddr[ETHER_ADDR_LEN]; 947 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin, io3; 948 pcireg_t preg, memtype; 949 uint32_t reg; 950 951 sc->sc_dev = self; 952 callout_init(&sc->sc_tick_ch, 0); 953 954 wmp = wm_lookup(pa); 955 if (wmp == NULL) { 956 printf("\n"); 957 panic("wm_attach: impossible"); 958 } 959 960 sc->sc_pc = pa->pa_pc; 961 sc->sc_pcitag = pa->pa_tag; 962 963 if (pci_dma64_available(pa)) 964 sc->sc_dmat = pa->pa_dmat64; 965 else 966 sc->sc_dmat = pa->pa_dmat; 967 968 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG)); 969 aprint_naive(": Ethernet controller\n"); 970 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg); 971 972 sc->sc_type = wmp->wmp_type; 973 if (sc->sc_type < WM_T_82543) { 974 if (preg < 2) { 975 aprint_error_dev(sc->sc_dev, 976 "i82542 must be at least rev. 2\n"); 977 return; 978 } 979 if (preg < 3) 980 sc->sc_type = WM_T_82542_2_0; 981 } 982 983 /* Set device properties (mactype) */ 984 dict = device_properties(sc->sc_dev); 985 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type); 986 987 /* 988 * Map the device. All devices support memory-mapped acccess, 989 * and it is really required for normal operation. 990 */ 991 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA); 992 switch (memtype) { 993 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 994 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 995 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA, 996 memtype, 0, &memt, &memh, NULL, NULL) == 0); 997 break; 998 default: 999 memh_valid = 0; 1000 break; 1001 } 1002 1003 if (memh_valid) { 1004 sc->sc_st = memt; 1005 sc->sc_sh = memh; 1006 } else { 1007 aprint_error_dev(sc->sc_dev, 1008 "unable to map device registers\n"); 1009 return; 1010 } 1011 1012 /* 1013 * In addition, i82544 and later support I/O mapped indirect 1014 * register access. It is not desirable (nor supported in 1015 * this driver) to use it for normal operation, though it is 1016 * required to work around bugs in some chip versions. 1017 */ 1018 if (sc->sc_type >= WM_T_82544) { 1019 /* First we have to find the I/O BAR. */ 1020 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) { 1021 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) == 1022 PCI_MAPREG_TYPE_IO) 1023 break; 1024 } 1025 if (i == PCI_MAPREG_END) 1026 aprint_error_dev(sc->sc_dev, 1027 "WARNING: unable to find I/O BAR\n"); 1028 else { 1029 /* 1030 * The i8254x doesn't apparently respond when the 1031 * I/O BAR is 0, which looks somewhat like it's not 1032 * been configured. 1033 */ 1034 preg = pci_conf_read(pc, pa->pa_tag, i); 1035 if (PCI_MAPREG_MEM_ADDR(preg) == 0) { 1036 aprint_error_dev(sc->sc_dev, 1037 "WARNING: I/O BAR at zero.\n"); 1038 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO, 1039 0, &sc->sc_iot, &sc->sc_ioh, 1040 NULL, NULL) == 0) { 1041 sc->sc_flags |= WM_F_IOH_VALID; 1042 } else { 1043 aprint_error_dev(sc->sc_dev, 1044 "WARNING: unable to map I/O space\n"); 1045 } 1046 } 1047 1048 } 1049 1050 /* Enable bus mastering. Disable MWI on the i82542 2.0. */ 1051 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1052 preg |= PCI_COMMAND_MASTER_ENABLE; 1053 if (sc->sc_type < WM_T_82542_2_1) 1054 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE; 1055 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg); 1056 1057 /* power up chip */ 1058 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, 1059 NULL)) && error != EOPNOTSUPP) { 1060 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error); 1061 return; 1062 } 1063 1064 /* 1065 * Map and establish our interrupt. 1066 */ 1067 if (pci_intr_map(pa, &ih)) { 1068 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); 1069 return; 1070 } 1071 intrstr = pci_intr_string(pc, ih); 1072 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc); 1073 if (sc->sc_ih == NULL) { 1074 aprint_error_dev(sc->sc_dev, "unable to establish interrupt"); 1075 if (intrstr != NULL) 1076 aprint_error(" at %s", intrstr); 1077 aprint_error("\n"); 1078 return; 1079 } 1080 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); 1081 1082 /* 1083 * Determine a few things about the bus we're connected to. 1084 */ 1085 if (sc->sc_type < WM_T_82543) { 1086 /* We don't really know the bus characteristics here. */ 1087 sc->sc_bus_speed = 33; 1088 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) { 1089 /* 1090 * CSA (Communication Streaming Architecture) is about as fast 1091 * a 32-bit 66MHz PCI Bus. 1092 */ 1093 sc->sc_flags |= WM_F_CSA; 1094 sc->sc_bus_speed = 66; 1095 aprint_verbose_dev(sc->sc_dev, 1096 "Communication Streaming Architecture\n"); 1097 if (sc->sc_type == WM_T_82547) { 1098 callout_init(&sc->sc_txfifo_ch, 0); 1099 callout_setfunc(&sc->sc_txfifo_ch, 1100 wm_82547_txfifo_stall, sc); 1101 aprint_verbose_dev(sc->sc_dev, 1102 "using 82547 Tx FIFO stall work-around\n"); 1103 } 1104 } else if (sc->sc_type >= WM_T_82571) { 1105 sc->sc_flags |= WM_F_PCIE; 1106 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9) 1107 && (sc->sc_type != WM_T_ICH10)) 1108 sc->sc_flags |= WM_F_EEPROM_SEMAPHORE; 1109 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n"); 1110 } else { 1111 reg = CSR_READ(sc, WMREG_STATUS); 1112 if (reg & STATUS_BUS64) 1113 sc->sc_flags |= WM_F_BUS64; 1114 if ((reg & STATUS_PCIX_MODE) != 0) { 1115 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb; 1116 1117 sc->sc_flags |= WM_F_PCIX; 1118 if (pci_get_capability(pa->pa_pc, pa->pa_tag, 1119 PCI_CAP_PCIX, 1120 &sc->sc_pcix_offset, NULL) == 0) 1121 aprint_error_dev(sc->sc_dev, 1122 "unable to find PCIX capability\n"); 1123 else if (sc->sc_type != WM_T_82545_3 && 1124 sc->sc_type != WM_T_82546_3) { 1125 /* 1126 * Work around a problem caused by the BIOS 1127 * setting the max memory read byte count 1128 * incorrectly. 1129 */ 1130 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag, 1131 sc->sc_pcix_offset + PCI_PCIX_CMD); 1132 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag, 1133 sc->sc_pcix_offset + PCI_PCIX_STATUS); 1134 1135 bytecnt = 1136 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >> 1137 PCI_PCIX_CMD_BYTECNT_SHIFT; 1138 maxb = 1139 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >> 1140 PCI_PCIX_STATUS_MAXB_SHIFT; 1141 if (bytecnt > maxb) { 1142 aprint_verbose_dev(sc->sc_dev, 1143 "resetting PCI-X MMRBC: %d -> %d\n", 1144 512 << bytecnt, 512 << maxb); 1145 pcix_cmd = (pcix_cmd & 1146 ~PCI_PCIX_CMD_BYTECNT_MASK) | 1147 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT); 1148 pci_conf_write(pa->pa_pc, pa->pa_tag, 1149 sc->sc_pcix_offset + PCI_PCIX_CMD, 1150 pcix_cmd); 1151 } 1152 } 1153 } 1154 /* 1155 * The quad port adapter is special; it has a PCIX-PCIX 1156 * bridge on the board, and can run the secondary bus at 1157 * a higher speed. 1158 */ 1159 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) { 1160 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120 1161 : 66; 1162 } else if (sc->sc_flags & WM_F_PCIX) { 1163 switch (reg & STATUS_PCIXSPD_MASK) { 1164 case STATUS_PCIXSPD_50_66: 1165 sc->sc_bus_speed = 66; 1166 break; 1167 case STATUS_PCIXSPD_66_100: 1168 sc->sc_bus_speed = 100; 1169 break; 1170 case STATUS_PCIXSPD_100_133: 1171 sc->sc_bus_speed = 133; 1172 break; 1173 default: 1174 aprint_error_dev(sc->sc_dev, 1175 "unknown PCIXSPD %d; assuming 66MHz\n", 1176 reg & STATUS_PCIXSPD_MASK); 1177 sc->sc_bus_speed = 66; 1178 break; 1179 } 1180 } else 1181 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33; 1182 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n", 1183 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed, 1184 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI"); 1185 } 1186 1187 /* 1188 * Allocate the control data structures, and create and load the 1189 * DMA map for it. 1190 * 1191 * NOTE: All Tx descriptors must be in the same 4G segment of 1192 * memory. So must Rx descriptors. We simplify by allocating 1193 * both sets within the same 4G segment. 1194 */ 1195 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ? 1196 WM_NTXDESC_82542 : WM_NTXDESC_82544; 1197 cdata_size = sc->sc_type < WM_T_82544 ? 1198 sizeof(struct wm_control_data_82542) : 1199 sizeof(struct wm_control_data_82544); 1200 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE, 1201 (bus_size_t) 0x100000000ULL, 1202 &seg, 1, &rseg, 0)) != 0) { 1203 aprint_error_dev(sc->sc_dev, 1204 "unable to allocate control data, error = %d\n", 1205 error); 1206 goto fail_0; 1207 } 1208 1209 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size, 1210 (void **)&sc->sc_control_data, 1211 BUS_DMA_COHERENT)) != 0) { 1212 aprint_error_dev(sc->sc_dev, 1213 "unable to map control data, error = %d\n", error); 1214 goto fail_1; 1215 } 1216 1217 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size, 1218 0, 0, &sc->sc_cddmamap)) != 0) { 1219 aprint_error_dev(sc->sc_dev, 1220 "unable to create control data DMA map, error = %d\n", 1221 error); 1222 goto fail_2; 1223 } 1224 1225 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 1226 sc->sc_control_data, cdata_size, NULL, 1227 0)) != 0) { 1228 aprint_error_dev(sc->sc_dev, 1229 "unable to load control data DMA map, error = %d\n", 1230 error); 1231 goto fail_3; 1232 } 1233 1234 /* 1235 * Create the transmit buffer DMA maps. 1236 */ 1237 WM_TXQUEUELEN(sc) = 1238 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ? 1239 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX; 1240 for (i = 0; i < WM_TXQUEUELEN(sc); i++) { 1241 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA, 1242 WM_NTXSEGS, WTX_MAX_LEN, 0, 0, 1243 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 1244 aprint_error_dev(sc->sc_dev, 1245 "unable to create Tx DMA map %d, error = %d\n", 1246 i, error); 1247 goto fail_4; 1248 } 1249 } 1250 1251 /* 1252 * Create the receive buffer DMA maps. 1253 */ 1254 for (i = 0; i < WM_NRXDESC; i++) { 1255 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1256 MCLBYTES, 0, 0, 1257 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 1258 aprint_error_dev(sc->sc_dev, 1259 "unable to create Rx DMA map %d error = %d\n", 1260 i, error); 1261 goto fail_5; 1262 } 1263 sc->sc_rxsoft[i].rxs_mbuf = NULL; 1264 } 1265 1266 /* clear interesting stat counters */ 1267 CSR_READ(sc, WMREG_COLC); 1268 CSR_READ(sc, WMREG_RXERRC); 1269 1270 /* 1271 * Reset the chip to a known state. 1272 */ 1273 wm_reset(sc); 1274 1275 switch (sc->sc_type) { 1276 case WM_T_82571: 1277 case WM_T_82572: 1278 case WM_T_82573: 1279 case WM_T_82574: 1280 case WM_T_82583: 1281 case WM_T_80003: 1282 case WM_T_ICH8: 1283 case WM_T_ICH9: 1284 case WM_T_ICH10: 1285 if (wm_check_mng_mode(sc) != 0) 1286 wm_get_hw_control(sc); 1287 break; 1288 default: 1289 break; 1290 } 1291 1292 /* 1293 * Get some information about the EEPROM. 1294 */ 1295 switch (sc->sc_type) { 1296 case WM_T_82542_2_0: 1297 case WM_T_82542_2_1: 1298 case WM_T_82543: 1299 case WM_T_82544: 1300 /* Microwire */ 1301 sc->sc_ee_addrbits = 6; 1302 break; 1303 case WM_T_82540: 1304 case WM_T_82545: 1305 case WM_T_82545_3: 1306 case WM_T_82546: 1307 case WM_T_82546_3: 1308 /* Microwire */ 1309 reg = CSR_READ(sc, WMREG_EECD); 1310 if (reg & EECD_EE_SIZE) 1311 sc->sc_ee_addrbits = 8; 1312 else 1313 sc->sc_ee_addrbits = 6; 1314 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE; 1315 break; 1316 case WM_T_82541: 1317 case WM_T_82541_2: 1318 case WM_T_82547: 1319 case WM_T_82547_2: 1320 reg = CSR_READ(sc, WMREG_EECD); 1321 if (reg & EECD_EE_TYPE) { 1322 /* SPI */ 1323 wm_set_spiaddrsize(sc); 1324 } else 1325 /* Microwire */ 1326 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6; 1327 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE; 1328 break; 1329 case WM_T_82571: 1330 case WM_T_82572: 1331 /* SPI */ 1332 wm_set_spiaddrsize(sc); 1333 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE; 1334 break; 1335 case WM_T_82573: 1336 case WM_T_82574: 1337 case WM_T_82583: 1338 if (wm_is_onboard_nvm_eeprom(sc) == 0) 1339 sc->sc_flags |= WM_F_EEPROM_FLASH; 1340 else { 1341 /* SPI */ 1342 wm_set_spiaddrsize(sc); 1343 } 1344 sc->sc_flags |= WM_F_EEPROM_EERDEEWR; 1345 break; 1346 case WM_T_80003: 1347 /* SPI */ 1348 wm_set_spiaddrsize(sc); 1349 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC; 1350 break; 1351 case WM_T_ICH8: 1352 case WM_T_ICH9: 1353 /* Check whether EEPROM is present or not */ 1354 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) { 1355 /* Not found */ 1356 aprint_error_dev(sc->sc_dev, 1357 "EEPROM PRESENT bit isn't set\n"); 1358 sc->sc_flags |= WM_F_EEPROM_INVALID; 1359 } 1360 /* FALLTHROUGH */ 1361 case WM_T_ICH10: 1362 /* FLASH */ 1363 sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_SWFWHW_SYNC; 1364 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH); 1365 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0, 1366 &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) { 1367 aprint_error_dev(sc->sc_dev, 1368 "can't map FLASH registers\n"); 1369 return; 1370 } 1371 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG); 1372 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) * 1373 ICH_FLASH_SECTOR_SIZE; 1374 sc->sc_ich8_flash_bank_size = 1375 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1; 1376 sc->sc_ich8_flash_bank_size -= 1377 (reg & ICH_GFPREG_BASE_MASK); 1378 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE; 1379 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t); 1380 break; 1381 default: 1382 break; 1383 } 1384 1385 /* 1386 * Defer printing the EEPROM type until after verifying the checksum 1387 * This allows the EEPROM type to be printed correctly in the case 1388 * that no EEPROM is attached. 1389 */ 1390 /* 1391 * Validate the EEPROM checksum. If the checksum fails, flag 1392 * this for later, so we can fail future reads from the EEPROM. 1393 */ 1394 if (wm_validate_eeprom_checksum(sc)) { 1395 /* 1396 * Read twice again because some PCI-e parts fail the 1397 * first check due to the link being in sleep state. 1398 */ 1399 if (wm_validate_eeprom_checksum(sc)) 1400 sc->sc_flags |= WM_F_EEPROM_INVALID; 1401 } 1402 1403 /* Set device properties (macflags) */ 1404 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags); 1405 1406 if (sc->sc_flags & WM_F_EEPROM_INVALID) 1407 aprint_verbose_dev(sc->sc_dev, "No EEPROM\n"); 1408 else if (sc->sc_flags & WM_F_EEPROM_FLASH) { 1409 aprint_verbose_dev(sc->sc_dev, "FLASH\n"); 1410 } else { 1411 if (sc->sc_flags & WM_F_EEPROM_SPI) 1412 eetype = "SPI"; 1413 else 1414 eetype = "MicroWire"; 1415 aprint_verbose_dev(sc->sc_dev, 1416 "%u word (%d address bits) %s EEPROM\n", 1417 1U << sc->sc_ee_addrbits, 1418 sc->sc_ee_addrbits, eetype); 1419 } 1420 1421 /* 1422 * Read the Ethernet address from the EEPROM, if not first found 1423 * in device properties. 1424 */ 1425 ea = prop_dictionary_get(dict, "mac-addr"); 1426 if (ea != NULL) { 1427 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); 1428 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); 1429 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN); 1430 } else { 1431 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR, 1432 sizeof(myea) / sizeof(myea[0]), myea)) { 1433 aprint_error_dev(sc->sc_dev, 1434 "unable to read Ethernet address\n"); 1435 return; 1436 } 1437 enaddr[0] = myea[0] & 0xff; 1438 enaddr[1] = myea[0] >> 8; 1439 enaddr[2] = myea[1] & 0xff; 1440 enaddr[3] = myea[1] >> 8; 1441 enaddr[4] = myea[2] & 0xff; 1442 enaddr[5] = myea[2] >> 8; 1443 } 1444 1445 /* 1446 * Toggle the LSB of the MAC address on the second port 1447 * of the dual port controller. 1448 */ 1449 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3 1450 || sc->sc_type == WM_T_82571 || sc->sc_type == WM_T_80003) { 1451 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1) 1452 enaddr[5] ^= 1; 1453 } 1454 1455 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 1456 ether_sprintf(enaddr)); 1457 1458 /* 1459 * Read the config info from the EEPROM, and set up various 1460 * bits in the control registers based on their contents. 1461 */ 1462 pn = prop_dictionary_get(dict, "i82543-cfg1"); 1463 if (pn != NULL) { 1464 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER); 1465 cfg1 = (uint16_t) prop_number_integer_value(pn); 1466 } else { 1467 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) { 1468 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n"); 1469 return; 1470 } 1471 } 1472 1473 pn = prop_dictionary_get(dict, "i82543-cfg2"); 1474 if (pn != NULL) { 1475 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER); 1476 cfg2 = (uint16_t) prop_number_integer_value(pn); 1477 } else { 1478 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) { 1479 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n"); 1480 return; 1481 } 1482 } 1483 1484 if (sc->sc_type >= WM_T_82544) { 1485 pn = prop_dictionary_get(dict, "i82543-swdpin"); 1486 if (pn != NULL) { 1487 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER); 1488 swdpin = (uint16_t) prop_number_integer_value(pn); 1489 } else { 1490 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) { 1491 aprint_error_dev(sc->sc_dev, 1492 "unable to read SWDPIN\n"); 1493 return; 1494 } 1495 } 1496 } 1497 1498 if (cfg1 & EEPROM_CFG1_ILOS) 1499 sc->sc_ctrl |= CTRL_ILOS; 1500 if (sc->sc_type >= WM_T_82544) { 1501 sc->sc_ctrl |= 1502 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) << 1503 CTRL_SWDPIO_SHIFT; 1504 sc->sc_ctrl |= 1505 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) << 1506 CTRL_SWDPINS_SHIFT; 1507 } else { 1508 sc->sc_ctrl |= 1509 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) << 1510 CTRL_SWDPIO_SHIFT; 1511 } 1512 1513 #if 0 1514 if (sc->sc_type >= WM_T_82544) { 1515 if (cfg1 & EEPROM_CFG1_IPS0) 1516 sc->sc_ctrl_ext |= CTRL_EXT_IPS; 1517 if (cfg1 & EEPROM_CFG1_IPS1) 1518 sc->sc_ctrl_ext |= CTRL_EXT_IPS1; 1519 sc->sc_ctrl_ext |= 1520 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) << 1521 CTRL_EXT_SWDPIO_SHIFT; 1522 sc->sc_ctrl_ext |= 1523 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) << 1524 CTRL_EXT_SWDPINS_SHIFT; 1525 } else { 1526 sc->sc_ctrl_ext |= 1527 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) << 1528 CTRL_EXT_SWDPIO_SHIFT; 1529 } 1530 #endif 1531 1532 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 1533 #if 0 1534 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext); 1535 #endif 1536 1537 /* 1538 * Set up some register offsets that are different between 1539 * the i82542 and the i82543 and later chips. 1540 */ 1541 if (sc->sc_type < WM_T_82543) { 1542 sc->sc_rdt_reg = WMREG_OLD_RDT0; 1543 sc->sc_tdt_reg = WMREG_OLD_TDT; 1544 } else { 1545 sc->sc_rdt_reg = WMREG_RDT; 1546 sc->sc_tdt_reg = WMREG_TDT; 1547 } 1548 1549 /* 1550 * Determine if we're TBI or GMII mode, and initialize the 1551 * media structures accordingly. 1552 */ 1553 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9 1554 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_82573 1555 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) { 1556 /* STATUS_TBIMODE reserved/reused, can't rely on it */ 1557 wm_gmii_mediainit(sc); 1558 } else if (sc->sc_type < WM_T_82543 || 1559 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) { 1560 if (wmp->wmp_flags & WMP_F_1000T) 1561 aprint_error_dev(sc->sc_dev, 1562 "WARNING: TBIMODE set on 1000BASE-T product!\n"); 1563 wm_tbi_mediainit(sc); 1564 } else { 1565 if (wmp->wmp_flags & WMP_F_1000X) 1566 aprint_error_dev(sc->sc_dev, 1567 "WARNING: TBIMODE clear on 1000BASE-X product!\n"); 1568 wm_gmii_mediainit(sc); 1569 } 1570 1571 ifp = &sc->sc_ethercom.ec_if; 1572 xname = device_xname(sc->sc_dev); 1573 strlcpy(ifp->if_xname, xname, IFNAMSIZ); 1574 ifp->if_softc = sc; 1575 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1576 ifp->if_ioctl = wm_ioctl; 1577 ifp->if_start = wm_start; 1578 ifp->if_watchdog = wm_watchdog; 1579 ifp->if_init = wm_init; 1580 ifp->if_stop = wm_stop; 1581 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN)); 1582 IFQ_SET_READY(&ifp->if_snd); 1583 1584 /* Check for jumbo frame */ 1585 switch (sc->sc_type) { 1586 case WM_T_82573: 1587 /* XXX limited to 9234 if ASPM is disabled */ 1588 wm_read_eeprom(sc, EEPROM_INIT_3GIO_3, 1, &io3); 1589 if ((io3 & EEPROM_3GIO_3_ASPM_MASK) != 0) 1590 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 1591 break; 1592 case WM_T_82571: 1593 case WM_T_82572: 1594 case WM_T_82574: 1595 case WM_T_80003: 1596 case WM_T_ICH9: 1597 case WM_T_ICH10: 1598 /* XXX limited to 9234 */ 1599 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 1600 break; 1601 case WM_T_82542_2_0: 1602 case WM_T_82542_2_1: 1603 case WM_T_82583: 1604 case WM_T_ICH8: 1605 /* No support for jumbo frame */ 1606 break; 1607 default: 1608 /* ETHER_MAX_LEN_JUMBO */ 1609 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 1610 break; 1611 } 1612 1613 /* 1614 * If we're a i82543 or greater, we can support VLANs. 1615 */ 1616 if (sc->sc_type >= WM_T_82543) 1617 sc->sc_ethercom.ec_capabilities |= 1618 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 1619 1620 /* 1621 * We can perform TCPv4 and UDPv4 checkums in-bound. Only 1622 * on i82543 and later. 1623 */ 1624 if (sc->sc_type >= WM_T_82543) { 1625 ifp->if_capabilities |= 1626 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 1627 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1628 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 1629 IFCAP_CSUM_TCPv6_Tx | 1630 IFCAP_CSUM_UDPv6_Tx; 1631 } 1632 1633 /* 1634 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL. 1635 * 1636 * 82541GI (8086:1076) ... no 1637 * 82572EI (8086:10b9) ... yes 1638 */ 1639 if (sc->sc_type >= WM_T_82571) { 1640 ifp->if_capabilities |= 1641 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx; 1642 } 1643 1644 /* 1645 * If we're a i82544 or greater (except i82547), we can do 1646 * TCP segmentation offload. 1647 */ 1648 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) { 1649 ifp->if_capabilities |= IFCAP_TSOv4; 1650 } 1651 1652 if (sc->sc_type >= WM_T_82571) { 1653 ifp->if_capabilities |= IFCAP_TSOv6; 1654 } 1655 1656 /* 1657 * Attach the interface. 1658 */ 1659 if_attach(ifp); 1660 ether_ifattach(ifp, enaddr); 1661 #if NRND > 0 1662 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET, 0); 1663 #endif 1664 1665 #ifdef WM_EVENT_COUNTERS 1666 /* Attach event counters. */ 1667 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 1668 NULL, xname, "txsstall"); 1669 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 1670 NULL, xname, "txdstall"); 1671 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC, 1672 NULL, xname, "txfifo_stall"); 1673 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR, 1674 NULL, xname, "txdw"); 1675 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR, 1676 NULL, xname, "txqe"); 1677 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 1678 NULL, xname, "rxintr"); 1679 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR, 1680 NULL, xname, "linkintr"); 1681 1682 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 1683 NULL, xname, "rxipsum"); 1684 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC, 1685 NULL, xname, "rxtusum"); 1686 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 1687 NULL, xname, "txipsum"); 1688 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC, 1689 NULL, xname, "txtusum"); 1690 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC, 1691 NULL, xname, "txtusum6"); 1692 1693 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC, 1694 NULL, xname, "txtso"); 1695 evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC, 1696 NULL, xname, "txtso6"); 1697 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC, 1698 NULL, xname, "txtsopain"); 1699 1700 for (i = 0; i < WM_NTXSEGS; i++) { 1701 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i); 1702 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC, 1703 NULL, xname, wm_txseg_evcnt_names[i]); 1704 } 1705 1706 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC, 1707 NULL, xname, "txdrop"); 1708 1709 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC, 1710 NULL, xname, "tu"); 1711 1712 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC, 1713 NULL, xname, "tx_xoff"); 1714 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC, 1715 NULL, xname, "tx_xon"); 1716 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC, 1717 NULL, xname, "rx_xoff"); 1718 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC, 1719 NULL, xname, "rx_xon"); 1720 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC, 1721 NULL, xname, "rx_macctl"); 1722 #endif /* WM_EVENT_COUNTERS */ 1723 1724 if (pmf_device_register(self, NULL, NULL)) 1725 pmf_class_network_register(self, ifp); 1726 else 1727 aprint_error_dev(self, "couldn't establish power handler\n"); 1728 1729 return; 1730 1731 /* 1732 * Free any resources we've allocated during the failed attach 1733 * attempt. Do this in reverse order and fall through. 1734 */ 1735 fail_5: 1736 for (i = 0; i < WM_NRXDESC; i++) { 1737 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 1738 bus_dmamap_destroy(sc->sc_dmat, 1739 sc->sc_rxsoft[i].rxs_dmamap); 1740 } 1741 fail_4: 1742 for (i = 0; i < WM_TXQUEUELEN(sc); i++) { 1743 if (sc->sc_txsoft[i].txs_dmamap != NULL) 1744 bus_dmamap_destroy(sc->sc_dmat, 1745 sc->sc_txsoft[i].txs_dmamap); 1746 } 1747 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 1748 fail_3: 1749 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 1750 fail_2: 1751 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 1752 cdata_size); 1753 fail_1: 1754 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 1755 fail_0: 1756 return; 1757 } 1758 1759 /* 1760 * wm_tx_offload: 1761 * 1762 * Set up TCP/IP checksumming parameters for the 1763 * specified packet. 1764 */ 1765 static int 1766 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp, 1767 uint8_t *fieldsp) 1768 { 1769 struct mbuf *m0 = txs->txs_mbuf; 1770 struct livengood_tcpip_ctxdesc *t; 1771 uint32_t ipcs, tucs, cmd, cmdlen, seg; 1772 uint32_t ipcse; 1773 struct ether_header *eh; 1774 int offset, iphl; 1775 uint8_t fields; 1776 1777 /* 1778 * XXX It would be nice if the mbuf pkthdr had offset 1779 * fields for the protocol headers. 1780 */ 1781 1782 eh = mtod(m0, struct ether_header *); 1783 switch (htons(eh->ether_type)) { 1784 case ETHERTYPE_IP: 1785 case ETHERTYPE_IPV6: 1786 offset = ETHER_HDR_LEN; 1787 break; 1788 1789 case ETHERTYPE_VLAN: 1790 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 1791 break; 1792 1793 default: 1794 /* 1795 * Don't support this protocol or encapsulation. 1796 */ 1797 *fieldsp = 0; 1798 *cmdp = 0; 1799 return (0); 1800 } 1801 1802 if ((m0->m_pkthdr.csum_flags & 1803 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) { 1804 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 1805 } else { 1806 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data); 1807 } 1808 ipcse = offset + iphl - 1; 1809 1810 cmd = WTX_CMD_DEXT | WTX_DTYP_D; 1811 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE; 1812 seg = 0; 1813 fields = 0; 1814 1815 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) { 1816 int hlen = offset + iphl; 1817 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; 1818 1819 if (__predict_false(m0->m_len < 1820 (hlen + sizeof(struct tcphdr)))) { 1821 /* 1822 * TCP/IP headers are not in the first mbuf; we need 1823 * to do this the slow and painful way. Let's just 1824 * hope this doesn't happen very often. 1825 */ 1826 struct tcphdr th; 1827 1828 WM_EVCNT_INCR(&sc->sc_ev_txtsopain); 1829 1830 m_copydata(m0, hlen, sizeof(th), &th); 1831 if (v4) { 1832 struct ip ip; 1833 1834 m_copydata(m0, offset, sizeof(ip), &ip); 1835 ip.ip_len = 0; 1836 m_copyback(m0, 1837 offset + offsetof(struct ip, ip_len), 1838 sizeof(ip.ip_len), &ip.ip_len); 1839 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, 1840 ip.ip_dst.s_addr, htons(IPPROTO_TCP)); 1841 } else { 1842 struct ip6_hdr ip6; 1843 1844 m_copydata(m0, offset, sizeof(ip6), &ip6); 1845 ip6.ip6_plen = 0; 1846 m_copyback(m0, 1847 offset + offsetof(struct ip6_hdr, ip6_plen), 1848 sizeof(ip6.ip6_plen), &ip6.ip6_plen); 1849 th.th_sum = in6_cksum_phdr(&ip6.ip6_src, 1850 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP)); 1851 } 1852 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum), 1853 sizeof(th.th_sum), &th.th_sum); 1854 1855 hlen += th.th_off << 2; 1856 } else { 1857 /* 1858 * TCP/IP headers are in the first mbuf; we can do 1859 * this the easy way. 1860 */ 1861 struct tcphdr *th; 1862 1863 if (v4) { 1864 struct ip *ip = 1865 (void *)(mtod(m0, char *) + offset); 1866 th = (void *)(mtod(m0, char *) + hlen); 1867 1868 ip->ip_len = 0; 1869 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, 1870 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1871 } else { 1872 struct ip6_hdr *ip6 = 1873 (void *)(mtod(m0, char *) + offset); 1874 th = (void *)(mtod(m0, char *) + hlen); 1875 1876 ip6->ip6_plen = 0; 1877 th->th_sum = in6_cksum_phdr(&ip6->ip6_src, 1878 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP)); 1879 } 1880 hlen += th->th_off << 2; 1881 } 1882 1883 if (v4) { 1884 WM_EVCNT_INCR(&sc->sc_ev_txtso); 1885 cmdlen |= WTX_TCPIP_CMD_IP; 1886 } else { 1887 WM_EVCNT_INCR(&sc->sc_ev_txtso6); 1888 ipcse = 0; 1889 } 1890 cmd |= WTX_TCPIP_CMD_TSE; 1891 cmdlen |= WTX_TCPIP_CMD_TSE | 1892 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen); 1893 seg = WTX_TCPIP_SEG_HDRLEN(hlen) | 1894 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz); 1895 } 1896 1897 /* 1898 * NOTE: Even if we're not using the IP or TCP/UDP checksum 1899 * offload feature, if we load the context descriptor, we 1900 * MUST provide valid values for IPCSS and TUCSS fields. 1901 */ 1902 1903 ipcs = WTX_TCPIP_IPCSS(offset) | 1904 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) | 1905 WTX_TCPIP_IPCSE(ipcse); 1906 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) { 1907 WM_EVCNT_INCR(&sc->sc_ev_txipsum); 1908 fields |= WTX_IXSM; 1909 } 1910 1911 offset += iphl; 1912 1913 if (m0->m_pkthdr.csum_flags & 1914 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) { 1915 WM_EVCNT_INCR(&sc->sc_ev_txtusum); 1916 fields |= WTX_TXSM; 1917 tucs = WTX_TCPIP_TUCSS(offset) | 1918 WTX_TCPIP_TUCSO(offset + 1919 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) | 1920 WTX_TCPIP_TUCSE(0) /* rest of packet */; 1921 } else if ((m0->m_pkthdr.csum_flags & 1922 (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) { 1923 WM_EVCNT_INCR(&sc->sc_ev_txtusum6); 1924 fields |= WTX_TXSM; 1925 tucs = WTX_TCPIP_TUCSS(offset) | 1926 WTX_TCPIP_TUCSO(offset + 1927 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) | 1928 WTX_TCPIP_TUCSE(0) /* rest of packet */; 1929 } else { 1930 /* Just initialize it to a valid TCP context. */ 1931 tucs = WTX_TCPIP_TUCSS(offset) | 1932 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) | 1933 WTX_TCPIP_TUCSE(0) /* rest of packet */; 1934 } 1935 1936 /* Fill in the context descriptor. */ 1937 t = (struct livengood_tcpip_ctxdesc *) 1938 &sc->sc_txdescs[sc->sc_txnext]; 1939 t->tcpip_ipcs = htole32(ipcs); 1940 t->tcpip_tucs = htole32(tucs); 1941 t->tcpip_cmdlen = htole32(cmdlen); 1942 t->tcpip_seg = htole32(seg); 1943 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE); 1944 1945 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext); 1946 txs->txs_ndesc++; 1947 1948 *cmdp = cmd; 1949 *fieldsp = fields; 1950 1951 return (0); 1952 } 1953 1954 static void 1955 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0) 1956 { 1957 struct mbuf *m; 1958 int i; 1959 1960 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev)); 1961 for (m = m0, i = 0; m != NULL; m = m->m_next, i++) 1962 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, " 1963 "m_flags = 0x%08x\n", device_xname(sc->sc_dev), 1964 m->m_data, m->m_len, m->m_flags); 1965 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev), 1966 i, i == 1 ? "" : "s"); 1967 } 1968 1969 /* 1970 * wm_82547_txfifo_stall: 1971 * 1972 * Callout used to wait for the 82547 Tx FIFO to drain, 1973 * reset the FIFO pointers, and restart packet transmission. 1974 */ 1975 static void 1976 wm_82547_txfifo_stall(void *arg) 1977 { 1978 struct wm_softc *sc = arg; 1979 int s; 1980 1981 s = splnet(); 1982 1983 if (sc->sc_txfifo_stall) { 1984 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) && 1985 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) && 1986 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) { 1987 /* 1988 * Packets have drained. Stop transmitter, reset 1989 * FIFO pointers, restart transmitter, and kick 1990 * the packet queue. 1991 */ 1992 uint32_t tctl = CSR_READ(sc, WMREG_TCTL); 1993 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN); 1994 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr); 1995 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr); 1996 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr); 1997 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr); 1998 CSR_WRITE(sc, WMREG_TCTL, tctl); 1999 CSR_WRITE_FLUSH(sc); 2000 2001 sc->sc_txfifo_head = 0; 2002 sc->sc_txfifo_stall = 0; 2003 wm_start(&sc->sc_ethercom.ec_if); 2004 } else { 2005 /* 2006 * Still waiting for packets to drain; try again in 2007 * another tick. 2008 */ 2009 callout_schedule(&sc->sc_txfifo_ch, 1); 2010 } 2011 } 2012 2013 splx(s); 2014 } 2015 2016 /* 2017 * wm_82547_txfifo_bugchk: 2018 * 2019 * Check for bug condition in the 82547 Tx FIFO. We need to 2020 * prevent enqueueing a packet that would wrap around the end 2021 * if the Tx FIFO ring buffer, otherwise the chip will croak. 2022 * 2023 * We do this by checking the amount of space before the end 2024 * of the Tx FIFO buffer. If the packet will not fit, we "stall" 2025 * the Tx FIFO, wait for all remaining packets to drain, reset 2026 * the internal FIFO pointers to the beginning, and restart 2027 * transmission on the interface. 2028 */ 2029 #define WM_FIFO_HDR 0x10 2030 #define WM_82547_PAD_LEN 0x3e0 2031 static int 2032 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0) 2033 { 2034 int space = sc->sc_txfifo_size - sc->sc_txfifo_head; 2035 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR); 2036 2037 /* Just return if already stalled. */ 2038 if (sc->sc_txfifo_stall) 2039 return (1); 2040 2041 if (sc->sc_mii.mii_media_active & IFM_FDX) { 2042 /* Stall only occurs in half-duplex mode. */ 2043 goto send_packet; 2044 } 2045 2046 if (len >= WM_82547_PAD_LEN + space) { 2047 sc->sc_txfifo_stall = 1; 2048 callout_schedule(&sc->sc_txfifo_ch, 1); 2049 return (1); 2050 } 2051 2052 send_packet: 2053 sc->sc_txfifo_head += len; 2054 if (sc->sc_txfifo_head >= sc->sc_txfifo_size) 2055 sc->sc_txfifo_head -= sc->sc_txfifo_size; 2056 2057 return (0); 2058 } 2059 2060 /* 2061 * wm_start: [ifnet interface function] 2062 * 2063 * Start packet transmission on the interface. 2064 */ 2065 static void 2066 wm_start(struct ifnet *ifp) 2067 { 2068 struct wm_softc *sc = ifp->if_softc; 2069 struct mbuf *m0; 2070 struct m_tag *mtag; 2071 struct wm_txsoft *txs; 2072 bus_dmamap_t dmamap; 2073 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso; 2074 bus_addr_t curaddr; 2075 bus_size_t seglen, curlen; 2076 uint32_t cksumcmd; 2077 uint8_t cksumfields; 2078 2079 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 2080 return; 2081 2082 /* 2083 * Remember the previous number of free descriptors. 2084 */ 2085 ofree = sc->sc_txfree; 2086 2087 /* 2088 * Loop through the send queue, setting up transmit descriptors 2089 * until we drain the queue, or use up all available transmit 2090 * descriptors. 2091 */ 2092 for (;;) { 2093 /* Grab a packet off the queue. */ 2094 IFQ_POLL(&ifp->if_snd, m0); 2095 if (m0 == NULL) 2096 break; 2097 2098 DPRINTF(WM_DEBUG_TX, 2099 ("%s: TX: have packet to transmit: %p\n", 2100 device_xname(sc->sc_dev), m0)); 2101 2102 /* Get a work queue entry. */ 2103 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) { 2104 wm_txintr(sc); 2105 if (sc->sc_txsfree == 0) { 2106 DPRINTF(WM_DEBUG_TX, 2107 ("%s: TX: no free job descriptors\n", 2108 device_xname(sc->sc_dev))); 2109 WM_EVCNT_INCR(&sc->sc_ev_txsstall); 2110 break; 2111 } 2112 } 2113 2114 txs = &sc->sc_txsoft[sc->sc_txsnext]; 2115 dmamap = txs->txs_dmamap; 2116 2117 use_tso = (m0->m_pkthdr.csum_flags & 2118 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0; 2119 2120 /* 2121 * So says the Linux driver: 2122 * The controller does a simple calculation to make sure 2123 * there is enough room in the FIFO before initiating the 2124 * DMA for each buffer. The calc is: 2125 * 4 = ceil(buffer len / MSS) 2126 * To make sure we don't overrun the FIFO, adjust the max 2127 * buffer len if the MSS drops. 2128 */ 2129 dmamap->dm_maxsegsz = 2130 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN) 2131 ? m0->m_pkthdr.segsz << 2 2132 : WTX_MAX_LEN; 2133 2134 /* 2135 * Load the DMA map. If this fails, the packet either 2136 * didn't fit in the allotted number of segments, or we 2137 * were short on resources. For the too-many-segments 2138 * case, we simply report an error and drop the packet, 2139 * since we can't sanely copy a jumbo packet to a single 2140 * buffer. 2141 */ 2142 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 2143 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 2144 if (error) { 2145 if (error == EFBIG) { 2146 WM_EVCNT_INCR(&sc->sc_ev_txdrop); 2147 log(LOG_ERR, "%s: Tx packet consumes too many " 2148 "DMA segments, dropping...\n", 2149 device_xname(sc->sc_dev)); 2150 IFQ_DEQUEUE(&ifp->if_snd, m0); 2151 wm_dump_mbuf_chain(sc, m0); 2152 m_freem(m0); 2153 continue; 2154 } 2155 /* 2156 * Short on resources, just stop for now. 2157 */ 2158 DPRINTF(WM_DEBUG_TX, 2159 ("%s: TX: dmamap load failed: %d\n", 2160 device_xname(sc->sc_dev), error)); 2161 break; 2162 } 2163 2164 segs_needed = dmamap->dm_nsegs; 2165 if (use_tso) { 2166 /* For sentinel descriptor; see below. */ 2167 segs_needed++; 2168 } 2169 2170 /* 2171 * Ensure we have enough descriptors free to describe 2172 * the packet. Note, we always reserve one descriptor 2173 * at the end of the ring due to the semantics of the 2174 * TDT register, plus one more in the event we need 2175 * to load offload context. 2176 */ 2177 if (segs_needed > sc->sc_txfree - 2) { 2178 /* 2179 * Not enough free descriptors to transmit this 2180 * packet. We haven't committed anything yet, 2181 * so just unload the DMA map, put the packet 2182 * pack on the queue, and punt. Notify the upper 2183 * layer that there are no more slots left. 2184 */ 2185 DPRINTF(WM_DEBUG_TX, 2186 ("%s: TX: need %d (%d) descriptors, have %d\n", 2187 device_xname(sc->sc_dev), dmamap->dm_nsegs, 2188 segs_needed, sc->sc_txfree - 1)); 2189 ifp->if_flags |= IFF_OACTIVE; 2190 bus_dmamap_unload(sc->sc_dmat, dmamap); 2191 WM_EVCNT_INCR(&sc->sc_ev_txdstall); 2192 break; 2193 } 2194 2195 /* 2196 * Check for 82547 Tx FIFO bug. We need to do this 2197 * once we know we can transmit the packet, since we 2198 * do some internal FIFO space accounting here. 2199 */ 2200 if (sc->sc_type == WM_T_82547 && 2201 wm_82547_txfifo_bugchk(sc, m0)) { 2202 DPRINTF(WM_DEBUG_TX, 2203 ("%s: TX: 82547 Tx FIFO bug detected\n", 2204 device_xname(sc->sc_dev))); 2205 ifp->if_flags |= IFF_OACTIVE; 2206 bus_dmamap_unload(sc->sc_dmat, dmamap); 2207 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall); 2208 break; 2209 } 2210 2211 IFQ_DEQUEUE(&ifp->if_snd, m0); 2212 2213 /* 2214 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 2215 */ 2216 2217 DPRINTF(WM_DEBUG_TX, 2218 ("%s: TX: packet has %d (%d) DMA segments\n", 2219 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed)); 2220 2221 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]); 2222 2223 /* 2224 * Store a pointer to the packet so that we can free it 2225 * later. 2226 * 2227 * Initially, we consider the number of descriptors the 2228 * packet uses the number of DMA segments. This may be 2229 * incremented by 1 if we do checksum offload (a descriptor 2230 * is used to set the checksum context). 2231 */ 2232 txs->txs_mbuf = m0; 2233 txs->txs_firstdesc = sc->sc_txnext; 2234 txs->txs_ndesc = segs_needed; 2235 2236 /* Set up offload parameters for this packet. */ 2237 if (m0->m_pkthdr.csum_flags & 2238 (M_CSUM_TSOv4|M_CSUM_TSOv6| 2239 M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4| 2240 M_CSUM_TCPv6|M_CSUM_UDPv6)) { 2241 if (wm_tx_offload(sc, txs, &cksumcmd, 2242 &cksumfields) != 0) { 2243 /* Error message already displayed. */ 2244 bus_dmamap_unload(sc->sc_dmat, dmamap); 2245 continue; 2246 } 2247 } else { 2248 cksumcmd = 0; 2249 cksumfields = 0; 2250 } 2251 2252 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS; 2253 2254 /* Sync the DMA map. */ 2255 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 2256 BUS_DMASYNC_PREWRITE); 2257 2258 /* 2259 * Initialize the transmit descriptor. 2260 */ 2261 for (nexttx = sc->sc_txnext, seg = 0; 2262 seg < dmamap->dm_nsegs; seg++) { 2263 for (seglen = dmamap->dm_segs[seg].ds_len, 2264 curaddr = dmamap->dm_segs[seg].ds_addr; 2265 seglen != 0; 2266 curaddr += curlen, seglen -= curlen, 2267 nexttx = WM_NEXTTX(sc, nexttx)) { 2268 curlen = seglen; 2269 2270 /* 2271 * So says the Linux driver: 2272 * Work around for premature descriptor 2273 * write-backs in TSO mode. Append a 2274 * 4-byte sentinel descriptor. 2275 */ 2276 if (use_tso && 2277 seg == dmamap->dm_nsegs - 1 && 2278 curlen > 8) 2279 curlen -= 4; 2280 2281 wm_set_dma_addr( 2282 &sc->sc_txdescs[nexttx].wtx_addr, 2283 curaddr); 2284 sc->sc_txdescs[nexttx].wtx_cmdlen = 2285 htole32(cksumcmd | curlen); 2286 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status = 2287 0; 2288 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options = 2289 cksumfields; 2290 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0; 2291 lasttx = nexttx; 2292 2293 DPRINTF(WM_DEBUG_TX, 2294 ("%s: TX: desc %d: low 0x%08lx, " 2295 "len 0x%04x\n", 2296 device_xname(sc->sc_dev), nexttx, 2297 curaddr & 0xffffffffUL, (unsigned)curlen)); 2298 } 2299 } 2300 2301 KASSERT(lasttx != -1); 2302 2303 /* 2304 * Set up the command byte on the last descriptor of 2305 * the packet. If we're in the interrupt delay window, 2306 * delay the interrupt. 2307 */ 2308 sc->sc_txdescs[lasttx].wtx_cmdlen |= 2309 htole32(WTX_CMD_EOP | WTX_CMD_RS); 2310 2311 /* 2312 * If VLANs are enabled and the packet has a VLAN tag, set 2313 * up the descriptor to encapsulate the packet for us. 2314 * 2315 * This is only valid on the last descriptor of the packet. 2316 */ 2317 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) { 2318 sc->sc_txdescs[lasttx].wtx_cmdlen |= 2319 htole32(WTX_CMD_VLE); 2320 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan 2321 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff); 2322 } 2323 2324 txs->txs_lastdesc = lasttx; 2325 2326 DPRINTF(WM_DEBUG_TX, 2327 ("%s: TX: desc %d: cmdlen 0x%08x\n", 2328 device_xname(sc->sc_dev), 2329 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen))); 2330 2331 /* Sync the descriptors we're using. */ 2332 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc, 2333 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2334 2335 /* Give the packet to the chip. */ 2336 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx); 2337 2338 DPRINTF(WM_DEBUG_TX, 2339 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx)); 2340 2341 DPRINTF(WM_DEBUG_TX, 2342 ("%s: TX: finished transmitting packet, job %d\n", 2343 device_xname(sc->sc_dev), sc->sc_txsnext)); 2344 2345 /* Advance the tx pointer. */ 2346 sc->sc_txfree -= txs->txs_ndesc; 2347 sc->sc_txnext = nexttx; 2348 2349 sc->sc_txsfree--; 2350 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext); 2351 2352 #if NBPFILTER > 0 2353 /* Pass the packet to any BPF listeners. */ 2354 if (ifp->if_bpf) 2355 bpf_mtap(ifp->if_bpf, m0); 2356 #endif /* NBPFILTER > 0 */ 2357 } 2358 2359 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) { 2360 /* No more slots; notify upper layer. */ 2361 ifp->if_flags |= IFF_OACTIVE; 2362 } 2363 2364 if (sc->sc_txfree != ofree) { 2365 /* Set a watchdog timer in case the chip flakes out. */ 2366 ifp->if_timer = 5; 2367 } 2368 } 2369 2370 /* 2371 * wm_watchdog: [ifnet interface function] 2372 * 2373 * Watchdog timer handler. 2374 */ 2375 static void 2376 wm_watchdog(struct ifnet *ifp) 2377 { 2378 struct wm_softc *sc = ifp->if_softc; 2379 2380 /* 2381 * Since we're using delayed interrupts, sweep up 2382 * before we report an error. 2383 */ 2384 wm_txintr(sc); 2385 2386 if (sc->sc_txfree != WM_NTXDESC(sc)) { 2387 log(LOG_ERR, 2388 "%s: device timeout (txfree %d txsfree %d txnext %d)\n", 2389 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree, 2390 sc->sc_txnext); 2391 ifp->if_oerrors++; 2392 2393 /* Reset the interface. */ 2394 (void) wm_init(ifp); 2395 } 2396 2397 /* Try to get more packets going. */ 2398 wm_start(ifp); 2399 } 2400 2401 /* 2402 * wm_ioctl: [ifnet interface function] 2403 * 2404 * Handle control requests from the operator. 2405 */ 2406 static int 2407 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2408 { 2409 struct wm_softc *sc = ifp->if_softc; 2410 struct ifreq *ifr = (struct ifreq *) data; 2411 struct ifaddr *ifa = (struct ifaddr *)data; 2412 struct sockaddr_dl *sdl; 2413 int diff, s, error; 2414 2415 s = splnet(); 2416 2417 switch (cmd) { 2418 case SIOCSIFFLAGS: 2419 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2420 break; 2421 if (ifp->if_flags & IFF_UP) { 2422 diff = (ifp->if_flags ^ sc->sc_if_flags) 2423 & (IFF_PROMISC | IFF_ALLMULTI); 2424 if ((diff & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 2425 /* 2426 * If the difference bettween last flag and 2427 * new flag is only IFF_PROMISC or 2428 * IFF_ALLMULTI, set multicast filter only 2429 * (don't reset to prevent link down). 2430 */ 2431 wm_set_filter(sc); 2432 } else { 2433 /* 2434 * Reset the interface to pick up changes in 2435 * any other flags that affect the hardware 2436 * state. 2437 */ 2438 wm_init(ifp); 2439 } 2440 } else { 2441 if (ifp->if_flags & IFF_RUNNING) 2442 wm_stop(ifp, 1); 2443 } 2444 sc->sc_if_flags = ifp->if_flags; 2445 error = 0; 2446 break; 2447 case SIOCSIFMEDIA: 2448 case SIOCGIFMEDIA: 2449 /* Flow control requires full-duplex mode. */ 2450 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 2451 (ifr->ifr_media & IFM_FDX) == 0) 2452 ifr->ifr_media &= ~IFM_ETH_FMASK; 2453 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 2454 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 2455 /* We can do both TXPAUSE and RXPAUSE. */ 2456 ifr->ifr_media |= 2457 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 2458 } 2459 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 2460 } 2461 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 2462 break; 2463 case SIOCINITIFADDR: 2464 if (ifa->ifa_addr->sa_family == AF_LINK) { 2465 sdl = satosdl(ifp->if_dl->ifa_addr); 2466 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, 2467 LLADDR(satosdl(ifa->ifa_addr)), 2468 ifp->if_addrlen); 2469 /* unicast address is first multicast entry */ 2470 wm_set_filter(sc); 2471 error = 0; 2472 break; 2473 } 2474 /* Fall through for rest */ 2475 default: 2476 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 2477 break; 2478 2479 error = 0; 2480 2481 if (cmd == SIOCSIFCAP) 2482 error = (*ifp->if_init)(ifp); 2483 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 2484 ; 2485 else if (ifp->if_flags & IFF_RUNNING) { 2486 /* 2487 * Multicast list has changed; set the hardware filter 2488 * accordingly. 2489 */ 2490 wm_set_filter(sc); 2491 } 2492 break; 2493 } 2494 2495 /* Try to get more packets going. */ 2496 wm_start(ifp); 2497 2498 splx(s); 2499 return (error); 2500 } 2501 2502 /* 2503 * wm_intr: 2504 * 2505 * Interrupt service routine. 2506 */ 2507 static int 2508 wm_intr(void *arg) 2509 { 2510 struct wm_softc *sc = arg; 2511 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2512 uint32_t icr; 2513 int handled = 0; 2514 2515 while (1 /* CONSTCOND */) { 2516 icr = CSR_READ(sc, WMREG_ICR); 2517 if ((icr & sc->sc_icr) == 0) 2518 break; 2519 #if 0 /*NRND > 0*/ 2520 if (RND_ENABLED(&sc->rnd_source)) 2521 rnd_add_uint32(&sc->rnd_source, icr); 2522 #endif 2523 2524 handled = 1; 2525 2526 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS) 2527 if (icr & (ICR_RXDMT0|ICR_RXT0)) { 2528 DPRINTF(WM_DEBUG_RX, 2529 ("%s: RX: got Rx intr 0x%08x\n", 2530 device_xname(sc->sc_dev), 2531 icr & (ICR_RXDMT0|ICR_RXT0))); 2532 WM_EVCNT_INCR(&sc->sc_ev_rxintr); 2533 } 2534 #endif 2535 wm_rxintr(sc); 2536 2537 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS) 2538 if (icr & ICR_TXDW) { 2539 DPRINTF(WM_DEBUG_TX, 2540 ("%s: TX: got TXDW interrupt\n", 2541 device_xname(sc->sc_dev))); 2542 WM_EVCNT_INCR(&sc->sc_ev_txdw); 2543 } 2544 #endif 2545 wm_txintr(sc); 2546 2547 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) { 2548 WM_EVCNT_INCR(&sc->sc_ev_linkintr); 2549 wm_linkintr(sc, icr); 2550 } 2551 2552 if (icr & ICR_RXO) { 2553 ifp->if_ierrors++; 2554 #if defined(WM_DEBUG) 2555 log(LOG_WARNING, "%s: Receive overrun\n", 2556 device_xname(sc->sc_dev)); 2557 #endif /* defined(WM_DEBUG) */ 2558 } 2559 } 2560 2561 if (handled) { 2562 /* Try to get more packets going. */ 2563 wm_start(ifp); 2564 } 2565 2566 return (handled); 2567 } 2568 2569 /* 2570 * wm_txintr: 2571 * 2572 * Helper; handle transmit interrupts. 2573 */ 2574 static void 2575 wm_txintr(struct wm_softc *sc) 2576 { 2577 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2578 struct wm_txsoft *txs; 2579 uint8_t status; 2580 int i; 2581 2582 ifp->if_flags &= ~IFF_OACTIVE; 2583 2584 /* 2585 * Go through the Tx list and free mbufs for those 2586 * frames which have been transmitted. 2587 */ 2588 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc); 2589 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) { 2590 txs = &sc->sc_txsoft[i]; 2591 2592 DPRINTF(WM_DEBUG_TX, 2593 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i)); 2594 2595 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc, 2596 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2597 2598 status = 2599 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status; 2600 if ((status & WTX_ST_DD) == 0) { 2601 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1, 2602 BUS_DMASYNC_PREREAD); 2603 break; 2604 } 2605 2606 DPRINTF(WM_DEBUG_TX, 2607 ("%s: TX: job %d done: descs %d..%d\n", 2608 device_xname(sc->sc_dev), i, txs->txs_firstdesc, 2609 txs->txs_lastdesc)); 2610 2611 /* 2612 * XXX We should probably be using the statistics 2613 * XXX registers, but I don't know if they exist 2614 * XXX on chips before the i82544. 2615 */ 2616 2617 #ifdef WM_EVENT_COUNTERS 2618 if (status & WTX_ST_TU) 2619 WM_EVCNT_INCR(&sc->sc_ev_tu); 2620 #endif /* WM_EVENT_COUNTERS */ 2621 2622 if (status & (WTX_ST_EC|WTX_ST_LC)) { 2623 ifp->if_oerrors++; 2624 if (status & WTX_ST_LC) 2625 log(LOG_WARNING, "%s: late collision\n", 2626 device_xname(sc->sc_dev)); 2627 else if (status & WTX_ST_EC) { 2628 ifp->if_collisions += 16; 2629 log(LOG_WARNING, "%s: excessive collisions\n", 2630 device_xname(sc->sc_dev)); 2631 } 2632 } else 2633 ifp->if_opackets++; 2634 2635 sc->sc_txfree += txs->txs_ndesc; 2636 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 2637 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2638 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2639 m_freem(txs->txs_mbuf); 2640 txs->txs_mbuf = NULL; 2641 } 2642 2643 /* Update the dirty transmit buffer pointer. */ 2644 sc->sc_txsdirty = i; 2645 DPRINTF(WM_DEBUG_TX, 2646 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i)); 2647 2648 /* 2649 * If there are no more pending transmissions, cancel the watchdog 2650 * timer. 2651 */ 2652 if (sc->sc_txsfree == WM_TXQUEUELEN(sc)) 2653 ifp->if_timer = 0; 2654 } 2655 2656 /* 2657 * wm_rxintr: 2658 * 2659 * Helper; handle receive interrupts. 2660 */ 2661 static void 2662 wm_rxintr(struct wm_softc *sc) 2663 { 2664 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2665 struct wm_rxsoft *rxs; 2666 struct mbuf *m; 2667 int i, len; 2668 uint8_t status, errors; 2669 uint16_t vlantag; 2670 2671 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) { 2672 rxs = &sc->sc_rxsoft[i]; 2673 2674 DPRINTF(WM_DEBUG_RX, 2675 ("%s: RX: checking descriptor %d\n", 2676 device_xname(sc->sc_dev), i)); 2677 2678 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2679 2680 status = sc->sc_rxdescs[i].wrx_status; 2681 errors = sc->sc_rxdescs[i].wrx_errors; 2682 len = le16toh(sc->sc_rxdescs[i].wrx_len); 2683 vlantag = sc->sc_rxdescs[i].wrx_special; 2684 2685 if ((status & WRX_ST_DD) == 0) { 2686 /* 2687 * We have processed all of the receive descriptors. 2688 */ 2689 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); 2690 break; 2691 } 2692 2693 if (__predict_false(sc->sc_rxdiscard)) { 2694 DPRINTF(WM_DEBUG_RX, 2695 ("%s: RX: discarding contents of descriptor %d\n", 2696 device_xname(sc->sc_dev), i)); 2697 WM_INIT_RXDESC(sc, i); 2698 if (status & WRX_ST_EOP) { 2699 /* Reset our state. */ 2700 DPRINTF(WM_DEBUG_RX, 2701 ("%s: RX: resetting rxdiscard -> 0\n", 2702 device_xname(sc->sc_dev))); 2703 sc->sc_rxdiscard = 0; 2704 } 2705 continue; 2706 } 2707 2708 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2709 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2710 2711 m = rxs->rxs_mbuf; 2712 2713 /* 2714 * Add a new receive buffer to the ring, unless of 2715 * course the length is zero. Treat the latter as a 2716 * failed mapping. 2717 */ 2718 if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) { 2719 /* 2720 * Failed, throw away what we've done so 2721 * far, and discard the rest of the packet. 2722 */ 2723 ifp->if_ierrors++; 2724 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2725 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2726 WM_INIT_RXDESC(sc, i); 2727 if ((status & WRX_ST_EOP) == 0) 2728 sc->sc_rxdiscard = 1; 2729 if (sc->sc_rxhead != NULL) 2730 m_freem(sc->sc_rxhead); 2731 WM_RXCHAIN_RESET(sc); 2732 DPRINTF(WM_DEBUG_RX, 2733 ("%s: RX: Rx buffer allocation failed, " 2734 "dropping packet%s\n", device_xname(sc->sc_dev), 2735 sc->sc_rxdiscard ? " (discard)" : "")); 2736 continue; 2737 } 2738 2739 m->m_len = len; 2740 sc->sc_rxlen += len; 2741 DPRINTF(WM_DEBUG_RX, 2742 ("%s: RX: buffer at %p len %d\n", 2743 device_xname(sc->sc_dev), m->m_data, len)); 2744 2745 /* 2746 * If this is not the end of the packet, keep 2747 * looking. 2748 */ 2749 if ((status & WRX_ST_EOP) == 0) { 2750 WM_RXCHAIN_LINK(sc, m); 2751 DPRINTF(WM_DEBUG_RX, 2752 ("%s: RX: not yet EOP, rxlen -> %d\n", 2753 device_xname(sc->sc_dev), sc->sc_rxlen)); 2754 continue; 2755 } 2756 2757 /* 2758 * Okay, we have the entire packet now. The chip is 2759 * configured to include the FCS (not all chips can 2760 * be configured to strip it), so we need to trim it. 2761 * May need to adjust length of previous mbuf in the 2762 * chain if the current mbuf is too short. 2763 */ 2764 if (m->m_len < ETHER_CRC_LEN) { 2765 sc->sc_rxtail->m_len -= (ETHER_CRC_LEN - m->m_len); 2766 m->m_len = 0; 2767 } else { 2768 m->m_len -= ETHER_CRC_LEN; 2769 } 2770 len = sc->sc_rxlen - ETHER_CRC_LEN; 2771 2772 WM_RXCHAIN_LINK(sc, m); 2773 2774 *sc->sc_rxtailp = NULL; 2775 m = sc->sc_rxhead; 2776 2777 WM_RXCHAIN_RESET(sc); 2778 2779 DPRINTF(WM_DEBUG_RX, 2780 ("%s: RX: have entire packet, len -> %d\n", 2781 device_xname(sc->sc_dev), len)); 2782 2783 /* 2784 * If an error occurred, update stats and drop the packet. 2785 */ 2786 if (errors & 2787 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) { 2788 ifp->if_ierrors++; 2789 if (errors & WRX_ER_SE) 2790 log(LOG_WARNING, "%s: symbol error\n", 2791 device_xname(sc->sc_dev)); 2792 else if (errors & WRX_ER_SEQ) 2793 log(LOG_WARNING, "%s: receive sequence error\n", 2794 device_xname(sc->sc_dev)); 2795 else if (errors & WRX_ER_CE) 2796 log(LOG_WARNING, "%s: CRC error\n", 2797 device_xname(sc->sc_dev)); 2798 m_freem(m); 2799 continue; 2800 } 2801 2802 /* 2803 * No errors. Receive the packet. 2804 */ 2805 m->m_pkthdr.rcvif = ifp; 2806 m->m_pkthdr.len = len; 2807 2808 /* 2809 * If VLANs are enabled, VLAN packets have been unwrapped 2810 * for us. Associate the tag with the packet. 2811 */ 2812 if ((status & WRX_ST_VP) != 0) { 2813 VLAN_INPUT_TAG(ifp, m, 2814 le16toh(vlantag), 2815 continue); 2816 } 2817 2818 /* 2819 * Set up checksum info for this packet. 2820 */ 2821 if ((status & WRX_ST_IXSM) == 0) { 2822 if (status & WRX_ST_IPCS) { 2823 WM_EVCNT_INCR(&sc->sc_ev_rxipsum); 2824 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 2825 if (errors & WRX_ER_IPE) 2826 m->m_pkthdr.csum_flags |= 2827 M_CSUM_IPv4_BAD; 2828 } 2829 if (status & WRX_ST_TCPCS) { 2830 /* 2831 * Note: we don't know if this was TCP or UDP, 2832 * so we just set both bits, and expect the 2833 * upper layers to deal. 2834 */ 2835 WM_EVCNT_INCR(&sc->sc_ev_rxtusum); 2836 m->m_pkthdr.csum_flags |= 2837 M_CSUM_TCPv4 | M_CSUM_UDPv4 | 2838 M_CSUM_TCPv6 | M_CSUM_UDPv6; 2839 if (errors & WRX_ER_TCPE) 2840 m->m_pkthdr.csum_flags |= 2841 M_CSUM_TCP_UDP_BAD; 2842 } 2843 } 2844 2845 ifp->if_ipackets++; 2846 2847 #if NBPFILTER > 0 2848 /* Pass this up to any BPF listeners. */ 2849 if (ifp->if_bpf) 2850 bpf_mtap(ifp->if_bpf, m); 2851 #endif /* NBPFILTER > 0 */ 2852 2853 /* Pass it on. */ 2854 (*ifp->if_input)(ifp, m); 2855 } 2856 2857 /* Update the receive pointer. */ 2858 sc->sc_rxptr = i; 2859 2860 DPRINTF(WM_DEBUG_RX, 2861 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i)); 2862 } 2863 2864 /* 2865 * wm_linkintr: 2866 * 2867 * Helper; handle link interrupts. 2868 */ 2869 static void 2870 wm_linkintr(struct wm_softc *sc, uint32_t icr) 2871 { 2872 uint32_t status; 2873 2874 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev), 2875 __func__)); 2876 /* 2877 * If we get a link status interrupt on a 1000BASE-T 2878 * device, just fall into the normal MII tick path. 2879 */ 2880 if (sc->sc_flags & WM_F_HAS_MII) { 2881 if (icr & ICR_LSC) { 2882 DPRINTF(WM_DEBUG_LINK, 2883 ("%s: LINK: LSC -> mii_tick\n", 2884 device_xname(sc->sc_dev))); 2885 mii_tick(&sc->sc_mii); 2886 if (sc->sc_type == WM_T_82543) { 2887 int miistatus, active; 2888 2889 /* 2890 * With 82543, we need to force speed and 2891 * duplex on the MAC equal to what the PHY 2892 * speed and duplex configuration is. 2893 */ 2894 miistatus = sc->sc_mii.mii_media_status; 2895 2896 if (miistatus & IFM_ACTIVE) { 2897 active = sc->sc_mii.mii_media_active; 2898 sc->sc_ctrl &= ~(CTRL_SPEED_MASK 2899 | CTRL_FD); 2900 switch (IFM_SUBTYPE(active)) { 2901 case IFM_10_T: 2902 sc->sc_ctrl |= CTRL_SPEED_10; 2903 break; 2904 case IFM_100_TX: 2905 sc->sc_ctrl |= CTRL_SPEED_100; 2906 break; 2907 case IFM_1000_T: 2908 sc->sc_ctrl |= CTRL_SPEED_1000; 2909 break; 2910 default: 2911 /* 2912 * fiber? 2913 * Shoud not enter here. 2914 */ 2915 printf("unknown media (%x)\n", 2916 active); 2917 break; 2918 } 2919 if (active & IFM_FDX) 2920 sc->sc_ctrl |= CTRL_FD; 2921 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 2922 } 2923 } 2924 } else if (icr & ICR_RXSEQ) { 2925 DPRINTF(WM_DEBUG_LINK, 2926 ("%s: LINK Receive sequence error\n", 2927 device_xname(sc->sc_dev))); 2928 } 2929 return; 2930 } 2931 2932 status = CSR_READ(sc, WMREG_STATUS); 2933 if (icr & ICR_LSC) { 2934 if (status & STATUS_LU) { 2935 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n", 2936 device_xname(sc->sc_dev), 2937 (status & STATUS_FD) ? "FDX" : "HDX")); 2938 /* 2939 * NOTE: CTRL will update TFCE and RFCE automatically, 2940 * so we should update sc->sc_ctrl 2941 */ 2942 2943 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL); 2944 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 2945 sc->sc_fcrtl &= ~FCRTL_XONE; 2946 if (status & STATUS_FD) 2947 sc->sc_tctl |= 2948 TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 2949 else 2950 sc->sc_tctl |= 2951 TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 2952 if (sc->sc_ctrl & CTRL_TFCE) 2953 sc->sc_fcrtl |= FCRTL_XONE; 2954 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 2955 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? 2956 WMREG_OLD_FCRTL : WMREG_FCRTL, 2957 sc->sc_fcrtl); 2958 sc->sc_tbi_linkup = 1; 2959 } else { 2960 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n", 2961 device_xname(sc->sc_dev))); 2962 sc->sc_tbi_linkup = 0; 2963 } 2964 wm_tbi_set_linkled(sc); 2965 } else if (icr & ICR_RXCFG) { 2966 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n", 2967 device_xname(sc->sc_dev))); 2968 sc->sc_tbi_nrxcfg++; 2969 wm_check_for_link(sc); 2970 } else if (icr & ICR_RXSEQ) { 2971 DPRINTF(WM_DEBUG_LINK, 2972 ("%s: LINK: Receive sequence error\n", 2973 device_xname(sc->sc_dev))); 2974 } 2975 } 2976 2977 /* 2978 * wm_tick: 2979 * 2980 * One second timer, used to check link status, sweep up 2981 * completed transmit jobs, etc. 2982 */ 2983 static void 2984 wm_tick(void *arg) 2985 { 2986 struct wm_softc *sc = arg; 2987 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2988 int s; 2989 2990 s = splnet(); 2991 2992 if (sc->sc_type >= WM_T_82542_2_1) { 2993 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC)); 2994 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC)); 2995 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC)); 2996 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC)); 2997 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC)); 2998 } 2999 3000 ifp->if_collisions += CSR_READ(sc, WMREG_COLC); 3001 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC); 3002 3003 if (sc->sc_flags & WM_F_HAS_MII) 3004 mii_tick(&sc->sc_mii); 3005 else 3006 wm_tbi_check_link(sc); 3007 3008 splx(s); 3009 3010 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc); 3011 } 3012 3013 /* 3014 * wm_reset: 3015 * 3016 * Reset the i82542 chip. 3017 */ 3018 static void 3019 wm_reset(struct wm_softc *sc) 3020 { 3021 int phy_reset = 0; 3022 uint32_t reg, func, mask; 3023 int i; 3024 3025 /* 3026 * Allocate on-chip memory according to the MTU size. 3027 * The Packet Buffer Allocation register must be written 3028 * before the chip is reset. 3029 */ 3030 switch (sc->sc_type) { 3031 case WM_T_82547: 3032 case WM_T_82547_2: 3033 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ? 3034 PBA_22K : PBA_30K; 3035 sc->sc_txfifo_head = 0; 3036 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT; 3037 sc->sc_txfifo_size = 3038 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT; 3039 sc->sc_txfifo_stall = 0; 3040 break; 3041 case WM_T_82571: 3042 case WM_T_82572: 3043 case WM_T_80003: 3044 sc->sc_pba = PBA_32K; 3045 break; 3046 case WM_T_82573: 3047 sc->sc_pba = PBA_12K; 3048 break; 3049 case WM_T_82574: 3050 case WM_T_82583: 3051 sc->sc_pba = PBA_20K; 3052 break; 3053 case WM_T_ICH8: 3054 sc->sc_pba = PBA_8K; 3055 CSR_WRITE(sc, WMREG_PBS, PBA_16K); 3056 break; 3057 case WM_T_ICH9: 3058 case WM_T_ICH10: 3059 sc->sc_pba = PBA_10K; 3060 break; 3061 default: 3062 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ? 3063 PBA_40K : PBA_48K; 3064 break; 3065 } 3066 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba); 3067 3068 if (sc->sc_flags & WM_F_PCIE) { 3069 int timeout = 800; 3070 3071 sc->sc_ctrl |= CTRL_GIO_M_DIS; 3072 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 3073 3074 while (timeout--) { 3075 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA) == 0) 3076 break; 3077 delay(100); 3078 } 3079 } 3080 3081 /* clear interrupt */ 3082 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 3083 3084 /* Stop the transmit and receive processes. */ 3085 CSR_WRITE(sc, WMREG_RCTL, 0); 3086 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP); 3087 3088 /* set_tbi_sbp_82543() */ 3089 3090 delay(10*1000); 3091 3092 /* Must acquire the MDIO ownership before MAC reset */ 3093 switch(sc->sc_type) { 3094 case WM_T_82573: 3095 case WM_T_82574: 3096 case WM_T_82583: 3097 i = 0; 3098 reg = CSR_READ(sc, WMREG_EXTCNFCTR) 3099 | EXTCNFCTR_MDIO_SW_OWNERSHIP; 3100 do { 3101 CSR_WRITE(sc, WMREG_EXTCNFCTR, 3102 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP); 3103 reg = CSR_READ(sc, WMREG_EXTCNFCTR); 3104 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0) 3105 break; 3106 reg |= EXTCNFCTR_MDIO_SW_OWNERSHIP; 3107 delay(2*1000); 3108 i++; 3109 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT); 3110 break; 3111 default: 3112 break; 3113 } 3114 3115 /* 3116 * 82541 Errata 29? & 82547 Errata 28? 3117 * See also the description about PHY_RST bit in CTRL register 3118 * in 8254x_GBe_SDM.pdf. 3119 */ 3120 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) { 3121 CSR_WRITE(sc, WMREG_CTRL, 3122 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET); 3123 delay(5000); 3124 } 3125 3126 switch (sc->sc_type) { 3127 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */ 3128 case WM_T_82541: 3129 case WM_T_82541_2: 3130 case WM_T_82547: 3131 case WM_T_82547_2: 3132 /* 3133 * On some chipsets, a reset through a memory-mapped write 3134 * cycle can cause the chip to reset before completing the 3135 * write cycle. This causes major headache that can be 3136 * avoided by issuing the reset via indirect register writes 3137 * through I/O space. 3138 * 3139 * So, if we successfully mapped the I/O BAR at attach time, 3140 * use that. Otherwise, try our luck with a memory-mapped 3141 * reset. 3142 */ 3143 if (sc->sc_flags & WM_F_IOH_VALID) 3144 wm_io_write(sc, WMREG_CTRL, CTRL_RST); 3145 else 3146 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST); 3147 break; 3148 case WM_T_82545_3: 3149 case WM_T_82546_3: 3150 /* Use the shadow control register on these chips. */ 3151 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST); 3152 break; 3153 case WM_T_80003: 3154 func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1; 3155 mask = func ? SWFW_PHY1_SM : SWFW_PHY0_SM; 3156 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST; 3157 wm_get_swfw_semaphore(sc, mask); 3158 CSR_WRITE(sc, WMREG_CTRL, reg); 3159 wm_put_swfw_semaphore(sc, mask); 3160 break; 3161 case WM_T_ICH8: 3162 case WM_T_ICH9: 3163 case WM_T_ICH10: 3164 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST; 3165 if (wm_check_reset_block(sc) == 0) { 3166 reg |= CTRL_PHY_RESET; 3167 phy_reset = 1; 3168 } 3169 wm_get_swfwhw_semaphore(sc); 3170 CSR_WRITE(sc, WMREG_CTRL, reg); 3171 delay(20*1000); 3172 wm_put_swfwhw_semaphore(sc); 3173 break; 3174 case WM_T_82542_2_0: 3175 case WM_T_82542_2_1: 3176 case WM_T_82543: 3177 case WM_T_82540: 3178 case WM_T_82545: 3179 case WM_T_82546: 3180 case WM_T_82571: 3181 case WM_T_82572: 3182 case WM_T_82573: 3183 case WM_T_82574: 3184 case WM_T_82583: 3185 default: 3186 /* Everything else can safely use the documented method. */ 3187 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST); 3188 break; 3189 } 3190 3191 if (phy_reset != 0) 3192 wm_get_cfg_done(sc); 3193 3194 /* reload EEPROM */ 3195 switch(sc->sc_type) { 3196 case WM_T_82542_2_0: 3197 case WM_T_82542_2_1: 3198 case WM_T_82543: 3199 case WM_T_82544: 3200 delay(10); 3201 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST; 3202 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 3203 delay(2000); 3204 break; 3205 case WM_T_82540: 3206 case WM_T_82545: 3207 case WM_T_82545_3: 3208 case WM_T_82546: 3209 case WM_T_82546_3: 3210 delay(5*1000); 3211 /* XXX Disable HW ARPs on ASF enabled adapters */ 3212 break; 3213 case WM_T_82541: 3214 case WM_T_82541_2: 3215 case WM_T_82547: 3216 case WM_T_82547_2: 3217 delay(20000); 3218 /* XXX Disable HW ARPs on ASF enabled adapters */ 3219 break; 3220 case WM_T_82571: 3221 case WM_T_82572: 3222 case WM_T_82573: 3223 case WM_T_82574: 3224 case WM_T_82583: 3225 if (sc->sc_flags & WM_F_EEPROM_FLASH) { 3226 delay(10); 3227 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST; 3228 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 3229 } 3230 /* check EECD_EE_AUTORD */ 3231 wm_get_auto_rd_done(sc); 3232 /* 3233 * Phy configuration from NVM just starts after EECD_AUTO_RD 3234 * is set. 3235 */ 3236 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574) 3237 || (sc->sc_type == WM_T_82583)) 3238 delay(25*1000); 3239 break; 3240 case WM_T_80003: 3241 case WM_T_ICH8: 3242 case WM_T_ICH9: 3243 /* check EECD_EE_AUTORD */ 3244 wm_get_auto_rd_done(sc); 3245 break; 3246 case WM_T_ICH10: /* & PCH */ 3247 wm_lan_init_done(sc); 3248 break; 3249 default: 3250 panic("%s: unknown type\n", __func__); 3251 } 3252 3253 /* reload sc_ctrl */ 3254 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL); 3255 3256 #if 0 3257 for (i = 0; i < 1000; i++) { 3258 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0) { 3259 return; 3260 } 3261 delay(20); 3262 } 3263 3264 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST) 3265 log(LOG_ERR, "%s: reset failed to complete\n", 3266 device_xname(sc->sc_dev)); 3267 #endif 3268 } 3269 3270 /* 3271 * wm_init: [ifnet interface function] 3272 * 3273 * Initialize the interface. Must be called at splnet(). 3274 */ 3275 static int 3276 wm_init(struct ifnet *ifp) 3277 { 3278 struct wm_softc *sc = ifp->if_softc; 3279 struct wm_rxsoft *rxs; 3280 int i, error = 0; 3281 uint32_t reg; 3282 3283 /* 3284 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set. 3285 * There is a small but measurable benefit to avoiding the adjusment 3286 * of the descriptor so that the headers are aligned, for normal mtu, 3287 * on such platforms. One possibility is that the DMA itself is 3288 * slightly more efficient if the front of the entire packet (instead 3289 * of the front of the headers) is aligned. 3290 * 3291 * Note we must always set align_tweak to 0 if we are using 3292 * jumbo frames. 3293 */ 3294 #ifdef __NO_STRICT_ALIGNMENT 3295 sc->sc_align_tweak = 0; 3296 #else 3297 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2)) 3298 sc->sc_align_tweak = 0; 3299 else 3300 sc->sc_align_tweak = 2; 3301 #endif /* __NO_STRICT_ALIGNMENT */ 3302 3303 /* Cancel any pending I/O. */ 3304 wm_stop(ifp, 0); 3305 3306 /* update statistics before reset */ 3307 ifp->if_collisions += CSR_READ(sc, WMREG_COLC); 3308 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC); 3309 3310 /* Reset the chip to a known state. */ 3311 wm_reset(sc); 3312 3313 switch (sc->sc_type) { 3314 case WM_T_82571: 3315 case WM_T_82572: 3316 case WM_T_82573: 3317 case WM_T_82574: 3318 case WM_T_82583: 3319 case WM_T_80003: 3320 case WM_T_ICH8: 3321 case WM_T_ICH9: 3322 case WM_T_ICH10: 3323 if (wm_check_mng_mode(sc) != 0) 3324 wm_get_hw_control(sc); 3325 break; 3326 default: 3327 break; 3328 } 3329 3330 /* Initialize the transmit descriptor ring. */ 3331 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc)); 3332 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc), 3333 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 3334 sc->sc_txfree = WM_NTXDESC(sc); 3335 sc->sc_txnext = 0; 3336 3337 if (sc->sc_type < WM_T_82543) { 3338 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0)); 3339 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0)); 3340 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc)); 3341 CSR_WRITE(sc, WMREG_OLD_TDH, 0); 3342 CSR_WRITE(sc, WMREG_OLD_TDT, 0); 3343 CSR_WRITE(sc, WMREG_OLD_TIDV, 128); 3344 } else { 3345 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0)); 3346 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0)); 3347 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc)); 3348 CSR_WRITE(sc, WMREG_TDH, 0); 3349 CSR_WRITE(sc, WMREG_TDT, 0); 3350 CSR_WRITE(sc, WMREG_TIDV, 375); /* ITR / 4 */ 3351 CSR_WRITE(sc, WMREG_TADV, 375); /* should be same */ 3352 3353 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) | 3354 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0)); 3355 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) | 3356 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1)); 3357 } 3358 CSR_WRITE(sc, WMREG_TQSA_LO, 0); 3359 CSR_WRITE(sc, WMREG_TQSA_HI, 0); 3360 3361 /* Initialize the transmit job descriptors. */ 3362 for (i = 0; i < WM_TXQUEUELEN(sc); i++) 3363 sc->sc_txsoft[i].txs_mbuf = NULL; 3364 sc->sc_txsfree = WM_TXQUEUELEN(sc); 3365 sc->sc_txsnext = 0; 3366 sc->sc_txsdirty = 0; 3367 3368 /* 3369 * Initialize the receive descriptor and receive job 3370 * descriptor rings. 3371 */ 3372 if (sc->sc_type < WM_T_82543) { 3373 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0)); 3374 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0)); 3375 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs)); 3376 CSR_WRITE(sc, WMREG_OLD_RDH0, 0); 3377 CSR_WRITE(sc, WMREG_OLD_RDT0, 0); 3378 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD); 3379 3380 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0); 3381 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0); 3382 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0); 3383 CSR_WRITE(sc, WMREG_OLD_RDH1, 0); 3384 CSR_WRITE(sc, WMREG_OLD_RDT1, 0); 3385 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0); 3386 } else { 3387 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0)); 3388 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0)); 3389 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs)); 3390 CSR_WRITE(sc, WMREG_RDH, 0); 3391 CSR_WRITE(sc, WMREG_RDT, 0); 3392 CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD); /* ITR/4 */ 3393 CSR_WRITE(sc, WMREG_RADV, 375); /* MUST be same */ 3394 } 3395 for (i = 0; i < WM_NRXDESC; i++) { 3396 rxs = &sc->sc_rxsoft[i]; 3397 if (rxs->rxs_mbuf == NULL) { 3398 if ((error = wm_add_rxbuf(sc, i)) != 0) { 3399 log(LOG_ERR, "%s: unable to allocate or map rx " 3400 "buffer %d, error = %d\n", 3401 device_xname(sc->sc_dev), i, error); 3402 /* 3403 * XXX Should attempt to run with fewer receive 3404 * XXX buffers instead of just failing. 3405 */ 3406 wm_rxdrain(sc); 3407 goto out; 3408 } 3409 } else 3410 WM_INIT_RXDESC(sc, i); 3411 } 3412 sc->sc_rxptr = 0; 3413 sc->sc_rxdiscard = 0; 3414 WM_RXCHAIN_RESET(sc); 3415 3416 /* 3417 * Clear out the VLAN table -- we don't use it (yet). 3418 */ 3419 CSR_WRITE(sc, WMREG_VET, 0); 3420 for (i = 0; i < WM_VLAN_TABSIZE; i++) 3421 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0); 3422 3423 /* 3424 * Set up flow-control parameters. 3425 * 3426 * XXX Values could probably stand some tuning. 3427 */ 3428 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9) 3429 && (sc->sc_type != WM_T_ICH10)) { 3430 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST); 3431 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST); 3432 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL); 3433 } 3434 3435 sc->sc_fcrtl = FCRTL_DFLT; 3436 if (sc->sc_type < WM_T_82543) { 3437 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT); 3438 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl); 3439 } else { 3440 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT); 3441 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl); 3442 } 3443 3444 if (sc->sc_type == WM_T_80003) 3445 CSR_WRITE(sc, WMREG_FCTTV, 0xffff); 3446 else 3447 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT); 3448 3449 /* Deal with VLAN enables. */ 3450 if (VLAN_ATTACHED(&sc->sc_ethercom)) 3451 sc->sc_ctrl |= CTRL_VME; 3452 else 3453 sc->sc_ctrl &= ~CTRL_VME; 3454 3455 /* Write the control registers. */ 3456 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 3457 3458 if (sc->sc_flags & WM_F_HAS_MII) { 3459 int val; 3460 3461 switch (sc->sc_type) { 3462 case WM_T_80003: 3463 case WM_T_ICH8: 3464 case WM_T_ICH9: 3465 case WM_T_ICH10: 3466 /* 3467 * Set the mac to wait the maximum time between each 3468 * iteration and increase the max iterations when 3469 * polling the phy; this fixes erroneous timeouts at 3470 * 10Mbps. 3471 */ 3472 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 3473 0xFFFF); 3474 val = wm_kmrn_readreg(sc, 3475 KUMCTRLSTA_OFFSET_INB_PARAM); 3476 val |= 0x3F; 3477 wm_kmrn_writereg(sc, 3478 KUMCTRLSTA_OFFSET_INB_PARAM, val); 3479 break; 3480 default: 3481 break; 3482 } 3483 3484 if (sc->sc_type == WM_T_80003) { 3485 val = CSR_READ(sc, WMREG_CTRL_EXT); 3486 val &= ~CTRL_EXT_LINK_MODE_MASK; 3487 CSR_WRITE(sc, WMREG_CTRL_EXT, val); 3488 3489 /* Bypass RX and TX FIFO's */ 3490 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL, 3491 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | 3492 KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); 3493 3494 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL, 3495 KUMCTRLSTA_INB_CTRL_DIS_PADDING | 3496 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT); 3497 } 3498 } 3499 #if 0 3500 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext); 3501 #endif 3502 3503 /* 3504 * Set up checksum offload parameters. 3505 */ 3506 reg = CSR_READ(sc, WMREG_RXCSUM); 3507 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL); 3508 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 3509 reg |= RXCSUM_IPOFL; 3510 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) 3511 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL; 3512 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) 3513 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL; 3514 CSR_WRITE(sc, WMREG_RXCSUM, reg); 3515 3516 /* Reset TBI's RXCFG count */ 3517 sc->sc_tbi_nrxcfg = sc->sc_tbi_lastnrxcfg = 0; 3518 3519 /* 3520 * Set up the interrupt registers. 3521 */ 3522 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 3523 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 | 3524 ICR_RXO | ICR_RXT0; 3525 if ((sc->sc_flags & WM_F_HAS_MII) == 0) 3526 sc->sc_icr |= ICR_RXCFG; 3527 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr); 3528 3529 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 3530 || (sc->sc_type == WM_T_ICH10)) { 3531 reg = CSR_READ(sc, WMREG_KABGTXD); 3532 reg |= KABGTXD_BGSQLBIAS; 3533 CSR_WRITE(sc, WMREG_KABGTXD, reg); 3534 } 3535 3536 /* Set up the inter-packet gap. */ 3537 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg); 3538 3539 if (sc->sc_type >= WM_T_82543) { 3540 /* 3541 * Set up the interrupt throttling register (units of 256ns) 3542 * Note that a footnote in Intel's documentation says this 3543 * ticker runs at 1/4 the rate when the chip is in 100Mbit 3544 * or 10Mbit mode. Empirically, it appears to be the case 3545 * that that is also true for the 1024ns units of the other 3546 * interrupt-related timer registers -- so, really, we ought 3547 * to divide this value by 4 when the link speed is low. 3548 * 3549 * XXX implement this division at link speed change! 3550 */ 3551 3552 /* 3553 * For N interrupts/sec, set this value to: 3554 * 1000000000 / (N * 256). Note that we set the 3555 * absolute and packet timer values to this value 3556 * divided by 4 to get "simple timer" behavior. 3557 */ 3558 3559 sc->sc_itr = 1500; /* 2604 ints/sec */ 3560 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr); 3561 } 3562 3563 /* Set the VLAN ethernetype. */ 3564 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN); 3565 3566 /* 3567 * Set up the transmit control register; we start out with 3568 * a collision distance suitable for FDX, but update it whe 3569 * we resolve the media type. 3570 */ 3571 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC 3572 | TCTL_CT(TX_COLLISION_THRESHOLD) 3573 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 3574 if (sc->sc_type >= WM_T_82571) 3575 sc->sc_tctl |= TCTL_MULR; 3576 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 3577 3578 if (sc->sc_type == WM_T_80003) { 3579 reg = CSR_READ(sc, WMREG_TCTL_EXT); 3580 reg &= ~TCTL_EXT_GCEX_MASK; 3581 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; 3582 CSR_WRITE(sc, WMREG_TCTL_EXT, reg); 3583 } 3584 3585 /* Set the media. */ 3586 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0) 3587 goto out; 3588 3589 /* 3590 * Set up the receive control register; we actually program 3591 * the register when we set the receive filter. Use multicast 3592 * address offset type 0. 3593 * 3594 * Only the i82544 has the ability to strip the incoming 3595 * CRC, so we don't enable that feature. 3596 */ 3597 sc->sc_mchash_type = 0; 3598 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF 3599 | RCTL_MO(sc->sc_mchash_type); 3600 3601 if (((sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) != 0) 3602 && (ifp->if_mtu > ETHERMTU)) 3603 sc->sc_rctl |= RCTL_LPE; 3604 3605 if (MCLBYTES == 2048) { 3606 sc->sc_rctl |= RCTL_2k; 3607 } else { 3608 if (sc->sc_type >= WM_T_82543) { 3609 switch(MCLBYTES) { 3610 case 4096: 3611 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k; 3612 break; 3613 case 8192: 3614 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k; 3615 break; 3616 case 16384: 3617 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k; 3618 break; 3619 default: 3620 panic("wm_init: MCLBYTES %d unsupported", 3621 MCLBYTES); 3622 break; 3623 } 3624 } else panic("wm_init: i82542 requires MCLBYTES = 2048"); 3625 } 3626 3627 /* Set the receive filter. */ 3628 wm_set_filter(sc); 3629 3630 /* Start the one second link check clock. */ 3631 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc); 3632 3633 /* ...all done! */ 3634 ifp->if_flags |= IFF_RUNNING; 3635 ifp->if_flags &= ~IFF_OACTIVE; 3636 3637 out: 3638 if (error) 3639 log(LOG_ERR, "%s: interface not running\n", 3640 device_xname(sc->sc_dev)); 3641 return (error); 3642 } 3643 3644 /* 3645 * wm_rxdrain: 3646 * 3647 * Drain the receive queue. 3648 */ 3649 static void 3650 wm_rxdrain(struct wm_softc *sc) 3651 { 3652 struct wm_rxsoft *rxs; 3653 int i; 3654 3655 for (i = 0; i < WM_NRXDESC; i++) { 3656 rxs = &sc->sc_rxsoft[i]; 3657 if (rxs->rxs_mbuf != NULL) { 3658 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 3659 m_freem(rxs->rxs_mbuf); 3660 rxs->rxs_mbuf = NULL; 3661 } 3662 } 3663 } 3664 3665 /* 3666 * wm_stop: [ifnet interface function] 3667 * 3668 * Stop transmission on the interface. 3669 */ 3670 static void 3671 wm_stop(struct ifnet *ifp, int disable) 3672 { 3673 struct wm_softc *sc = ifp->if_softc; 3674 struct wm_txsoft *txs; 3675 int i; 3676 3677 /* Stop the one second clock. */ 3678 callout_stop(&sc->sc_tick_ch); 3679 3680 /* Stop the 82547 Tx FIFO stall check timer. */ 3681 if (sc->sc_type == WM_T_82547) 3682 callout_stop(&sc->sc_txfifo_ch); 3683 3684 if (sc->sc_flags & WM_F_HAS_MII) { 3685 /* Down the MII. */ 3686 mii_down(&sc->sc_mii); 3687 } else { 3688 #if 0 3689 /* Should we clear PHY's status properly? */ 3690 wm_reset(sc); 3691 #endif 3692 } 3693 3694 /* Stop the transmit and receive processes. */ 3695 CSR_WRITE(sc, WMREG_TCTL, 0); 3696 CSR_WRITE(sc, WMREG_RCTL, 0); 3697 3698 /* 3699 * Clear the interrupt mask to ensure the device cannot assert its 3700 * interrupt line. 3701 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service 3702 * any currently pending or shared interrupt. 3703 */ 3704 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 3705 sc->sc_icr = 0; 3706 3707 /* Release any queued transmit buffers. */ 3708 for (i = 0; i < WM_TXQUEUELEN(sc); i++) { 3709 txs = &sc->sc_txsoft[i]; 3710 if (txs->txs_mbuf != NULL) { 3711 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 3712 m_freem(txs->txs_mbuf); 3713 txs->txs_mbuf = NULL; 3714 } 3715 } 3716 3717 /* Mark the interface as down and cancel the watchdog timer. */ 3718 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3719 ifp->if_timer = 0; 3720 3721 if (disable) 3722 wm_rxdrain(sc); 3723 } 3724 3725 void 3726 wm_get_auto_rd_done(struct wm_softc *sc) 3727 { 3728 int i; 3729 3730 /* wait for eeprom to reload */ 3731 switch (sc->sc_type) { 3732 case WM_T_82571: 3733 case WM_T_82572: 3734 case WM_T_82573: 3735 case WM_T_82574: 3736 case WM_T_82583: 3737 case WM_T_80003: 3738 case WM_T_ICH8: 3739 case WM_T_ICH9: 3740 case WM_T_ICH10: 3741 for (i = 0; i < 10; i++) { 3742 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD) 3743 break; 3744 delay(1000); 3745 } 3746 if (i == 10) { 3747 log(LOG_ERR, "%s: auto read from eeprom failed to " 3748 "complete\n", device_xname(sc->sc_dev)); 3749 } 3750 break; 3751 default: 3752 delay(5000); 3753 break; 3754 } 3755 } 3756 3757 void 3758 wm_lan_init_done(struct wm_softc *sc) 3759 { 3760 uint32_t reg = 0; 3761 int i; 3762 3763 /* wait for eeprom to reload */ 3764 switch (sc->sc_type) { 3765 case WM_T_ICH10: /* & PCH */ 3766 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) { 3767 reg = CSR_READ(sc, WMREG_STATUS); 3768 if ((reg & STATUS_LAN_INIT_DONE) != 0) 3769 break; 3770 delay(100); 3771 } 3772 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) { 3773 log(LOG_ERR, "%s: %s: lan_init_done failed to " 3774 "complete\n", device_xname(sc->sc_dev), __func__); 3775 } 3776 break; 3777 default: 3778 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev), 3779 __func__); 3780 break; 3781 } 3782 3783 reg &= ~STATUS_LAN_INIT_DONE; 3784 CSR_WRITE(sc, WMREG_STATUS, reg); 3785 } 3786 3787 void 3788 wm_get_cfg_done(struct wm_softc *sc) 3789 { 3790 int func = 0; 3791 int mask; 3792 int i; 3793 3794 /* wait for eeprom to reload */ 3795 switch (sc->sc_type) { 3796 case WM_T_82542_2_0: 3797 case WM_T_82542_2_1: 3798 /* null */ 3799 break; 3800 case WM_T_82543: 3801 case WM_T_82544: 3802 case WM_T_82540: 3803 case WM_T_82545: 3804 case WM_T_82545_3: 3805 case WM_T_82546: 3806 case WM_T_82546_3: 3807 case WM_T_82541: 3808 case WM_T_82541_2: 3809 case WM_T_82547: 3810 case WM_T_82547_2: 3811 case WM_T_82573: 3812 case WM_T_82574: 3813 case WM_T_82583: 3814 /* generic */ 3815 delay(10*1000); 3816 break; 3817 case WM_T_80003: 3818 case WM_T_82571: 3819 case WM_T_82572: 3820 case WM_T_ICH8: 3821 case WM_T_ICH9: 3822 case WM_T_ICH10: 3823 if (sc->sc_type == WM_T_80003) 3824 func = (CSR_READ(sc, WMREG_STATUS) 3825 >> STATUS_FUNCID_SHIFT) & 1; 3826 else 3827 func = 0; /* XXX Is it true for 82571? */ 3828 mask = (func == 1) ? EEMNGCTL_CFGDONE_1 : EEMNGCTL_CFGDONE_0; 3829 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) { 3830 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask) 3831 break; 3832 delay(1000); 3833 } 3834 if (i >= WM_PHY_CFG_TIMEOUT) { 3835 DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n", 3836 device_xname(sc->sc_dev), __func__)); 3837 } 3838 break; 3839 default: 3840 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev), 3841 __func__); 3842 break; 3843 } 3844 } 3845 3846 /* 3847 * wm_acquire_eeprom: 3848 * 3849 * Perform the EEPROM handshake required on some chips. 3850 */ 3851 static int 3852 wm_acquire_eeprom(struct wm_softc *sc) 3853 { 3854 uint32_t reg; 3855 int x; 3856 int ret = 0; 3857 3858 /* always success */ 3859 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0) 3860 return 0; 3861 3862 if (sc->sc_flags & WM_F_SWFWHW_SYNC) { 3863 ret = wm_get_swfwhw_semaphore(sc); 3864 } else if (sc->sc_flags & WM_F_SWFW_SYNC) { 3865 /* this will also do wm_get_swsm_semaphore() if needed */ 3866 ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM); 3867 } else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) { 3868 ret = wm_get_swsm_semaphore(sc); 3869 } 3870 3871 if (ret) { 3872 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n", 3873 __func__); 3874 return 1; 3875 } 3876 3877 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) { 3878 reg = CSR_READ(sc, WMREG_EECD); 3879 3880 /* Request EEPROM access. */ 3881 reg |= EECD_EE_REQ; 3882 CSR_WRITE(sc, WMREG_EECD, reg); 3883 3884 /* ..and wait for it to be granted. */ 3885 for (x = 0; x < 1000; x++) { 3886 reg = CSR_READ(sc, WMREG_EECD); 3887 if (reg & EECD_EE_GNT) 3888 break; 3889 delay(5); 3890 } 3891 if ((reg & EECD_EE_GNT) == 0) { 3892 aprint_error_dev(sc->sc_dev, 3893 "could not acquire EEPROM GNT\n"); 3894 reg &= ~EECD_EE_REQ; 3895 CSR_WRITE(sc, WMREG_EECD, reg); 3896 if (sc->sc_flags & WM_F_SWFWHW_SYNC) 3897 wm_put_swfwhw_semaphore(sc); 3898 if (sc->sc_flags & WM_F_SWFW_SYNC) 3899 wm_put_swfw_semaphore(sc, SWFW_EEP_SM); 3900 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) 3901 wm_put_swsm_semaphore(sc); 3902 return (1); 3903 } 3904 } 3905 3906 return (0); 3907 } 3908 3909 /* 3910 * wm_release_eeprom: 3911 * 3912 * Release the EEPROM mutex. 3913 */ 3914 static void 3915 wm_release_eeprom(struct wm_softc *sc) 3916 { 3917 uint32_t reg; 3918 3919 /* always success */ 3920 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0) 3921 return; 3922 3923 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) { 3924 reg = CSR_READ(sc, WMREG_EECD); 3925 reg &= ~EECD_EE_REQ; 3926 CSR_WRITE(sc, WMREG_EECD, reg); 3927 } 3928 3929 if (sc->sc_flags & WM_F_SWFWHW_SYNC) 3930 wm_put_swfwhw_semaphore(sc); 3931 if (sc->sc_flags & WM_F_SWFW_SYNC) 3932 wm_put_swfw_semaphore(sc, SWFW_EEP_SM); 3933 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) 3934 wm_put_swsm_semaphore(sc); 3935 } 3936 3937 /* 3938 * wm_eeprom_sendbits: 3939 * 3940 * Send a series of bits to the EEPROM. 3941 */ 3942 static void 3943 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits) 3944 { 3945 uint32_t reg; 3946 int x; 3947 3948 reg = CSR_READ(sc, WMREG_EECD); 3949 3950 for (x = nbits; x > 0; x--) { 3951 if (bits & (1U << (x - 1))) 3952 reg |= EECD_DI; 3953 else 3954 reg &= ~EECD_DI; 3955 CSR_WRITE(sc, WMREG_EECD, reg); 3956 delay(2); 3957 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK); 3958 delay(2); 3959 CSR_WRITE(sc, WMREG_EECD, reg); 3960 delay(2); 3961 } 3962 } 3963 3964 /* 3965 * wm_eeprom_recvbits: 3966 * 3967 * Receive a series of bits from the EEPROM. 3968 */ 3969 static void 3970 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits) 3971 { 3972 uint32_t reg, val; 3973 int x; 3974 3975 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI; 3976 3977 val = 0; 3978 for (x = nbits; x > 0; x--) { 3979 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK); 3980 delay(2); 3981 if (CSR_READ(sc, WMREG_EECD) & EECD_DO) 3982 val |= (1U << (x - 1)); 3983 CSR_WRITE(sc, WMREG_EECD, reg); 3984 delay(2); 3985 } 3986 *valp = val; 3987 } 3988 3989 /* 3990 * wm_read_eeprom_uwire: 3991 * 3992 * Read a word from the EEPROM using the MicroWire protocol. 3993 */ 3994 static int 3995 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 3996 { 3997 uint32_t reg, val; 3998 int i; 3999 4000 for (i = 0; i < wordcnt; i++) { 4001 /* Clear SK and DI. */ 4002 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI); 4003 CSR_WRITE(sc, WMREG_EECD, reg); 4004 4005 /* Set CHIP SELECT. */ 4006 reg |= EECD_CS; 4007 CSR_WRITE(sc, WMREG_EECD, reg); 4008 delay(2); 4009 4010 /* Shift in the READ command. */ 4011 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3); 4012 4013 /* Shift in address. */ 4014 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits); 4015 4016 /* Shift out the data. */ 4017 wm_eeprom_recvbits(sc, &val, 16); 4018 data[i] = val & 0xffff; 4019 4020 /* Clear CHIP SELECT. */ 4021 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS; 4022 CSR_WRITE(sc, WMREG_EECD, reg); 4023 delay(2); 4024 } 4025 4026 return (0); 4027 } 4028 4029 /* 4030 * wm_spi_eeprom_ready: 4031 * 4032 * Wait for a SPI EEPROM to be ready for commands. 4033 */ 4034 static int 4035 wm_spi_eeprom_ready(struct wm_softc *sc) 4036 { 4037 uint32_t val; 4038 int usec; 4039 4040 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) { 4041 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8); 4042 wm_eeprom_recvbits(sc, &val, 8); 4043 if ((val & SPI_SR_RDY) == 0) 4044 break; 4045 } 4046 if (usec >= SPI_MAX_RETRIES) { 4047 aprint_error_dev(sc->sc_dev, "EEPROM failed to become ready\n"); 4048 return (1); 4049 } 4050 return (0); 4051 } 4052 4053 /* 4054 * wm_read_eeprom_spi: 4055 * 4056 * Read a work from the EEPROM using the SPI protocol. 4057 */ 4058 static int 4059 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 4060 { 4061 uint32_t reg, val; 4062 int i; 4063 uint8_t opc; 4064 4065 /* Clear SK and CS. */ 4066 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS); 4067 CSR_WRITE(sc, WMREG_EECD, reg); 4068 delay(2); 4069 4070 if (wm_spi_eeprom_ready(sc)) 4071 return (1); 4072 4073 /* Toggle CS to flush commands. */ 4074 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS); 4075 delay(2); 4076 CSR_WRITE(sc, WMREG_EECD, reg); 4077 delay(2); 4078 4079 opc = SPI_OPC_READ; 4080 if (sc->sc_ee_addrbits == 8 && word >= 128) 4081 opc |= SPI_OPC_A8; 4082 4083 wm_eeprom_sendbits(sc, opc, 8); 4084 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits); 4085 4086 for (i = 0; i < wordcnt; i++) { 4087 wm_eeprom_recvbits(sc, &val, 16); 4088 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8); 4089 } 4090 4091 /* Raise CS and clear SK. */ 4092 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS; 4093 CSR_WRITE(sc, WMREG_EECD, reg); 4094 delay(2); 4095 4096 return (0); 4097 } 4098 4099 #define EEPROM_CHECKSUM 0xBABA 4100 #define EEPROM_SIZE 0x0040 4101 4102 /* 4103 * wm_validate_eeprom_checksum 4104 * 4105 * The checksum is defined as the sum of the first 64 (16 bit) words. 4106 */ 4107 static int 4108 wm_validate_eeprom_checksum(struct wm_softc *sc) 4109 { 4110 uint16_t checksum; 4111 uint16_t eeprom_data; 4112 int i; 4113 4114 checksum = 0; 4115 4116 for (i = 0; i < EEPROM_SIZE; i++) { 4117 if (wm_read_eeprom(sc, i, 1, &eeprom_data)) 4118 return 1; 4119 checksum += eeprom_data; 4120 } 4121 4122 if (checksum != (uint16_t) EEPROM_CHECKSUM) 4123 return 1; 4124 4125 return 0; 4126 } 4127 4128 /* 4129 * wm_read_eeprom: 4130 * 4131 * Read data from the serial EEPROM. 4132 */ 4133 static int 4134 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 4135 { 4136 int rv; 4137 4138 if (sc->sc_flags & WM_F_EEPROM_INVALID) 4139 return 1; 4140 4141 if (wm_acquire_eeprom(sc)) 4142 return 1; 4143 4144 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 4145 || (sc->sc_type == WM_T_ICH10)) 4146 rv = wm_read_eeprom_ich8(sc, word, wordcnt, data); 4147 else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR) 4148 rv = wm_read_eeprom_eerd(sc, word, wordcnt, data); 4149 else if (sc->sc_flags & WM_F_EEPROM_SPI) 4150 rv = wm_read_eeprom_spi(sc, word, wordcnt, data); 4151 else 4152 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data); 4153 4154 wm_release_eeprom(sc); 4155 return rv; 4156 } 4157 4158 static int 4159 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt, 4160 uint16_t *data) 4161 { 4162 int i, eerd = 0; 4163 int error = 0; 4164 4165 for (i = 0; i < wordcnt; i++) { 4166 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START; 4167 4168 CSR_WRITE(sc, WMREG_EERD, eerd); 4169 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD); 4170 if (error != 0) 4171 break; 4172 4173 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT); 4174 } 4175 4176 return error; 4177 } 4178 4179 static int 4180 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw) 4181 { 4182 uint32_t attempts = 100000; 4183 uint32_t i, reg = 0; 4184 int32_t done = -1; 4185 4186 for (i = 0; i < attempts; i++) { 4187 reg = CSR_READ(sc, rw); 4188 4189 if (reg & EERD_DONE) { 4190 done = 0; 4191 break; 4192 } 4193 delay(5); 4194 } 4195 4196 return done; 4197 } 4198 4199 /* 4200 * wm_add_rxbuf: 4201 * 4202 * Add a receive buffer to the indiciated descriptor. 4203 */ 4204 static int 4205 wm_add_rxbuf(struct wm_softc *sc, int idx) 4206 { 4207 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx]; 4208 struct mbuf *m; 4209 int error; 4210 4211 MGETHDR(m, M_DONTWAIT, MT_DATA); 4212 if (m == NULL) 4213 return (ENOBUFS); 4214 4215 MCLGET(m, M_DONTWAIT); 4216 if ((m->m_flags & M_EXT) == 0) { 4217 m_freem(m); 4218 return (ENOBUFS); 4219 } 4220 4221 if (rxs->rxs_mbuf != NULL) 4222 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 4223 4224 rxs->rxs_mbuf = m; 4225 4226 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 4227 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m, 4228 BUS_DMA_READ|BUS_DMA_NOWAIT); 4229 if (error) { 4230 /* XXX XXX XXX */ 4231 aprint_error_dev(sc->sc_dev, 4232 "unable to load rx DMA map %d, error = %d\n", 4233 idx, error); 4234 panic("wm_add_rxbuf"); 4235 } 4236 4237 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 4238 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 4239 4240 WM_INIT_RXDESC(sc, idx); 4241 4242 return (0); 4243 } 4244 4245 /* 4246 * wm_set_ral: 4247 * 4248 * Set an entery in the receive address list. 4249 */ 4250 static void 4251 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx) 4252 { 4253 uint32_t ral_lo, ral_hi; 4254 4255 if (enaddr != NULL) { 4256 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) | 4257 (enaddr[3] << 24); 4258 ral_hi = enaddr[4] | (enaddr[5] << 8); 4259 ral_hi |= RAL_AV; 4260 } else { 4261 ral_lo = 0; 4262 ral_hi = 0; 4263 } 4264 4265 if (sc->sc_type >= WM_T_82544) { 4266 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx), 4267 ral_lo); 4268 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx), 4269 ral_hi); 4270 } else { 4271 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo); 4272 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi); 4273 } 4274 } 4275 4276 /* 4277 * wm_mchash: 4278 * 4279 * Compute the hash of the multicast address for the 4096-bit 4280 * multicast filter. 4281 */ 4282 static uint32_t 4283 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr) 4284 { 4285 static const int lo_shift[4] = { 4, 3, 2, 0 }; 4286 static const int hi_shift[4] = { 4, 5, 6, 8 }; 4287 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 }; 4288 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 }; 4289 uint32_t hash; 4290 4291 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 4292 || (sc->sc_type == WM_T_ICH10)) { 4293 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) | 4294 (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]); 4295 return (hash & 0x3ff); 4296 } 4297 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) | 4298 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]); 4299 4300 return (hash & 0xfff); 4301 } 4302 4303 /* 4304 * wm_set_filter: 4305 * 4306 * Set up the receive filter. 4307 */ 4308 static void 4309 wm_set_filter(struct wm_softc *sc) 4310 { 4311 struct ethercom *ec = &sc->sc_ethercom; 4312 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4313 struct ether_multi *enm; 4314 struct ether_multistep step; 4315 bus_addr_t mta_reg; 4316 uint32_t hash, reg, bit; 4317 int i, size; 4318 4319 if (sc->sc_type >= WM_T_82544) 4320 mta_reg = WMREG_CORDOVA_MTA; 4321 else 4322 mta_reg = WMREG_MTA; 4323 4324 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE); 4325 4326 if (ifp->if_flags & IFF_BROADCAST) 4327 sc->sc_rctl |= RCTL_BAM; 4328 if (ifp->if_flags & IFF_PROMISC) { 4329 sc->sc_rctl |= RCTL_UPE; 4330 goto allmulti; 4331 } 4332 4333 /* 4334 * Set the station address in the first RAL slot, and 4335 * clear the remaining slots. 4336 */ 4337 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 4338 || (sc->sc_type == WM_T_ICH10)) 4339 size = WM_ICH8_RAL_TABSIZE; 4340 else 4341 size = WM_RAL_TABSIZE; 4342 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0); 4343 for (i = 1; i < size; i++) 4344 wm_set_ral(sc, NULL, i); 4345 4346 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 4347 || (sc->sc_type == WM_T_ICH10)) 4348 size = WM_ICH8_MC_TABSIZE; 4349 else 4350 size = WM_MC_TABSIZE; 4351 /* Clear out the multicast table. */ 4352 for (i = 0; i < size; i++) 4353 CSR_WRITE(sc, mta_reg + (i << 2), 0); 4354 4355 ETHER_FIRST_MULTI(step, ec, enm); 4356 while (enm != NULL) { 4357 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 4358 /* 4359 * We must listen to a range of multicast addresses. 4360 * For now, just accept all multicasts, rather than 4361 * trying to set only those filter bits needed to match 4362 * the range. (At this time, the only use of address 4363 * ranges is for IP multicast routing, for which the 4364 * range is big enough to require all bits set.) 4365 */ 4366 goto allmulti; 4367 } 4368 4369 hash = wm_mchash(sc, enm->enm_addrlo); 4370 4371 reg = (hash >> 5); 4372 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 4373 || (sc->sc_type == WM_T_ICH10)) 4374 reg &= 0x1f; 4375 else 4376 reg &= 0x7f; 4377 bit = hash & 0x1f; 4378 4379 hash = CSR_READ(sc, mta_reg + (reg << 2)); 4380 hash |= 1U << bit; 4381 4382 /* XXX Hardware bug?? */ 4383 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) { 4384 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2)); 4385 CSR_WRITE(sc, mta_reg + (reg << 2), hash); 4386 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit); 4387 } else 4388 CSR_WRITE(sc, mta_reg + (reg << 2), hash); 4389 4390 ETHER_NEXT_MULTI(step, enm); 4391 } 4392 4393 ifp->if_flags &= ~IFF_ALLMULTI; 4394 goto setit; 4395 4396 allmulti: 4397 ifp->if_flags |= IFF_ALLMULTI; 4398 sc->sc_rctl |= RCTL_MPE; 4399 4400 setit: 4401 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl); 4402 } 4403 4404 /* 4405 * wm_tbi_mediainit: 4406 * 4407 * Initialize media for use on 1000BASE-X devices. 4408 */ 4409 static void 4410 wm_tbi_mediainit(struct wm_softc *sc) 4411 { 4412 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4413 const char *sep = ""; 4414 4415 if (sc->sc_type < WM_T_82543) 4416 sc->sc_tipg = TIPG_WM_DFLT; 4417 else 4418 sc->sc_tipg = TIPG_LG_DFLT; 4419 4420 sc->sc_tbi_anegticks = 5; 4421 4422 /* Initialize our media structures */ 4423 sc->sc_mii.mii_ifp = ifp; 4424 4425 sc->sc_ethercom.ec_mii = &sc->sc_mii; 4426 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange, 4427 wm_tbi_mediastatus); 4428 4429 /* 4430 * SWD Pins: 4431 * 4432 * 0 = Link LED (output) 4433 * 1 = Loss Of Signal (input) 4434 */ 4435 sc->sc_ctrl |= CTRL_SWDPIO(0); 4436 sc->sc_ctrl &= ~CTRL_SWDPIO(1); 4437 4438 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4439 4440 #define ADD(ss, mm, dd) \ 4441 do { \ 4442 aprint_normal("%s%s", sep, ss); \ 4443 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \ 4444 sep = ", "; \ 4445 } while (/*CONSTCOND*/0) 4446 4447 aprint_normal_dev(sc->sc_dev, ""); 4448 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD); 4449 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD); 4450 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD); 4451 aprint_normal("\n"); 4452 4453 #undef ADD 4454 4455 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 4456 } 4457 4458 /* 4459 * wm_tbi_mediastatus: [ifmedia interface function] 4460 * 4461 * Get the current interface media status on a 1000BASE-X device. 4462 */ 4463 static void 4464 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 4465 { 4466 struct wm_softc *sc = ifp->if_softc; 4467 uint32_t ctrl, status; 4468 4469 ifmr->ifm_status = IFM_AVALID; 4470 ifmr->ifm_active = IFM_ETHER; 4471 4472 status = CSR_READ(sc, WMREG_STATUS); 4473 if ((status & STATUS_LU) == 0) { 4474 ifmr->ifm_active |= IFM_NONE; 4475 return; 4476 } 4477 4478 ifmr->ifm_status |= IFM_ACTIVE; 4479 ifmr->ifm_active |= IFM_1000_SX; 4480 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD) 4481 ifmr->ifm_active |= IFM_FDX; 4482 ctrl = CSR_READ(sc, WMREG_CTRL); 4483 if (ctrl & CTRL_RFCE) 4484 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE; 4485 if (ctrl & CTRL_TFCE) 4486 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE; 4487 } 4488 4489 /* 4490 * wm_tbi_mediachange: [ifmedia interface function] 4491 * 4492 * Set hardware to newly-selected media on a 1000BASE-X device. 4493 */ 4494 static int 4495 wm_tbi_mediachange(struct ifnet *ifp) 4496 { 4497 struct wm_softc *sc = ifp->if_softc; 4498 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 4499 uint32_t status; 4500 int i; 4501 4502 sc->sc_txcw = 0; 4503 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO || 4504 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0) 4505 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE; 4506 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) { 4507 sc->sc_txcw |= TXCW_ANE; 4508 } else { 4509 /* 4510 * If autonegotiation is turned off, force link up and turn on 4511 * full duplex 4512 */ 4513 sc->sc_txcw &= ~TXCW_ANE; 4514 sc->sc_ctrl |= CTRL_SLU | CTRL_FD; 4515 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE); 4516 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4517 delay(1000); 4518 } 4519 4520 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n", 4521 device_xname(sc->sc_dev),sc->sc_txcw)); 4522 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw); 4523 delay(10000); 4524 4525 i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1); 4526 DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(sc->sc_dev),i)); 4527 4528 /* 4529 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the 4530 * optics detect a signal, 0 if they don't. 4531 */ 4532 if (((i != 0) && (sc->sc_type > WM_T_82544)) || (i == 0)) { 4533 /* Have signal; wait for the link to come up. */ 4534 4535 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) { 4536 /* 4537 * Reset the link, and let autonegotiation do its thing 4538 */ 4539 sc->sc_ctrl |= CTRL_LRST; 4540 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4541 delay(1000); 4542 sc->sc_ctrl &= ~CTRL_LRST; 4543 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4544 delay(1000); 4545 } 4546 4547 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) { 4548 delay(10000); 4549 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU) 4550 break; 4551 } 4552 4553 DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n", 4554 device_xname(sc->sc_dev),i)); 4555 4556 status = CSR_READ(sc, WMREG_STATUS); 4557 DPRINTF(WM_DEBUG_LINK, 4558 ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n", 4559 device_xname(sc->sc_dev),status, STATUS_LU)); 4560 if (status & STATUS_LU) { 4561 /* Link is up. */ 4562 DPRINTF(WM_DEBUG_LINK, 4563 ("%s: LINK: set media -> link up %s\n", 4564 device_xname(sc->sc_dev), 4565 (status & STATUS_FD) ? "FDX" : "HDX")); 4566 4567 /* 4568 * NOTE: CTRL will update TFCE and RFCE automatically, 4569 * so we should update sc->sc_ctrl 4570 */ 4571 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL); 4572 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 4573 sc->sc_fcrtl &= ~FCRTL_XONE; 4574 if (status & STATUS_FD) 4575 sc->sc_tctl |= 4576 TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 4577 else 4578 sc->sc_tctl |= 4579 TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 4580 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE) 4581 sc->sc_fcrtl |= FCRTL_XONE; 4582 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 4583 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? 4584 WMREG_OLD_FCRTL : WMREG_FCRTL, 4585 sc->sc_fcrtl); 4586 sc->sc_tbi_linkup = 1; 4587 } else { 4588 if (i == WM_LINKUP_TIMEOUT) 4589 wm_check_for_link(sc); 4590 /* Link is down. */ 4591 DPRINTF(WM_DEBUG_LINK, 4592 ("%s: LINK: set media -> link down\n", 4593 device_xname(sc->sc_dev))); 4594 sc->sc_tbi_linkup = 0; 4595 } 4596 } else { 4597 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n", 4598 device_xname(sc->sc_dev))); 4599 sc->sc_tbi_linkup = 0; 4600 } 4601 4602 wm_tbi_set_linkled(sc); 4603 4604 return (0); 4605 } 4606 4607 /* 4608 * wm_tbi_set_linkled: 4609 * 4610 * Update the link LED on 1000BASE-X devices. 4611 */ 4612 static void 4613 wm_tbi_set_linkled(struct wm_softc *sc) 4614 { 4615 4616 if (sc->sc_tbi_linkup) 4617 sc->sc_ctrl |= CTRL_SWDPIN(0); 4618 else 4619 sc->sc_ctrl &= ~CTRL_SWDPIN(0); 4620 4621 /* 82540 or newer devices are active low */ 4622 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0; 4623 4624 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4625 } 4626 4627 /* 4628 * wm_tbi_check_link: 4629 * 4630 * Check the link on 1000BASE-X devices. 4631 */ 4632 static void 4633 wm_tbi_check_link(struct wm_softc *sc) 4634 { 4635 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4636 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 4637 uint32_t rxcw, ctrl, status; 4638 4639 status = CSR_READ(sc, WMREG_STATUS); 4640 4641 rxcw = CSR_READ(sc, WMREG_RXCW); 4642 ctrl = CSR_READ(sc, WMREG_CTRL); 4643 4644 /* set link status */ 4645 if ((status & STATUS_LU) == 0) { 4646 DPRINTF(WM_DEBUG_LINK, 4647 ("%s: LINK: checklink -> down\n", device_xname(sc->sc_dev))); 4648 sc->sc_tbi_linkup = 0; 4649 } else if (sc->sc_tbi_linkup == 0) { 4650 DPRINTF(WM_DEBUG_LINK, 4651 ("%s: LINK: checklink -> up %s\n", device_xname(sc->sc_dev), 4652 (status & STATUS_FD) ? "FDX" : "HDX")); 4653 sc->sc_tbi_linkup = 1; 4654 } 4655 4656 if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP) 4657 && ((status & STATUS_LU) == 0)) { 4658 sc->sc_tbi_linkup = 0; 4659 if (sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg > 100) { 4660 /* RXCFG storm! */ 4661 DPRINTF(WM_DEBUG_LINK, ("RXCFG storm! (%d)\n", 4662 sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg)); 4663 wm_init(ifp); 4664 wm_start(ifp); 4665 } else if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) { 4666 /* If the timer expired, retry autonegotiation */ 4667 if (++sc->sc_tbi_ticks >= sc->sc_tbi_anegticks) { 4668 DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n")); 4669 sc->sc_tbi_ticks = 0; 4670 /* 4671 * Reset the link, and let autonegotiation do 4672 * its thing 4673 */ 4674 sc->sc_ctrl |= CTRL_LRST; 4675 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4676 delay(1000); 4677 sc->sc_ctrl &= ~CTRL_LRST; 4678 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4679 delay(1000); 4680 CSR_WRITE(sc, WMREG_TXCW, 4681 sc->sc_txcw & ~TXCW_ANE); 4682 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw); 4683 } 4684 } 4685 } 4686 4687 wm_tbi_set_linkled(sc); 4688 } 4689 4690 /* 4691 * wm_gmii_reset: 4692 * 4693 * Reset the PHY. 4694 */ 4695 static void 4696 wm_gmii_reset(struct wm_softc *sc) 4697 { 4698 uint32_t reg; 4699 int func = 0; /* XXX gcc */ 4700 int rv; 4701 4702 /* get phy semaphore */ 4703 switch (sc->sc_type) { 4704 case WM_T_82571: 4705 case WM_T_82572: 4706 case WM_T_82573: 4707 case WM_T_82574: 4708 case WM_T_82583: 4709 /* XXX sould get sw semaphore, too */ 4710 rv = wm_get_swsm_semaphore(sc); 4711 break; 4712 case WM_T_80003: 4713 func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1; 4714 rv = wm_get_swfw_semaphore(sc, 4715 func ? SWFW_PHY1_SM : SWFW_PHY0_SM); 4716 break; 4717 case WM_T_ICH8: 4718 case WM_T_ICH9: 4719 case WM_T_ICH10: 4720 rv = wm_get_swfwhw_semaphore(sc); 4721 break; 4722 default: 4723 /* nothing to do*/ 4724 rv = 0; 4725 break; 4726 } 4727 if (rv != 0) { 4728 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n", 4729 __func__); 4730 return; 4731 } 4732 4733 switch (sc->sc_type) { 4734 case WM_T_82542_2_0: 4735 case WM_T_82542_2_1: 4736 /* null */ 4737 break; 4738 case WM_T_82543: 4739 /* 4740 * With 82543, we need to force speed and duplex on the MAC 4741 * equal to what the PHY speed and duplex configuration is. 4742 * In addition, we need to perform a hardware reset on the PHY 4743 * to take it out of reset. 4744 */ 4745 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX; 4746 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4747 4748 /* The PHY reset pin is active-low. */ 4749 reg = CSR_READ(sc, WMREG_CTRL_EXT); 4750 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) | 4751 CTRL_EXT_SWDPIN(4)); 4752 reg |= CTRL_EXT_SWDPIO(4); 4753 4754 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 4755 delay(10*1000); 4756 4757 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4)); 4758 delay(150); 4759 #if 0 4760 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4); 4761 #endif 4762 delay(20*1000); /* XXX extra delay to get PHY ID? */ 4763 break; 4764 case WM_T_82544: /* reset 10000us */ 4765 case WM_T_82540: 4766 case WM_T_82545: 4767 case WM_T_82545_3: 4768 case WM_T_82546: 4769 case WM_T_82546_3: 4770 case WM_T_82541: 4771 case WM_T_82541_2: 4772 case WM_T_82547: 4773 case WM_T_82547_2: 4774 case WM_T_82571: /* reset 100us */ 4775 case WM_T_82572: 4776 case WM_T_82573: 4777 case WM_T_82574: 4778 case WM_T_82583: 4779 case WM_T_80003: 4780 /* generic reset */ 4781 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET); 4782 delay((sc->sc_type >= WM_T_82571) ? 100 : 10*1000); 4783 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4784 delay(150); 4785 4786 if ((sc->sc_type == WM_T_82541) 4787 || (sc->sc_type == WM_T_82541_2) 4788 || (sc->sc_type == WM_T_82547) 4789 || (sc->sc_type == WM_T_82547_2)) { 4790 /* workaround for igp are done in igp_reset() */ 4791 /* XXX add code to set LED after phy reset */ 4792 } 4793 break; 4794 case WM_T_ICH8: 4795 case WM_T_ICH9: 4796 case WM_T_ICH10: 4797 /* generic reset */ 4798 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET); 4799 delay(100); 4800 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4801 delay(150); 4802 4803 /* Allow time for h/w to get to a quiescent state afer reset */ 4804 delay(10*1000); 4805 4806 /* XXX add code to set LED after phy reset */ 4807 break; 4808 default: 4809 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev), 4810 __func__); 4811 break; 4812 } 4813 4814 /* release PHY semaphore */ 4815 switch (sc->sc_type) { 4816 case WM_T_82571: 4817 case WM_T_82572: 4818 case WM_T_82573: 4819 case WM_T_82574: 4820 case WM_T_82583: 4821 /* XXX sould put sw semaphore, too */ 4822 wm_put_swsm_semaphore(sc); 4823 break; 4824 case WM_T_80003: 4825 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM); 4826 break; 4827 case WM_T_ICH8: 4828 case WM_T_ICH9: 4829 case WM_T_ICH10: 4830 wm_put_swfwhw_semaphore(sc); 4831 break; 4832 default: 4833 /* nothing to do*/ 4834 rv = 0; 4835 break; 4836 } 4837 4838 /* get_cfg_done */ 4839 wm_get_cfg_done(sc); 4840 4841 /* extra setup */ 4842 switch (sc->sc_type) { 4843 case WM_T_82542_2_0: 4844 case WM_T_82542_2_1: 4845 case WM_T_82543: 4846 case WM_T_82544: 4847 case WM_T_82540: 4848 case WM_T_82545: 4849 case WM_T_82545_3: 4850 case WM_T_82546: 4851 case WM_T_82546_3: 4852 case WM_T_82541_2: 4853 case WM_T_82547_2: 4854 case WM_T_82571: 4855 case WM_T_82572: 4856 case WM_T_82573: 4857 case WM_T_82574: 4858 case WM_T_82583: 4859 case WM_T_80003: 4860 /* null */ 4861 break; 4862 case WM_T_82541: 4863 case WM_T_82547: 4864 /* XXX Configure actively LED after PHY reset */ 4865 break; 4866 case WM_T_ICH8: 4867 case WM_T_ICH9: 4868 case WM_T_ICH10: 4869 delay(10*1000); 4870 break; 4871 default: 4872 panic("%s: unknown type\n", __func__); 4873 break; 4874 } 4875 } 4876 4877 /* 4878 * wm_gmii_mediainit: 4879 * 4880 * Initialize media for use on 1000BASE-T devices. 4881 */ 4882 static void 4883 wm_gmii_mediainit(struct wm_softc *sc) 4884 { 4885 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4886 4887 /* We have MII. */ 4888 sc->sc_flags |= WM_F_HAS_MII; 4889 4890 if (sc->sc_type == WM_T_80003) 4891 sc->sc_tipg = TIPG_1000T_80003_DFLT; 4892 else 4893 sc->sc_tipg = TIPG_1000T_DFLT; 4894 4895 /* 4896 * Let the chip set speed/duplex on its own based on 4897 * signals from the PHY. 4898 * XXXbouyer - I'm not sure this is right for the 80003, 4899 * the em driver only sets CTRL_SLU here - but it seems to work. 4900 */ 4901 sc->sc_ctrl |= CTRL_SLU; 4902 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4903 4904 /* Initialize our media structures and probe the GMII. */ 4905 sc->sc_mii.mii_ifp = ifp; 4906 4907 if (sc->sc_type >= WM_T_80003) { 4908 sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg; 4909 sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg; 4910 } else if (sc->sc_type >= WM_T_82544) { 4911 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg; 4912 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg; 4913 } else { 4914 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg; 4915 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg; 4916 } 4917 sc->sc_mii.mii_statchg = wm_gmii_statchg; 4918 4919 wm_gmii_reset(sc); 4920 4921 sc->sc_ethercom.ec_mii = &sc->sc_mii; 4922 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange, 4923 wm_gmii_mediastatus); 4924 4925 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 4926 MII_OFFSET_ANY, MIIF_DOPAUSE); 4927 4928 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 4929 /* if failed, retry with *_bm_* */ 4930 sc->sc_mii.mii_readreg = wm_gmii_bm_readreg; 4931 sc->sc_mii.mii_writereg = wm_gmii_bm_writereg; 4932 4933 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 4934 MII_OFFSET_ANY, MIIF_DOPAUSE); 4935 } 4936 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 4937 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 4938 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 4939 } else { 4940 if (sc->sc_type >= WM_T_82574) { 4941 struct mii_softc *child; 4942 4943 child = LIST_FIRST(&sc->sc_mii.mii_phys); 4944 /* fix read/write functions as e1000 driver */ 4945 if (device_is_a(child->mii_dev, "igphy")) { 4946 sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg; 4947 sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg; 4948 } else { 4949 sc->sc_mii.mii_readreg = wm_gmii_bm_readreg; 4950 sc->sc_mii.mii_writereg = wm_gmii_bm_writereg; 4951 } 4952 } 4953 4954 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 4955 } 4956 } 4957 4958 /* 4959 * wm_gmii_mediastatus: [ifmedia interface function] 4960 * 4961 * Get the current interface media status on a 1000BASE-T device. 4962 */ 4963 static void 4964 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 4965 { 4966 struct wm_softc *sc = ifp->if_softc; 4967 4968 ether_mediastatus(ifp, ifmr); 4969 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) | 4970 sc->sc_flowflags; 4971 } 4972 4973 /* 4974 * wm_gmii_mediachange: [ifmedia interface function] 4975 * 4976 * Set hardware to newly-selected media on a 1000BASE-T device. 4977 */ 4978 static int 4979 wm_gmii_mediachange(struct ifnet *ifp) 4980 { 4981 struct wm_softc *sc = ifp->if_softc; 4982 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 4983 int rc; 4984 4985 if ((ifp->if_flags & IFF_UP) == 0) 4986 return 0; 4987 4988 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD); 4989 sc->sc_ctrl |= CTRL_SLU; 4990 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) 4991 || (sc->sc_type > WM_T_82543)) { 4992 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX); 4993 } else { 4994 sc->sc_ctrl &= ~CTRL_ASDE; 4995 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX; 4996 if (ife->ifm_media & IFM_FDX) 4997 sc->sc_ctrl |= CTRL_FD; 4998 switch(IFM_SUBTYPE(ife->ifm_media)) { 4999 case IFM_10_T: 5000 sc->sc_ctrl |= CTRL_SPEED_10; 5001 break; 5002 case IFM_100_TX: 5003 sc->sc_ctrl |= CTRL_SPEED_100; 5004 break; 5005 case IFM_1000_T: 5006 sc->sc_ctrl |= CTRL_SPEED_1000; 5007 break; 5008 default: 5009 panic("wm_gmii_mediachange: bad media 0x%x", 5010 ife->ifm_media); 5011 } 5012 } 5013 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 5014 if (sc->sc_type <= WM_T_82543) 5015 wm_gmii_reset(sc); 5016 5017 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO) 5018 return 0; 5019 return rc; 5020 } 5021 5022 #define MDI_IO CTRL_SWDPIN(2) 5023 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */ 5024 #define MDI_CLK CTRL_SWDPIN(3) 5025 5026 static void 5027 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits) 5028 { 5029 uint32_t i, v; 5030 5031 v = CSR_READ(sc, WMREG_CTRL); 5032 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT)); 5033 v |= MDI_DIR | CTRL_SWDPIO(3); 5034 5035 for (i = 1 << (nbits - 1); i != 0; i >>= 1) { 5036 if (data & i) 5037 v |= MDI_IO; 5038 else 5039 v &= ~MDI_IO; 5040 CSR_WRITE(sc, WMREG_CTRL, v); 5041 delay(10); 5042 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 5043 delay(10); 5044 CSR_WRITE(sc, WMREG_CTRL, v); 5045 delay(10); 5046 } 5047 } 5048 5049 static uint32_t 5050 i82543_mii_recvbits(struct wm_softc *sc) 5051 { 5052 uint32_t v, i, data = 0; 5053 5054 v = CSR_READ(sc, WMREG_CTRL); 5055 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT)); 5056 v |= CTRL_SWDPIO(3); 5057 5058 CSR_WRITE(sc, WMREG_CTRL, v); 5059 delay(10); 5060 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 5061 delay(10); 5062 CSR_WRITE(sc, WMREG_CTRL, v); 5063 delay(10); 5064 5065 for (i = 0; i < 16; i++) { 5066 data <<= 1; 5067 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 5068 delay(10); 5069 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO) 5070 data |= 1; 5071 CSR_WRITE(sc, WMREG_CTRL, v); 5072 delay(10); 5073 } 5074 5075 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 5076 delay(10); 5077 CSR_WRITE(sc, WMREG_CTRL, v); 5078 delay(10); 5079 5080 return (data); 5081 } 5082 5083 #undef MDI_IO 5084 #undef MDI_DIR 5085 #undef MDI_CLK 5086 5087 /* 5088 * wm_gmii_i82543_readreg: [mii interface function] 5089 * 5090 * Read a PHY register on the GMII (i82543 version). 5091 */ 5092 static int 5093 wm_gmii_i82543_readreg(device_t self, int phy, int reg) 5094 { 5095 struct wm_softc *sc = device_private(self); 5096 int rv; 5097 5098 i82543_mii_sendbits(sc, 0xffffffffU, 32); 5099 i82543_mii_sendbits(sc, reg | (phy << 5) | 5100 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14); 5101 rv = i82543_mii_recvbits(sc) & 0xffff; 5102 5103 DPRINTF(WM_DEBUG_GMII, 5104 ("%s: GMII: read phy %d reg %d -> 0x%04x\n", 5105 device_xname(sc->sc_dev), phy, reg, rv)); 5106 5107 return (rv); 5108 } 5109 5110 /* 5111 * wm_gmii_i82543_writereg: [mii interface function] 5112 * 5113 * Write a PHY register on the GMII (i82543 version). 5114 */ 5115 static void 5116 wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val) 5117 { 5118 struct wm_softc *sc = device_private(self); 5119 5120 i82543_mii_sendbits(sc, 0xffffffffU, 32); 5121 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) | 5122 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) | 5123 (MII_COMMAND_START << 30), 32); 5124 } 5125 5126 /* 5127 * wm_gmii_i82544_readreg: [mii interface function] 5128 * 5129 * Read a PHY register on the GMII. 5130 */ 5131 static int 5132 wm_gmii_i82544_readreg(device_t self, int phy, int reg) 5133 { 5134 struct wm_softc *sc = device_private(self); 5135 uint32_t mdic = 0; 5136 int i, rv; 5137 5138 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) | 5139 MDIC_REGADD(reg)); 5140 5141 for (i = 0; i < 320; i++) { 5142 mdic = CSR_READ(sc, WMREG_MDIC); 5143 if (mdic & MDIC_READY) 5144 break; 5145 delay(10); 5146 } 5147 5148 if ((mdic & MDIC_READY) == 0) { 5149 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n", 5150 device_xname(sc->sc_dev), phy, reg); 5151 rv = 0; 5152 } else if (mdic & MDIC_E) { 5153 #if 0 /* This is normal if no PHY is present. */ 5154 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n", 5155 device_xname(sc->sc_dev), phy, reg); 5156 #endif 5157 rv = 0; 5158 } else { 5159 rv = MDIC_DATA(mdic); 5160 if (rv == 0xffff) 5161 rv = 0; 5162 } 5163 5164 return (rv); 5165 } 5166 5167 /* 5168 * wm_gmii_i82544_writereg: [mii interface function] 5169 * 5170 * Write a PHY register on the GMII. 5171 */ 5172 static void 5173 wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val) 5174 { 5175 struct wm_softc *sc = device_private(self); 5176 uint32_t mdic = 0; 5177 int i; 5178 5179 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) | 5180 MDIC_REGADD(reg) | MDIC_DATA(val)); 5181 5182 for (i = 0; i < 320; i++) { 5183 mdic = CSR_READ(sc, WMREG_MDIC); 5184 if (mdic & MDIC_READY) 5185 break; 5186 delay(10); 5187 } 5188 5189 if ((mdic & MDIC_READY) == 0) 5190 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n", 5191 device_xname(sc->sc_dev), phy, reg); 5192 else if (mdic & MDIC_E) 5193 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n", 5194 device_xname(sc->sc_dev), phy, reg); 5195 } 5196 5197 /* 5198 * wm_gmii_i80003_readreg: [mii interface function] 5199 * 5200 * Read a PHY register on the kumeran 5201 * This could be handled by the PHY layer if we didn't have to lock the 5202 * ressource ... 5203 */ 5204 static int 5205 wm_gmii_i80003_readreg(device_t self, int phy, int reg) 5206 { 5207 struct wm_softc *sc = device_private(self); 5208 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1); 5209 int rv; 5210 5211 if (phy != 1) /* only one PHY on kumeran bus */ 5212 return 0; 5213 5214 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) { 5215 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n", 5216 __func__); 5217 return 0; 5218 } 5219 5220 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) { 5221 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT, 5222 reg >> GG82563_PAGE_SHIFT); 5223 } else { 5224 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT, 5225 reg >> GG82563_PAGE_SHIFT); 5226 } 5227 /* Wait more 200us for a bug of the ready bit in the MDIC register */ 5228 delay(200); 5229 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS); 5230 delay(200); 5231 5232 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM); 5233 return (rv); 5234 } 5235 5236 /* 5237 * wm_gmii_i80003_writereg: [mii interface function] 5238 * 5239 * Write a PHY register on the kumeran. 5240 * This could be handled by the PHY layer if we didn't have to lock the 5241 * ressource ... 5242 */ 5243 static void 5244 wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val) 5245 { 5246 struct wm_softc *sc = device_private(self); 5247 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1); 5248 5249 if (phy != 1) /* only one PHY on kumeran bus */ 5250 return; 5251 5252 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) { 5253 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n", 5254 __func__); 5255 return; 5256 } 5257 5258 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) { 5259 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT, 5260 reg >> GG82563_PAGE_SHIFT); 5261 } else { 5262 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT, 5263 reg >> GG82563_PAGE_SHIFT); 5264 } 5265 /* Wait more 200us for a bug of the ready bit in the MDIC register */ 5266 delay(200); 5267 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val); 5268 delay(200); 5269 5270 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM); 5271 } 5272 5273 /* 5274 * wm_gmii_bm_readreg: [mii interface function] 5275 * 5276 * Read a PHY register on the kumeran 5277 * This could be handled by the PHY layer if we didn't have to lock the 5278 * ressource ... 5279 */ 5280 static int 5281 wm_gmii_bm_readreg(device_t self, int phy, int reg) 5282 { 5283 struct wm_softc *sc = device_private(self); 5284 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1); 5285 int rv; 5286 5287 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) { 5288 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n", 5289 __func__); 5290 return 0; 5291 } 5292 5293 if (reg > GG82563_MAX_REG_ADDRESS) { 5294 if (phy == 1) 5295 wm_gmii_i82544_writereg(self, phy, 0x1f, 5296 reg); 5297 else 5298 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT, 5299 reg >> GG82563_PAGE_SHIFT); 5300 5301 } 5302 5303 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS); 5304 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM); 5305 return (rv); 5306 } 5307 5308 /* 5309 * wm_gmii_bm_writereg: [mii interface function] 5310 * 5311 * Write a PHY register on the kumeran. 5312 * This could be handled by the PHY layer if we didn't have to lock the 5313 * ressource ... 5314 */ 5315 static void 5316 wm_gmii_bm_writereg(device_t self, int phy, int reg, int val) 5317 { 5318 struct wm_softc *sc = device_private(self); 5319 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1); 5320 5321 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) { 5322 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n", 5323 __func__); 5324 return; 5325 } 5326 5327 if (reg > GG82563_MAX_REG_ADDRESS) { 5328 if (phy == 1) 5329 wm_gmii_i82544_writereg(self, phy, 0x1f, 5330 reg); 5331 else 5332 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT, 5333 reg >> GG82563_PAGE_SHIFT); 5334 5335 } 5336 5337 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val); 5338 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM); 5339 } 5340 5341 /* 5342 * wm_gmii_statchg: [mii interface function] 5343 * 5344 * Callback from MII layer when media changes. 5345 */ 5346 static void 5347 wm_gmii_statchg(device_t self) 5348 { 5349 struct wm_softc *sc = device_private(self); 5350 struct mii_data *mii = &sc->sc_mii; 5351 5352 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE); 5353 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 5354 sc->sc_fcrtl &= ~FCRTL_XONE; 5355 5356 /* 5357 * Get flow control negotiation result. 5358 */ 5359 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 5360 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 5361 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 5362 mii->mii_media_active &= ~IFM_ETH_FMASK; 5363 } 5364 5365 if (sc->sc_flowflags & IFM_FLOW) { 5366 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) { 5367 sc->sc_ctrl |= CTRL_TFCE; 5368 sc->sc_fcrtl |= FCRTL_XONE; 5369 } 5370 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 5371 sc->sc_ctrl |= CTRL_RFCE; 5372 } 5373 5374 if (sc->sc_mii.mii_media_active & IFM_FDX) { 5375 DPRINTF(WM_DEBUG_LINK, 5376 ("%s: LINK: statchg: FDX\n", device_xname(sc->sc_dev))); 5377 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 5378 } else { 5379 DPRINTF(WM_DEBUG_LINK, 5380 ("%s: LINK: statchg: HDX\n", device_xname(sc->sc_dev))); 5381 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 5382 } 5383 5384 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 5385 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 5386 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL 5387 : WMREG_FCRTL, sc->sc_fcrtl); 5388 if (sc->sc_type == WM_T_80003) { 5389 switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) { 5390 case IFM_1000_T: 5391 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL, 5392 KUMCTRLSTA_HD_CTRL_1000_DEFAULT); 5393 sc->sc_tipg = TIPG_1000T_80003_DFLT; 5394 break; 5395 default: 5396 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL, 5397 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT); 5398 sc->sc_tipg = TIPG_10_100_80003_DFLT; 5399 break; 5400 } 5401 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg); 5402 } 5403 } 5404 5405 /* 5406 * wm_kmrn_readreg: 5407 * 5408 * Read a kumeran register 5409 */ 5410 static int 5411 wm_kmrn_readreg(struct wm_softc *sc, int reg) 5412 { 5413 int rv; 5414 5415 if (sc->sc_flags == WM_F_SWFW_SYNC) { 5416 if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) { 5417 aprint_error_dev(sc->sc_dev, 5418 "%s: failed to get semaphore\n", __func__); 5419 return 0; 5420 } 5421 } else if (sc->sc_flags == WM_F_SWFWHW_SYNC) { 5422 if (wm_get_swfwhw_semaphore(sc)) { 5423 aprint_error_dev(sc->sc_dev, 5424 "%s: failed to get semaphore\n", __func__); 5425 return 0; 5426 } 5427 } 5428 5429 CSR_WRITE(sc, WMREG_KUMCTRLSTA, 5430 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) | 5431 KUMCTRLSTA_REN); 5432 delay(2); 5433 5434 rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK; 5435 5436 if (sc->sc_flags == WM_F_SWFW_SYNC) 5437 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM); 5438 else if (sc->sc_flags == WM_F_SWFWHW_SYNC) 5439 wm_put_swfwhw_semaphore(sc); 5440 5441 return (rv); 5442 } 5443 5444 /* 5445 * wm_kmrn_writereg: 5446 * 5447 * Write a kumeran register 5448 */ 5449 static void 5450 wm_kmrn_writereg(struct wm_softc *sc, int reg, int val) 5451 { 5452 5453 if (sc->sc_flags == WM_F_SWFW_SYNC) { 5454 if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) { 5455 aprint_error_dev(sc->sc_dev, 5456 "%s: failed to get semaphore\n", __func__); 5457 return; 5458 } 5459 } else if (sc->sc_flags == WM_F_SWFWHW_SYNC) { 5460 if (wm_get_swfwhw_semaphore(sc)) { 5461 aprint_error_dev(sc->sc_dev, 5462 "%s: failed to get semaphore\n", __func__); 5463 return; 5464 } 5465 } 5466 5467 CSR_WRITE(sc, WMREG_KUMCTRLSTA, 5468 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) | 5469 (val & KUMCTRLSTA_MASK)); 5470 5471 if (sc->sc_flags == WM_F_SWFW_SYNC) 5472 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM); 5473 else if (sc->sc_flags == WM_F_SWFWHW_SYNC) 5474 wm_put_swfwhw_semaphore(sc); 5475 } 5476 5477 static int 5478 wm_is_onboard_nvm_eeprom(struct wm_softc *sc) 5479 { 5480 uint32_t eecd = 0; 5481 5482 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574 5483 || sc->sc_type == WM_T_82583) { 5484 eecd = CSR_READ(sc, WMREG_EECD); 5485 5486 /* Isolate bits 15 & 16 */ 5487 eecd = ((eecd >> 15) & 0x03); 5488 5489 /* If both bits are set, device is Flash type */ 5490 if (eecd == 0x03) 5491 return 0; 5492 } 5493 return 1; 5494 } 5495 5496 static int 5497 wm_get_swsm_semaphore(struct wm_softc *sc) 5498 { 5499 int32_t timeout; 5500 uint32_t swsm; 5501 5502 /* Get the FW semaphore. */ 5503 timeout = 1000 + 1; /* XXX */ 5504 while (timeout) { 5505 swsm = CSR_READ(sc, WMREG_SWSM); 5506 swsm |= SWSM_SWESMBI; 5507 CSR_WRITE(sc, WMREG_SWSM, swsm); 5508 /* if we managed to set the bit we got the semaphore. */ 5509 swsm = CSR_READ(sc, WMREG_SWSM); 5510 if (swsm & SWSM_SWESMBI) 5511 break; 5512 5513 delay(50); 5514 timeout--; 5515 } 5516 5517 if (timeout == 0) { 5518 aprint_error_dev(sc->sc_dev, "could not acquire EEPROM GNT\n"); 5519 /* Release semaphores */ 5520 wm_put_swsm_semaphore(sc); 5521 return 1; 5522 } 5523 return 0; 5524 } 5525 5526 static void 5527 wm_put_swsm_semaphore(struct wm_softc *sc) 5528 { 5529 uint32_t swsm; 5530 5531 swsm = CSR_READ(sc, WMREG_SWSM); 5532 swsm &= ~(SWSM_SWESMBI); 5533 CSR_WRITE(sc, WMREG_SWSM, swsm); 5534 } 5535 5536 static int 5537 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask) 5538 { 5539 uint32_t swfw_sync; 5540 uint32_t swmask = mask << SWFW_SOFT_SHIFT; 5541 uint32_t fwmask = mask << SWFW_FIRM_SHIFT; 5542 int timeout = 200; 5543 5544 for(timeout = 0; timeout < 200; timeout++) { 5545 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) { 5546 if (wm_get_swsm_semaphore(sc)) { 5547 aprint_error_dev(sc->sc_dev, 5548 "%s: failed to get semaphore\n", 5549 __func__); 5550 return 1; 5551 } 5552 } 5553 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC); 5554 if ((swfw_sync & (swmask | fwmask)) == 0) { 5555 swfw_sync |= swmask; 5556 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync); 5557 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) 5558 wm_put_swsm_semaphore(sc); 5559 return 0; 5560 } 5561 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) 5562 wm_put_swsm_semaphore(sc); 5563 delay(5000); 5564 } 5565 printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n", 5566 device_xname(sc->sc_dev), mask, swfw_sync); 5567 return 1; 5568 } 5569 5570 static void 5571 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask) 5572 { 5573 uint32_t swfw_sync; 5574 5575 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) { 5576 while (wm_get_swsm_semaphore(sc) != 0) 5577 continue; 5578 } 5579 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC); 5580 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT); 5581 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync); 5582 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) 5583 wm_put_swsm_semaphore(sc); 5584 } 5585 5586 static int 5587 wm_get_swfwhw_semaphore(struct wm_softc *sc) 5588 { 5589 uint32_t ext_ctrl; 5590 int timeout = 200; 5591 5592 for(timeout = 0; timeout < 200; timeout++) { 5593 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 5594 ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 5595 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl); 5596 5597 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 5598 if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 5599 return 0; 5600 delay(5000); 5601 } 5602 printf("%s: failed to get swfwhw semaphore ext_ctrl 0x%x\n", 5603 device_xname(sc->sc_dev), ext_ctrl); 5604 return 1; 5605 } 5606 5607 static void 5608 wm_put_swfwhw_semaphore(struct wm_softc *sc) 5609 { 5610 uint32_t ext_ctrl; 5611 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 5612 ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 5613 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl); 5614 } 5615 5616 static int 5617 wm_valid_nvm_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank) 5618 { 5619 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1; 5620 uint8_t bank_high_byte; 5621 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t); 5622 5623 if (sc->sc_type != WM_T_ICH10) { 5624 /* Value of bit 22 corresponds to the flash bank we're on. */ 5625 *bank = (CSR_READ(sc, WMREG_EECD) & EECD_SEC1VAL) ? 1 : 0; 5626 } else { 5627 wm_read_ich8_byte(sc, act_offset, &bank_high_byte); 5628 if ((bank_high_byte & 0xc0) == 0x80) 5629 *bank = 0; 5630 else { 5631 wm_read_ich8_byte(sc, act_offset + bank1_offset, 5632 &bank_high_byte); 5633 if ((bank_high_byte & 0xc0) == 0x80) 5634 *bank = 1; 5635 else { 5636 aprint_error_dev(sc->sc_dev, 5637 "EEPROM not present\n"); 5638 return -1; 5639 } 5640 } 5641 } 5642 5643 return 0; 5644 } 5645 5646 /****************************************************************************** 5647 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access 5648 * register. 5649 * 5650 * sc - Struct containing variables accessed by shared code 5651 * offset - offset of word in the EEPROM to read 5652 * data - word read from the EEPROM 5653 * words - number of words to read 5654 *****************************************************************************/ 5655 static int 5656 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data) 5657 { 5658 int32_t error = 0; 5659 uint32_t flash_bank = 0; 5660 uint32_t act_offset = 0; 5661 uint32_t bank_offset = 0; 5662 uint16_t word = 0; 5663 uint16_t i = 0; 5664 5665 /* We need to know which is the valid flash bank. In the event 5666 * that we didn't allocate eeprom_shadow_ram, we may not be 5667 * managing flash_bank. So it cannot be trusted and needs 5668 * to be updated with each read. 5669 */ 5670 error = wm_valid_nvm_bank_detect_ich8lan(sc, &flash_bank); 5671 if (error) { 5672 aprint_error_dev(sc->sc_dev, "%s: failed to detect NVM bank\n", 5673 __func__); 5674 return error; 5675 } 5676 5677 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ 5678 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2); 5679 5680 error = wm_get_swfwhw_semaphore(sc); 5681 if (error) { 5682 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n", 5683 __func__); 5684 return error; 5685 } 5686 5687 for (i = 0; i < words; i++) { 5688 /* The NVM part needs a byte offset, hence * 2 */ 5689 act_offset = bank_offset + ((offset + i) * 2); 5690 error = wm_read_ich8_word(sc, act_offset, &word); 5691 if (error) { 5692 aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n", 5693 __func__); 5694 break; 5695 } 5696 data[i] = word; 5697 } 5698 5699 wm_put_swfwhw_semaphore(sc); 5700 return error; 5701 } 5702 5703 /****************************************************************************** 5704 * This function does initial flash setup so that a new read/write/erase cycle 5705 * can be started. 5706 * 5707 * sc - The pointer to the hw structure 5708 ****************************************************************************/ 5709 static int32_t 5710 wm_ich8_cycle_init(struct wm_softc *sc) 5711 { 5712 uint16_t hsfsts; 5713 int32_t error = 1; 5714 int32_t i = 0; 5715 5716 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS); 5717 5718 /* May be check the Flash Des Valid bit in Hw status */ 5719 if ((hsfsts & HSFSTS_FLDVAL) == 0) { 5720 return error; 5721 } 5722 5723 /* Clear FCERR in Hw status by writing 1 */ 5724 /* Clear DAEL in Hw status by writing a 1 */ 5725 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL; 5726 5727 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts); 5728 5729 /* Either we should have a hardware SPI cycle in progress bit to check 5730 * against, in order to start a new cycle or FDONE bit should be changed 5731 * in the hardware so that it is 1 after harware reset, which can then be 5732 * used as an indication whether a cycle is in progress or has been 5733 * completed .. we should also have some software semaphore mechanism to 5734 * guard FDONE or the cycle in progress bit so that two threads access to 5735 * those bits can be sequentiallized or a way so that 2 threads dont 5736 * start the cycle at the same time */ 5737 5738 if ((hsfsts & HSFSTS_FLINPRO) == 0) { 5739 /* There is no cycle running at present, so we can start a cycle */ 5740 /* Begin by setting Flash Cycle Done. */ 5741 hsfsts |= HSFSTS_DONE; 5742 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts); 5743 error = 0; 5744 } else { 5745 /* otherwise poll for sometime so the current cycle has a chance 5746 * to end before giving up. */ 5747 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { 5748 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS); 5749 if ((hsfsts & HSFSTS_FLINPRO) == 0) { 5750 error = 0; 5751 break; 5752 } 5753 delay(1); 5754 } 5755 if (error == 0) { 5756 /* Successful in waiting for previous cycle to timeout, 5757 * now set the Flash Cycle Done. */ 5758 hsfsts |= HSFSTS_DONE; 5759 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts); 5760 } 5761 } 5762 return error; 5763 } 5764 5765 /****************************************************************************** 5766 * This function starts a flash cycle and waits for its completion 5767 * 5768 * sc - The pointer to the hw structure 5769 ****************************************************************************/ 5770 static int32_t 5771 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout) 5772 { 5773 uint16_t hsflctl; 5774 uint16_t hsfsts; 5775 int32_t error = 1; 5776 uint32_t i = 0; 5777 5778 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 5779 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL); 5780 hsflctl |= HSFCTL_GO; 5781 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl); 5782 5783 /* wait till FDONE bit is set to 1 */ 5784 do { 5785 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS); 5786 if (hsfsts & HSFSTS_DONE) 5787 break; 5788 delay(1); 5789 i++; 5790 } while (i < timeout); 5791 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0) { 5792 error = 0; 5793 } 5794 return error; 5795 } 5796 5797 /****************************************************************************** 5798 * Reads a byte or word from the NVM using the ICH8 flash access registers. 5799 * 5800 * sc - The pointer to the hw structure 5801 * index - The index of the byte or word to read. 5802 * size - Size of data to read, 1=byte 2=word 5803 * data - Pointer to the word to store the value read. 5804 *****************************************************************************/ 5805 static int32_t 5806 wm_read_ich8_data(struct wm_softc *sc, uint32_t index, 5807 uint32_t size, uint16_t* data) 5808 { 5809 uint16_t hsfsts; 5810 uint16_t hsflctl; 5811 uint32_t flash_linear_address; 5812 uint32_t flash_data = 0; 5813 int32_t error = 1; 5814 int32_t count = 0; 5815 5816 if (size < 1 || size > 2 || data == 0x0 || 5817 index > ICH_FLASH_LINEAR_ADDR_MASK) 5818 return error; 5819 5820 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + 5821 sc->sc_ich8_flash_base; 5822 5823 do { 5824 delay(1); 5825 /* Steps */ 5826 error = wm_ich8_cycle_init(sc); 5827 if (error) 5828 break; 5829 5830 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL); 5831 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 5832 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT) & HSFCTL_BCOUNT_MASK; 5833 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT; 5834 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl); 5835 5836 /* Write the last 24 bits of index into Flash Linear address field in 5837 * Flash Address */ 5838 /* TODO: TBD maybe check the index against the size of flash */ 5839 5840 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address); 5841 5842 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT); 5843 5844 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole 5845 * sequence a few more times, else read in (shift in) the Flash Data0, 5846 * the order is least significant byte first msb to lsb */ 5847 if (error == 0) { 5848 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0); 5849 if (size == 1) { 5850 *data = (uint8_t)(flash_data & 0x000000FF); 5851 } else if (size == 2) { 5852 *data = (uint16_t)(flash_data & 0x0000FFFF); 5853 } 5854 break; 5855 } else { 5856 /* If we've gotten here, then things are probably completely hosed, 5857 * but if the error condition is detected, it won't hurt to give 5858 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 5859 */ 5860 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS); 5861 if (hsfsts & HSFSTS_ERR) { 5862 /* Repeat for some time before giving up. */ 5863 continue; 5864 } else if ((hsfsts & HSFSTS_DONE) == 0) { 5865 break; 5866 } 5867 } 5868 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 5869 5870 return error; 5871 } 5872 5873 /****************************************************************************** 5874 * Reads a single byte from the NVM using the ICH8 flash access registers. 5875 * 5876 * sc - pointer to wm_hw structure 5877 * index - The index of the byte to read. 5878 * data - Pointer to a byte to store the value read. 5879 *****************************************************************************/ 5880 static int32_t 5881 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data) 5882 { 5883 int32_t status; 5884 uint16_t word = 0; 5885 5886 status = wm_read_ich8_data(sc, index, 1, &word); 5887 if (status == 0) { 5888 *data = (uint8_t)word; 5889 } 5890 5891 return status; 5892 } 5893 5894 /****************************************************************************** 5895 * Reads a word from the NVM using the ICH8 flash access registers. 5896 * 5897 * sc - pointer to wm_hw structure 5898 * index - The starting byte index of the word to read. 5899 * data - Pointer to a word to store the value read. 5900 *****************************************************************************/ 5901 static int32_t 5902 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data) 5903 { 5904 int32_t status; 5905 5906 status = wm_read_ich8_data(sc, index, 2, data); 5907 return status; 5908 } 5909 5910 static int 5911 wm_check_mng_mode(struct wm_softc *sc) 5912 { 5913 int rv; 5914 5915 switch (sc->sc_type) { 5916 case WM_T_ICH8: 5917 case WM_T_ICH9: 5918 case WM_T_ICH10: 5919 rv = wm_check_mng_mode_ich8lan(sc); 5920 break; 5921 case WM_T_82574: 5922 case WM_T_82583: 5923 rv = wm_check_mng_mode_82574(sc); 5924 break; 5925 case WM_T_82571: 5926 case WM_T_82572: 5927 case WM_T_82573: 5928 case WM_T_80003: 5929 rv = wm_check_mng_mode_generic(sc); 5930 break; 5931 default: 5932 /* noting to do */ 5933 rv = 0; 5934 break; 5935 } 5936 5937 return rv; 5938 } 5939 5940 static int 5941 wm_check_mng_mode_ich8lan(struct wm_softc *sc) 5942 { 5943 uint32_t fwsm; 5944 5945 fwsm = CSR_READ(sc, WMREG_FWSM); 5946 5947 if ((fwsm & FWSM_MODE_MASK) == (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT)) 5948 return 1; 5949 5950 return 0; 5951 } 5952 5953 static int 5954 wm_check_mng_mode_82574(struct wm_softc *sc) 5955 { 5956 uint16_t data; 5957 5958 wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &data); 5959 5960 if ((data & EEPROM_CFG2_MNGM_MASK) != 0) 5961 return 1; 5962 5963 return 0; 5964 } 5965 5966 static int 5967 wm_check_mng_mode_generic(struct wm_softc *sc) 5968 { 5969 uint32_t fwsm; 5970 5971 fwsm = CSR_READ(sc, WMREG_FWSM); 5972 5973 if ((fwsm & FWSM_MODE_MASK) == (MNG_IAMT_MODE << FWSM_MODE_SHIFT)) 5974 return 1; 5975 5976 return 0; 5977 } 5978 5979 static int 5980 wm_check_reset_block(struct wm_softc *sc) 5981 { 5982 uint32_t reg; 5983 5984 switch (sc->sc_type) { 5985 case WM_T_ICH8: 5986 case WM_T_ICH9: 5987 case WM_T_ICH10: 5988 reg = CSR_READ(sc, WMREG_FWSM); 5989 if ((reg & FWSM_RSPCIPHY) != 0) 5990 return 0; 5991 else 5992 return -1; 5993 break; 5994 case WM_T_82571: 5995 case WM_T_82572: 5996 case WM_T_82573: 5997 case WM_T_82574: 5998 case WM_T_82583: 5999 case WM_T_80003: 6000 reg = CSR_READ(sc, WMREG_MANC); 6001 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0) 6002 return -1; 6003 else 6004 return 0; 6005 break; 6006 default: 6007 /* no problem */ 6008 break; 6009 } 6010 6011 return 0; 6012 } 6013 6014 static void 6015 wm_get_hw_control(struct wm_softc *sc) 6016 { 6017 uint32_t reg; 6018 6019 switch (sc->sc_type) { 6020 case WM_T_82573: 6021 #if 0 6022 case WM_T_82574: 6023 case WM_T_82583: 6024 /* 6025 * FreeBSD's em driver has the function for 82574 to checks 6026 * the management mode, but it's not used. Why? 6027 */ 6028 #endif 6029 reg = CSR_READ(sc, WMREG_SWSM); 6030 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD); 6031 break; 6032 case WM_T_82571: 6033 case WM_T_82572: 6034 case WM_T_80003: 6035 case WM_T_ICH8: 6036 case WM_T_ICH9: 6037 case WM_T_ICH10: 6038 reg = CSR_READ(sc, WMREG_CTRL_EXT); 6039 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD); 6040 break; 6041 default: 6042 break; 6043 } 6044 } 6045 6046 /* XXX Currently TBI only */ 6047 static int 6048 wm_check_for_link(struct wm_softc *sc) 6049 { 6050 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 6051 uint32_t rxcw; 6052 uint32_t ctrl; 6053 uint32_t status; 6054 uint32_t sig; 6055 6056 rxcw = CSR_READ(sc, WMREG_RXCW); 6057 ctrl = CSR_READ(sc, WMREG_CTRL); 6058 status = CSR_READ(sc, WMREG_STATUS); 6059 6060 sig = (sc->sc_type > WM_T_82544) ? CTRL_SWDPIN(1) : 0; 6061 6062 DPRINTF(WM_DEBUG_LINK, ("%s: %s: sig = %d, status_lu = %d, rxcw_c = %d\n", 6063 device_xname(sc->sc_dev), __func__, 6064 ((ctrl & CTRL_SWDPIN(1)) == sig), 6065 ((status & STATUS_LU) != 0), 6066 ((rxcw & RXCW_C) != 0) 6067 )); 6068 6069 /* 6070 * SWDPIN LU RXCW 6071 * 0 0 0 6072 * 0 0 1 (should not happen) 6073 * 0 1 0 (should not happen) 6074 * 0 1 1 (should not happen) 6075 * 1 0 0 Disable autonego and force linkup 6076 * 1 0 1 got /C/ but not linkup yet 6077 * 1 1 0 (linkup) 6078 * 1 1 1 If IFM_AUTO, back to autonego 6079 * 6080 */ 6081 if (((ctrl & CTRL_SWDPIN(1)) == sig) 6082 && ((status & STATUS_LU) == 0) 6083 && ((rxcw & RXCW_C) == 0)) { 6084 DPRINTF(WM_DEBUG_LINK, ("%s: force linkup and fullduplex\n", 6085 __func__)); 6086 sc->sc_tbi_linkup = 0; 6087 /* Disable auto-negotiation in the TXCW register */ 6088 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE)); 6089 6090 /* 6091 * Force link-up and also force full-duplex. 6092 * 6093 * NOTE: CTRL was updated TFCE and RFCE automatically, 6094 * so we should update sc->sc_ctrl 6095 */ 6096 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD; 6097 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 6098 } else if(((status & STATUS_LU) != 0) 6099 && ((rxcw & RXCW_C) != 0) 6100 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) { 6101 sc->sc_tbi_linkup = 1; 6102 DPRINTF(WM_DEBUG_LINK, ("%s: go back to autonego\n", 6103 __func__)); 6104 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw); 6105 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU)); 6106 } else if (((ctrl & CTRL_SWDPIN(1)) == sig) 6107 && ((rxcw & RXCW_C) != 0)) { 6108 DPRINTF(WM_DEBUG_LINK, ("/C/")); 6109 } else { 6110 DPRINTF(WM_DEBUG_LINK, ("%s: %x,%x,%x\n", __func__, rxcw, ctrl, 6111 status)); 6112 } 6113 6114 return 0; 6115 } 6116