1 /* $NetBSD: if_wm.c,v 1.800 2024/07/05 04:31:51 rin Exp $ */ 2 3 /* 4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /******************************************************************************* 39 40 Copyright (c) 2001-2005, Intel Corporation 41 All rights reserved. 42 43 Redistribution and use in source and binary forms, with or without 44 modification, are permitted provided that the following conditions are met: 45 46 1. Redistributions of source code must retain the above copyright notice, 47 this list of conditions and the following disclaimer. 48 49 2. Redistributions in binary form must reproduce the above copyright 50 notice, this list of conditions and the following disclaimer in the 51 documentation and/or other materials provided with the distribution. 52 53 3. Neither the name of the Intel Corporation nor the names of its 54 contributors may be used to endorse or promote products derived from 55 this software without specific prior written permission. 56 57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 67 POSSIBILITY OF SUCH DAMAGE. 68 69 *******************************************************************************/ 70 /* 71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips. 72 * 73 * TODO (in order of importance): 74 * 75 * - Check XXX'ed comments 76 * - TX Multi queue improvement (refine queue selection logic) 77 * - Split header buffer for newer descriptors 78 * - EEE (Energy Efficiency Ethernet) for I354 79 * - Virtual Function 80 * - Set LED correctly (based on contents in EEPROM) 81 * - Rework how parameters are loaded from the EEPROM. 82 */ 83 84 #include <sys/cdefs.h> 85 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.800 2024/07/05 04:31:51 rin Exp $"); 86 87 #ifdef _KERNEL_OPT 88 #include "opt_if_wm.h" 89 #endif 90 91 #include <sys/param.h> 92 93 #include <sys/atomic.h> 94 #include <sys/callout.h> 95 #include <sys/cpu.h> 96 #include <sys/device.h> 97 #include <sys/errno.h> 98 #include <sys/interrupt.h> 99 #include <sys/ioctl.h> 100 #include <sys/kernel.h> 101 #include <sys/kmem.h> 102 #include <sys/mbuf.h> 103 #include <sys/pcq.h> 104 #include <sys/queue.h> 105 #include <sys/rndsource.h> 106 #include <sys/socket.h> 107 #include <sys/sysctl.h> 108 #include <sys/syslog.h> 109 #include <sys/systm.h> 110 #include <sys/workqueue.h> 111 112 #include <net/if.h> 113 #include <net/if_dl.h> 114 #include <net/if_media.h> 115 #include <net/if_ether.h> 116 117 #include <net/bpf.h> 118 119 #include <net/rss_config.h> 120 121 #include <netinet/in.h> /* XXX for struct ip */ 122 #include <netinet/in_systm.h> /* XXX for struct ip */ 123 #include <netinet/ip.h> /* XXX for struct ip */ 124 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */ 125 #include <netinet/tcp.h> /* XXX for struct tcphdr */ 126 127 #include <sys/bus.h> 128 #include <sys/intr.h> 129 #include <machine/endian.h> 130 131 #include <dev/mii/mii.h> 132 #include <dev/mii/mdio.h> 133 #include <dev/mii/miivar.h> 134 #include <dev/mii/miidevs.h> 135 #include <dev/mii/mii_bitbang.h> 136 #include <dev/mii/ikphyreg.h> 137 #include <dev/mii/igphyreg.h> 138 #include <dev/mii/igphyvar.h> 139 #include <dev/mii/inbmphyreg.h> 140 #include <dev/mii/ihphyreg.h> 141 #include <dev/mii/makphyreg.h> 142 143 #include <dev/pci/pcireg.h> 144 #include <dev/pci/pcivar.h> 145 #include <dev/pci/pcidevs.h> 146 147 #include <dev/pci/if_wmreg.h> 148 #include <dev/pci/if_wmvar.h> 149 150 #ifdef WM_DEBUG 151 #define WM_DEBUG_LINK __BIT(0) 152 #define WM_DEBUG_TX __BIT(1) 153 #define WM_DEBUG_RX __BIT(2) 154 #define WM_DEBUG_GMII __BIT(3) 155 #define WM_DEBUG_MANAGE __BIT(4) 156 #define WM_DEBUG_NVM __BIT(5) 157 #define WM_DEBUG_INIT __BIT(6) 158 #define WM_DEBUG_LOCK __BIT(7) 159 160 #if 0 161 #define WM_DEBUG_DEFAULT WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | \ 162 WM_DEBUG_GMII | WM_DEBUG_MANAGE | WM_DEBUG_NVM | WM_DEBUG_INIT | \ 163 WM_DEBUG_LOCK 164 #endif 165 166 #define DPRINTF(sc, x, y) \ 167 do { \ 168 if ((sc)->sc_debug & (x)) \ 169 printf y; \ 170 } while (0) 171 #else 172 #define DPRINTF(sc, x, y) __nothing 173 #endif /* WM_DEBUG */ 174 175 #define WM_WORKQUEUE_PRI PRI_SOFTNET 176 177 /* 178 * This device driver's max interrupt numbers. 179 */ 180 #define WM_MAX_NQUEUEINTR 16 181 #define WM_MAX_NINTR (WM_MAX_NQUEUEINTR + 1) 182 183 #ifndef WM_DISABLE_MSI 184 #define WM_DISABLE_MSI 0 185 #endif 186 #ifndef WM_DISABLE_MSIX 187 #define WM_DISABLE_MSIX 0 188 #endif 189 190 int wm_disable_msi = WM_DISABLE_MSI; 191 int wm_disable_msix = WM_DISABLE_MSIX; 192 193 #ifndef WM_WATCHDOG_TIMEOUT 194 #define WM_WATCHDOG_TIMEOUT 5 195 #endif 196 static int wm_watchdog_timeout = WM_WATCHDOG_TIMEOUT; 197 198 /* 199 * Transmit descriptor list size. Due to errata, we can only have 200 * 256 hardware descriptors in the ring on < 82544, but we use 4096 201 * on >= 82544. We tell the upper layers that they can queue a lot 202 * of packets, and we go ahead and manage up to 64 (16 for the i82547) 203 * of them at a time. 204 * 205 * We allow up to 64 DMA segments per packet. Pathological packet 206 * chains containing many small mbufs have been observed in zero-copy 207 * situations with jumbo frames. If a mbuf chain has more than 64 DMA segments, 208 * m_defrag() is called to reduce it. 209 */ 210 #define WM_NTXSEGS 64 211 #define WM_IFQUEUELEN 256 212 #define WM_TXQUEUELEN_MAX 64 213 #define WM_TXQUEUELEN_MAX_82547 16 214 #define WM_TXQUEUELEN(txq) ((txq)->txq_num) 215 #define WM_TXQUEUELEN_MASK(txq) (WM_TXQUEUELEN(txq) - 1) 216 #define WM_TXQUEUE_GC(txq) (WM_TXQUEUELEN(txq) / 8) 217 #define WM_NTXDESC_82542 256 218 #define WM_NTXDESC_82544 4096 219 #define WM_NTXDESC(txq) ((txq)->txq_ndesc) 220 #define WM_NTXDESC_MASK(txq) (WM_NTXDESC(txq) - 1) 221 #define WM_TXDESCS_SIZE(txq) (WM_NTXDESC(txq) * (txq)->txq_descsize) 222 #define WM_NEXTTX(txq, x) (((x) + 1) & WM_NTXDESC_MASK(txq)) 223 #define WM_NEXTTXS(txq, x) (((x) + 1) & WM_TXQUEUELEN_MASK(txq)) 224 225 #define WM_MAXTXDMA (2 * round_page(IP_MAXPACKET)) /* for TSO */ 226 227 #define WM_TXINTERQSIZE 256 228 229 #ifndef WM_TX_PROCESS_LIMIT_DEFAULT 230 #define WM_TX_PROCESS_LIMIT_DEFAULT 100U 231 #endif 232 #ifndef WM_TX_INTR_PROCESS_LIMIT_DEFAULT 233 #define WM_TX_INTR_PROCESS_LIMIT_DEFAULT 0U 234 #endif 235 236 /* 237 * Receive descriptor list size. We have one Rx buffer for normal 238 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized 239 * packet. We allocate 256 receive descriptors, each with a 2k 240 * buffer (MCLBYTES), which gives us room for 50 jumbo packets. 241 */ 242 #define WM_NRXDESC 256U 243 #define WM_NRXDESC_MASK (WM_NRXDESC - 1) 244 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK) 245 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK) 246 247 #ifndef WM_RX_PROCESS_LIMIT_DEFAULT 248 #define WM_RX_PROCESS_LIMIT_DEFAULT 100U 249 #endif 250 #ifndef WM_RX_INTR_PROCESS_LIMIT_DEFAULT 251 #define WM_RX_INTR_PROCESS_LIMIT_DEFAULT 0U 252 #endif 253 254 typedef union txdescs { 255 wiseman_txdesc_t sctxu_txdescs[WM_NTXDESC_82544]; 256 nq_txdesc_t sctxu_nq_txdescs[WM_NTXDESC_82544]; 257 } txdescs_t; 258 259 typedef union rxdescs { 260 wiseman_rxdesc_t sctxu_rxdescs[WM_NRXDESC]; 261 ext_rxdesc_t sctxu_ext_rxdescs[WM_NRXDESC]; /* 82574 only */ 262 nq_rxdesc_t sctxu_nq_rxdescs[WM_NRXDESC]; /* 82575 and newer */ 263 } rxdescs_t; 264 265 #define WM_CDTXOFF(txq, x) ((txq)->txq_descsize * (x)) 266 #define WM_CDRXOFF(rxq, x) ((rxq)->rxq_descsize * (x)) 267 268 /* 269 * Software state for transmit jobs. 270 */ 271 struct wm_txsoft { 272 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 273 bus_dmamap_t txs_dmamap; /* our DMA map */ 274 int txs_firstdesc; /* first descriptor in packet */ 275 int txs_lastdesc; /* last descriptor in packet */ 276 int txs_ndesc; /* # of descriptors used */ 277 }; 278 279 /* 280 * Software state for receive buffers. Each descriptor gets a 2k (MCLBYTES) 281 * buffer and a DMA map. For packets which fill more than one buffer, we chain 282 * them together. 283 */ 284 struct wm_rxsoft { 285 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 286 bus_dmamap_t rxs_dmamap; /* our DMA map */ 287 }; 288 289 #define WM_LINKUP_TIMEOUT 50 290 291 static uint16_t swfwphysem[] = { 292 SWFW_PHY0_SM, 293 SWFW_PHY1_SM, 294 SWFW_PHY2_SM, 295 SWFW_PHY3_SM 296 }; 297 298 static const uint32_t wm_82580_rxpbs_table[] = { 299 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 300 }; 301 302 struct wm_softc; 303 304 #if defined(_LP64) && !defined(WM_DISABLE_EVENT_COUNTERS) 305 #if !defined(WM_EVENT_COUNTERS) 306 #define WM_EVENT_COUNTERS 1 307 #endif 308 #endif 309 310 #ifdef WM_EVENT_COUNTERS 311 #define WM_Q_EVCNT_DEFINE(qname, evname) \ 312 char qname##_##evname##_evcnt_name[sizeof("qname##XX##evname")]; \ 313 struct evcnt qname##_ev_##evname 314 315 #define WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, evtype) \ 316 do { \ 317 snprintf((q)->qname##_##evname##_evcnt_name, \ 318 sizeof((q)->qname##_##evname##_evcnt_name), \ 319 "%s%02d%s", #qname, (qnum), #evname); \ 320 evcnt_attach_dynamic(&(q)->qname##_ev_##evname, \ 321 (evtype), NULL, (xname), \ 322 (q)->qname##_##evname##_evcnt_name); \ 323 } while (0) 324 325 #define WM_Q_MISC_EVCNT_ATTACH(qname, evname, q, qnum, xname) \ 326 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_MISC) 327 328 #define WM_Q_INTR_EVCNT_ATTACH(qname, evname, q, qnum, xname) \ 329 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_INTR) 330 331 #define WM_Q_EVCNT_DETACH(qname, evname, q, qnum) \ 332 evcnt_detach(&(q)->qname##_ev_##evname) 333 #endif /* WM_EVENT_COUNTERS */ 334 335 struct wm_txqueue { 336 kmutex_t *txq_lock; /* lock for tx operations */ 337 338 struct wm_softc *txq_sc; /* shortcut (skip struct wm_queue) */ 339 340 /* Software state for the transmit descriptors. */ 341 int txq_num; /* must be a power of two */ 342 struct wm_txsoft txq_soft[WM_TXQUEUELEN_MAX]; 343 344 /* TX control data structures. */ 345 int txq_ndesc; /* must be a power of two */ 346 size_t txq_descsize; /* a tx descriptor size */ 347 txdescs_t *txq_descs_u; 348 bus_dmamap_t txq_desc_dmamap; /* control data DMA map */ 349 bus_dma_segment_t txq_desc_seg; /* control data segment */ 350 int txq_desc_rseg; /* real number of control segment */ 351 #define txq_desc_dma txq_desc_dmamap->dm_segs[0].ds_addr 352 #define txq_descs txq_descs_u->sctxu_txdescs 353 #define txq_nq_descs txq_descs_u->sctxu_nq_txdescs 354 355 bus_addr_t txq_tdt_reg; /* offset of TDT register */ 356 357 int txq_free; /* number of free Tx descriptors */ 358 int txq_next; /* next ready Tx descriptor */ 359 360 int txq_sfree; /* number of free Tx jobs */ 361 int txq_snext; /* next free Tx job */ 362 int txq_sdirty; /* dirty Tx jobs */ 363 364 /* These 4 variables are used only on the 82547. */ 365 int txq_fifo_size; /* Tx FIFO size */ 366 int txq_fifo_head; /* current head of FIFO */ 367 uint32_t txq_fifo_addr; /* internal address of start of FIFO */ 368 int txq_fifo_stall; /* Tx FIFO is stalled */ 369 370 /* 371 * When ncpu > number of Tx queues, a Tx queue is shared by multiple 372 * CPUs. This queue intermediate them without block. 373 */ 374 pcq_t *txq_interq; 375 376 /* 377 * NEWQUEUE devices must use not ifp->if_flags but txq->txq_flags 378 * to manage Tx H/W queue's busy flag. 379 */ 380 int txq_flags; /* flags for H/W queue, see below */ 381 #define WM_TXQ_NO_SPACE 0x1 382 #define WM_TXQ_LINKDOWN_DISCARD 0x2 383 384 bool txq_stopping; 385 386 bool txq_sending; 387 time_t txq_lastsent; 388 389 /* Checksum flags used for previous packet */ 390 uint32_t txq_last_hw_cmd; 391 uint8_t txq_last_hw_fields; 392 uint16_t txq_last_hw_ipcs; 393 uint16_t txq_last_hw_tucs; 394 395 uint32_t txq_packets; /* for AIM */ 396 uint32_t txq_bytes; /* for AIM */ 397 #ifdef WM_EVENT_COUNTERS 398 /* TX event counters */ 399 WM_Q_EVCNT_DEFINE(txq, txsstall); /* Stalled due to no txs */ 400 WM_Q_EVCNT_DEFINE(txq, txdstall); /* Stalled due to no txd */ 401 WM_Q_EVCNT_DEFINE(txq, fifo_stall); /* FIFO stalls (82547) */ 402 WM_Q_EVCNT_DEFINE(txq, txdw); /* Tx descriptor interrupts */ 403 WM_Q_EVCNT_DEFINE(txq, txqe); /* Tx queue empty interrupts */ 404 /* XXX not used? */ 405 406 WM_Q_EVCNT_DEFINE(txq, ipsum); /* IP checksums comp. */ 407 WM_Q_EVCNT_DEFINE(txq, tusum); /* TCP/UDP cksums comp. */ 408 WM_Q_EVCNT_DEFINE(txq, tusum6); /* TCP/UDP v6 cksums comp. */ 409 WM_Q_EVCNT_DEFINE(txq, tso); /* TCP seg offload (IPv4) */ 410 WM_Q_EVCNT_DEFINE(txq, tso6); /* TCP seg offload (IPv6) */ 411 WM_Q_EVCNT_DEFINE(txq, tsopain); /* Painful header manip. for TSO */ 412 WM_Q_EVCNT_DEFINE(txq, pcqdrop); /* Pkt dropped in pcq */ 413 WM_Q_EVCNT_DEFINE(txq, descdrop); /* Pkt dropped in MAC desc ring */ 414 /* other than toomanyseg */ 415 416 WM_Q_EVCNT_DEFINE(txq, toomanyseg); /* Pkt dropped(toomany DMA segs) */ 417 WM_Q_EVCNT_DEFINE(txq, defrag); /* m_defrag() */ 418 WM_Q_EVCNT_DEFINE(txq, underrun); /* Tx underrun */ 419 WM_Q_EVCNT_DEFINE(txq, skipcontext); /* Tx skip wrong cksum context */ 420 421 char txq_txseg_evcnt_names[WM_NTXSEGS][sizeof("txqXXtxsegXXX")]; 422 struct evcnt txq_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */ 423 #endif /* WM_EVENT_COUNTERS */ 424 }; 425 426 struct wm_rxqueue { 427 kmutex_t *rxq_lock; /* lock for rx operations */ 428 429 struct wm_softc *rxq_sc; /* shortcut (skip struct wm_queue) */ 430 431 /* Software state for the receive descriptors. */ 432 struct wm_rxsoft rxq_soft[WM_NRXDESC]; 433 434 /* RX control data structures. */ 435 int rxq_ndesc; /* must be a power of two */ 436 size_t rxq_descsize; /* a rx descriptor size */ 437 rxdescs_t *rxq_descs_u; 438 bus_dmamap_t rxq_desc_dmamap; /* control data DMA map */ 439 bus_dma_segment_t rxq_desc_seg; /* control data segment */ 440 int rxq_desc_rseg; /* real number of control segment */ 441 #define rxq_desc_dma rxq_desc_dmamap->dm_segs[0].ds_addr 442 #define rxq_descs rxq_descs_u->sctxu_rxdescs 443 #define rxq_ext_descs rxq_descs_u->sctxu_ext_rxdescs 444 #define rxq_nq_descs rxq_descs_u->sctxu_nq_rxdescs 445 446 bus_addr_t rxq_rdt_reg; /* offset of RDT register */ 447 448 int rxq_ptr; /* next ready Rx desc/queue ent */ 449 int rxq_discard; 450 int rxq_len; 451 struct mbuf *rxq_head; 452 struct mbuf *rxq_tail; 453 struct mbuf **rxq_tailp; 454 455 bool rxq_stopping; 456 457 uint32_t rxq_packets; /* for AIM */ 458 uint32_t rxq_bytes; /* for AIM */ 459 #ifdef WM_EVENT_COUNTERS 460 /* RX event counters */ 461 WM_Q_EVCNT_DEFINE(rxq, intr); /* Interrupts */ 462 WM_Q_EVCNT_DEFINE(rxq, defer); /* Rx deferred processing */ 463 WM_Q_EVCNT_DEFINE(rxq, ipsum); /* IP checksums checked */ 464 WM_Q_EVCNT_DEFINE(rxq, tusum); /* TCP/UDP cksums checked */ 465 WM_Q_EVCNT_DEFINE(rxq, qdrop); /* Rx queue drop packet */ 466 #endif 467 }; 468 469 struct wm_queue { 470 int wmq_id; /* index of TX/RX queues */ 471 int wmq_intr_idx; /* index of MSI-X tables */ 472 473 uint32_t wmq_itr; /* interrupt interval per queue. */ 474 bool wmq_set_itr; 475 476 struct wm_txqueue wmq_txq; 477 struct wm_rxqueue wmq_rxq; 478 char sysctlname[32]; /* Name for sysctl */ 479 480 bool wmq_txrx_use_workqueue; 481 bool wmq_wq_enqueued; 482 struct work wmq_cookie; 483 void *wmq_si; 484 }; 485 486 struct wm_phyop { 487 int (*acquire)(struct wm_softc *) __attribute__((warn_unused_result)); 488 void (*release)(struct wm_softc *); 489 int (*readreg_locked)(device_t, int, int, uint16_t *); 490 int (*writereg_locked)(device_t, int, int, uint16_t); 491 int reset_delay_us; 492 bool no_errprint; 493 }; 494 495 struct wm_nvmop { 496 int (*acquire)(struct wm_softc *) __attribute__((warn_unused_result)); 497 void (*release)(struct wm_softc *); 498 int (*read)(struct wm_softc *, int, int, uint16_t *); 499 }; 500 501 /* 502 * Software state per device. 503 */ 504 struct wm_softc { 505 device_t sc_dev; /* generic device information */ 506 bus_space_tag_t sc_st; /* bus space tag */ 507 bus_space_handle_t sc_sh; /* bus space handle */ 508 bus_size_t sc_ss; /* bus space size */ 509 bus_space_tag_t sc_iot; /* I/O space tag */ 510 bus_space_handle_t sc_ioh; /* I/O space handle */ 511 bus_size_t sc_ios; /* I/O space size */ 512 bus_space_tag_t sc_flasht; /* flash registers space tag */ 513 bus_space_handle_t sc_flashh; /* flash registers space handle */ 514 bus_size_t sc_flashs; /* flash registers space size */ 515 off_t sc_flashreg_offset; /* 516 * offset to flash registers from 517 * start of BAR 518 */ 519 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 520 521 struct ethercom sc_ethercom; /* Ethernet common data */ 522 struct mii_data sc_mii; /* MII/media information */ 523 524 pci_chipset_tag_t sc_pc; 525 pcitag_t sc_pcitag; 526 int sc_bus_speed; /* PCI/PCIX bus speed */ 527 int sc_pcixe_capoff; /* PCI[Xe] capability reg offset */ 528 529 uint16_t sc_pcidevid; /* PCI device ID */ 530 wm_chip_type sc_type; /* MAC type */ 531 int sc_rev; /* MAC revision */ 532 wm_phy_type sc_phytype; /* PHY type */ 533 uint8_t sc_sfptype; /* SFP type */ 534 uint32_t sc_mediatype; /* Media type (Copper, Fiber, SERDES)*/ 535 #define WM_MEDIATYPE_UNKNOWN 0x00 536 #define WM_MEDIATYPE_FIBER 0x01 537 #define WM_MEDIATYPE_COPPER 0x02 538 #define WM_MEDIATYPE_SERDES 0x03 /* Internal SERDES */ 539 int sc_funcid; /* unit number of the chip (0 to 3) */ 540 u_int sc_flags; /* flags; see below */ 541 u_short sc_if_flags; /* last if_flags */ 542 int sc_ec_capenable; /* last ec_capenable */ 543 int sc_flowflags; /* 802.3x flow control flags */ 544 uint16_t eee_lp_ability; /* EEE link partner's ability */ 545 int sc_align_tweak; 546 547 void *sc_ihs[WM_MAX_NINTR]; /* 548 * interrupt cookie. 549 * - legacy and msi use sc_ihs[0] only 550 * - msix use sc_ihs[0] to sc_ihs[nintrs-1] 551 */ 552 pci_intr_handle_t *sc_intrs; /* 553 * legacy and msi use sc_intrs[0] only 554 * msix use sc_intrs[0] to sc_ihs[nintrs-1] 555 */ 556 int sc_nintrs; /* number of interrupts */ 557 558 int sc_link_intr_idx; /* index of MSI-X tables */ 559 560 callout_t sc_tick_ch; /* tick callout */ 561 bool sc_core_stopping; 562 563 int sc_nvm_ver_major; 564 int sc_nvm_ver_minor; 565 int sc_nvm_ver_build; 566 int sc_nvm_addrbits; /* NVM address bits */ 567 unsigned int sc_nvm_wordsize; /* NVM word size */ 568 int sc_ich8_flash_base; 569 int sc_ich8_flash_bank_size; 570 int sc_nvm_k1_enabled; 571 572 int sc_nqueues; 573 struct wm_queue *sc_queue; 574 u_int sc_tx_process_limit; /* Tx proc. repeat limit in softint */ 575 u_int sc_tx_intr_process_limit; /* Tx proc. repeat limit in H/W intr */ 576 u_int sc_rx_process_limit; /* Rx proc. repeat limit in softint */ 577 u_int sc_rx_intr_process_limit; /* Rx proc. repeat limit in H/W intr */ 578 struct workqueue *sc_queue_wq; 579 bool sc_txrx_use_workqueue; 580 581 int sc_affinity_offset; 582 583 #ifdef WM_EVENT_COUNTERS 584 /* Event counters. */ 585 struct evcnt sc_ev_linkintr; /* Link interrupts */ 586 587 /* >= WM_T_82542_2_1 */ 588 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */ 589 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */ 590 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */ 591 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */ 592 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */ 593 594 struct evcnt sc_ev_crcerrs; /* CRC Error */ 595 struct evcnt sc_ev_algnerrc; /* Alignment Error */ 596 struct evcnt sc_ev_symerrc; /* Symbol Error */ 597 struct evcnt sc_ev_rxerrc; /* Receive Error */ 598 struct evcnt sc_ev_mpc; /* Missed Packets */ 599 struct evcnt sc_ev_scc; /* Single Collision */ 600 struct evcnt sc_ev_ecol; /* Excessive Collision */ 601 struct evcnt sc_ev_mcc; /* Multiple Collision */ 602 struct evcnt sc_ev_latecol; /* Late Collision */ 603 struct evcnt sc_ev_colc; /* Collision */ 604 struct evcnt sc_ev_cbtmpc; /* Circuit Breaker Tx Mng. Packet */ 605 struct evcnt sc_ev_dc; /* Defer */ 606 struct evcnt sc_ev_tncrs; /* Tx-No CRS */ 607 struct evcnt sc_ev_sec; /* Sequence Error */ 608 609 /* Old */ 610 struct evcnt sc_ev_cexterr; /* Carrier Extension Error */ 611 /* New */ 612 struct evcnt sc_ev_htdpmc; /* Host Tx Discarded Pkts by MAC */ 613 614 struct evcnt sc_ev_rlec; /* Receive Length Error */ 615 struct evcnt sc_ev_cbrdpc; /* Circuit Breaker Rx Dropped Packet */ 616 struct evcnt sc_ev_prc64; /* Packets Rx (64 bytes) */ 617 struct evcnt sc_ev_prc127; /* Packets Rx (65-127 bytes) */ 618 struct evcnt sc_ev_prc255; /* Packets Rx (128-255 bytes) */ 619 struct evcnt sc_ev_prc511; /* Packets Rx (256-511 bytes) */ 620 struct evcnt sc_ev_prc1023; /* Packets Rx (512-1023 bytes) */ 621 struct evcnt sc_ev_prc1522; /* Packets Rx (1024-1522 bytes) */ 622 struct evcnt sc_ev_gprc; /* Good Packets Rx */ 623 struct evcnt sc_ev_bprc; /* Broadcast Packets Rx */ 624 struct evcnt sc_ev_mprc; /* Multicast Packets Rx */ 625 struct evcnt sc_ev_gptc; /* Good Packets Tx */ 626 struct evcnt sc_ev_gorc; /* Good Octets Rx */ 627 struct evcnt sc_ev_gotc; /* Good Octets Tx */ 628 struct evcnt sc_ev_rnbc; /* Rx No Buffers */ 629 struct evcnt sc_ev_ruc; /* Rx Undersize */ 630 struct evcnt sc_ev_rfc; /* Rx Fragment */ 631 struct evcnt sc_ev_roc; /* Rx Oversize */ 632 struct evcnt sc_ev_rjc; /* Rx Jabber */ 633 struct evcnt sc_ev_mgtprc; /* Management Packets RX */ 634 struct evcnt sc_ev_mgtpdc; /* Management Packets Dropped */ 635 struct evcnt sc_ev_mgtptc; /* Management Packets TX */ 636 struct evcnt sc_ev_tor; /* Total Octets Rx */ 637 struct evcnt sc_ev_tot; /* Total Octets Tx */ 638 struct evcnt sc_ev_tpr; /* Total Packets Rx */ 639 struct evcnt sc_ev_tpt; /* Total Packets Tx */ 640 struct evcnt sc_ev_ptc64; /* Packets Tx (64 bytes) */ 641 struct evcnt sc_ev_ptc127; /* Packets Tx (65-127 bytes) */ 642 struct evcnt sc_ev_ptc255; /* Packets Tx (128-255 bytes) */ 643 struct evcnt sc_ev_ptc511; /* Packets Tx (256-511 bytes) */ 644 struct evcnt sc_ev_ptc1023; /* Packets Tx (512-1023 bytes) */ 645 struct evcnt sc_ev_ptc1522; /* Packets Tx (1024-1522 Bytes) */ 646 struct evcnt sc_ev_mptc; /* Multicast Packets Tx */ 647 struct evcnt sc_ev_bptc; /* Broadcast Packets Tx */ 648 struct evcnt sc_ev_tsctc; /* TCP Segmentation Context Tx */ 649 650 /* Old */ 651 struct evcnt sc_ev_tsctfc; /* TCP Segmentation Context Tx Fail */ 652 /* New */ 653 struct evcnt sc_ev_cbrmpc; /* Circuit Breaker Rx Mng. Packet */ 654 655 struct evcnt sc_ev_iac; /* Interrupt Assertion */ 656 657 /* Old */ 658 struct evcnt sc_ev_icrxptc; /* Intr. Cause Rx Pkt Timer Expire */ 659 struct evcnt sc_ev_icrxatc; /* Intr. Cause Rx Abs Timer Expire */ 660 struct evcnt sc_ev_ictxptc; /* Intr. Cause Tx Pkt Timer Expire */ 661 struct evcnt sc_ev_ictxatc; /* Intr. Cause Tx Abs Timer Expire */ 662 struct evcnt sc_ev_ictxqec; /* Intr. Cause Tx Queue Empty */ 663 struct evcnt sc_ev_ictxqmtc; /* Intr. Cause Tx Queue Min Thresh */ 664 /* 665 * sc_ev_rxdmtc is shared with both "Intr. cause" and 666 * non "Intr. cause" register. 667 */ 668 struct evcnt sc_ev_rxdmtc; /* (Intr. Cause) Rx Desc Min Thresh */ 669 struct evcnt sc_ev_icrxoc; /* Intr. Cause Receiver Overrun */ 670 /* New */ 671 struct evcnt sc_ev_rpthc; /* Rx Packets To Host */ 672 struct evcnt sc_ev_debug1; /* Debug Counter 1 */ 673 struct evcnt sc_ev_debug2; /* Debug Counter 2 */ 674 struct evcnt sc_ev_debug3; /* Debug Counter 3 */ 675 struct evcnt sc_ev_hgptc; /* Host Good Packets TX */ 676 struct evcnt sc_ev_debug4; /* Debug Counter 4 */ 677 struct evcnt sc_ev_htcbdpc; /* Host Tx Circuit Breaker Drp. Pkts */ 678 struct evcnt sc_ev_hgorc; /* Host Good Octets Rx */ 679 struct evcnt sc_ev_hgotc; /* Host Good Octets Tx */ 680 struct evcnt sc_ev_lenerrs; /* Length Error */ 681 struct evcnt sc_ev_tlpic; /* EEE Tx LPI */ 682 struct evcnt sc_ev_rlpic; /* EEE Rx LPI */ 683 struct evcnt sc_ev_b2ogprc; /* BMC2OS pkts received by host */ 684 struct evcnt sc_ev_o2bspc; /* OS2BMC pkts transmitted by host */ 685 struct evcnt sc_ev_b2ospc; /* BMC2OS pkts sent by BMC */ 686 struct evcnt sc_ev_o2bgptc; /* OS2BMC pkts received by BMC */ 687 struct evcnt sc_ev_scvpc; /* SerDes/SGMII Code Violation Pkt. */ 688 struct evcnt sc_ev_hrmpc; /* Header Redirection Missed Packet */ 689 #endif /* WM_EVENT_COUNTERS */ 690 691 struct sysctllog *sc_sysctllog; 692 693 /* This variable are used only on the 82547. */ 694 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */ 695 696 uint32_t sc_ctrl; /* prototype CTRL register */ 697 #if 0 698 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */ 699 #endif 700 uint32_t sc_icr; /* prototype interrupt bits */ 701 uint32_t sc_itr_init; /* prototype intr throttling reg */ 702 uint32_t sc_tctl; /* prototype TCTL register */ 703 uint32_t sc_rctl; /* prototype RCTL register */ 704 uint32_t sc_txcw; /* prototype TXCW register */ 705 uint32_t sc_tipg; /* prototype TIPG register */ 706 uint32_t sc_fcrtl; /* prototype FCRTL register */ 707 uint32_t sc_pba; /* prototype PBA register */ 708 709 int sc_tbi_linkup; /* TBI link status */ 710 int sc_tbi_serdes_anegticks; /* autonegotiation ticks */ 711 int sc_tbi_serdes_ticks; /* tbi ticks */ 712 struct timeval sc_linkup_delay_time; /* delay LINK_STATE_UP */ 713 714 int sc_mchash_type; /* multicast filter offset */ 715 716 krndsource_t rnd_source; /* random source */ 717 718 struct if_percpuq *sc_ipq; /* softint-based input queues */ 719 720 kmutex_t *sc_core_lock; /* lock for softc operations */ 721 kmutex_t *sc_ich_phymtx; /* 722 * 82574/82583/ICH/PCH specific PHY 723 * mutex. For 82574/82583, the mutex 724 * is used for both PHY and NVM. 725 */ 726 kmutex_t *sc_ich_nvmmtx; /* ICH/PCH specific NVM mutex */ 727 728 struct wm_phyop phy; 729 struct wm_nvmop nvm; 730 731 struct workqueue *sc_reset_wq; 732 struct work sc_reset_work; 733 volatile unsigned sc_reset_pending; 734 735 bool sc_dying; 736 737 #ifdef WM_DEBUG 738 uint32_t sc_debug; 739 bool sc_trigger_reset; 740 #endif 741 }; 742 743 #define WM_RXCHAIN_RESET(rxq) \ 744 do { \ 745 (rxq)->rxq_tailp = &(rxq)->rxq_head; \ 746 *(rxq)->rxq_tailp = NULL; \ 747 (rxq)->rxq_len = 0; \ 748 } while (/*CONSTCOND*/0) 749 750 #define WM_RXCHAIN_LINK(rxq, m) \ 751 do { \ 752 *(rxq)->rxq_tailp = (rxq)->rxq_tail = (m); \ 753 (rxq)->rxq_tailp = &(m)->m_next; \ 754 } while (/*CONSTCOND*/0) 755 756 #ifdef WM_EVENT_COUNTERS 757 #ifdef __HAVE_ATOMIC64_LOADSTORE 758 #define WM_EVCNT_INCR(ev) \ 759 atomic_store_relaxed(&((ev)->ev_count), \ 760 atomic_load_relaxed(&(ev)->ev_count) + 1) 761 #define WM_EVCNT_STORE(ev, val) \ 762 atomic_store_relaxed(&((ev)->ev_count), (val)) 763 #define WM_EVCNT_ADD(ev, val) \ 764 atomic_store_relaxed(&((ev)->ev_count), \ 765 atomic_load_relaxed(&(ev)->ev_count) + (val)) 766 #else 767 #define WM_EVCNT_INCR(ev) \ 768 ((ev)->ev_count)++ 769 #define WM_EVCNT_STORE(ev, val) \ 770 ((ev)->ev_count = (val)) 771 #define WM_EVCNT_ADD(ev, val) \ 772 (ev)->ev_count += (val) 773 #endif 774 775 #define WM_Q_EVCNT_INCR(qname, evname) \ 776 WM_EVCNT_INCR(&(qname)->qname##_ev_##evname) 777 #define WM_Q_EVCNT_STORE(qname, evname, val) \ 778 WM_EVCNT_STORE(&(qname)->qname##_ev_##evname, (val)) 779 #define WM_Q_EVCNT_ADD(qname, evname, val) \ 780 WM_EVCNT_ADD(&(qname)->qname##_ev_##evname, (val)) 781 #else /* !WM_EVENT_COUNTERS */ 782 #define WM_EVCNT_INCR(ev) __nothing 783 #define WM_EVCNT_STORE(ev, val) __nothing 784 #define WM_EVCNT_ADD(ev, val) __nothing 785 786 #define WM_Q_EVCNT_INCR(qname, evname) __nothing 787 #define WM_Q_EVCNT_STORE(qname, evname, val) __nothing 788 #define WM_Q_EVCNT_ADD(qname, evname, val) __nothing 789 #endif /* !WM_EVENT_COUNTERS */ 790 791 #define CSR_READ(sc, reg) \ 792 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg)) 793 #define CSR_WRITE(sc, reg, val) \ 794 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val)) 795 #define CSR_WRITE_FLUSH(sc) \ 796 (void)CSR_READ((sc), WMREG_STATUS) 797 798 #define ICH8_FLASH_READ32(sc, reg) \ 799 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, \ 800 (reg) + sc->sc_flashreg_offset) 801 #define ICH8_FLASH_WRITE32(sc, reg, data) \ 802 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, \ 803 (reg) + sc->sc_flashreg_offset, (data)) 804 805 #define ICH8_FLASH_READ16(sc, reg) \ 806 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, \ 807 (reg) + sc->sc_flashreg_offset) 808 #define ICH8_FLASH_WRITE16(sc, reg, data) \ 809 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, \ 810 (reg) + sc->sc_flashreg_offset, (data)) 811 812 #define WM_CDTXADDR(txq, x) ((txq)->txq_desc_dma + WM_CDTXOFF((txq), (x))) 813 #define WM_CDRXADDR(rxq, x) ((rxq)->rxq_desc_dma + WM_CDRXOFF((rxq), (x))) 814 815 #define WM_CDTXADDR_LO(txq, x) (WM_CDTXADDR((txq), (x)) & 0xffffffffU) 816 #define WM_CDTXADDR_HI(txq, x) \ 817 (sizeof(bus_addr_t) == 8 ? \ 818 (uint64_t)WM_CDTXADDR((txq), (x)) >> 32 : 0) 819 820 #define WM_CDRXADDR_LO(rxq, x) (WM_CDRXADDR((rxq), (x)) & 0xffffffffU) 821 #define WM_CDRXADDR_HI(rxq, x) \ 822 (sizeof(bus_addr_t) == 8 ? \ 823 (uint64_t)WM_CDRXADDR((rxq), (x)) >> 32 : 0) 824 825 /* 826 * Register read/write functions. 827 * Other than CSR_{READ|WRITE}(). 828 */ 829 #if 0 830 static inline uint32_t wm_io_read(struct wm_softc *, int); 831 #endif 832 static inline void wm_io_write(struct wm_softc *, int, uint32_t); 833 static inline void wm_82575_write_8bit_ctlr_reg(struct wm_softc *, uint32_t, 834 uint32_t, uint32_t); 835 static inline void wm_set_dma_addr(volatile wiseman_addr_t *, bus_addr_t); 836 837 /* 838 * Descriptor sync/init functions. 839 */ 840 static inline void wm_cdtxsync(struct wm_txqueue *, int, int, int); 841 static inline void wm_cdrxsync(struct wm_rxqueue *, int, int); 842 static inline void wm_init_rxdesc(struct wm_rxqueue *, int); 843 844 /* 845 * Device driver interface functions and commonly used functions. 846 * match, attach, detach, init, start, stop, ioctl, watchdog and so on. 847 */ 848 static const struct wm_product *wm_lookup(const struct pci_attach_args *); 849 static int wm_match(device_t, cfdata_t, void *); 850 static void wm_attach(device_t, device_t, void *); 851 static int wm_detach(device_t, int); 852 static bool wm_suspend(device_t, const pmf_qual_t *); 853 static bool wm_resume(device_t, const pmf_qual_t *); 854 static bool wm_watchdog(struct ifnet *); 855 static void wm_watchdog_txq(struct ifnet *, struct wm_txqueue *, 856 uint16_t *); 857 static void wm_watchdog_txq_locked(struct ifnet *, struct wm_txqueue *, 858 uint16_t *); 859 static void wm_tick(void *); 860 static int wm_ifflags_cb(struct ethercom *); 861 static int wm_ioctl(struct ifnet *, u_long, void *); 862 /* MAC address related */ 863 static uint16_t wm_check_alt_mac_addr(struct wm_softc *); 864 static int wm_read_mac_addr(struct wm_softc *, uint8_t *); 865 static void wm_set_ral(struct wm_softc *, const uint8_t *, int); 866 static uint32_t wm_mchash(struct wm_softc *, const uint8_t *); 867 static int wm_rar_count(struct wm_softc *); 868 static void wm_set_filter(struct wm_softc *); 869 /* Reset and init related */ 870 static void wm_set_vlan(struct wm_softc *); 871 static void wm_set_pcie_completion_timeout(struct wm_softc *); 872 static void wm_get_auto_rd_done(struct wm_softc *); 873 static void wm_lan_init_done(struct wm_softc *); 874 static void wm_get_cfg_done(struct wm_softc *); 875 static int wm_phy_post_reset(struct wm_softc *); 876 static int wm_write_smbus_addr(struct wm_softc *); 877 static int wm_init_lcd_from_nvm(struct wm_softc *); 878 static int wm_oem_bits_config_ich8lan(struct wm_softc *, bool); 879 static void wm_initialize_hardware_bits(struct wm_softc *); 880 static uint32_t wm_rxpbs_adjust_82580(uint32_t); 881 static int wm_reset_phy(struct wm_softc *); 882 static void wm_flush_desc_rings(struct wm_softc *); 883 static void wm_reset(struct wm_softc *); 884 static int wm_add_rxbuf(struct wm_rxqueue *, int); 885 static void wm_rxdrain(struct wm_rxqueue *); 886 static void wm_init_rss(struct wm_softc *); 887 static void wm_adjust_qnum(struct wm_softc *, int); 888 static inline bool wm_is_using_msix(struct wm_softc *); 889 static inline bool wm_is_using_multiqueue(struct wm_softc *); 890 static int wm_softint_establish_queue(struct wm_softc *, int, int); 891 static int wm_setup_legacy(struct wm_softc *); 892 static int wm_setup_msix(struct wm_softc *); 893 static int wm_init(struct ifnet *); 894 static int wm_init_locked(struct ifnet *); 895 static void wm_init_sysctls(struct wm_softc *); 896 static void wm_update_stats(struct wm_softc *); 897 static void wm_clear_evcnt(struct wm_softc *); 898 static void wm_unset_stopping_flags(struct wm_softc *); 899 static void wm_set_stopping_flags(struct wm_softc *); 900 static void wm_stop(struct ifnet *, int); 901 static void wm_stop_locked(struct ifnet *, bool, bool); 902 static void wm_dump_mbuf_chain(struct wm_softc *, struct mbuf *); 903 static void wm_82547_txfifo_stall(void *); 904 static int wm_82547_txfifo_bugchk(struct wm_softc *, struct mbuf *); 905 static void wm_itrs_writereg(struct wm_softc *, struct wm_queue *); 906 /* DMA related */ 907 static int wm_alloc_tx_descs(struct wm_softc *, struct wm_txqueue *); 908 static void wm_free_tx_descs(struct wm_softc *, struct wm_txqueue *); 909 static void wm_init_tx_descs(struct wm_softc *, struct wm_txqueue *); 910 static void wm_init_tx_regs(struct wm_softc *, struct wm_queue *, 911 struct wm_txqueue *); 912 static int wm_alloc_rx_descs(struct wm_softc *, struct wm_rxqueue *); 913 static void wm_free_rx_descs(struct wm_softc *, struct wm_rxqueue *); 914 static void wm_init_rx_regs(struct wm_softc *, struct wm_queue *, 915 struct wm_rxqueue *); 916 static int wm_alloc_tx_buffer(struct wm_softc *, struct wm_txqueue *); 917 static void wm_free_tx_buffer(struct wm_softc *, struct wm_txqueue *); 918 static void wm_init_tx_buffer(struct wm_softc *, struct wm_txqueue *); 919 static int wm_alloc_rx_buffer(struct wm_softc *, struct wm_rxqueue *); 920 static void wm_free_rx_buffer(struct wm_softc *, struct wm_rxqueue *); 921 static int wm_init_rx_buffer(struct wm_softc *, struct wm_rxqueue *); 922 static void wm_init_tx_queue(struct wm_softc *, struct wm_queue *, 923 struct wm_txqueue *); 924 static int wm_init_rx_queue(struct wm_softc *, struct wm_queue *, 925 struct wm_rxqueue *); 926 static int wm_alloc_txrx_queues(struct wm_softc *); 927 static void wm_free_txrx_queues(struct wm_softc *); 928 static int wm_init_txrx_queues(struct wm_softc *); 929 /* Start */ 930 static void wm_tx_offload(struct wm_softc *, struct wm_txqueue *, 931 struct wm_txsoft *, uint32_t *, uint8_t *); 932 static inline int wm_select_txqueue(struct ifnet *, struct mbuf *); 933 static void wm_start(struct ifnet *); 934 static void wm_start_locked(struct ifnet *); 935 static int wm_transmit(struct ifnet *, struct mbuf *); 936 static void wm_transmit_locked(struct ifnet *, struct wm_txqueue *); 937 static void wm_send_common_locked(struct ifnet *, struct wm_txqueue *, 938 bool); 939 static void wm_nq_tx_offload(struct wm_softc *, struct wm_txqueue *, 940 struct wm_txsoft *, uint32_t *, uint32_t *, bool *); 941 static void wm_nq_start(struct ifnet *); 942 static void wm_nq_start_locked(struct ifnet *); 943 static int wm_nq_transmit(struct ifnet *, struct mbuf *); 944 static void wm_nq_transmit_locked(struct ifnet *, struct wm_txqueue *); 945 static void wm_nq_send_common_locked(struct ifnet *, struct wm_txqueue *, 946 bool); 947 static void wm_deferred_start_locked(struct wm_txqueue *); 948 static void wm_handle_queue(void *); 949 static void wm_handle_queue_work(struct work *, void *); 950 static void wm_handle_reset_work(struct work *, void *); 951 /* Interrupt */ 952 static bool wm_txeof(struct wm_txqueue *, u_int); 953 static bool wm_rxeof(struct wm_rxqueue *, u_int); 954 static void wm_linkintr_gmii(struct wm_softc *, uint32_t); 955 static void wm_linkintr_tbi(struct wm_softc *, uint32_t); 956 static void wm_linkintr_serdes(struct wm_softc *, uint32_t); 957 static void wm_linkintr(struct wm_softc *, uint32_t); 958 static int wm_intr_legacy(void *); 959 static inline void wm_txrxintr_disable(struct wm_queue *); 960 static inline void wm_txrxintr_enable(struct wm_queue *); 961 static void wm_itrs_calculate(struct wm_softc *, struct wm_queue *); 962 static int wm_txrxintr_msix(void *); 963 static int wm_linkintr_msix(void *); 964 965 /* 966 * Media related. 967 * GMII, SGMII, TBI, SERDES and SFP. 968 */ 969 /* Common */ 970 static void wm_tbi_serdes_set_linkled(struct wm_softc *); 971 /* GMII related */ 972 static void wm_gmii_reset(struct wm_softc *); 973 static void wm_gmii_setup_phytype(struct wm_softc *, uint32_t, uint16_t); 974 static int wm_get_phy_id_82575(struct wm_softc *); 975 static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t); 976 static int wm_gmii_mediachange(struct ifnet *); 977 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *); 978 static void wm_i82543_mii_sendbits(struct wm_softc *, uint32_t, int); 979 static uint16_t wm_i82543_mii_recvbits(struct wm_softc *); 980 static int wm_gmii_i82543_readreg(device_t, int, int, uint16_t *); 981 static int wm_gmii_i82543_writereg(device_t, int, int, uint16_t); 982 static int wm_gmii_mdic_readreg(device_t, int, int, uint16_t *); 983 static int wm_gmii_mdic_writereg(device_t, int, int, uint16_t); 984 static int wm_gmii_i82544_readreg(device_t, int, int, uint16_t *); 985 static int wm_gmii_i82544_readreg_locked(device_t, int, int, uint16_t *); 986 static int wm_gmii_i82544_writereg(device_t, int, int, uint16_t); 987 static int wm_gmii_i82544_writereg_locked(device_t, int, int, uint16_t); 988 static int wm_gmii_i80003_readreg(device_t, int, int, uint16_t *); 989 static int wm_gmii_i80003_writereg(device_t, int, int, uint16_t); 990 static int wm_gmii_bm_readreg(device_t, int, int, uint16_t *); 991 static int wm_gmii_bm_writereg(device_t, int, int, uint16_t); 992 static int wm_enable_phy_wakeup_reg_access_bm(device_t, uint16_t *); 993 static int wm_disable_phy_wakeup_reg_access_bm(device_t, uint16_t *); 994 static int wm_access_phy_wakeup_reg_bm(device_t, int, int16_t *, int, 995 bool); 996 static int wm_gmii_hv_readreg(device_t, int, int, uint16_t *); 997 static int wm_gmii_hv_readreg_locked(device_t, int, int, uint16_t *); 998 static int wm_gmii_hv_writereg(device_t, int, int, uint16_t); 999 static int wm_gmii_hv_writereg_locked(device_t, int, int, uint16_t); 1000 static int wm_gmii_82580_readreg(device_t, int, int, uint16_t *); 1001 static int wm_gmii_82580_writereg(device_t, int, int, uint16_t); 1002 static int wm_gmii_gs40g_readreg(device_t, int, int, uint16_t *); 1003 static int wm_gmii_gs40g_writereg(device_t, int, int, uint16_t); 1004 static void wm_gmii_statchg(struct ifnet *); 1005 /* 1006 * kumeran related (80003, ICH* and PCH*). 1007 * These functions are not for accessing MII registers but for accessing 1008 * kumeran specific registers. 1009 */ 1010 static int wm_kmrn_readreg(struct wm_softc *, int, uint16_t *); 1011 static int wm_kmrn_readreg_locked(struct wm_softc *, int, uint16_t *); 1012 static int wm_kmrn_writereg(struct wm_softc *, int, uint16_t); 1013 static int wm_kmrn_writereg_locked(struct wm_softc *, int, uint16_t); 1014 /* EMI register related */ 1015 static int wm_access_emi_reg_locked(device_t, int, uint16_t *, bool); 1016 static int wm_read_emi_reg_locked(device_t, int, uint16_t *); 1017 static int wm_write_emi_reg_locked(device_t, int, uint16_t); 1018 /* SGMII */ 1019 static bool wm_sgmii_uses_mdio(struct wm_softc *); 1020 static void wm_sgmii_sfp_preconfig(struct wm_softc *); 1021 static int wm_sgmii_readreg(device_t, int, int, uint16_t *); 1022 static int wm_sgmii_readreg_locked(device_t, int, int, uint16_t *); 1023 static int wm_sgmii_writereg(device_t, int, int, uint16_t); 1024 static int wm_sgmii_writereg_locked(device_t, int, int, uint16_t); 1025 /* TBI related */ 1026 static bool wm_tbi_havesignal(struct wm_softc *, uint32_t); 1027 static void wm_tbi_mediainit(struct wm_softc *); 1028 static int wm_tbi_mediachange(struct ifnet *); 1029 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *); 1030 static int wm_check_for_link(struct wm_softc *); 1031 static void wm_tbi_tick(struct wm_softc *); 1032 /* SERDES related */ 1033 static void wm_serdes_power_up_link_82575(struct wm_softc *); 1034 static int wm_serdes_mediachange(struct ifnet *); 1035 static void wm_serdes_mediastatus(struct ifnet *, struct ifmediareq *); 1036 static void wm_serdes_tick(struct wm_softc *); 1037 /* SFP related */ 1038 static int wm_sfp_read_data_byte(struct wm_softc *, uint16_t, uint8_t *); 1039 static uint32_t wm_sfp_get_media_type(struct wm_softc *); 1040 1041 /* 1042 * NVM related. 1043 * Microwire, SPI (w/wo EERD) and Flash. 1044 */ 1045 /* Misc functions */ 1046 static void wm_eeprom_sendbits(struct wm_softc *, uint32_t, int); 1047 static void wm_eeprom_recvbits(struct wm_softc *, uint32_t *, int); 1048 static int wm_nvm_set_addrbits_size_eecd(struct wm_softc *); 1049 /* Microwire */ 1050 static int wm_nvm_read_uwire(struct wm_softc *, int, int, uint16_t *); 1051 /* SPI */ 1052 static int wm_nvm_ready_spi(struct wm_softc *); 1053 static int wm_nvm_read_spi(struct wm_softc *, int, int, uint16_t *); 1054 /* Using with EERD */ 1055 static int wm_poll_eerd_eewr_done(struct wm_softc *, int); 1056 static int wm_nvm_read_eerd(struct wm_softc *, int, int, uint16_t *); 1057 /* Flash */ 1058 static int wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *, 1059 unsigned int *); 1060 static int32_t wm_ich8_cycle_init(struct wm_softc *); 1061 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t); 1062 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t, uint32_t, 1063 uint32_t *); 1064 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *); 1065 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *); 1066 static int32_t wm_read_ich8_dword(struct wm_softc *, uint32_t, uint32_t *); 1067 static int wm_nvm_read_ich8(struct wm_softc *, int, int, uint16_t *); 1068 static int wm_nvm_read_spt(struct wm_softc *, int, int, uint16_t *); 1069 /* iNVM */ 1070 static int wm_nvm_read_word_invm(struct wm_softc *, uint16_t, uint16_t *); 1071 static int wm_nvm_read_invm(struct wm_softc *, int, int, uint16_t *); 1072 /* Lock, detecting NVM type, validate checksum and read */ 1073 static int wm_nvm_is_onboard_eeprom(struct wm_softc *); 1074 static int wm_nvm_flash_presence_i210(struct wm_softc *); 1075 static int wm_nvm_validate_checksum(struct wm_softc *); 1076 static void wm_nvm_version_invm(struct wm_softc *); 1077 static void wm_nvm_version(struct wm_softc *); 1078 static int wm_nvm_read(struct wm_softc *, int, int, uint16_t *); 1079 1080 /* 1081 * Hardware semaphores. 1082 * Very complexed... 1083 */ 1084 static int wm_get_null(struct wm_softc *); 1085 static void wm_put_null(struct wm_softc *); 1086 static int wm_get_eecd(struct wm_softc *); 1087 static void wm_put_eecd(struct wm_softc *); 1088 static int wm_get_swsm_semaphore(struct wm_softc *); /* 8257[123] */ 1089 static void wm_put_swsm_semaphore(struct wm_softc *); 1090 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t); 1091 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t); 1092 static int wm_get_nvm_80003(struct wm_softc *); 1093 static void wm_put_nvm_80003(struct wm_softc *); 1094 static int wm_get_nvm_82571(struct wm_softc *); 1095 static void wm_put_nvm_82571(struct wm_softc *); 1096 static int wm_get_phy_82575(struct wm_softc *); 1097 static void wm_put_phy_82575(struct wm_softc *); 1098 static int wm_get_swfwhw_semaphore(struct wm_softc *); /* For 574/583 */ 1099 static void wm_put_swfwhw_semaphore(struct wm_softc *); 1100 static int wm_get_swflag_ich8lan(struct wm_softc *); /* For PHY */ 1101 static void wm_put_swflag_ich8lan(struct wm_softc *); 1102 static int wm_get_nvm_ich8lan(struct wm_softc *); 1103 static void wm_put_nvm_ich8lan(struct wm_softc *); 1104 static int wm_get_hw_semaphore_82573(struct wm_softc *); 1105 static void wm_put_hw_semaphore_82573(struct wm_softc *); 1106 1107 /* 1108 * Management mode and power management related subroutines. 1109 * BMC, AMT, suspend/resume and EEE. 1110 */ 1111 #if 0 1112 static int wm_check_mng_mode(struct wm_softc *); 1113 static int wm_check_mng_mode_ich8lan(struct wm_softc *); 1114 static int wm_check_mng_mode_82574(struct wm_softc *); 1115 static int wm_check_mng_mode_generic(struct wm_softc *); 1116 #endif 1117 static int wm_enable_mng_pass_thru(struct wm_softc *); 1118 static bool wm_phy_resetisblocked(struct wm_softc *); 1119 static void wm_get_hw_control(struct wm_softc *); 1120 static void wm_release_hw_control(struct wm_softc *); 1121 static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, bool); 1122 static int wm_init_phy_workarounds_pchlan(struct wm_softc *); 1123 static void wm_init_manageability(struct wm_softc *); 1124 static void wm_release_manageability(struct wm_softc *); 1125 static void wm_get_wakeup(struct wm_softc *); 1126 static int wm_ulp_disable(struct wm_softc *); 1127 static int wm_enable_phy_wakeup(struct wm_softc *); 1128 static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *); 1129 static void wm_suspend_workarounds_ich8lan(struct wm_softc *); 1130 static int wm_resume_workarounds_pchlan(struct wm_softc *); 1131 static void wm_enable_wakeup(struct wm_softc *); 1132 static void wm_disable_aspm(struct wm_softc *); 1133 /* LPLU (Low Power Link Up) */ 1134 static void wm_lplu_d0_disable(struct wm_softc *); 1135 /* EEE */ 1136 static int wm_set_eee_i350(struct wm_softc *); 1137 static int wm_set_eee_pchlan(struct wm_softc *); 1138 static int wm_set_eee(struct wm_softc *); 1139 1140 /* 1141 * Workarounds (mainly PHY related). 1142 * Basically, PHY's workarounds are in the PHY drivers. 1143 */ 1144 static int wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *); 1145 static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *); 1146 static int wm_hv_phy_workarounds_ich8lan(struct wm_softc *); 1147 static void wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *); 1148 static void wm_copy_rx_addrs_to_phy_ich8lan_locked(struct wm_softc *); 1149 static int wm_lv_jumbo_workaround_ich8lan(struct wm_softc *, bool); 1150 static int wm_lv_phy_workarounds_ich8lan(struct wm_softc *); 1151 static int wm_k1_workaround_lpt_lp(struct wm_softc *, bool); 1152 static int wm_k1_gig_workaround_hv(struct wm_softc *, int); 1153 static int wm_k1_workaround_lv(struct wm_softc *); 1154 static int wm_link_stall_workaround_hv(struct wm_softc *); 1155 static int wm_set_mdio_slow_mode_hv(struct wm_softc *); 1156 static int wm_set_mdio_slow_mode_hv_locked(struct wm_softc *); 1157 static void wm_configure_k1_ich8lan(struct wm_softc *, int); 1158 static void wm_reset_init_script_82575(struct wm_softc *); 1159 static void wm_reset_mdicnfg_82580(struct wm_softc *); 1160 static bool wm_phy_is_accessible_pchlan(struct wm_softc *); 1161 static void wm_toggle_lanphypc_pch_lpt(struct wm_softc *); 1162 static int wm_platform_pm_pch_lpt(struct wm_softc *, bool); 1163 static int wm_pll_workaround_i210(struct wm_softc *); 1164 static void wm_legacy_irq_quirk_spt(struct wm_softc *); 1165 static bool wm_phy_need_linkdown_discard(struct wm_softc *); 1166 static void wm_set_linkdown_discard(struct wm_softc *); 1167 static void wm_clear_linkdown_discard(struct wm_softc *); 1168 1169 static int wm_sysctl_tdh_handler(SYSCTLFN_PROTO); 1170 static int wm_sysctl_tdt_handler(SYSCTLFN_PROTO); 1171 #ifdef WM_DEBUG 1172 static int wm_sysctl_debug(SYSCTLFN_PROTO); 1173 #endif 1174 1175 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc), 1176 wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1177 1178 /* 1179 * Devices supported by this driver. 1180 */ 1181 static const struct wm_product { 1182 pci_vendor_id_t wmp_vendor; 1183 pci_product_id_t wmp_product; 1184 const char *wmp_name; 1185 wm_chip_type wmp_type; 1186 uint32_t wmp_flags; 1187 #define WMP_F_UNKNOWN WM_MEDIATYPE_UNKNOWN 1188 #define WMP_F_FIBER WM_MEDIATYPE_FIBER 1189 #define WMP_F_COPPER WM_MEDIATYPE_COPPER 1190 #define WMP_F_SERDES WM_MEDIATYPE_SERDES 1191 #define WMP_MEDIATYPE(x) ((x) & 0x03) 1192 } wm_products[] = { 1193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542, 1194 "Intel i82542 1000BASE-X Ethernet", 1195 WM_T_82542_2_1, WMP_F_FIBER }, 1196 1197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER, 1198 "Intel i82543GC 1000BASE-X Ethernet", 1199 WM_T_82543, WMP_F_FIBER }, 1200 1201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER, 1202 "Intel i82543GC 1000BASE-T Ethernet", 1203 WM_T_82543, WMP_F_COPPER }, 1204 1205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER, 1206 "Intel i82544EI 1000BASE-T Ethernet", 1207 WM_T_82544, WMP_F_COPPER }, 1208 1209 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER, 1210 "Intel i82544EI 1000BASE-X Ethernet", 1211 WM_T_82544, WMP_F_FIBER }, 1212 1213 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER, 1214 "Intel i82544GC 1000BASE-T Ethernet", 1215 WM_T_82544, WMP_F_COPPER }, 1216 1217 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM, 1218 "Intel i82544GC (LOM) 1000BASE-T Ethernet", 1219 WM_T_82544, WMP_F_COPPER }, 1220 1221 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM, 1222 "Intel i82540EM 1000BASE-T Ethernet", 1223 WM_T_82540, WMP_F_COPPER }, 1224 1225 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM, 1226 "Intel i82540EM (LOM) 1000BASE-T Ethernet", 1227 WM_T_82540, WMP_F_COPPER }, 1228 1229 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM, 1230 "Intel i82540EP 1000BASE-T Ethernet", 1231 WM_T_82540, WMP_F_COPPER }, 1232 1233 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP, 1234 "Intel i82540EP 1000BASE-T Ethernet", 1235 WM_T_82540, WMP_F_COPPER }, 1236 1237 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP, 1238 "Intel i82540EP 1000BASE-T Ethernet", 1239 WM_T_82540, WMP_F_COPPER }, 1240 1241 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER, 1242 "Intel i82545EM 1000BASE-T Ethernet", 1243 WM_T_82545, WMP_F_COPPER }, 1244 1245 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER, 1246 "Intel i82545GM 1000BASE-T Ethernet", 1247 WM_T_82545_3, WMP_F_COPPER }, 1248 1249 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER, 1250 "Intel i82545GM 1000BASE-X Ethernet", 1251 WM_T_82545_3, WMP_F_FIBER }, 1252 1253 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES, 1254 "Intel i82545GM Gigabit Ethernet (SERDES)", 1255 WM_T_82545_3, WMP_F_SERDES }, 1256 1257 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER, 1258 "Intel i82546EB 1000BASE-T Ethernet", 1259 WM_T_82546, WMP_F_COPPER }, 1260 1261 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD, 1262 "Intel i82546EB 1000BASE-T Ethernet", 1263 WM_T_82546, WMP_F_COPPER }, 1264 1265 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER, 1266 "Intel i82545EM 1000BASE-X Ethernet", 1267 WM_T_82545, WMP_F_FIBER }, 1268 1269 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER, 1270 "Intel i82546EB 1000BASE-X Ethernet", 1271 WM_T_82546, WMP_F_FIBER }, 1272 1273 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER, 1274 "Intel i82546GB 1000BASE-T Ethernet", 1275 WM_T_82546_3, WMP_F_COPPER }, 1276 1277 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER, 1278 "Intel i82546GB 1000BASE-X Ethernet", 1279 WM_T_82546_3, WMP_F_FIBER }, 1280 1281 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES, 1282 "Intel i82546GB Gigabit Ethernet (SERDES)", 1283 WM_T_82546_3, WMP_F_SERDES }, 1284 1285 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER, 1286 "i82546GB quad-port Gigabit Ethernet", 1287 WM_T_82546_3, WMP_F_COPPER }, 1288 1289 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3, 1290 "i82546GB quad-port Gigabit Ethernet (KSP3)", 1291 WM_T_82546_3, WMP_F_COPPER }, 1292 1293 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE, 1294 "Intel PRO/1000MT (82546GB)", 1295 WM_T_82546_3, WMP_F_COPPER }, 1296 1297 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI, 1298 "Intel i82541EI 1000BASE-T Ethernet", 1299 WM_T_82541, WMP_F_COPPER }, 1300 1301 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM, 1302 "Intel i82541ER (LOM) 1000BASE-T Ethernet", 1303 WM_T_82541, WMP_F_COPPER }, 1304 1305 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE, 1306 "Intel i82541EI Mobile 1000BASE-T Ethernet", 1307 WM_T_82541, WMP_F_COPPER }, 1308 1309 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER, 1310 "Intel i82541ER 1000BASE-T Ethernet", 1311 WM_T_82541_2, WMP_F_COPPER }, 1312 1313 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI, 1314 "Intel i82541GI 1000BASE-T Ethernet", 1315 WM_T_82541_2, WMP_F_COPPER }, 1316 1317 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE, 1318 "Intel i82541GI Mobile 1000BASE-T Ethernet", 1319 WM_T_82541_2, WMP_F_COPPER }, 1320 1321 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI, 1322 "Intel i82541PI 1000BASE-T Ethernet", 1323 WM_T_82541_2, WMP_F_COPPER }, 1324 1325 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI, 1326 "Intel i82547EI 1000BASE-T Ethernet", 1327 WM_T_82547, WMP_F_COPPER }, 1328 1329 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE, 1330 "Intel i82547EI Mobile 1000BASE-T Ethernet", 1331 WM_T_82547, WMP_F_COPPER }, 1332 1333 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI, 1334 "Intel i82547GI 1000BASE-T Ethernet", 1335 WM_T_82547_2, WMP_F_COPPER }, 1336 1337 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER, 1338 "Intel PRO/1000 PT (82571EB)", 1339 WM_T_82571, WMP_F_COPPER }, 1340 1341 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER, 1342 "Intel PRO/1000 PF (82571EB)", 1343 WM_T_82571, WMP_F_FIBER }, 1344 1345 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES, 1346 "Intel PRO/1000 PB (82571EB)", 1347 WM_T_82571, WMP_F_SERDES }, 1348 1349 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER, 1350 "Intel PRO/1000 QT (82571EB)", 1351 WM_T_82571, WMP_F_COPPER }, 1352 1353 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER, 1354 "Intel PRO/1000 PT Quad Port Server Adapter", 1355 WM_T_82571, WMP_F_COPPER }, 1356 1357 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571PT_QUAD_COPPER, 1358 "Intel Gigabit PT Quad Port Server ExpressModule", 1359 WM_T_82571, WMP_F_COPPER }, 1360 1361 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_DUAL_SERDES, 1362 "Intel 82571EB Dual Gigabit Ethernet (SERDES)", 1363 WM_T_82571, WMP_F_SERDES }, 1364 1365 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_SERDES, 1366 "Intel 82571EB Quad Gigabit Ethernet (SERDES)", 1367 WM_T_82571, WMP_F_SERDES }, 1368 1369 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER, 1370 "Intel 82571EB Quad 1000baseX Ethernet", 1371 WM_T_82571, WMP_F_FIBER }, 1372 1373 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER, 1374 "Intel i82572EI 1000baseT Ethernet", 1375 WM_T_82572, WMP_F_COPPER }, 1376 1377 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER, 1378 "Intel i82572EI 1000baseX Ethernet", 1379 WM_T_82572, WMP_F_FIBER }, 1380 1381 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES, 1382 "Intel i82572EI Gigabit Ethernet (SERDES)", 1383 WM_T_82572, WMP_F_SERDES }, 1384 1385 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI, 1386 "Intel i82572EI 1000baseT Ethernet", 1387 WM_T_82572, WMP_F_COPPER }, 1388 1389 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E, 1390 "Intel i82573E", 1391 WM_T_82573, WMP_F_COPPER }, 1392 1393 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT, 1394 "Intel i82573E IAMT", 1395 WM_T_82573, WMP_F_COPPER }, 1396 1397 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L, 1398 "Intel i82573L Gigabit Ethernet", 1399 WM_T_82573, WMP_F_COPPER }, 1400 1401 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L, 1402 "Intel i82574L", 1403 WM_T_82574, WMP_F_COPPER }, 1404 1405 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574LA, 1406 "Intel i82574L", 1407 WM_T_82574, WMP_F_COPPER }, 1408 1409 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V, 1410 "Intel i82583V", 1411 WM_T_82583, WMP_F_COPPER }, 1412 1413 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT, 1414 "i80003 dual 1000baseT Ethernet", 1415 WM_T_80003, WMP_F_COPPER }, 1416 1417 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT, 1418 "i80003 dual 1000baseX Ethernet", 1419 WM_T_80003, WMP_F_COPPER }, 1420 1421 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT, 1422 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)", 1423 WM_T_80003, WMP_F_SERDES }, 1424 1425 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT, 1426 "Intel i80003 1000baseT Ethernet", 1427 WM_T_80003, WMP_F_COPPER }, 1428 1429 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT, 1430 "Intel i80003 Gigabit Ethernet (SERDES)", 1431 WM_T_80003, WMP_F_SERDES }, 1432 1433 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT, 1434 "Intel i82801H (M_AMT) LAN Controller", 1435 WM_T_ICH8, WMP_F_COPPER }, 1436 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT, 1437 "Intel i82801H (AMT) LAN Controller", 1438 WM_T_ICH8, WMP_F_COPPER }, 1439 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN, 1440 "Intel i82801H LAN Controller", 1441 WM_T_ICH8, WMP_F_COPPER }, 1442 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN, 1443 "Intel i82801H (IFE) 10/100 LAN Controller", 1444 WM_T_ICH8, WMP_F_COPPER }, 1445 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN, 1446 "Intel i82801H (M) LAN Controller", 1447 WM_T_ICH8, WMP_F_COPPER }, 1448 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT, 1449 "Intel i82801H IFE (GT) 10/100 LAN Controller", 1450 WM_T_ICH8, WMP_F_COPPER }, 1451 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G, 1452 "Intel i82801H IFE (G) 10/100 LAN Controller", 1453 WM_T_ICH8, WMP_F_COPPER }, 1454 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_82567V_3, 1455 "82567V-3 LAN Controller", 1456 WM_T_ICH8, WMP_F_COPPER }, 1457 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT, 1458 "82801I (AMT) LAN Controller", 1459 WM_T_ICH9, WMP_F_COPPER }, 1460 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE, 1461 "82801I 10/100 LAN Controller", 1462 WM_T_ICH9, WMP_F_COPPER }, 1463 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G, 1464 "82801I (G) 10/100 LAN Controller", 1465 WM_T_ICH9, WMP_F_COPPER }, 1466 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT, 1467 "82801I (GT) 10/100 LAN Controller", 1468 WM_T_ICH9, WMP_F_COPPER }, 1469 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C, 1470 "82801I (C) LAN Controller", 1471 WM_T_ICH9, WMP_F_COPPER }, 1472 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M, 1473 "82801I mobile LAN Controller", 1474 WM_T_ICH9, WMP_F_COPPER }, 1475 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_V, 1476 "82801I mobile (V) LAN Controller", 1477 WM_T_ICH9, WMP_F_COPPER }, 1478 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT, 1479 "82801I mobile (AMT) LAN Controller", 1480 WM_T_ICH9, WMP_F_COPPER }, 1481 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM, 1482 "82567LM-4 LAN Controller", 1483 WM_T_ICH9, WMP_F_COPPER }, 1484 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM, 1485 "82567LM-2 LAN Controller", 1486 WM_T_ICH10, WMP_F_COPPER }, 1487 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF, 1488 "82567LF-2 LAN Controller", 1489 WM_T_ICH10, WMP_F_COPPER }, 1490 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM, 1491 "82567LM-3 LAN Controller", 1492 WM_T_ICH10, WMP_F_COPPER }, 1493 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF, 1494 "82567LF-3 LAN Controller", 1495 WM_T_ICH10, WMP_F_COPPER }, 1496 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V, 1497 "82567V-2 LAN Controller", 1498 WM_T_ICH10, WMP_F_COPPER }, 1499 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V, 1500 "82567V-3? LAN Controller", 1501 WM_T_ICH10, WMP_F_COPPER }, 1502 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE, 1503 "HANKSVILLE LAN Controller", 1504 WM_T_ICH10, WMP_F_COPPER }, 1505 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM, 1506 "PCH LAN (82577LM) Controller", 1507 WM_T_PCH, WMP_F_COPPER }, 1508 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC, 1509 "PCH LAN (82577LC) Controller", 1510 WM_T_PCH, WMP_F_COPPER }, 1511 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM, 1512 "PCH LAN (82578DM) Controller", 1513 WM_T_PCH, WMP_F_COPPER }, 1514 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC, 1515 "PCH LAN (82578DC) Controller", 1516 WM_T_PCH, WMP_F_COPPER }, 1517 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM, 1518 "PCH2 LAN (82579LM) Controller", 1519 WM_T_PCH2, WMP_F_COPPER }, 1520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V, 1521 "PCH2 LAN (82579V) Controller", 1522 WM_T_PCH2, WMP_F_COPPER }, 1523 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER, 1524 "82575EB dual-1000baseT Ethernet", 1525 WM_T_82575, WMP_F_COPPER }, 1526 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES, 1527 "82575EB dual-1000baseX Ethernet (SERDES)", 1528 WM_T_82575, WMP_F_SERDES }, 1529 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER, 1530 "82575GB quad-1000baseT Ethernet", 1531 WM_T_82575, WMP_F_COPPER }, 1532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM, 1533 "82575GB quad-1000baseT Ethernet (PM)", 1534 WM_T_82575, WMP_F_COPPER }, 1535 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER, 1536 "82576 1000BaseT Ethernet", 1537 WM_T_82576, WMP_F_COPPER }, 1538 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER, 1539 "82576 1000BaseX Ethernet", 1540 WM_T_82576, WMP_F_FIBER }, 1541 1542 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES, 1543 "82576 gigabit Ethernet (SERDES)", 1544 WM_T_82576, WMP_F_SERDES }, 1545 1546 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER, 1547 "82576 quad-1000BaseT Ethernet", 1548 WM_T_82576, WMP_F_COPPER }, 1549 1550 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER_ET2, 1551 "82576 Gigabit ET2 Quad Port Server Adapter", 1552 WM_T_82576, WMP_F_COPPER }, 1553 1554 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS, 1555 "82576 gigabit Ethernet", 1556 WM_T_82576, WMP_F_COPPER }, 1557 1558 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES, 1559 "82576 gigabit Ethernet (SERDES)", 1560 WM_T_82576, WMP_F_SERDES }, 1561 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD, 1562 "82576 quad-gigabit Ethernet (SERDES)", 1563 WM_T_82576, WMP_F_SERDES }, 1564 1565 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER, 1566 "82580 1000BaseT Ethernet", 1567 WM_T_82580, WMP_F_COPPER }, 1568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER, 1569 "82580 1000BaseX Ethernet", 1570 WM_T_82580, WMP_F_FIBER }, 1571 1572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES, 1573 "82580 1000BaseT Ethernet (SERDES)", 1574 WM_T_82580, WMP_F_SERDES }, 1575 1576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII, 1577 "82580 gigabit Ethernet (SGMII)", 1578 WM_T_82580, WMP_F_COPPER }, 1579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL, 1580 "82580 dual-1000BaseT Ethernet", 1581 WM_T_82580, WMP_F_COPPER }, 1582 1583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER, 1584 "82580 quad-1000BaseX Ethernet", 1585 WM_T_82580, WMP_F_FIBER }, 1586 1587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SGMII, 1588 "DH89XXCC Gigabit Ethernet (SGMII)", 1589 WM_T_82580, WMP_F_COPPER }, 1590 1591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SERDES, 1592 "DH89XXCC Gigabit Ethernet (SERDES)", 1593 WM_T_82580, WMP_F_SERDES }, 1594 1595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_BPLANE, 1596 "DH89XXCC 1000BASE-KX Ethernet", 1597 WM_T_82580, WMP_F_SERDES }, 1598 1599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SFP, 1600 "DH89XXCC Gigabit Ethernet (SFP)", 1601 WM_T_82580, WMP_F_SERDES }, 1602 1603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER, 1604 "I350 Gigabit Network Connection", 1605 WM_T_I350, WMP_F_COPPER }, 1606 1607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER, 1608 "I350 Gigabit Fiber Network Connection", 1609 WM_T_I350, WMP_F_FIBER }, 1610 1611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES, 1612 "I350 Gigabit Backplane Connection", 1613 WM_T_I350, WMP_F_SERDES }, 1614 1615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_DA4, 1616 "I350 Quad Port Gigabit Ethernet", 1617 WM_T_I350, WMP_F_SERDES }, 1618 1619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII, 1620 "I350 Gigabit Connection", 1621 WM_T_I350, WMP_F_COPPER }, 1622 1623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_1000KX, 1624 "I354 Gigabit Ethernet (KX)", 1625 WM_T_I354, WMP_F_SERDES }, 1626 1627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_SGMII, 1628 "I354 Gigabit Ethernet (SGMII)", 1629 WM_T_I354, WMP_F_COPPER }, 1630 1631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_25GBE, 1632 "I354 Gigabit Ethernet (2.5G)", 1633 WM_T_I354, WMP_F_COPPER }, 1634 1635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1, 1636 "I210-T1 Ethernet Server Adapter", 1637 WM_T_I210, WMP_F_COPPER }, 1638 1639 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1, 1640 "I210 Ethernet (Copper OEM)", 1641 WM_T_I210, WMP_F_COPPER }, 1642 1643 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT, 1644 "I210 Ethernet (Copper IT)", 1645 WM_T_I210, WMP_F_COPPER }, 1646 1647 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_WOF, 1648 "I210 Ethernet (Copper, FLASH less)", 1649 WM_T_I210, WMP_F_COPPER }, 1650 1651 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER, 1652 "I210 Gigabit Ethernet (Fiber)", 1653 WM_T_I210, WMP_F_FIBER }, 1654 1655 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES, 1656 "I210 Gigabit Ethernet (SERDES)", 1657 WM_T_I210, WMP_F_SERDES }, 1658 1659 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES_WOF, 1660 "I210 Gigabit Ethernet (SERDES, FLASH less)", 1661 WM_T_I210, WMP_F_SERDES }, 1662 1663 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII, 1664 "I210 Gigabit Ethernet (SGMII)", 1665 WM_T_I210, WMP_F_COPPER }, 1666 1667 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII_WOF, 1668 "I210 Gigabit Ethernet (SGMII, FLASH less)", 1669 WM_T_I210, WMP_F_COPPER }, 1670 1671 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER, 1672 "I211 Ethernet (COPPER)", 1673 WM_T_I211, WMP_F_COPPER }, 1674 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V, 1675 "I217 V Ethernet Connection", 1676 WM_T_PCH_LPT, WMP_F_COPPER }, 1677 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM, 1678 "I217 LM Ethernet Connection", 1679 WM_T_PCH_LPT, WMP_F_COPPER }, 1680 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V, 1681 "I218 V Ethernet Connection", 1682 WM_T_PCH_LPT, WMP_F_COPPER }, 1683 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V2, 1684 "I218 V Ethernet Connection", 1685 WM_T_PCH_LPT, WMP_F_COPPER }, 1686 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V3, 1687 "I218 V Ethernet Connection", 1688 WM_T_PCH_LPT, WMP_F_COPPER }, 1689 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM, 1690 "I218 LM Ethernet Connection", 1691 WM_T_PCH_LPT, WMP_F_COPPER }, 1692 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM2, 1693 "I218 LM Ethernet Connection", 1694 WM_T_PCH_LPT, WMP_F_COPPER }, 1695 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM3, 1696 "I218 LM Ethernet Connection", 1697 WM_T_PCH_LPT, WMP_F_COPPER }, 1698 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM, 1699 "I219 LM Ethernet Connection", 1700 WM_T_PCH_SPT, WMP_F_COPPER }, 1701 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM2, 1702 "I219 LM (2) Ethernet Connection", 1703 WM_T_PCH_SPT, WMP_F_COPPER }, 1704 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM3, 1705 "I219 LM (3) Ethernet Connection", 1706 WM_T_PCH_SPT, WMP_F_COPPER }, 1707 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM4, 1708 "I219 LM (4) Ethernet Connection", 1709 WM_T_PCH_SPT, WMP_F_COPPER }, 1710 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM5, 1711 "I219 LM (5) Ethernet Connection", 1712 WM_T_PCH_SPT, WMP_F_COPPER }, 1713 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM6, 1714 "I219 LM (6) Ethernet Connection", 1715 WM_T_PCH_CNP, WMP_F_COPPER }, 1716 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM7, 1717 "I219 LM (7) Ethernet Connection", 1718 WM_T_PCH_CNP, WMP_F_COPPER }, 1719 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM8, 1720 "I219 LM (8) Ethernet Connection", 1721 WM_T_PCH_CNP, WMP_F_COPPER }, 1722 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM9, 1723 "I219 LM (9) Ethernet Connection", 1724 WM_T_PCH_CNP, WMP_F_COPPER }, 1725 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM10, 1726 "I219 LM (10) Ethernet Connection", 1727 WM_T_PCH_CNP, WMP_F_COPPER }, 1728 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM11, 1729 "I219 LM (11) Ethernet Connection", 1730 WM_T_PCH_CNP, WMP_F_COPPER }, 1731 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM12, 1732 "I219 LM (12) Ethernet Connection", 1733 WM_T_PCH_SPT, WMP_F_COPPER }, 1734 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM13, 1735 "I219 LM (13) Ethernet Connection", 1736 WM_T_PCH_TGP, WMP_F_COPPER }, 1737 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM14, 1738 "I219 LM (14) Ethernet Connection", 1739 WM_T_PCH_TGP, WMP_F_COPPER }, 1740 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM15, 1741 "I219 LM (15) Ethernet Connection", 1742 WM_T_PCH_TGP, WMP_F_COPPER }, 1743 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM16, 1744 "I219 LM (16) Ethernet Connection", 1745 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP */ 1746 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM17, 1747 "I219 LM (17) Ethernet Connection", 1748 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP */ 1749 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM18, 1750 "I219 LM (18) Ethernet Connection", 1751 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */ 1752 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM19, 1753 "I219 LM (19) Ethernet Connection", 1754 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */ 1755 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM20, 1756 "I219 LM (20) Ethernet Connection", 1757 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */ 1758 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM21, 1759 "I219 LM (21) Ethernet Connection", 1760 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */ 1761 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM22, 1762 "I219 LM (22) Ethernet Connection", 1763 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP(RPL) */ 1764 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM23, 1765 "I219 LM (23) Ethernet Connection", 1766 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP(RPL) */ 1767 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V, 1768 "I219 V Ethernet Connection", 1769 WM_T_PCH_SPT, WMP_F_COPPER }, 1770 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V2, 1771 "I219 V (2) Ethernet Connection", 1772 WM_T_PCH_SPT, WMP_F_COPPER }, 1773 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V4, 1774 "I219 V (4) Ethernet Connection", 1775 WM_T_PCH_SPT, WMP_F_COPPER }, 1776 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V5, 1777 "I219 V (5) Ethernet Connection", 1778 WM_T_PCH_SPT, WMP_F_COPPER }, 1779 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V6, 1780 "I219 V (6) Ethernet Connection", 1781 WM_T_PCH_CNP, WMP_F_COPPER }, 1782 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V7, 1783 "I219 V (7) Ethernet Connection", 1784 WM_T_PCH_CNP, WMP_F_COPPER }, 1785 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V8, 1786 "I219 V (8) Ethernet Connection", 1787 WM_T_PCH_CNP, WMP_F_COPPER }, 1788 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V9, 1789 "I219 V (9) Ethernet Connection", 1790 WM_T_PCH_CNP, WMP_F_COPPER }, 1791 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V10, 1792 "I219 V (10) Ethernet Connection", 1793 WM_T_PCH_CNP, WMP_F_COPPER }, 1794 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V11, 1795 "I219 V (11) Ethernet Connection", 1796 WM_T_PCH_CNP, WMP_F_COPPER }, 1797 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V12, 1798 "I219 V (12) Ethernet Connection", 1799 WM_T_PCH_SPT, WMP_F_COPPER }, 1800 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V13, 1801 "I219 V (13) Ethernet Connection", 1802 WM_T_PCH_TGP, WMP_F_COPPER }, 1803 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V14, 1804 "I219 V (14) Ethernet Connection", 1805 WM_T_PCH_TGP, WMP_F_COPPER }, 1806 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V15, 1807 "I219 V (15) Ethernet Connection", 1808 WM_T_PCH_TGP, WMP_F_COPPER }, 1809 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V16, 1810 "I219 V (16) Ethernet Connection", 1811 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP */ 1812 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V17, 1813 "I219 V (17) Ethernet Connection", 1814 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP */ 1815 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V18, 1816 "I219 V (18) Ethernet Connection", 1817 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */ 1818 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V19, 1819 "I219 V (19) Ethernet Connection", 1820 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */ 1821 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V20, 1822 "I219 V (20) Ethernet Connection", 1823 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */ 1824 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V21, 1825 "I219 V (21) Ethernet Connection", 1826 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */ 1827 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V22, 1828 "I219 V (22) Ethernet Connection", 1829 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP(RPL) */ 1830 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V23, 1831 "I219 V (23) Ethernet Connection", 1832 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP(RPL) */ 1833 { 0, 0, 1834 NULL, 1835 0, 0 }, 1836 }; 1837 1838 /* 1839 * Register read/write functions. 1840 * Other than CSR_{READ|WRITE}(). 1841 */ 1842 1843 #if 0 /* Not currently used */ 1844 static inline uint32_t 1845 wm_io_read(struct wm_softc *sc, int reg) 1846 { 1847 1848 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg); 1849 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4)); 1850 } 1851 #endif 1852 1853 static inline void 1854 wm_io_write(struct wm_softc *sc, int reg, uint32_t val) 1855 { 1856 1857 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg); 1858 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val); 1859 } 1860 1861 static inline void 1862 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off, 1863 uint32_t data) 1864 { 1865 uint32_t regval; 1866 int i; 1867 1868 regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT); 1869 1870 CSR_WRITE(sc, reg, regval); 1871 1872 for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) { 1873 delay(5); 1874 if (CSR_READ(sc, reg) & SCTL_CTL_READY) 1875 break; 1876 } 1877 if (i == SCTL_CTL_POLL_TIMEOUT) { 1878 aprint_error("%s: WARNING:" 1879 " i82575 reg 0x%08x setup did not indicate ready\n", 1880 device_xname(sc->sc_dev), reg); 1881 } 1882 } 1883 1884 static inline void 1885 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v) 1886 { 1887 wa->wa_low = htole32(BUS_ADDR_LO32(v)); 1888 wa->wa_high = htole32(BUS_ADDR_HI32(v)); 1889 } 1890 1891 /* 1892 * Descriptor sync/init functions. 1893 */ 1894 static inline void 1895 wm_cdtxsync(struct wm_txqueue *txq, int start, int num, int ops) 1896 { 1897 struct wm_softc *sc = txq->txq_sc; 1898 1899 /* If it will wrap around, sync to the end of the ring. */ 1900 if ((start + num) > WM_NTXDESC(txq)) { 1901 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap, 1902 WM_CDTXOFF(txq, start), txq->txq_descsize * 1903 (WM_NTXDESC(txq) - start), ops); 1904 num -= (WM_NTXDESC(txq) - start); 1905 start = 0; 1906 } 1907 1908 /* Now sync whatever is left. */ 1909 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap, 1910 WM_CDTXOFF(txq, start), txq->txq_descsize * num, ops); 1911 } 1912 1913 static inline void 1914 wm_cdrxsync(struct wm_rxqueue *rxq, int start, int ops) 1915 { 1916 struct wm_softc *sc = rxq->rxq_sc; 1917 1918 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_dmamap, 1919 WM_CDRXOFF(rxq, start), rxq->rxq_descsize, ops); 1920 } 1921 1922 static inline void 1923 wm_init_rxdesc(struct wm_rxqueue *rxq, int start) 1924 { 1925 struct wm_softc *sc = rxq->rxq_sc; 1926 struct wm_rxsoft *rxs = &rxq->rxq_soft[start]; 1927 struct mbuf *m = rxs->rxs_mbuf; 1928 1929 /* 1930 * Note: We scoot the packet forward 2 bytes in the buffer 1931 * so that the payload after the Ethernet header is aligned 1932 * to a 4-byte boundary. 1933 1934 * XXX BRAINDAMAGE ALERT! 1935 * The stupid chip uses the same size for every buffer, which 1936 * is set in the Receive Control register. We are using the 2K 1937 * size option, but what we REALLY want is (2K - 2)! For this 1938 * reason, we can't "scoot" packets longer than the standard 1939 * Ethernet MTU. On strict-alignment platforms, if the total 1940 * size exceeds (2K - 2) we set align_tweak to 0 and let 1941 * the upper layer copy the headers. 1942 */ 1943 m->m_data = m->m_ext.ext_buf + sc->sc_align_tweak; 1944 1945 if (sc->sc_type == WM_T_82574) { 1946 ext_rxdesc_t *rxd = &rxq->rxq_ext_descs[start]; 1947 rxd->erx_data.erxd_addr = 1948 htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak); 1949 rxd->erx_data.erxd_dd = 0; 1950 } else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 1951 nq_rxdesc_t *rxd = &rxq->rxq_nq_descs[start]; 1952 1953 rxd->nqrx_data.nrxd_paddr = 1954 htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak); 1955 /* Currently, split header is not supported. */ 1956 rxd->nqrx_data.nrxd_haddr = 0; 1957 } else { 1958 wiseman_rxdesc_t *rxd = &rxq->rxq_descs[start]; 1959 1960 wm_set_dma_addr(&rxd->wrx_addr, 1961 rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak); 1962 rxd->wrx_len = 0; 1963 rxd->wrx_cksum = 0; 1964 rxd->wrx_status = 0; 1965 rxd->wrx_errors = 0; 1966 rxd->wrx_special = 0; 1967 } 1968 wm_cdrxsync(rxq, start, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1969 1970 CSR_WRITE(sc, rxq->rxq_rdt_reg, start); 1971 } 1972 1973 /* 1974 * Device driver interface functions and commonly used functions. 1975 * match, attach, detach, init, start, stop, ioctl, watchdog and so on. 1976 */ 1977 1978 /* Lookup supported device table */ 1979 static const struct wm_product * 1980 wm_lookup(const struct pci_attach_args *pa) 1981 { 1982 const struct wm_product *wmp; 1983 1984 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) { 1985 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor && 1986 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product) 1987 return wmp; 1988 } 1989 return NULL; 1990 } 1991 1992 /* The match function (ca_match) */ 1993 static int 1994 wm_match(device_t parent, cfdata_t cf, void *aux) 1995 { 1996 struct pci_attach_args *pa = aux; 1997 1998 if (wm_lookup(pa) != NULL) 1999 return 1; 2000 2001 return 0; 2002 } 2003 2004 /* The attach function (ca_attach) */ 2005 static void 2006 wm_attach(device_t parent, device_t self, void *aux) 2007 { 2008 struct wm_softc *sc = device_private(self); 2009 struct pci_attach_args *pa = aux; 2010 prop_dictionary_t dict; 2011 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2012 pci_chipset_tag_t pc = pa->pa_pc; 2013 int counts[PCI_INTR_TYPE_SIZE]; 2014 pci_intr_type_t max_type; 2015 const char *eetype, *xname; 2016 bus_space_tag_t memt; 2017 bus_space_handle_t memh; 2018 bus_size_t memsize; 2019 int memh_valid; 2020 int i, error; 2021 const struct wm_product *wmp; 2022 prop_data_t ea; 2023 prop_number_t pn; 2024 uint8_t enaddr[ETHER_ADDR_LEN]; 2025 char buf[256]; 2026 char wqname[MAXCOMLEN]; 2027 uint16_t cfg1, cfg2, swdpin, nvmword; 2028 pcireg_t preg, memtype; 2029 uint16_t eeprom_data, apme_mask; 2030 bool force_clear_smbi; 2031 uint32_t link_mode; 2032 uint32_t reg; 2033 2034 #if defined(WM_DEBUG) && defined(WM_DEBUG_DEFAULT) 2035 sc->sc_debug = WM_DEBUG_DEFAULT; 2036 #endif 2037 sc->sc_dev = self; 2038 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE); 2039 callout_setfunc(&sc->sc_tick_ch, wm_tick, sc); 2040 sc->sc_core_stopping = false; 2041 2042 wmp = wm_lookup(pa); 2043 #ifdef DIAGNOSTIC 2044 if (wmp == NULL) { 2045 printf("\n"); 2046 panic("wm_attach: impossible"); 2047 } 2048 #endif 2049 sc->sc_mediatype = WMP_MEDIATYPE(wmp->wmp_flags); 2050 2051 sc->sc_pc = pa->pa_pc; 2052 sc->sc_pcitag = pa->pa_tag; 2053 2054 if (pci_dma64_available(pa)) { 2055 aprint_verbose(", 64-bit DMA"); 2056 sc->sc_dmat = pa->pa_dmat64; 2057 } else { 2058 aprint_verbose(", 32-bit DMA"); 2059 sc->sc_dmat = pa->pa_dmat; 2060 } 2061 2062 sc->sc_pcidevid = PCI_PRODUCT(pa->pa_id); 2063 sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag,PCI_CLASS_REG)); 2064 pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1); 2065 2066 sc->sc_type = wmp->wmp_type; 2067 2068 /* Set default function pointers */ 2069 sc->phy.acquire = sc->nvm.acquire = wm_get_null; 2070 sc->phy.release = sc->nvm.release = wm_put_null; 2071 sc->phy.reset_delay_us = (sc->sc_type >= WM_T_82571) ? 100 : 10000; 2072 2073 if (sc->sc_type < WM_T_82543) { 2074 if (sc->sc_rev < 2) { 2075 aprint_error_dev(sc->sc_dev, 2076 "i82542 must be at least rev. 2\n"); 2077 return; 2078 } 2079 if (sc->sc_rev < 3) 2080 sc->sc_type = WM_T_82542_2_0; 2081 } 2082 2083 /* 2084 * Disable MSI for Errata: 2085 * "Message Signaled Interrupt Feature May Corrupt Write Transactions" 2086 * 2087 * 82544: Errata 25 2088 * 82540: Errata 6 (easy to reproduce device timeout) 2089 * 82545: Errata 4 (easy to reproduce device timeout) 2090 * 82546: Errata 26 (easy to reproduce device timeout) 2091 * 82541: Errata 7 (easy to reproduce device timeout) 2092 * 2093 * "Byte Enables 2 and 3 are not set on MSI writes" 2094 * 2095 * 82571 & 82572: Errata 63 2096 */ 2097 if ((sc->sc_type <= WM_T_82541_2) || (sc->sc_type == WM_T_82571) 2098 || (sc->sc_type == WM_T_82572)) 2099 pa->pa_flags &= ~PCI_FLAGS_MSI_OKAY; 2100 2101 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576) 2102 || (sc->sc_type == WM_T_82580) 2103 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354) 2104 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) 2105 sc->sc_flags |= WM_F_NEWQUEUE; 2106 2107 /* Set device properties (mactype) */ 2108 dict = device_properties(sc->sc_dev); 2109 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type); 2110 2111 /* 2112 * Map the device. All devices support memory-mapped acccess, 2113 * and it is really required for normal operation. 2114 */ 2115 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA); 2116 switch (memtype) { 2117 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 2118 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 2119 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA, 2120 memtype, 0, &memt, &memh, NULL, &memsize) == 0); 2121 break; 2122 default: 2123 memh_valid = 0; 2124 break; 2125 } 2126 2127 if (memh_valid) { 2128 sc->sc_st = memt; 2129 sc->sc_sh = memh; 2130 sc->sc_ss = memsize; 2131 } else { 2132 aprint_error_dev(sc->sc_dev, 2133 "unable to map device registers\n"); 2134 return; 2135 } 2136 2137 /* 2138 * In addition, i82544 and later support I/O mapped indirect 2139 * register access. It is not desirable (nor supported in 2140 * this driver) to use it for normal operation, though it is 2141 * required to work around bugs in some chip versions. 2142 */ 2143 switch (sc->sc_type) { 2144 case WM_T_82544: 2145 case WM_T_82541: 2146 case WM_T_82541_2: 2147 case WM_T_82547: 2148 case WM_T_82547_2: 2149 /* First we have to find the I/O BAR. */ 2150 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) { 2151 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i); 2152 if (memtype == PCI_MAPREG_TYPE_IO) 2153 break; 2154 if (PCI_MAPREG_MEM_TYPE(memtype) == 2155 PCI_MAPREG_MEM_TYPE_64BIT) 2156 i += 4; /* skip high bits, too */ 2157 } 2158 if (i < PCI_MAPREG_END) { 2159 /* 2160 * We found PCI_MAPREG_TYPE_IO. Note that 82580 2161 * (and newer?) chip has no PCI_MAPREG_TYPE_IO. 2162 * It's no problem because newer chips has no this 2163 * bug. 2164 * 2165 * The i8254x doesn't apparently respond when the 2166 * I/O BAR is 0, which looks somewhat like it's not 2167 * been configured. 2168 */ 2169 preg = pci_conf_read(pc, pa->pa_tag, i); 2170 if (PCI_MAPREG_MEM_ADDR(preg) == 0) { 2171 aprint_error_dev(sc->sc_dev, 2172 "WARNING: I/O BAR at zero.\n"); 2173 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO, 2174 0, &sc->sc_iot, &sc->sc_ioh, NULL, &sc->sc_ios) 2175 == 0) { 2176 sc->sc_flags |= WM_F_IOH_VALID; 2177 } else 2178 aprint_error_dev(sc->sc_dev, 2179 "WARNING: unable to map I/O space\n"); 2180 } 2181 break; 2182 default: 2183 break; 2184 } 2185 2186 /* Enable bus mastering. Disable MWI on the i82542 2.0. */ 2187 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 2188 preg |= PCI_COMMAND_MASTER_ENABLE; 2189 if (sc->sc_type < WM_T_82542_2_1) 2190 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE; 2191 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg); 2192 2193 /* Power up chip */ 2194 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) 2195 && error != EOPNOTSUPP) { 2196 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error); 2197 return; 2198 } 2199 2200 wm_adjust_qnum(sc, pci_msix_count(pa->pa_pc, pa->pa_tag)); 2201 /* 2202 * Don't use MSI-X if we can use only one queue to save interrupt 2203 * resource. 2204 */ 2205 if (sc->sc_nqueues > 1) { 2206 max_type = PCI_INTR_TYPE_MSIX; 2207 /* 2208 * 82583 has a MSI-X capability in the PCI configuration space 2209 * but it doesn't support it. At least the document doesn't 2210 * say anything about MSI-X. 2211 */ 2212 counts[PCI_INTR_TYPE_MSIX] 2213 = (sc->sc_type == WM_T_82583) ? 0 : sc->sc_nqueues + 1; 2214 } else { 2215 max_type = PCI_INTR_TYPE_MSI; 2216 counts[PCI_INTR_TYPE_MSIX] = 0; 2217 } 2218 2219 /* Allocation settings */ 2220 counts[PCI_INTR_TYPE_MSI] = 1; 2221 counts[PCI_INTR_TYPE_INTX] = 1; 2222 /* overridden by disable flags */ 2223 if (wm_disable_msi != 0) { 2224 counts[PCI_INTR_TYPE_MSI] = 0; 2225 if (wm_disable_msix != 0) { 2226 max_type = PCI_INTR_TYPE_INTX; 2227 counts[PCI_INTR_TYPE_MSIX] = 0; 2228 } 2229 } else if (wm_disable_msix != 0) { 2230 max_type = PCI_INTR_TYPE_MSI; 2231 counts[PCI_INTR_TYPE_MSIX] = 0; 2232 } 2233 2234 alloc_retry: 2235 if (pci_intr_alloc(pa, &sc->sc_intrs, counts, max_type) != 0) { 2236 aprint_error_dev(sc->sc_dev, "failed to allocate interrupt\n"); 2237 return; 2238 } 2239 2240 if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSIX) { 2241 error = wm_setup_msix(sc); 2242 if (error) { 2243 pci_intr_release(pc, sc->sc_intrs, 2244 counts[PCI_INTR_TYPE_MSIX]); 2245 2246 /* Setup for MSI: Disable MSI-X */ 2247 max_type = PCI_INTR_TYPE_MSI; 2248 counts[PCI_INTR_TYPE_MSI] = 1; 2249 counts[PCI_INTR_TYPE_INTX] = 1; 2250 goto alloc_retry; 2251 } 2252 } else if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSI) { 2253 wm_adjust_qnum(sc, 0); /* Must not use multiqueue */ 2254 error = wm_setup_legacy(sc); 2255 if (error) { 2256 pci_intr_release(sc->sc_pc, sc->sc_intrs, 2257 counts[PCI_INTR_TYPE_MSI]); 2258 2259 /* The next try is for INTx: Disable MSI */ 2260 max_type = PCI_INTR_TYPE_INTX; 2261 counts[PCI_INTR_TYPE_INTX] = 1; 2262 goto alloc_retry; 2263 } 2264 } else { 2265 wm_adjust_qnum(sc, 0); /* Must not use multiqueue */ 2266 error = wm_setup_legacy(sc); 2267 if (error) { 2268 pci_intr_release(sc->sc_pc, sc->sc_intrs, 2269 counts[PCI_INTR_TYPE_INTX]); 2270 return; 2271 } 2272 } 2273 2274 snprintf(wqname, sizeof(wqname), "%sTxRx", device_xname(sc->sc_dev)); 2275 error = workqueue_create(&sc->sc_queue_wq, wqname, 2276 wm_handle_queue_work, sc, WM_WORKQUEUE_PRI, IPL_NET, 2277 WQ_PERCPU | WQ_MPSAFE); 2278 if (error) { 2279 aprint_error_dev(sc->sc_dev, 2280 "unable to create TxRx workqueue\n"); 2281 goto out; 2282 } 2283 2284 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev)); 2285 error = workqueue_create(&sc->sc_reset_wq, wqname, 2286 wm_handle_reset_work, sc, WM_WORKQUEUE_PRI, IPL_SOFTCLOCK, 2287 WQ_MPSAFE); 2288 if (error) { 2289 workqueue_destroy(sc->sc_queue_wq); 2290 aprint_error_dev(sc->sc_dev, 2291 "unable to create reset workqueue\n"); 2292 goto out; 2293 } 2294 2295 /* 2296 * Check the function ID (unit number of the chip). 2297 */ 2298 if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3) 2299 || (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003) 2300 || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576) 2301 || (sc->sc_type == WM_T_82580) 2302 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) 2303 sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS) 2304 >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK; 2305 else 2306 sc->sc_funcid = 0; 2307 2308 /* 2309 * Determine a few things about the bus we're connected to. 2310 */ 2311 if (sc->sc_type < WM_T_82543) { 2312 /* We don't really know the bus characteristics here. */ 2313 sc->sc_bus_speed = 33; 2314 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) { 2315 /* 2316 * CSA (Communication Streaming Architecture) is about as fast 2317 * a 32-bit 66MHz PCI Bus. 2318 */ 2319 sc->sc_flags |= WM_F_CSA; 2320 sc->sc_bus_speed = 66; 2321 aprint_verbose_dev(sc->sc_dev, 2322 "Communication Streaming Architecture\n"); 2323 if (sc->sc_type == WM_T_82547) { 2324 callout_init(&sc->sc_txfifo_ch, CALLOUT_MPSAFE); 2325 callout_setfunc(&sc->sc_txfifo_ch, 2326 wm_82547_txfifo_stall, sc); 2327 aprint_verbose_dev(sc->sc_dev, 2328 "using 82547 Tx FIFO stall work-around\n"); 2329 } 2330 } else if (sc->sc_type >= WM_T_82571) { 2331 sc->sc_flags |= WM_F_PCIE; 2332 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9) 2333 && (sc->sc_type != WM_T_ICH10) 2334 && (sc->sc_type != WM_T_PCH) 2335 && (sc->sc_type != WM_T_PCH2) 2336 && (sc->sc_type != WM_T_PCH_LPT) 2337 && (sc->sc_type != WM_T_PCH_SPT) 2338 && (sc->sc_type != WM_T_PCH_CNP) 2339 && (sc->sc_type != WM_T_PCH_TGP)) { 2340 /* ICH* and PCH* have no PCIe capability registers */ 2341 if (pci_get_capability(pa->pa_pc, pa->pa_tag, 2342 PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff, 2343 NULL) == 0) 2344 aprint_error_dev(sc->sc_dev, 2345 "unable to find PCIe capability\n"); 2346 } 2347 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n"); 2348 } else { 2349 reg = CSR_READ(sc, WMREG_STATUS); 2350 if (reg & STATUS_BUS64) 2351 sc->sc_flags |= WM_F_BUS64; 2352 if ((reg & STATUS_PCIX_MODE) != 0) { 2353 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb; 2354 2355 sc->sc_flags |= WM_F_PCIX; 2356 if (pci_get_capability(pa->pa_pc, pa->pa_tag, 2357 PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0) 2358 aprint_error_dev(sc->sc_dev, 2359 "unable to find PCIX capability\n"); 2360 else if (sc->sc_type != WM_T_82545_3 && 2361 sc->sc_type != WM_T_82546_3) { 2362 /* 2363 * Work around a problem caused by the BIOS 2364 * setting the max memory read byte count 2365 * incorrectly. 2366 */ 2367 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag, 2368 sc->sc_pcixe_capoff + PCIX_CMD); 2369 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag, 2370 sc->sc_pcixe_capoff + PCIX_STATUS); 2371 2372 bytecnt = (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >> 2373 PCIX_CMD_BYTECNT_SHIFT; 2374 maxb = (pcix_sts & PCIX_STATUS_MAXB_MASK) >> 2375 PCIX_STATUS_MAXB_SHIFT; 2376 if (bytecnt > maxb) { 2377 aprint_verbose_dev(sc->sc_dev, 2378 "resetting PCI-X MMRBC: %d -> %d\n", 2379 512 << bytecnt, 512 << maxb); 2380 pcix_cmd = (pcix_cmd & 2381 ~PCIX_CMD_BYTECNT_MASK) | 2382 (maxb << PCIX_CMD_BYTECNT_SHIFT); 2383 pci_conf_write(pa->pa_pc, pa->pa_tag, 2384 sc->sc_pcixe_capoff + PCIX_CMD, 2385 pcix_cmd); 2386 } 2387 } 2388 } 2389 /* 2390 * The quad port adapter is special; it has a PCIX-PCIX 2391 * bridge on the board, and can run the secondary bus at 2392 * a higher speed. 2393 */ 2394 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) { 2395 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120 2396 : 66; 2397 } else if (sc->sc_flags & WM_F_PCIX) { 2398 switch (reg & STATUS_PCIXSPD_MASK) { 2399 case STATUS_PCIXSPD_50_66: 2400 sc->sc_bus_speed = 66; 2401 break; 2402 case STATUS_PCIXSPD_66_100: 2403 sc->sc_bus_speed = 100; 2404 break; 2405 case STATUS_PCIXSPD_100_133: 2406 sc->sc_bus_speed = 133; 2407 break; 2408 default: 2409 aprint_error_dev(sc->sc_dev, 2410 "unknown PCIXSPD %d; assuming 66MHz\n", 2411 reg & STATUS_PCIXSPD_MASK); 2412 sc->sc_bus_speed = 66; 2413 break; 2414 } 2415 } else 2416 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33; 2417 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n", 2418 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed, 2419 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI"); 2420 } 2421 2422 /* clear interesting stat counters */ 2423 CSR_READ(sc, WMREG_COLC); 2424 CSR_READ(sc, WMREG_RXERRC); 2425 2426 if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583) 2427 || (sc->sc_type >= WM_T_ICH8)) 2428 sc->sc_ich_phymtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 2429 if (sc->sc_type >= WM_T_ICH8) 2430 sc->sc_ich_nvmmtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 2431 2432 /* Set PHY, NVM mutex related stuff */ 2433 switch (sc->sc_type) { 2434 case WM_T_82542_2_0: 2435 case WM_T_82542_2_1: 2436 case WM_T_82543: 2437 case WM_T_82544: 2438 /* Microwire */ 2439 sc->nvm.read = wm_nvm_read_uwire; 2440 sc->sc_nvm_wordsize = 64; 2441 sc->sc_nvm_addrbits = 6; 2442 break; 2443 case WM_T_82540: 2444 case WM_T_82545: 2445 case WM_T_82545_3: 2446 case WM_T_82546: 2447 case WM_T_82546_3: 2448 /* Microwire */ 2449 sc->nvm.read = wm_nvm_read_uwire; 2450 reg = CSR_READ(sc, WMREG_EECD); 2451 if (reg & EECD_EE_SIZE) { 2452 sc->sc_nvm_wordsize = 256; 2453 sc->sc_nvm_addrbits = 8; 2454 } else { 2455 sc->sc_nvm_wordsize = 64; 2456 sc->sc_nvm_addrbits = 6; 2457 } 2458 sc->sc_flags |= WM_F_LOCK_EECD; 2459 sc->nvm.acquire = wm_get_eecd; 2460 sc->nvm.release = wm_put_eecd; 2461 break; 2462 case WM_T_82541: 2463 case WM_T_82541_2: 2464 case WM_T_82547: 2465 case WM_T_82547_2: 2466 reg = CSR_READ(sc, WMREG_EECD); 2467 /* 2468 * wm_nvm_set_addrbits_size_eecd() accesses SPI in it only 2469 * on 8254[17], so set flags and functios before calling it. 2470 */ 2471 sc->sc_flags |= WM_F_LOCK_EECD; 2472 sc->nvm.acquire = wm_get_eecd; 2473 sc->nvm.release = wm_put_eecd; 2474 if (reg & EECD_EE_TYPE) { 2475 /* SPI */ 2476 sc->nvm.read = wm_nvm_read_spi; 2477 sc->sc_flags |= WM_F_EEPROM_SPI; 2478 wm_nvm_set_addrbits_size_eecd(sc); 2479 } else { 2480 /* Microwire */ 2481 sc->nvm.read = wm_nvm_read_uwire; 2482 if ((reg & EECD_EE_ABITS) != 0) { 2483 sc->sc_nvm_wordsize = 256; 2484 sc->sc_nvm_addrbits = 8; 2485 } else { 2486 sc->sc_nvm_wordsize = 64; 2487 sc->sc_nvm_addrbits = 6; 2488 } 2489 } 2490 break; 2491 case WM_T_82571: 2492 case WM_T_82572: 2493 /* SPI */ 2494 sc->nvm.read = wm_nvm_read_eerd; 2495 /* Not use WM_F_LOCK_EECD because we use EERD */ 2496 sc->sc_flags |= WM_F_EEPROM_SPI; 2497 wm_nvm_set_addrbits_size_eecd(sc); 2498 sc->phy.acquire = wm_get_swsm_semaphore; 2499 sc->phy.release = wm_put_swsm_semaphore; 2500 sc->nvm.acquire = wm_get_nvm_82571; 2501 sc->nvm.release = wm_put_nvm_82571; 2502 break; 2503 case WM_T_82573: 2504 case WM_T_82574: 2505 case WM_T_82583: 2506 sc->nvm.read = wm_nvm_read_eerd; 2507 /* Not use WM_F_LOCK_EECD because we use EERD */ 2508 if (sc->sc_type == WM_T_82573) { 2509 sc->phy.acquire = wm_get_swsm_semaphore; 2510 sc->phy.release = wm_put_swsm_semaphore; 2511 sc->nvm.acquire = wm_get_nvm_82571; 2512 sc->nvm.release = wm_put_nvm_82571; 2513 } else { 2514 /* Both PHY and NVM use the same semaphore. */ 2515 sc->phy.acquire = sc->nvm.acquire 2516 = wm_get_swfwhw_semaphore; 2517 sc->phy.release = sc->nvm.release 2518 = wm_put_swfwhw_semaphore; 2519 } 2520 if (wm_nvm_is_onboard_eeprom(sc) == 0) { 2521 sc->sc_flags |= WM_F_EEPROM_FLASH; 2522 sc->sc_nvm_wordsize = 2048; 2523 } else { 2524 /* SPI */ 2525 sc->sc_flags |= WM_F_EEPROM_SPI; 2526 wm_nvm_set_addrbits_size_eecd(sc); 2527 } 2528 break; 2529 case WM_T_82575: 2530 case WM_T_82576: 2531 case WM_T_82580: 2532 case WM_T_I350: 2533 case WM_T_I354: 2534 case WM_T_80003: 2535 /* SPI */ 2536 sc->sc_flags |= WM_F_EEPROM_SPI; 2537 wm_nvm_set_addrbits_size_eecd(sc); 2538 if ((sc->sc_type == WM_T_80003) 2539 || (sc->sc_nvm_wordsize < (1 << 15))) { 2540 sc->nvm.read = wm_nvm_read_eerd; 2541 /* Don't use WM_F_LOCK_EECD because we use EERD */ 2542 } else { 2543 sc->nvm.read = wm_nvm_read_spi; 2544 sc->sc_flags |= WM_F_LOCK_EECD; 2545 } 2546 sc->phy.acquire = wm_get_phy_82575; 2547 sc->phy.release = wm_put_phy_82575; 2548 sc->nvm.acquire = wm_get_nvm_80003; 2549 sc->nvm.release = wm_put_nvm_80003; 2550 break; 2551 case WM_T_ICH8: 2552 case WM_T_ICH9: 2553 case WM_T_ICH10: 2554 case WM_T_PCH: 2555 case WM_T_PCH2: 2556 case WM_T_PCH_LPT: 2557 sc->nvm.read = wm_nvm_read_ich8; 2558 /* FLASH */ 2559 sc->sc_flags |= WM_F_EEPROM_FLASH; 2560 sc->sc_nvm_wordsize = 2048; 2561 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag,WM_ICH8_FLASH); 2562 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0, 2563 &sc->sc_flasht, &sc->sc_flashh, NULL, &sc->sc_flashs)) { 2564 aprint_error_dev(sc->sc_dev, 2565 "can't map FLASH registers\n"); 2566 goto out; 2567 } 2568 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG); 2569 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) * 2570 ICH_FLASH_SECTOR_SIZE; 2571 sc->sc_ich8_flash_bank_size = 2572 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1; 2573 sc->sc_ich8_flash_bank_size -= (reg & ICH_GFPREG_BASE_MASK); 2574 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE; 2575 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t); 2576 sc->sc_flashreg_offset = 0; 2577 sc->phy.acquire = wm_get_swflag_ich8lan; 2578 sc->phy.release = wm_put_swflag_ich8lan; 2579 sc->nvm.acquire = wm_get_nvm_ich8lan; 2580 sc->nvm.release = wm_put_nvm_ich8lan; 2581 break; 2582 case WM_T_PCH_SPT: 2583 case WM_T_PCH_CNP: 2584 case WM_T_PCH_TGP: 2585 sc->nvm.read = wm_nvm_read_spt; 2586 /* SPT has no GFPREG; flash registers mapped through BAR0 */ 2587 sc->sc_flags |= WM_F_EEPROM_FLASH; 2588 sc->sc_flasht = sc->sc_st; 2589 sc->sc_flashh = sc->sc_sh; 2590 sc->sc_ich8_flash_base = 0; 2591 sc->sc_nvm_wordsize = 2592 (((CSR_READ(sc, WMREG_STRAP) >> 1) & 0x1F) + 1) 2593 * NVM_SIZE_MULTIPLIER; 2594 /* It is size in bytes, we want words */ 2595 sc->sc_nvm_wordsize /= 2; 2596 /* Assume 2 banks */ 2597 sc->sc_ich8_flash_bank_size = sc->sc_nvm_wordsize / 2; 2598 sc->sc_flashreg_offset = WM_PCH_SPT_FLASHOFFSET; 2599 sc->phy.acquire = wm_get_swflag_ich8lan; 2600 sc->phy.release = wm_put_swflag_ich8lan; 2601 sc->nvm.acquire = wm_get_nvm_ich8lan; 2602 sc->nvm.release = wm_put_nvm_ich8lan; 2603 break; 2604 case WM_T_I210: 2605 case WM_T_I211: 2606 /* Allow a single clear of the SW semaphore on I210 and newer*/ 2607 sc->sc_flags |= WM_F_WA_I210_CLSEM; 2608 if (wm_nvm_flash_presence_i210(sc)) { 2609 sc->nvm.read = wm_nvm_read_eerd; 2610 /* Don't use WM_F_LOCK_EECD because we use EERD */ 2611 sc->sc_flags |= WM_F_EEPROM_FLASH_HW; 2612 wm_nvm_set_addrbits_size_eecd(sc); 2613 } else { 2614 sc->nvm.read = wm_nvm_read_invm; 2615 sc->sc_flags |= WM_F_EEPROM_INVM; 2616 sc->sc_nvm_wordsize = INVM_SIZE; 2617 } 2618 sc->phy.acquire = wm_get_phy_82575; 2619 sc->phy.release = wm_put_phy_82575; 2620 sc->nvm.acquire = wm_get_nvm_80003; 2621 sc->nvm.release = wm_put_nvm_80003; 2622 break; 2623 default: 2624 break; 2625 } 2626 2627 /* Ensure the SMBI bit is clear before first NVM or PHY access */ 2628 switch (sc->sc_type) { 2629 case WM_T_82571: 2630 case WM_T_82572: 2631 reg = CSR_READ(sc, WMREG_SWSM2); 2632 if ((reg & SWSM2_LOCK) == 0) { 2633 CSR_WRITE(sc, WMREG_SWSM2, reg | SWSM2_LOCK); 2634 force_clear_smbi = true; 2635 } else 2636 force_clear_smbi = false; 2637 break; 2638 case WM_T_82573: 2639 case WM_T_82574: 2640 case WM_T_82583: 2641 force_clear_smbi = true; 2642 break; 2643 default: 2644 force_clear_smbi = false; 2645 break; 2646 } 2647 if (force_clear_smbi) { 2648 reg = CSR_READ(sc, WMREG_SWSM); 2649 if ((reg & SWSM_SMBI) != 0) 2650 aprint_error_dev(sc->sc_dev, 2651 "Please update the Bootagent\n"); 2652 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_SMBI); 2653 } 2654 2655 /* 2656 * Defer printing the EEPROM type until after verifying the checksum 2657 * This allows the EEPROM type to be printed correctly in the case 2658 * that no EEPROM is attached. 2659 */ 2660 /* 2661 * Validate the EEPROM checksum. If the checksum fails, flag 2662 * this for later, so we can fail future reads from the EEPROM. 2663 */ 2664 if (wm_nvm_validate_checksum(sc)) { 2665 /* 2666 * Read twice again because some PCI-e parts fail the 2667 * first check due to the link being in sleep state. 2668 */ 2669 if (wm_nvm_validate_checksum(sc)) 2670 sc->sc_flags |= WM_F_EEPROM_INVALID; 2671 } 2672 2673 if (sc->sc_flags & WM_F_EEPROM_INVALID) 2674 aprint_verbose_dev(sc->sc_dev, "No EEPROM"); 2675 else { 2676 aprint_verbose_dev(sc->sc_dev, "%u words ", 2677 sc->sc_nvm_wordsize); 2678 if (sc->sc_flags & WM_F_EEPROM_INVM) 2679 aprint_verbose("iNVM"); 2680 else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW) 2681 aprint_verbose("FLASH(HW)"); 2682 else if (sc->sc_flags & WM_F_EEPROM_FLASH) 2683 aprint_verbose("FLASH"); 2684 else { 2685 if (sc->sc_flags & WM_F_EEPROM_SPI) 2686 eetype = "SPI"; 2687 else 2688 eetype = "MicroWire"; 2689 aprint_verbose("(%d address bits) %s EEPROM", 2690 sc->sc_nvm_addrbits, eetype); 2691 } 2692 } 2693 wm_nvm_version(sc); 2694 aprint_verbose("\n"); 2695 2696 /* 2697 * XXX The first call of wm_gmii_setup_phytype. The result might be 2698 * incorrect. 2699 */ 2700 wm_gmii_setup_phytype(sc, 0, 0); 2701 2702 /* Check for WM_F_WOL on some chips before wm_reset() */ 2703 switch (sc->sc_type) { 2704 case WM_T_ICH8: 2705 case WM_T_ICH9: 2706 case WM_T_ICH10: 2707 case WM_T_PCH: 2708 case WM_T_PCH2: 2709 case WM_T_PCH_LPT: 2710 case WM_T_PCH_SPT: 2711 case WM_T_PCH_CNP: 2712 case WM_T_PCH_TGP: 2713 apme_mask = WUC_APME; 2714 eeprom_data = CSR_READ(sc, WMREG_WUC); 2715 if ((eeprom_data & apme_mask) != 0) 2716 sc->sc_flags |= WM_F_WOL; 2717 break; 2718 default: 2719 break; 2720 } 2721 2722 /* Reset the chip to a known state. */ 2723 wm_reset(sc); 2724 2725 /* sc->sc_pba is set in wm_reset(). */ 2726 aprint_verbose_dev(sc->sc_dev, "RX packet buffer size: %uKB\n", 2727 sc->sc_pba); 2728 2729 /* 2730 * Check for I21[01] PLL workaround. 2731 * 2732 * Three cases: 2733 * a) Chip is I211. 2734 * b) Chip is I210 and it uses INVM (not FLASH). 2735 * c) Chip is I210 (and it uses FLASH) and the NVM image version < 3.25 2736 */ 2737 if (sc->sc_type == WM_T_I211) 2738 sc->sc_flags |= WM_F_PLL_WA_I210; 2739 if (sc->sc_type == WM_T_I210) { 2740 if (!wm_nvm_flash_presence_i210(sc)) 2741 sc->sc_flags |= WM_F_PLL_WA_I210; 2742 else if ((sc->sc_nvm_ver_major < 3) 2743 || ((sc->sc_nvm_ver_major == 3) 2744 && (sc->sc_nvm_ver_minor < 25))) { 2745 aprint_verbose_dev(sc->sc_dev, 2746 "ROM image version %d.%d is older than 3.25\n", 2747 sc->sc_nvm_ver_major, sc->sc_nvm_ver_minor); 2748 sc->sc_flags |= WM_F_PLL_WA_I210; 2749 } 2750 } 2751 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0) 2752 wm_pll_workaround_i210(sc); 2753 2754 wm_get_wakeup(sc); 2755 2756 /* Non-AMT based hardware can now take control from firmware */ 2757 if ((sc->sc_flags & WM_F_HAS_AMT) == 0) 2758 wm_get_hw_control(sc); 2759 2760 /* 2761 * Read the Ethernet address from the EEPROM, if not first found 2762 * in device properties. 2763 */ 2764 ea = prop_dictionary_get(dict, "mac-address"); 2765 if (ea != NULL) { 2766 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); 2767 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); 2768 memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN); 2769 } else { 2770 if (wm_read_mac_addr(sc, enaddr) != 0) { 2771 aprint_error_dev(sc->sc_dev, 2772 "unable to read Ethernet address\n"); 2773 goto out; 2774 } 2775 } 2776 2777 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 2778 ether_sprintf(enaddr)); 2779 2780 /* 2781 * Read the config info from the EEPROM, and set up various 2782 * bits in the control registers based on their contents. 2783 */ 2784 pn = prop_dictionary_get(dict, "i82543-cfg1"); 2785 if (pn != NULL) { 2786 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER); 2787 cfg1 = (uint16_t) prop_number_signed_value(pn); 2788 } else { 2789 if (wm_nvm_read(sc, NVM_OFF_CFG1, 1, &cfg1)) { 2790 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n"); 2791 goto out; 2792 } 2793 } 2794 2795 pn = prop_dictionary_get(dict, "i82543-cfg2"); 2796 if (pn != NULL) { 2797 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER); 2798 cfg2 = (uint16_t) prop_number_signed_value(pn); 2799 } else { 2800 if (wm_nvm_read(sc, NVM_OFF_CFG2, 1, &cfg2)) { 2801 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n"); 2802 goto out; 2803 } 2804 } 2805 2806 /* check for WM_F_WOL */ 2807 switch (sc->sc_type) { 2808 case WM_T_82542_2_0: 2809 case WM_T_82542_2_1: 2810 case WM_T_82543: 2811 /* dummy? */ 2812 eeprom_data = 0; 2813 apme_mask = NVM_CFG3_APME; 2814 break; 2815 case WM_T_82544: 2816 apme_mask = NVM_CFG2_82544_APM_EN; 2817 eeprom_data = cfg2; 2818 break; 2819 case WM_T_82546: 2820 case WM_T_82546_3: 2821 case WM_T_82571: 2822 case WM_T_82572: 2823 case WM_T_82573: 2824 case WM_T_82574: 2825 case WM_T_82583: 2826 case WM_T_80003: 2827 case WM_T_82575: 2828 case WM_T_82576: 2829 apme_mask = NVM_CFG3_APME; 2830 wm_nvm_read(sc, (sc->sc_funcid == 1) ? NVM_OFF_CFG3_PORTB 2831 : NVM_OFF_CFG3_PORTA, 1, &eeprom_data); 2832 break; 2833 case WM_T_82580: 2834 case WM_T_I350: 2835 case WM_T_I354: 2836 case WM_T_I210: 2837 case WM_T_I211: 2838 apme_mask = NVM_CFG3_APME; 2839 wm_nvm_read(sc, 2840 NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA, 2841 1, &eeprom_data); 2842 break; 2843 case WM_T_ICH8: 2844 case WM_T_ICH9: 2845 case WM_T_ICH10: 2846 case WM_T_PCH: 2847 case WM_T_PCH2: 2848 case WM_T_PCH_LPT: 2849 case WM_T_PCH_SPT: 2850 case WM_T_PCH_CNP: 2851 case WM_T_PCH_TGP: 2852 /* Already checked before wm_reset () */ 2853 apme_mask = eeprom_data = 0; 2854 break; 2855 default: /* XXX 82540 */ 2856 apme_mask = NVM_CFG3_APME; 2857 wm_nvm_read(sc, NVM_OFF_CFG3_PORTA, 1, &eeprom_data); 2858 break; 2859 } 2860 /* Check for WM_F_WOL flag after the setting of the EEPROM stuff */ 2861 if ((eeprom_data & apme_mask) != 0) 2862 sc->sc_flags |= WM_F_WOL; 2863 2864 /* 2865 * We have the eeprom settings, now apply the special cases 2866 * where the eeprom may be wrong or the board won't support 2867 * wake on lan on a particular port 2868 */ 2869 switch (sc->sc_pcidevid) { 2870 case PCI_PRODUCT_INTEL_82546GB_PCIE: 2871 sc->sc_flags &= ~WM_F_WOL; 2872 break; 2873 case PCI_PRODUCT_INTEL_82546EB_FIBER: 2874 case PCI_PRODUCT_INTEL_82546GB_FIBER: 2875 /* Wake events only supported on port A for dual fiber 2876 * regardless of eeprom setting */ 2877 if (sc->sc_funcid == 1) 2878 sc->sc_flags &= ~WM_F_WOL; 2879 break; 2880 case PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3: 2881 /* If quad port adapter, disable WoL on all but port A */ 2882 if (sc->sc_funcid != 0) 2883 sc->sc_flags &= ~WM_F_WOL; 2884 break; 2885 case PCI_PRODUCT_INTEL_82571EB_FIBER: 2886 /* Wake events only supported on port A for dual fiber 2887 * regardless of eeprom setting */ 2888 if (sc->sc_funcid == 1) 2889 sc->sc_flags &= ~WM_F_WOL; 2890 break; 2891 case PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER: 2892 case PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER: 2893 case PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER: 2894 /* If quad port adapter, disable WoL on all but port A */ 2895 if (sc->sc_funcid != 0) 2896 sc->sc_flags &= ~WM_F_WOL; 2897 break; 2898 } 2899 2900 if (sc->sc_type >= WM_T_82575) { 2901 if (wm_nvm_read(sc, NVM_OFF_COMPAT, 1, &nvmword) == 0) { 2902 aprint_debug_dev(sc->sc_dev, "COMPAT = %hx\n", 2903 nvmword); 2904 if ((sc->sc_type == WM_T_82575) || 2905 (sc->sc_type == WM_T_82576)) { 2906 /* Check NVM for autonegotiation */ 2907 if ((nvmword & NVM_COMPAT_SERDES_FORCE_MODE) 2908 != 0) 2909 sc->sc_flags |= WM_F_PCS_DIS_AUTONEGO; 2910 } 2911 if ((sc->sc_type == WM_T_82575) || 2912 (sc->sc_type == WM_T_I350)) { 2913 if (nvmword & NVM_COMPAT_MAS_EN(sc->sc_funcid)) 2914 sc->sc_flags |= WM_F_MAS; 2915 } 2916 } 2917 } 2918 2919 /* 2920 * XXX need special handling for some multiple port cards 2921 * to disable a paticular port. 2922 */ 2923 2924 if (sc->sc_type >= WM_T_82544) { 2925 pn = prop_dictionary_get(dict, "i82543-swdpin"); 2926 if (pn != NULL) { 2927 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER); 2928 swdpin = (uint16_t) prop_number_signed_value(pn); 2929 } else { 2930 if (wm_nvm_read(sc, NVM_OFF_SWDPIN, 1, &swdpin)) { 2931 aprint_error_dev(sc->sc_dev, 2932 "unable to read SWDPIN\n"); 2933 goto out; 2934 } 2935 } 2936 } 2937 2938 if (cfg1 & NVM_CFG1_ILOS) 2939 sc->sc_ctrl |= CTRL_ILOS; 2940 2941 /* 2942 * XXX 2943 * This code isn't correct because pin 2 and 3 are located 2944 * in different position on newer chips. Check all datasheet. 2945 * 2946 * Until resolve this problem, check if a chip < 82580 2947 */ 2948 if (sc->sc_type <= WM_T_82580) { 2949 if (sc->sc_type >= WM_T_82544) { 2950 sc->sc_ctrl |= 2951 ((swdpin >> NVM_SWDPIN_SWDPIO_SHIFT) & 0xf) << 2952 CTRL_SWDPIO_SHIFT; 2953 sc->sc_ctrl |= 2954 ((swdpin >> NVM_SWDPIN_SWDPIN_SHIFT) & 0xf) << 2955 CTRL_SWDPINS_SHIFT; 2956 } else { 2957 sc->sc_ctrl |= 2958 ((cfg1 >> NVM_CFG1_SWDPIO_SHIFT) & 0xf) << 2959 CTRL_SWDPIO_SHIFT; 2960 } 2961 } 2962 2963 if ((sc->sc_type >= WM_T_82580) && (sc->sc_type <= WM_T_I211)) { 2964 wm_nvm_read(sc, 2965 NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA, 2966 1, &nvmword); 2967 if (nvmword & NVM_CFG3_ILOS) 2968 sc->sc_ctrl |= CTRL_ILOS; 2969 } 2970 2971 #if 0 2972 if (sc->sc_type >= WM_T_82544) { 2973 if (cfg1 & NVM_CFG1_IPS0) 2974 sc->sc_ctrl_ext |= CTRL_EXT_IPS; 2975 if (cfg1 & NVM_CFG1_IPS1) 2976 sc->sc_ctrl_ext |= CTRL_EXT_IPS1; 2977 sc->sc_ctrl_ext |= 2978 ((swdpin >> (NVM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) << 2979 CTRL_EXT_SWDPIO_SHIFT; 2980 sc->sc_ctrl_ext |= 2981 ((swdpin >> (NVM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) << 2982 CTRL_EXT_SWDPINS_SHIFT; 2983 } else { 2984 sc->sc_ctrl_ext |= 2985 ((cfg2 >> NVM_CFG2_SWDPIO_SHIFT) & 0xf) << 2986 CTRL_EXT_SWDPIO_SHIFT; 2987 } 2988 #endif 2989 2990 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 2991 #if 0 2992 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext); 2993 #endif 2994 2995 if (sc->sc_type == WM_T_PCH) { 2996 uint16_t val; 2997 2998 /* Save the NVM K1 bit setting */ 2999 wm_nvm_read(sc, NVM_OFF_K1_CONFIG, 1, &val); 3000 3001 if ((val & NVM_K1_CONFIG_ENABLE) != 0) 3002 sc->sc_nvm_k1_enabled = 1; 3003 else 3004 sc->sc_nvm_k1_enabled = 0; 3005 } 3006 3007 /* Determine if we're GMII, TBI, SERDES or SGMII mode */ 3008 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9 3009 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH 3010 || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT 3011 || sc->sc_type == WM_T_PCH_SPT || sc->sc_type == WM_T_PCH_CNP 3012 || sc->sc_type == WM_T_PCH_TGP 3013 || sc->sc_type == WM_T_82573 3014 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) { 3015 /* Copper only */ 3016 } else if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576) 3017 || (sc->sc_type ==WM_T_82580) || (sc->sc_type ==WM_T_I350) 3018 || (sc->sc_type ==WM_T_I354) || (sc->sc_type ==WM_T_I210) 3019 || (sc->sc_type ==WM_T_I211)) { 3020 reg = CSR_READ(sc, WMREG_CTRL_EXT); 3021 link_mode = reg & CTRL_EXT_LINK_MODE_MASK; 3022 switch (link_mode) { 3023 case CTRL_EXT_LINK_MODE_1000KX: 3024 aprint_normal_dev(sc->sc_dev, "1000KX\n"); 3025 sc->sc_mediatype = WM_MEDIATYPE_SERDES; 3026 break; 3027 case CTRL_EXT_LINK_MODE_SGMII: 3028 if (wm_sgmii_uses_mdio(sc)) { 3029 aprint_normal_dev(sc->sc_dev, 3030 "SGMII(MDIO)\n"); 3031 sc->sc_flags |= WM_F_SGMII; 3032 sc->sc_mediatype = WM_MEDIATYPE_COPPER; 3033 break; 3034 } 3035 aprint_verbose_dev(sc->sc_dev, "SGMII(I2C)\n"); 3036 /*FALLTHROUGH*/ 3037 case CTRL_EXT_LINK_MODE_PCIE_SERDES: 3038 sc->sc_mediatype = wm_sfp_get_media_type(sc); 3039 if (sc->sc_mediatype == WM_MEDIATYPE_UNKNOWN) { 3040 if (link_mode 3041 == CTRL_EXT_LINK_MODE_SGMII) { 3042 sc->sc_mediatype = WM_MEDIATYPE_COPPER; 3043 sc->sc_flags |= WM_F_SGMII; 3044 aprint_verbose_dev(sc->sc_dev, 3045 "SGMII\n"); 3046 } else { 3047 sc->sc_mediatype = WM_MEDIATYPE_SERDES; 3048 aprint_verbose_dev(sc->sc_dev, 3049 "SERDES\n"); 3050 } 3051 break; 3052 } 3053 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) 3054 aprint_normal_dev(sc->sc_dev, "SERDES(SFP)\n"); 3055 else if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) { 3056 aprint_normal_dev(sc->sc_dev, "SGMII(SFP)\n"); 3057 sc->sc_flags |= WM_F_SGMII; 3058 } 3059 /* Do not change link mode for 100BaseFX */ 3060 if (sc->sc_sfptype == SFF_SFP_ETH_FLAGS_100FX) 3061 break; 3062 3063 /* Change current link mode setting */ 3064 reg &= ~CTRL_EXT_LINK_MODE_MASK; 3065 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) 3066 reg |= CTRL_EXT_LINK_MODE_SGMII; 3067 else 3068 reg |= CTRL_EXT_LINK_MODE_PCIE_SERDES; 3069 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 3070 break; 3071 case CTRL_EXT_LINK_MODE_GMII: 3072 default: 3073 aprint_normal_dev(sc->sc_dev, "Copper\n"); 3074 sc->sc_mediatype = WM_MEDIATYPE_COPPER; 3075 break; 3076 } 3077 3078 reg &= ~CTRL_EXT_I2C_ENA; 3079 if ((sc->sc_flags & WM_F_SGMII) != 0) 3080 reg |= CTRL_EXT_I2C_ENA; 3081 else 3082 reg &= ~CTRL_EXT_I2C_ENA; 3083 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 3084 if ((sc->sc_flags & WM_F_SGMII) != 0) { 3085 if (!wm_sgmii_uses_mdio(sc)) 3086 wm_gmii_setup_phytype(sc, 0, 0); 3087 wm_reset_mdicnfg_82580(sc); 3088 } 3089 } else if (sc->sc_type < WM_T_82543 || 3090 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) { 3091 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) { 3092 aprint_error_dev(sc->sc_dev, 3093 "WARNING: TBIMODE set on 1000BASE-T product!\n"); 3094 sc->sc_mediatype = WM_MEDIATYPE_FIBER; 3095 } 3096 } else { 3097 if (sc->sc_mediatype == WM_MEDIATYPE_FIBER) { 3098 aprint_error_dev(sc->sc_dev, 3099 "WARNING: TBIMODE clear on 1000BASE-X product!\n"); 3100 sc->sc_mediatype = WM_MEDIATYPE_COPPER; 3101 } 3102 } 3103 3104 if (sc->sc_type >= WM_T_PCH2) 3105 sc->sc_flags |= WM_F_EEE; 3106 else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211) 3107 && (sc->sc_mediatype == WM_MEDIATYPE_COPPER)) { 3108 /* XXX: Need special handling for I354. (not yet) */ 3109 if (sc->sc_type != WM_T_I354) 3110 sc->sc_flags |= WM_F_EEE; 3111 } 3112 3113 /* 3114 * The I350 has a bug where it always strips the CRC whether 3115 * asked to or not. So ask for stripped CRC here and cope in rxeof 3116 */ 3117 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354) 3118 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) 3119 sc->sc_flags |= WM_F_CRC_STRIP; 3120 3121 /* 3122 * Workaround for some chips to delay sending LINK_STATE_UP. 3123 * Some systems can't send packet soon after linkup. See also 3124 * wm_linkintr_gmii(), wm_tick() and wm_gmii_mediastatus(). 3125 */ 3126 switch (sc->sc_type) { 3127 case WM_T_I350: 3128 case WM_T_I354: 3129 case WM_T_I210: 3130 case WM_T_I211: 3131 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) 3132 sc->sc_flags |= WM_F_DELAY_LINKUP; 3133 break; 3134 default: 3135 break; 3136 } 3137 3138 /* Set device properties (macflags) */ 3139 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags); 3140 3141 if (sc->sc_flags != 0) { 3142 snprintb(buf, sizeof(buf), WM_FLAGS, sc->sc_flags); 3143 aprint_verbose_dev(sc->sc_dev, "%s\n", buf); 3144 } 3145 3146 sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 3147 3148 /* Initialize the media structures accordingly. */ 3149 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) 3150 wm_gmii_mediainit(sc, wmp->wmp_product); 3151 else 3152 wm_tbi_mediainit(sc); /* All others */ 3153 3154 ifp = &sc->sc_ethercom.ec_if; 3155 xname = device_xname(sc->sc_dev); 3156 strlcpy(ifp->if_xname, xname, IFNAMSIZ); 3157 ifp->if_softc = sc; 3158 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3159 ifp->if_extflags = IFEF_MPSAFE; 3160 ifp->if_ioctl = wm_ioctl; 3161 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 3162 ifp->if_start = wm_nq_start; 3163 /* 3164 * When the number of CPUs is one and the controller can use 3165 * MSI-X, wm(4) use MSI-X but *does not* use multiqueue. 3166 * That is, wm(4) use two interrupts, one is used for Tx/Rx 3167 * and the other is used for link status changing. 3168 * In this situation, wm_nq_transmit() is disadvantageous 3169 * because of wm_select_txqueue() and pcq(9) overhead. 3170 */ 3171 if (wm_is_using_multiqueue(sc)) 3172 ifp->if_transmit = wm_nq_transmit; 3173 } else { 3174 ifp->if_start = wm_start; 3175 /* 3176 * wm_transmit() has the same disadvantages as wm_nq_transmit() 3177 * described above. 3178 */ 3179 if (wm_is_using_multiqueue(sc)) 3180 ifp->if_transmit = wm_transmit; 3181 } 3182 /* wm(4) doest not use ifp->if_watchdog, use wm_tick as watchdog. */ 3183 ifp->if_init = wm_init; 3184 ifp->if_stop = wm_stop; 3185 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(WM_IFQUEUELEN, IFQ_MAXLEN)); 3186 IFQ_SET_READY(&ifp->if_snd); 3187 3188 /* Check for jumbo frame */ 3189 switch (sc->sc_type) { 3190 case WM_T_82573: 3191 /* XXX limited to 9234 if ASPM is disabled */ 3192 wm_nvm_read(sc, NVM_OFF_INIT_3GIO_3, 1, &nvmword); 3193 if ((nvmword & NVM_3GIO_3_ASPM_MASK) != 0) 3194 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 3195 break; 3196 case WM_T_82571: 3197 case WM_T_82572: 3198 case WM_T_82574: 3199 case WM_T_82583: 3200 case WM_T_82575: 3201 case WM_T_82576: 3202 case WM_T_82580: 3203 case WM_T_I350: 3204 case WM_T_I354: 3205 case WM_T_I210: 3206 case WM_T_I211: 3207 case WM_T_80003: 3208 case WM_T_ICH9: 3209 case WM_T_ICH10: 3210 case WM_T_PCH2: /* PCH2 supports 9K frame size */ 3211 case WM_T_PCH_LPT: 3212 case WM_T_PCH_SPT: 3213 case WM_T_PCH_CNP: 3214 case WM_T_PCH_TGP: 3215 /* XXX limited to 9234 */ 3216 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 3217 break; 3218 case WM_T_PCH: 3219 /* XXX limited to 4096 */ 3220 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 3221 break; 3222 case WM_T_82542_2_0: 3223 case WM_T_82542_2_1: 3224 case WM_T_ICH8: 3225 /* No support for jumbo frame */ 3226 break; 3227 default: 3228 /* ETHER_MAX_LEN_JUMBO */ 3229 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 3230 break; 3231 } 3232 3233 /* If we're a i82543 or greater, we can support VLANs. */ 3234 if (sc->sc_type >= WM_T_82543) { 3235 sc->sc_ethercom.ec_capabilities |= 3236 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 3237 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING; 3238 } 3239 3240 if ((sc->sc_flags & WM_F_EEE) != 0) 3241 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 3242 3243 /* 3244 * We can perform TCPv4 and UDPv4 checksums in-bound. Only 3245 * on i82543 and later. 3246 */ 3247 if (sc->sc_type >= WM_T_82543) { 3248 ifp->if_capabilities |= 3249 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 3250 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 3251 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 3252 IFCAP_CSUM_TCPv6_Tx | 3253 IFCAP_CSUM_UDPv6_Tx; 3254 } 3255 3256 /* 3257 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL. 3258 * 3259 * 82541GI (8086:1076) ... no 3260 * 82572EI (8086:10b9) ... yes 3261 */ 3262 if (sc->sc_type >= WM_T_82571) { 3263 ifp->if_capabilities |= 3264 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx; 3265 } 3266 3267 /* 3268 * If we're a i82544 or greater (except i82547), we can do 3269 * TCP segmentation offload. 3270 */ 3271 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) 3272 ifp->if_capabilities |= IFCAP_TSOv4; 3273 3274 if (sc->sc_type >= WM_T_82571) 3275 ifp->if_capabilities |= IFCAP_TSOv6; 3276 3277 sc->sc_tx_process_limit = WM_TX_PROCESS_LIMIT_DEFAULT; 3278 sc->sc_tx_intr_process_limit = WM_TX_INTR_PROCESS_LIMIT_DEFAULT; 3279 sc->sc_rx_process_limit = WM_RX_PROCESS_LIMIT_DEFAULT; 3280 sc->sc_rx_intr_process_limit = WM_RX_INTR_PROCESS_LIMIT_DEFAULT; 3281 3282 /* Attach the interface. */ 3283 if_initialize(ifp); 3284 sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if); 3285 ether_ifattach(ifp, enaddr); 3286 ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb); 3287 if_register(ifp); 3288 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET, 3289 RND_FLAG_DEFAULT); 3290 3291 #ifdef WM_EVENT_COUNTERS 3292 /* Attach event counters. */ 3293 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR, 3294 NULL, xname, "linkintr"); 3295 3296 evcnt_attach_dynamic(&sc->sc_ev_crcerrs, EVCNT_TYPE_MISC, 3297 NULL, xname, "CRC Error"); 3298 evcnt_attach_dynamic(&sc->sc_ev_symerrc, EVCNT_TYPE_MISC, 3299 NULL, xname, "Symbol Error"); 3300 evcnt_attach_dynamic(&sc->sc_ev_mpc, EVCNT_TYPE_MISC, 3301 NULL, xname, "Missed Packets"); 3302 evcnt_attach_dynamic(&sc->sc_ev_colc, EVCNT_TYPE_MISC, 3303 NULL, xname, "Collision"); 3304 evcnt_attach_dynamic(&sc->sc_ev_sec, EVCNT_TYPE_MISC, 3305 NULL, xname, "Sequence Error"); 3306 evcnt_attach_dynamic(&sc->sc_ev_rlec, EVCNT_TYPE_MISC, 3307 NULL, xname, "Receive Length Error"); 3308 3309 if (sc->sc_type >= WM_T_82543) { 3310 evcnt_attach_dynamic(&sc->sc_ev_algnerrc, EVCNT_TYPE_MISC, 3311 NULL, xname, "Alignment Error"); 3312 evcnt_attach_dynamic(&sc->sc_ev_rxerrc, EVCNT_TYPE_MISC, 3313 NULL, xname, "Receive Error"); 3314 /* XXX Does 82575 have HTDPMC? */ 3315 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) 3316 evcnt_attach_dynamic(&sc->sc_ev_cexterr, 3317 EVCNT_TYPE_MISC, NULL, xname, 3318 "Carrier Extension Error"); 3319 else 3320 evcnt_attach_dynamic(&sc->sc_ev_htdpmc, 3321 EVCNT_TYPE_MISC, NULL, xname, 3322 "Host Transmit Discarded Packets by MAC"); 3323 3324 evcnt_attach_dynamic(&sc->sc_ev_tncrs, EVCNT_TYPE_MISC, 3325 NULL, xname, "Tx with No CRS"); 3326 evcnt_attach_dynamic(&sc->sc_ev_tsctc, EVCNT_TYPE_MISC, 3327 NULL, xname, "TCP Segmentation Context Tx"); 3328 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) 3329 evcnt_attach_dynamic(&sc->sc_ev_tsctfc, 3330 EVCNT_TYPE_MISC, NULL, xname, 3331 "TCP Segmentation Context Tx Fail"); 3332 else { 3333 /* XXX Is the circuit breaker only for 82576? */ 3334 evcnt_attach_dynamic(&sc->sc_ev_cbrdpc, 3335 EVCNT_TYPE_MISC, NULL, xname, 3336 "Circuit Breaker Rx Dropped Packet"); 3337 evcnt_attach_dynamic(&sc->sc_ev_cbrmpc, 3338 EVCNT_TYPE_MISC, NULL, xname, 3339 "Circuit Breaker Rx Manageability Packet"); 3340 } 3341 } 3342 3343 if (sc->sc_type >= WM_T_82542_2_1) { 3344 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC, 3345 NULL, xname, "XOFF Transmitted"); 3346 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC, 3347 NULL, xname, "XON Transmitted"); 3348 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC, 3349 NULL, xname, "XOFF Received"); 3350 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC, 3351 NULL, xname, "XON Received"); 3352 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC, 3353 NULL, xname, "FC Received Unsupported"); 3354 } 3355 3356 evcnt_attach_dynamic(&sc->sc_ev_scc, EVCNT_TYPE_MISC, 3357 NULL, xname, "Single Collision"); 3358 evcnt_attach_dynamic(&sc->sc_ev_ecol, EVCNT_TYPE_MISC, 3359 NULL, xname, "Excessive Collisions"); 3360 evcnt_attach_dynamic(&sc->sc_ev_mcc, EVCNT_TYPE_MISC, 3361 NULL, xname, "Multiple Collision"); 3362 evcnt_attach_dynamic(&sc->sc_ev_latecol, EVCNT_TYPE_MISC, 3363 NULL, xname, "Late Collisions"); 3364 3365 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) 3366 evcnt_attach_dynamic(&sc->sc_ev_cbtmpc, EVCNT_TYPE_MISC, 3367 NULL, xname, "Circuit Breaker Tx Manageability Packet"); 3368 3369 evcnt_attach_dynamic(&sc->sc_ev_dc, EVCNT_TYPE_MISC, 3370 NULL, xname, "Defer"); 3371 evcnt_attach_dynamic(&sc->sc_ev_prc64, EVCNT_TYPE_MISC, 3372 NULL, xname, "Packets Rx (64 bytes)"); 3373 evcnt_attach_dynamic(&sc->sc_ev_prc127, EVCNT_TYPE_MISC, 3374 NULL, xname, "Packets Rx (65-127 bytes)"); 3375 evcnt_attach_dynamic(&sc->sc_ev_prc255, EVCNT_TYPE_MISC, 3376 NULL, xname, "Packets Rx (128-255 bytes)"); 3377 evcnt_attach_dynamic(&sc->sc_ev_prc511, EVCNT_TYPE_MISC, 3378 NULL, xname, "Packets Rx (256-511 bytes)"); 3379 evcnt_attach_dynamic(&sc->sc_ev_prc1023, EVCNT_TYPE_MISC, 3380 NULL, xname, "Packets Rx (512-1023 bytes)"); 3381 evcnt_attach_dynamic(&sc->sc_ev_prc1522, EVCNT_TYPE_MISC, 3382 NULL, xname, "Packets Rx (1024-1522 bytes)"); 3383 evcnt_attach_dynamic(&sc->sc_ev_gprc, EVCNT_TYPE_MISC, 3384 NULL, xname, "Good Packets Rx"); 3385 evcnt_attach_dynamic(&sc->sc_ev_bprc, EVCNT_TYPE_MISC, 3386 NULL, xname, "Broadcast Packets Rx"); 3387 evcnt_attach_dynamic(&sc->sc_ev_mprc, EVCNT_TYPE_MISC, 3388 NULL, xname, "Multicast Packets Rx"); 3389 evcnt_attach_dynamic(&sc->sc_ev_gptc, EVCNT_TYPE_MISC, 3390 NULL, xname, "Good Packets Tx"); 3391 evcnt_attach_dynamic(&sc->sc_ev_gorc, EVCNT_TYPE_MISC, 3392 NULL, xname, "Good Octets Rx"); 3393 evcnt_attach_dynamic(&sc->sc_ev_gotc, EVCNT_TYPE_MISC, 3394 NULL, xname, "Good Octets Tx"); 3395 evcnt_attach_dynamic(&sc->sc_ev_rnbc, EVCNT_TYPE_MISC, 3396 NULL, xname, "Rx No Buffers"); 3397 evcnt_attach_dynamic(&sc->sc_ev_ruc, EVCNT_TYPE_MISC, 3398 NULL, xname, "Rx Undersize (valid CRC)"); 3399 evcnt_attach_dynamic(&sc->sc_ev_rfc, EVCNT_TYPE_MISC, 3400 NULL, xname, "Rx Fragment (bad CRC)"); 3401 evcnt_attach_dynamic(&sc->sc_ev_roc, EVCNT_TYPE_MISC, 3402 NULL, xname, "Rx Oversize (valid CRC)"); 3403 evcnt_attach_dynamic(&sc->sc_ev_rjc, EVCNT_TYPE_MISC, 3404 NULL, xname, "Rx Jabber (bad CRC)"); 3405 if (sc->sc_type >= WM_T_82540) { 3406 evcnt_attach_dynamic(&sc->sc_ev_mgtprc, EVCNT_TYPE_MISC, 3407 NULL, xname, "Management Packets RX"); 3408 evcnt_attach_dynamic(&sc->sc_ev_mgtpdc, EVCNT_TYPE_MISC, 3409 NULL, xname, "Management Packets Dropped"); 3410 evcnt_attach_dynamic(&sc->sc_ev_mgtptc, EVCNT_TYPE_MISC, 3411 NULL, xname, "Management Packets TX"); 3412 } 3413 evcnt_attach_dynamic(&sc->sc_ev_tor, EVCNT_TYPE_MISC, 3414 NULL, xname, "Total Octets Rx"); 3415 evcnt_attach_dynamic(&sc->sc_ev_tot, EVCNT_TYPE_MISC, 3416 NULL, xname, "Total Octets Tx"); 3417 evcnt_attach_dynamic(&sc->sc_ev_tpr, EVCNT_TYPE_MISC, 3418 NULL, xname, "Total Packets Rx"); 3419 evcnt_attach_dynamic(&sc->sc_ev_tpt, EVCNT_TYPE_MISC, 3420 NULL, xname, "Total Packets Tx"); 3421 evcnt_attach_dynamic(&sc->sc_ev_ptc64, EVCNT_TYPE_MISC, 3422 NULL, xname, "Packets Tx (64 bytes)"); 3423 evcnt_attach_dynamic(&sc->sc_ev_ptc127, EVCNT_TYPE_MISC, 3424 NULL, xname, "Packets Tx (65-127 bytes)"); 3425 evcnt_attach_dynamic(&sc->sc_ev_ptc255, EVCNT_TYPE_MISC, 3426 NULL, xname, "Packets Tx (128-255 bytes)"); 3427 evcnt_attach_dynamic(&sc->sc_ev_ptc511, EVCNT_TYPE_MISC, 3428 NULL, xname, "Packets Tx (256-511 bytes)"); 3429 evcnt_attach_dynamic(&sc->sc_ev_ptc1023, EVCNT_TYPE_MISC, 3430 NULL, xname, "Packets Tx (512-1023 bytes)"); 3431 evcnt_attach_dynamic(&sc->sc_ev_ptc1522, EVCNT_TYPE_MISC, 3432 NULL, xname, "Packets Tx (1024-1522 Bytes)"); 3433 evcnt_attach_dynamic(&sc->sc_ev_mptc, EVCNT_TYPE_MISC, 3434 NULL, xname, "Multicast Packets Tx"); 3435 evcnt_attach_dynamic(&sc->sc_ev_bptc, EVCNT_TYPE_MISC, 3436 NULL, xname, "Broadcast Packets Tx"); 3437 if (sc->sc_type >= WM_T_82571) /* PCIe, 80003 and ICH/PCHs */ 3438 evcnt_attach_dynamic(&sc->sc_ev_iac, EVCNT_TYPE_MISC, 3439 NULL, xname, "Interrupt Assertion"); 3440 if (sc->sc_type < WM_T_82575) { 3441 evcnt_attach_dynamic(&sc->sc_ev_icrxptc, EVCNT_TYPE_MISC, 3442 NULL, xname, "Intr. Cause Rx Pkt Timer Expire"); 3443 evcnt_attach_dynamic(&sc->sc_ev_icrxatc, EVCNT_TYPE_MISC, 3444 NULL, xname, "Intr. Cause Rx Abs Timer Expire"); 3445 evcnt_attach_dynamic(&sc->sc_ev_ictxptc, EVCNT_TYPE_MISC, 3446 NULL, xname, "Intr. Cause Tx Pkt Timer Expire"); 3447 evcnt_attach_dynamic(&sc->sc_ev_ictxatc, EVCNT_TYPE_MISC, 3448 NULL, xname, "Intr. Cause Tx Abs Timer Expire"); 3449 evcnt_attach_dynamic(&sc->sc_ev_ictxqec, EVCNT_TYPE_MISC, 3450 NULL, xname, "Intr. Cause Tx Queue Empty"); 3451 evcnt_attach_dynamic(&sc->sc_ev_ictxqmtc, EVCNT_TYPE_MISC, 3452 NULL, xname, "Intr. Cause Tx Queue Min Thresh"); 3453 evcnt_attach_dynamic(&sc->sc_ev_rxdmtc, EVCNT_TYPE_MISC, 3454 NULL, xname, "Intr. Cause Rx Desc Min Thresh"); 3455 3456 /* XXX 82575 document says it has ICRXOC. Is that right? */ 3457 evcnt_attach_dynamic(&sc->sc_ev_icrxoc, EVCNT_TYPE_MISC, 3458 NULL, xname, "Interrupt Cause Receiver Overrun"); 3459 } else if (!WM_IS_ICHPCH(sc)) { 3460 /* 3461 * For 82575 and newer. 3462 * 3463 * On 80003, ICHs and PCHs, it seems all of the following 3464 * registers are zero. 3465 */ 3466 evcnt_attach_dynamic(&sc->sc_ev_rpthc, EVCNT_TYPE_MISC, 3467 NULL, xname, "Rx Packets To Host"); 3468 evcnt_attach_dynamic(&sc->sc_ev_debug1, EVCNT_TYPE_MISC, 3469 NULL, xname, "Debug Counter 1"); 3470 evcnt_attach_dynamic(&sc->sc_ev_debug2, EVCNT_TYPE_MISC, 3471 NULL, xname, "Debug Counter 2"); 3472 evcnt_attach_dynamic(&sc->sc_ev_debug3, EVCNT_TYPE_MISC, 3473 NULL, xname, "Debug Counter 3"); 3474 3475 /* 3476 * 82575 datasheet says 0x4118 is for TXQEC(Tx Queue Empty). 3477 * I think it's wrong. The real count I observed is the same 3478 * as GPTC(Good Packets Tx) and TPT(Total Packets Tx). 3479 * It's HGPTC(Host Good Packets Tx) which is described in 3480 * 82576's datasheet. 3481 */ 3482 evcnt_attach_dynamic(&sc->sc_ev_hgptc, EVCNT_TYPE_MISC, 3483 NULL, xname, "Host Good Packets TX"); 3484 3485 evcnt_attach_dynamic(&sc->sc_ev_debug4, EVCNT_TYPE_MISC, 3486 NULL, xname, "Debug Counter 4"); 3487 evcnt_attach_dynamic(&sc->sc_ev_rxdmtc, EVCNT_TYPE_MISC, 3488 NULL, xname, "Rx Desc Min Thresh"); 3489 /* XXX Is the circuit breaker only for 82576? */ 3490 evcnt_attach_dynamic(&sc->sc_ev_htcbdpc, EVCNT_TYPE_MISC, 3491 NULL, xname, "Host Tx Circuit Breaker Dropped Packets"); 3492 3493 evcnt_attach_dynamic(&sc->sc_ev_hgorc, EVCNT_TYPE_MISC, 3494 NULL, xname, "Host Good Octets Rx"); 3495 evcnt_attach_dynamic(&sc->sc_ev_hgotc, EVCNT_TYPE_MISC, 3496 NULL, xname, "Host Good Octets Tx"); 3497 evcnt_attach_dynamic(&sc->sc_ev_lenerrs, EVCNT_TYPE_MISC, 3498 NULL, xname, "Length Errors (length/type <= 1500)"); 3499 evcnt_attach_dynamic(&sc->sc_ev_scvpc, EVCNT_TYPE_MISC, 3500 NULL, xname, "SerDes/SGMII Code Violation Packet"); 3501 evcnt_attach_dynamic(&sc->sc_ev_hrmpc, EVCNT_TYPE_MISC, 3502 NULL, xname, "Header Redirection Missed Packet"); 3503 } 3504 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) { 3505 evcnt_attach_dynamic(&sc->sc_ev_tlpic, EVCNT_TYPE_MISC, 3506 NULL, xname, "EEE Tx LPI"); 3507 evcnt_attach_dynamic(&sc->sc_ev_rlpic, EVCNT_TYPE_MISC, 3508 NULL, xname, "EEE Rx LPI"); 3509 evcnt_attach_dynamic(&sc->sc_ev_b2ogprc, EVCNT_TYPE_MISC, 3510 NULL, xname, "BMC2OS Packets received by host"); 3511 evcnt_attach_dynamic(&sc->sc_ev_o2bspc, EVCNT_TYPE_MISC, 3512 NULL, xname, "OS2BMC Packets transmitted by host"); 3513 evcnt_attach_dynamic(&sc->sc_ev_b2ospc, EVCNT_TYPE_MISC, 3514 NULL, xname, "BMC2OS Packets sent by BMC"); 3515 evcnt_attach_dynamic(&sc->sc_ev_o2bgptc, EVCNT_TYPE_MISC, 3516 NULL, xname, "OS2BMC Packets received by BMC"); 3517 } 3518 #endif /* WM_EVENT_COUNTERS */ 3519 3520 sc->sc_txrx_use_workqueue = false; 3521 3522 if (wm_phy_need_linkdown_discard(sc)) { 3523 DPRINTF(sc, WM_DEBUG_LINK, 3524 ("%s: %s: Set linkdown discard flag\n", 3525 device_xname(sc->sc_dev), __func__)); 3526 wm_set_linkdown_discard(sc); 3527 } 3528 3529 wm_init_sysctls(sc); 3530 3531 if (pmf_device_register(self, wm_suspend, wm_resume)) 3532 pmf_class_network_register(self, ifp); 3533 else 3534 aprint_error_dev(self, "couldn't establish power handler\n"); 3535 3536 sc->sc_flags |= WM_F_ATTACHED; 3537 out: 3538 return; 3539 } 3540 3541 /* The detach function (ca_detach) */ 3542 static int 3543 wm_detach(device_t self, int flags __unused) 3544 { 3545 struct wm_softc *sc = device_private(self); 3546 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3547 int i; 3548 3549 if ((sc->sc_flags & WM_F_ATTACHED) == 0) 3550 return 0; 3551 3552 /* Stop the interface. Callouts are stopped in it. */ 3553 IFNET_LOCK(ifp); 3554 sc->sc_dying = true; 3555 wm_stop(ifp, 1); 3556 IFNET_UNLOCK(ifp); 3557 3558 pmf_device_deregister(self); 3559 3560 sysctl_teardown(&sc->sc_sysctllog); 3561 3562 #ifdef WM_EVENT_COUNTERS 3563 evcnt_detach(&sc->sc_ev_linkintr); 3564 3565 evcnt_detach(&sc->sc_ev_crcerrs); 3566 evcnt_detach(&sc->sc_ev_symerrc); 3567 evcnt_detach(&sc->sc_ev_mpc); 3568 evcnt_detach(&sc->sc_ev_colc); 3569 evcnt_detach(&sc->sc_ev_sec); 3570 evcnt_detach(&sc->sc_ev_rlec); 3571 3572 if (sc->sc_type >= WM_T_82543) { 3573 evcnt_detach(&sc->sc_ev_algnerrc); 3574 evcnt_detach(&sc->sc_ev_rxerrc); 3575 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) 3576 evcnt_detach(&sc->sc_ev_cexterr); 3577 else 3578 evcnt_detach(&sc->sc_ev_htdpmc); 3579 3580 evcnt_detach(&sc->sc_ev_tncrs); 3581 evcnt_detach(&sc->sc_ev_tsctc); 3582 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) 3583 evcnt_detach(&sc->sc_ev_tsctfc); 3584 else { 3585 evcnt_detach(&sc->sc_ev_cbrdpc); 3586 evcnt_detach(&sc->sc_ev_cbrmpc); 3587 } 3588 } 3589 3590 if (sc->sc_type >= WM_T_82542_2_1) { 3591 evcnt_detach(&sc->sc_ev_tx_xoff); 3592 evcnt_detach(&sc->sc_ev_tx_xon); 3593 evcnt_detach(&sc->sc_ev_rx_xoff); 3594 evcnt_detach(&sc->sc_ev_rx_xon); 3595 evcnt_detach(&sc->sc_ev_rx_macctl); 3596 } 3597 3598 evcnt_detach(&sc->sc_ev_scc); 3599 evcnt_detach(&sc->sc_ev_ecol); 3600 evcnt_detach(&sc->sc_ev_mcc); 3601 evcnt_detach(&sc->sc_ev_latecol); 3602 3603 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) 3604 evcnt_detach(&sc->sc_ev_cbtmpc); 3605 3606 evcnt_detach(&sc->sc_ev_dc); 3607 evcnt_detach(&sc->sc_ev_prc64); 3608 evcnt_detach(&sc->sc_ev_prc127); 3609 evcnt_detach(&sc->sc_ev_prc255); 3610 evcnt_detach(&sc->sc_ev_prc511); 3611 evcnt_detach(&sc->sc_ev_prc1023); 3612 evcnt_detach(&sc->sc_ev_prc1522); 3613 evcnt_detach(&sc->sc_ev_gprc); 3614 evcnt_detach(&sc->sc_ev_bprc); 3615 evcnt_detach(&sc->sc_ev_mprc); 3616 evcnt_detach(&sc->sc_ev_gptc); 3617 evcnt_detach(&sc->sc_ev_gorc); 3618 evcnt_detach(&sc->sc_ev_gotc); 3619 evcnt_detach(&sc->sc_ev_rnbc); 3620 evcnt_detach(&sc->sc_ev_ruc); 3621 evcnt_detach(&sc->sc_ev_rfc); 3622 evcnt_detach(&sc->sc_ev_roc); 3623 evcnt_detach(&sc->sc_ev_rjc); 3624 if (sc->sc_type >= WM_T_82540) { 3625 evcnt_detach(&sc->sc_ev_mgtprc); 3626 evcnt_detach(&sc->sc_ev_mgtpdc); 3627 evcnt_detach(&sc->sc_ev_mgtptc); 3628 } 3629 evcnt_detach(&sc->sc_ev_tor); 3630 evcnt_detach(&sc->sc_ev_tot); 3631 evcnt_detach(&sc->sc_ev_tpr); 3632 evcnt_detach(&sc->sc_ev_tpt); 3633 evcnt_detach(&sc->sc_ev_ptc64); 3634 evcnt_detach(&sc->sc_ev_ptc127); 3635 evcnt_detach(&sc->sc_ev_ptc255); 3636 evcnt_detach(&sc->sc_ev_ptc511); 3637 evcnt_detach(&sc->sc_ev_ptc1023); 3638 evcnt_detach(&sc->sc_ev_ptc1522); 3639 evcnt_detach(&sc->sc_ev_mptc); 3640 evcnt_detach(&sc->sc_ev_bptc); 3641 if (sc->sc_type >= WM_T_82571) 3642 evcnt_detach(&sc->sc_ev_iac); 3643 if (sc->sc_type < WM_T_82575) { 3644 evcnt_detach(&sc->sc_ev_icrxptc); 3645 evcnt_detach(&sc->sc_ev_icrxatc); 3646 evcnt_detach(&sc->sc_ev_ictxptc); 3647 evcnt_detach(&sc->sc_ev_ictxatc); 3648 evcnt_detach(&sc->sc_ev_ictxqec); 3649 evcnt_detach(&sc->sc_ev_ictxqmtc); 3650 evcnt_detach(&sc->sc_ev_rxdmtc); 3651 evcnt_detach(&sc->sc_ev_icrxoc); 3652 } else if (!WM_IS_ICHPCH(sc)) { 3653 evcnt_detach(&sc->sc_ev_rpthc); 3654 evcnt_detach(&sc->sc_ev_debug1); 3655 evcnt_detach(&sc->sc_ev_debug2); 3656 evcnt_detach(&sc->sc_ev_debug3); 3657 evcnt_detach(&sc->sc_ev_hgptc); 3658 evcnt_detach(&sc->sc_ev_debug4); 3659 evcnt_detach(&sc->sc_ev_rxdmtc); 3660 evcnt_detach(&sc->sc_ev_htcbdpc); 3661 3662 evcnt_detach(&sc->sc_ev_hgorc); 3663 evcnt_detach(&sc->sc_ev_hgotc); 3664 evcnt_detach(&sc->sc_ev_lenerrs); 3665 evcnt_detach(&sc->sc_ev_scvpc); 3666 evcnt_detach(&sc->sc_ev_hrmpc); 3667 } 3668 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) { 3669 evcnt_detach(&sc->sc_ev_tlpic); 3670 evcnt_detach(&sc->sc_ev_rlpic); 3671 evcnt_detach(&sc->sc_ev_b2ogprc); 3672 evcnt_detach(&sc->sc_ev_o2bspc); 3673 evcnt_detach(&sc->sc_ev_b2ospc); 3674 evcnt_detach(&sc->sc_ev_o2bgptc); 3675 } 3676 #endif /* WM_EVENT_COUNTERS */ 3677 3678 rnd_detach_source(&sc->rnd_source); 3679 3680 /* Tell the firmware about the release */ 3681 mutex_enter(sc->sc_core_lock); 3682 wm_release_manageability(sc); 3683 wm_release_hw_control(sc); 3684 wm_enable_wakeup(sc); 3685 mutex_exit(sc->sc_core_lock); 3686 3687 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 3688 3689 ether_ifdetach(ifp); 3690 if_detach(ifp); 3691 if_percpuq_destroy(sc->sc_ipq); 3692 3693 /* Delete all remaining media. */ 3694 ifmedia_fini(&sc->sc_mii.mii_media); 3695 3696 /* Unload RX dmamaps and free mbufs */ 3697 for (i = 0; i < sc->sc_nqueues; i++) { 3698 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 3699 mutex_enter(rxq->rxq_lock); 3700 wm_rxdrain(rxq); 3701 mutex_exit(rxq->rxq_lock); 3702 } 3703 /* Must unlock here */ 3704 3705 /* Disestablish the interrupt handler */ 3706 for (i = 0; i < sc->sc_nintrs; i++) { 3707 if (sc->sc_ihs[i] != NULL) { 3708 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 3709 sc->sc_ihs[i] = NULL; 3710 } 3711 } 3712 pci_intr_release(sc->sc_pc, sc->sc_intrs, sc->sc_nintrs); 3713 3714 /* wm_stop() ensured that the workqueues are stopped. */ 3715 workqueue_destroy(sc->sc_queue_wq); 3716 workqueue_destroy(sc->sc_reset_wq); 3717 3718 for (i = 0; i < sc->sc_nqueues; i++) 3719 softint_disestablish(sc->sc_queue[i].wmq_si); 3720 3721 wm_free_txrx_queues(sc); 3722 3723 /* Unmap the registers */ 3724 if (sc->sc_ss) { 3725 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss); 3726 sc->sc_ss = 0; 3727 } 3728 if (sc->sc_ios) { 3729 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); 3730 sc->sc_ios = 0; 3731 } 3732 if (sc->sc_flashs) { 3733 bus_space_unmap(sc->sc_flasht, sc->sc_flashh, sc->sc_flashs); 3734 sc->sc_flashs = 0; 3735 } 3736 3737 if (sc->sc_core_lock) 3738 mutex_obj_free(sc->sc_core_lock); 3739 if (sc->sc_ich_phymtx) 3740 mutex_obj_free(sc->sc_ich_phymtx); 3741 if (sc->sc_ich_nvmmtx) 3742 mutex_obj_free(sc->sc_ich_nvmmtx); 3743 3744 return 0; 3745 } 3746 3747 static bool 3748 wm_suspend(device_t self, const pmf_qual_t *qual) 3749 { 3750 struct wm_softc *sc = device_private(self); 3751 3752 wm_release_manageability(sc); 3753 wm_release_hw_control(sc); 3754 wm_enable_wakeup(sc); 3755 3756 return true; 3757 } 3758 3759 static bool 3760 wm_resume(device_t self, const pmf_qual_t *qual) 3761 { 3762 struct wm_softc *sc = device_private(self); 3763 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3764 pcireg_t reg; 3765 char buf[256]; 3766 3767 reg = CSR_READ(sc, WMREG_WUS); 3768 if (reg != 0) { 3769 snprintb(buf, sizeof(buf), WUS_FLAGS, reg); 3770 device_printf(sc->sc_dev, "wakeup status %s\n", buf); 3771 CSR_WRITE(sc, WMREG_WUS, 0xffffffff); /* W1C */ 3772 } 3773 3774 if (sc->sc_type >= WM_T_PCH2) 3775 wm_resume_workarounds_pchlan(sc); 3776 IFNET_LOCK(ifp); 3777 if ((ifp->if_flags & IFF_UP) == 0) { 3778 /* >= PCH_SPT hardware workaround before reset. */ 3779 if (sc->sc_type >= WM_T_PCH_SPT) 3780 wm_flush_desc_rings(sc); 3781 3782 wm_reset(sc); 3783 /* Non-AMT based hardware can now take control from firmware */ 3784 if ((sc->sc_flags & WM_F_HAS_AMT) == 0) 3785 wm_get_hw_control(sc); 3786 wm_init_manageability(sc); 3787 } else { 3788 /* 3789 * We called pmf_class_network_register(), so if_init() is 3790 * automatically called when IFF_UP. wm_reset(), 3791 * wm_get_hw_control() and wm_init_manageability() are called 3792 * via wm_init(). 3793 */ 3794 } 3795 IFNET_UNLOCK(ifp); 3796 3797 return true; 3798 } 3799 3800 /* 3801 * wm_watchdog: 3802 * 3803 * Watchdog checker. 3804 */ 3805 static bool 3806 wm_watchdog(struct ifnet *ifp) 3807 { 3808 int qid; 3809 struct wm_softc *sc = ifp->if_softc; 3810 uint16_t hang_queue = 0; /* Max queue number of wm(4) is 82576's 16. */ 3811 3812 for (qid = 0; qid < sc->sc_nqueues; qid++) { 3813 struct wm_txqueue *txq = &sc->sc_queue[qid].wmq_txq; 3814 3815 wm_watchdog_txq(ifp, txq, &hang_queue); 3816 } 3817 3818 #ifdef WM_DEBUG 3819 if (sc->sc_trigger_reset) { 3820 /* debug operation, no need for atomicity or reliability */ 3821 sc->sc_trigger_reset = 0; 3822 hang_queue++; 3823 } 3824 #endif 3825 3826 if (hang_queue == 0) 3827 return true; 3828 3829 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) 3830 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL); 3831 3832 return false; 3833 } 3834 3835 /* 3836 * Perform an interface watchdog reset. 3837 */ 3838 static void 3839 wm_handle_reset_work(struct work *work, void *arg) 3840 { 3841 struct wm_softc * const sc = arg; 3842 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 3843 3844 /* Don't want ioctl operations to happen */ 3845 IFNET_LOCK(ifp); 3846 3847 /* reset the interface. */ 3848 wm_init(ifp); 3849 3850 IFNET_UNLOCK(ifp); 3851 3852 /* 3853 * There are still some upper layer processing which call 3854 * ifp->if_start(). e.g. ALTQ or one CPU system 3855 */ 3856 /* Try to get more packets going. */ 3857 ifp->if_start(ifp); 3858 3859 atomic_store_relaxed(&sc->sc_reset_pending, 0); 3860 } 3861 3862 3863 static void 3864 wm_watchdog_txq(struct ifnet *ifp, struct wm_txqueue *txq, uint16_t *hang) 3865 { 3866 3867 mutex_enter(txq->txq_lock); 3868 if (txq->txq_sending && 3869 time_uptime - txq->txq_lastsent > wm_watchdog_timeout) 3870 wm_watchdog_txq_locked(ifp, txq, hang); 3871 3872 mutex_exit(txq->txq_lock); 3873 } 3874 3875 static void 3876 wm_watchdog_txq_locked(struct ifnet *ifp, struct wm_txqueue *txq, 3877 uint16_t *hang) 3878 { 3879 struct wm_softc *sc = ifp->if_softc; 3880 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq); 3881 3882 KASSERT(mutex_owned(txq->txq_lock)); 3883 3884 /* 3885 * Since we're using delayed interrupts, sweep up 3886 * before we report an error. 3887 */ 3888 wm_txeof(txq, UINT_MAX); 3889 3890 if (txq->txq_sending) 3891 *hang |= __BIT(wmq->wmq_id); 3892 3893 if (txq->txq_free == WM_NTXDESC(txq)) { 3894 log(LOG_ERR, "%s: device timeout (lost interrupt)\n", 3895 device_xname(sc->sc_dev)); 3896 } else { 3897 #ifdef WM_DEBUG 3898 int i, j; 3899 struct wm_txsoft *txs; 3900 #endif 3901 log(LOG_ERR, 3902 "%s: device timeout (txfree %d txsfree %d txnext %d)\n", 3903 device_xname(sc->sc_dev), txq->txq_free, txq->txq_sfree, 3904 txq->txq_next); 3905 if_statinc(ifp, if_oerrors); 3906 #ifdef WM_DEBUG 3907 for (i = txq->txq_sdirty; i != txq->txq_snext; 3908 i = WM_NEXTTXS(txq, i)) { 3909 txs = &txq->txq_soft[i]; 3910 printf("txs %d tx %d -> %d\n", 3911 i, txs->txs_firstdesc, txs->txs_lastdesc); 3912 for (j = txs->txs_firstdesc; ; j = WM_NEXTTX(txq, j)) { 3913 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 3914 printf("\tdesc %d: 0x%" PRIx64 "\n", j, 3915 txq->txq_nq_descs[j].nqtx_data.nqtxd_addr); 3916 printf("\t %#08x%08x\n", 3917 txq->txq_nq_descs[j].nqtx_data.nqtxd_fields, 3918 txq->txq_nq_descs[j].nqtx_data.nqtxd_cmdlen); 3919 } else { 3920 printf("\tdesc %d: 0x%" PRIx64 "\n", j, 3921 (uint64_t)txq->txq_descs[j].wtx_addr.wa_high << 32 | 3922 txq->txq_descs[j].wtx_addr.wa_low); 3923 printf("\t %#04x%02x%02x%08x\n", 3924 txq->txq_descs[j].wtx_fields.wtxu_vlan, 3925 txq->txq_descs[j].wtx_fields.wtxu_options, 3926 txq->txq_descs[j].wtx_fields.wtxu_status, 3927 txq->txq_descs[j].wtx_cmdlen); 3928 } 3929 if (j == txs->txs_lastdesc) 3930 break; 3931 } 3932 } 3933 #endif 3934 } 3935 } 3936 3937 /* 3938 * wm_tick: 3939 * 3940 * One second timer, used to check link status, sweep up 3941 * completed transmit jobs, etc. 3942 */ 3943 static void 3944 wm_tick(void *arg) 3945 { 3946 struct wm_softc *sc = arg; 3947 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3948 3949 mutex_enter(sc->sc_core_lock); 3950 3951 if (sc->sc_core_stopping) { 3952 mutex_exit(sc->sc_core_lock); 3953 return; 3954 } 3955 3956 wm_update_stats(sc); 3957 3958 if (sc->sc_flags & WM_F_HAS_MII) { 3959 bool dotick = true; 3960 3961 /* 3962 * Workaround for some chips to delay sending LINK_STATE_UP. 3963 * See also wm_linkintr_gmii() and wm_gmii_mediastatus(). 3964 */ 3965 if ((sc->sc_flags & WM_F_DELAY_LINKUP) != 0) { 3966 struct timeval now; 3967 3968 getmicrotime(&now); 3969 if (timercmp(&now, &sc->sc_linkup_delay_time, <)) 3970 dotick = false; 3971 else if (sc->sc_linkup_delay_time.tv_sec != 0) { 3972 /* Simplify by checking tv_sec only. */ 3973 3974 sc->sc_linkup_delay_time.tv_sec = 0; 3975 sc->sc_linkup_delay_time.tv_usec = 0; 3976 } 3977 } 3978 if (dotick) 3979 mii_tick(&sc->sc_mii); 3980 } else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211) 3981 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) 3982 wm_serdes_tick(sc); 3983 else 3984 wm_tbi_tick(sc); 3985 3986 mutex_exit(sc->sc_core_lock); 3987 3988 if (wm_watchdog(ifp)) 3989 callout_schedule(&sc->sc_tick_ch, hz); 3990 } 3991 3992 static int 3993 wm_ifflags_cb(struct ethercom *ec) 3994 { 3995 struct ifnet *ifp = &ec->ec_if; 3996 struct wm_softc *sc = ifp->if_softc; 3997 u_short iffchange; 3998 int ecchange; 3999 bool needreset = false; 4000 int rc = 0; 4001 4002 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 4003 device_xname(sc->sc_dev), __func__)); 4004 4005 KASSERT(IFNET_LOCKED(ifp)); 4006 4007 mutex_enter(sc->sc_core_lock); 4008 4009 /* 4010 * Check for if_flags. 4011 * Main usage is to prevent linkdown when opening bpf. 4012 */ 4013 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4014 sc->sc_if_flags = ifp->if_flags; 4015 if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) { 4016 needreset = true; 4017 goto ec; 4018 } 4019 4020 /* iff related updates */ 4021 if ((iffchange & IFF_PROMISC) != 0) 4022 wm_set_filter(sc); 4023 4024 wm_set_vlan(sc); 4025 4026 ec: 4027 /* Check for ec_capenable. */ 4028 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4029 sc->sc_ec_capenable = ec->ec_capenable; 4030 if ((ecchange & ~ETHERCAP_EEE) != 0) { 4031 needreset = true; 4032 goto out; 4033 } 4034 4035 /* ec related updates */ 4036 wm_set_eee(sc); 4037 4038 out: 4039 if (needreset) 4040 rc = ENETRESET; 4041 mutex_exit(sc->sc_core_lock); 4042 4043 return rc; 4044 } 4045 4046 static bool 4047 wm_phy_need_linkdown_discard(struct wm_softc *sc) 4048 { 4049 4050 switch (sc->sc_phytype) { 4051 case WMPHY_82577: /* ihphy */ 4052 case WMPHY_82578: /* atphy */ 4053 case WMPHY_82579: /* ihphy */ 4054 case WMPHY_I217: /* ihphy */ 4055 case WMPHY_82580: /* ihphy */ 4056 case WMPHY_I350: /* ihphy */ 4057 return true; 4058 default: 4059 return false; 4060 } 4061 } 4062 4063 static void 4064 wm_set_linkdown_discard(struct wm_softc *sc) 4065 { 4066 4067 for (int i = 0; i < sc->sc_nqueues; i++) { 4068 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 4069 4070 mutex_enter(txq->txq_lock); 4071 txq->txq_flags |= WM_TXQ_LINKDOWN_DISCARD; 4072 mutex_exit(txq->txq_lock); 4073 } 4074 } 4075 4076 static void 4077 wm_clear_linkdown_discard(struct wm_softc *sc) 4078 { 4079 4080 for (int i = 0; i < sc->sc_nqueues; i++) { 4081 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 4082 4083 mutex_enter(txq->txq_lock); 4084 txq->txq_flags &= ~WM_TXQ_LINKDOWN_DISCARD; 4085 mutex_exit(txq->txq_lock); 4086 } 4087 } 4088 4089 /* 4090 * wm_ioctl: [ifnet interface function] 4091 * 4092 * Handle control requests from the operator. 4093 */ 4094 static int 4095 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data) 4096 { 4097 struct wm_softc *sc = ifp->if_softc; 4098 struct ifreq *ifr = (struct ifreq *)data; 4099 struct ifaddr *ifa = (struct ifaddr *)data; 4100 struct sockaddr_dl *sdl; 4101 int error; 4102 4103 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 4104 device_xname(sc->sc_dev), __func__)); 4105 4106 switch (cmd) { 4107 case SIOCADDMULTI: 4108 case SIOCDELMULTI: 4109 break; 4110 default: 4111 KASSERT(IFNET_LOCKED(ifp)); 4112 } 4113 4114 if (cmd == SIOCZIFDATA) { 4115 /* 4116 * Special handling for SIOCZIFDATA. 4117 * Copying and clearing the if_data structure is done with 4118 * ether_ioctl() below. 4119 */ 4120 mutex_enter(sc->sc_core_lock); 4121 wm_update_stats(sc); 4122 wm_clear_evcnt(sc); 4123 mutex_exit(sc->sc_core_lock); 4124 } 4125 4126 switch (cmd) { 4127 case SIOCSIFMEDIA: 4128 mutex_enter(sc->sc_core_lock); 4129 /* Flow control requires full-duplex mode. */ 4130 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 4131 (ifr->ifr_media & IFM_FDX) == 0) 4132 ifr->ifr_media &= ~IFM_ETH_FMASK; 4133 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 4134 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 4135 /* We can do both TXPAUSE and RXPAUSE. */ 4136 ifr->ifr_media |= 4137 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 4138 } 4139 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 4140 } 4141 mutex_exit(sc->sc_core_lock); 4142 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 4143 if (error == 0 && wm_phy_need_linkdown_discard(sc)) { 4144 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_NONE) { 4145 DPRINTF(sc, WM_DEBUG_LINK, 4146 ("%s: %s: Set linkdown discard flag\n", 4147 device_xname(sc->sc_dev), __func__)); 4148 wm_set_linkdown_discard(sc); 4149 } 4150 } 4151 break; 4152 case SIOCINITIFADDR: 4153 mutex_enter(sc->sc_core_lock); 4154 if (ifa->ifa_addr->sa_family == AF_LINK) { 4155 sdl = satosdl(ifp->if_dl->ifa_addr); 4156 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, 4157 LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen); 4158 /* Unicast address is the first multicast entry */ 4159 wm_set_filter(sc); 4160 error = 0; 4161 mutex_exit(sc->sc_core_lock); 4162 break; 4163 } 4164 mutex_exit(sc->sc_core_lock); 4165 /*FALLTHROUGH*/ 4166 default: 4167 if (cmd == SIOCSIFFLAGS && wm_phy_need_linkdown_discard(sc)) { 4168 if (((ifp->if_flags & IFF_UP) != 0) && 4169 ((ifr->ifr_flags & IFF_UP) == 0)) { 4170 DPRINTF(sc, WM_DEBUG_LINK, 4171 ("%s: %s: Set linkdown discard flag\n", 4172 device_xname(sc->sc_dev), __func__)); 4173 wm_set_linkdown_discard(sc); 4174 } 4175 } 4176 const int s = splnet(); 4177 /* It may call wm_start, so unlock here */ 4178 error = ether_ioctl(ifp, cmd, data); 4179 splx(s); 4180 if (error != ENETRESET) 4181 break; 4182 4183 error = 0; 4184 4185 if (cmd == SIOCSIFCAP) 4186 error = if_init(ifp); 4187 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) { 4188 mutex_enter(sc->sc_core_lock); 4189 if (sc->sc_if_flags & IFF_RUNNING) { 4190 /* 4191 * Multicast list has changed; set the 4192 * hardware filter accordingly. 4193 */ 4194 wm_set_filter(sc); 4195 } 4196 mutex_exit(sc->sc_core_lock); 4197 } 4198 break; 4199 } 4200 4201 return error; 4202 } 4203 4204 /* MAC address related */ 4205 4206 /* 4207 * Get the offset of MAC address and return it. 4208 * If error occured, use offset 0. 4209 */ 4210 static uint16_t 4211 wm_check_alt_mac_addr(struct wm_softc *sc) 4212 { 4213 uint16_t myea[ETHER_ADDR_LEN / 2]; 4214 uint16_t offset = NVM_OFF_MACADDR; 4215 4216 /* Try to read alternative MAC address pointer */ 4217 if (wm_nvm_read(sc, NVM_OFF_ALT_MAC_ADDR_PTR, 1, &offset) != 0) 4218 return 0; 4219 4220 /* Check pointer if it's valid or not. */ 4221 if ((offset == 0x0000) || (offset == 0xffff)) 4222 return 0; 4223 4224 offset += NVM_OFF_MACADDR_82571(sc->sc_funcid); 4225 /* 4226 * Check whether alternative MAC address is valid or not. 4227 * Some cards have non 0xffff pointer but those don't use 4228 * alternative MAC address in reality. 4229 * 4230 * Check whether the broadcast bit is set or not. 4231 */ 4232 if (wm_nvm_read(sc, offset, 1, myea) == 0) 4233 if (((myea[0] & 0xff) & 0x01) == 0) 4234 return offset; /* Found */ 4235 4236 /* Not found */ 4237 return 0; 4238 } 4239 4240 static int 4241 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr) 4242 { 4243 uint16_t myea[ETHER_ADDR_LEN / 2]; 4244 uint16_t offset = NVM_OFF_MACADDR; 4245 int do_invert = 0; 4246 4247 switch (sc->sc_type) { 4248 case WM_T_82580: 4249 case WM_T_I350: 4250 case WM_T_I354: 4251 /* EEPROM Top Level Partitioning */ 4252 offset = NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + 0; 4253 break; 4254 case WM_T_82571: 4255 case WM_T_82575: 4256 case WM_T_82576: 4257 case WM_T_80003: 4258 case WM_T_I210: 4259 case WM_T_I211: 4260 offset = wm_check_alt_mac_addr(sc); 4261 if (offset == 0) 4262 if ((sc->sc_funcid & 0x01) == 1) 4263 do_invert = 1; 4264 break; 4265 default: 4266 if ((sc->sc_funcid & 0x01) == 1) 4267 do_invert = 1; 4268 break; 4269 } 4270 4271 if (wm_nvm_read(sc, offset, sizeof(myea) / sizeof(myea[0]), myea) != 0) 4272 goto bad; 4273 4274 enaddr[0] = myea[0] & 0xff; 4275 enaddr[1] = myea[0] >> 8; 4276 enaddr[2] = myea[1] & 0xff; 4277 enaddr[3] = myea[1] >> 8; 4278 enaddr[4] = myea[2] & 0xff; 4279 enaddr[5] = myea[2] >> 8; 4280 4281 /* 4282 * Toggle the LSB of the MAC address on the second port 4283 * of some dual port cards. 4284 */ 4285 if (do_invert != 0) 4286 enaddr[5] ^= 1; 4287 4288 return 0; 4289 4290 bad: 4291 return -1; 4292 } 4293 4294 /* 4295 * wm_set_ral: 4296 * 4297 * Set an entery in the receive address list. 4298 */ 4299 static void 4300 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx) 4301 { 4302 uint32_t ral_lo, ral_hi, addrl, addrh; 4303 uint32_t wlock_mac; 4304 int rv; 4305 4306 if (enaddr != NULL) { 4307 ral_lo = (uint32_t)enaddr[0] | ((uint32_t)enaddr[1] << 8) | 4308 ((uint32_t)enaddr[2] << 16) | ((uint32_t)enaddr[3] << 24); 4309 ral_hi = (uint32_t)enaddr[4] | ((uint32_t)enaddr[5] << 8); 4310 ral_hi |= RAL_AV; 4311 } else { 4312 ral_lo = 0; 4313 ral_hi = 0; 4314 } 4315 4316 switch (sc->sc_type) { 4317 case WM_T_82542_2_0: 4318 case WM_T_82542_2_1: 4319 case WM_T_82543: 4320 CSR_WRITE(sc, WMREG_RAL(idx), ral_lo); 4321 CSR_WRITE_FLUSH(sc); 4322 CSR_WRITE(sc, WMREG_RAH(idx), ral_hi); 4323 CSR_WRITE_FLUSH(sc); 4324 break; 4325 case WM_T_PCH2: 4326 case WM_T_PCH_LPT: 4327 case WM_T_PCH_SPT: 4328 case WM_T_PCH_CNP: 4329 case WM_T_PCH_TGP: 4330 if (idx == 0) { 4331 CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo); 4332 CSR_WRITE_FLUSH(sc); 4333 CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi); 4334 CSR_WRITE_FLUSH(sc); 4335 return; 4336 } 4337 if (sc->sc_type != WM_T_PCH2) { 4338 wlock_mac = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM), 4339 FWSM_WLOCK_MAC); 4340 addrl = WMREG_SHRAL(idx - 1); 4341 addrh = WMREG_SHRAH(idx - 1); 4342 } else { 4343 wlock_mac = 0; 4344 addrl = WMREG_PCH_LPT_SHRAL(idx - 1); 4345 addrh = WMREG_PCH_LPT_SHRAH(idx - 1); 4346 } 4347 4348 if ((wlock_mac == 0) || (idx <= wlock_mac)) { 4349 rv = wm_get_swflag_ich8lan(sc); 4350 if (rv != 0) 4351 return; 4352 CSR_WRITE(sc, addrl, ral_lo); 4353 CSR_WRITE_FLUSH(sc); 4354 CSR_WRITE(sc, addrh, ral_hi); 4355 CSR_WRITE_FLUSH(sc); 4356 wm_put_swflag_ich8lan(sc); 4357 } 4358 4359 break; 4360 default: 4361 CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo); 4362 CSR_WRITE_FLUSH(sc); 4363 CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi); 4364 CSR_WRITE_FLUSH(sc); 4365 break; 4366 } 4367 } 4368 4369 /* 4370 * wm_mchash: 4371 * 4372 * Compute the hash of the multicast address for the 4096-bit 4373 * multicast filter. 4374 */ 4375 static uint32_t 4376 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr) 4377 { 4378 static const int lo_shift[4] = { 4, 3, 2, 0 }; 4379 static const int hi_shift[4] = { 4, 5, 6, 8 }; 4380 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 }; 4381 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 }; 4382 uint32_t hash; 4383 4384 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 4385 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) 4386 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) 4387 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP) 4388 || (sc->sc_type == WM_T_PCH_TGP)) { 4389 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) | 4390 (((uint16_t)enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]); 4391 return (hash & 0x3ff); 4392 } 4393 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) | 4394 (((uint16_t)enaddr[5]) << hi_shift[sc->sc_mchash_type]); 4395 4396 return (hash & 0xfff); 4397 } 4398 4399 /* 4400 * 4401 * 4402 */ 4403 static int 4404 wm_rar_count(struct wm_softc *sc) 4405 { 4406 int size; 4407 4408 switch (sc->sc_type) { 4409 case WM_T_ICH8: 4410 size = WM_RAL_TABSIZE_ICH8 -1; 4411 break; 4412 case WM_T_ICH9: 4413 case WM_T_ICH10: 4414 case WM_T_PCH: 4415 size = WM_RAL_TABSIZE_ICH8; 4416 break; 4417 case WM_T_PCH2: 4418 size = WM_RAL_TABSIZE_PCH2; 4419 break; 4420 case WM_T_PCH_LPT: 4421 case WM_T_PCH_SPT: 4422 case WM_T_PCH_CNP: 4423 case WM_T_PCH_TGP: 4424 size = WM_RAL_TABSIZE_PCH_LPT; 4425 break; 4426 case WM_T_82575: 4427 case WM_T_I210: 4428 case WM_T_I211: 4429 size = WM_RAL_TABSIZE_82575; 4430 break; 4431 case WM_T_82576: 4432 case WM_T_82580: 4433 size = WM_RAL_TABSIZE_82576; 4434 break; 4435 case WM_T_I350: 4436 case WM_T_I354: 4437 size = WM_RAL_TABSIZE_I350; 4438 break; 4439 default: 4440 size = WM_RAL_TABSIZE; 4441 } 4442 4443 return size; 4444 } 4445 4446 /* 4447 * wm_set_filter: 4448 * 4449 * Set up the receive filter. 4450 */ 4451 static void 4452 wm_set_filter(struct wm_softc *sc) 4453 { 4454 struct ethercom *ec = &sc->sc_ethercom; 4455 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4456 struct ether_multi *enm; 4457 struct ether_multistep step; 4458 bus_addr_t mta_reg; 4459 uint32_t hash, reg, bit; 4460 int i, size, ralmax, rv; 4461 4462 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 4463 device_xname(sc->sc_dev), __func__)); 4464 KASSERT(mutex_owned(sc->sc_core_lock)); 4465 4466 if (sc->sc_type >= WM_T_82544) 4467 mta_reg = WMREG_CORDOVA_MTA; 4468 else 4469 mta_reg = WMREG_MTA; 4470 4471 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE); 4472 4473 if (sc->sc_if_flags & IFF_BROADCAST) 4474 sc->sc_rctl |= RCTL_BAM; 4475 if (sc->sc_if_flags & IFF_PROMISC) { 4476 sc->sc_rctl |= RCTL_UPE; 4477 ETHER_LOCK(ec); 4478 ec->ec_flags |= ETHER_F_ALLMULTI; 4479 ETHER_UNLOCK(ec); 4480 goto allmulti; 4481 } 4482 4483 /* 4484 * Set the station address in the first RAL slot, and 4485 * clear the remaining slots. 4486 */ 4487 size = wm_rar_count(sc); 4488 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0); 4489 4490 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT) || 4491 (sc->sc_type == WM_T_PCH_CNP) || (sc->sc_type == WM_T_PCH_TGP)) { 4492 i = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM), FWSM_WLOCK_MAC); 4493 switch (i) { 4494 case 0: 4495 /* We can use all entries */ 4496 ralmax = size; 4497 break; 4498 case 1: 4499 /* Only RAR[0] */ 4500 ralmax = 1; 4501 break; 4502 default: 4503 /* Available SHRA + RAR[0] */ 4504 ralmax = i + 1; 4505 } 4506 } else 4507 ralmax = size; 4508 for (i = 1; i < size; i++) { 4509 if (i < ralmax) 4510 wm_set_ral(sc, NULL, i); 4511 } 4512 4513 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 4514 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) 4515 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) 4516 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP) 4517 || (sc->sc_type == WM_T_PCH_TGP)) 4518 size = WM_ICH8_MC_TABSIZE; 4519 else 4520 size = WM_MC_TABSIZE; 4521 /* Clear out the multicast table. */ 4522 for (i = 0; i < size; i++) { 4523 CSR_WRITE(sc, mta_reg + (i << 2), 0); 4524 CSR_WRITE_FLUSH(sc); 4525 } 4526 4527 ETHER_LOCK(ec); 4528 ETHER_FIRST_MULTI(step, ec, enm); 4529 while (enm != NULL) { 4530 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 4531 ec->ec_flags |= ETHER_F_ALLMULTI; 4532 ETHER_UNLOCK(ec); 4533 /* 4534 * We must listen to a range of multicast addresses. 4535 * For now, just accept all multicasts, rather than 4536 * trying to set only those filter bits needed to match 4537 * the range. (At this time, the only use of address 4538 * ranges is for IP multicast routing, for which the 4539 * range is big enough to require all bits set.) 4540 */ 4541 goto allmulti; 4542 } 4543 4544 hash = wm_mchash(sc, enm->enm_addrlo); 4545 4546 reg = (hash >> 5); 4547 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 4548 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) 4549 || (sc->sc_type == WM_T_PCH2) 4550 || (sc->sc_type == WM_T_PCH_LPT) 4551 || (sc->sc_type == WM_T_PCH_SPT) 4552 || (sc->sc_type == WM_T_PCH_CNP) 4553 || (sc->sc_type == WM_T_PCH_TGP)) 4554 reg &= 0x1f; 4555 else 4556 reg &= 0x7f; 4557 bit = hash & 0x1f; 4558 4559 hash = CSR_READ(sc, mta_reg + (reg << 2)); 4560 hash |= 1U << bit; 4561 4562 if (sc->sc_type == WM_T_82544 && (reg & 1) != 0) { 4563 /* 4564 * 82544 Errata 9: Certain register cannot be written 4565 * with particular alignments in PCI-X bus operation 4566 * (FCAH, MTA and VFTA). 4567 */ 4568 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2)); 4569 CSR_WRITE(sc, mta_reg + (reg << 2), hash); 4570 CSR_WRITE_FLUSH(sc); 4571 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit); 4572 CSR_WRITE_FLUSH(sc); 4573 } else { 4574 CSR_WRITE(sc, mta_reg + (reg << 2), hash); 4575 CSR_WRITE_FLUSH(sc); 4576 } 4577 4578 ETHER_NEXT_MULTI(step, enm); 4579 } 4580 ec->ec_flags &= ~ETHER_F_ALLMULTI; 4581 ETHER_UNLOCK(ec); 4582 4583 goto setit; 4584 4585 allmulti: 4586 sc->sc_rctl |= RCTL_MPE; 4587 4588 setit: 4589 if (sc->sc_type >= WM_T_PCH2) { 4590 if (((ec->ec_capabilities & ETHERCAP_JUMBO_MTU) != 0) 4591 && (ifp->if_mtu > ETHERMTU)) 4592 rv = wm_lv_jumbo_workaround_ich8lan(sc, true); 4593 else 4594 rv = wm_lv_jumbo_workaround_ich8lan(sc, false); 4595 if (rv != 0) 4596 device_printf(sc->sc_dev, 4597 "Failed to do workaround for jumbo frame.\n"); 4598 } 4599 4600 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl); 4601 } 4602 4603 /* Reset and init related */ 4604 4605 static void 4606 wm_set_vlan(struct wm_softc *sc) 4607 { 4608 4609 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 4610 device_xname(sc->sc_dev), __func__)); 4611 4612 /* Deal with VLAN enables. */ 4613 if (VLAN_ATTACHED(&sc->sc_ethercom)) 4614 sc->sc_ctrl |= CTRL_VME; 4615 else 4616 sc->sc_ctrl &= ~CTRL_VME; 4617 4618 /* Write the control registers. */ 4619 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 4620 } 4621 4622 static void 4623 wm_set_pcie_completion_timeout(struct wm_softc *sc) 4624 { 4625 uint32_t gcr; 4626 pcireg_t ctrl2; 4627 4628 gcr = CSR_READ(sc, WMREG_GCR); 4629 4630 /* Only take action if timeout value is defaulted to 0 */ 4631 if ((gcr & GCR_CMPL_TMOUT_MASK) != 0) 4632 goto out; 4633 4634 if ((gcr & GCR_CAP_VER2) == 0) { 4635 gcr |= GCR_CMPL_TMOUT_10MS; 4636 goto out; 4637 } 4638 4639 ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4640 sc->sc_pcixe_capoff + PCIE_DCSR2); 4641 ctrl2 |= WM_PCIE_DCSR2_16MS; 4642 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 4643 sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2); 4644 4645 out: 4646 /* Disable completion timeout resend */ 4647 gcr &= ~GCR_CMPL_TMOUT_RESEND; 4648 4649 CSR_WRITE(sc, WMREG_GCR, gcr); 4650 } 4651 4652 void 4653 wm_get_auto_rd_done(struct wm_softc *sc) 4654 { 4655 int i; 4656 4657 /* wait for eeprom to reload */ 4658 switch (sc->sc_type) { 4659 case WM_T_82571: 4660 case WM_T_82572: 4661 case WM_T_82573: 4662 case WM_T_82574: 4663 case WM_T_82583: 4664 case WM_T_82575: 4665 case WM_T_82576: 4666 case WM_T_82580: 4667 case WM_T_I350: 4668 case WM_T_I354: 4669 case WM_T_I210: 4670 case WM_T_I211: 4671 case WM_T_80003: 4672 case WM_T_ICH8: 4673 case WM_T_ICH9: 4674 for (i = 0; i < 10; i++) { 4675 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD) 4676 break; 4677 delay(1000); 4678 } 4679 if (i == 10) { 4680 log(LOG_ERR, "%s: auto read from eeprom failed to " 4681 "complete\n", device_xname(sc->sc_dev)); 4682 } 4683 break; 4684 default: 4685 break; 4686 } 4687 } 4688 4689 void 4690 wm_lan_init_done(struct wm_softc *sc) 4691 { 4692 uint32_t reg = 0; 4693 int i; 4694 4695 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 4696 device_xname(sc->sc_dev), __func__)); 4697 4698 /* Wait for eeprom to reload */ 4699 switch (sc->sc_type) { 4700 case WM_T_ICH10: 4701 case WM_T_PCH: 4702 case WM_T_PCH2: 4703 case WM_T_PCH_LPT: 4704 case WM_T_PCH_SPT: 4705 case WM_T_PCH_CNP: 4706 case WM_T_PCH_TGP: 4707 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) { 4708 reg = CSR_READ(sc, WMREG_STATUS); 4709 if ((reg & STATUS_LAN_INIT_DONE) != 0) 4710 break; 4711 delay(100); 4712 } 4713 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) { 4714 log(LOG_ERR, "%s: %s: lan_init_done failed to " 4715 "complete\n", device_xname(sc->sc_dev), __func__); 4716 } 4717 break; 4718 default: 4719 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev), 4720 __func__); 4721 break; 4722 } 4723 4724 reg &= ~STATUS_LAN_INIT_DONE; 4725 CSR_WRITE(sc, WMREG_STATUS, reg); 4726 } 4727 4728 void 4729 wm_get_cfg_done(struct wm_softc *sc) 4730 { 4731 int mask; 4732 uint32_t reg; 4733 int i; 4734 4735 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 4736 device_xname(sc->sc_dev), __func__)); 4737 4738 /* Wait for eeprom to reload */ 4739 switch (sc->sc_type) { 4740 case WM_T_82542_2_0: 4741 case WM_T_82542_2_1: 4742 /* null */ 4743 break; 4744 case WM_T_82543: 4745 case WM_T_82544: 4746 case WM_T_82540: 4747 case WM_T_82545: 4748 case WM_T_82545_3: 4749 case WM_T_82546: 4750 case WM_T_82546_3: 4751 case WM_T_82541: 4752 case WM_T_82541_2: 4753 case WM_T_82547: 4754 case WM_T_82547_2: 4755 case WM_T_82573: 4756 case WM_T_82574: 4757 case WM_T_82583: 4758 /* generic */ 4759 delay(10*1000); 4760 break; 4761 case WM_T_80003: 4762 case WM_T_82571: 4763 case WM_T_82572: 4764 case WM_T_82575: 4765 case WM_T_82576: 4766 case WM_T_82580: 4767 case WM_T_I350: 4768 case WM_T_I354: 4769 case WM_T_I210: 4770 case WM_T_I211: 4771 if (sc->sc_type == WM_T_82571) { 4772 /* Only 82571 shares port 0 */ 4773 mask = EEMNGCTL_CFGDONE_0; 4774 } else 4775 mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid; 4776 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) { 4777 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask) 4778 break; 4779 delay(1000); 4780 } 4781 if (i >= WM_PHY_CFG_TIMEOUT) 4782 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s failed\n", 4783 device_xname(sc->sc_dev), __func__)); 4784 break; 4785 case WM_T_ICH8: 4786 case WM_T_ICH9: 4787 case WM_T_ICH10: 4788 case WM_T_PCH: 4789 case WM_T_PCH2: 4790 case WM_T_PCH_LPT: 4791 case WM_T_PCH_SPT: 4792 case WM_T_PCH_CNP: 4793 case WM_T_PCH_TGP: 4794 delay(10*1000); 4795 if (sc->sc_type >= WM_T_ICH10) 4796 wm_lan_init_done(sc); 4797 else 4798 wm_get_auto_rd_done(sc); 4799 4800 /* Clear PHY Reset Asserted bit */ 4801 reg = CSR_READ(sc, WMREG_STATUS); 4802 if ((reg & STATUS_PHYRA) != 0) 4803 CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA); 4804 break; 4805 default: 4806 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev), 4807 __func__); 4808 break; 4809 } 4810 } 4811 4812 int 4813 wm_phy_post_reset(struct wm_softc *sc) 4814 { 4815 device_t dev = sc->sc_dev; 4816 uint16_t reg; 4817 int rv = 0; 4818 4819 /* This function is only for ICH8 and newer. */ 4820 if (sc->sc_type < WM_T_ICH8) 4821 return 0; 4822 4823 if (wm_phy_resetisblocked(sc)) { 4824 /* XXX */ 4825 device_printf(dev, "PHY is blocked\n"); 4826 return -1; 4827 } 4828 4829 /* Allow time for h/w to get to quiescent state after reset */ 4830 delay(10*1000); 4831 4832 /* Perform any necessary post-reset workarounds */ 4833 if (sc->sc_type == WM_T_PCH) 4834 rv = wm_hv_phy_workarounds_ich8lan(sc); 4835 else if (sc->sc_type == WM_T_PCH2) 4836 rv = wm_lv_phy_workarounds_ich8lan(sc); 4837 if (rv != 0) 4838 return rv; 4839 4840 /* Clear the host wakeup bit after lcd reset */ 4841 if (sc->sc_type >= WM_T_PCH) { 4842 wm_gmii_hv_readreg(dev, 2, BM_PORT_GEN_CFG, ®); 4843 reg &= ~BM_WUC_HOST_WU_BIT; 4844 wm_gmii_hv_writereg(dev, 2, BM_PORT_GEN_CFG, reg); 4845 } 4846 4847 /* Configure the LCD with the extended configuration region in NVM */ 4848 if ((rv = wm_init_lcd_from_nvm(sc)) != 0) 4849 return rv; 4850 4851 /* Configure the LCD with the OEM bits in NVM */ 4852 rv = wm_oem_bits_config_ich8lan(sc, true); 4853 4854 if (sc->sc_type == WM_T_PCH2) { 4855 /* Ungate automatic PHY configuration on non-managed 82579 */ 4856 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) { 4857 delay(10 * 1000); 4858 wm_gate_hw_phy_config_ich8lan(sc, false); 4859 } 4860 /* Set EEE LPI Update Timer to 200usec */ 4861 rv = sc->phy.acquire(sc); 4862 if (rv) 4863 return rv; 4864 rv = wm_write_emi_reg_locked(dev, 4865 I82579_LPI_UPDATE_TIMER, 0x1387); 4866 sc->phy.release(sc); 4867 } 4868 4869 return rv; 4870 } 4871 4872 /* Only for PCH and newer */ 4873 static int 4874 wm_write_smbus_addr(struct wm_softc *sc) 4875 { 4876 uint32_t strap, freq; 4877 uint16_t phy_data; 4878 int rv; 4879 4880 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 4881 device_xname(sc->sc_dev), __func__)); 4882 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP); 4883 4884 strap = CSR_READ(sc, WMREG_STRAP); 4885 freq = __SHIFTOUT(strap, STRAP_FREQ); 4886 4887 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_SMB_ADDR, &phy_data); 4888 if (rv != 0) 4889 return rv; 4890 4891 phy_data &= ~HV_SMB_ADDR_ADDR; 4892 phy_data |= __SHIFTOUT(strap, STRAP_SMBUSADDR); 4893 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 4894 4895 if (sc->sc_phytype == WMPHY_I217) { 4896 /* Restore SMBus frequency */ 4897 if (freq --) { 4898 phy_data &= ~(HV_SMB_ADDR_FREQ_LOW 4899 | HV_SMB_ADDR_FREQ_HIGH); 4900 phy_data |= __SHIFTIN((freq & 0x01) != 0, 4901 HV_SMB_ADDR_FREQ_LOW); 4902 phy_data |= __SHIFTIN((freq & 0x02) != 0, 4903 HV_SMB_ADDR_FREQ_HIGH); 4904 } else 4905 DPRINTF(sc, WM_DEBUG_INIT, 4906 ("%s: %s Unsupported SMB frequency in PHY\n", 4907 device_xname(sc->sc_dev), __func__)); 4908 } 4909 4910 return wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_SMB_ADDR, 4911 phy_data); 4912 } 4913 4914 static int 4915 wm_init_lcd_from_nvm(struct wm_softc *sc) 4916 { 4917 uint32_t extcnfctr, sw_cfg_mask, cnf_size, word_addr, i, reg; 4918 uint16_t phy_page = 0; 4919 int rv = 0; 4920 4921 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 4922 device_xname(sc->sc_dev), __func__)); 4923 4924 switch (sc->sc_type) { 4925 case WM_T_ICH8: 4926 if ((sc->sc_phytype == WMPHY_UNKNOWN) 4927 || (sc->sc_phytype != WMPHY_IGP_3)) 4928 return 0; 4929 4930 if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_AMT) 4931 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_LAN)) { 4932 sw_cfg_mask = FEXTNVM_SW_CONFIG; 4933 break; 4934 } 4935 /* FALLTHROUGH */ 4936 case WM_T_PCH: 4937 case WM_T_PCH2: 4938 case WM_T_PCH_LPT: 4939 case WM_T_PCH_SPT: 4940 case WM_T_PCH_CNP: 4941 case WM_T_PCH_TGP: 4942 sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M; 4943 break; 4944 default: 4945 return 0; 4946 } 4947 4948 if ((rv = sc->phy.acquire(sc)) != 0) 4949 return rv; 4950 4951 reg = CSR_READ(sc, WMREG_FEXTNVM); 4952 if ((reg & sw_cfg_mask) == 0) 4953 goto release; 4954 4955 /* 4956 * Make sure HW does not configure LCD from PHY extended configuration 4957 * before SW configuration 4958 */ 4959 extcnfctr = CSR_READ(sc, WMREG_EXTCNFCTR); 4960 if ((sc->sc_type < WM_T_PCH2) 4961 && ((extcnfctr & EXTCNFCTR_PCIE_WRITE_ENABLE) != 0)) 4962 goto release; 4963 4964 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s: Configure LCD by software\n", 4965 device_xname(sc->sc_dev), __func__)); 4966 /* word_addr is in DWORD */ 4967 word_addr = __SHIFTOUT(extcnfctr, EXTCNFCTR_EXT_CNF_POINTER) << 1; 4968 4969 reg = CSR_READ(sc, WMREG_EXTCNFSIZE); 4970 cnf_size = __SHIFTOUT(reg, EXTCNFSIZE_LENGTH); 4971 if (cnf_size == 0) 4972 goto release; 4973 4974 if (((sc->sc_type == WM_T_PCH) 4975 && ((extcnfctr & EXTCNFCTR_OEM_WRITE_ENABLE) == 0)) 4976 || (sc->sc_type > WM_T_PCH)) { 4977 /* 4978 * HW configures the SMBus address and LEDs when the OEM and 4979 * LCD Write Enable bits are set in the NVM. When both NVM bits 4980 * are cleared, SW will configure them instead. 4981 */ 4982 DPRINTF(sc, WM_DEBUG_INIT, 4983 ("%s: %s: Configure SMBus and LED\n", 4984 device_xname(sc->sc_dev), __func__)); 4985 if ((rv = wm_write_smbus_addr(sc)) != 0) 4986 goto release; 4987 4988 reg = CSR_READ(sc, WMREG_LEDCTL); 4989 rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_LED_CONFIG, 4990 (uint16_t)reg); 4991 if (rv != 0) 4992 goto release; 4993 } 4994 4995 /* Configure LCD from extended configuration region. */ 4996 for (i = 0; i < cnf_size; i++) { 4997 uint16_t reg_data, reg_addr; 4998 4999 if (wm_nvm_read(sc, (word_addr + i * 2), 1, ®_data) != 0) 5000 goto release; 5001 5002 if (wm_nvm_read(sc, (word_addr + i * 2 + 1), 1, ®_addr) !=0) 5003 goto release; 5004 5005 if (reg_addr == IGPHY_PAGE_SELECT) 5006 phy_page = reg_data; 5007 5008 reg_addr &= IGPHY_MAXREGADDR; 5009 reg_addr |= phy_page; 5010 5011 KASSERT(sc->phy.writereg_locked != NULL); 5012 rv = sc->phy.writereg_locked(sc->sc_dev, 1, reg_addr, 5013 reg_data); 5014 } 5015 5016 release: 5017 sc->phy.release(sc); 5018 return rv; 5019 } 5020 5021 /* 5022 * wm_oem_bits_config_ich8lan - SW-based LCD Configuration 5023 * @sc: pointer to the HW structure 5024 * @d0_state: boolean if entering d0 or d3 device state 5025 * 5026 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 5027 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 5028 * in NVM determines whether HW should configure LPLU and Gbe Disable. 5029 */ 5030 int 5031 wm_oem_bits_config_ich8lan(struct wm_softc *sc, bool d0_state) 5032 { 5033 uint32_t mac_reg; 5034 uint16_t oem_reg; 5035 int rv; 5036 5037 if (sc->sc_type < WM_T_PCH) 5038 return 0; 5039 5040 rv = sc->phy.acquire(sc); 5041 if (rv != 0) 5042 return rv; 5043 5044 if (sc->sc_type == WM_T_PCH) { 5045 mac_reg = CSR_READ(sc, WMREG_EXTCNFCTR); 5046 if ((mac_reg & EXTCNFCTR_OEM_WRITE_ENABLE) != 0) 5047 goto release; 5048 } 5049 5050 mac_reg = CSR_READ(sc, WMREG_FEXTNVM); 5051 if ((mac_reg & FEXTNVM_SW_CONFIG_ICH8M) == 0) 5052 goto release; 5053 5054 mac_reg = CSR_READ(sc, WMREG_PHY_CTRL); 5055 5056 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 1, HV_OEM_BITS, &oem_reg); 5057 if (rv != 0) 5058 goto release; 5059 oem_reg &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU); 5060 5061 if (d0_state) { 5062 if ((mac_reg & PHY_CTRL_GBE_DIS) != 0) 5063 oem_reg |= HV_OEM_BITS_A1KDIS; 5064 if ((mac_reg & PHY_CTRL_D0A_LPLU) != 0) 5065 oem_reg |= HV_OEM_BITS_LPLU; 5066 } else { 5067 if ((mac_reg & (PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS)) 5068 != 0) 5069 oem_reg |= HV_OEM_BITS_A1KDIS; 5070 if ((mac_reg & (PHY_CTRL_D0A_LPLU | PHY_CTRL_NOND0A_LPLU)) 5071 != 0) 5072 oem_reg |= HV_OEM_BITS_LPLU; 5073 } 5074 5075 /* Set Restart auto-neg to activate the bits */ 5076 if ((d0_state || (sc->sc_type != WM_T_PCH)) 5077 && (wm_phy_resetisblocked(sc) == false)) 5078 oem_reg |= HV_OEM_BITS_ANEGNOW; 5079 5080 rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_OEM_BITS, oem_reg); 5081 5082 release: 5083 sc->phy.release(sc); 5084 5085 return rv; 5086 } 5087 5088 /* Init hardware bits */ 5089 void 5090 wm_initialize_hardware_bits(struct wm_softc *sc) 5091 { 5092 uint32_t tarc0, tarc1, reg; 5093 5094 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 5095 device_xname(sc->sc_dev), __func__)); 5096 5097 /* For 82571 variant, 80003 and ICHs */ 5098 if (((sc->sc_type >= WM_T_82571) && (sc->sc_type <= WM_T_82583)) 5099 || WM_IS_ICHPCH(sc)) { 5100 5101 /* Transmit Descriptor Control 0 */ 5102 reg = CSR_READ(sc, WMREG_TXDCTL(0)); 5103 reg |= TXDCTL_COUNT_DESC; 5104 CSR_WRITE(sc, WMREG_TXDCTL(0), reg); 5105 5106 /* Transmit Descriptor Control 1 */ 5107 reg = CSR_READ(sc, WMREG_TXDCTL(1)); 5108 reg |= TXDCTL_COUNT_DESC; 5109 CSR_WRITE(sc, WMREG_TXDCTL(1), reg); 5110 5111 /* TARC0 */ 5112 tarc0 = CSR_READ(sc, WMREG_TARC0); 5113 switch (sc->sc_type) { 5114 case WM_T_82571: 5115 case WM_T_82572: 5116 case WM_T_82573: 5117 case WM_T_82574: 5118 case WM_T_82583: 5119 case WM_T_80003: 5120 /* Clear bits 30..27 */ 5121 tarc0 &= ~__BITS(30, 27); 5122 break; 5123 default: 5124 break; 5125 } 5126 5127 switch (sc->sc_type) { 5128 case WM_T_82571: 5129 case WM_T_82572: 5130 tarc0 |= __BITS(26, 23); /* TARC0 bits 23-26 */ 5131 5132 tarc1 = CSR_READ(sc, WMREG_TARC1); 5133 tarc1 &= ~__BITS(30, 29); /* Clear bits 30 and 29 */ 5134 tarc1 |= __BITS(26, 24); /* TARC1 bits 26-24 */ 5135 /* 8257[12] Errata No.7 */ 5136 tarc1 |= __BIT(22); /* TARC1 bits 22 */ 5137 5138 /* TARC1 bit 28 */ 5139 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0) 5140 tarc1 &= ~__BIT(28); 5141 else 5142 tarc1 |= __BIT(28); 5143 CSR_WRITE(sc, WMREG_TARC1, tarc1); 5144 5145 /* 5146 * 8257[12] Errata No.13 5147 * Disable Dyamic Clock Gating. 5148 */ 5149 reg = CSR_READ(sc, WMREG_CTRL_EXT); 5150 reg &= ~CTRL_EXT_DMA_DYN_CLK; 5151 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 5152 break; 5153 case WM_T_82573: 5154 case WM_T_82574: 5155 case WM_T_82583: 5156 if ((sc->sc_type == WM_T_82574) 5157 || (sc->sc_type == WM_T_82583)) 5158 tarc0 |= __BIT(26); /* TARC0 bit 26 */ 5159 5160 /* Extended Device Control */ 5161 reg = CSR_READ(sc, WMREG_CTRL_EXT); 5162 reg &= ~__BIT(23); /* Clear bit 23 */ 5163 reg |= __BIT(22); /* Set bit 22 */ 5164 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 5165 5166 /* Device Control */ 5167 sc->sc_ctrl &= ~__BIT(29); /* Clear bit 29 */ 5168 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 5169 5170 /* PCIe Control Register */ 5171 /* 5172 * 82573 Errata (unknown). 5173 * 5174 * 82574 Errata 25 and 82583 Errata 12 5175 * "Dropped Rx Packets": 5176 * NVM Image Version 2.1.4 and newer has no this bug. 5177 */ 5178 reg = CSR_READ(sc, WMREG_GCR); 5179 reg |= GCR_L1_ACT_WITHOUT_L0S_RX; 5180 CSR_WRITE(sc, WMREG_GCR, reg); 5181 5182 if ((sc->sc_type == WM_T_82574) 5183 || (sc->sc_type == WM_T_82583)) { 5184 /* 5185 * Document says this bit must be set for 5186 * proper operation. 5187 */ 5188 reg = CSR_READ(sc, WMREG_GCR); 5189 reg |= __BIT(22); 5190 CSR_WRITE(sc, WMREG_GCR, reg); 5191 5192 /* 5193 * Apply workaround for hardware errata 5194 * documented in errata docs Fixes issue where 5195 * some error prone or unreliable PCIe 5196 * completions are occurring, particularly 5197 * with ASPM enabled. Without fix, issue can 5198 * cause Tx timeouts. 5199 */ 5200 reg = CSR_READ(sc, WMREG_GCR2); 5201 reg |= __BIT(0); 5202 CSR_WRITE(sc, WMREG_GCR2, reg); 5203 } 5204 break; 5205 case WM_T_80003: 5206 /* TARC0 */ 5207 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER) 5208 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) 5209 tarc0 &= ~__BIT(20); /* Clear bits 20 */ 5210 5211 /* TARC1 bit 28 */ 5212 tarc1 = CSR_READ(sc, WMREG_TARC1); 5213 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0) 5214 tarc1 &= ~__BIT(28); 5215 else 5216 tarc1 |= __BIT(28); 5217 CSR_WRITE(sc, WMREG_TARC1, tarc1); 5218 break; 5219 case WM_T_ICH8: 5220 case WM_T_ICH9: 5221 case WM_T_ICH10: 5222 case WM_T_PCH: 5223 case WM_T_PCH2: 5224 case WM_T_PCH_LPT: 5225 case WM_T_PCH_SPT: 5226 case WM_T_PCH_CNP: 5227 case WM_T_PCH_TGP: 5228 /* TARC0 */ 5229 if (sc->sc_type == WM_T_ICH8) { 5230 /* Set TARC0 bits 29 and 28 */ 5231 tarc0 |= __BITS(29, 28); 5232 } else if (sc->sc_type == WM_T_PCH_SPT) { 5233 tarc0 |= __BIT(29); 5234 /* 5235 * Drop bit 28. From Linux. 5236 * See I218/I219 spec update 5237 * "5. Buffer Overrun While the I219 is 5238 * Processing DMA Transactions" 5239 */ 5240 tarc0 &= ~__BIT(28); 5241 } 5242 /* Set TARC0 bits 23,24,26,27 */ 5243 tarc0 |= __BITS(27, 26) | __BITS(24, 23); 5244 5245 /* CTRL_EXT */ 5246 reg = CSR_READ(sc, WMREG_CTRL_EXT); 5247 reg |= __BIT(22); /* Set bit 22 */ 5248 /* 5249 * Enable PHY low-power state when MAC is at D3 5250 * w/o WoL 5251 */ 5252 if (sc->sc_type >= WM_T_PCH) 5253 reg |= CTRL_EXT_PHYPDEN; 5254 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 5255 5256 /* TARC1 */ 5257 tarc1 = CSR_READ(sc, WMREG_TARC1); 5258 /* bit 28 */ 5259 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0) 5260 tarc1 &= ~__BIT(28); 5261 else 5262 tarc1 |= __BIT(28); 5263 tarc1 |= __BIT(24) | __BIT(26) | __BIT(30); 5264 CSR_WRITE(sc, WMREG_TARC1, tarc1); 5265 5266 /* Device Status */ 5267 if (sc->sc_type == WM_T_ICH8) { 5268 reg = CSR_READ(sc, WMREG_STATUS); 5269 reg &= ~__BIT(31); 5270 CSR_WRITE(sc, WMREG_STATUS, reg); 5271 5272 } 5273 5274 /* IOSFPC */ 5275 if (sc->sc_type == WM_T_PCH_SPT) { 5276 reg = CSR_READ(sc, WMREG_IOSFPC); 5277 reg |= RCTL_RDMTS_HEX; /* XXX RTCL bit? */ 5278 CSR_WRITE(sc, WMREG_IOSFPC, reg); 5279 } 5280 /* 5281 * Work-around descriptor data corruption issue during 5282 * NFS v2 UDP traffic, just disable the NFS filtering 5283 * capability. 5284 */ 5285 reg = CSR_READ(sc, WMREG_RFCTL); 5286 reg |= WMREG_RFCTL_NFSWDIS | WMREG_RFCTL_NFSRDIS; 5287 CSR_WRITE(sc, WMREG_RFCTL, reg); 5288 break; 5289 default: 5290 break; 5291 } 5292 CSR_WRITE(sc, WMREG_TARC0, tarc0); 5293 5294 switch (sc->sc_type) { 5295 case WM_T_82571: 5296 case WM_T_82572: 5297 case WM_T_82573: 5298 case WM_T_80003: 5299 case WM_T_ICH8: 5300 /* 5301 * 8257[12] Errata No.52, 82573 Errata No.43 and some 5302 * others to avoid RSS Hash Value bug. 5303 */ 5304 reg = CSR_READ(sc, WMREG_RFCTL); 5305 reg |= WMREG_RFCTL_NEWIPV6EXDIS |WMREG_RFCTL_IPV6EXDIS; 5306 CSR_WRITE(sc, WMREG_RFCTL, reg); 5307 break; 5308 case WM_T_82574: 5309 /* Use extened Rx descriptor. */ 5310 reg = CSR_READ(sc, WMREG_RFCTL); 5311 reg |= WMREG_RFCTL_EXSTEN; 5312 CSR_WRITE(sc, WMREG_RFCTL, reg); 5313 break; 5314 default: 5315 break; 5316 } 5317 } else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)) { 5318 /* 5319 * 82575 Errata XXX, 82576 Errata 46, 82580 Errata 24, 5320 * I350 Errata 37, I210 Errata No. 31 and I211 Errata No. 11: 5321 * "Certain Malformed IPv6 Extension Headers are Not Processed 5322 * Correctly by the Device" 5323 * 5324 * I354(C2000) Errata AVR53: 5325 * "Malformed IPv6 Extension Headers May Result in LAN Device 5326 * Hang" 5327 */ 5328 reg = CSR_READ(sc, WMREG_RFCTL); 5329 reg |= WMREG_RFCTL_IPV6EXDIS; 5330 CSR_WRITE(sc, WMREG_RFCTL, reg); 5331 } 5332 } 5333 5334 static uint32_t 5335 wm_rxpbs_adjust_82580(uint32_t val) 5336 { 5337 uint32_t rv = 0; 5338 5339 if (val < __arraycount(wm_82580_rxpbs_table)) 5340 rv = wm_82580_rxpbs_table[val]; 5341 5342 return rv; 5343 } 5344 5345 /* 5346 * wm_reset_phy: 5347 * 5348 * generic PHY reset function. 5349 * Same as e1000_phy_hw_reset_generic() 5350 */ 5351 static int 5352 wm_reset_phy(struct wm_softc *sc) 5353 { 5354 uint32_t reg; 5355 int rv; 5356 5357 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 5358 device_xname(sc->sc_dev), __func__)); 5359 if (wm_phy_resetisblocked(sc)) 5360 return -1; 5361 5362 rv = sc->phy.acquire(sc); 5363 if (rv) { 5364 device_printf(sc->sc_dev, "%s: failed to acquire phy: %d\n", 5365 __func__, rv); 5366 return rv; 5367 } 5368 5369 reg = CSR_READ(sc, WMREG_CTRL); 5370 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET); 5371 CSR_WRITE_FLUSH(sc); 5372 5373 delay(sc->phy.reset_delay_us); 5374 5375 CSR_WRITE(sc, WMREG_CTRL, reg); 5376 CSR_WRITE_FLUSH(sc); 5377 5378 delay(150); 5379 5380 sc->phy.release(sc); 5381 5382 wm_get_cfg_done(sc); 5383 wm_phy_post_reset(sc); 5384 5385 return 0; 5386 } 5387 5388 /* 5389 * wm_flush_desc_rings - remove all descriptors from the descriptor rings. 5390 * 5391 * In i219, the descriptor rings must be emptied before resetting the HW 5392 * or before changing the device state to D3 during runtime (runtime PM). 5393 * 5394 * Failure to do this will cause the HW to enter a unit hang state which can 5395 * only be released by PCI reset on the device. 5396 * 5397 * I219 does not use multiqueue, so it is enough to check sc->sc_queue[0] only. 5398 */ 5399 static void 5400 wm_flush_desc_rings(struct wm_softc *sc) 5401 { 5402 pcireg_t preg; 5403 uint32_t reg; 5404 struct wm_txqueue *txq; 5405 wiseman_txdesc_t *txd; 5406 int nexttx; 5407 uint32_t rctl; 5408 5409 KASSERT(IFNET_LOCKED(&sc->sc_ethercom.ec_if)); 5410 5411 /* First, disable MULR fix in FEXTNVM11 */ 5412 reg = CSR_READ(sc, WMREG_FEXTNVM11); 5413 reg |= FEXTNVM11_DIS_MULRFIX; 5414 CSR_WRITE(sc, WMREG_FEXTNVM11, reg); 5415 5416 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS); 5417 reg = CSR_READ(sc, WMREG_TDLEN(0)); 5418 if (((preg & DESCRING_STATUS_FLUSH_REQ) == 0) || (reg == 0)) 5419 return; 5420 5421 /* 5422 * Remove all descriptors from the tx_ring. 5423 * 5424 * We want to clear all pending descriptors from the TX ring. Zeroing 5425 * happens when the HW reads the regs. We assign the ring itself as 5426 * the data of the next descriptor. We don't care about the data we are 5427 * about to reset the HW. 5428 */ 5429 #ifdef WM_DEBUG 5430 device_printf(sc->sc_dev, "Need TX flush (reg = %08x)\n", preg); 5431 #endif 5432 reg = CSR_READ(sc, WMREG_TCTL); 5433 CSR_WRITE(sc, WMREG_TCTL, reg | TCTL_EN); 5434 5435 txq = &sc->sc_queue[0].wmq_txq; 5436 nexttx = txq->txq_next; 5437 txd = &txq->txq_descs[nexttx]; 5438 wm_set_dma_addr(&txd->wtx_addr, txq->txq_desc_dma); 5439 txd->wtx_cmdlen = htole32(WTX_CMD_IFCS | 512); 5440 txd->wtx_fields.wtxu_status = 0; 5441 txd->wtx_fields.wtxu_options = 0; 5442 txd->wtx_fields.wtxu_vlan = 0; 5443 5444 wm_cdtxsync(txq, 0, WM_NTXDESC(txq), 5445 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5446 5447 txq->txq_next = WM_NEXTTX(txq, txq->txq_next); 5448 CSR_WRITE(sc, WMREG_TDT(0), txq->txq_next); 5449 CSR_WRITE_FLUSH(sc); 5450 delay(250); 5451 5452 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS); 5453 if ((preg & DESCRING_STATUS_FLUSH_REQ) == 0) 5454 return; 5455 5456 /* 5457 * Mark all descriptors in the RX ring as consumed and disable the 5458 * rx ring. 5459 */ 5460 #ifdef WM_DEBUG 5461 device_printf(sc->sc_dev, "Need RX flush (reg = %08x)\n", preg); 5462 #endif 5463 rctl = CSR_READ(sc, WMREG_RCTL); 5464 CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN); 5465 CSR_WRITE_FLUSH(sc); 5466 delay(150); 5467 5468 reg = CSR_READ(sc, WMREG_RXDCTL(0)); 5469 /* Zero the lower 14 bits (prefetch and host thresholds) */ 5470 reg &= 0xffffc000; 5471 /* 5472 * Update thresholds: prefetch threshold to 31, host threshold 5473 * to 1 and make sure the granularity is "descriptors" and not 5474 * "cache lines" 5475 */ 5476 reg |= (0x1f | (1 << 8) | RXDCTL_GRAN); 5477 CSR_WRITE(sc, WMREG_RXDCTL(0), reg); 5478 5479 /* Momentarily enable the RX ring for the changes to take effect */ 5480 CSR_WRITE(sc, WMREG_RCTL, rctl | RCTL_EN); 5481 CSR_WRITE_FLUSH(sc); 5482 delay(150); 5483 CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN); 5484 } 5485 5486 /* 5487 * wm_reset: 5488 * 5489 * Reset the i82542 chip. 5490 */ 5491 static void 5492 wm_reset(struct wm_softc *sc) 5493 { 5494 int phy_reset = 0; 5495 int i, error = 0; 5496 uint32_t reg; 5497 uint16_t kmreg; 5498 int rv; 5499 5500 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 5501 device_xname(sc->sc_dev), __func__)); 5502 KASSERT(sc->sc_type != 0); 5503 5504 /* 5505 * Allocate on-chip memory according to the MTU size. 5506 * The Packet Buffer Allocation register must be written 5507 * before the chip is reset. 5508 */ 5509 switch (sc->sc_type) { 5510 case WM_T_82547: 5511 case WM_T_82547_2: 5512 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ? 5513 PBA_22K : PBA_30K; 5514 for (i = 0; i < sc->sc_nqueues; i++) { 5515 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 5516 txq->txq_fifo_head = 0; 5517 txq->txq_fifo_addr = sc->sc_pba << PBA_ADDR_SHIFT; 5518 txq->txq_fifo_size = 5519 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT; 5520 txq->txq_fifo_stall = 0; 5521 } 5522 break; 5523 case WM_T_82571: 5524 case WM_T_82572: 5525 case WM_T_82575: /* XXX need special handing for jumbo frames */ 5526 case WM_T_80003: 5527 sc->sc_pba = PBA_32K; 5528 break; 5529 case WM_T_82573: 5530 sc->sc_pba = PBA_12K; 5531 break; 5532 case WM_T_82574: 5533 case WM_T_82583: 5534 sc->sc_pba = PBA_20K; 5535 break; 5536 case WM_T_82576: 5537 sc->sc_pba = CSR_READ(sc, WMREG_RXPBS); 5538 sc->sc_pba &= RXPBS_SIZE_MASK_82576; 5539 break; 5540 case WM_T_82580: 5541 case WM_T_I350: 5542 case WM_T_I354: 5543 sc->sc_pba = wm_rxpbs_adjust_82580(CSR_READ(sc, WMREG_RXPBS)); 5544 break; 5545 case WM_T_I210: 5546 case WM_T_I211: 5547 sc->sc_pba = PBA_34K; 5548 break; 5549 case WM_T_ICH8: 5550 /* Workaround for a bit corruption issue in FIFO memory */ 5551 sc->sc_pba = PBA_8K; 5552 CSR_WRITE(sc, WMREG_PBS, PBA_16K); 5553 break; 5554 case WM_T_ICH9: 5555 case WM_T_ICH10: 5556 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 4096 ? 5557 PBA_14K : PBA_10K; 5558 break; 5559 case WM_T_PCH: 5560 case WM_T_PCH2: /* XXX 14K? */ 5561 case WM_T_PCH_LPT: 5562 case WM_T_PCH_SPT: 5563 case WM_T_PCH_CNP: 5564 case WM_T_PCH_TGP: 5565 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 1500 ? 5566 PBA_12K : PBA_26K; 5567 break; 5568 default: 5569 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ? 5570 PBA_40K : PBA_48K; 5571 break; 5572 } 5573 /* 5574 * Only old or non-multiqueue devices have the PBA register 5575 * XXX Need special handling for 82575. 5576 */ 5577 if (((sc->sc_flags & WM_F_NEWQUEUE) == 0) 5578 || (sc->sc_type == WM_T_82575)) 5579 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba); 5580 5581 /* Prevent the PCI-E bus from sticking */ 5582 if (sc->sc_flags & WM_F_PCIE) { 5583 int timeout = 800; 5584 5585 sc->sc_ctrl |= CTRL_GIO_M_DIS; 5586 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 5587 5588 while (timeout--) { 5589 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA) 5590 == 0) 5591 break; 5592 delay(100); 5593 } 5594 if (timeout == 0) 5595 device_printf(sc->sc_dev, 5596 "failed to disable bus mastering\n"); 5597 } 5598 5599 /* Set the completion timeout for interface */ 5600 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576) 5601 || (sc->sc_type == WM_T_82580) 5602 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354) 5603 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) 5604 wm_set_pcie_completion_timeout(sc); 5605 5606 /* Clear interrupt */ 5607 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 5608 if (wm_is_using_msix(sc)) { 5609 if (sc->sc_type != WM_T_82574) { 5610 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU); 5611 CSR_WRITE(sc, WMREG_EIAC, 0); 5612 } else 5613 CSR_WRITE(sc, WMREG_EIAC_82574, 0); 5614 } 5615 5616 /* Stop the transmit and receive processes. */ 5617 CSR_WRITE(sc, WMREG_RCTL, 0); 5618 sc->sc_rctl &= ~RCTL_EN; 5619 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP); 5620 CSR_WRITE_FLUSH(sc); 5621 5622 /* XXX set_tbi_sbp_82543() */ 5623 5624 delay(10*1000); 5625 5626 /* Must acquire the MDIO ownership before MAC reset */ 5627 switch (sc->sc_type) { 5628 case WM_T_82573: 5629 case WM_T_82574: 5630 case WM_T_82583: 5631 error = wm_get_hw_semaphore_82573(sc); 5632 break; 5633 default: 5634 break; 5635 } 5636 5637 /* 5638 * 82541 Errata 29? & 82547 Errata 28? 5639 * See also the description about PHY_RST bit in CTRL register 5640 * in 8254x_GBe_SDM.pdf. 5641 */ 5642 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) { 5643 CSR_WRITE(sc, WMREG_CTRL, 5644 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET); 5645 CSR_WRITE_FLUSH(sc); 5646 delay(5000); 5647 } 5648 5649 switch (sc->sc_type) { 5650 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */ 5651 case WM_T_82541: 5652 case WM_T_82541_2: 5653 case WM_T_82547: 5654 case WM_T_82547_2: 5655 /* 5656 * On some chipsets, a reset through a memory-mapped write 5657 * cycle can cause the chip to reset before completing the 5658 * write cycle. This causes major headache that can be avoided 5659 * by issuing the reset via indirect register writes through 5660 * I/O space. 5661 * 5662 * So, if we successfully mapped the I/O BAR at attach time, 5663 * use that. Otherwise, try our luck with a memory-mapped 5664 * reset. 5665 */ 5666 if (sc->sc_flags & WM_F_IOH_VALID) 5667 wm_io_write(sc, WMREG_CTRL, CTRL_RST); 5668 else 5669 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST); 5670 break; 5671 case WM_T_82545_3: 5672 case WM_T_82546_3: 5673 /* Use the shadow control register on these chips. */ 5674 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST); 5675 break; 5676 case WM_T_80003: 5677 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST; 5678 if (sc->phy.acquire(sc) != 0) 5679 break; 5680 CSR_WRITE(sc, WMREG_CTRL, reg); 5681 sc->phy.release(sc); 5682 break; 5683 case WM_T_ICH8: 5684 case WM_T_ICH9: 5685 case WM_T_ICH10: 5686 case WM_T_PCH: 5687 case WM_T_PCH2: 5688 case WM_T_PCH_LPT: 5689 case WM_T_PCH_SPT: 5690 case WM_T_PCH_CNP: 5691 case WM_T_PCH_TGP: 5692 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST; 5693 if (wm_phy_resetisblocked(sc) == false) { 5694 /* 5695 * Gate automatic PHY configuration by hardware on 5696 * non-managed 82579 5697 */ 5698 if ((sc->sc_type == WM_T_PCH2) 5699 && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) 5700 == 0)) 5701 wm_gate_hw_phy_config_ich8lan(sc, true); 5702 5703 reg |= CTRL_PHY_RESET; 5704 phy_reset = 1; 5705 } else 5706 device_printf(sc->sc_dev, "XXX reset is blocked!!!\n"); 5707 if (sc->phy.acquire(sc) != 0) 5708 break; 5709 CSR_WRITE(sc, WMREG_CTRL, reg); 5710 /* Don't insert a completion barrier when reset */ 5711 delay(20*1000); 5712 /* 5713 * The EXTCNFCTR_MDIO_SW_OWNERSHIP bit is cleared by the reset, 5714 * so don't use sc->phy.release(sc). Release sc_ich_phymtx 5715 * only. See also wm_get_swflag_ich8lan(). 5716 */ 5717 mutex_exit(sc->sc_ich_phymtx); 5718 break; 5719 case WM_T_82580: 5720 case WM_T_I350: 5721 case WM_T_I354: 5722 case WM_T_I210: 5723 case WM_T_I211: 5724 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST); 5725 if (sc->sc_pcidevid != PCI_PRODUCT_INTEL_DH89XXCC_SGMII) 5726 CSR_WRITE_FLUSH(sc); 5727 delay(5000); 5728 break; 5729 case WM_T_82542_2_0: 5730 case WM_T_82542_2_1: 5731 case WM_T_82543: 5732 case WM_T_82540: 5733 case WM_T_82545: 5734 case WM_T_82546: 5735 case WM_T_82571: 5736 case WM_T_82572: 5737 case WM_T_82573: 5738 case WM_T_82574: 5739 case WM_T_82575: 5740 case WM_T_82576: 5741 case WM_T_82583: 5742 default: 5743 /* Everything else can safely use the documented method. */ 5744 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST); 5745 break; 5746 } 5747 5748 /* Must release the MDIO ownership after MAC reset */ 5749 switch (sc->sc_type) { 5750 case WM_T_82573: 5751 case WM_T_82574: 5752 case WM_T_82583: 5753 if (error == 0) 5754 wm_put_hw_semaphore_82573(sc); 5755 break; 5756 default: 5757 break; 5758 } 5759 5760 /* Set Phy Config Counter to 50msec */ 5761 if (sc->sc_type == WM_T_PCH2) { 5762 reg = CSR_READ(sc, WMREG_FEXTNVM3); 5763 reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK; 5764 reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS; 5765 CSR_WRITE(sc, WMREG_FEXTNVM3, reg); 5766 } 5767 5768 if (phy_reset != 0) 5769 wm_get_cfg_done(sc); 5770 5771 /* Reload EEPROM */ 5772 switch (sc->sc_type) { 5773 case WM_T_82542_2_0: 5774 case WM_T_82542_2_1: 5775 case WM_T_82543: 5776 case WM_T_82544: 5777 delay(10); 5778 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST; 5779 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 5780 CSR_WRITE_FLUSH(sc); 5781 delay(2000); 5782 break; 5783 case WM_T_82540: 5784 case WM_T_82545: 5785 case WM_T_82545_3: 5786 case WM_T_82546: 5787 case WM_T_82546_3: 5788 delay(5*1000); 5789 /* XXX Disable HW ARPs on ASF enabled adapters */ 5790 break; 5791 case WM_T_82541: 5792 case WM_T_82541_2: 5793 case WM_T_82547: 5794 case WM_T_82547_2: 5795 delay(20000); 5796 /* XXX Disable HW ARPs on ASF enabled adapters */ 5797 break; 5798 case WM_T_82571: 5799 case WM_T_82572: 5800 case WM_T_82573: 5801 case WM_T_82574: 5802 case WM_T_82583: 5803 if (sc->sc_flags & WM_F_EEPROM_FLASH) { 5804 delay(10); 5805 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST; 5806 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 5807 CSR_WRITE_FLUSH(sc); 5808 } 5809 /* check EECD_EE_AUTORD */ 5810 wm_get_auto_rd_done(sc); 5811 /* 5812 * Phy configuration from NVM just starts after EECD_AUTO_RD 5813 * is set. 5814 */ 5815 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574) 5816 || (sc->sc_type == WM_T_82583)) 5817 delay(25*1000); 5818 break; 5819 case WM_T_82575: 5820 case WM_T_82576: 5821 case WM_T_82580: 5822 case WM_T_I350: 5823 case WM_T_I354: 5824 case WM_T_I210: 5825 case WM_T_I211: 5826 case WM_T_80003: 5827 /* check EECD_EE_AUTORD */ 5828 wm_get_auto_rd_done(sc); 5829 break; 5830 case WM_T_ICH8: 5831 case WM_T_ICH9: 5832 case WM_T_ICH10: 5833 case WM_T_PCH: 5834 case WM_T_PCH2: 5835 case WM_T_PCH_LPT: 5836 case WM_T_PCH_SPT: 5837 case WM_T_PCH_CNP: 5838 case WM_T_PCH_TGP: 5839 break; 5840 default: 5841 panic("%s: unknown type\n", __func__); 5842 } 5843 5844 /* Check whether EEPROM is present or not */ 5845 switch (sc->sc_type) { 5846 case WM_T_82575: 5847 case WM_T_82576: 5848 case WM_T_82580: 5849 case WM_T_I350: 5850 case WM_T_I354: 5851 case WM_T_ICH8: 5852 case WM_T_ICH9: 5853 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) { 5854 /* Not found */ 5855 sc->sc_flags |= WM_F_EEPROM_INVALID; 5856 if (sc->sc_type == WM_T_82575) 5857 wm_reset_init_script_82575(sc); 5858 } 5859 break; 5860 default: 5861 break; 5862 } 5863 5864 if (phy_reset != 0) 5865 wm_phy_post_reset(sc); 5866 5867 if ((sc->sc_type == WM_T_82580) 5868 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) { 5869 /* Clear global device reset status bit */ 5870 CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET); 5871 } 5872 5873 /* Clear any pending interrupt events. */ 5874 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 5875 reg = CSR_READ(sc, WMREG_ICR); 5876 if (wm_is_using_msix(sc)) { 5877 if (sc->sc_type != WM_T_82574) { 5878 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU); 5879 CSR_WRITE(sc, WMREG_EIAC, 0); 5880 } else 5881 CSR_WRITE(sc, WMREG_EIAC_82574, 0); 5882 } 5883 5884 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 5885 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) 5886 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) 5887 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP) 5888 || (sc->sc_type == WM_T_PCH_TGP)) { 5889 reg = CSR_READ(sc, WMREG_KABGTXD); 5890 reg |= KABGTXD_BGSQLBIAS; 5891 CSR_WRITE(sc, WMREG_KABGTXD, reg); 5892 } 5893 5894 /* Reload sc_ctrl */ 5895 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL); 5896 5897 wm_set_eee(sc); 5898 5899 /* 5900 * For PCH, this write will make sure that any noise will be detected 5901 * as a CRC error and be dropped rather than show up as a bad packet 5902 * to the DMA engine 5903 */ 5904 if (sc->sc_type == WM_T_PCH) 5905 CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565); 5906 5907 if (sc->sc_type >= WM_T_82544) 5908 CSR_WRITE(sc, WMREG_WUC, 0); 5909 5910 if (sc->sc_type < WM_T_82575) 5911 wm_disable_aspm(sc); /* Workaround for some chips */ 5912 5913 wm_reset_mdicnfg_82580(sc); 5914 5915 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0) 5916 wm_pll_workaround_i210(sc); 5917 5918 if (sc->sc_type == WM_T_80003) { 5919 /* Default to TRUE to enable the MDIC W/A */ 5920 sc->sc_flags |= WM_F_80003_MDIC_WA; 5921 5922 rv = wm_kmrn_readreg(sc, 5923 KUMCTRLSTA_OFFSET >> KUMCTRLSTA_OFFSET_SHIFT, &kmreg); 5924 if (rv == 0) { 5925 if ((kmreg & KUMCTRLSTA_OPMODE_MASK) 5926 == KUMCTRLSTA_OPMODE_INBAND_MDIO) 5927 sc->sc_flags &= ~WM_F_80003_MDIC_WA; 5928 else 5929 sc->sc_flags |= WM_F_80003_MDIC_WA; 5930 } 5931 } 5932 } 5933 5934 /* 5935 * wm_add_rxbuf: 5936 * 5937 * Add a receive buffer to the indiciated descriptor. 5938 */ 5939 static int 5940 wm_add_rxbuf(struct wm_rxqueue *rxq, int idx) 5941 { 5942 struct wm_softc *sc = rxq->rxq_sc; 5943 struct wm_rxsoft *rxs = &rxq->rxq_soft[idx]; 5944 struct mbuf *m; 5945 int error; 5946 5947 KASSERT(mutex_owned(rxq->rxq_lock)); 5948 5949 MGETHDR(m, M_DONTWAIT, MT_DATA); 5950 if (m == NULL) 5951 return ENOBUFS; 5952 5953 MCLGET(m, M_DONTWAIT); 5954 if ((m->m_flags & M_EXT) == 0) { 5955 m_freem(m); 5956 return ENOBUFS; 5957 } 5958 5959 if (rxs->rxs_mbuf != NULL) 5960 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 5961 5962 rxs->rxs_mbuf = m; 5963 5964 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 5965 /* 5966 * Cannot use bus_dmamap_load_mbuf() here because m_data may be 5967 * sc_align_tweak'd between bus_dmamap_load() and bus_dmamap_sync(). 5968 */ 5969 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf, 5970 m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); 5971 if (error) { 5972 /* XXX XXX XXX */ 5973 aprint_error_dev(sc->sc_dev, 5974 "unable to load rx DMA map %d, error = %d\n", idx, error); 5975 panic("wm_add_rxbuf"); 5976 } 5977 5978 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 5979 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 5980 5981 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 5982 if ((sc->sc_rctl & RCTL_EN) != 0) 5983 wm_init_rxdesc(rxq, idx); 5984 } else 5985 wm_init_rxdesc(rxq, idx); 5986 5987 return 0; 5988 } 5989 5990 /* 5991 * wm_rxdrain: 5992 * 5993 * Drain the receive queue. 5994 */ 5995 static void 5996 wm_rxdrain(struct wm_rxqueue *rxq) 5997 { 5998 struct wm_softc *sc = rxq->rxq_sc; 5999 struct wm_rxsoft *rxs; 6000 int i; 6001 6002 KASSERT(mutex_owned(rxq->rxq_lock)); 6003 6004 for (i = 0; i < WM_NRXDESC; i++) { 6005 rxs = &rxq->rxq_soft[i]; 6006 if (rxs->rxs_mbuf != NULL) { 6007 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 6008 m_freem(rxs->rxs_mbuf); 6009 rxs->rxs_mbuf = NULL; 6010 } 6011 } 6012 } 6013 6014 /* 6015 * Setup registers for RSS. 6016 * 6017 * XXX not yet VMDq support 6018 */ 6019 static void 6020 wm_init_rss(struct wm_softc *sc) 6021 { 6022 uint32_t mrqc, reta_reg, rss_key[RSSRK_NUM_REGS]; 6023 int i; 6024 6025 CTASSERT(sizeof(rss_key) == RSS_KEYSIZE); 6026 6027 for (i = 0; i < RETA_NUM_ENTRIES; i++) { 6028 unsigned int qid, reta_ent; 6029 6030 qid = i % sc->sc_nqueues; 6031 switch (sc->sc_type) { 6032 case WM_T_82574: 6033 reta_ent = __SHIFTIN(qid, 6034 RETA_ENT_QINDEX_MASK_82574); 6035 break; 6036 case WM_T_82575: 6037 reta_ent = __SHIFTIN(qid, 6038 RETA_ENT_QINDEX1_MASK_82575); 6039 break; 6040 default: 6041 reta_ent = __SHIFTIN(qid, RETA_ENT_QINDEX_MASK); 6042 break; 6043 } 6044 6045 reta_reg = CSR_READ(sc, WMREG_RETA_Q(i)); 6046 reta_reg &= ~RETA_ENTRY_MASK_Q(i); 6047 reta_reg |= __SHIFTIN(reta_ent, RETA_ENTRY_MASK_Q(i)); 6048 CSR_WRITE(sc, WMREG_RETA_Q(i), reta_reg); 6049 } 6050 6051 rss_getkey((uint8_t *)rss_key); 6052 for (i = 0; i < RSSRK_NUM_REGS; i++) 6053 CSR_WRITE(sc, WMREG_RSSRK(i), rss_key[i]); 6054 6055 if (sc->sc_type == WM_T_82574) 6056 mrqc = MRQC_ENABLE_RSS_MQ_82574; 6057 else 6058 mrqc = MRQC_ENABLE_RSS_MQ; 6059 6060 /* 6061 * MRQC_RSS_FIELD_IPV6_EX is not set because of an errata. 6062 * See IPV6EXDIS bit in wm_initialize_hardware_bits(). 6063 */ 6064 mrqc |= (MRQC_RSS_FIELD_IPV4 | MRQC_RSS_FIELD_IPV4_TCP); 6065 mrqc |= (MRQC_RSS_FIELD_IPV6 | MRQC_RSS_FIELD_IPV6_TCP); 6066 #if 0 6067 mrqc |= (MRQC_RSS_FIELD_IPV4_UDP | MRQC_RSS_FIELD_IPV6_UDP); 6068 mrqc |= MRQC_RSS_FIELD_IPV6_UDP_EX; 6069 #endif 6070 mrqc |= MRQC_RSS_FIELD_IPV6_TCP_EX; 6071 6072 CSR_WRITE(sc, WMREG_MRQC, mrqc); 6073 } 6074 6075 /* 6076 * Adjust TX and RX queue numbers which the system actulally uses. 6077 * 6078 * The numbers are affected by below parameters. 6079 * - The nubmer of hardware queues 6080 * - The number of MSI-X vectors (= "nvectors" argument) 6081 * - ncpu 6082 */ 6083 static void 6084 wm_adjust_qnum(struct wm_softc *sc, int nvectors) 6085 { 6086 int hw_ntxqueues, hw_nrxqueues, hw_nqueues; 6087 6088 if (nvectors < 2) { 6089 sc->sc_nqueues = 1; 6090 return; 6091 } 6092 6093 switch (sc->sc_type) { 6094 case WM_T_82572: 6095 hw_ntxqueues = 2; 6096 hw_nrxqueues = 2; 6097 break; 6098 case WM_T_82574: 6099 hw_ntxqueues = 2; 6100 hw_nrxqueues = 2; 6101 break; 6102 case WM_T_82575: 6103 hw_ntxqueues = 4; 6104 hw_nrxqueues = 4; 6105 break; 6106 case WM_T_82576: 6107 hw_ntxqueues = 16; 6108 hw_nrxqueues = 16; 6109 break; 6110 case WM_T_82580: 6111 case WM_T_I350: 6112 case WM_T_I354: 6113 hw_ntxqueues = 8; 6114 hw_nrxqueues = 8; 6115 break; 6116 case WM_T_I210: 6117 hw_ntxqueues = 4; 6118 hw_nrxqueues = 4; 6119 break; 6120 case WM_T_I211: 6121 hw_ntxqueues = 2; 6122 hw_nrxqueues = 2; 6123 break; 6124 /* 6125 * The below Ethernet controllers do not support MSI-X; 6126 * this driver doesn't let them use multiqueue. 6127 * - WM_T_80003 6128 * - WM_T_ICH8 6129 * - WM_T_ICH9 6130 * - WM_T_ICH10 6131 * - WM_T_PCH 6132 * - WM_T_PCH2 6133 * - WM_T_PCH_LPT 6134 */ 6135 default: 6136 hw_ntxqueues = 1; 6137 hw_nrxqueues = 1; 6138 break; 6139 } 6140 6141 hw_nqueues = uimin(hw_ntxqueues, hw_nrxqueues); 6142 6143 /* 6144 * As queues more than MSI-X vectors cannot improve scaling, we limit 6145 * the number of queues used actually. 6146 */ 6147 if (nvectors < hw_nqueues + 1) 6148 sc->sc_nqueues = nvectors - 1; 6149 else 6150 sc->sc_nqueues = hw_nqueues; 6151 6152 /* 6153 * As queues more than CPUs cannot improve scaling, we limit 6154 * the number of queues used actually. 6155 */ 6156 if (ncpu < sc->sc_nqueues) 6157 sc->sc_nqueues = ncpu; 6158 } 6159 6160 static inline bool 6161 wm_is_using_msix(struct wm_softc *sc) 6162 { 6163 6164 return (sc->sc_nintrs > 1); 6165 } 6166 6167 static inline bool 6168 wm_is_using_multiqueue(struct wm_softc *sc) 6169 { 6170 6171 return (sc->sc_nqueues > 1); 6172 } 6173 6174 static int 6175 wm_softint_establish_queue(struct wm_softc *sc, int qidx, int intr_idx) 6176 { 6177 struct wm_queue *wmq = &sc->sc_queue[qidx]; 6178 6179 wmq->wmq_id = qidx; 6180 wmq->wmq_intr_idx = intr_idx; 6181 wmq->wmq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 6182 wm_handle_queue, wmq); 6183 if (wmq->wmq_si != NULL) 6184 return 0; 6185 6186 aprint_error_dev(sc->sc_dev, "unable to establish queue[%d] handler\n", 6187 wmq->wmq_id); 6188 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[wmq->wmq_intr_idx]); 6189 sc->sc_ihs[wmq->wmq_intr_idx] = NULL; 6190 return ENOMEM; 6191 } 6192 6193 /* 6194 * Both single interrupt MSI and INTx can use this function. 6195 */ 6196 static int 6197 wm_setup_legacy(struct wm_softc *sc) 6198 { 6199 pci_chipset_tag_t pc = sc->sc_pc; 6200 const char *intrstr = NULL; 6201 char intrbuf[PCI_INTRSTR_LEN]; 6202 int error; 6203 6204 error = wm_alloc_txrx_queues(sc); 6205 if (error) { 6206 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n", 6207 error); 6208 return ENOMEM; 6209 } 6210 intrstr = pci_intr_string(pc, sc->sc_intrs[0], intrbuf, 6211 sizeof(intrbuf)); 6212 pci_intr_setattr(pc, &sc->sc_intrs[0], PCI_INTR_MPSAFE, true); 6213 sc->sc_ihs[0] = pci_intr_establish_xname(pc, sc->sc_intrs[0], 6214 IPL_NET, wm_intr_legacy, sc, device_xname(sc->sc_dev)); 6215 if (sc->sc_ihs[0] == NULL) { 6216 aprint_error_dev(sc->sc_dev,"unable to establish %s\n", 6217 (pci_intr_type(pc, sc->sc_intrs[0]) 6218 == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx"); 6219 return ENOMEM; 6220 } 6221 6222 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); 6223 sc->sc_nintrs = 1; 6224 6225 return wm_softint_establish_queue(sc, 0, 0); 6226 } 6227 6228 static int 6229 wm_setup_msix(struct wm_softc *sc) 6230 { 6231 void *vih; 6232 kcpuset_t *affinity; 6233 int qidx, error, intr_idx, txrx_established; 6234 pci_chipset_tag_t pc = sc->sc_pc; 6235 const char *intrstr = NULL; 6236 char intrbuf[PCI_INTRSTR_LEN]; 6237 char intr_xname[INTRDEVNAMEBUF]; 6238 6239 if (sc->sc_nqueues < ncpu) { 6240 /* 6241 * To avoid other devices' interrupts, the affinity of Tx/Rx 6242 * interrupts start from CPU#1. 6243 */ 6244 sc->sc_affinity_offset = 1; 6245 } else { 6246 /* 6247 * In this case, this device use all CPUs. So, we unify 6248 * affinitied cpu_index to msix vector number for readability. 6249 */ 6250 sc->sc_affinity_offset = 0; 6251 } 6252 6253 error = wm_alloc_txrx_queues(sc); 6254 if (error) { 6255 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n", 6256 error); 6257 return ENOMEM; 6258 } 6259 6260 kcpuset_create(&affinity, false); 6261 intr_idx = 0; 6262 6263 /* 6264 * TX and RX 6265 */ 6266 txrx_established = 0; 6267 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) { 6268 struct wm_queue *wmq = &sc->sc_queue[qidx]; 6269 int affinity_to = (sc->sc_affinity_offset + intr_idx) % ncpu; 6270 6271 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf, 6272 sizeof(intrbuf)); 6273 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx], 6274 PCI_INTR_MPSAFE, true); 6275 memset(intr_xname, 0, sizeof(intr_xname)); 6276 snprintf(intr_xname, sizeof(intr_xname), "%sTXRX%d", 6277 device_xname(sc->sc_dev), qidx); 6278 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx], 6279 IPL_NET, wm_txrxintr_msix, wmq, intr_xname); 6280 if (vih == NULL) { 6281 aprint_error_dev(sc->sc_dev, 6282 "unable to establish MSI-X(for TX and RX)%s%s\n", 6283 intrstr ? " at " : "", 6284 intrstr ? intrstr : ""); 6285 6286 goto fail; 6287 } 6288 kcpuset_zero(affinity); 6289 /* Round-robin affinity */ 6290 kcpuset_set(affinity, affinity_to); 6291 error = interrupt_distribute(vih, affinity, NULL); 6292 if (error == 0) { 6293 aprint_normal_dev(sc->sc_dev, 6294 "for TX and RX interrupting at %s affinity to %u\n", 6295 intrstr, affinity_to); 6296 } else { 6297 aprint_normal_dev(sc->sc_dev, 6298 "for TX and RX interrupting at %s\n", intrstr); 6299 } 6300 sc->sc_ihs[intr_idx] = vih; 6301 if (wm_softint_establish_queue(sc, qidx, intr_idx) != 0) 6302 goto fail; 6303 txrx_established++; 6304 intr_idx++; 6305 } 6306 6307 /* LINK */ 6308 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf, 6309 sizeof(intrbuf)); 6310 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx], PCI_INTR_MPSAFE, true); 6311 memset(intr_xname, 0, sizeof(intr_xname)); 6312 snprintf(intr_xname, sizeof(intr_xname), "%sLINK", 6313 device_xname(sc->sc_dev)); 6314 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx], 6315 IPL_NET, wm_linkintr_msix, sc, intr_xname); 6316 if (vih == NULL) { 6317 aprint_error_dev(sc->sc_dev, 6318 "unable to establish MSI-X(for LINK)%s%s\n", 6319 intrstr ? " at " : "", 6320 intrstr ? intrstr : ""); 6321 6322 goto fail; 6323 } 6324 /* Keep default affinity to LINK interrupt */ 6325 aprint_normal_dev(sc->sc_dev, 6326 "for LINK interrupting at %s\n", intrstr); 6327 sc->sc_ihs[intr_idx] = vih; 6328 sc->sc_link_intr_idx = intr_idx; 6329 6330 sc->sc_nintrs = sc->sc_nqueues + 1; 6331 kcpuset_destroy(affinity); 6332 return 0; 6333 6334 fail: 6335 for (qidx = 0; qidx < txrx_established; qidx++) { 6336 struct wm_queue *wmq = &sc->sc_queue[qidx]; 6337 pci_intr_disestablish(sc->sc_pc,sc->sc_ihs[wmq->wmq_intr_idx]); 6338 sc->sc_ihs[wmq->wmq_intr_idx] = NULL; 6339 } 6340 6341 kcpuset_destroy(affinity); 6342 return ENOMEM; 6343 } 6344 6345 static void 6346 wm_unset_stopping_flags(struct wm_softc *sc) 6347 { 6348 int i; 6349 6350 KASSERT(mutex_owned(sc->sc_core_lock)); 6351 6352 /* Must unset stopping flags in ascending order. */ 6353 for (i = 0; i < sc->sc_nqueues; i++) { 6354 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 6355 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 6356 6357 mutex_enter(txq->txq_lock); 6358 txq->txq_stopping = false; 6359 mutex_exit(txq->txq_lock); 6360 6361 mutex_enter(rxq->rxq_lock); 6362 rxq->rxq_stopping = false; 6363 mutex_exit(rxq->rxq_lock); 6364 } 6365 6366 sc->sc_core_stopping = false; 6367 } 6368 6369 static void 6370 wm_set_stopping_flags(struct wm_softc *sc) 6371 { 6372 int i; 6373 6374 KASSERT(mutex_owned(sc->sc_core_lock)); 6375 6376 sc->sc_core_stopping = true; 6377 6378 /* Must set stopping flags in ascending order. */ 6379 for (i = 0; i < sc->sc_nqueues; i++) { 6380 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 6381 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 6382 6383 mutex_enter(rxq->rxq_lock); 6384 rxq->rxq_stopping = true; 6385 mutex_exit(rxq->rxq_lock); 6386 6387 mutex_enter(txq->txq_lock); 6388 txq->txq_stopping = true; 6389 mutex_exit(txq->txq_lock); 6390 } 6391 } 6392 6393 /* 6394 * Write interrupt interval value to ITR or EITR 6395 */ 6396 static void 6397 wm_itrs_writereg(struct wm_softc *sc, struct wm_queue *wmq) 6398 { 6399 6400 if (!wmq->wmq_set_itr) 6401 return; 6402 6403 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 6404 uint32_t eitr = __SHIFTIN(wmq->wmq_itr, EITR_ITR_INT_MASK); 6405 6406 /* 6407 * 82575 doesn't have CNT_INGR field. 6408 * So, overwrite counter field by software. 6409 */ 6410 if (sc->sc_type == WM_T_82575) 6411 eitr |= __SHIFTIN(wmq->wmq_itr, 6412 EITR_COUNTER_MASK_82575); 6413 else 6414 eitr |= EITR_CNT_INGR; 6415 6416 CSR_WRITE(sc, WMREG_EITR(wmq->wmq_intr_idx), eitr); 6417 } else if (sc->sc_type == WM_T_82574 && wm_is_using_msix(sc)) { 6418 /* 6419 * 82574 has both ITR and EITR. SET EITR when we use 6420 * the multi queue function with MSI-X. 6421 */ 6422 CSR_WRITE(sc, WMREG_EITR_82574(wmq->wmq_intr_idx), 6423 wmq->wmq_itr & EITR_ITR_INT_MASK_82574); 6424 } else { 6425 KASSERT(wmq->wmq_id == 0); 6426 CSR_WRITE(sc, WMREG_ITR, wmq->wmq_itr); 6427 } 6428 6429 wmq->wmq_set_itr = false; 6430 } 6431 6432 /* 6433 * TODO 6434 * Below dynamic calculation of itr is almost the same as Linux igb, 6435 * however it does not fit to wm(4). So, we will have been disable AIM 6436 * until we will find appropriate calculation of itr. 6437 */ 6438 /* 6439 * Calculate interrupt interval value to be going to write register in 6440 * wm_itrs_writereg(). This function does not write ITR/EITR register. 6441 */ 6442 static void 6443 wm_itrs_calculate(struct wm_softc *sc, struct wm_queue *wmq) 6444 { 6445 #ifdef NOTYET 6446 struct wm_rxqueue *rxq = &wmq->wmq_rxq; 6447 struct wm_txqueue *txq = &wmq->wmq_txq; 6448 uint32_t avg_size = 0; 6449 uint32_t new_itr; 6450 6451 if (rxq->rxq_packets) 6452 avg_size = rxq->rxq_bytes / rxq->rxq_packets; 6453 if (txq->txq_packets) 6454 avg_size = uimax(avg_size, txq->txq_bytes / txq->txq_packets); 6455 6456 if (avg_size == 0) { 6457 new_itr = 450; /* restore default value */ 6458 goto out; 6459 } 6460 6461 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 6462 avg_size += 24; 6463 6464 /* Don't starve jumbo frames */ 6465 avg_size = uimin(avg_size, 3000); 6466 6467 /* Give a little boost to mid-size frames */ 6468 if ((avg_size > 300) && (avg_size < 1200)) 6469 new_itr = avg_size / 3; 6470 else 6471 new_itr = avg_size / 2; 6472 6473 out: 6474 /* 6475 * The usage of 82574 and 82575 EITR is different from otther NEWQUEUE 6476 * controllers. See sc->sc_itr_init setting in wm_init_locked(). 6477 */ 6478 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0 || sc->sc_type != WM_T_82575) 6479 new_itr *= 4; 6480 6481 if (new_itr != wmq->wmq_itr) { 6482 wmq->wmq_itr = new_itr; 6483 wmq->wmq_set_itr = true; 6484 } else 6485 wmq->wmq_set_itr = false; 6486 6487 rxq->rxq_packets = 0; 6488 rxq->rxq_bytes = 0; 6489 txq->txq_packets = 0; 6490 txq->txq_bytes = 0; 6491 #endif 6492 } 6493 6494 static void 6495 wm_init_sysctls(struct wm_softc *sc) 6496 { 6497 struct sysctllog **log; 6498 const struct sysctlnode *rnode, *qnode, *cnode; 6499 int i, rv; 6500 const char *dvname; 6501 6502 log = &sc->sc_sysctllog; 6503 dvname = device_xname(sc->sc_dev); 6504 6505 rv = sysctl_createv(log, 0, NULL, &rnode, 6506 0, CTLTYPE_NODE, dvname, 6507 SYSCTL_DESCR("wm information and settings"), 6508 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); 6509 if (rv != 0) 6510 goto err; 6511 6512 rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE, 6513 CTLTYPE_BOOL, "txrx_workqueue", 6514 SYSCTL_DESCR("Use workqueue for packet processing"), 6515 NULL, 0, &sc->sc_txrx_use_workqueue, 0, CTL_CREATE, CTL_EOL); 6516 if (rv != 0) 6517 goto teardown; 6518 6519 for (i = 0; i < sc->sc_nqueues; i++) { 6520 struct wm_queue *wmq = &sc->sc_queue[i]; 6521 struct wm_txqueue *txq = &wmq->wmq_txq; 6522 struct wm_rxqueue *rxq = &wmq->wmq_rxq; 6523 6524 snprintf(sc->sc_queue[i].sysctlname, 6525 sizeof(sc->sc_queue[i].sysctlname), "q%d", i); 6526 6527 if (sysctl_createv(log, 0, &rnode, &qnode, 6528 0, CTLTYPE_NODE, 6529 sc->sc_queue[i].sysctlname, SYSCTL_DESCR("Queue Name"), 6530 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) 6531 break; 6532 6533 if (sysctl_createv(log, 0, &qnode, &cnode, 6534 CTLFLAG_READONLY, CTLTYPE_INT, 6535 "txq_free", SYSCTL_DESCR("TX queue free"), 6536 NULL, 0, &txq->txq_free, 6537 0, CTL_CREATE, CTL_EOL) != 0) 6538 break; 6539 if (sysctl_createv(log, 0, &qnode, &cnode, 6540 CTLFLAG_READONLY, CTLTYPE_INT, 6541 "txd_head", SYSCTL_DESCR("TX descriptor head"), 6542 wm_sysctl_tdh_handler, 0, (void *)txq, 6543 0, CTL_CREATE, CTL_EOL) != 0) 6544 break; 6545 if (sysctl_createv(log, 0, &qnode, &cnode, 6546 CTLFLAG_READONLY, CTLTYPE_INT, 6547 "txd_tail", SYSCTL_DESCR("TX descriptor tail"), 6548 wm_sysctl_tdt_handler, 0, (void *)txq, 6549 0, CTL_CREATE, CTL_EOL) != 0) 6550 break; 6551 if (sysctl_createv(log, 0, &qnode, &cnode, 6552 CTLFLAG_READONLY, CTLTYPE_INT, 6553 "txq_next", SYSCTL_DESCR("TX queue next"), 6554 NULL, 0, &txq->txq_next, 6555 0, CTL_CREATE, CTL_EOL) != 0) 6556 break; 6557 if (sysctl_createv(log, 0, &qnode, &cnode, 6558 CTLFLAG_READONLY, CTLTYPE_INT, 6559 "txq_sfree", SYSCTL_DESCR("TX queue sfree"), 6560 NULL, 0, &txq->txq_sfree, 6561 0, CTL_CREATE, CTL_EOL) != 0) 6562 break; 6563 if (sysctl_createv(log, 0, &qnode, &cnode, 6564 CTLFLAG_READONLY, CTLTYPE_INT, 6565 "txq_snext", SYSCTL_DESCR("TX queue snext"), 6566 NULL, 0, &txq->txq_snext, 6567 0, CTL_CREATE, CTL_EOL) != 0) 6568 break; 6569 if (sysctl_createv(log, 0, &qnode, &cnode, 6570 CTLFLAG_READONLY, CTLTYPE_INT, 6571 "txq_sdirty", SYSCTL_DESCR("TX queue sdirty"), 6572 NULL, 0, &txq->txq_sdirty, 6573 0, CTL_CREATE, CTL_EOL) != 0) 6574 break; 6575 if (sysctl_createv(log, 0, &qnode, &cnode, 6576 CTLFLAG_READONLY, CTLTYPE_INT, 6577 "txq_flags", SYSCTL_DESCR("TX queue flags"), 6578 NULL, 0, &txq->txq_flags, 6579 0, CTL_CREATE, CTL_EOL) != 0) 6580 break; 6581 if (sysctl_createv(log, 0, &qnode, &cnode, 6582 CTLFLAG_READONLY, CTLTYPE_BOOL, 6583 "txq_stopping", SYSCTL_DESCR("TX queue stopping"), 6584 NULL, 0, &txq->txq_stopping, 6585 0, CTL_CREATE, CTL_EOL) != 0) 6586 break; 6587 if (sysctl_createv(log, 0, &qnode, &cnode, 6588 CTLFLAG_READONLY, CTLTYPE_BOOL, 6589 "txq_sending", SYSCTL_DESCR("TX queue sending"), 6590 NULL, 0, &txq->txq_sending, 6591 0, CTL_CREATE, CTL_EOL) != 0) 6592 break; 6593 6594 if (sysctl_createv(log, 0, &qnode, &cnode, 6595 CTLFLAG_READONLY, CTLTYPE_INT, 6596 "rxq_ptr", SYSCTL_DESCR("RX queue pointer"), 6597 NULL, 0, &rxq->rxq_ptr, 6598 0, CTL_CREATE, CTL_EOL) != 0) 6599 break; 6600 } 6601 6602 #ifdef WM_DEBUG 6603 rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE, 6604 CTLTYPE_INT, "debug_flags", 6605 SYSCTL_DESCR( 6606 "Debug flags:\n" \ 6607 "\t0x01 LINK\n" \ 6608 "\t0x02 TX\n" \ 6609 "\t0x04 RX\n" \ 6610 "\t0x08 GMII\n" \ 6611 "\t0x10 MANAGE\n" \ 6612 "\t0x20 NVM\n" \ 6613 "\t0x40 INIT\n" \ 6614 "\t0x80 LOCK"), 6615 wm_sysctl_debug, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL); 6616 if (rv != 0) 6617 goto teardown; 6618 rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE, 6619 CTLTYPE_BOOL, "trigger_reset", 6620 SYSCTL_DESCR("Trigger an interface reset"), 6621 NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE, CTL_EOL); 6622 if (rv != 0) 6623 goto teardown; 6624 #endif 6625 6626 return; 6627 6628 teardown: 6629 sysctl_teardown(log); 6630 err: 6631 sc->sc_sysctllog = NULL; 6632 device_printf(sc->sc_dev, "%s: sysctl_createv failed, rv = %d\n", 6633 __func__, rv); 6634 } 6635 6636 static void 6637 wm_update_stats(struct wm_softc *sc) 6638 { 6639 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 6640 uint64_t crcerrs, algnerrc, symerrc, mpc, colc, sec, rlec, rxerrc, 6641 cexterr; 6642 uint64_t total_qdrop = 0; 6643 6644 crcerrs = CSR_READ(sc, WMREG_CRCERRS); 6645 symerrc = CSR_READ(sc, WMREG_SYMERRC); 6646 mpc = CSR_READ(sc, WMREG_MPC); 6647 colc = CSR_READ(sc, WMREG_COLC); 6648 sec = CSR_READ(sc, WMREG_SEC); 6649 rlec = CSR_READ(sc, WMREG_RLEC); 6650 6651 WM_EVCNT_ADD(&sc->sc_ev_crcerrs, crcerrs); 6652 WM_EVCNT_ADD(&sc->sc_ev_symerrc, symerrc); 6653 WM_EVCNT_ADD(&sc->sc_ev_mpc, mpc); 6654 WM_EVCNT_ADD(&sc->sc_ev_colc, colc); 6655 WM_EVCNT_ADD(&sc->sc_ev_sec, sec); 6656 WM_EVCNT_ADD(&sc->sc_ev_rlec, rlec); 6657 6658 if (sc->sc_type >= WM_T_82543) { 6659 algnerrc = CSR_READ(sc, WMREG_ALGNERRC); 6660 rxerrc = CSR_READ(sc, WMREG_RXERRC); 6661 WM_EVCNT_ADD(&sc->sc_ev_algnerrc, algnerrc); 6662 WM_EVCNT_ADD(&sc->sc_ev_rxerrc, rxerrc); 6663 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) { 6664 cexterr = CSR_READ(sc, WMREG_CEXTERR); 6665 WM_EVCNT_ADD(&sc->sc_ev_cexterr, cexterr); 6666 } else { 6667 cexterr = 0; 6668 /* Excessive collision + Link down */ 6669 WM_EVCNT_ADD(&sc->sc_ev_htdpmc, 6670 CSR_READ(sc, WMREG_HTDPMC)); 6671 } 6672 6673 WM_EVCNT_ADD(&sc->sc_ev_tncrs, CSR_READ(sc, WMREG_TNCRS)); 6674 WM_EVCNT_ADD(&sc->sc_ev_tsctc, CSR_READ(sc, WMREG_TSCTC)); 6675 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) 6676 WM_EVCNT_ADD(&sc->sc_ev_tsctfc, 6677 CSR_READ(sc, WMREG_TSCTFC)); 6678 else { 6679 WM_EVCNT_ADD(&sc->sc_ev_cbrdpc, 6680 CSR_READ(sc, WMREG_CBRDPC)); 6681 WM_EVCNT_ADD(&sc->sc_ev_cbrmpc, 6682 CSR_READ(sc, WMREG_CBRMPC)); 6683 } 6684 } else 6685 algnerrc = rxerrc = cexterr = 0; 6686 6687 if (sc->sc_type >= WM_T_82542_2_1) { 6688 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC)); 6689 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC)); 6690 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC)); 6691 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC)); 6692 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC)); 6693 } 6694 6695 WM_EVCNT_ADD(&sc->sc_ev_scc, CSR_READ(sc, WMREG_SCC)); 6696 WM_EVCNT_ADD(&sc->sc_ev_ecol, CSR_READ(sc, WMREG_ECOL)); 6697 WM_EVCNT_ADD(&sc->sc_ev_mcc, CSR_READ(sc, WMREG_MCC)); 6698 WM_EVCNT_ADD(&sc->sc_ev_latecol, CSR_READ(sc, WMREG_LATECOL)); 6699 6700 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) { 6701 WM_EVCNT_ADD(&sc->sc_ev_cbtmpc, CSR_READ(sc, WMREG_CBTMPC)); 6702 } 6703 6704 WM_EVCNT_ADD(&sc->sc_ev_dc, CSR_READ(sc, WMREG_DC)); 6705 WM_EVCNT_ADD(&sc->sc_ev_prc64, CSR_READ(sc, WMREG_PRC64)); 6706 WM_EVCNT_ADD(&sc->sc_ev_prc127, CSR_READ(sc, WMREG_PRC127)); 6707 WM_EVCNT_ADD(&sc->sc_ev_prc255, CSR_READ(sc, WMREG_PRC255)); 6708 WM_EVCNT_ADD(&sc->sc_ev_prc511, CSR_READ(sc, WMREG_PRC511)); 6709 WM_EVCNT_ADD(&sc->sc_ev_prc1023, CSR_READ(sc, WMREG_PRC1023)); 6710 WM_EVCNT_ADD(&sc->sc_ev_prc1522, CSR_READ(sc, WMREG_PRC1522)); 6711 WM_EVCNT_ADD(&sc->sc_ev_gprc, CSR_READ(sc, WMREG_GPRC)); 6712 WM_EVCNT_ADD(&sc->sc_ev_bprc, CSR_READ(sc, WMREG_BPRC)); 6713 WM_EVCNT_ADD(&sc->sc_ev_mprc, CSR_READ(sc, WMREG_MPRC)); 6714 WM_EVCNT_ADD(&sc->sc_ev_gptc, CSR_READ(sc, WMREG_GPTC)); 6715 6716 WM_EVCNT_ADD(&sc->sc_ev_gorc, 6717 CSR_READ(sc, WMREG_GORCL) + 6718 ((uint64_t)CSR_READ(sc, WMREG_GORCH) << 32)); 6719 WM_EVCNT_ADD(&sc->sc_ev_gotc, 6720 CSR_READ(sc, WMREG_GOTCL) + 6721 ((uint64_t)CSR_READ(sc, WMREG_GOTCH) << 32)); 6722 6723 WM_EVCNT_ADD(&sc->sc_ev_rnbc, CSR_READ(sc, WMREG_RNBC)); 6724 WM_EVCNT_ADD(&sc->sc_ev_ruc, CSR_READ(sc, WMREG_RUC)); 6725 WM_EVCNT_ADD(&sc->sc_ev_rfc, CSR_READ(sc, WMREG_RFC)); 6726 WM_EVCNT_ADD(&sc->sc_ev_roc, CSR_READ(sc, WMREG_ROC)); 6727 WM_EVCNT_ADD(&sc->sc_ev_rjc, CSR_READ(sc, WMREG_RJC)); 6728 6729 if (sc->sc_type >= WM_T_82540) { 6730 WM_EVCNT_ADD(&sc->sc_ev_mgtprc, CSR_READ(sc, WMREG_MGTPRC)); 6731 WM_EVCNT_ADD(&sc->sc_ev_mgtpdc, CSR_READ(sc, WMREG_MGTPDC)); 6732 WM_EVCNT_ADD(&sc->sc_ev_mgtptc, CSR_READ(sc, WMREG_MGTPTC)); 6733 } 6734 6735 /* 6736 * The TOR(L) register includes: 6737 * - Error 6738 * - Flow control 6739 * - Broadcast rejected (This note is described in 82574 and newer 6740 * datasheets. What does "broadcast rejected" mean?) 6741 */ 6742 WM_EVCNT_ADD(&sc->sc_ev_tor, 6743 CSR_READ(sc, WMREG_TORL) + 6744 ((uint64_t)CSR_READ(sc, WMREG_TORH) << 32)); 6745 WM_EVCNT_ADD(&sc->sc_ev_tot, 6746 CSR_READ(sc, WMREG_TOTL) + 6747 ((uint64_t)CSR_READ(sc, WMREG_TOTH) << 32)); 6748 6749 WM_EVCNT_ADD(&sc->sc_ev_tpr, CSR_READ(sc, WMREG_TPR)); 6750 WM_EVCNT_ADD(&sc->sc_ev_tpt, CSR_READ(sc, WMREG_TPT)); 6751 WM_EVCNT_ADD(&sc->sc_ev_ptc64, CSR_READ(sc, WMREG_PTC64)); 6752 WM_EVCNT_ADD(&sc->sc_ev_ptc127, CSR_READ(sc, WMREG_PTC127)); 6753 WM_EVCNT_ADD(&sc->sc_ev_ptc255, CSR_READ(sc, WMREG_PTC255)); 6754 WM_EVCNT_ADD(&sc->sc_ev_ptc511, CSR_READ(sc, WMREG_PTC511)); 6755 WM_EVCNT_ADD(&sc->sc_ev_ptc1023, CSR_READ(sc, WMREG_PTC1023)); 6756 WM_EVCNT_ADD(&sc->sc_ev_ptc1522, CSR_READ(sc, WMREG_PTC1522)); 6757 WM_EVCNT_ADD(&sc->sc_ev_mptc, CSR_READ(sc, WMREG_MPTC)); 6758 WM_EVCNT_ADD(&sc->sc_ev_bptc, CSR_READ(sc, WMREG_BPTC)); 6759 if (sc->sc_type >= WM_T_82571) 6760 WM_EVCNT_ADD(&sc->sc_ev_iac, CSR_READ(sc, WMREG_IAC)); 6761 if (sc->sc_type < WM_T_82575) { 6762 WM_EVCNT_ADD(&sc->sc_ev_icrxptc, CSR_READ(sc, WMREG_ICRXPTC)); 6763 WM_EVCNT_ADD(&sc->sc_ev_icrxatc, CSR_READ(sc, WMREG_ICRXATC)); 6764 WM_EVCNT_ADD(&sc->sc_ev_ictxptc, CSR_READ(sc, WMREG_ICTXPTC)); 6765 WM_EVCNT_ADD(&sc->sc_ev_ictxatc, CSR_READ(sc, WMREG_ICTXATC)); 6766 WM_EVCNT_ADD(&sc->sc_ev_ictxqec, CSR_READ(sc, WMREG_ICTXQEC)); 6767 WM_EVCNT_ADD(&sc->sc_ev_ictxqmtc, 6768 CSR_READ(sc, WMREG_ICTXQMTC)); 6769 WM_EVCNT_ADD(&sc->sc_ev_rxdmtc, 6770 CSR_READ(sc, WMREG_ICRXDMTC)); 6771 WM_EVCNT_ADD(&sc->sc_ev_icrxoc, CSR_READ(sc, WMREG_ICRXOC)); 6772 } else if (!WM_IS_ICHPCH(sc)) { 6773 WM_EVCNT_ADD(&sc->sc_ev_rpthc, CSR_READ(sc, WMREG_RPTHC)); 6774 WM_EVCNT_ADD(&sc->sc_ev_debug1, CSR_READ(sc, WMREG_DEBUG1)); 6775 WM_EVCNT_ADD(&sc->sc_ev_debug2, CSR_READ(sc, WMREG_DEBUG2)); 6776 WM_EVCNT_ADD(&sc->sc_ev_debug3, CSR_READ(sc, WMREG_DEBUG3)); 6777 WM_EVCNT_ADD(&sc->sc_ev_hgptc, CSR_READ(sc, WMREG_HGPTC)); 6778 WM_EVCNT_ADD(&sc->sc_ev_debug4, CSR_READ(sc, WMREG_DEBUG4)); 6779 WM_EVCNT_ADD(&sc->sc_ev_rxdmtc, CSR_READ(sc, WMREG_RXDMTC)); 6780 WM_EVCNT_ADD(&sc->sc_ev_htcbdpc, CSR_READ(sc, WMREG_HTCBDPC)); 6781 6782 WM_EVCNT_ADD(&sc->sc_ev_hgorc, 6783 CSR_READ(sc, WMREG_HGORCL) + 6784 ((uint64_t)CSR_READ(sc, WMREG_HGORCH) << 32)); 6785 WM_EVCNT_ADD(&sc->sc_ev_hgotc, 6786 CSR_READ(sc, WMREG_HGOTCL) + 6787 ((uint64_t)CSR_READ(sc, WMREG_HGOTCH) << 32)); 6788 WM_EVCNT_ADD(&sc->sc_ev_lenerrs, CSR_READ(sc, WMREG_LENERRS)); 6789 WM_EVCNT_ADD(&sc->sc_ev_scvpc, CSR_READ(sc, WMREG_SCVPC)); 6790 WM_EVCNT_ADD(&sc->sc_ev_hrmpc, CSR_READ(sc, WMREG_HRMPC)); 6791 #ifdef WM_EVENT_COUNTERS 6792 for (int i = 0; i < sc->sc_nqueues; i++) { 6793 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 6794 uint32_t rqdpc; 6795 6796 rqdpc = CSR_READ(sc, WMREG_RQDPC(i)); 6797 /* 6798 * On I210 and newer device, the RQDPC register is not 6799 * cleard on read. 6800 */ 6801 if ((rqdpc != 0) && (sc->sc_type >= WM_T_I210)) 6802 CSR_WRITE(sc, WMREG_RQDPC(i), 0); 6803 WM_Q_EVCNT_ADD(rxq, qdrop, rqdpc); 6804 total_qdrop += rqdpc; 6805 } 6806 #endif 6807 } 6808 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) { 6809 WM_EVCNT_ADD(&sc->sc_ev_tlpic, CSR_READ(sc, WMREG_TLPIC)); 6810 WM_EVCNT_ADD(&sc->sc_ev_rlpic, CSR_READ(sc, WMREG_RLPIC)); 6811 if ((CSR_READ(sc, WMREG_MANC) & MANC_EN_BMC2OS) != 0) { 6812 WM_EVCNT_ADD(&sc->sc_ev_b2ogprc, 6813 CSR_READ(sc, WMREG_B2OGPRC)); 6814 WM_EVCNT_ADD(&sc->sc_ev_o2bspc, 6815 CSR_READ(sc, WMREG_O2BSPC)); 6816 WM_EVCNT_ADD(&sc->sc_ev_b2ospc, 6817 CSR_READ(sc, WMREG_B2OSPC)); 6818 WM_EVCNT_ADD(&sc->sc_ev_o2bgptc, 6819 CSR_READ(sc, WMREG_O2BGPTC)); 6820 } 6821 } 6822 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 6823 if_statadd_ref(ifp, nsr, if_collisions, colc); 6824 if_statadd_ref(ifp, nsr, if_ierrors, 6825 crcerrs + algnerrc + symerrc + rxerrc + sec + cexterr + rlec); 6826 /* 6827 * WMREG_RNBC is incremented when there are no available buffers in 6828 * host memory. It does not mean the number of dropped packets, because 6829 * an Ethernet controller can receive packets in such case if there is 6830 * space in the phy's FIFO. 6831 * 6832 * If you want to know the nubmer of WMREG_RMBC, you should use such as 6833 * own EVCNT instead of if_iqdrops. 6834 */ 6835 if_statadd_ref(ifp, nsr, if_iqdrops, mpc + total_qdrop); 6836 IF_STAT_PUTREF(ifp); 6837 } 6838 6839 void 6840 wm_clear_evcnt(struct wm_softc *sc) 6841 { 6842 #ifdef WM_EVENT_COUNTERS 6843 int i; 6844 6845 /* RX queues */ 6846 for (i = 0; i < sc->sc_nqueues; i++) { 6847 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 6848 6849 WM_Q_EVCNT_STORE(rxq, intr, 0); 6850 WM_Q_EVCNT_STORE(rxq, defer, 0); 6851 WM_Q_EVCNT_STORE(rxq, ipsum, 0); 6852 WM_Q_EVCNT_STORE(rxq, tusum, 0); 6853 if ((sc->sc_type >= WM_T_82575) && !WM_IS_ICHPCH(sc)) 6854 WM_Q_EVCNT_STORE(rxq, qdrop, 0); 6855 } 6856 6857 /* TX queues */ 6858 for (i = 0; i < sc->sc_nqueues; i++) { 6859 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 6860 int j; 6861 6862 WM_Q_EVCNT_STORE(txq, txsstall, 0); 6863 WM_Q_EVCNT_STORE(txq, txdstall, 0); 6864 WM_Q_EVCNT_STORE(txq, fifo_stall, 0); 6865 WM_Q_EVCNT_STORE(txq, txdw, 0); 6866 WM_Q_EVCNT_STORE(txq, txqe, 0); 6867 WM_Q_EVCNT_STORE(txq, ipsum, 0); 6868 WM_Q_EVCNT_STORE(txq, tusum, 0); 6869 WM_Q_EVCNT_STORE(txq, tusum6, 0); 6870 WM_Q_EVCNT_STORE(txq, tso, 0); 6871 WM_Q_EVCNT_STORE(txq, tso6, 0); 6872 WM_Q_EVCNT_STORE(txq, tsopain, 0); 6873 6874 for (j = 0; j < WM_NTXSEGS; j++) 6875 WM_EVCNT_STORE(&txq->txq_ev_txseg[j], 0); 6876 6877 WM_Q_EVCNT_STORE(txq, pcqdrop, 0); 6878 WM_Q_EVCNT_STORE(txq, descdrop, 0); 6879 WM_Q_EVCNT_STORE(txq, toomanyseg, 0); 6880 WM_Q_EVCNT_STORE(txq, defrag, 0); 6881 if (sc->sc_type <= WM_T_82544) 6882 WM_Q_EVCNT_STORE(txq, underrun, 0); 6883 WM_Q_EVCNT_STORE(txq, skipcontext, 0); 6884 } 6885 6886 /* Miscs */ 6887 WM_EVCNT_STORE(&sc->sc_ev_linkintr, 0); 6888 6889 WM_EVCNT_STORE(&sc->sc_ev_crcerrs, 0); 6890 WM_EVCNT_STORE(&sc->sc_ev_symerrc, 0); 6891 WM_EVCNT_STORE(&sc->sc_ev_mpc, 0); 6892 WM_EVCNT_STORE(&sc->sc_ev_colc, 0); 6893 WM_EVCNT_STORE(&sc->sc_ev_sec, 0); 6894 WM_EVCNT_STORE(&sc->sc_ev_rlec, 0); 6895 6896 if (sc->sc_type >= WM_T_82543) { 6897 WM_EVCNT_STORE(&sc->sc_ev_algnerrc, 0); 6898 WM_EVCNT_STORE(&sc->sc_ev_rxerrc, 0); 6899 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) 6900 WM_EVCNT_STORE(&sc->sc_ev_cexterr, 0); 6901 else 6902 WM_EVCNT_STORE(&sc->sc_ev_htdpmc, 0); 6903 6904 WM_EVCNT_STORE(&sc->sc_ev_tncrs, 0); 6905 WM_EVCNT_STORE(&sc->sc_ev_tsctc, 0); 6906 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) 6907 WM_EVCNT_STORE(&sc->sc_ev_tsctfc, 0); 6908 else { 6909 WM_EVCNT_STORE(&sc->sc_ev_cbrdpc, 0); 6910 WM_EVCNT_STORE(&sc->sc_ev_cbrmpc, 0); 6911 } 6912 } 6913 6914 if (sc->sc_type >= WM_T_82542_2_1) { 6915 WM_EVCNT_STORE(&sc->sc_ev_tx_xoff, 0); 6916 WM_EVCNT_STORE(&sc->sc_ev_tx_xon, 0); 6917 WM_EVCNT_STORE(&sc->sc_ev_rx_xoff, 0); 6918 WM_EVCNT_STORE(&sc->sc_ev_rx_xon, 0); 6919 WM_EVCNT_STORE(&sc->sc_ev_rx_macctl, 0); 6920 } 6921 6922 WM_EVCNT_STORE(&sc->sc_ev_scc, 0); 6923 WM_EVCNT_STORE(&sc->sc_ev_ecol, 0); 6924 WM_EVCNT_STORE(&sc->sc_ev_mcc, 0); 6925 WM_EVCNT_STORE(&sc->sc_ev_latecol, 0); 6926 6927 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) 6928 WM_EVCNT_STORE(&sc->sc_ev_cbtmpc, 0); 6929 6930 WM_EVCNT_STORE(&sc->sc_ev_dc, 0); 6931 WM_EVCNT_STORE(&sc->sc_ev_prc64, 0); 6932 WM_EVCNT_STORE(&sc->sc_ev_prc127, 0); 6933 WM_EVCNT_STORE(&sc->sc_ev_prc255, 0); 6934 WM_EVCNT_STORE(&sc->sc_ev_prc511, 0); 6935 WM_EVCNT_STORE(&sc->sc_ev_prc1023, 0); 6936 WM_EVCNT_STORE(&sc->sc_ev_prc1522, 0); 6937 WM_EVCNT_STORE(&sc->sc_ev_gprc, 0); 6938 WM_EVCNT_STORE(&sc->sc_ev_bprc, 0); 6939 WM_EVCNT_STORE(&sc->sc_ev_mprc, 0); 6940 WM_EVCNT_STORE(&sc->sc_ev_gptc, 0); 6941 WM_EVCNT_STORE(&sc->sc_ev_gorc, 0); 6942 WM_EVCNT_STORE(&sc->sc_ev_gotc, 0); 6943 WM_EVCNT_STORE(&sc->sc_ev_rnbc, 0); 6944 WM_EVCNT_STORE(&sc->sc_ev_ruc, 0); 6945 WM_EVCNT_STORE(&sc->sc_ev_rfc, 0); 6946 WM_EVCNT_STORE(&sc->sc_ev_roc, 0); 6947 WM_EVCNT_STORE(&sc->sc_ev_rjc, 0); 6948 if (sc->sc_type >= WM_T_82540) { 6949 WM_EVCNT_STORE(&sc->sc_ev_mgtprc, 0); 6950 WM_EVCNT_STORE(&sc->sc_ev_mgtpdc, 0); 6951 WM_EVCNT_STORE(&sc->sc_ev_mgtptc, 0); 6952 } 6953 WM_EVCNT_STORE(&sc->sc_ev_tor, 0); 6954 WM_EVCNT_STORE(&sc->sc_ev_tot, 0); 6955 WM_EVCNT_STORE(&sc->sc_ev_tpr, 0); 6956 WM_EVCNT_STORE(&sc->sc_ev_tpt, 0); 6957 WM_EVCNT_STORE(&sc->sc_ev_ptc64, 0); 6958 WM_EVCNT_STORE(&sc->sc_ev_ptc127, 0); 6959 WM_EVCNT_STORE(&sc->sc_ev_ptc255, 0); 6960 WM_EVCNT_STORE(&sc->sc_ev_ptc511, 0); 6961 WM_EVCNT_STORE(&sc->sc_ev_ptc1023, 0); 6962 WM_EVCNT_STORE(&sc->sc_ev_ptc1522, 0); 6963 WM_EVCNT_STORE(&sc->sc_ev_mptc, 0); 6964 WM_EVCNT_STORE(&sc->sc_ev_bptc, 0); 6965 if (sc->sc_type >= WM_T_82571) 6966 WM_EVCNT_STORE(&sc->sc_ev_iac, 0); 6967 if (sc->sc_type < WM_T_82575) { 6968 WM_EVCNT_STORE(&sc->sc_ev_icrxptc, 0); 6969 WM_EVCNT_STORE(&sc->sc_ev_icrxatc, 0); 6970 WM_EVCNT_STORE(&sc->sc_ev_ictxptc, 0); 6971 WM_EVCNT_STORE(&sc->sc_ev_ictxatc, 0); 6972 WM_EVCNT_STORE(&sc->sc_ev_ictxqec, 0); 6973 WM_EVCNT_STORE(&sc->sc_ev_ictxqmtc, 0); 6974 WM_EVCNT_STORE(&sc->sc_ev_rxdmtc, 0); 6975 WM_EVCNT_STORE(&sc->sc_ev_icrxoc, 0); 6976 } else if (!WM_IS_ICHPCH(sc)) { 6977 WM_EVCNT_STORE(&sc->sc_ev_rpthc, 0); 6978 WM_EVCNT_STORE(&sc->sc_ev_debug1, 0); 6979 WM_EVCNT_STORE(&sc->sc_ev_debug2, 0); 6980 WM_EVCNT_STORE(&sc->sc_ev_debug3, 0); 6981 WM_EVCNT_STORE(&sc->sc_ev_hgptc, 0); 6982 WM_EVCNT_STORE(&sc->sc_ev_debug4, 0); 6983 WM_EVCNT_STORE(&sc->sc_ev_rxdmtc, 0); 6984 WM_EVCNT_STORE(&sc->sc_ev_htcbdpc, 0); 6985 6986 WM_EVCNT_STORE(&sc->sc_ev_hgorc, 0); 6987 WM_EVCNT_STORE(&sc->sc_ev_hgotc, 0); 6988 WM_EVCNT_STORE(&sc->sc_ev_lenerrs, 0); 6989 WM_EVCNT_STORE(&sc->sc_ev_scvpc, 0); 6990 WM_EVCNT_STORE(&sc->sc_ev_hrmpc, 0); 6991 } 6992 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) { 6993 WM_EVCNT_STORE(&sc->sc_ev_tlpic, 0); 6994 WM_EVCNT_STORE(&sc->sc_ev_rlpic, 0); 6995 WM_EVCNT_STORE(&sc->sc_ev_b2ogprc, 0); 6996 WM_EVCNT_STORE(&sc->sc_ev_o2bspc, 0); 6997 WM_EVCNT_STORE(&sc->sc_ev_b2ospc, 0); 6998 WM_EVCNT_STORE(&sc->sc_ev_o2bgptc, 0); 6999 } 7000 #endif 7001 } 7002 7003 /* 7004 * wm_init: [ifnet interface function] 7005 * 7006 * Initialize the interface. 7007 */ 7008 static int 7009 wm_init(struct ifnet *ifp) 7010 { 7011 struct wm_softc *sc = ifp->if_softc; 7012 int ret; 7013 7014 KASSERT(IFNET_LOCKED(ifp)); 7015 7016 if (sc->sc_dying) 7017 return ENXIO; 7018 7019 mutex_enter(sc->sc_core_lock); 7020 ret = wm_init_locked(ifp); 7021 mutex_exit(sc->sc_core_lock); 7022 7023 return ret; 7024 } 7025 7026 static int 7027 wm_init_locked(struct ifnet *ifp) 7028 { 7029 struct wm_softc *sc = ifp->if_softc; 7030 struct ethercom *ec = &sc->sc_ethercom; 7031 int i, j, trynum, error = 0; 7032 uint32_t reg, sfp_mask = 0; 7033 7034 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 7035 device_xname(sc->sc_dev), __func__)); 7036 KASSERT(IFNET_LOCKED(ifp)); 7037 KASSERT(mutex_owned(sc->sc_core_lock)); 7038 7039 /* 7040 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set. 7041 * There is a small but measurable benefit to avoiding the adjusment 7042 * of the descriptor so that the headers are aligned, for normal mtu, 7043 * on such platforms. One possibility is that the DMA itself is 7044 * slightly more efficient if the front of the entire packet (instead 7045 * of the front of the headers) is aligned. 7046 * 7047 * Note we must always set align_tweak to 0 if we are using 7048 * jumbo frames. 7049 */ 7050 #ifdef __NO_STRICT_ALIGNMENT 7051 sc->sc_align_tweak = 0; 7052 #else 7053 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2)) 7054 sc->sc_align_tweak = 0; 7055 else 7056 sc->sc_align_tweak = 2; 7057 #endif /* __NO_STRICT_ALIGNMENT */ 7058 7059 /* Cancel any pending I/O. */ 7060 wm_stop_locked(ifp, false, false); 7061 7062 /* Update statistics before reset */ 7063 if_statadd2(ifp, if_collisions, CSR_READ(sc, WMREG_COLC), 7064 if_ierrors, CSR_READ(sc, WMREG_RXERRC)); 7065 7066 /* >= PCH_SPT hardware workaround before reset. */ 7067 if (sc->sc_type >= WM_T_PCH_SPT) 7068 wm_flush_desc_rings(sc); 7069 7070 /* Reset the chip to a known state. */ 7071 wm_reset(sc); 7072 7073 /* 7074 * AMT based hardware can now take control from firmware 7075 * Do this after reset. 7076 */ 7077 if ((sc->sc_flags & WM_F_HAS_AMT) != 0) 7078 wm_get_hw_control(sc); 7079 7080 if ((sc->sc_type >= WM_T_PCH_SPT) && 7081 pci_intr_type(sc->sc_pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_INTX) 7082 wm_legacy_irq_quirk_spt(sc); 7083 7084 /* Init hardware bits */ 7085 wm_initialize_hardware_bits(sc); 7086 7087 /* Reset the PHY. */ 7088 if (sc->sc_flags & WM_F_HAS_MII) 7089 wm_gmii_reset(sc); 7090 7091 if (sc->sc_type >= WM_T_ICH8) { 7092 reg = CSR_READ(sc, WMREG_GCR); 7093 /* 7094 * ICH8 No-snoop bits are opposite polarity. Set to snoop by 7095 * default after reset. 7096 */ 7097 if (sc->sc_type == WM_T_ICH8) 7098 reg |= GCR_NO_SNOOP_ALL; 7099 else 7100 reg &= ~GCR_NO_SNOOP_ALL; 7101 CSR_WRITE(sc, WMREG_GCR, reg); 7102 } 7103 7104 /* Ungate DMA clock to avoid packet loss */ 7105 if (sc->sc_type >= WM_T_PCH_TGP) { 7106 reg = CSR_READ(sc, WMREG_FFLT_DBG); 7107 reg |= (1 << 12); 7108 CSR_WRITE(sc, WMREG_FFLT_DBG, reg); 7109 } 7110 7111 if ((sc->sc_type >= WM_T_ICH8) 7112 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER) 7113 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3)) { 7114 7115 reg = CSR_READ(sc, WMREG_CTRL_EXT); 7116 reg |= CTRL_EXT_RO_DIS; 7117 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 7118 } 7119 7120 /* Calculate (E)ITR value */ 7121 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0 && sc->sc_type != WM_T_82575) { 7122 /* 7123 * For NEWQUEUE's EITR (except for 82575). 7124 * 82575's EITR should be set same throttling value as other 7125 * old controllers' ITR because the interrupt/sec calculation 7126 * is the same, that is, 1,000,000,000 / (N * 256). 7127 * 7128 * 82574's EITR should be set same throttling value as ITR. 7129 * 7130 * For N interrupts/sec, set this value to: 7131 * 1,000,000 / N in contrast to ITR throttling value. 7132 */ 7133 sc->sc_itr_init = 450; 7134 } else if (sc->sc_type >= WM_T_82543) { 7135 /* 7136 * Set up the interrupt throttling register (units of 256ns) 7137 * Note that a footnote in Intel's documentation says this 7138 * ticker runs at 1/4 the rate when the chip is in 100Mbit 7139 * or 10Mbit mode. Empirically, it appears to be the case 7140 * that that is also true for the 1024ns units of the other 7141 * interrupt-related timer registers -- so, really, we ought 7142 * to divide this value by 4 when the link speed is low. 7143 * 7144 * XXX implement this division at link speed change! 7145 */ 7146 7147 /* 7148 * For N interrupts/sec, set this value to: 7149 * 1,000,000,000 / (N * 256). Note that we set the 7150 * absolute and packet timer values to this value 7151 * divided by 4 to get "simple timer" behavior. 7152 */ 7153 sc->sc_itr_init = 1500; /* 2604 ints/sec */ 7154 } 7155 7156 error = wm_init_txrx_queues(sc); 7157 if (error) 7158 goto out; 7159 7160 if (((sc->sc_flags & WM_F_SGMII) == 0) && 7161 (sc->sc_mediatype == WM_MEDIATYPE_SERDES) && 7162 (sc->sc_type >= WM_T_82575)) 7163 wm_serdes_power_up_link_82575(sc); 7164 7165 /* Clear out the VLAN table -- we don't use it (yet). */ 7166 CSR_WRITE(sc, WMREG_VET, 0); 7167 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) 7168 trynum = 10; /* Due to hw errata */ 7169 else 7170 trynum = 1; 7171 for (i = 0; i < WM_VLAN_TABSIZE; i++) 7172 for (j = 0; j < trynum; j++) 7173 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0); 7174 7175 /* 7176 * Set up flow-control parameters. 7177 * 7178 * XXX Values could probably stand some tuning. 7179 */ 7180 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9) 7181 && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH) 7182 && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT) 7183 && (sc->sc_type != WM_T_PCH_SPT) && (sc->sc_type != WM_T_PCH_CNP) 7184 && (sc->sc_type != WM_T_PCH_TGP)) { 7185 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST); 7186 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST); 7187 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL); 7188 } 7189 7190 sc->sc_fcrtl = FCRTL_DFLT; 7191 if (sc->sc_type < WM_T_82543) { 7192 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT); 7193 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl); 7194 } else { 7195 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT); 7196 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl); 7197 } 7198 7199 if (sc->sc_type == WM_T_80003) 7200 CSR_WRITE(sc, WMREG_FCTTV, 0xffff); 7201 else 7202 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT); 7203 7204 /* Writes the control register. */ 7205 wm_set_vlan(sc); 7206 7207 if (sc->sc_flags & WM_F_HAS_MII) { 7208 uint16_t kmreg; 7209 7210 switch (sc->sc_type) { 7211 case WM_T_80003: 7212 case WM_T_ICH8: 7213 case WM_T_ICH9: 7214 case WM_T_ICH10: 7215 case WM_T_PCH: 7216 case WM_T_PCH2: 7217 case WM_T_PCH_LPT: 7218 case WM_T_PCH_SPT: 7219 case WM_T_PCH_CNP: 7220 case WM_T_PCH_TGP: 7221 /* 7222 * Set the mac to wait the maximum time between each 7223 * iteration and increase the max iterations when 7224 * polling the phy; this fixes erroneous timeouts at 7225 * 10Mbps. 7226 */ 7227 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 7228 0xFFFF); 7229 wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, 7230 &kmreg); 7231 kmreg |= 0x3F; 7232 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, 7233 kmreg); 7234 break; 7235 default: 7236 break; 7237 } 7238 7239 if (sc->sc_type == WM_T_80003) { 7240 reg = CSR_READ(sc, WMREG_CTRL_EXT); 7241 reg &= ~CTRL_EXT_LINK_MODE_MASK; 7242 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 7243 7244 /* Bypass RX and TX FIFOs */ 7245 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL, 7246 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 7247 | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); 7248 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL, 7249 KUMCTRLSTA_INB_CTRL_DIS_PADDING | 7250 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT); 7251 } 7252 } 7253 #if 0 7254 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext); 7255 #endif 7256 7257 /* Set up checksum offload parameters. */ 7258 reg = CSR_READ(sc, WMREG_RXCSUM); 7259 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL); 7260 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 7261 reg |= RXCSUM_IPOFL; 7262 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) 7263 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL; 7264 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) 7265 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL; 7266 CSR_WRITE(sc, WMREG_RXCSUM, reg); 7267 7268 /* Set registers about MSI-X */ 7269 if (wm_is_using_msix(sc)) { 7270 uint32_t ivar, qintr_idx; 7271 struct wm_queue *wmq; 7272 unsigned int qid; 7273 7274 if (sc->sc_type == WM_T_82575) { 7275 /* Interrupt control */ 7276 reg = CSR_READ(sc, WMREG_CTRL_EXT); 7277 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME | CTRL_EXT_NSICR; 7278 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 7279 7280 /* TX and RX */ 7281 for (i = 0; i < sc->sc_nqueues; i++) { 7282 wmq = &sc->sc_queue[i]; 7283 CSR_WRITE(sc, WMREG_MSIXBM(wmq->wmq_intr_idx), 7284 EITR_TX_QUEUE(wmq->wmq_id) 7285 | EITR_RX_QUEUE(wmq->wmq_id)); 7286 } 7287 /* Link status */ 7288 CSR_WRITE(sc, WMREG_MSIXBM(sc->sc_link_intr_idx), 7289 EITR_OTHER); 7290 } else if (sc->sc_type == WM_T_82574) { 7291 /* Interrupt control */ 7292 reg = CSR_READ(sc, WMREG_CTRL_EXT); 7293 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME; 7294 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 7295 7296 /* 7297 * Work around issue with spurious interrupts 7298 * in MSI-X mode. 7299 * At wm_initialize_hardware_bits(), sc_nintrs has not 7300 * initialized yet. So re-initialize WMREG_RFCTL here. 7301 */ 7302 reg = CSR_READ(sc, WMREG_RFCTL); 7303 reg |= WMREG_RFCTL_ACKDIS; 7304 CSR_WRITE(sc, WMREG_RFCTL, reg); 7305 7306 ivar = 0; 7307 /* TX and RX */ 7308 for (i = 0; i < sc->sc_nqueues; i++) { 7309 wmq = &sc->sc_queue[i]; 7310 qid = wmq->wmq_id; 7311 qintr_idx = wmq->wmq_intr_idx; 7312 7313 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx), 7314 IVAR_TX_MASK_Q_82574(qid)); 7315 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx), 7316 IVAR_RX_MASK_Q_82574(qid)); 7317 } 7318 /* Link status */ 7319 ivar |= __SHIFTIN((IVAR_VALID_82574 7320 | sc->sc_link_intr_idx), IVAR_OTHER_MASK); 7321 CSR_WRITE(sc, WMREG_IVAR, ivar | IVAR_INT_ON_ALL_WB); 7322 } else { 7323 /* Interrupt control */ 7324 CSR_WRITE(sc, WMREG_GPIE, GPIE_NSICR | GPIE_MULTI_MSIX 7325 | GPIE_EIAME | GPIE_PBA); 7326 7327 switch (sc->sc_type) { 7328 case WM_T_82580: 7329 case WM_T_I350: 7330 case WM_T_I354: 7331 case WM_T_I210: 7332 case WM_T_I211: 7333 /* TX and RX */ 7334 for (i = 0; i < sc->sc_nqueues; i++) { 7335 wmq = &sc->sc_queue[i]; 7336 qid = wmq->wmq_id; 7337 qintr_idx = wmq->wmq_intr_idx; 7338 7339 ivar = CSR_READ(sc, WMREG_IVAR_Q(qid)); 7340 ivar &= ~IVAR_TX_MASK_Q(qid); 7341 ivar |= __SHIFTIN((qintr_idx 7342 | IVAR_VALID), 7343 IVAR_TX_MASK_Q(qid)); 7344 ivar &= ~IVAR_RX_MASK_Q(qid); 7345 ivar |= __SHIFTIN((qintr_idx 7346 | IVAR_VALID), 7347 IVAR_RX_MASK_Q(qid)); 7348 CSR_WRITE(sc, WMREG_IVAR_Q(qid), ivar); 7349 } 7350 break; 7351 case WM_T_82576: 7352 /* TX and RX */ 7353 for (i = 0; i < sc->sc_nqueues; i++) { 7354 wmq = &sc->sc_queue[i]; 7355 qid = wmq->wmq_id; 7356 qintr_idx = wmq->wmq_intr_idx; 7357 7358 ivar = CSR_READ(sc, 7359 WMREG_IVAR_Q_82576(qid)); 7360 ivar &= ~IVAR_TX_MASK_Q_82576(qid); 7361 ivar |= __SHIFTIN((qintr_idx 7362 | IVAR_VALID), 7363 IVAR_TX_MASK_Q_82576(qid)); 7364 ivar &= ~IVAR_RX_MASK_Q_82576(qid); 7365 ivar |= __SHIFTIN((qintr_idx 7366 | IVAR_VALID), 7367 IVAR_RX_MASK_Q_82576(qid)); 7368 CSR_WRITE(sc, WMREG_IVAR_Q_82576(qid), 7369 ivar); 7370 } 7371 break; 7372 default: 7373 break; 7374 } 7375 7376 /* Link status */ 7377 ivar = __SHIFTIN((sc->sc_link_intr_idx | IVAR_VALID), 7378 IVAR_MISC_OTHER); 7379 CSR_WRITE(sc, WMREG_IVAR_MISC, ivar); 7380 } 7381 7382 if (wm_is_using_multiqueue(sc)) { 7383 wm_init_rss(sc); 7384 7385 /* 7386 ** NOTE: Receive Full-Packet Checksum Offload 7387 ** is mutually exclusive with Multiqueue. However 7388 ** this is not the same as TCP/IP checksums which 7389 ** still work. 7390 */ 7391 reg = CSR_READ(sc, WMREG_RXCSUM); 7392 reg |= RXCSUM_PCSD; 7393 CSR_WRITE(sc, WMREG_RXCSUM, reg); 7394 } 7395 } 7396 7397 /* Set up the interrupt registers. */ 7398 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 7399 7400 /* Enable SFP module insertion interrupt if it's required */ 7401 if ((sc->sc_flags & WM_F_SFP) != 0) { 7402 sc->sc_ctrl |= CTRL_EXTLINK_EN; 7403 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 7404 sfp_mask = ICR_GPI(0); 7405 } 7406 7407 if (wm_is_using_msix(sc)) { 7408 uint32_t mask; 7409 struct wm_queue *wmq; 7410 7411 switch (sc->sc_type) { 7412 case WM_T_82574: 7413 mask = 0; 7414 for (i = 0; i < sc->sc_nqueues; i++) { 7415 wmq = &sc->sc_queue[i]; 7416 mask |= ICR_TXQ(wmq->wmq_id); 7417 mask |= ICR_RXQ(wmq->wmq_id); 7418 } 7419 mask |= ICR_OTHER; 7420 CSR_WRITE(sc, WMREG_EIAC_82574, mask); 7421 CSR_WRITE(sc, WMREG_IMS, mask | ICR_LSC); 7422 break; 7423 default: 7424 if (sc->sc_type == WM_T_82575) { 7425 mask = 0; 7426 for (i = 0; i < sc->sc_nqueues; i++) { 7427 wmq = &sc->sc_queue[i]; 7428 mask |= EITR_TX_QUEUE(wmq->wmq_id); 7429 mask |= EITR_RX_QUEUE(wmq->wmq_id); 7430 } 7431 mask |= EITR_OTHER; 7432 } else { 7433 mask = 0; 7434 for (i = 0; i < sc->sc_nqueues; i++) { 7435 wmq = &sc->sc_queue[i]; 7436 mask |= 1 << wmq->wmq_intr_idx; 7437 } 7438 mask |= 1 << sc->sc_link_intr_idx; 7439 } 7440 CSR_WRITE(sc, WMREG_EIAC, mask); 7441 CSR_WRITE(sc, WMREG_EIAM, mask); 7442 CSR_WRITE(sc, WMREG_EIMS, mask); 7443 7444 /* For other interrupts */ 7445 CSR_WRITE(sc, WMREG_IMS, ICR_LSC | sfp_mask); 7446 break; 7447 } 7448 } else { 7449 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 | 7450 ICR_RXO | ICR_RXT0 | sfp_mask; 7451 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr); 7452 } 7453 7454 /* Set up the inter-packet gap. */ 7455 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg); 7456 7457 if (sc->sc_type >= WM_T_82543) { 7458 for (int qidx = 0; qidx < sc->sc_nqueues; qidx++) { 7459 struct wm_queue *wmq = &sc->sc_queue[qidx]; 7460 wm_itrs_writereg(sc, wmq); 7461 } 7462 /* 7463 * Link interrupts occur much less than TX 7464 * interrupts and RX interrupts. So, we don't 7465 * tune EINTR(WM_MSIX_LINKINTR_IDX) value like 7466 * FreeBSD's if_igb. 7467 */ 7468 } 7469 7470 /* Set the VLAN EtherType. */ 7471 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN); 7472 7473 /* 7474 * Set up the transmit control register; we start out with 7475 * a collision distance suitable for FDX, but update it when 7476 * we resolve the media type. 7477 */ 7478 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC 7479 | TCTL_CT(TX_COLLISION_THRESHOLD) 7480 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 7481 if (sc->sc_type >= WM_T_82571) 7482 sc->sc_tctl |= TCTL_MULR; 7483 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 7484 7485 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 7486 /* Write TDT after TCTL.EN is set. See the document. */ 7487 CSR_WRITE(sc, WMREG_TDT(0), 0); 7488 } 7489 7490 if (sc->sc_type == WM_T_80003) { 7491 reg = CSR_READ(sc, WMREG_TCTL_EXT); 7492 reg &= ~TCTL_EXT_GCEX_MASK; 7493 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; 7494 CSR_WRITE(sc, WMREG_TCTL_EXT, reg); 7495 } 7496 7497 /* Set the media. */ 7498 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0) 7499 goto out; 7500 7501 /* Configure for OS presence */ 7502 wm_init_manageability(sc); 7503 7504 /* 7505 * Set up the receive control register; we actually program the 7506 * register when we set the receive filter. Use multicast address 7507 * offset type 0. 7508 * 7509 * Only the i82544 has the ability to strip the incoming CRC, so we 7510 * don't enable that feature. 7511 */ 7512 sc->sc_mchash_type = 0; 7513 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF 7514 | __SHIFTIN(sc->sc_mchash_type, RCTL_MO); 7515 7516 /* 82574 use one buffer extended Rx descriptor. */ 7517 if (sc->sc_type == WM_T_82574) 7518 sc->sc_rctl |= RCTL_DTYP_ONEBUF; 7519 7520 if ((sc->sc_flags & WM_F_CRC_STRIP) != 0) 7521 sc->sc_rctl |= RCTL_SECRC; 7522 7523 if (((ec->ec_capabilities & ETHERCAP_JUMBO_MTU) != 0) 7524 && (ifp->if_mtu > ETHERMTU)) { 7525 sc->sc_rctl |= RCTL_LPE; 7526 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 7527 CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO); 7528 } 7529 7530 if (MCLBYTES == 2048) 7531 sc->sc_rctl |= RCTL_2k; 7532 else { 7533 if (sc->sc_type >= WM_T_82543) { 7534 switch (MCLBYTES) { 7535 case 4096: 7536 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k; 7537 break; 7538 case 8192: 7539 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k; 7540 break; 7541 case 16384: 7542 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k; 7543 break; 7544 default: 7545 panic("wm_init: MCLBYTES %d unsupported", 7546 MCLBYTES); 7547 break; 7548 } 7549 } else 7550 panic("wm_init: i82542 requires MCLBYTES = 2048"); 7551 } 7552 7553 /* Enable ECC */ 7554 switch (sc->sc_type) { 7555 case WM_T_82571: 7556 reg = CSR_READ(sc, WMREG_PBA_ECC); 7557 reg |= PBA_ECC_CORR_EN; 7558 CSR_WRITE(sc, WMREG_PBA_ECC, reg); 7559 break; 7560 case WM_T_PCH_LPT: 7561 case WM_T_PCH_SPT: 7562 case WM_T_PCH_CNP: 7563 case WM_T_PCH_TGP: 7564 reg = CSR_READ(sc, WMREG_PBECCSTS); 7565 reg |= PBECCSTS_UNCORR_ECC_ENABLE; 7566 CSR_WRITE(sc, WMREG_PBECCSTS, reg); 7567 7568 sc->sc_ctrl |= CTRL_MEHE; 7569 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 7570 break; 7571 default: 7572 break; 7573 } 7574 7575 /* 7576 * Set the receive filter. 7577 * 7578 * For 82575 and 82576, the RX descriptors must be initialized after 7579 * the setting of RCTL.EN in wm_set_filter() 7580 */ 7581 wm_set_filter(sc); 7582 7583 /* On 575 and later set RDT only if RX enabled */ 7584 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 7585 int qidx; 7586 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) { 7587 struct wm_rxqueue *rxq = &sc->sc_queue[qidx].wmq_rxq; 7588 for (i = 0; i < WM_NRXDESC; i++) { 7589 mutex_enter(rxq->rxq_lock); 7590 wm_init_rxdesc(rxq, i); 7591 mutex_exit(rxq->rxq_lock); 7592 7593 } 7594 } 7595 } 7596 7597 wm_unset_stopping_flags(sc); 7598 7599 /* Start the one second link check clock. */ 7600 callout_schedule(&sc->sc_tick_ch, hz); 7601 7602 /* 7603 * ...all done! (IFNET_LOCKED asserted above.) 7604 */ 7605 ifp->if_flags |= IFF_RUNNING; 7606 7607 out: 7608 /* Save last flags for the callback */ 7609 sc->sc_if_flags = ifp->if_flags; 7610 sc->sc_ec_capenable = ec->ec_capenable; 7611 if (error) 7612 log(LOG_ERR, "%s: interface not running\n", 7613 device_xname(sc->sc_dev)); 7614 return error; 7615 } 7616 7617 /* 7618 * wm_stop: [ifnet interface function] 7619 * 7620 * Stop transmission on the interface. 7621 */ 7622 static void 7623 wm_stop(struct ifnet *ifp, int disable) 7624 { 7625 struct wm_softc *sc = ifp->if_softc; 7626 7627 ASSERT_SLEEPABLE(); 7628 KASSERT(IFNET_LOCKED(ifp)); 7629 7630 mutex_enter(sc->sc_core_lock); 7631 wm_stop_locked(ifp, disable ? true : false, true); 7632 mutex_exit(sc->sc_core_lock); 7633 7634 /* 7635 * After wm_set_stopping_flags(), it is guaranteed that 7636 * wm_handle_queue_work() does not call workqueue_enqueue(). 7637 * However, workqueue_wait() cannot call in wm_stop_locked() 7638 * because it can sleep... 7639 * so, call workqueue_wait() here. 7640 */ 7641 for (int i = 0; i < sc->sc_nqueues; i++) 7642 workqueue_wait(sc->sc_queue_wq, &sc->sc_queue[i].wmq_cookie); 7643 workqueue_wait(sc->sc_reset_wq, &sc->sc_reset_work); 7644 } 7645 7646 static void 7647 wm_stop_locked(struct ifnet *ifp, bool disable, bool wait) 7648 { 7649 struct wm_softc *sc = ifp->if_softc; 7650 struct wm_txsoft *txs; 7651 int i, qidx; 7652 7653 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 7654 device_xname(sc->sc_dev), __func__)); 7655 KASSERT(IFNET_LOCKED(ifp)); 7656 KASSERT(mutex_owned(sc->sc_core_lock)); 7657 7658 wm_set_stopping_flags(sc); 7659 7660 if (sc->sc_flags & WM_F_HAS_MII) { 7661 /* Down the MII. */ 7662 mii_down(&sc->sc_mii); 7663 } else { 7664 #if 0 7665 /* Should we clear PHY's status properly? */ 7666 wm_reset(sc); 7667 #endif 7668 } 7669 7670 /* Stop the transmit and receive processes. */ 7671 CSR_WRITE(sc, WMREG_TCTL, 0); 7672 CSR_WRITE(sc, WMREG_RCTL, 0); 7673 sc->sc_rctl &= ~RCTL_EN; 7674 7675 /* 7676 * Clear the interrupt mask to ensure the device cannot assert its 7677 * interrupt line. 7678 * Clear sc->sc_icr to ensure wm_intr_legacy() makes no attempt to 7679 * service any currently pending or shared interrupt. 7680 */ 7681 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 7682 sc->sc_icr = 0; 7683 if (wm_is_using_msix(sc)) { 7684 if (sc->sc_type != WM_T_82574) { 7685 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU); 7686 CSR_WRITE(sc, WMREG_EIAC, 0); 7687 } else 7688 CSR_WRITE(sc, WMREG_EIAC_82574, 0); 7689 } 7690 7691 /* 7692 * Stop callouts after interrupts are disabled; if we have 7693 * to wait for them, we will be releasing the CORE_LOCK 7694 * briefly, which will unblock interrupts on the current CPU. 7695 */ 7696 7697 /* Stop the one second clock. */ 7698 if (wait) 7699 callout_halt(&sc->sc_tick_ch, sc->sc_core_lock); 7700 else 7701 callout_stop(&sc->sc_tick_ch); 7702 7703 /* Stop the 82547 Tx FIFO stall check timer. */ 7704 if (sc->sc_type == WM_T_82547) { 7705 if (wait) 7706 callout_halt(&sc->sc_txfifo_ch, sc->sc_core_lock); 7707 else 7708 callout_stop(&sc->sc_txfifo_ch); 7709 } 7710 7711 /* Release any queued transmit buffers. */ 7712 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) { 7713 struct wm_queue *wmq = &sc->sc_queue[qidx]; 7714 struct wm_txqueue *txq = &wmq->wmq_txq; 7715 struct mbuf *m; 7716 7717 mutex_enter(txq->txq_lock); 7718 txq->txq_sending = false; /* Ensure watchdog disabled */ 7719 for (i = 0; i < WM_TXQUEUELEN(txq); i++) { 7720 txs = &txq->txq_soft[i]; 7721 if (txs->txs_mbuf != NULL) { 7722 bus_dmamap_unload(sc->sc_dmat,txs->txs_dmamap); 7723 m_freem(txs->txs_mbuf); 7724 txs->txs_mbuf = NULL; 7725 } 7726 } 7727 /* Drain txq_interq */ 7728 while ((m = pcq_get(txq->txq_interq)) != NULL) 7729 m_freem(m); 7730 mutex_exit(txq->txq_lock); 7731 } 7732 7733 /* Mark the interface as down and cancel the watchdog timer. */ 7734 ifp->if_flags &= ~IFF_RUNNING; 7735 sc->sc_if_flags = ifp->if_flags; 7736 7737 if (disable) { 7738 for (i = 0; i < sc->sc_nqueues; i++) { 7739 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 7740 mutex_enter(rxq->rxq_lock); 7741 wm_rxdrain(rxq); 7742 mutex_exit(rxq->rxq_lock); 7743 } 7744 } 7745 7746 #if 0 /* notyet */ 7747 if (sc->sc_type >= WM_T_82544) 7748 CSR_WRITE(sc, WMREG_WUC, 0); 7749 #endif 7750 } 7751 7752 static void 7753 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0) 7754 { 7755 struct mbuf *m; 7756 int i; 7757 7758 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev)); 7759 for (m = m0, i = 0; m != NULL; m = m->m_next, i++) 7760 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, " 7761 "m_flags = 0x%08x\n", device_xname(sc->sc_dev), 7762 m->m_data, m->m_len, m->m_flags); 7763 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev), 7764 i, i == 1 ? "" : "s"); 7765 } 7766 7767 /* 7768 * wm_82547_txfifo_stall: 7769 * 7770 * Callout used to wait for the 82547 Tx FIFO to drain, 7771 * reset the FIFO pointers, and restart packet transmission. 7772 */ 7773 static void 7774 wm_82547_txfifo_stall(void *arg) 7775 { 7776 struct wm_softc *sc = arg; 7777 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq; 7778 7779 mutex_enter(txq->txq_lock); 7780 7781 if (txq->txq_stopping) 7782 goto out; 7783 7784 if (txq->txq_fifo_stall) { 7785 if (CSR_READ(sc, WMREG_TDT(0)) == CSR_READ(sc, WMREG_TDH(0)) && 7786 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) && 7787 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) { 7788 /* 7789 * Packets have drained. Stop transmitter, reset 7790 * FIFO pointers, restart transmitter, and kick 7791 * the packet queue. 7792 */ 7793 uint32_t tctl = CSR_READ(sc, WMREG_TCTL); 7794 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN); 7795 CSR_WRITE(sc, WMREG_TDFT, txq->txq_fifo_addr); 7796 CSR_WRITE(sc, WMREG_TDFH, txq->txq_fifo_addr); 7797 CSR_WRITE(sc, WMREG_TDFTS, txq->txq_fifo_addr); 7798 CSR_WRITE(sc, WMREG_TDFHS, txq->txq_fifo_addr); 7799 CSR_WRITE(sc, WMREG_TCTL, tctl); 7800 CSR_WRITE_FLUSH(sc); 7801 7802 txq->txq_fifo_head = 0; 7803 txq->txq_fifo_stall = 0; 7804 wm_start_locked(&sc->sc_ethercom.ec_if); 7805 } else { 7806 /* 7807 * Still waiting for packets to drain; try again in 7808 * another tick. 7809 */ 7810 callout_schedule(&sc->sc_txfifo_ch, 1); 7811 } 7812 } 7813 7814 out: 7815 mutex_exit(txq->txq_lock); 7816 } 7817 7818 /* 7819 * wm_82547_txfifo_bugchk: 7820 * 7821 * Check for bug condition in the 82547 Tx FIFO. We need to 7822 * prevent enqueueing a packet that would wrap around the end 7823 * if the Tx FIFO ring buffer, otherwise the chip will croak. 7824 * 7825 * We do this by checking the amount of space before the end 7826 * of the Tx FIFO buffer. If the packet will not fit, we "stall" 7827 * the Tx FIFO, wait for all remaining packets to drain, reset 7828 * the internal FIFO pointers to the beginning, and restart 7829 * transmission on the interface. 7830 */ 7831 #define WM_FIFO_HDR 0x10 7832 #define WM_82547_PAD_LEN 0x3e0 7833 static int 7834 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0) 7835 { 7836 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq; 7837 int space = txq->txq_fifo_size - txq->txq_fifo_head; 7838 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR); 7839 7840 /* Just return if already stalled. */ 7841 if (txq->txq_fifo_stall) 7842 return 1; 7843 7844 if (sc->sc_mii.mii_media_active & IFM_FDX) { 7845 /* Stall only occurs in half-duplex mode. */ 7846 goto send_packet; 7847 } 7848 7849 if (len >= WM_82547_PAD_LEN + space) { 7850 txq->txq_fifo_stall = 1; 7851 callout_schedule(&sc->sc_txfifo_ch, 1); 7852 return 1; 7853 } 7854 7855 send_packet: 7856 txq->txq_fifo_head += len; 7857 if (txq->txq_fifo_head >= txq->txq_fifo_size) 7858 txq->txq_fifo_head -= txq->txq_fifo_size; 7859 7860 return 0; 7861 } 7862 7863 static int 7864 wm_alloc_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq) 7865 { 7866 int error; 7867 7868 /* 7869 * Allocate the control data structures, and create and load the 7870 * DMA map for it. 7871 * 7872 * NOTE: All Tx descriptors must be in the same 4G segment of 7873 * memory. So must Rx descriptors. We simplify by allocating 7874 * both sets within the same 4G segment. 7875 */ 7876 if (sc->sc_type < WM_T_82544) 7877 WM_NTXDESC(txq) = WM_NTXDESC_82542; 7878 else 7879 WM_NTXDESC(txq) = WM_NTXDESC_82544; 7880 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 7881 txq->txq_descsize = sizeof(nq_txdesc_t); 7882 else 7883 txq->txq_descsize = sizeof(wiseman_txdesc_t); 7884 7885 if ((error = bus_dmamem_alloc(sc->sc_dmat, WM_TXDESCS_SIZE(txq), 7886 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &txq->txq_desc_seg, 7887 1, &txq->txq_desc_rseg, 0)) != 0) { 7888 aprint_error_dev(sc->sc_dev, 7889 "unable to allocate TX control data, error = %d\n", 7890 error); 7891 goto fail_0; 7892 } 7893 7894 if ((error = bus_dmamem_map(sc->sc_dmat, &txq->txq_desc_seg, 7895 txq->txq_desc_rseg, WM_TXDESCS_SIZE(txq), 7896 (void **)&txq->txq_descs_u, BUS_DMA_COHERENT)) != 0) { 7897 aprint_error_dev(sc->sc_dev, 7898 "unable to map TX control data, error = %d\n", error); 7899 goto fail_1; 7900 } 7901 7902 if ((error = bus_dmamap_create(sc->sc_dmat, WM_TXDESCS_SIZE(txq), 1, 7903 WM_TXDESCS_SIZE(txq), 0, 0, &txq->txq_desc_dmamap)) != 0) { 7904 aprint_error_dev(sc->sc_dev, 7905 "unable to create TX control data DMA map, error = %d\n", 7906 error); 7907 goto fail_2; 7908 } 7909 7910 if ((error = bus_dmamap_load(sc->sc_dmat, txq->txq_desc_dmamap, 7911 txq->txq_descs_u, WM_TXDESCS_SIZE(txq), NULL, 0)) != 0) { 7912 aprint_error_dev(sc->sc_dev, 7913 "unable to load TX control data DMA map, error = %d\n", 7914 error); 7915 goto fail_3; 7916 } 7917 7918 return 0; 7919 7920 fail_3: 7921 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap); 7922 fail_2: 7923 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u, 7924 WM_TXDESCS_SIZE(txq)); 7925 fail_1: 7926 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg); 7927 fail_0: 7928 return error; 7929 } 7930 7931 static void 7932 wm_free_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq) 7933 { 7934 7935 bus_dmamap_unload(sc->sc_dmat, txq->txq_desc_dmamap); 7936 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap); 7937 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u, 7938 WM_TXDESCS_SIZE(txq)); 7939 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg); 7940 } 7941 7942 static int 7943 wm_alloc_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq) 7944 { 7945 int error; 7946 size_t rxq_descs_size; 7947 7948 /* 7949 * Allocate the control data structures, and create and load the 7950 * DMA map for it. 7951 * 7952 * NOTE: All Tx descriptors must be in the same 4G segment of 7953 * memory. So must Rx descriptors. We simplify by allocating 7954 * both sets within the same 4G segment. 7955 */ 7956 rxq->rxq_ndesc = WM_NRXDESC; 7957 if (sc->sc_type == WM_T_82574) 7958 rxq->rxq_descsize = sizeof(ext_rxdesc_t); 7959 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 7960 rxq->rxq_descsize = sizeof(nq_rxdesc_t); 7961 else 7962 rxq->rxq_descsize = sizeof(wiseman_rxdesc_t); 7963 rxq_descs_size = rxq->rxq_descsize * rxq->rxq_ndesc; 7964 7965 if ((error = bus_dmamem_alloc(sc->sc_dmat, rxq_descs_size, 7966 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &rxq->rxq_desc_seg, 7967 1, &rxq->rxq_desc_rseg, 0)) != 0) { 7968 aprint_error_dev(sc->sc_dev, 7969 "unable to allocate RX control data, error = %d\n", 7970 error); 7971 goto fail_0; 7972 } 7973 7974 if ((error = bus_dmamem_map(sc->sc_dmat, &rxq->rxq_desc_seg, 7975 rxq->rxq_desc_rseg, rxq_descs_size, 7976 (void **)&rxq->rxq_descs_u, BUS_DMA_COHERENT)) != 0) { 7977 aprint_error_dev(sc->sc_dev, 7978 "unable to map RX control data, error = %d\n", error); 7979 goto fail_1; 7980 } 7981 7982 if ((error = bus_dmamap_create(sc->sc_dmat, rxq_descs_size, 1, 7983 rxq_descs_size, 0, 0, &rxq->rxq_desc_dmamap)) != 0) { 7984 aprint_error_dev(sc->sc_dev, 7985 "unable to create RX control data DMA map, error = %d\n", 7986 error); 7987 goto fail_2; 7988 } 7989 7990 if ((error = bus_dmamap_load(sc->sc_dmat, rxq->rxq_desc_dmamap, 7991 rxq->rxq_descs_u, rxq_descs_size, NULL, 0)) != 0) { 7992 aprint_error_dev(sc->sc_dev, 7993 "unable to load RX control data DMA map, error = %d\n", 7994 error); 7995 goto fail_3; 7996 } 7997 7998 return 0; 7999 8000 fail_3: 8001 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap); 8002 fail_2: 8003 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u, 8004 rxq_descs_size); 8005 fail_1: 8006 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg); 8007 fail_0: 8008 return error; 8009 } 8010 8011 static void 8012 wm_free_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq) 8013 { 8014 8015 bus_dmamap_unload(sc->sc_dmat, rxq->rxq_desc_dmamap); 8016 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap); 8017 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u, 8018 rxq->rxq_descsize * rxq->rxq_ndesc); 8019 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg); 8020 } 8021 8022 8023 static int 8024 wm_alloc_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq) 8025 { 8026 int i, error; 8027 8028 /* Create the transmit buffer DMA maps. */ 8029 WM_TXQUEUELEN(txq) = 8030 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ? 8031 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX; 8032 for (i = 0; i < WM_TXQUEUELEN(txq); i++) { 8033 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA, 8034 WM_NTXSEGS, WTX_MAX_LEN, 0, 0, 8035 &txq->txq_soft[i].txs_dmamap)) != 0) { 8036 aprint_error_dev(sc->sc_dev, 8037 "unable to create Tx DMA map %d, error = %d\n", 8038 i, error); 8039 goto fail; 8040 } 8041 } 8042 8043 return 0; 8044 8045 fail: 8046 for (i = 0; i < WM_TXQUEUELEN(txq); i++) { 8047 if (txq->txq_soft[i].txs_dmamap != NULL) 8048 bus_dmamap_destroy(sc->sc_dmat, 8049 txq->txq_soft[i].txs_dmamap); 8050 } 8051 return error; 8052 } 8053 8054 static void 8055 wm_free_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq) 8056 { 8057 int i; 8058 8059 for (i = 0; i < WM_TXQUEUELEN(txq); i++) { 8060 if (txq->txq_soft[i].txs_dmamap != NULL) 8061 bus_dmamap_destroy(sc->sc_dmat, 8062 txq->txq_soft[i].txs_dmamap); 8063 } 8064 } 8065 8066 static int 8067 wm_alloc_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq) 8068 { 8069 int i, error; 8070 8071 /* Create the receive buffer DMA maps. */ 8072 for (i = 0; i < rxq->rxq_ndesc; i++) { 8073 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 8074 MCLBYTES, 0, 0, 8075 &rxq->rxq_soft[i].rxs_dmamap)) != 0) { 8076 aprint_error_dev(sc->sc_dev, 8077 "unable to create Rx DMA map %d error = %d\n", 8078 i, error); 8079 goto fail; 8080 } 8081 rxq->rxq_soft[i].rxs_mbuf = NULL; 8082 } 8083 8084 return 0; 8085 8086 fail: 8087 for (i = 0; i < rxq->rxq_ndesc; i++) { 8088 if (rxq->rxq_soft[i].rxs_dmamap != NULL) 8089 bus_dmamap_destroy(sc->sc_dmat, 8090 rxq->rxq_soft[i].rxs_dmamap); 8091 } 8092 return error; 8093 } 8094 8095 static void 8096 wm_free_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq) 8097 { 8098 int i; 8099 8100 for (i = 0; i < rxq->rxq_ndesc; i++) { 8101 if (rxq->rxq_soft[i].rxs_dmamap != NULL) 8102 bus_dmamap_destroy(sc->sc_dmat, 8103 rxq->rxq_soft[i].rxs_dmamap); 8104 } 8105 } 8106 8107 /* 8108 * wm_alloc_quques: 8109 * Allocate {tx,rx}descs and {tx,rx} buffers 8110 */ 8111 static int 8112 wm_alloc_txrx_queues(struct wm_softc *sc) 8113 { 8114 int i, error, tx_done, rx_done; 8115 8116 sc->sc_queue = kmem_zalloc(sizeof(struct wm_queue) * sc->sc_nqueues, 8117 KM_SLEEP); 8118 if (sc->sc_queue == NULL) { 8119 aprint_error_dev(sc->sc_dev,"unable to allocate wm_queue\n"); 8120 error = ENOMEM; 8121 goto fail_0; 8122 } 8123 8124 /* For transmission */ 8125 error = 0; 8126 tx_done = 0; 8127 for (i = 0; i < sc->sc_nqueues; i++) { 8128 #ifdef WM_EVENT_COUNTERS 8129 int j; 8130 const char *xname; 8131 #endif 8132 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 8133 txq->txq_sc = sc; 8134 txq->txq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 8135 8136 error = wm_alloc_tx_descs(sc, txq); 8137 if (error) 8138 break; 8139 error = wm_alloc_tx_buffer(sc, txq); 8140 if (error) { 8141 wm_free_tx_descs(sc, txq); 8142 break; 8143 } 8144 txq->txq_interq = pcq_create(WM_TXINTERQSIZE, KM_SLEEP); 8145 if (txq->txq_interq == NULL) { 8146 wm_free_tx_descs(sc, txq); 8147 wm_free_tx_buffer(sc, txq); 8148 error = ENOMEM; 8149 break; 8150 } 8151 8152 #ifdef WM_EVENT_COUNTERS 8153 xname = device_xname(sc->sc_dev); 8154 8155 WM_Q_MISC_EVCNT_ATTACH(txq, txsstall, txq, i, xname); 8156 WM_Q_MISC_EVCNT_ATTACH(txq, txdstall, txq, i, xname); 8157 WM_Q_MISC_EVCNT_ATTACH(txq, fifo_stall, txq, i, xname); 8158 WM_Q_INTR_EVCNT_ATTACH(txq, txdw, txq, i, xname); 8159 WM_Q_INTR_EVCNT_ATTACH(txq, txqe, txq, i, xname); 8160 WM_Q_MISC_EVCNT_ATTACH(txq, ipsum, txq, i, xname); 8161 WM_Q_MISC_EVCNT_ATTACH(txq, tusum, txq, i, xname); 8162 WM_Q_MISC_EVCNT_ATTACH(txq, tusum6, txq, i, xname); 8163 WM_Q_MISC_EVCNT_ATTACH(txq, tso, txq, i, xname); 8164 WM_Q_MISC_EVCNT_ATTACH(txq, tso6, txq, i, xname); 8165 WM_Q_MISC_EVCNT_ATTACH(txq, tsopain, txq, i, xname); 8166 8167 for (j = 0; j < WM_NTXSEGS; j++) { 8168 snprintf(txq->txq_txseg_evcnt_names[j], 8169 sizeof(txq->txq_txseg_evcnt_names[j]), 8170 "txq%02dtxseg%d", i, j); 8171 evcnt_attach_dynamic(&txq->txq_ev_txseg[j], 8172 EVCNT_TYPE_MISC, 8173 NULL, xname, txq->txq_txseg_evcnt_names[j]); 8174 } 8175 8176 WM_Q_MISC_EVCNT_ATTACH(txq, pcqdrop, txq, i, xname); 8177 WM_Q_MISC_EVCNT_ATTACH(txq, descdrop, txq, i, xname); 8178 WM_Q_MISC_EVCNT_ATTACH(txq, toomanyseg, txq, i, xname); 8179 WM_Q_MISC_EVCNT_ATTACH(txq, defrag, txq, i, xname); 8180 /* Only for 82544 (and earlier?) */ 8181 if (sc->sc_type <= WM_T_82544) 8182 WM_Q_MISC_EVCNT_ATTACH(txq, underrun, txq, i, xname); 8183 WM_Q_MISC_EVCNT_ATTACH(txq, skipcontext, txq, i, xname); 8184 #endif /* WM_EVENT_COUNTERS */ 8185 8186 tx_done++; 8187 } 8188 if (error) 8189 goto fail_1; 8190 8191 /* For receive */ 8192 error = 0; 8193 rx_done = 0; 8194 for (i = 0; i < sc->sc_nqueues; i++) { 8195 #ifdef WM_EVENT_COUNTERS 8196 const char *xname; 8197 #endif 8198 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 8199 rxq->rxq_sc = sc; 8200 rxq->rxq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 8201 8202 error = wm_alloc_rx_descs(sc, rxq); 8203 if (error) 8204 break; 8205 8206 error = wm_alloc_rx_buffer(sc, rxq); 8207 if (error) { 8208 wm_free_rx_descs(sc, rxq); 8209 break; 8210 } 8211 8212 #ifdef WM_EVENT_COUNTERS 8213 xname = device_xname(sc->sc_dev); 8214 8215 WM_Q_INTR_EVCNT_ATTACH(rxq, intr, rxq, i, xname); 8216 WM_Q_INTR_EVCNT_ATTACH(rxq, defer, rxq, i, xname); 8217 WM_Q_MISC_EVCNT_ATTACH(rxq, ipsum, rxq, i, xname); 8218 WM_Q_MISC_EVCNT_ATTACH(rxq, tusum, rxq, i, xname); 8219 if ((sc->sc_type >= WM_T_82575) && !WM_IS_ICHPCH(sc)) 8220 WM_Q_MISC_EVCNT_ATTACH(rxq, qdrop, rxq, i, xname); 8221 #endif /* WM_EVENT_COUNTERS */ 8222 8223 rx_done++; 8224 } 8225 if (error) 8226 goto fail_2; 8227 8228 return 0; 8229 8230 fail_2: 8231 for (i = 0; i < rx_done; i++) { 8232 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 8233 wm_free_rx_buffer(sc, rxq); 8234 wm_free_rx_descs(sc, rxq); 8235 if (rxq->rxq_lock) 8236 mutex_obj_free(rxq->rxq_lock); 8237 } 8238 fail_1: 8239 for (i = 0; i < tx_done; i++) { 8240 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 8241 pcq_destroy(txq->txq_interq); 8242 wm_free_tx_buffer(sc, txq); 8243 wm_free_tx_descs(sc, txq); 8244 if (txq->txq_lock) 8245 mutex_obj_free(txq->txq_lock); 8246 } 8247 8248 kmem_free(sc->sc_queue, 8249 sizeof(struct wm_queue) * sc->sc_nqueues); 8250 fail_0: 8251 return error; 8252 } 8253 8254 /* 8255 * wm_free_quques: 8256 * Free {tx,rx}descs and {tx,rx} buffers 8257 */ 8258 static void 8259 wm_free_txrx_queues(struct wm_softc *sc) 8260 { 8261 int i; 8262 8263 for (i = 0; i < sc->sc_nqueues; i++) { 8264 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq; 8265 8266 #ifdef WM_EVENT_COUNTERS 8267 WM_Q_EVCNT_DETACH(rxq, intr, rxq, i); 8268 WM_Q_EVCNT_DETACH(rxq, defer, rxq, i); 8269 WM_Q_EVCNT_DETACH(rxq, ipsum, rxq, i); 8270 WM_Q_EVCNT_DETACH(rxq, tusum, rxq, i); 8271 if ((sc->sc_type >= WM_T_82575) && !WM_IS_ICHPCH(sc)) 8272 WM_Q_EVCNT_DETACH(rxq, qdrop, rxq, i); 8273 #endif /* WM_EVENT_COUNTERS */ 8274 8275 wm_free_rx_buffer(sc, rxq); 8276 wm_free_rx_descs(sc, rxq); 8277 if (rxq->rxq_lock) 8278 mutex_obj_free(rxq->rxq_lock); 8279 } 8280 8281 for (i = 0; i < sc->sc_nqueues; i++) { 8282 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq; 8283 struct mbuf *m; 8284 #ifdef WM_EVENT_COUNTERS 8285 int j; 8286 8287 WM_Q_EVCNT_DETACH(txq, txsstall, txq, i); 8288 WM_Q_EVCNT_DETACH(txq, txdstall, txq, i); 8289 WM_Q_EVCNT_DETACH(txq, fifo_stall, txq, i); 8290 WM_Q_EVCNT_DETACH(txq, txdw, txq, i); 8291 WM_Q_EVCNT_DETACH(txq, txqe, txq, i); 8292 WM_Q_EVCNT_DETACH(txq, ipsum, txq, i); 8293 WM_Q_EVCNT_DETACH(txq, tusum, txq, i); 8294 WM_Q_EVCNT_DETACH(txq, tusum6, txq, i); 8295 WM_Q_EVCNT_DETACH(txq, tso, txq, i); 8296 WM_Q_EVCNT_DETACH(txq, tso6, txq, i); 8297 WM_Q_EVCNT_DETACH(txq, tsopain, txq, i); 8298 8299 for (j = 0; j < WM_NTXSEGS; j++) 8300 evcnt_detach(&txq->txq_ev_txseg[j]); 8301 8302 WM_Q_EVCNT_DETACH(txq, pcqdrop, txq, i); 8303 WM_Q_EVCNT_DETACH(txq, descdrop, txq, i); 8304 WM_Q_EVCNT_DETACH(txq, toomanyseg, txq, i); 8305 WM_Q_EVCNT_DETACH(txq, defrag, txq, i); 8306 if (sc->sc_type <= WM_T_82544) 8307 WM_Q_EVCNT_DETACH(txq, underrun, txq, i); 8308 WM_Q_EVCNT_DETACH(txq, skipcontext, txq, i); 8309 #endif /* WM_EVENT_COUNTERS */ 8310 8311 /* Drain txq_interq */ 8312 while ((m = pcq_get(txq->txq_interq)) != NULL) 8313 m_freem(m); 8314 pcq_destroy(txq->txq_interq); 8315 8316 wm_free_tx_buffer(sc, txq); 8317 wm_free_tx_descs(sc, txq); 8318 if (txq->txq_lock) 8319 mutex_obj_free(txq->txq_lock); 8320 } 8321 8322 kmem_free(sc->sc_queue, sizeof(struct wm_queue) * sc->sc_nqueues); 8323 } 8324 8325 static void 8326 wm_init_tx_descs(struct wm_softc *sc __unused, struct wm_txqueue *txq) 8327 { 8328 8329 KASSERT(mutex_owned(txq->txq_lock)); 8330 8331 /* Initialize the transmit descriptor ring. */ 8332 memset(txq->txq_descs, 0, WM_TXDESCS_SIZE(txq)); 8333 wm_cdtxsync(txq, 0, WM_NTXDESC(txq), 8334 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 8335 txq->txq_free = WM_NTXDESC(txq); 8336 txq->txq_next = 0; 8337 } 8338 8339 static void 8340 wm_init_tx_regs(struct wm_softc *sc, struct wm_queue *wmq, 8341 struct wm_txqueue *txq) 8342 { 8343 8344 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 8345 device_xname(sc->sc_dev), __func__)); 8346 KASSERT(mutex_owned(txq->txq_lock)); 8347 8348 if (sc->sc_type < WM_T_82543) { 8349 CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(txq, 0)); 8350 CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(txq, 0)); 8351 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCS_SIZE(txq)); 8352 CSR_WRITE(sc, WMREG_OLD_TDH, 0); 8353 CSR_WRITE(sc, WMREG_OLD_TDT, 0); 8354 CSR_WRITE(sc, WMREG_OLD_TIDV, 128); 8355 } else { 8356 int qid = wmq->wmq_id; 8357 8358 CSR_WRITE(sc, WMREG_TDBAH(qid), WM_CDTXADDR_HI(txq, 0)); 8359 CSR_WRITE(sc, WMREG_TDBAL(qid), WM_CDTXADDR_LO(txq, 0)); 8360 CSR_WRITE(sc, WMREG_TDLEN(qid), WM_TXDESCS_SIZE(txq)); 8361 CSR_WRITE(sc, WMREG_TDH(qid), 0); 8362 8363 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 8364 /* 8365 * Don't write TDT before TCTL.EN is set. 8366 * See the document. 8367 */ 8368 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_QUEUE_ENABLE 8369 | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0) 8370 | TXDCTL_WTHRESH(0)); 8371 else { 8372 /* XXX should update with AIM? */ 8373 CSR_WRITE(sc, WMREG_TIDV, wmq->wmq_itr / 4); 8374 if (sc->sc_type >= WM_T_82540) { 8375 /* Should be the same */ 8376 CSR_WRITE(sc, WMREG_TADV, wmq->wmq_itr / 4); 8377 } 8378 8379 CSR_WRITE(sc, WMREG_TDT(qid), 0); 8380 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_PTHRESH(0) | 8381 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0)); 8382 } 8383 } 8384 } 8385 8386 static void 8387 wm_init_tx_buffer(struct wm_softc *sc __unused, struct wm_txqueue *txq) 8388 { 8389 int i; 8390 8391 KASSERT(mutex_owned(txq->txq_lock)); 8392 8393 /* Initialize the transmit job descriptors. */ 8394 for (i = 0; i < WM_TXQUEUELEN(txq); i++) 8395 txq->txq_soft[i].txs_mbuf = NULL; 8396 txq->txq_sfree = WM_TXQUEUELEN(txq); 8397 txq->txq_snext = 0; 8398 txq->txq_sdirty = 0; 8399 } 8400 8401 static void 8402 wm_init_tx_queue(struct wm_softc *sc, struct wm_queue *wmq, 8403 struct wm_txqueue *txq) 8404 { 8405 8406 KASSERT(mutex_owned(txq->txq_lock)); 8407 8408 /* 8409 * Set up some register offsets that are different between 8410 * the i82542 and the i82543 and later chips. 8411 */ 8412 if (sc->sc_type < WM_T_82543) 8413 txq->txq_tdt_reg = WMREG_OLD_TDT; 8414 else 8415 txq->txq_tdt_reg = WMREG_TDT(wmq->wmq_id); 8416 8417 wm_init_tx_descs(sc, txq); 8418 wm_init_tx_regs(sc, wmq, txq); 8419 wm_init_tx_buffer(sc, txq); 8420 8421 /* Clear other than WM_TXQ_LINKDOWN_DISCARD */ 8422 txq->txq_flags &= WM_TXQ_LINKDOWN_DISCARD; 8423 8424 txq->txq_sending = false; 8425 } 8426 8427 static void 8428 wm_init_rx_regs(struct wm_softc *sc, struct wm_queue *wmq, 8429 struct wm_rxqueue *rxq) 8430 { 8431 8432 KASSERT(mutex_owned(rxq->rxq_lock)); 8433 8434 /* 8435 * Initialize the receive descriptor and receive job 8436 * descriptor rings. 8437 */ 8438 if (sc->sc_type < WM_T_82543) { 8439 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(rxq, 0)); 8440 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(rxq, 0)); 8441 CSR_WRITE(sc, WMREG_OLD_RDLEN0, 8442 rxq->rxq_descsize * rxq->rxq_ndesc); 8443 CSR_WRITE(sc, WMREG_OLD_RDH0, 0); 8444 CSR_WRITE(sc, WMREG_OLD_RDT0, 0); 8445 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD); 8446 8447 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0); 8448 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0); 8449 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0); 8450 CSR_WRITE(sc, WMREG_OLD_RDH1, 0); 8451 CSR_WRITE(sc, WMREG_OLD_RDT1, 0); 8452 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0); 8453 } else { 8454 int qid = wmq->wmq_id; 8455 8456 CSR_WRITE(sc, WMREG_RDBAH(qid), WM_CDRXADDR_HI(rxq, 0)); 8457 CSR_WRITE(sc, WMREG_RDBAL(qid), WM_CDRXADDR_LO(rxq, 0)); 8458 CSR_WRITE(sc, WMREG_RDLEN(qid), 8459 rxq->rxq_descsize * rxq->rxq_ndesc); 8460 8461 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 8462 uint32_t srrctl; 8463 8464 if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1)) 8465 panic("%s: MCLBYTES %d unsupported for 82575 " 8466 "or higher\n", __func__, MCLBYTES); 8467 8468 /* 8469 * Currently, support SRRCTL_DESCTYPE_ADV_ONEBUF 8470 * only. 8471 */ 8472 srrctl = SRRCTL_DESCTYPE_ADV_ONEBUF 8473 | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT); 8474 /* 8475 * Drop frames if the RX descriptor ring has no room. 8476 * This is enabled only on multiqueue system to avoid 8477 * bad influence to other queues. 8478 */ 8479 if (sc->sc_nqueues > 1) 8480 srrctl |= SRRCTL_DROP_EN; 8481 CSR_WRITE(sc, WMREG_SRRCTL(qid), srrctl); 8482 8483 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_QUEUE_ENABLE 8484 | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8) 8485 | RXDCTL_WTHRESH(1)); 8486 CSR_WRITE(sc, WMREG_RDH(qid), 0); 8487 CSR_WRITE(sc, WMREG_RDT(qid), 0); 8488 } else { 8489 CSR_WRITE(sc, WMREG_RDH(qid), 0); 8490 CSR_WRITE(sc, WMREG_RDT(qid), 0); 8491 /* XXX should update with AIM? */ 8492 CSR_WRITE(sc, WMREG_RDTR, 8493 (wmq->wmq_itr / 4) | RDTR_FPD); 8494 /* MUST be same */ 8495 CSR_WRITE(sc, WMREG_RADV, wmq->wmq_itr / 4); 8496 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_PTHRESH(0) | 8497 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1)); 8498 } 8499 } 8500 } 8501 8502 static int 8503 wm_init_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq) 8504 { 8505 struct wm_rxsoft *rxs; 8506 int error, i; 8507 8508 KASSERT(mutex_owned(rxq->rxq_lock)); 8509 8510 for (i = 0; i < rxq->rxq_ndesc; i++) { 8511 rxs = &rxq->rxq_soft[i]; 8512 if (rxs->rxs_mbuf == NULL) { 8513 if ((error = wm_add_rxbuf(rxq, i)) != 0) { 8514 log(LOG_ERR, "%s: unable to allocate or map " 8515 "rx buffer %d, error = %d\n", 8516 device_xname(sc->sc_dev), i, error); 8517 /* 8518 * XXX Should attempt to run with fewer receive 8519 * XXX buffers instead of just failing. 8520 */ 8521 wm_rxdrain(rxq); 8522 return ENOMEM; 8523 } 8524 } else { 8525 /* 8526 * For 82575 and 82576, the RX descriptors must be 8527 * initialized after the setting of RCTL.EN in 8528 * wm_set_filter() 8529 */ 8530 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0) 8531 wm_init_rxdesc(rxq, i); 8532 } 8533 } 8534 rxq->rxq_ptr = 0; 8535 rxq->rxq_discard = 0; 8536 WM_RXCHAIN_RESET(rxq); 8537 8538 return 0; 8539 } 8540 8541 static int 8542 wm_init_rx_queue(struct wm_softc *sc, struct wm_queue *wmq, 8543 struct wm_rxqueue *rxq) 8544 { 8545 8546 KASSERT(mutex_owned(rxq->rxq_lock)); 8547 8548 /* 8549 * Set up some register offsets that are different between 8550 * the i82542 and the i82543 and later chips. 8551 */ 8552 if (sc->sc_type < WM_T_82543) 8553 rxq->rxq_rdt_reg = WMREG_OLD_RDT0; 8554 else 8555 rxq->rxq_rdt_reg = WMREG_RDT(wmq->wmq_id); 8556 8557 wm_init_rx_regs(sc, wmq, rxq); 8558 return wm_init_rx_buffer(sc, rxq); 8559 } 8560 8561 /* 8562 * wm_init_quques: 8563 * Initialize {tx,rx}descs and {tx,rx} buffers 8564 */ 8565 static int 8566 wm_init_txrx_queues(struct wm_softc *sc) 8567 { 8568 int i, error = 0; 8569 8570 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 8571 device_xname(sc->sc_dev), __func__)); 8572 8573 for (i = 0; i < sc->sc_nqueues; i++) { 8574 struct wm_queue *wmq = &sc->sc_queue[i]; 8575 struct wm_txqueue *txq = &wmq->wmq_txq; 8576 struct wm_rxqueue *rxq = &wmq->wmq_rxq; 8577 8578 /* 8579 * TODO 8580 * Currently, use constant variable instead of AIM. 8581 * Furthermore, the interrupt interval of multiqueue which use 8582 * polling mode is less than default value. 8583 * More tuning and AIM are required. 8584 */ 8585 if (wm_is_using_multiqueue(sc)) 8586 wmq->wmq_itr = 50; 8587 else 8588 wmq->wmq_itr = sc->sc_itr_init; 8589 wmq->wmq_set_itr = true; 8590 8591 mutex_enter(txq->txq_lock); 8592 wm_init_tx_queue(sc, wmq, txq); 8593 mutex_exit(txq->txq_lock); 8594 8595 mutex_enter(rxq->rxq_lock); 8596 error = wm_init_rx_queue(sc, wmq, rxq); 8597 mutex_exit(rxq->rxq_lock); 8598 if (error) 8599 break; 8600 } 8601 8602 return error; 8603 } 8604 8605 /* 8606 * wm_tx_offload: 8607 * 8608 * Set up TCP/IP checksumming parameters for the 8609 * specified packet. 8610 */ 8611 static void 8612 wm_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq, 8613 struct wm_txsoft *txs, uint32_t *cmdp, uint8_t *fieldsp) 8614 { 8615 struct mbuf *m0 = txs->txs_mbuf; 8616 struct livengood_tcpip_ctxdesc *t; 8617 uint32_t ipcs, tucs, cmd, cmdlen, seg; 8618 uint32_t ipcse; 8619 struct ether_header *eh; 8620 int offset, iphl; 8621 uint8_t fields; 8622 8623 /* 8624 * XXX It would be nice if the mbuf pkthdr had offset 8625 * fields for the protocol headers. 8626 */ 8627 8628 eh = mtod(m0, struct ether_header *); 8629 switch (htons(eh->ether_type)) { 8630 case ETHERTYPE_IP: 8631 case ETHERTYPE_IPV6: 8632 offset = ETHER_HDR_LEN; 8633 break; 8634 8635 case ETHERTYPE_VLAN: 8636 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 8637 break; 8638 8639 default: 8640 /* Don't support this protocol or encapsulation. */ 8641 txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0; 8642 txq->txq_last_hw_ipcs = 0; 8643 txq->txq_last_hw_tucs = 0; 8644 *fieldsp = 0; 8645 *cmdp = 0; 8646 return; 8647 } 8648 8649 if ((m0->m_pkthdr.csum_flags & 8650 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) { 8651 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 8652 } else 8653 iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data); 8654 8655 ipcse = offset + iphl - 1; 8656 8657 cmd = WTX_CMD_DEXT | WTX_DTYP_D; 8658 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE; 8659 seg = 0; 8660 fields = 0; 8661 8662 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) { 8663 int hlen = offset + iphl; 8664 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; 8665 8666 if (__predict_false(m0->m_len < 8667 (hlen + sizeof(struct tcphdr)))) { 8668 /* 8669 * TCP/IP headers are not in the first mbuf; we need 8670 * to do this the slow and painful way. Let's just 8671 * hope this doesn't happen very often. 8672 */ 8673 struct tcphdr th; 8674 8675 WM_Q_EVCNT_INCR(txq, tsopain); 8676 8677 m_copydata(m0, hlen, sizeof(th), &th); 8678 if (v4) { 8679 struct ip ip; 8680 8681 m_copydata(m0, offset, sizeof(ip), &ip); 8682 ip.ip_len = 0; 8683 m_copyback(m0, 8684 offset + offsetof(struct ip, ip_len), 8685 sizeof(ip.ip_len), &ip.ip_len); 8686 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, 8687 ip.ip_dst.s_addr, htons(IPPROTO_TCP)); 8688 } else { 8689 struct ip6_hdr ip6; 8690 8691 m_copydata(m0, offset, sizeof(ip6), &ip6); 8692 ip6.ip6_plen = 0; 8693 m_copyback(m0, 8694 offset + offsetof(struct ip6_hdr, ip6_plen), 8695 sizeof(ip6.ip6_plen), &ip6.ip6_plen); 8696 th.th_sum = in6_cksum_phdr(&ip6.ip6_src, 8697 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP)); 8698 } 8699 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum), 8700 sizeof(th.th_sum), &th.th_sum); 8701 8702 hlen += th.th_off << 2; 8703 } else { 8704 /* 8705 * TCP/IP headers are in the first mbuf; we can do 8706 * this the easy way. 8707 */ 8708 struct tcphdr *th; 8709 8710 if (v4) { 8711 struct ip *ip = 8712 (void *)(mtod(m0, char *) + offset); 8713 th = (void *)(mtod(m0, char *) + hlen); 8714 8715 ip->ip_len = 0; 8716 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, 8717 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 8718 } else { 8719 struct ip6_hdr *ip6 = 8720 (void *)(mtod(m0, char *) + offset); 8721 th = (void *)(mtod(m0, char *) + hlen); 8722 8723 ip6->ip6_plen = 0; 8724 th->th_sum = in6_cksum_phdr(&ip6->ip6_src, 8725 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP)); 8726 } 8727 hlen += th->th_off << 2; 8728 } 8729 8730 if (v4) { 8731 WM_Q_EVCNT_INCR(txq, tso); 8732 cmdlen |= WTX_TCPIP_CMD_IP; 8733 } else { 8734 WM_Q_EVCNT_INCR(txq, tso6); 8735 ipcse = 0; 8736 } 8737 cmd |= WTX_TCPIP_CMD_TSE; 8738 cmdlen |= WTX_TCPIP_CMD_TSE | 8739 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen); 8740 seg = WTX_TCPIP_SEG_HDRLEN(hlen) | 8741 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz); 8742 } 8743 8744 /* 8745 * NOTE: Even if we're not using the IP or TCP/UDP checksum 8746 * offload feature, if we load the context descriptor, we 8747 * MUST provide valid values for IPCSS and TUCSS fields. 8748 */ 8749 8750 ipcs = WTX_TCPIP_IPCSS(offset) | 8751 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) | 8752 WTX_TCPIP_IPCSE(ipcse); 8753 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) { 8754 WM_Q_EVCNT_INCR(txq, ipsum); 8755 fields |= WTX_IXSM; 8756 } 8757 8758 offset += iphl; 8759 8760 if (m0->m_pkthdr.csum_flags & 8761 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) { 8762 WM_Q_EVCNT_INCR(txq, tusum); 8763 fields |= WTX_TXSM; 8764 tucs = WTX_TCPIP_TUCSS(offset) | 8765 WTX_TCPIP_TUCSO(offset + 8766 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) | 8767 WTX_TCPIP_TUCSE(0) /* Rest of packet */; 8768 } else if ((m0->m_pkthdr.csum_flags & 8769 (M_CSUM_TCPv6 | M_CSUM_UDPv6 | M_CSUM_TSOv6)) != 0) { 8770 WM_Q_EVCNT_INCR(txq, tusum6); 8771 fields |= WTX_TXSM; 8772 tucs = WTX_TCPIP_TUCSS(offset) | 8773 WTX_TCPIP_TUCSO(offset + 8774 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) | 8775 WTX_TCPIP_TUCSE(0) /* Rest of packet */; 8776 } else { 8777 /* Just initialize it to a valid TCP context. */ 8778 tucs = WTX_TCPIP_TUCSS(offset) | 8779 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) | 8780 WTX_TCPIP_TUCSE(0) /* Rest of packet */; 8781 } 8782 8783 *cmdp = cmd; 8784 *fieldsp = fields; 8785 8786 /* 8787 * We don't have to write context descriptor for every packet 8788 * except for 82574. For 82574, we must write context descriptor 8789 * for every packet when we use two descriptor queues. 8790 * 8791 * The 82574L can only remember the *last* context used 8792 * regardless of queue that it was use for. We cannot reuse 8793 * contexts on this hardware platform and must generate a new 8794 * context every time. 82574L hardware spec, section 7.2.6, 8795 * second note. 8796 */ 8797 if (sc->sc_nqueues < 2) { 8798 /* 8799 * Setting up new checksum offload context for every 8800 * frames takes a lot of processing time for hardware. 8801 * This also reduces performance a lot for small sized 8802 * frames so avoid it if driver can use previously 8803 * configured checksum offload context. 8804 * For TSO, in theory we can use the same TSO context only if 8805 * frame is the same type(IP/TCP) and the same MSS. However 8806 * checking whether a frame has the same IP/TCP structure is a 8807 * hard thing so just ignore that and always restablish a 8808 * new TSO context. 8809 */ 8810 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) 8811 == 0) { 8812 if (txq->txq_last_hw_cmd == cmd && 8813 txq->txq_last_hw_fields == fields && 8814 txq->txq_last_hw_ipcs == (ipcs & 0xffff) && 8815 txq->txq_last_hw_tucs == (tucs & 0xffff)) { 8816 WM_Q_EVCNT_INCR(txq, skipcontext); 8817 return; 8818 } 8819 } 8820 8821 txq->txq_last_hw_cmd = cmd; 8822 txq->txq_last_hw_fields = fields; 8823 txq->txq_last_hw_ipcs = (ipcs & 0xffff); 8824 txq->txq_last_hw_tucs = (tucs & 0xffff); 8825 } 8826 8827 /* Fill in the context descriptor. */ 8828 t = (struct livengood_tcpip_ctxdesc *) 8829 &txq->txq_descs[txq->txq_next]; 8830 t->tcpip_ipcs = htole32(ipcs); 8831 t->tcpip_tucs = htole32(tucs); 8832 t->tcpip_cmdlen = htole32(cmdlen); 8833 t->tcpip_seg = htole32(seg); 8834 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE); 8835 8836 txq->txq_next = WM_NEXTTX(txq, txq->txq_next); 8837 txs->txs_ndesc++; 8838 } 8839 8840 static inline int 8841 wm_select_txqueue(struct ifnet *ifp, struct mbuf *m) 8842 { 8843 struct wm_softc *sc = ifp->if_softc; 8844 u_int cpuid = cpu_index(curcpu()); 8845 8846 /* 8847 * Currently, simple distribute strategy. 8848 * TODO: 8849 * distribute by flowid(RSS has value). 8850 */ 8851 return ((cpuid + ncpu - sc->sc_affinity_offset) % ncpu) % sc->sc_nqueues; 8852 } 8853 8854 static inline bool 8855 wm_linkdown_discard(struct wm_txqueue *txq) 8856 { 8857 8858 if ((txq->txq_flags & WM_TXQ_LINKDOWN_DISCARD) != 0) 8859 return true; 8860 8861 return false; 8862 } 8863 8864 /* 8865 * wm_start: [ifnet interface function] 8866 * 8867 * Start packet transmission on the interface. 8868 */ 8869 static void 8870 wm_start(struct ifnet *ifp) 8871 { 8872 struct wm_softc *sc = ifp->if_softc; 8873 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq; 8874 8875 KASSERT(if_is_mpsafe(ifp)); 8876 /* 8877 * if_obytes and if_omcasts are added in if_transmit()@if.c. 8878 */ 8879 8880 mutex_enter(txq->txq_lock); 8881 if (!txq->txq_stopping) 8882 wm_start_locked(ifp); 8883 mutex_exit(txq->txq_lock); 8884 } 8885 8886 static void 8887 wm_start_locked(struct ifnet *ifp) 8888 { 8889 struct wm_softc *sc = ifp->if_softc; 8890 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq; 8891 8892 wm_send_common_locked(ifp, txq, false); 8893 } 8894 8895 static int 8896 wm_transmit(struct ifnet *ifp, struct mbuf *m) 8897 { 8898 int qid; 8899 struct wm_softc *sc = ifp->if_softc; 8900 struct wm_txqueue *txq; 8901 8902 qid = wm_select_txqueue(ifp, m); 8903 txq = &sc->sc_queue[qid].wmq_txq; 8904 8905 if (__predict_false(!pcq_put(txq->txq_interq, m))) { 8906 m_freem(m); 8907 WM_Q_EVCNT_INCR(txq, pcqdrop); 8908 return ENOBUFS; 8909 } 8910 8911 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 8912 if_statadd_ref(ifp, nsr, if_obytes, m->m_pkthdr.len); 8913 if (m->m_flags & M_MCAST) 8914 if_statinc_ref(ifp, nsr, if_omcasts); 8915 IF_STAT_PUTREF(ifp); 8916 8917 if (mutex_tryenter(txq->txq_lock)) { 8918 if (!txq->txq_stopping) 8919 wm_transmit_locked(ifp, txq); 8920 mutex_exit(txq->txq_lock); 8921 } 8922 8923 return 0; 8924 } 8925 8926 static void 8927 wm_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq) 8928 { 8929 8930 wm_send_common_locked(ifp, txq, true); 8931 } 8932 8933 static void 8934 wm_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq, 8935 bool is_transmit) 8936 { 8937 struct wm_softc *sc = ifp->if_softc; 8938 struct mbuf *m0; 8939 struct wm_txsoft *txs; 8940 bus_dmamap_t dmamap; 8941 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso; 8942 bus_addr_t curaddr; 8943 bus_size_t seglen, curlen; 8944 uint32_t cksumcmd; 8945 uint8_t cksumfields; 8946 bool remap = true; 8947 8948 KASSERT(mutex_owned(txq->txq_lock)); 8949 KASSERT(!txq->txq_stopping); 8950 8951 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0) 8952 return; 8953 8954 if (__predict_false(wm_linkdown_discard(txq))) { 8955 do { 8956 if (is_transmit) 8957 m0 = pcq_get(txq->txq_interq); 8958 else 8959 IFQ_DEQUEUE(&ifp->if_snd, m0); 8960 /* 8961 * increment successed packet counter as in the case 8962 * which the packet is discarded by link down PHY. 8963 */ 8964 if (m0 != NULL) { 8965 if_statinc(ifp, if_opackets); 8966 m_freem(m0); 8967 } 8968 } while (m0 != NULL); 8969 return; 8970 } 8971 8972 /* Remember the previous number of free descriptors. */ 8973 ofree = txq->txq_free; 8974 8975 /* 8976 * Loop through the send queue, setting up transmit descriptors 8977 * until we drain the queue, or use up all available transmit 8978 * descriptors. 8979 */ 8980 for (;;) { 8981 m0 = NULL; 8982 8983 /* Get a work queue entry. */ 8984 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) { 8985 wm_txeof(txq, UINT_MAX); 8986 if (txq->txq_sfree == 0) { 8987 DPRINTF(sc, WM_DEBUG_TX, 8988 ("%s: TX: no free job descriptors\n", 8989 device_xname(sc->sc_dev))); 8990 WM_Q_EVCNT_INCR(txq, txsstall); 8991 break; 8992 } 8993 } 8994 8995 /* Grab a packet off the queue. */ 8996 if (is_transmit) 8997 m0 = pcq_get(txq->txq_interq); 8998 else 8999 IFQ_DEQUEUE(&ifp->if_snd, m0); 9000 if (m0 == NULL) 9001 break; 9002 9003 DPRINTF(sc, WM_DEBUG_TX, 9004 ("%s: TX: have packet to transmit: %p\n", 9005 device_xname(sc->sc_dev), m0)); 9006 9007 txs = &txq->txq_soft[txq->txq_snext]; 9008 dmamap = txs->txs_dmamap; 9009 9010 use_tso = (m0->m_pkthdr.csum_flags & 9011 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0; 9012 9013 /* 9014 * So says the Linux driver: 9015 * The controller does a simple calculation to make sure 9016 * there is enough room in the FIFO before initiating the 9017 * DMA for each buffer. The calc is: 9018 * 4 = ceil(buffer len / MSS) 9019 * To make sure we don't overrun the FIFO, adjust the max 9020 * buffer len if the MSS drops. 9021 */ 9022 dmamap->dm_maxsegsz = 9023 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN) 9024 ? m0->m_pkthdr.segsz << 2 9025 : WTX_MAX_LEN; 9026 9027 /* 9028 * Load the DMA map. If this fails, the packet either 9029 * didn't fit in the allotted number of segments, or we 9030 * were short on resources. For the too-many-segments 9031 * case, we simply report an error and drop the packet, 9032 * since we can't sanely copy a jumbo packet to a single 9033 * buffer. 9034 */ 9035 retry: 9036 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 9037 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 9038 if (__predict_false(error)) { 9039 if (error == EFBIG) { 9040 if (remap == true) { 9041 struct mbuf *m; 9042 9043 remap = false; 9044 m = m_defrag(m0, M_NOWAIT); 9045 if (m != NULL) { 9046 WM_Q_EVCNT_INCR(txq, defrag); 9047 m0 = m; 9048 goto retry; 9049 } 9050 } 9051 WM_Q_EVCNT_INCR(txq, toomanyseg); 9052 log(LOG_ERR, "%s: Tx packet consumes too many " 9053 "DMA segments, dropping...\n", 9054 device_xname(sc->sc_dev)); 9055 wm_dump_mbuf_chain(sc, m0); 9056 m_freem(m0); 9057 continue; 9058 } 9059 /* Short on resources, just stop for now. */ 9060 DPRINTF(sc, WM_DEBUG_TX, 9061 ("%s: TX: dmamap load failed: %d\n", 9062 device_xname(sc->sc_dev), error)); 9063 break; 9064 } 9065 9066 segs_needed = dmamap->dm_nsegs; 9067 if (use_tso) { 9068 /* For sentinel descriptor; see below. */ 9069 segs_needed++; 9070 } 9071 9072 /* 9073 * Ensure we have enough descriptors free to describe 9074 * the packet. Note, we always reserve one descriptor 9075 * at the end of the ring due to the semantics of the 9076 * TDT register, plus one more in the event we need 9077 * to load offload context. 9078 */ 9079 if (segs_needed > txq->txq_free - 2) { 9080 /* 9081 * Not enough free descriptors to transmit this 9082 * packet. We haven't committed anything yet, 9083 * so just unload the DMA map, put the packet 9084 * pack on the queue, and punt. Notify the upper 9085 * layer that there are no more slots left. 9086 */ 9087 DPRINTF(sc, WM_DEBUG_TX, 9088 ("%s: TX: need %d (%d) descriptors, have %d\n", 9089 device_xname(sc->sc_dev), dmamap->dm_nsegs, 9090 segs_needed, txq->txq_free - 1)); 9091 txq->txq_flags |= WM_TXQ_NO_SPACE; 9092 bus_dmamap_unload(sc->sc_dmat, dmamap); 9093 WM_Q_EVCNT_INCR(txq, txdstall); 9094 break; 9095 } 9096 9097 /* 9098 * Check for 82547 Tx FIFO bug. We need to do this 9099 * once we know we can transmit the packet, since we 9100 * do some internal FIFO space accounting here. 9101 */ 9102 if (sc->sc_type == WM_T_82547 && 9103 wm_82547_txfifo_bugchk(sc, m0)) { 9104 DPRINTF(sc, WM_DEBUG_TX, 9105 ("%s: TX: 82547 Tx FIFO bug detected\n", 9106 device_xname(sc->sc_dev))); 9107 txq->txq_flags |= WM_TXQ_NO_SPACE; 9108 bus_dmamap_unload(sc->sc_dmat, dmamap); 9109 WM_Q_EVCNT_INCR(txq, fifo_stall); 9110 break; 9111 } 9112 9113 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ 9114 9115 DPRINTF(sc, WM_DEBUG_TX, 9116 ("%s: TX: packet has %d (%d) DMA segments\n", 9117 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed)); 9118 9119 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]); 9120 9121 /* 9122 * Store a pointer to the packet so that we can free it 9123 * later. 9124 * 9125 * Initially, we consider the number of descriptors the 9126 * packet uses the number of DMA segments. This may be 9127 * incremented by 1 if we do checksum offload (a descriptor 9128 * is used to set the checksum context). 9129 */ 9130 txs->txs_mbuf = m0; 9131 txs->txs_firstdesc = txq->txq_next; 9132 txs->txs_ndesc = segs_needed; 9133 9134 /* Set up offload parameters for this packet. */ 9135 if (m0->m_pkthdr.csum_flags & 9136 (M_CSUM_TSOv4 | M_CSUM_TSOv6 | 9137 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 | 9138 M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 9139 wm_tx_offload(sc, txq, txs, &cksumcmd, &cksumfields); 9140 } else { 9141 txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0; 9142 txq->txq_last_hw_ipcs = txq->txq_last_hw_tucs = 0; 9143 cksumcmd = 0; 9144 cksumfields = 0; 9145 } 9146 9147 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS; 9148 9149 /* Sync the DMA map. */ 9150 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 9151 BUS_DMASYNC_PREWRITE); 9152 9153 /* Initialize the transmit descriptor. */ 9154 for (nexttx = txq->txq_next, seg = 0; 9155 seg < dmamap->dm_nsegs; seg++) { 9156 for (seglen = dmamap->dm_segs[seg].ds_len, 9157 curaddr = dmamap->dm_segs[seg].ds_addr; 9158 seglen != 0; 9159 curaddr += curlen, seglen -= curlen, 9160 nexttx = WM_NEXTTX(txq, nexttx)) { 9161 curlen = seglen; 9162 9163 /* 9164 * So says the Linux driver: 9165 * Work around for premature descriptor 9166 * write-backs in TSO mode. Append a 9167 * 4-byte sentinel descriptor. 9168 */ 9169 if (use_tso && seg == dmamap->dm_nsegs - 1 && 9170 curlen > 8) 9171 curlen -= 4; 9172 9173 wm_set_dma_addr( 9174 &txq->txq_descs[nexttx].wtx_addr, curaddr); 9175 txq->txq_descs[nexttx].wtx_cmdlen 9176 = htole32(cksumcmd | curlen); 9177 txq->txq_descs[nexttx].wtx_fields.wtxu_status 9178 = 0; 9179 txq->txq_descs[nexttx].wtx_fields.wtxu_options 9180 = cksumfields; 9181 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0; 9182 lasttx = nexttx; 9183 9184 DPRINTF(sc, WM_DEBUG_TX, 9185 ("%s: TX: desc %d: low %#" PRIx64 ", " 9186 "len %#04zx\n", 9187 device_xname(sc->sc_dev), nexttx, 9188 (uint64_t)curaddr, curlen)); 9189 } 9190 } 9191 9192 KASSERT(lasttx != -1); 9193 9194 /* 9195 * Set up the command byte on the last descriptor of 9196 * the packet. If we're in the interrupt delay window, 9197 * delay the interrupt. 9198 */ 9199 txq->txq_descs[lasttx].wtx_cmdlen |= 9200 htole32(WTX_CMD_EOP | WTX_CMD_RS); 9201 9202 /* 9203 * If VLANs are enabled and the packet has a VLAN tag, set 9204 * up the descriptor to encapsulate the packet for us. 9205 * 9206 * This is only valid on the last descriptor of the packet. 9207 */ 9208 if (vlan_has_tag(m0)) { 9209 txq->txq_descs[lasttx].wtx_cmdlen |= 9210 htole32(WTX_CMD_VLE); 9211 txq->txq_descs[lasttx].wtx_fields.wtxu_vlan 9212 = htole16(vlan_get_tag(m0)); 9213 } 9214 9215 txs->txs_lastdesc = lasttx; 9216 9217 DPRINTF(sc, WM_DEBUG_TX, 9218 ("%s: TX: desc %d: cmdlen 0x%08x\n", 9219 device_xname(sc->sc_dev), 9220 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen))); 9221 9222 /* Sync the descriptors we're using. */ 9223 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc, 9224 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 9225 9226 /* Give the packet to the chip. */ 9227 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx); 9228 9229 DPRINTF(sc, WM_DEBUG_TX, 9230 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx)); 9231 9232 DPRINTF(sc, WM_DEBUG_TX, 9233 ("%s: TX: finished transmitting packet, job %d\n", 9234 device_xname(sc->sc_dev), txq->txq_snext)); 9235 9236 /* Advance the tx pointer. */ 9237 txq->txq_free -= txs->txs_ndesc; 9238 txq->txq_next = nexttx; 9239 9240 txq->txq_sfree--; 9241 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext); 9242 9243 /* Pass the packet to any BPF listeners. */ 9244 bpf_mtap(ifp, m0, BPF_D_OUT); 9245 } 9246 9247 if (m0 != NULL) { 9248 txq->txq_flags |= WM_TXQ_NO_SPACE; 9249 WM_Q_EVCNT_INCR(txq, descdrop); 9250 DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n", 9251 __func__)); 9252 m_freem(m0); 9253 } 9254 9255 if (txq->txq_sfree == 0 || txq->txq_free <= 2) { 9256 /* No more slots; notify upper layer. */ 9257 txq->txq_flags |= WM_TXQ_NO_SPACE; 9258 } 9259 9260 if (txq->txq_free != ofree) { 9261 /* Set a watchdog timer in case the chip flakes out. */ 9262 txq->txq_lastsent = time_uptime; 9263 txq->txq_sending = true; 9264 } 9265 } 9266 9267 /* 9268 * wm_nq_tx_offload: 9269 * 9270 * Set up TCP/IP checksumming parameters for the 9271 * specified packet, for NEWQUEUE devices 9272 */ 9273 static void 9274 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq, 9275 struct wm_txsoft *txs, uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum) 9276 { 9277 struct mbuf *m0 = txs->txs_mbuf; 9278 uint32_t vl_len, mssidx, cmdc; 9279 struct ether_header *eh; 9280 int offset, iphl; 9281 9282 /* 9283 * XXX It would be nice if the mbuf pkthdr had offset 9284 * fields for the protocol headers. 9285 */ 9286 *cmdlenp = 0; 9287 *fieldsp = 0; 9288 9289 eh = mtod(m0, struct ether_header *); 9290 switch (htons(eh->ether_type)) { 9291 case ETHERTYPE_IP: 9292 case ETHERTYPE_IPV6: 9293 offset = ETHER_HDR_LEN; 9294 break; 9295 9296 case ETHERTYPE_VLAN: 9297 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 9298 break; 9299 9300 default: 9301 /* Don't support this protocol or encapsulation. */ 9302 *do_csum = false; 9303 return; 9304 } 9305 *do_csum = true; 9306 *cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS; 9307 cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT; 9308 9309 vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT); 9310 KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0); 9311 9312 if ((m0->m_pkthdr.csum_flags & 9313 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) { 9314 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 9315 } else { 9316 iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data); 9317 } 9318 vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT); 9319 KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0); 9320 9321 if (vlan_has_tag(m0)) { 9322 vl_len |= ((vlan_get_tag(m0) & NQTXC_VLLEN_VLAN_MASK) 9323 << NQTXC_VLLEN_VLAN_SHIFT); 9324 *cmdlenp |= NQTX_CMD_VLE; 9325 } 9326 9327 mssidx = 0; 9328 9329 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) { 9330 int hlen = offset + iphl; 9331 int tcp_hlen; 9332 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; 9333 9334 if (__predict_false(m0->m_len < 9335 (hlen + sizeof(struct tcphdr)))) { 9336 /* 9337 * TCP/IP headers are not in the first mbuf; we need 9338 * to do this the slow and painful way. Let's just 9339 * hope this doesn't happen very often. 9340 */ 9341 struct tcphdr th; 9342 9343 WM_Q_EVCNT_INCR(txq, tsopain); 9344 9345 m_copydata(m0, hlen, sizeof(th), &th); 9346 if (v4) { 9347 struct ip ip; 9348 9349 m_copydata(m0, offset, sizeof(ip), &ip); 9350 ip.ip_len = 0; 9351 m_copyback(m0, 9352 offset + offsetof(struct ip, ip_len), 9353 sizeof(ip.ip_len), &ip.ip_len); 9354 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, 9355 ip.ip_dst.s_addr, htons(IPPROTO_TCP)); 9356 } else { 9357 struct ip6_hdr ip6; 9358 9359 m_copydata(m0, offset, sizeof(ip6), &ip6); 9360 ip6.ip6_plen = 0; 9361 m_copyback(m0, 9362 offset + offsetof(struct ip6_hdr, ip6_plen), 9363 sizeof(ip6.ip6_plen), &ip6.ip6_plen); 9364 th.th_sum = in6_cksum_phdr(&ip6.ip6_src, 9365 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP)); 9366 } 9367 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum), 9368 sizeof(th.th_sum), &th.th_sum); 9369 9370 tcp_hlen = th.th_off << 2; 9371 } else { 9372 /* 9373 * TCP/IP headers are in the first mbuf; we can do 9374 * this the easy way. 9375 */ 9376 struct tcphdr *th; 9377 9378 if (v4) { 9379 struct ip *ip = 9380 (void *)(mtod(m0, char *) + offset); 9381 th = (void *)(mtod(m0, char *) + hlen); 9382 9383 ip->ip_len = 0; 9384 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, 9385 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 9386 } else { 9387 struct ip6_hdr *ip6 = 9388 (void *)(mtod(m0, char *) + offset); 9389 th = (void *)(mtod(m0, char *) + hlen); 9390 9391 ip6->ip6_plen = 0; 9392 th->th_sum = in6_cksum_phdr(&ip6->ip6_src, 9393 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP)); 9394 } 9395 tcp_hlen = th->th_off << 2; 9396 } 9397 hlen += tcp_hlen; 9398 *cmdlenp |= NQTX_CMD_TSE; 9399 9400 if (v4) { 9401 WM_Q_EVCNT_INCR(txq, tso); 9402 *fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM; 9403 } else { 9404 WM_Q_EVCNT_INCR(txq, tso6); 9405 *fieldsp |= NQTXD_FIELDS_TUXSM; 9406 } 9407 *fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT); 9408 KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0); 9409 mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT); 9410 KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0); 9411 mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT); 9412 KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0); 9413 } else { 9414 *fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT); 9415 KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0); 9416 } 9417 9418 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 9419 *fieldsp |= NQTXD_FIELDS_IXSM; 9420 cmdc |= NQTXC_CMD_IP4; 9421 } 9422 9423 if (m0->m_pkthdr.csum_flags & 9424 (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) { 9425 WM_Q_EVCNT_INCR(txq, tusum); 9426 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4)) 9427 cmdc |= NQTXC_CMD_TCP; 9428 else 9429 cmdc |= NQTXC_CMD_UDP; 9430 9431 cmdc |= NQTXC_CMD_IP4; 9432 *fieldsp |= NQTXD_FIELDS_TUXSM; 9433 } 9434 if (m0->m_pkthdr.csum_flags & 9435 (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) { 9436 WM_Q_EVCNT_INCR(txq, tusum6); 9437 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6)) 9438 cmdc |= NQTXC_CMD_TCP; 9439 else 9440 cmdc |= NQTXC_CMD_UDP; 9441 9442 cmdc |= NQTXC_CMD_IP6; 9443 *fieldsp |= NQTXD_FIELDS_TUXSM; 9444 } 9445 9446 /* 9447 * We don't have to write context descriptor for every packet to 9448 * NEWQUEUE controllers, that is 82575, 82576, 82580, I350, I354, 9449 * I210 and I211. It is enough to write once per a Tx queue for these 9450 * controllers. 9451 * It would be overhead to write context descriptor for every packet, 9452 * however it does not cause problems. 9453 */ 9454 /* Fill in the context descriptor. */ 9455 txq->txq_nq_descs[txq->txq_next].nqtx_ctx.nqtxc_vl_len = 9456 htole32(vl_len); 9457 txq->txq_nq_descs[txq->txq_next].nqtx_ctx.nqtxc_sn = 0; 9458 txq->txq_nq_descs[txq->txq_next].nqtx_ctx.nqtxc_cmd = 9459 htole32(cmdc); 9460 txq->txq_nq_descs[txq->txq_next].nqtx_ctx.nqtxc_mssidx = 9461 htole32(mssidx); 9462 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE); 9463 DPRINTF(sc, WM_DEBUG_TX, 9464 ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev), 9465 txq->txq_next, 0, vl_len)); 9466 DPRINTF(sc, WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc)); 9467 txq->txq_next = WM_NEXTTX(txq, txq->txq_next); 9468 txs->txs_ndesc++; 9469 } 9470 9471 /* 9472 * wm_nq_start: [ifnet interface function] 9473 * 9474 * Start packet transmission on the interface for NEWQUEUE devices 9475 */ 9476 static void 9477 wm_nq_start(struct ifnet *ifp) 9478 { 9479 struct wm_softc *sc = ifp->if_softc; 9480 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq; 9481 9482 KASSERT(if_is_mpsafe(ifp)); 9483 /* 9484 * if_obytes and if_omcasts are added in if_transmit()@if.c. 9485 */ 9486 9487 mutex_enter(txq->txq_lock); 9488 if (!txq->txq_stopping) 9489 wm_nq_start_locked(ifp); 9490 mutex_exit(txq->txq_lock); 9491 } 9492 9493 static void 9494 wm_nq_start_locked(struct ifnet *ifp) 9495 { 9496 struct wm_softc *sc = ifp->if_softc; 9497 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq; 9498 9499 wm_nq_send_common_locked(ifp, txq, false); 9500 } 9501 9502 static int 9503 wm_nq_transmit(struct ifnet *ifp, struct mbuf *m) 9504 { 9505 int qid; 9506 struct wm_softc *sc = ifp->if_softc; 9507 struct wm_txqueue *txq; 9508 9509 qid = wm_select_txqueue(ifp, m); 9510 txq = &sc->sc_queue[qid].wmq_txq; 9511 9512 if (__predict_false(!pcq_put(txq->txq_interq, m))) { 9513 m_freem(m); 9514 WM_Q_EVCNT_INCR(txq, pcqdrop); 9515 return ENOBUFS; 9516 } 9517 9518 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 9519 if_statadd_ref(ifp, nsr, if_obytes, m->m_pkthdr.len); 9520 if (m->m_flags & M_MCAST) 9521 if_statinc_ref(ifp, nsr, if_omcasts); 9522 IF_STAT_PUTREF(ifp); 9523 9524 /* 9525 * The situations which this mutex_tryenter() fails at running time 9526 * are below two patterns. 9527 * (1) contention with interrupt handler(wm_txrxintr_msix()) 9528 * (2) contention with deferred if_start softint(wm_handle_queue()) 9529 * In the case of (1), the last packet enqueued to txq->txq_interq is 9530 * dequeued by wm_deferred_start_locked(). So, it does not get stuck. 9531 * In the case of (2), the last packet enqueued to txq->txq_interq is 9532 * also dequeued by wm_deferred_start_locked(). So, it does not get 9533 * stuck, either. 9534 */ 9535 if (mutex_tryenter(txq->txq_lock)) { 9536 if (!txq->txq_stopping) 9537 wm_nq_transmit_locked(ifp, txq); 9538 mutex_exit(txq->txq_lock); 9539 } 9540 9541 return 0; 9542 } 9543 9544 static void 9545 wm_nq_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq) 9546 { 9547 9548 wm_nq_send_common_locked(ifp, txq, true); 9549 } 9550 9551 static void 9552 wm_nq_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq, 9553 bool is_transmit) 9554 { 9555 struct wm_softc *sc = ifp->if_softc; 9556 struct mbuf *m0; 9557 struct wm_txsoft *txs; 9558 bus_dmamap_t dmamap; 9559 int error, nexttx, lasttx = -1, seg, segs_needed; 9560 bool do_csum, sent; 9561 bool remap = true; 9562 9563 KASSERT(mutex_owned(txq->txq_lock)); 9564 KASSERT(!txq->txq_stopping); 9565 9566 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0) 9567 return; 9568 9569 if (__predict_false(wm_linkdown_discard(txq))) { 9570 do { 9571 if (is_transmit) 9572 m0 = pcq_get(txq->txq_interq); 9573 else 9574 IFQ_DEQUEUE(&ifp->if_snd, m0); 9575 /* 9576 * increment successed packet counter as in the case 9577 * which the packet is discarded by link down PHY. 9578 */ 9579 if (m0 != NULL) { 9580 if_statinc(ifp, if_opackets); 9581 m_freem(m0); 9582 } 9583 } while (m0 != NULL); 9584 return; 9585 } 9586 9587 sent = false; 9588 9589 /* 9590 * Loop through the send queue, setting up transmit descriptors 9591 * until we drain the queue, or use up all available transmit 9592 * descriptors. 9593 */ 9594 for (;;) { 9595 m0 = NULL; 9596 9597 /* Get a work queue entry. */ 9598 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) { 9599 wm_txeof(txq, UINT_MAX); 9600 if (txq->txq_sfree == 0) { 9601 DPRINTF(sc, WM_DEBUG_TX, 9602 ("%s: TX: no free job descriptors\n", 9603 device_xname(sc->sc_dev))); 9604 WM_Q_EVCNT_INCR(txq, txsstall); 9605 break; 9606 } 9607 } 9608 9609 /* Grab a packet off the queue. */ 9610 if (is_transmit) 9611 m0 = pcq_get(txq->txq_interq); 9612 else 9613 IFQ_DEQUEUE(&ifp->if_snd, m0); 9614 if (m0 == NULL) 9615 break; 9616 9617 DPRINTF(sc, WM_DEBUG_TX, 9618 ("%s: TX: have packet to transmit: %p\n", 9619 device_xname(sc->sc_dev), m0)); 9620 9621 txs = &txq->txq_soft[txq->txq_snext]; 9622 dmamap = txs->txs_dmamap; 9623 9624 /* 9625 * Load the DMA map. If this fails, the packet either 9626 * didn't fit in the allotted number of segments, or we 9627 * were short on resources. For the too-many-segments 9628 * case, we simply report an error and drop the packet, 9629 * since we can't sanely copy a jumbo packet to a single 9630 * buffer. 9631 */ 9632 retry: 9633 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 9634 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 9635 if (__predict_false(error)) { 9636 if (error == EFBIG) { 9637 if (remap == true) { 9638 struct mbuf *m; 9639 9640 remap = false; 9641 m = m_defrag(m0, M_NOWAIT); 9642 if (m != NULL) { 9643 WM_Q_EVCNT_INCR(txq, defrag); 9644 m0 = m; 9645 goto retry; 9646 } 9647 } 9648 WM_Q_EVCNT_INCR(txq, toomanyseg); 9649 log(LOG_ERR, "%s: Tx packet consumes too many " 9650 "DMA segments, dropping...\n", 9651 device_xname(sc->sc_dev)); 9652 wm_dump_mbuf_chain(sc, m0); 9653 m_freem(m0); 9654 continue; 9655 } 9656 /* Short on resources, just stop for now. */ 9657 DPRINTF(sc, WM_DEBUG_TX, 9658 ("%s: TX: dmamap load failed: %d\n", 9659 device_xname(sc->sc_dev), error)); 9660 break; 9661 } 9662 9663 segs_needed = dmamap->dm_nsegs; 9664 9665 /* 9666 * Ensure we have enough descriptors free to describe 9667 * the packet. Note, we always reserve one descriptor 9668 * at the end of the ring due to the semantics of the 9669 * TDT register, plus one more in the event we need 9670 * to load offload context. 9671 */ 9672 if (segs_needed > txq->txq_free - 2) { 9673 /* 9674 * Not enough free descriptors to transmit this 9675 * packet. We haven't committed anything yet, 9676 * so just unload the DMA map, put the packet 9677 * pack on the queue, and punt. Notify the upper 9678 * layer that there are no more slots left. 9679 */ 9680 DPRINTF(sc, WM_DEBUG_TX, 9681 ("%s: TX: need %d (%d) descriptors, have %d\n", 9682 device_xname(sc->sc_dev), dmamap->dm_nsegs, 9683 segs_needed, txq->txq_free - 1)); 9684 txq->txq_flags |= WM_TXQ_NO_SPACE; 9685 bus_dmamap_unload(sc->sc_dmat, dmamap); 9686 WM_Q_EVCNT_INCR(txq, txdstall); 9687 break; 9688 } 9689 9690 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ 9691 9692 DPRINTF(sc, WM_DEBUG_TX, 9693 ("%s: TX: packet has %d (%d) DMA segments\n", 9694 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed)); 9695 9696 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]); 9697 9698 /* 9699 * Store a pointer to the packet so that we can free it 9700 * later. 9701 * 9702 * Initially, we consider the number of descriptors the 9703 * packet uses the number of DMA segments. This may be 9704 * incremented by 1 if we do checksum offload (a descriptor 9705 * is used to set the checksum context). 9706 */ 9707 txs->txs_mbuf = m0; 9708 txs->txs_firstdesc = txq->txq_next; 9709 txs->txs_ndesc = segs_needed; 9710 9711 /* Set up offload parameters for this packet. */ 9712 uint32_t cmdlen, fields, dcmdlen; 9713 if (m0->m_pkthdr.csum_flags & 9714 (M_CSUM_TSOv4 | M_CSUM_TSOv6 | 9715 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 | 9716 M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 9717 wm_nq_tx_offload(sc, txq, txs, &cmdlen, &fields, 9718 &do_csum); 9719 } else { 9720 do_csum = false; 9721 cmdlen = 0; 9722 fields = 0; 9723 } 9724 9725 /* Sync the DMA map. */ 9726 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 9727 BUS_DMASYNC_PREWRITE); 9728 9729 /* Initialize the first transmit descriptor. */ 9730 nexttx = txq->txq_next; 9731 if (!do_csum) { 9732 /* Set up a legacy descriptor */ 9733 wm_set_dma_addr(&txq->txq_descs[nexttx].wtx_addr, 9734 dmamap->dm_segs[0].ds_addr); 9735 txq->txq_descs[nexttx].wtx_cmdlen = 9736 htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len); 9737 txq->txq_descs[nexttx].wtx_fields.wtxu_status = 0; 9738 txq->txq_descs[nexttx].wtx_fields.wtxu_options = 0; 9739 if (vlan_has_tag(m0)) { 9740 txq->txq_descs[nexttx].wtx_cmdlen |= 9741 htole32(WTX_CMD_VLE); 9742 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan = 9743 htole16(vlan_get_tag(m0)); 9744 } else 9745 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0; 9746 9747 dcmdlen = 0; 9748 } else { 9749 /* Set up an advanced data descriptor */ 9750 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr = 9751 htole64(dmamap->dm_segs[0].ds_addr); 9752 KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0); 9753 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen = 9754 htole32(dmamap->dm_segs[0].ds_len | cmdlen); 9755 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields = 9756 htole32(fields); 9757 DPRINTF(sc, WM_DEBUG_TX, 9758 ("%s: TX: adv data desc %d 0x%" PRIx64 "\n", 9759 device_xname(sc->sc_dev), nexttx, 9760 (uint64_t)dmamap->dm_segs[0].ds_addr)); 9761 DPRINTF(sc, WM_DEBUG_TX, 9762 ("\t 0x%08x%08x\n", fields, 9763 (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen)); 9764 dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT; 9765 } 9766 9767 lasttx = nexttx; 9768 nexttx = WM_NEXTTX(txq, nexttx); 9769 /* 9770 * Fill in the next descriptors. Legacy or advanced format 9771 * is the same here. 9772 */ 9773 for (seg = 1; seg < dmamap->dm_nsegs; 9774 seg++, nexttx = WM_NEXTTX(txq, nexttx)) { 9775 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr = 9776 htole64(dmamap->dm_segs[seg].ds_addr); 9777 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen = 9778 htole32(dcmdlen | dmamap->dm_segs[seg].ds_len); 9779 KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0); 9780 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields = 0; 9781 lasttx = nexttx; 9782 9783 DPRINTF(sc, WM_DEBUG_TX, 9784 ("%s: TX: desc %d: %#" PRIx64 ", len %#04zx\n", 9785 device_xname(sc->sc_dev), nexttx, 9786 (uint64_t)dmamap->dm_segs[seg].ds_addr, 9787 dmamap->dm_segs[seg].ds_len)); 9788 } 9789 9790 KASSERT(lasttx != -1); 9791 9792 /* 9793 * Set up the command byte on the last descriptor of 9794 * the packet. If we're in the interrupt delay window, 9795 * delay the interrupt. 9796 */ 9797 KASSERT((WTX_CMD_EOP | WTX_CMD_RS) == 9798 (NQTX_CMD_EOP | NQTX_CMD_RS)); 9799 txq->txq_descs[lasttx].wtx_cmdlen |= 9800 htole32(WTX_CMD_EOP | WTX_CMD_RS); 9801 9802 txs->txs_lastdesc = lasttx; 9803 9804 DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: desc %d: cmdlen 0x%08x\n", 9805 device_xname(sc->sc_dev), 9806 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen))); 9807 9808 /* Sync the descriptors we're using. */ 9809 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc, 9810 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 9811 9812 /* Give the packet to the chip. */ 9813 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx); 9814 sent = true; 9815 9816 DPRINTF(sc, WM_DEBUG_TX, 9817 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx)); 9818 9819 DPRINTF(sc, WM_DEBUG_TX, 9820 ("%s: TX: finished transmitting packet, job %d\n", 9821 device_xname(sc->sc_dev), txq->txq_snext)); 9822 9823 /* Advance the tx pointer. */ 9824 txq->txq_free -= txs->txs_ndesc; 9825 txq->txq_next = nexttx; 9826 9827 txq->txq_sfree--; 9828 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext); 9829 9830 /* Pass the packet to any BPF listeners. */ 9831 bpf_mtap(ifp, m0, BPF_D_OUT); 9832 } 9833 9834 if (m0 != NULL) { 9835 txq->txq_flags |= WM_TXQ_NO_SPACE; 9836 WM_Q_EVCNT_INCR(txq, descdrop); 9837 DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n", 9838 __func__)); 9839 m_freem(m0); 9840 } 9841 9842 if (txq->txq_sfree == 0 || txq->txq_free <= 2) { 9843 /* No more slots; notify upper layer. */ 9844 txq->txq_flags |= WM_TXQ_NO_SPACE; 9845 } 9846 9847 if (sent) { 9848 /* Set a watchdog timer in case the chip flakes out. */ 9849 txq->txq_lastsent = time_uptime; 9850 txq->txq_sending = true; 9851 } 9852 } 9853 9854 static void 9855 wm_deferred_start_locked(struct wm_txqueue *txq) 9856 { 9857 struct wm_softc *sc = txq->txq_sc; 9858 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 9859 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq); 9860 int qid = wmq->wmq_id; 9861 9862 KASSERT(mutex_owned(txq->txq_lock)); 9863 KASSERT(!txq->txq_stopping); 9864 9865 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) { 9866 /* XXX need for ALTQ or one CPU system */ 9867 if (qid == 0) 9868 wm_nq_start_locked(ifp); 9869 wm_nq_transmit_locked(ifp, txq); 9870 } else { 9871 /* XXX need for ALTQ or one CPU system */ 9872 if (qid == 0) 9873 wm_start_locked(ifp); 9874 wm_transmit_locked(ifp, txq); 9875 } 9876 } 9877 9878 /* Interrupt */ 9879 9880 /* 9881 * wm_txeof: 9882 * 9883 * Helper; handle transmit interrupts. 9884 */ 9885 static bool 9886 wm_txeof(struct wm_txqueue *txq, u_int limit) 9887 { 9888 struct wm_softc *sc = txq->txq_sc; 9889 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 9890 struct wm_txsoft *txs; 9891 int count = 0; 9892 int i; 9893 uint8_t status; 9894 bool more = false; 9895 9896 KASSERT(mutex_owned(txq->txq_lock)); 9897 9898 if (txq->txq_stopping) 9899 return false; 9900 9901 txq->txq_flags &= ~WM_TXQ_NO_SPACE; 9902 9903 /* 9904 * Go through the Tx list and free mbufs for those 9905 * frames which have been transmitted. 9906 */ 9907 for (i = txq->txq_sdirty; txq->txq_sfree != WM_TXQUEUELEN(txq); 9908 i = WM_NEXTTXS(txq, i), txq->txq_sfree++) { 9909 txs = &txq->txq_soft[i]; 9910 9911 DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: checking job %d\n", 9912 device_xname(sc->sc_dev), i)); 9913 9914 wm_cdtxsync(txq, txs->txs_firstdesc, txs->txs_ndesc, 9915 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 9916 9917 status = 9918 txq->txq_descs[txs->txs_lastdesc].wtx_fields.wtxu_status; 9919 if ((status & WTX_ST_DD) == 0) { 9920 wm_cdtxsync(txq, txs->txs_lastdesc, 1, 9921 BUS_DMASYNC_PREREAD); 9922 break; 9923 } 9924 9925 if (limit-- == 0) { 9926 more = true; 9927 DPRINTF(sc, WM_DEBUG_TX, 9928 ("%s: TX: loop limited, job %d is not processed\n", 9929 device_xname(sc->sc_dev), i)); 9930 break; 9931 } 9932 9933 count++; 9934 DPRINTF(sc, WM_DEBUG_TX, 9935 ("%s: TX: job %d done: descs %d..%d\n", 9936 device_xname(sc->sc_dev), i, txs->txs_firstdesc, 9937 txs->txs_lastdesc)); 9938 9939 #ifdef WM_EVENT_COUNTERS 9940 if ((status & WTX_ST_TU) && (sc->sc_type <= WM_T_82544)) 9941 WM_Q_EVCNT_INCR(txq, underrun); 9942 #endif /* WM_EVENT_COUNTERS */ 9943 9944 /* 9945 * 82574 and newer's document says the status field has neither 9946 * EC (Excessive Collision) bit nor LC (Late Collision) bit 9947 * (reserved). Refer "PCIe GbE Controller Open Source Software 9948 * Developer's Manual", 82574 datasheet and newer. 9949 * 9950 * XXX I saw the LC bit was set on I218 even though the media 9951 * was full duplex, so the bit might be used for other 9952 * meaning ...(I have no document). 9953 */ 9954 9955 if (((status & (WTX_ST_EC | WTX_ST_LC)) != 0) 9956 && ((sc->sc_type < WM_T_82574) 9957 || (sc->sc_type == WM_T_80003))) { 9958 if_statinc(ifp, if_oerrors); 9959 if (status & WTX_ST_LC) 9960 log(LOG_WARNING, "%s: late collision\n", 9961 device_xname(sc->sc_dev)); 9962 else if (status & WTX_ST_EC) { 9963 if_statadd(ifp, if_collisions, 9964 TX_COLLISION_THRESHOLD + 1); 9965 log(LOG_WARNING, "%s: excessive collisions\n", 9966 device_xname(sc->sc_dev)); 9967 } 9968 } else 9969 if_statinc(ifp, if_opackets); 9970 9971 txq->txq_packets++; 9972 txq->txq_bytes += txs->txs_mbuf->m_pkthdr.len; 9973 9974 txq->txq_free += txs->txs_ndesc; 9975 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 9976 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 9977 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 9978 m_freem(txs->txs_mbuf); 9979 txs->txs_mbuf = NULL; 9980 } 9981 9982 /* Update the dirty transmit buffer pointer. */ 9983 txq->txq_sdirty = i; 9984 DPRINTF(sc, WM_DEBUG_TX, 9985 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i)); 9986 9987 if (count != 0) 9988 rnd_add_uint32(&sc->rnd_source, count); 9989 9990 /* 9991 * If there are no more pending transmissions, cancel the watchdog 9992 * timer. 9993 */ 9994 if (txq->txq_sfree == WM_TXQUEUELEN(txq)) 9995 txq->txq_sending = false; 9996 9997 return more; 9998 } 9999 10000 static inline uint32_t 10001 wm_rxdesc_get_status(struct wm_rxqueue *rxq, int idx) 10002 { 10003 struct wm_softc *sc = rxq->rxq_sc; 10004 10005 if (sc->sc_type == WM_T_82574) 10006 return EXTRXC_STATUS( 10007 le32toh(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat)); 10008 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 10009 return NQRXC_STATUS( 10010 le32toh(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat)); 10011 else 10012 return rxq->rxq_descs[idx].wrx_status; 10013 } 10014 10015 static inline uint32_t 10016 wm_rxdesc_get_errors(struct wm_rxqueue *rxq, int idx) 10017 { 10018 struct wm_softc *sc = rxq->rxq_sc; 10019 10020 if (sc->sc_type == WM_T_82574) 10021 return EXTRXC_ERROR( 10022 le32toh(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat)); 10023 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 10024 return NQRXC_ERROR( 10025 le32toh(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat)); 10026 else 10027 return rxq->rxq_descs[idx].wrx_errors; 10028 } 10029 10030 static inline uint16_t 10031 wm_rxdesc_get_vlantag(struct wm_rxqueue *rxq, int idx) 10032 { 10033 struct wm_softc *sc = rxq->rxq_sc; 10034 10035 if (sc->sc_type == WM_T_82574) 10036 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_vlan; 10037 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 10038 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_vlan; 10039 else 10040 return rxq->rxq_descs[idx].wrx_special; 10041 } 10042 10043 static inline int 10044 wm_rxdesc_get_pktlen(struct wm_rxqueue *rxq, int idx) 10045 { 10046 struct wm_softc *sc = rxq->rxq_sc; 10047 10048 if (sc->sc_type == WM_T_82574) 10049 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_pktlen; 10050 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 10051 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_pktlen; 10052 else 10053 return rxq->rxq_descs[idx].wrx_len; 10054 } 10055 10056 #ifdef WM_DEBUG 10057 static inline uint32_t 10058 wm_rxdesc_get_rsshash(struct wm_rxqueue *rxq, int idx) 10059 { 10060 struct wm_softc *sc = rxq->rxq_sc; 10061 10062 if (sc->sc_type == WM_T_82574) 10063 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_rsshash; 10064 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 10065 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_rsshash; 10066 else 10067 return 0; 10068 } 10069 10070 static inline uint8_t 10071 wm_rxdesc_get_rsstype(struct wm_rxqueue *rxq, int idx) 10072 { 10073 struct wm_softc *sc = rxq->rxq_sc; 10074 10075 if (sc->sc_type == WM_T_82574) 10076 return EXTRXC_RSS_TYPE(rxq->rxq_ext_descs[idx].erx_ctx.erxc_mrq); 10077 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 10078 return NQRXC_RSS_TYPE(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_misc); 10079 else 10080 return 0; 10081 } 10082 #endif /* WM_DEBUG */ 10083 10084 static inline bool 10085 wm_rxdesc_is_set_status(struct wm_softc *sc, uint32_t status, 10086 uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit) 10087 { 10088 10089 if (sc->sc_type == WM_T_82574) 10090 return (status & ext_bit) != 0; 10091 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 10092 return (status & nq_bit) != 0; 10093 else 10094 return (status & legacy_bit) != 0; 10095 } 10096 10097 static inline bool 10098 wm_rxdesc_is_set_error(struct wm_softc *sc, uint32_t error, 10099 uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit) 10100 { 10101 10102 if (sc->sc_type == WM_T_82574) 10103 return (error & ext_bit) != 0; 10104 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) 10105 return (error & nq_bit) != 0; 10106 else 10107 return (error & legacy_bit) != 0; 10108 } 10109 10110 static inline bool 10111 wm_rxdesc_is_eop(struct wm_rxqueue *rxq, uint32_t status) 10112 { 10113 10114 if (wm_rxdesc_is_set_status(rxq->rxq_sc, status, 10115 WRX_ST_EOP, EXTRXC_STATUS_EOP, NQRXC_STATUS_EOP)) 10116 return true; 10117 else 10118 return false; 10119 } 10120 10121 static inline bool 10122 wm_rxdesc_has_errors(struct wm_rxqueue *rxq, uint32_t errors) 10123 { 10124 struct wm_softc *sc = rxq->rxq_sc; 10125 10126 /* XXX missing error bit for newqueue? */ 10127 if (wm_rxdesc_is_set_error(sc, errors, 10128 WRX_ER_CE | WRX_ER_SE | WRX_ER_SEQ | WRX_ER_CXE | WRX_ER_RXE, 10129 EXTRXC_ERROR_CE | EXTRXC_ERROR_SE | EXTRXC_ERROR_SEQ 10130 | EXTRXC_ERROR_CXE | EXTRXC_ERROR_RXE, 10131 NQRXC_ERROR_RXE)) { 10132 if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SE, 10133 EXTRXC_ERROR_SE, 0)) 10134 log(LOG_WARNING, "%s: symbol error\n", 10135 device_xname(sc->sc_dev)); 10136 else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SEQ, 10137 EXTRXC_ERROR_SEQ, 0)) 10138 log(LOG_WARNING, "%s: receive sequence error\n", 10139 device_xname(sc->sc_dev)); 10140 else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_CE, 10141 EXTRXC_ERROR_CE, 0)) 10142 log(LOG_WARNING, "%s: CRC error\n", 10143 device_xname(sc->sc_dev)); 10144 return true; 10145 } 10146 10147 return false; 10148 } 10149 10150 static inline bool 10151 wm_rxdesc_dd(struct wm_rxqueue *rxq, int idx, uint32_t status) 10152 { 10153 struct wm_softc *sc = rxq->rxq_sc; 10154 10155 if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_DD, EXTRXC_STATUS_DD, 10156 NQRXC_STATUS_DD)) { 10157 /* We have processed all of the receive descriptors. */ 10158 wm_cdrxsync(rxq, idx, BUS_DMASYNC_PREREAD); 10159 return false; 10160 } 10161 10162 return true; 10163 } 10164 10165 static inline bool 10166 wm_rxdesc_input_vlantag(struct wm_rxqueue *rxq, uint32_t status, 10167 uint16_t vlantag, struct mbuf *m) 10168 { 10169 10170 if (wm_rxdesc_is_set_status(rxq->rxq_sc, status, 10171 WRX_ST_VP, EXTRXC_STATUS_VP, NQRXC_STATUS_VP)) { 10172 vlan_set_tag(m, le16toh(vlantag)); 10173 } 10174 10175 return true; 10176 } 10177 10178 static inline void 10179 wm_rxdesc_ensure_checksum(struct wm_rxqueue *rxq, uint32_t status, 10180 uint32_t errors, struct mbuf *m) 10181 { 10182 struct wm_softc *sc = rxq->rxq_sc; 10183 10184 if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_IXSM, 0, 0)) { 10185 if (wm_rxdesc_is_set_status(sc, status, 10186 WRX_ST_IPCS, EXTRXC_STATUS_IPCS, NQRXC_STATUS_IPCS)) { 10187 WM_Q_EVCNT_INCR(rxq, ipsum); 10188 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 10189 if (wm_rxdesc_is_set_error(sc, errors, 10190 WRX_ER_IPE, EXTRXC_ERROR_IPE, NQRXC_ERROR_IPE)) 10191 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 10192 } 10193 if (wm_rxdesc_is_set_status(sc, status, 10194 WRX_ST_TCPCS, EXTRXC_STATUS_TCPCS, NQRXC_STATUS_L4I)) { 10195 /* 10196 * Note: we don't know if this was TCP or UDP, 10197 * so we just set both bits, and expect the 10198 * upper layers to deal. 10199 */ 10200 WM_Q_EVCNT_INCR(rxq, tusum); 10201 m->m_pkthdr.csum_flags |= 10202 M_CSUM_TCPv4 | M_CSUM_UDPv4 | 10203 M_CSUM_TCPv6 | M_CSUM_UDPv6; 10204 if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_TCPE, 10205 EXTRXC_ERROR_TCPE, NQRXC_ERROR_L4E)) 10206 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; 10207 } 10208 } 10209 } 10210 10211 /* 10212 * wm_rxeof: 10213 * 10214 * Helper; handle receive interrupts. 10215 */ 10216 static bool 10217 wm_rxeof(struct wm_rxqueue *rxq, u_int limit) 10218 { 10219 struct wm_softc *sc = rxq->rxq_sc; 10220 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 10221 struct wm_rxsoft *rxs; 10222 struct mbuf *m; 10223 int i, len; 10224 int count = 0; 10225 uint32_t status, errors; 10226 uint16_t vlantag; 10227 bool more = false; 10228 10229 KASSERT(mutex_owned(rxq->rxq_lock)); 10230 10231 for (i = rxq->rxq_ptr;; i = WM_NEXTRX(i)) { 10232 rxs = &rxq->rxq_soft[i]; 10233 10234 DPRINTF(sc, WM_DEBUG_RX, 10235 ("%s: RX: checking descriptor %d\n", 10236 device_xname(sc->sc_dev), i)); 10237 wm_cdrxsync(rxq, i, 10238 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 10239 10240 status = wm_rxdesc_get_status(rxq, i); 10241 errors = wm_rxdesc_get_errors(rxq, i); 10242 len = le16toh(wm_rxdesc_get_pktlen(rxq, i)); 10243 vlantag = wm_rxdesc_get_vlantag(rxq, i); 10244 #ifdef WM_DEBUG 10245 uint32_t rsshash = le32toh(wm_rxdesc_get_rsshash(rxq, i)); 10246 uint8_t rsstype = wm_rxdesc_get_rsstype(rxq, i); 10247 #endif 10248 10249 if (!wm_rxdesc_dd(rxq, i, status)) 10250 break; 10251 10252 if (limit-- == 0) { 10253 more = true; 10254 DPRINTF(sc, WM_DEBUG_RX, 10255 ("%s: RX: loop limited, descriptor %d is not processed\n", 10256 device_xname(sc->sc_dev), i)); 10257 break; 10258 } 10259 10260 count++; 10261 if (__predict_false(rxq->rxq_discard)) { 10262 DPRINTF(sc, WM_DEBUG_RX, 10263 ("%s: RX: discarding contents of descriptor %d\n", 10264 device_xname(sc->sc_dev), i)); 10265 wm_init_rxdesc(rxq, i); 10266 if (wm_rxdesc_is_eop(rxq, status)) { 10267 /* Reset our state. */ 10268 DPRINTF(sc, WM_DEBUG_RX, 10269 ("%s: RX: resetting rxdiscard -> 0\n", 10270 device_xname(sc->sc_dev))); 10271 rxq->rxq_discard = 0; 10272 } 10273 continue; 10274 } 10275 10276 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 10277 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 10278 10279 m = rxs->rxs_mbuf; 10280 10281 /* 10282 * Add a new receive buffer to the ring, unless of 10283 * course the length is zero. Treat the latter as a 10284 * failed mapping. 10285 */ 10286 if ((len == 0) || (wm_add_rxbuf(rxq, i) != 0)) { 10287 /* 10288 * Failed, throw away what we've done so 10289 * far, and discard the rest of the packet. 10290 */ 10291 if_statinc(ifp, if_ierrors); 10292 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 10293 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 10294 wm_init_rxdesc(rxq, i); 10295 if (!wm_rxdesc_is_eop(rxq, status)) 10296 rxq->rxq_discard = 1; 10297 m_freem(rxq->rxq_head); 10298 WM_RXCHAIN_RESET(rxq); 10299 DPRINTF(sc, WM_DEBUG_RX, 10300 ("%s: RX: Rx buffer allocation failed, " 10301 "dropping packet%s\n", device_xname(sc->sc_dev), 10302 rxq->rxq_discard ? " (discard)" : "")); 10303 continue; 10304 } 10305 10306 m->m_len = len; 10307 rxq->rxq_len += len; 10308 DPRINTF(sc, WM_DEBUG_RX, 10309 ("%s: RX: buffer at %p len %d\n", 10310 device_xname(sc->sc_dev), m->m_data, len)); 10311 10312 /* If this is not the end of the packet, keep looking. */ 10313 if (!wm_rxdesc_is_eop(rxq, status)) { 10314 WM_RXCHAIN_LINK(rxq, m); 10315 DPRINTF(sc, WM_DEBUG_RX, 10316 ("%s: RX: not yet EOP, rxlen -> %d\n", 10317 device_xname(sc->sc_dev), rxq->rxq_len)); 10318 continue; 10319 } 10320 10321 /* 10322 * Okay, we have the entire packet now. The chip is 10323 * configured to include the FCS except I35[04], I21[01]. 10324 * (not all chips can be configured to strip it), so we need 10325 * to trim it. Those chips have an eratta, the RCTL_SECRC bit 10326 * in RCTL register is always set, so we don't trim it. 10327 * PCH2 and newer chip also not include FCS when jumbo 10328 * frame is used to do workaround an errata. 10329 * May need to adjust length of previous mbuf in the 10330 * chain if the current mbuf is too short. 10331 */ 10332 if ((sc->sc_flags & WM_F_CRC_STRIP) == 0) { 10333 if (m->m_len < ETHER_CRC_LEN) { 10334 rxq->rxq_tail->m_len 10335 -= (ETHER_CRC_LEN - m->m_len); 10336 m->m_len = 0; 10337 } else 10338 m->m_len -= ETHER_CRC_LEN; 10339 len = rxq->rxq_len - ETHER_CRC_LEN; 10340 } else 10341 len = rxq->rxq_len; 10342 10343 WM_RXCHAIN_LINK(rxq, m); 10344 10345 *rxq->rxq_tailp = NULL; 10346 m = rxq->rxq_head; 10347 10348 WM_RXCHAIN_RESET(rxq); 10349 10350 DPRINTF(sc, WM_DEBUG_RX, 10351 ("%s: RX: have entire packet, len -> %d\n", 10352 device_xname(sc->sc_dev), len)); 10353 10354 /* If an error occurred, update stats and drop the packet. */ 10355 if (wm_rxdesc_has_errors(rxq, errors)) { 10356 m_freem(m); 10357 continue; 10358 } 10359 10360 /* No errors. Receive the packet. */ 10361 m_set_rcvif(m, ifp); 10362 m->m_pkthdr.len = len; 10363 /* 10364 * TODO 10365 * should be save rsshash and rsstype to this mbuf. 10366 */ 10367 DPRINTF(sc, WM_DEBUG_RX, 10368 ("%s: RX: RSS type=%" PRIu8 ", RSS hash=%" PRIu32 "\n", 10369 device_xname(sc->sc_dev), rsstype, rsshash)); 10370 10371 /* 10372 * If VLANs are enabled, VLAN packets have been unwrapped 10373 * for us. Associate the tag with the packet. 10374 */ 10375 if (!wm_rxdesc_input_vlantag(rxq, status, vlantag, m)) 10376 continue; 10377 10378 /* Set up checksum info for this packet. */ 10379 wm_rxdesc_ensure_checksum(rxq, status, errors, m); 10380 10381 rxq->rxq_packets++; 10382 rxq->rxq_bytes += len; 10383 /* Pass it on. */ 10384 if_percpuq_enqueue(sc->sc_ipq, m); 10385 10386 if (rxq->rxq_stopping) 10387 break; 10388 } 10389 rxq->rxq_ptr = i; 10390 10391 if (count != 0) 10392 rnd_add_uint32(&sc->rnd_source, count); 10393 10394 DPRINTF(sc, WM_DEBUG_RX, 10395 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i)); 10396 10397 return more; 10398 } 10399 10400 /* 10401 * wm_linkintr_gmii: 10402 * 10403 * Helper; handle link interrupts for GMII. 10404 */ 10405 static void 10406 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr) 10407 { 10408 device_t dev = sc->sc_dev; 10409 uint32_t status, reg; 10410 bool link; 10411 bool dopoll = true; 10412 int rv; 10413 10414 KASSERT(mutex_owned(sc->sc_core_lock)); 10415 10416 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(dev), 10417 __func__)); 10418 10419 if ((icr & ICR_LSC) == 0) { 10420 if (icr & ICR_RXSEQ) 10421 DPRINTF(sc, WM_DEBUG_LINK, 10422 ("%s: LINK Receive sequence error\n", 10423 device_xname(dev))); 10424 return; 10425 } 10426 10427 /* Link status changed */ 10428 status = CSR_READ(sc, WMREG_STATUS); 10429 link = status & STATUS_LU; 10430 if (link) { 10431 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n", 10432 device_xname(dev), 10433 (status & STATUS_FD) ? "FDX" : "HDX")); 10434 if (wm_phy_need_linkdown_discard(sc)) { 10435 DPRINTF(sc, WM_DEBUG_LINK, 10436 ("%s: linkintr: Clear linkdown discard flag\n", 10437 device_xname(dev))); 10438 wm_clear_linkdown_discard(sc); 10439 } 10440 } else { 10441 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n", 10442 device_xname(dev))); 10443 if (wm_phy_need_linkdown_discard(sc)) { 10444 DPRINTF(sc, WM_DEBUG_LINK, 10445 ("%s: linkintr: Set linkdown discard flag\n", 10446 device_xname(dev))); 10447 wm_set_linkdown_discard(sc); 10448 } 10449 } 10450 if ((sc->sc_type == WM_T_ICH8) && (link == false)) 10451 wm_gig_downshift_workaround_ich8lan(sc); 10452 10453 if ((sc->sc_type == WM_T_ICH8) && (sc->sc_phytype == WMPHY_IGP_3)) 10454 wm_kmrn_lock_loss_workaround_ich8lan(sc); 10455 10456 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> mii_pollstat\n", 10457 device_xname(dev))); 10458 if ((sc->sc_flags & WM_F_DELAY_LINKUP) != 0) { 10459 if (link) { 10460 /* 10461 * To workaround the problem, it's required to wait 10462 * several hundred miliseconds. The time depend 10463 * on the environment. Wait 1 second for the safety. 10464 */ 10465 dopoll = false; 10466 getmicrotime(&sc->sc_linkup_delay_time); 10467 sc->sc_linkup_delay_time.tv_sec += 1; 10468 } else if (sc->sc_linkup_delay_time.tv_sec != 0) { 10469 /* 10470 * Simplify by checking tv_sec only. It's enough. 10471 * 10472 * Currently, it's not required to clear the time. 10473 * It's just to know the timer is stopped 10474 * (for debugging). 10475 */ 10476 10477 sc->sc_linkup_delay_time.tv_sec = 0; 10478 sc->sc_linkup_delay_time.tv_usec = 0; 10479 } 10480 } 10481 10482 /* 10483 * Call mii_pollstat(). 10484 * 10485 * Some (not all) systems use I35[04] or I21[01] don't send packet soon 10486 * after linkup. The MAC send a packet to the PHY and any error is not 10487 * observed. This behavior causes a problem that gratuitous ARP and/or 10488 * IPv6 DAD packet are silently dropped. To avoid this problem, don't 10489 * call mii_pollstat() here which will send LINK_STATE_UP notification 10490 * to the upper layer. Instead, mii_pollstat() will be called in 10491 * wm_gmii_mediastatus() or mii_tick() will be called in wm_tick(). 10492 */ 10493 if (dopoll) 10494 mii_pollstat(&sc->sc_mii); 10495 10496 /* Do some workarounds soon after link status is changed. */ 10497 10498 if (sc->sc_type == WM_T_82543) { 10499 int miistatus, active; 10500 10501 /* 10502 * With 82543, we need to force speed and 10503 * duplex on the MAC equal to what the PHY 10504 * speed and duplex configuration is. 10505 */ 10506 miistatus = sc->sc_mii.mii_media_status; 10507 10508 if (miistatus & IFM_ACTIVE) { 10509 active = sc->sc_mii.mii_media_active; 10510 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD); 10511 switch (IFM_SUBTYPE(active)) { 10512 case IFM_10_T: 10513 sc->sc_ctrl |= CTRL_SPEED_10; 10514 break; 10515 case IFM_100_TX: 10516 sc->sc_ctrl |= CTRL_SPEED_100; 10517 break; 10518 case IFM_1000_T: 10519 sc->sc_ctrl |= CTRL_SPEED_1000; 10520 break; 10521 default: 10522 /* 10523 * Fiber? 10524 * Shoud not enter here. 10525 */ 10526 device_printf(dev, "unknown media (%x)\n", 10527 active); 10528 break; 10529 } 10530 if (active & IFM_FDX) 10531 sc->sc_ctrl |= CTRL_FD; 10532 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 10533 } 10534 } else if (sc->sc_type == WM_T_PCH) { 10535 wm_k1_gig_workaround_hv(sc, 10536 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0)); 10537 } 10538 10539 /* 10540 * When connected at 10Mbps half-duplex, some parts are excessively 10541 * aggressive resulting in many collisions. To avoid this, increase 10542 * the IPG and reduce Rx latency in the PHY. 10543 */ 10544 if ((sc->sc_type >= WM_T_PCH2) && (sc->sc_type <= WM_T_PCH_TGP) 10545 && link) { 10546 uint32_t tipg_reg; 10547 uint32_t speed = __SHIFTOUT(status, STATUS_SPEED); 10548 bool fdx; 10549 uint16_t emi_addr, emi_val; 10550 10551 tipg_reg = CSR_READ(sc, WMREG_TIPG); 10552 tipg_reg &= ~TIPG_IPGT_MASK; 10553 fdx = status & STATUS_FD; 10554 10555 if (!fdx && (speed == STATUS_SPEED_10)) { 10556 tipg_reg |= 0xff; 10557 /* Reduce Rx latency in analog PHY */ 10558 emi_val = 0; 10559 } else if ((sc->sc_type >= WM_T_PCH_SPT) && 10560 fdx && speed != STATUS_SPEED_1000) { 10561 tipg_reg |= 0xc; 10562 emi_val = 1; 10563 } else { 10564 /* Roll back the default values */ 10565 tipg_reg |= 0x08; 10566 emi_val = 1; 10567 } 10568 10569 CSR_WRITE(sc, WMREG_TIPG, tipg_reg); 10570 10571 rv = sc->phy.acquire(sc); 10572 if (rv) 10573 return; 10574 10575 if (sc->sc_type == WM_T_PCH2) 10576 emi_addr = I82579_RX_CONFIG; 10577 else 10578 emi_addr = I217_RX_CONFIG; 10579 rv = wm_write_emi_reg_locked(dev, emi_addr, emi_val); 10580 10581 if (sc->sc_type >= WM_T_PCH_LPT) { 10582 uint16_t phy_reg; 10583 10584 sc->phy.readreg_locked(dev, 2, 10585 I217_PLL_CLOCK_GATE_REG, &phy_reg); 10586 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 10587 if (speed == STATUS_SPEED_100 10588 || speed == STATUS_SPEED_10) 10589 phy_reg |= 0x3e8; 10590 else 10591 phy_reg |= 0xfa; 10592 sc->phy.writereg_locked(dev, 2, 10593 I217_PLL_CLOCK_GATE_REG, phy_reg); 10594 10595 if (speed == STATUS_SPEED_1000) { 10596 sc->phy.readreg_locked(dev, 2, 10597 HV_PM_CTRL, &phy_reg); 10598 10599 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 10600 10601 sc->phy.writereg_locked(dev, 2, 10602 HV_PM_CTRL, phy_reg); 10603 } 10604 } 10605 sc->phy.release(sc); 10606 10607 if (rv) 10608 return; 10609 10610 if (sc->sc_type >= WM_T_PCH_SPT) { 10611 uint16_t data, ptr_gap; 10612 10613 if (speed == STATUS_SPEED_1000) { 10614 rv = sc->phy.acquire(sc); 10615 if (rv) 10616 return; 10617 10618 rv = sc->phy.readreg_locked(dev, 2, 10619 I82579_UNKNOWN1, &data); 10620 if (rv) { 10621 sc->phy.release(sc); 10622 return; 10623 } 10624 10625 ptr_gap = (data & (0x3ff << 2)) >> 2; 10626 if (ptr_gap < 0x18) { 10627 data &= ~(0x3ff << 2); 10628 data |= (0x18 << 2); 10629 rv = sc->phy.writereg_locked(dev, 10630 2, I82579_UNKNOWN1, data); 10631 } 10632 sc->phy.release(sc); 10633 if (rv) 10634 return; 10635 } else { 10636 rv = sc->phy.acquire(sc); 10637 if (rv) 10638 return; 10639 10640 rv = sc->phy.writereg_locked(dev, 2, 10641 I82579_UNKNOWN1, 0xc023); 10642 sc->phy.release(sc); 10643 if (rv) 10644 return; 10645 10646 } 10647 } 10648 } 10649 10650 /* 10651 * I217 Packet Loss issue: 10652 * ensure that FEXTNVM4 Beacon Duration is set correctly 10653 * on power up. 10654 * Set the Beacon Duration for I217 to 8 usec 10655 */ 10656 if (sc->sc_type >= WM_T_PCH_LPT) { 10657 reg = CSR_READ(sc, WMREG_FEXTNVM4); 10658 reg &= ~FEXTNVM4_BEACON_DURATION; 10659 reg |= FEXTNVM4_BEACON_DURATION_8US; 10660 CSR_WRITE(sc, WMREG_FEXTNVM4, reg); 10661 } 10662 10663 /* Work-around I218 hang issue */ 10664 if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM) || 10665 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V) || 10666 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM3) || 10667 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V3)) 10668 wm_k1_workaround_lpt_lp(sc, link); 10669 10670 if (sc->sc_type >= WM_T_PCH_LPT) { 10671 /* 10672 * Set platform power management values for Latency 10673 * Tolerance Reporting (LTR) 10674 */ 10675 wm_platform_pm_pch_lpt(sc, 10676 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0)); 10677 } 10678 10679 /* Clear link partner's EEE ability */ 10680 sc->eee_lp_ability = 0; 10681 10682 /* FEXTNVM6 K1-off workaround */ 10683 if (sc->sc_type == WM_T_PCH_SPT) { 10684 reg = CSR_READ(sc, WMREG_FEXTNVM6); 10685 if (CSR_READ(sc, WMREG_PCIEANACFG) & FEXTNVM6_K1_OFF_ENABLE) 10686 reg |= FEXTNVM6_K1_OFF_ENABLE; 10687 else 10688 reg &= ~FEXTNVM6_K1_OFF_ENABLE; 10689 CSR_WRITE(sc, WMREG_FEXTNVM6, reg); 10690 } 10691 10692 if (!link) 10693 return; 10694 10695 switch (sc->sc_type) { 10696 case WM_T_PCH2: 10697 wm_k1_workaround_lv(sc); 10698 /* FALLTHROUGH */ 10699 case WM_T_PCH: 10700 if (sc->sc_phytype == WMPHY_82578) 10701 wm_link_stall_workaround_hv(sc); 10702 break; 10703 default: 10704 break; 10705 } 10706 10707 /* Enable/Disable EEE after link up */ 10708 if (sc->sc_phytype > WMPHY_82579) 10709 wm_set_eee_pchlan(sc); 10710 } 10711 10712 /* 10713 * wm_linkintr_tbi: 10714 * 10715 * Helper; handle link interrupts for TBI mode. 10716 */ 10717 static void 10718 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr) 10719 { 10720 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 10721 uint32_t status; 10722 10723 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev), 10724 __func__)); 10725 10726 status = CSR_READ(sc, WMREG_STATUS); 10727 if (icr & ICR_LSC) { 10728 wm_check_for_link(sc); 10729 if (status & STATUS_LU) { 10730 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n", 10731 device_xname(sc->sc_dev), 10732 (status & STATUS_FD) ? "FDX" : "HDX")); 10733 /* 10734 * NOTE: CTRL will update TFCE and RFCE automatically, 10735 * so we should update sc->sc_ctrl 10736 */ 10737 10738 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL); 10739 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 10740 sc->sc_fcrtl &= ~FCRTL_XONE; 10741 if (status & STATUS_FD) 10742 sc->sc_tctl |= 10743 TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 10744 else 10745 sc->sc_tctl |= 10746 TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 10747 if (sc->sc_ctrl & CTRL_TFCE) 10748 sc->sc_fcrtl |= FCRTL_XONE; 10749 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 10750 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? 10751 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl); 10752 sc->sc_tbi_linkup = 1; 10753 if_link_state_change(ifp, LINK_STATE_UP); 10754 } else { 10755 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n", 10756 device_xname(sc->sc_dev))); 10757 sc->sc_tbi_linkup = 0; 10758 if_link_state_change(ifp, LINK_STATE_DOWN); 10759 } 10760 /* Update LED */ 10761 wm_tbi_serdes_set_linkled(sc); 10762 } else if (icr & ICR_RXSEQ) 10763 DPRINTF(sc, WM_DEBUG_LINK, 10764 ("%s: LINK: Receive sequence error\n", 10765 device_xname(sc->sc_dev))); 10766 } 10767 10768 /* 10769 * wm_linkintr_serdes: 10770 * 10771 * Helper; handle link interrupts for TBI mode. 10772 */ 10773 static void 10774 wm_linkintr_serdes(struct wm_softc *sc, uint32_t icr) 10775 { 10776 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 10777 struct mii_data *mii = &sc->sc_mii; 10778 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 10779 uint32_t pcs_adv, pcs_lpab, reg; 10780 10781 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev), 10782 __func__)); 10783 10784 if (icr & ICR_LSC) { 10785 /* Check PCS */ 10786 reg = CSR_READ(sc, WMREG_PCS_LSTS); 10787 if ((reg & PCS_LSTS_LINKOK) != 0) { 10788 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up\n", 10789 device_xname(sc->sc_dev))); 10790 mii->mii_media_status |= IFM_ACTIVE; 10791 sc->sc_tbi_linkup = 1; 10792 if_link_state_change(ifp, LINK_STATE_UP); 10793 } else { 10794 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n", 10795 device_xname(sc->sc_dev))); 10796 mii->mii_media_status |= IFM_NONE; 10797 sc->sc_tbi_linkup = 0; 10798 if_link_state_change(ifp, LINK_STATE_DOWN); 10799 wm_tbi_serdes_set_linkled(sc); 10800 return; 10801 } 10802 mii->mii_media_active |= IFM_1000_SX; 10803 if ((reg & PCS_LSTS_FDX) != 0) 10804 mii->mii_media_active |= IFM_FDX; 10805 else 10806 mii->mii_media_active |= IFM_HDX; 10807 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) { 10808 /* Check flow */ 10809 reg = CSR_READ(sc, WMREG_PCS_LSTS); 10810 if ((reg & PCS_LSTS_AN_COMP) == 0) { 10811 DPRINTF(sc, WM_DEBUG_LINK, 10812 ("XXX LINKOK but not ACOMP\n")); 10813 return; 10814 } 10815 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV); 10816 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB); 10817 DPRINTF(sc, WM_DEBUG_LINK, 10818 ("XXX AN result %08x, %08x\n", pcs_adv, pcs_lpab)); 10819 if ((pcs_adv & TXCW_SYM_PAUSE) 10820 && (pcs_lpab & TXCW_SYM_PAUSE)) { 10821 mii->mii_media_active |= IFM_FLOW 10822 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 10823 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0) 10824 && (pcs_adv & TXCW_ASYM_PAUSE) 10825 && (pcs_lpab & TXCW_SYM_PAUSE) 10826 && (pcs_lpab & TXCW_ASYM_PAUSE)) 10827 mii->mii_media_active |= IFM_FLOW 10828 | IFM_ETH_TXPAUSE; 10829 else if ((pcs_adv & TXCW_SYM_PAUSE) 10830 && (pcs_adv & TXCW_ASYM_PAUSE) 10831 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0) 10832 && (pcs_lpab & TXCW_ASYM_PAUSE)) 10833 mii->mii_media_active |= IFM_FLOW 10834 | IFM_ETH_RXPAUSE; 10835 } 10836 /* Update LED */ 10837 wm_tbi_serdes_set_linkled(sc); 10838 } else 10839 DPRINTF(sc, WM_DEBUG_LINK, 10840 ("%s: LINK: Receive sequence error\n", 10841 device_xname(sc->sc_dev))); 10842 } 10843 10844 /* 10845 * wm_linkintr: 10846 * 10847 * Helper; handle link interrupts. 10848 */ 10849 static void 10850 wm_linkintr(struct wm_softc *sc, uint32_t icr) 10851 { 10852 10853 KASSERT(mutex_owned(sc->sc_core_lock)); 10854 10855 if (sc->sc_flags & WM_F_HAS_MII) 10856 wm_linkintr_gmii(sc, icr); 10857 else if ((sc->sc_mediatype == WM_MEDIATYPE_SERDES) 10858 && ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))) 10859 wm_linkintr_serdes(sc, icr); 10860 else 10861 wm_linkintr_tbi(sc, icr); 10862 } 10863 10864 10865 static inline void 10866 wm_sched_handle_queue(struct wm_softc *sc, struct wm_queue *wmq) 10867 { 10868 10869 if (wmq->wmq_txrx_use_workqueue) { 10870 if (!wmq->wmq_wq_enqueued) { 10871 wmq->wmq_wq_enqueued = true; 10872 workqueue_enqueue(sc->sc_queue_wq, &wmq->wmq_cookie, 10873 curcpu()); 10874 } 10875 } else 10876 softint_schedule(wmq->wmq_si); 10877 } 10878 10879 static inline void 10880 wm_legacy_intr_disable(struct wm_softc *sc) 10881 { 10882 10883 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU); 10884 } 10885 10886 static inline void 10887 wm_legacy_intr_enable(struct wm_softc *sc) 10888 { 10889 10890 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr); 10891 } 10892 10893 /* 10894 * wm_intr_legacy: 10895 * 10896 * Interrupt service routine for INTx and MSI. 10897 */ 10898 static int 10899 wm_intr_legacy(void *arg) 10900 { 10901 struct wm_softc *sc = arg; 10902 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 10903 struct wm_queue *wmq = &sc->sc_queue[0]; 10904 struct wm_txqueue *txq = &wmq->wmq_txq; 10905 struct wm_rxqueue *rxq = &wmq->wmq_rxq; 10906 u_int txlimit = sc->sc_tx_intr_process_limit; 10907 u_int rxlimit = sc->sc_rx_intr_process_limit; 10908 uint32_t icr, rndval = 0; 10909 bool more = false; 10910 10911 icr = CSR_READ(sc, WMREG_ICR); 10912 if ((icr & sc->sc_icr) == 0) 10913 return 0; 10914 10915 DPRINTF(sc, WM_DEBUG_TX, 10916 ("%s: INTx: got intr\n",device_xname(sc->sc_dev))); 10917 if (rndval == 0) 10918 rndval = icr; 10919 10920 mutex_enter(txq->txq_lock); 10921 10922 if (txq->txq_stopping) { 10923 mutex_exit(txq->txq_lock); 10924 return 1; 10925 } 10926 10927 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS) 10928 if (icr & ICR_TXDW) { 10929 DPRINTF(sc, WM_DEBUG_TX, 10930 ("%s: TX: got TXDW interrupt\n", 10931 device_xname(sc->sc_dev))); 10932 WM_Q_EVCNT_INCR(txq, txdw); 10933 } 10934 #endif 10935 if (txlimit > 0) { 10936 more |= wm_txeof(txq, txlimit); 10937 if (!IF_IS_EMPTY(&ifp->if_snd)) 10938 more = true; 10939 } else 10940 more = true; 10941 mutex_exit(txq->txq_lock); 10942 10943 mutex_enter(rxq->rxq_lock); 10944 10945 if (rxq->rxq_stopping) { 10946 mutex_exit(rxq->rxq_lock); 10947 return 1; 10948 } 10949 10950 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS) 10951 if (icr & (ICR_RXDMT0 | ICR_RXT0)) { 10952 DPRINTF(sc, WM_DEBUG_RX, 10953 ("%s: RX: got Rx intr %#" __PRIxBIT "\n", 10954 device_xname(sc->sc_dev), 10955 icr & (ICR_RXDMT0 | ICR_RXT0))); 10956 WM_Q_EVCNT_INCR(rxq, intr); 10957 } 10958 #endif 10959 if (rxlimit > 0) { 10960 /* 10961 * wm_rxeof() does *not* call upper layer functions directly, 10962 * as if_percpuq_enqueue() just call softint_schedule(). 10963 * So, we can call wm_rxeof() in interrupt context. 10964 */ 10965 more = wm_rxeof(rxq, rxlimit); 10966 } else 10967 more = true; 10968 10969 mutex_exit(rxq->rxq_lock); 10970 10971 mutex_enter(sc->sc_core_lock); 10972 10973 if (sc->sc_core_stopping) { 10974 mutex_exit(sc->sc_core_lock); 10975 return 1; 10976 } 10977 10978 if (icr & (ICR_LSC | ICR_RXSEQ)) { 10979 WM_EVCNT_INCR(&sc->sc_ev_linkintr); 10980 wm_linkintr(sc, icr); 10981 } 10982 if ((icr & ICR_GPI(0)) != 0) 10983 device_printf(sc->sc_dev, "got module interrupt\n"); 10984 10985 mutex_exit(sc->sc_core_lock); 10986 10987 if (icr & ICR_RXO) { 10988 #if defined(WM_DEBUG) 10989 log(LOG_WARNING, "%s: Receive overrun\n", 10990 device_xname(sc->sc_dev)); 10991 #endif /* defined(WM_DEBUG) */ 10992 } 10993 10994 rnd_add_uint32(&sc->rnd_source, rndval); 10995 10996 if (more) { 10997 /* Try to get more packets going. */ 10998 wm_legacy_intr_disable(sc); 10999 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue; 11000 wm_sched_handle_queue(sc, wmq); 11001 } 11002 11003 return 1; 11004 } 11005 11006 static inline void 11007 wm_txrxintr_disable(struct wm_queue *wmq) 11008 { 11009 struct wm_softc *sc = wmq->wmq_txq.txq_sc; 11010 11011 if (__predict_false(!wm_is_using_msix(sc))) { 11012 wm_legacy_intr_disable(sc); 11013 return; 11014 } 11015 11016 if (sc->sc_type == WM_T_82574) 11017 CSR_WRITE(sc, WMREG_IMC, 11018 ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id)); 11019 else if (sc->sc_type == WM_T_82575) 11020 CSR_WRITE(sc, WMREG_EIMC, 11021 EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id)); 11022 else 11023 CSR_WRITE(sc, WMREG_EIMC, 1 << wmq->wmq_intr_idx); 11024 } 11025 11026 static inline void 11027 wm_txrxintr_enable(struct wm_queue *wmq) 11028 { 11029 struct wm_softc *sc = wmq->wmq_txq.txq_sc; 11030 11031 wm_itrs_calculate(sc, wmq); 11032 11033 if (__predict_false(!wm_is_using_msix(sc))) { 11034 wm_legacy_intr_enable(sc); 11035 return; 11036 } 11037 11038 /* 11039 * ICR_OTHER which is disabled in wm_linkintr_msix() is enabled here. 11040 * There is no need to care about which of RXQ(0) and RXQ(1) enable 11041 * ICR_OTHER in first, because each RXQ/TXQ interrupt is disabled 11042 * while each wm_handle_queue(wmq) is runnig. 11043 */ 11044 if (sc->sc_type == WM_T_82574) 11045 CSR_WRITE(sc, WMREG_IMS, 11046 ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id) | ICR_OTHER); 11047 else if (sc->sc_type == WM_T_82575) 11048 CSR_WRITE(sc, WMREG_EIMS, 11049 EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id)); 11050 else 11051 CSR_WRITE(sc, WMREG_EIMS, 1 << wmq->wmq_intr_idx); 11052 } 11053 11054 static int 11055 wm_txrxintr_msix(void *arg) 11056 { 11057 struct wm_queue *wmq = arg; 11058 struct wm_txqueue *txq = &wmq->wmq_txq; 11059 struct wm_rxqueue *rxq = &wmq->wmq_rxq; 11060 struct wm_softc *sc = txq->txq_sc; 11061 u_int txlimit = sc->sc_tx_intr_process_limit; 11062 u_int rxlimit = sc->sc_rx_intr_process_limit; 11063 bool txmore; 11064 bool rxmore; 11065 11066 KASSERT(wmq->wmq_intr_idx == wmq->wmq_id); 11067 11068 DPRINTF(sc, WM_DEBUG_TX, 11069 ("%s: TX: got Tx intr\n", device_xname(sc->sc_dev))); 11070 11071 wm_txrxintr_disable(wmq); 11072 11073 mutex_enter(txq->txq_lock); 11074 11075 if (txq->txq_stopping) { 11076 mutex_exit(txq->txq_lock); 11077 return 1; 11078 } 11079 11080 WM_Q_EVCNT_INCR(txq, txdw); 11081 if (txlimit > 0) { 11082 txmore = wm_txeof(txq, txlimit); 11083 /* wm_deferred start() is done in wm_handle_queue(). */ 11084 } else 11085 txmore = true; 11086 mutex_exit(txq->txq_lock); 11087 11088 DPRINTF(sc, WM_DEBUG_RX, 11089 ("%s: RX: got Rx intr\n", device_xname(sc->sc_dev))); 11090 mutex_enter(rxq->rxq_lock); 11091 11092 if (rxq->rxq_stopping) { 11093 mutex_exit(rxq->rxq_lock); 11094 return 1; 11095 } 11096 11097 WM_Q_EVCNT_INCR(rxq, intr); 11098 if (rxlimit > 0) { 11099 rxmore = wm_rxeof(rxq, rxlimit); 11100 } else 11101 rxmore = true; 11102 mutex_exit(rxq->rxq_lock); 11103 11104 wm_itrs_writereg(sc, wmq); 11105 11106 if (txmore || rxmore) { 11107 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue; 11108 wm_sched_handle_queue(sc, wmq); 11109 } else 11110 wm_txrxintr_enable(wmq); 11111 11112 return 1; 11113 } 11114 11115 static void 11116 wm_handle_queue(void *arg) 11117 { 11118 struct wm_queue *wmq = arg; 11119 struct wm_txqueue *txq = &wmq->wmq_txq; 11120 struct wm_rxqueue *rxq = &wmq->wmq_rxq; 11121 struct wm_softc *sc = txq->txq_sc; 11122 u_int txlimit = sc->sc_tx_process_limit; 11123 u_int rxlimit = sc->sc_rx_process_limit; 11124 bool txmore; 11125 bool rxmore; 11126 11127 mutex_enter(txq->txq_lock); 11128 if (txq->txq_stopping) { 11129 mutex_exit(txq->txq_lock); 11130 return; 11131 } 11132 txmore = wm_txeof(txq, txlimit); 11133 wm_deferred_start_locked(txq); 11134 mutex_exit(txq->txq_lock); 11135 11136 mutex_enter(rxq->rxq_lock); 11137 if (rxq->rxq_stopping) { 11138 mutex_exit(rxq->rxq_lock); 11139 return; 11140 } 11141 WM_Q_EVCNT_INCR(rxq, defer); 11142 rxmore = wm_rxeof(rxq, rxlimit); 11143 mutex_exit(rxq->rxq_lock); 11144 11145 if (txmore || rxmore) { 11146 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue; 11147 wm_sched_handle_queue(sc, wmq); 11148 } else 11149 wm_txrxintr_enable(wmq); 11150 } 11151 11152 static void 11153 wm_handle_queue_work(struct work *wk, void *context) 11154 { 11155 struct wm_queue *wmq = container_of(wk, struct wm_queue, wmq_cookie); 11156 11157 /* 11158 * Some qemu environment workaround. They don't stop interrupt 11159 * immediately. 11160 */ 11161 wmq->wmq_wq_enqueued = false; 11162 wm_handle_queue(wmq); 11163 } 11164 11165 /* 11166 * wm_linkintr_msix: 11167 * 11168 * Interrupt service routine for link status change for MSI-X. 11169 */ 11170 static int 11171 wm_linkintr_msix(void *arg) 11172 { 11173 struct wm_softc *sc = arg; 11174 uint32_t reg; 11175 bool has_rxo; 11176 11177 reg = CSR_READ(sc, WMREG_ICR); 11178 mutex_enter(sc->sc_core_lock); 11179 DPRINTF(sc, WM_DEBUG_LINK, 11180 ("%s: LINK: got link intr. ICR = %08x\n", 11181 device_xname(sc->sc_dev), reg)); 11182 11183 if (sc->sc_core_stopping) 11184 goto out; 11185 11186 if ((reg & ICR_LSC) != 0) { 11187 WM_EVCNT_INCR(&sc->sc_ev_linkintr); 11188 wm_linkintr(sc, ICR_LSC); 11189 } 11190 if ((reg & ICR_GPI(0)) != 0) 11191 device_printf(sc->sc_dev, "got module interrupt\n"); 11192 11193 /* 11194 * XXX 82574 MSI-X mode workaround 11195 * 11196 * 82574 MSI-X mode causes a receive overrun(RXO) interrupt as an 11197 * ICR_OTHER MSI-X vector; furthermore it causes neither ICR_RXQ(0) 11198 * nor ICR_RXQ(1) vectors. So, we generate ICR_RXQ(0) and ICR_RXQ(1) 11199 * interrupts by writing WMREG_ICS to process receive packets. 11200 */ 11201 if (sc->sc_type == WM_T_82574 && ((reg & ICR_RXO) != 0)) { 11202 #if defined(WM_DEBUG) 11203 log(LOG_WARNING, "%s: Receive overrun\n", 11204 device_xname(sc->sc_dev)); 11205 #endif /* defined(WM_DEBUG) */ 11206 11207 has_rxo = true; 11208 /* 11209 * The RXO interrupt is very high rate when receive traffic is 11210 * high rate. We use polling mode for ICR_OTHER like Tx/Rx 11211 * interrupts. ICR_OTHER will be enabled at the end of 11212 * wm_txrxintr_msix() which is kicked by both ICR_RXQ(0) and 11213 * ICR_RXQ(1) interrupts. 11214 */ 11215 CSR_WRITE(sc, WMREG_IMC, ICR_OTHER); 11216 11217 CSR_WRITE(sc, WMREG_ICS, ICR_RXQ(0) | ICR_RXQ(1)); 11218 } 11219 11220 11221 11222 out: 11223 mutex_exit(sc->sc_core_lock); 11224 11225 if (sc->sc_type == WM_T_82574) { 11226 if (!has_rxo) 11227 CSR_WRITE(sc, WMREG_IMS, ICR_OTHER | ICR_LSC); 11228 else 11229 CSR_WRITE(sc, WMREG_IMS, ICR_LSC); 11230 } else if (sc->sc_type == WM_T_82575) 11231 CSR_WRITE(sc, WMREG_EIMS, EITR_OTHER); 11232 else 11233 CSR_WRITE(sc, WMREG_EIMS, 1 << sc->sc_link_intr_idx); 11234 11235 return 1; 11236 } 11237 11238 /* 11239 * Media related. 11240 * GMII, SGMII, TBI (and SERDES) 11241 */ 11242 11243 /* Common */ 11244 11245 /* 11246 * wm_tbi_serdes_set_linkled: 11247 * 11248 * Update the link LED on TBI and SERDES devices. 11249 */ 11250 static void 11251 wm_tbi_serdes_set_linkled(struct wm_softc *sc) 11252 { 11253 11254 if (sc->sc_tbi_linkup) 11255 sc->sc_ctrl |= CTRL_SWDPIN(0); 11256 else 11257 sc->sc_ctrl &= ~CTRL_SWDPIN(0); 11258 11259 /* 82540 or newer devices are active low */ 11260 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0; 11261 11262 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 11263 } 11264 11265 /* GMII related */ 11266 11267 /* 11268 * wm_gmii_reset: 11269 * 11270 * Reset the PHY. 11271 */ 11272 static void 11273 wm_gmii_reset(struct wm_softc *sc) 11274 { 11275 uint32_t reg; 11276 int rv; 11277 11278 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 11279 device_xname(sc->sc_dev), __func__)); 11280 11281 rv = sc->phy.acquire(sc); 11282 if (rv != 0) { 11283 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n", 11284 __func__); 11285 return; 11286 } 11287 11288 switch (sc->sc_type) { 11289 case WM_T_82542_2_0: 11290 case WM_T_82542_2_1: 11291 /* null */ 11292 break; 11293 case WM_T_82543: 11294 /* 11295 * With 82543, we need to force speed and duplex on the MAC 11296 * equal to what the PHY speed and duplex configuration is. 11297 * In addition, we need to perform a hardware reset on the PHY 11298 * to take it out of reset. 11299 */ 11300 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX; 11301 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 11302 11303 /* The PHY reset pin is active-low. */ 11304 reg = CSR_READ(sc, WMREG_CTRL_EXT); 11305 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) | 11306 CTRL_EXT_SWDPIN(4)); 11307 reg |= CTRL_EXT_SWDPIO(4); 11308 11309 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 11310 CSR_WRITE_FLUSH(sc); 11311 delay(10*1000); 11312 11313 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4)); 11314 CSR_WRITE_FLUSH(sc); 11315 delay(150); 11316 #if 0 11317 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4); 11318 #endif 11319 delay(20*1000); /* XXX extra delay to get PHY ID? */ 11320 break; 11321 case WM_T_82544: /* Reset 10000us */ 11322 case WM_T_82540: 11323 case WM_T_82545: 11324 case WM_T_82545_3: 11325 case WM_T_82546: 11326 case WM_T_82546_3: 11327 case WM_T_82541: 11328 case WM_T_82541_2: 11329 case WM_T_82547: 11330 case WM_T_82547_2: 11331 case WM_T_82571: /* Reset 100us */ 11332 case WM_T_82572: 11333 case WM_T_82573: 11334 case WM_T_82574: 11335 case WM_T_82575: 11336 case WM_T_82576: 11337 case WM_T_82580: 11338 case WM_T_I350: 11339 case WM_T_I354: 11340 case WM_T_I210: 11341 case WM_T_I211: 11342 case WM_T_82583: 11343 case WM_T_80003: 11344 /* Generic reset */ 11345 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET); 11346 CSR_WRITE_FLUSH(sc); 11347 delay(20000); 11348 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 11349 CSR_WRITE_FLUSH(sc); 11350 delay(20000); 11351 11352 if ((sc->sc_type == WM_T_82541) 11353 || (sc->sc_type == WM_T_82541_2) 11354 || (sc->sc_type == WM_T_82547) 11355 || (sc->sc_type == WM_T_82547_2)) { 11356 /* Workaround for igp are done in igp_reset() */ 11357 /* XXX add code to set LED after phy reset */ 11358 } 11359 break; 11360 case WM_T_ICH8: 11361 case WM_T_ICH9: 11362 case WM_T_ICH10: 11363 case WM_T_PCH: 11364 case WM_T_PCH2: 11365 case WM_T_PCH_LPT: 11366 case WM_T_PCH_SPT: 11367 case WM_T_PCH_CNP: 11368 case WM_T_PCH_TGP: 11369 /* Generic reset */ 11370 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET); 11371 CSR_WRITE_FLUSH(sc); 11372 delay(100); 11373 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 11374 CSR_WRITE_FLUSH(sc); 11375 delay(150); 11376 break; 11377 default: 11378 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev), 11379 __func__); 11380 break; 11381 } 11382 11383 sc->phy.release(sc); 11384 11385 /* get_cfg_done */ 11386 wm_get_cfg_done(sc); 11387 11388 /* Extra setup */ 11389 switch (sc->sc_type) { 11390 case WM_T_82542_2_0: 11391 case WM_T_82542_2_1: 11392 case WM_T_82543: 11393 case WM_T_82544: 11394 case WM_T_82540: 11395 case WM_T_82545: 11396 case WM_T_82545_3: 11397 case WM_T_82546: 11398 case WM_T_82546_3: 11399 case WM_T_82541_2: 11400 case WM_T_82547_2: 11401 case WM_T_82571: 11402 case WM_T_82572: 11403 case WM_T_82573: 11404 case WM_T_82574: 11405 case WM_T_82583: 11406 case WM_T_82575: 11407 case WM_T_82576: 11408 case WM_T_82580: 11409 case WM_T_I350: 11410 case WM_T_I354: 11411 case WM_T_I210: 11412 case WM_T_I211: 11413 case WM_T_80003: 11414 /* Null */ 11415 break; 11416 case WM_T_82541: 11417 case WM_T_82547: 11418 /* XXX Configure actively LED after PHY reset */ 11419 break; 11420 case WM_T_ICH8: 11421 case WM_T_ICH9: 11422 case WM_T_ICH10: 11423 case WM_T_PCH: 11424 case WM_T_PCH2: 11425 case WM_T_PCH_LPT: 11426 case WM_T_PCH_SPT: 11427 case WM_T_PCH_CNP: 11428 case WM_T_PCH_TGP: 11429 wm_phy_post_reset(sc); 11430 break; 11431 default: 11432 panic("%s: unknown type\n", __func__); 11433 break; 11434 } 11435 } 11436 11437 /* 11438 * Set up sc_phytype and mii_{read|write}reg. 11439 * 11440 * To identify PHY type, correct read/write function should be selected. 11441 * To select correct read/write function, PCI ID or MAC type are required 11442 * without accessing PHY registers. 11443 * 11444 * On the first call of this function, PHY ID is not known yet. Check 11445 * PCI ID or MAC type. The list of the PCI ID may not be perfect, so the 11446 * result might be incorrect. 11447 * 11448 * In the second call, PHY OUI and model is used to identify PHY type. 11449 * It might not be perfect because of the lack of compared entry, but it 11450 * would be better than the first call. 11451 * 11452 * If the detected new result and previous assumption is different, 11453 * a diagnostic message will be printed. 11454 */ 11455 static void 11456 wm_gmii_setup_phytype(struct wm_softc *sc, uint32_t phy_oui, 11457 uint16_t phy_model) 11458 { 11459 device_t dev = sc->sc_dev; 11460 struct mii_data *mii = &sc->sc_mii; 11461 uint16_t new_phytype = WMPHY_UNKNOWN; 11462 uint16_t doubt_phytype = WMPHY_UNKNOWN; 11463 mii_readreg_t new_readreg; 11464 mii_writereg_t new_writereg; 11465 bool dodiag = true; 11466 11467 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 11468 device_xname(sc->sc_dev), __func__)); 11469 11470 /* 11471 * 1000BASE-T SFP uses SGMII and the first asumed PHY type is always 11472 * incorrect. So don't print diag output when it's 2nd call. 11473 */ 11474 if ((sc->sc_sfptype != 0) && (phy_oui == 0) && (phy_model == 0)) 11475 dodiag = false; 11476 11477 if (mii->mii_readreg == NULL) { 11478 /* 11479 * This is the first call of this function. For ICH and PCH 11480 * variants, it's difficult to determine the PHY access method 11481 * by sc_type, so use the PCI product ID for some devices. 11482 */ 11483 11484 switch (sc->sc_pcidevid) { 11485 case PCI_PRODUCT_INTEL_PCH_M_LM: 11486 case PCI_PRODUCT_INTEL_PCH_M_LC: 11487 /* 82577 */ 11488 new_phytype = WMPHY_82577; 11489 break; 11490 case PCI_PRODUCT_INTEL_PCH_D_DM: 11491 case PCI_PRODUCT_INTEL_PCH_D_DC: 11492 /* 82578 */ 11493 new_phytype = WMPHY_82578; 11494 break; 11495 case PCI_PRODUCT_INTEL_PCH2_LV_LM: 11496 case PCI_PRODUCT_INTEL_PCH2_LV_V: 11497 /* 82579 */ 11498 new_phytype = WMPHY_82579; 11499 break; 11500 case PCI_PRODUCT_INTEL_82801H_82567V_3: 11501 case PCI_PRODUCT_INTEL_82801I_BM: 11502 case PCI_PRODUCT_INTEL_82801I_IGP_M_AMT: /* Not IGP but BM */ 11503 case PCI_PRODUCT_INTEL_82801J_R_BM_LM: 11504 case PCI_PRODUCT_INTEL_82801J_R_BM_LF: 11505 case PCI_PRODUCT_INTEL_82801J_D_BM_LM: 11506 case PCI_PRODUCT_INTEL_82801J_D_BM_LF: 11507 case PCI_PRODUCT_INTEL_82801J_R_BM_V: 11508 /* ICH8, 9, 10 with 82567 */ 11509 new_phytype = WMPHY_BM; 11510 break; 11511 default: 11512 break; 11513 } 11514 } else { 11515 /* It's not the first call. Use PHY OUI and model */ 11516 switch (phy_oui) { 11517 case MII_OUI_ATTANSIC: /* atphy(4) */ 11518 switch (phy_model) { 11519 case MII_MODEL_ATTANSIC_AR8021: 11520 new_phytype = WMPHY_82578; 11521 break; 11522 default: 11523 break; 11524 } 11525 break; 11526 case MII_OUI_xxMARVELL: 11527 switch (phy_model) { 11528 case MII_MODEL_xxMARVELL_I210: 11529 new_phytype = WMPHY_I210; 11530 break; 11531 case MII_MODEL_xxMARVELL_E1011: 11532 case MII_MODEL_xxMARVELL_E1000_3: 11533 case MII_MODEL_xxMARVELL_E1000_5: 11534 case MII_MODEL_xxMARVELL_E1112: 11535 new_phytype = WMPHY_M88; 11536 break; 11537 case MII_MODEL_xxMARVELL_E1149: 11538 new_phytype = WMPHY_BM; 11539 break; 11540 case MII_MODEL_xxMARVELL_E1111: 11541 case MII_MODEL_xxMARVELL_I347: 11542 case MII_MODEL_xxMARVELL_E1512: 11543 case MII_MODEL_xxMARVELL_E1340M: 11544 case MII_MODEL_xxMARVELL_E1543: 11545 new_phytype = WMPHY_M88; 11546 break; 11547 case MII_MODEL_xxMARVELL_I82563: 11548 new_phytype = WMPHY_GG82563; 11549 break; 11550 default: 11551 break; 11552 } 11553 break; 11554 case MII_OUI_INTEL: 11555 switch (phy_model) { 11556 case MII_MODEL_INTEL_I82577: 11557 new_phytype = WMPHY_82577; 11558 break; 11559 case MII_MODEL_INTEL_I82579: 11560 new_phytype = WMPHY_82579; 11561 break; 11562 case MII_MODEL_INTEL_I217: 11563 new_phytype = WMPHY_I217; 11564 break; 11565 case MII_MODEL_INTEL_I82580: 11566 new_phytype = WMPHY_82580; 11567 break; 11568 case MII_MODEL_INTEL_I350: 11569 new_phytype = WMPHY_I350; 11570 break; 11571 default: 11572 break; 11573 } 11574 break; 11575 case MII_OUI_yyINTEL: 11576 switch (phy_model) { 11577 case MII_MODEL_yyINTEL_I82562G: 11578 case MII_MODEL_yyINTEL_I82562EM: 11579 case MII_MODEL_yyINTEL_I82562ET: 11580 new_phytype = WMPHY_IFE; 11581 break; 11582 case MII_MODEL_yyINTEL_IGP01E1000: 11583 new_phytype = WMPHY_IGP; 11584 break; 11585 case MII_MODEL_yyINTEL_I82566: 11586 new_phytype = WMPHY_IGP_3; 11587 break; 11588 default: 11589 break; 11590 } 11591 break; 11592 default: 11593 break; 11594 } 11595 11596 if (dodiag) { 11597 if (new_phytype == WMPHY_UNKNOWN) 11598 aprint_verbose_dev(dev, 11599 "%s: Unknown PHY model. OUI=%06x, " 11600 "model=%04x\n", __func__, phy_oui, 11601 phy_model); 11602 11603 if ((sc->sc_phytype != WMPHY_UNKNOWN) 11604 && (sc->sc_phytype != new_phytype)) { 11605 aprint_error_dev(dev, "Previously assumed PHY " 11606 "type(%u) was incorrect. PHY type from PHY" 11607 "ID = %u\n", sc->sc_phytype, new_phytype); 11608 } 11609 } 11610 } 11611 11612 /* Next, use sc->sc_flags and sc->sc_type to set read/write funcs. */ 11613 if (((sc->sc_flags & WM_F_SGMII) != 0) && !wm_sgmii_uses_mdio(sc)) { 11614 /* SGMII */ 11615 new_readreg = wm_sgmii_readreg; 11616 new_writereg = wm_sgmii_writereg; 11617 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){ 11618 /* BM2 (phyaddr == 1) */ 11619 if ((sc->sc_phytype != WMPHY_UNKNOWN) 11620 && (new_phytype != WMPHY_BM) 11621 && (new_phytype != WMPHY_UNKNOWN)) 11622 doubt_phytype = new_phytype; 11623 new_phytype = WMPHY_BM; 11624 new_readreg = wm_gmii_bm_readreg; 11625 new_writereg = wm_gmii_bm_writereg; 11626 } else if (sc->sc_type >= WM_T_PCH) { 11627 /* All PCH* use _hv_ */ 11628 new_readreg = wm_gmii_hv_readreg; 11629 new_writereg = wm_gmii_hv_writereg; 11630 } else if (sc->sc_type >= WM_T_ICH8) { 11631 /* non-82567 ICH8, 9 and 10 */ 11632 new_readreg = wm_gmii_i82544_readreg; 11633 new_writereg = wm_gmii_i82544_writereg; 11634 } else if (sc->sc_type >= WM_T_80003) { 11635 /* 80003 */ 11636 if ((sc->sc_phytype != WMPHY_UNKNOWN) 11637 && (new_phytype != WMPHY_GG82563) 11638 && (new_phytype != WMPHY_UNKNOWN)) 11639 doubt_phytype = new_phytype; 11640 new_phytype = WMPHY_GG82563; 11641 new_readreg = wm_gmii_i80003_readreg; 11642 new_writereg = wm_gmii_i80003_writereg; 11643 } else if (sc->sc_type >= WM_T_I210) { 11644 /* I210 and I211 */ 11645 if ((sc->sc_phytype != WMPHY_UNKNOWN) 11646 && (new_phytype != WMPHY_I210) 11647 && (new_phytype != WMPHY_UNKNOWN)) 11648 doubt_phytype = new_phytype; 11649 new_phytype = WMPHY_I210; 11650 new_readreg = wm_gmii_gs40g_readreg; 11651 new_writereg = wm_gmii_gs40g_writereg; 11652 } else if (sc->sc_type >= WM_T_82580) { 11653 /* 82580, I350 and I354 */ 11654 new_readreg = wm_gmii_82580_readreg; 11655 new_writereg = wm_gmii_82580_writereg; 11656 } else if (sc->sc_type >= WM_T_82544) { 11657 /* 82544, 0, [56], [17], 8257[1234] and 82583 */ 11658 new_readreg = wm_gmii_i82544_readreg; 11659 new_writereg = wm_gmii_i82544_writereg; 11660 } else { 11661 new_readreg = wm_gmii_i82543_readreg; 11662 new_writereg = wm_gmii_i82543_writereg; 11663 } 11664 11665 if (new_phytype == WMPHY_BM) { 11666 /* All BM use _bm_ */ 11667 new_readreg = wm_gmii_bm_readreg; 11668 new_writereg = wm_gmii_bm_writereg; 11669 } 11670 if ((sc->sc_type >= WM_T_PCH) && (sc->sc_type <= WM_T_PCH_TGP)) { 11671 /* All PCH* use _hv_ */ 11672 new_readreg = wm_gmii_hv_readreg; 11673 new_writereg = wm_gmii_hv_writereg; 11674 } 11675 11676 /* Diag output */ 11677 if (dodiag) { 11678 if (doubt_phytype != WMPHY_UNKNOWN) 11679 aprint_error_dev(dev, "Assumed new PHY type was " 11680 "incorrect. old = %u, new = %u\n", sc->sc_phytype, 11681 new_phytype); 11682 else if ((sc->sc_phytype != WMPHY_UNKNOWN) 11683 && (sc->sc_phytype != new_phytype)) 11684 aprint_error_dev(dev, "Previously assumed PHY type(%u)" 11685 "was incorrect. New PHY type = %u\n", 11686 sc->sc_phytype, new_phytype); 11687 11688 if ((mii->mii_readreg != NULL) && 11689 (new_phytype == WMPHY_UNKNOWN)) 11690 aprint_error_dev(dev, "PHY type is still unknown.\n"); 11691 11692 if ((mii->mii_readreg != NULL) && 11693 (mii->mii_readreg != new_readreg)) 11694 aprint_error_dev(dev, "Previously assumed PHY " 11695 "read/write function was incorrect.\n"); 11696 } 11697 11698 /* Update now */ 11699 sc->sc_phytype = new_phytype; 11700 mii->mii_readreg = new_readreg; 11701 mii->mii_writereg = new_writereg; 11702 if (new_readreg == wm_gmii_hv_readreg) { 11703 sc->phy.readreg_locked = wm_gmii_hv_readreg_locked; 11704 sc->phy.writereg_locked = wm_gmii_hv_writereg_locked; 11705 } else if (new_readreg == wm_sgmii_readreg) { 11706 sc->phy.readreg_locked = wm_sgmii_readreg_locked; 11707 sc->phy.writereg_locked = wm_sgmii_writereg_locked; 11708 } else if (new_readreg == wm_gmii_i82544_readreg) { 11709 sc->phy.readreg_locked = wm_gmii_i82544_readreg_locked; 11710 sc->phy.writereg_locked = wm_gmii_i82544_writereg_locked; 11711 } 11712 } 11713 11714 /* 11715 * wm_get_phy_id_82575: 11716 * 11717 * Return PHY ID. Return -1 if it failed. 11718 */ 11719 static int 11720 wm_get_phy_id_82575(struct wm_softc *sc) 11721 { 11722 uint32_t reg; 11723 int phyid = -1; 11724 11725 /* XXX */ 11726 if ((sc->sc_flags & WM_F_SGMII) == 0) 11727 return -1; 11728 11729 if (wm_sgmii_uses_mdio(sc)) { 11730 switch (sc->sc_type) { 11731 case WM_T_82575: 11732 case WM_T_82576: 11733 reg = CSR_READ(sc, WMREG_MDIC); 11734 phyid = (reg & MDIC_PHY_MASK) >> MDIC_PHY_SHIFT; 11735 break; 11736 case WM_T_82580: 11737 case WM_T_I350: 11738 case WM_T_I354: 11739 case WM_T_I210: 11740 case WM_T_I211: 11741 reg = CSR_READ(sc, WMREG_MDICNFG); 11742 phyid = (reg & MDICNFG_PHY_MASK) >> MDICNFG_PHY_SHIFT; 11743 break; 11744 default: 11745 return -1; 11746 } 11747 } 11748 11749 return phyid; 11750 } 11751 11752 /* 11753 * wm_gmii_mediainit: 11754 * 11755 * Initialize media for use on 1000BASE-T devices. 11756 */ 11757 static void 11758 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid) 11759 { 11760 device_t dev = sc->sc_dev; 11761 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 11762 struct mii_data *mii = &sc->sc_mii; 11763 11764 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n", 11765 device_xname(sc->sc_dev), __func__)); 11766 11767 /* We have GMII. */ 11768 sc->sc_flags |= WM_F_HAS_MII; 11769 11770 if (sc->sc_type == WM_T_80003) 11771 sc->sc_tipg = TIPG_1000T_80003_DFLT; 11772 else 11773 sc->sc_tipg = TIPG_1000T_DFLT; 11774 11775 /* 11776 * Let the chip set speed/duplex on its own based on 11777 * signals from the PHY. 11778 * XXXbouyer - I'm not sure this is right for the 80003, 11779 * the em driver only sets CTRL_SLU here - but it seems to work. 11780 */ 11781 sc->sc_ctrl |= CTRL_SLU; 11782 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 11783 11784 /* Initialize our media structures and probe the GMII. */ 11785 mii->mii_ifp = ifp; 11786 11787 mii->mii_statchg = wm_gmii_statchg; 11788 11789 /* get PHY control from SMBus to PCIe */ 11790 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2) 11791 || (sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT) 11792 || (sc->sc_type == WM_T_PCH_CNP) || (sc->sc_type == WM_T_PCH_TGP)) 11793 wm_init_phy_workarounds_pchlan(sc); 11794 11795 wm_gmii_reset(sc); 11796 11797 sc->sc_ethercom.ec_mii = &sc->sc_mii; 11798 ifmedia_init_with_lock(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange, 11799 wm_gmii_mediastatus, sc->sc_core_lock); 11800 11801 /* Setup internal SGMII PHY for SFP */ 11802 wm_sgmii_sfp_preconfig(sc); 11803 11804 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576) 11805 || (sc->sc_type == WM_T_82580) 11806 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354) 11807 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) { 11808 if ((sc->sc_flags & WM_F_SGMII) == 0) { 11809 /* Attach only one port */ 11810 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1, 11811 MII_OFFSET_ANY, MIIF_DOPAUSE); 11812 } else { 11813 int i, id; 11814 uint32_t ctrl_ext; 11815 11816 id = wm_get_phy_id_82575(sc); 11817 if (id != -1) { 11818 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 11819 id, MII_OFFSET_ANY, MIIF_DOPAUSE); 11820 } 11821 if ((id == -1) 11822 || (LIST_FIRST(&mii->mii_phys) == NULL)) { 11823 /* Power on sgmii phy if it is disabled */ 11824 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT); 11825 CSR_WRITE(sc, WMREG_CTRL_EXT, 11826 ctrl_ext &~ CTRL_EXT_SWDPIN(3)); 11827 CSR_WRITE_FLUSH(sc); 11828 delay(300*1000); /* XXX too long */ 11829 11830 /* 11831 * From 1 to 8. 11832 * 11833 * I2C access fails with I2C register's ERROR 11834 * bit set, so prevent error message while 11835 * scanning. 11836 */ 11837 sc->phy.no_errprint = true; 11838 for (i = 1; i < 8; i++) 11839 mii_attach(sc->sc_dev, &sc->sc_mii, 11840 0xffffffff, i, MII_OFFSET_ANY, 11841 MIIF_DOPAUSE); 11842 sc->phy.no_errprint = false; 11843 11844 /* Restore previous sfp cage power state */ 11845 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext); 11846 } 11847 } 11848 } else 11849 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 11850 MII_OFFSET_ANY, MIIF_DOPAUSE); 11851 11852 /* 11853 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call 11854 * wm_set_mdio_slow_mode_hv() for a workaround and retry. 11855 */ 11856 if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) || 11857 (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP) 11858 || (sc->sc_type == WM_T_PCH_TGP)) 11859 && (LIST_FIRST(&mii->mii_phys) == NULL)) { 11860 wm_set_mdio_slow_mode_hv(sc); 11861 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 11862 MII_OFFSET_ANY, MIIF_DOPAUSE); 11863 } 11864 11865 /* 11866 * (For ICH8 variants) 11867 * If PHY detection failed, use BM's r/w function and retry. 11868 */ 11869 if (LIST_FIRST(&mii->mii_phys) == NULL) { 11870 /* if failed, retry with *_bm_* */ 11871 aprint_verbose_dev(dev, "Assumed PHY access function " 11872 "(type = %d) might be incorrect. Use BM and retry.\n", 11873 sc->sc_phytype); 11874 sc->sc_phytype = WMPHY_BM; 11875 mii->mii_readreg = wm_gmii_bm_readreg; 11876 mii->mii_writereg = wm_gmii_bm_writereg; 11877 11878 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 11879 MII_OFFSET_ANY, MIIF_DOPAUSE); 11880 } 11881 11882 if (LIST_FIRST(&mii->mii_phys) == NULL) { 11883 /* Any PHY wasn't found */ 11884 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 11885 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 11886 sc->sc_phytype = WMPHY_NONE; 11887 } else { 11888 struct mii_softc *child = LIST_FIRST(&mii->mii_phys); 11889 11890 /* 11891 * PHY found! Check PHY type again by the second call of 11892 * wm_gmii_setup_phytype. 11893 */ 11894 wm_gmii_setup_phytype(sc, child->mii_mpd_oui, 11895 child->mii_mpd_model); 11896 11897 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 11898 } 11899 } 11900 11901 /* 11902 * wm_gmii_mediachange: [ifmedia interface function] 11903 * 11904 * Set hardware to newly-selected media on a 1000BASE-T device. 11905 */ 11906 static int 11907 wm_gmii_mediachange(struct ifnet *ifp) 11908 { 11909 struct wm_softc *sc = ifp->if_softc; 11910 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 11911 uint32_t reg; 11912 int rc; 11913 11914 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n", 11915 device_xname(sc->sc_dev), __func__)); 11916 11917 KASSERT(mutex_owned(sc->sc_core_lock)); 11918 11919 if ((sc->sc_if_flags & IFF_UP) == 0) 11920 return 0; 11921 11922 /* XXX Not for I354? FreeBSD's e1000_82575.c doesn't include it */ 11923 if ((sc->sc_type == WM_T_82580) 11924 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210) 11925 || (sc->sc_type == WM_T_I211)) { 11926 reg = CSR_READ(sc, WMREG_PHPM); 11927 reg &= ~PHPM_GO_LINK_D; 11928 CSR_WRITE(sc, WMREG_PHPM, reg); 11929 } 11930 11931 /* Disable D0 LPLU. */ 11932 wm_lplu_d0_disable(sc); 11933 11934 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD); 11935 sc->sc_ctrl |= CTRL_SLU; 11936 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) 11937 || (sc->sc_type > WM_T_82543)) { 11938 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX); 11939 } else { 11940 sc->sc_ctrl &= ~CTRL_ASDE; 11941 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX; 11942 if (ife->ifm_media & IFM_FDX) 11943 sc->sc_ctrl |= CTRL_FD; 11944 switch (IFM_SUBTYPE(ife->ifm_media)) { 11945 case IFM_10_T: 11946 sc->sc_ctrl |= CTRL_SPEED_10; 11947 break; 11948 case IFM_100_TX: 11949 sc->sc_ctrl |= CTRL_SPEED_100; 11950 break; 11951 case IFM_1000_T: 11952 sc->sc_ctrl |= CTRL_SPEED_1000; 11953 break; 11954 case IFM_NONE: 11955 /* There is no specific setting for IFM_NONE */ 11956 break; 11957 default: 11958 panic("wm_gmii_mediachange: bad media 0x%x", 11959 ife->ifm_media); 11960 } 11961 } 11962 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 11963 CSR_WRITE_FLUSH(sc); 11964 11965 if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)) 11966 wm_serdes_mediachange(ifp); 11967 11968 if (sc->sc_type <= WM_T_82543) 11969 wm_gmii_reset(sc); 11970 else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211) 11971 && ((sc->sc_flags & WM_F_SGMII) != 0)) { 11972 /* allow time for SFP cage time to power up phy */ 11973 delay(300 * 1000); 11974 wm_gmii_reset(sc); 11975 } 11976 11977 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO) 11978 return 0; 11979 return rc; 11980 } 11981 11982 /* 11983 * wm_gmii_mediastatus: [ifmedia interface function] 11984 * 11985 * Get the current interface media status on a 1000BASE-T device. 11986 */ 11987 static void 11988 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 11989 { 11990 struct wm_softc *sc = ifp->if_softc; 11991 struct ethercom *ec = &sc->sc_ethercom; 11992 struct mii_data *mii; 11993 bool dopoll = true; 11994 11995 /* 11996 * In normal drivers, ether_mediastatus() is called here. 11997 * To avoid calling mii_pollstat(), ether_mediastatus() is open coded. 11998 */ 11999 KASSERT(mutex_owned(sc->sc_core_lock)); 12000 KASSERT(ec->ec_mii != NULL); 12001 KASSERT(mii_locked(ec->ec_mii)); 12002 12003 mii = ec->ec_mii; 12004 if ((sc->sc_flags & WM_F_DELAY_LINKUP) != 0) { 12005 struct timeval now; 12006 12007 getmicrotime(&now); 12008 if (timercmp(&now, &sc->sc_linkup_delay_time, <)) 12009 dopoll = false; 12010 else if (sc->sc_linkup_delay_time.tv_sec != 0) { 12011 /* Simplify by checking tv_sec only. It's enough. */ 12012 12013 sc->sc_linkup_delay_time.tv_sec = 0; 12014 sc->sc_linkup_delay_time.tv_usec = 0; 12015 } 12016 } 12017 12018 /* 12019 * Don't call mii_pollstat() while doing workaround. 12020 * See also wm_linkintr_gmii() and wm_tick(). 12021 */ 12022 if (dopoll) 12023 mii_pollstat(mii); 12024 ifmr->ifm_active = mii->mii_media_active; 12025 ifmr->ifm_status = mii->mii_media_status; 12026 12027 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) 12028 | sc->sc_flowflags; 12029 } 12030 12031 #define MDI_IO CTRL_SWDPIN(2) 12032 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */ 12033 #define MDI_CLK CTRL_SWDPIN(3) 12034 12035 static void 12036 wm_i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits) 12037 { 12038 uint32_t i, v; 12039 12040 v = CSR_READ(sc, WMREG_CTRL); 12041 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT)); 12042 v |= MDI_DIR | CTRL_SWDPIO(3); 12043 12044 for (i = __BIT(nbits - 1); i != 0; i >>= 1) { 12045 if (data & i) 12046 v |= MDI_IO; 12047 else 12048 v &= ~MDI_IO; 12049 CSR_WRITE(sc, WMREG_CTRL, v); 12050 CSR_WRITE_FLUSH(sc); 12051 delay(10); 12052 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 12053 CSR_WRITE_FLUSH(sc); 12054 delay(10); 12055 CSR_WRITE(sc, WMREG_CTRL, v); 12056 CSR_WRITE_FLUSH(sc); 12057 delay(10); 12058 } 12059 } 12060 12061 static uint16_t 12062 wm_i82543_mii_recvbits(struct wm_softc *sc) 12063 { 12064 uint32_t v, i; 12065 uint16_t data = 0; 12066 12067 v = CSR_READ(sc, WMREG_CTRL); 12068 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT)); 12069 v |= CTRL_SWDPIO(3); 12070 12071 CSR_WRITE(sc, WMREG_CTRL, v); 12072 CSR_WRITE_FLUSH(sc); 12073 delay(10); 12074 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 12075 CSR_WRITE_FLUSH(sc); 12076 delay(10); 12077 CSR_WRITE(sc, WMREG_CTRL, v); 12078 CSR_WRITE_FLUSH(sc); 12079 delay(10); 12080 12081 for (i = 0; i < 16; i++) { 12082 data <<= 1; 12083 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 12084 CSR_WRITE_FLUSH(sc); 12085 delay(10); 12086 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO) 12087 data |= 1; 12088 CSR_WRITE(sc, WMREG_CTRL, v); 12089 CSR_WRITE_FLUSH(sc); 12090 delay(10); 12091 } 12092 12093 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK); 12094 CSR_WRITE_FLUSH(sc); 12095 delay(10); 12096 CSR_WRITE(sc, WMREG_CTRL, v); 12097 CSR_WRITE_FLUSH(sc); 12098 delay(10); 12099 12100 return data; 12101 } 12102 12103 #undef MDI_IO 12104 #undef MDI_DIR 12105 #undef MDI_CLK 12106 12107 /* 12108 * wm_gmii_i82543_readreg: [mii interface function] 12109 * 12110 * Read a PHY register on the GMII (i82543 version). 12111 */ 12112 static int 12113 wm_gmii_i82543_readreg(device_t dev, int phy, int reg, uint16_t *val) 12114 { 12115 struct wm_softc *sc = device_private(dev); 12116 12117 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32); 12118 wm_i82543_mii_sendbits(sc, reg | (phy << 5) | 12119 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14); 12120 *val = wm_i82543_mii_recvbits(sc) & 0xffff; 12121 12122 DPRINTF(sc, WM_DEBUG_GMII, 12123 ("%s: GMII: read phy %d reg %d -> 0x%04hx\n", 12124 device_xname(dev), phy, reg, *val)); 12125 12126 return 0; 12127 } 12128 12129 /* 12130 * wm_gmii_i82543_writereg: [mii interface function] 12131 * 12132 * Write a PHY register on the GMII (i82543 version). 12133 */ 12134 static int 12135 wm_gmii_i82543_writereg(device_t dev, int phy, int reg, uint16_t val) 12136 { 12137 struct wm_softc *sc = device_private(dev); 12138 12139 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32); 12140 wm_i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) | 12141 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) | 12142 (MII_COMMAND_START << 30), 32); 12143 12144 return 0; 12145 } 12146 12147 /* 12148 * wm_gmii_mdic_readreg: [mii interface function] 12149 * 12150 * Read a PHY register on the GMII. 12151 */ 12152 static int 12153 wm_gmii_mdic_readreg(device_t dev, int phy, int reg, uint16_t *val) 12154 { 12155 struct wm_softc *sc = device_private(dev); 12156 uint32_t mdic = 0; 12157 int i; 12158 12159 if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217) 12160 && (reg > MII_ADDRMASK)) { 12161 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n", 12162 __func__, sc->sc_phytype, reg); 12163 reg &= MII_ADDRMASK; 12164 } 12165 12166 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) | 12167 MDIC_REGADD(reg)); 12168 12169 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) { 12170 delay(50); 12171 mdic = CSR_READ(sc, WMREG_MDIC); 12172 if (mdic & MDIC_READY) 12173 break; 12174 } 12175 12176 if ((mdic & MDIC_READY) == 0) { 12177 DPRINTF(sc, WM_DEBUG_GMII, 12178 ("%s: MDIC read timed out: phy %d reg %d\n", 12179 device_xname(dev), phy, reg)); 12180 return ETIMEDOUT; 12181 } else if (mdic & MDIC_E) { 12182 /* This is normal if no PHY is present. */ 12183 DPRINTF(sc, WM_DEBUG_GMII, 12184 ("%s: MDIC read error: phy %d reg %d\n", 12185 device_xname(sc->sc_dev), phy, reg)); 12186 return -1; 12187 } else 12188 *val = MDIC_DATA(mdic); 12189 12190 /* 12191 * Allow some time after each MDIC transaction to avoid 12192 * reading duplicate data in the next MDIC transaction. 12193 */ 12194 if (sc->sc_type == WM_T_PCH2) 12195 delay(100); 12196 12197 return 0; 12198 } 12199 12200 /* 12201 * wm_gmii_mdic_writereg: [mii interface function] 12202 * 12203 * Write a PHY register on the GMII. 12204 */ 12205 static int 12206 wm_gmii_mdic_writereg(device_t dev, int phy, int reg, uint16_t val) 12207 { 12208 struct wm_softc *sc = device_private(dev); 12209 uint32_t mdic = 0; 12210 int i; 12211 12212 if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217) 12213 && (reg > MII_ADDRMASK)) { 12214 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n", 12215 __func__, sc->sc_phytype, reg); 12216 reg &= MII_ADDRMASK; 12217 } 12218 12219 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) | 12220 MDIC_REGADD(reg) | MDIC_DATA(val)); 12221 12222 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) { 12223 delay(50); 12224 mdic = CSR_READ(sc, WMREG_MDIC); 12225 if (mdic & MDIC_READY) 12226 break; 12227 } 12228 12229 if ((mdic & MDIC_READY) == 0) { 12230 DPRINTF(sc, WM_DEBUG_GMII, 12231 ("%s: MDIC write timed out: phy %d reg %d\n", 12232 device_xname(dev), phy, reg)); 12233 return ETIMEDOUT; 12234 } else if (mdic & MDIC_E) { 12235 DPRINTF(sc, WM_DEBUG_GMII, 12236 ("%s: MDIC write error: phy %d reg %d\n", 12237 device_xname(dev), phy, reg)); 12238 return -1; 12239 } 12240 12241 /* 12242 * Allow some time after each MDIC transaction to avoid 12243 * reading duplicate data in the next MDIC transaction. 12244 */ 12245 if (sc->sc_type == WM_T_PCH2) 12246 delay(100); 12247 12248 return 0; 12249 } 12250 12251 /* 12252 * wm_gmii_i82544_readreg: [mii interface function] 12253 * 12254 * Read a PHY register on the GMII. 12255 */ 12256 static int 12257 wm_gmii_i82544_readreg(device_t dev, int phy, int reg, uint16_t *val) 12258 { 12259 struct wm_softc *sc = device_private(dev); 12260 int rv; 12261 12262 rv = sc->phy.acquire(sc); 12263 if (rv != 0) { 12264 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12265 return rv; 12266 } 12267 12268 rv = wm_gmii_i82544_readreg_locked(dev, phy, reg, val); 12269 12270 sc->phy.release(sc); 12271 12272 return rv; 12273 } 12274 12275 static int 12276 wm_gmii_i82544_readreg_locked(device_t dev, int phy, int reg, uint16_t *val) 12277 { 12278 struct wm_softc *sc = device_private(dev); 12279 int rv; 12280 12281 switch (sc->sc_phytype) { 12282 case WMPHY_IGP: 12283 case WMPHY_IGP_2: 12284 case WMPHY_IGP_3: 12285 if (reg > BME1000_MAX_MULTI_PAGE_REG) { 12286 rv = wm_gmii_mdic_writereg(dev, phy, 12287 IGPHY_PAGE_SELECT, reg); 12288 if (rv != 0) 12289 return rv; 12290 } 12291 break; 12292 default: 12293 #ifdef WM_DEBUG 12294 if ((reg >> MII_ADDRBITS) != 0) 12295 device_printf(dev, 12296 "%s: PHYTYPE = 0x%x, addr = 0x%02x\n", 12297 __func__, sc->sc_phytype, reg); 12298 #endif 12299 break; 12300 } 12301 12302 return wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val); 12303 } 12304 12305 /* 12306 * wm_gmii_i82544_writereg: [mii interface function] 12307 * 12308 * Write a PHY register on the GMII. 12309 */ 12310 static int 12311 wm_gmii_i82544_writereg(device_t dev, int phy, int reg, uint16_t val) 12312 { 12313 struct wm_softc *sc = device_private(dev); 12314 int rv; 12315 12316 rv = sc->phy.acquire(sc); 12317 if (rv != 0) { 12318 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12319 return rv; 12320 } 12321 12322 rv = wm_gmii_i82544_writereg_locked(dev, phy, reg & MII_ADDRMASK, val); 12323 sc->phy.release(sc); 12324 12325 return rv; 12326 } 12327 12328 static int 12329 wm_gmii_i82544_writereg_locked(device_t dev, int phy, int reg, uint16_t val) 12330 { 12331 struct wm_softc *sc = device_private(dev); 12332 int rv; 12333 12334 switch (sc->sc_phytype) { 12335 case WMPHY_IGP: 12336 case WMPHY_IGP_2: 12337 case WMPHY_IGP_3: 12338 if (reg > BME1000_MAX_MULTI_PAGE_REG) { 12339 rv = wm_gmii_mdic_writereg(dev, phy, 12340 IGPHY_PAGE_SELECT, reg); 12341 if (rv != 0) 12342 return rv; 12343 } 12344 break; 12345 default: 12346 #ifdef WM_DEBUG 12347 if ((reg >> MII_ADDRBITS) != 0) 12348 device_printf(dev, 12349 "%s: PHYTYPE == 0x%x, addr = 0x%02x", 12350 __func__, sc->sc_phytype, reg); 12351 #endif 12352 break; 12353 } 12354 12355 return wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val); 12356 } 12357 12358 /* 12359 * wm_gmii_i80003_readreg: [mii interface function] 12360 * 12361 * Read a PHY register on the kumeran 12362 * This could be handled by the PHY layer if we didn't have to lock the 12363 * resource ... 12364 */ 12365 static int 12366 wm_gmii_i80003_readreg(device_t dev, int phy, int reg, uint16_t *val) 12367 { 12368 struct wm_softc *sc = device_private(dev); 12369 int page_select; 12370 uint16_t temp, temp2; 12371 int rv; 12372 12373 if (phy != 1) /* Only one PHY on kumeran bus */ 12374 return -1; 12375 12376 rv = sc->phy.acquire(sc); 12377 if (rv != 0) { 12378 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12379 return rv; 12380 } 12381 12382 if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG) 12383 page_select = GG82563_PHY_PAGE_SELECT; 12384 else { 12385 /* 12386 * Use Alternative Page Select register to access registers 12387 * 30 and 31. 12388 */ 12389 page_select = GG82563_PHY_PAGE_SELECT_ALT; 12390 } 12391 temp = reg >> GG82563_PAGE_SHIFT; 12392 if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0) 12393 goto out; 12394 12395 if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) { 12396 /* 12397 * Wait more 200us for a bug of the ready bit in the MDIC 12398 * register. 12399 */ 12400 delay(200); 12401 rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2); 12402 if ((rv != 0) || (temp2 != temp)) { 12403 device_printf(dev, "%s failed\n", __func__); 12404 rv = -1; 12405 goto out; 12406 } 12407 delay(200); 12408 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val); 12409 delay(200); 12410 } else 12411 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val); 12412 12413 out: 12414 sc->phy.release(sc); 12415 return rv; 12416 } 12417 12418 /* 12419 * wm_gmii_i80003_writereg: [mii interface function] 12420 * 12421 * Write a PHY register on the kumeran. 12422 * This could be handled by the PHY layer if we didn't have to lock the 12423 * resource ... 12424 */ 12425 static int 12426 wm_gmii_i80003_writereg(device_t dev, int phy, int reg, uint16_t val) 12427 { 12428 struct wm_softc *sc = device_private(dev); 12429 int page_select, rv; 12430 uint16_t temp, temp2; 12431 12432 if (phy != 1) /* Only one PHY on kumeran bus */ 12433 return -1; 12434 12435 rv = sc->phy.acquire(sc); 12436 if (rv != 0) { 12437 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12438 return rv; 12439 } 12440 12441 if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG) 12442 page_select = GG82563_PHY_PAGE_SELECT; 12443 else { 12444 /* 12445 * Use Alternative Page Select register to access registers 12446 * 30 and 31. 12447 */ 12448 page_select = GG82563_PHY_PAGE_SELECT_ALT; 12449 } 12450 temp = (uint16_t)reg >> GG82563_PAGE_SHIFT; 12451 if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0) 12452 goto out; 12453 12454 if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) { 12455 /* 12456 * Wait more 200us for a bug of the ready bit in the MDIC 12457 * register. 12458 */ 12459 delay(200); 12460 rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2); 12461 if ((rv != 0) || (temp2 != temp)) { 12462 device_printf(dev, "%s failed\n", __func__); 12463 rv = -1; 12464 goto out; 12465 } 12466 delay(200); 12467 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val); 12468 delay(200); 12469 } else 12470 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val); 12471 12472 out: 12473 sc->phy.release(sc); 12474 return rv; 12475 } 12476 12477 /* 12478 * wm_gmii_bm_readreg: [mii interface function] 12479 * 12480 * Read a PHY register on the kumeran 12481 * This could be handled by the PHY layer if we didn't have to lock the 12482 * resource ... 12483 */ 12484 static int 12485 wm_gmii_bm_readreg(device_t dev, int phy, int reg, uint16_t *val) 12486 { 12487 struct wm_softc *sc = device_private(dev); 12488 uint16_t page = reg >> BME1000_PAGE_SHIFT; 12489 int rv; 12490 12491 rv = sc->phy.acquire(sc); 12492 if (rv != 0) { 12493 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12494 return rv; 12495 } 12496 12497 if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583)) 12498 phy = ((page >= 768) || ((page == 0) && (reg == 25)) 12499 || (reg == 31)) ? 1 : phy; 12500 /* Page 800 works differently than the rest so it has its own func */ 12501 if (page == BM_WUC_PAGE) { 12502 rv = wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false); 12503 goto release; 12504 } 12505 12506 if (reg > BME1000_MAX_MULTI_PAGE_REG) { 12507 if ((phy == 1) && (sc->sc_type != WM_T_82574) 12508 && (sc->sc_type != WM_T_82583)) 12509 rv = wm_gmii_mdic_writereg(dev, phy, 12510 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT); 12511 else 12512 rv = wm_gmii_mdic_writereg(dev, phy, 12513 BME1000_PHY_PAGE_SELECT, page); 12514 if (rv != 0) 12515 goto release; 12516 } 12517 12518 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val); 12519 12520 release: 12521 sc->phy.release(sc); 12522 return rv; 12523 } 12524 12525 /* 12526 * wm_gmii_bm_writereg: [mii interface function] 12527 * 12528 * Write a PHY register on the kumeran. 12529 * This could be handled by the PHY layer if we didn't have to lock the 12530 * resource ... 12531 */ 12532 static int 12533 wm_gmii_bm_writereg(device_t dev, int phy, int reg, uint16_t val) 12534 { 12535 struct wm_softc *sc = device_private(dev); 12536 uint16_t page = reg >> BME1000_PAGE_SHIFT; 12537 int rv; 12538 12539 rv = sc->phy.acquire(sc); 12540 if (rv != 0) { 12541 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12542 return rv; 12543 } 12544 12545 if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583)) 12546 phy = ((page >= 768) || ((page == 0) && (reg == 25)) 12547 || (reg == 31)) ? 1 : phy; 12548 /* Page 800 works differently than the rest so it has its own func */ 12549 if (page == BM_WUC_PAGE) { 12550 rv = wm_access_phy_wakeup_reg_bm(dev, reg, &val, false, false); 12551 goto release; 12552 } 12553 12554 if (reg > BME1000_MAX_MULTI_PAGE_REG) { 12555 if ((phy == 1) && (sc->sc_type != WM_T_82574) 12556 && (sc->sc_type != WM_T_82583)) 12557 rv = wm_gmii_mdic_writereg(dev, phy, 12558 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT); 12559 else 12560 rv = wm_gmii_mdic_writereg(dev, phy, 12561 BME1000_PHY_PAGE_SELECT, page); 12562 if (rv != 0) 12563 goto release; 12564 } 12565 12566 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val); 12567 12568 release: 12569 sc->phy.release(sc); 12570 return rv; 12571 } 12572 12573 /* 12574 * wm_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers 12575 * @dev: pointer to the HW structure 12576 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG 12577 * 12578 * Assumes semaphore already acquired and phy_reg points to a valid memory 12579 * address to store contents of the BM_WUC_ENABLE_REG register. 12580 */ 12581 static int 12582 wm_enable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp) 12583 { 12584 #ifdef WM_DEBUG 12585 struct wm_softc *sc = device_private(dev); 12586 #endif 12587 uint16_t temp; 12588 int rv; 12589 12590 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 12591 device_xname(dev), __func__)); 12592 12593 if (!phy_regp) 12594 return -1; 12595 12596 /* All page select, port ctrl and wakeup registers use phy address 1 */ 12597 12598 /* Select Port Control Registers page */ 12599 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT, 12600 BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT); 12601 if (rv != 0) 12602 return rv; 12603 12604 /* Read WUCE and save it */ 12605 rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_ENABLE_REG, phy_regp); 12606 if (rv != 0) 12607 return rv; 12608 12609 /* Enable both PHY wakeup mode and Wakeup register page writes. 12610 * Prevent a power state change by disabling ME and Host PHY wakeup. 12611 */ 12612 temp = *phy_regp; 12613 temp |= BM_WUC_ENABLE_BIT; 12614 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); 12615 12616 if ((rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, temp)) != 0) 12617 return rv; 12618 12619 /* Select Host Wakeup Registers page - caller now able to write 12620 * registers on the Wakeup registers page 12621 */ 12622 return wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT, 12623 BM_WUC_PAGE << IGP3_PAGE_SHIFT); 12624 } 12625 12626 /* 12627 * wm_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs 12628 * @dev: pointer to the HW structure 12629 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG 12630 * 12631 * Restore BM_WUC_ENABLE_REG to its original value. 12632 * 12633 * Assumes semaphore already acquired and *phy_reg is the contents of the 12634 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by 12635 * caller. 12636 */ 12637 static int 12638 wm_disable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp) 12639 { 12640 #ifdef WM_DEBUG 12641 struct wm_softc *sc = device_private(dev); 12642 #endif 12643 12644 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 12645 device_xname(dev), __func__)); 12646 12647 if (!phy_regp) 12648 return -1; 12649 12650 /* Select Port Control Registers page */ 12651 wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT, 12652 BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT); 12653 12654 /* Restore 769.17 to its original value */ 12655 wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, *phy_regp); 12656 12657 return 0; 12658 } 12659 12660 /* 12661 * wm_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register 12662 * @sc: pointer to the HW structure 12663 * @offset: register offset to be read or written 12664 * @val: pointer to the data to read or write 12665 * @rd: determines if operation is read or write 12666 * @page_set: BM_WUC_PAGE already set and access enabled 12667 * 12668 * Read the PHY register at offset and store the retrieved information in 12669 * data, or write data to PHY register at offset. Note the procedure to 12670 * access the PHY wakeup registers is different than reading the other PHY 12671 * registers. It works as such: 12672 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 12673 * 2) Set page to 800 for host (801 if we were manageability) 12674 * 3) Write the address using the address opcode (0x11) 12675 * 4) Read or write the data using the data opcode (0x12) 12676 * 5) Restore 769.17.2 to its original value 12677 * 12678 * Steps 1 and 2 are done by wm_enable_phy_wakeup_reg_access_bm() and 12679 * step 5 is done by wm_disable_phy_wakeup_reg_access_bm(). 12680 * 12681 * Assumes semaphore is already acquired. When page_set==TRUE, assumes 12682 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack 12683 * is responsible for calls to wm_[enable|disable]_phy_wakeup_reg_bm()). 12684 */ 12685 static int 12686 wm_access_phy_wakeup_reg_bm(device_t dev, int offset, int16_t *val, int rd, 12687 bool page_set) 12688 { 12689 struct wm_softc *sc = device_private(dev); 12690 uint16_t regnum = BM_PHY_REG_NUM(offset); 12691 uint16_t page = BM_PHY_REG_PAGE(offset); 12692 uint16_t wuce; 12693 int rv = 0; 12694 12695 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n", 12696 device_xname(dev), __func__)); 12697 /* XXX Gig must be disabled for MDIO accesses to page 800 */ 12698 if ((sc->sc_type == WM_T_PCH) 12699 && ((CSR_READ(sc, WMREG_PHY_CTRL) & PHY_CTRL_GBE_DIS) == 0)) { 12700 device_printf(dev, 12701 "Attempting to access page %d while gig enabled.\n", page); 12702 } 12703 12704 if (!page_set) { 12705 /* Enable access to PHY wakeup registers */ 12706 rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce); 12707 if (rv != 0) { 12708 device_printf(dev, 12709 "%s: Could not enable PHY wakeup reg access\n", 12710 __func__); 12711 return rv; 12712 } 12713 } 12714 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s: Accessing PHY page %d reg 0x%x\n", 12715 device_xname(sc->sc_dev), __func__, page, regnum)); 12716 12717 /* 12718 * 2) Access PHY wakeup register. 12719 * See wm_access_phy_wakeup_reg_bm. 12720 */ 12721 12722 /* Write the Wakeup register page offset value using opcode 0x11 */ 12723 rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ADDRESS_OPCODE, regnum); 12724 if (rv != 0) 12725 return rv; 12726 12727 if (rd) { 12728 /* Read the Wakeup register page value using opcode 0x12 */ 12729 rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_DATA_OPCODE, val); 12730 } else { 12731 /* Write the Wakeup register page value using opcode 0x12 */ 12732 rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_DATA_OPCODE, *val); 12733 } 12734 if (rv != 0) 12735 return rv; 12736 12737 if (!page_set) 12738 rv = wm_disable_phy_wakeup_reg_access_bm(dev, &wuce); 12739 12740 return rv; 12741 } 12742 12743 /* 12744 * wm_gmii_hv_readreg: [mii interface function] 12745 * 12746 * Read a PHY register on the kumeran 12747 * This could be handled by the PHY layer if we didn't have to lock the 12748 * resource ... 12749 */ 12750 static int 12751 wm_gmii_hv_readreg(device_t dev, int phy, int reg, uint16_t *val) 12752 { 12753 struct wm_softc *sc = device_private(dev); 12754 int rv; 12755 12756 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n", 12757 device_xname(dev), __func__)); 12758 12759 rv = sc->phy.acquire(sc); 12760 if (rv != 0) { 12761 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12762 return rv; 12763 } 12764 12765 rv = wm_gmii_hv_readreg_locked(dev, phy, reg, val); 12766 sc->phy.release(sc); 12767 return rv; 12768 } 12769 12770 static int 12771 wm_gmii_hv_readreg_locked(device_t dev, int phy, int reg, uint16_t *val) 12772 { 12773 uint16_t page = BM_PHY_REG_PAGE(reg); 12774 uint16_t regnum = BM_PHY_REG_NUM(reg); 12775 int rv; 12776 12777 phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy; 12778 12779 /* Page 800 works differently than the rest so it has its own func */ 12780 if (page == BM_WUC_PAGE) 12781 return wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false); 12782 12783 /* 12784 * Lower than page 768 works differently than the rest so it has its 12785 * own func 12786 */ 12787 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) { 12788 device_printf(dev, "gmii_hv_readreg!!!\n"); 12789 return -1; 12790 } 12791 12792 /* 12793 * XXX I21[789] documents say that the SMBus Address register is at 12794 * PHY address 01, Page 0 (not 768), Register 26. 12795 */ 12796 if (page == HV_INTC_FC_PAGE_START) 12797 page = 0; 12798 12799 if (regnum > BME1000_MAX_MULTI_PAGE_REG) { 12800 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT, 12801 page << BME1000_PAGE_SHIFT); 12802 if (rv != 0) 12803 return rv; 12804 } 12805 12806 return wm_gmii_mdic_readreg(dev, phy, regnum & MII_ADDRMASK, val); 12807 } 12808 12809 /* 12810 * wm_gmii_hv_writereg: [mii interface function] 12811 * 12812 * Write a PHY register on the kumeran. 12813 * This could be handled by the PHY layer if we didn't have to lock the 12814 * resource ... 12815 */ 12816 static int 12817 wm_gmii_hv_writereg(device_t dev, int phy, int reg, uint16_t val) 12818 { 12819 struct wm_softc *sc = device_private(dev); 12820 int rv; 12821 12822 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n", 12823 device_xname(dev), __func__)); 12824 12825 rv = sc->phy.acquire(sc); 12826 if (rv != 0) { 12827 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12828 return rv; 12829 } 12830 12831 rv = wm_gmii_hv_writereg_locked(dev, phy, reg, val); 12832 sc->phy.release(sc); 12833 12834 return rv; 12835 } 12836 12837 static int 12838 wm_gmii_hv_writereg_locked(device_t dev, int phy, int reg, uint16_t val) 12839 { 12840 struct wm_softc *sc = device_private(dev); 12841 uint16_t page = BM_PHY_REG_PAGE(reg); 12842 uint16_t regnum = BM_PHY_REG_NUM(reg); 12843 int rv; 12844 12845 phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy; 12846 12847 /* Page 800 works differently than the rest so it has its own func */ 12848 if (page == BM_WUC_PAGE) 12849 return wm_access_phy_wakeup_reg_bm(dev, reg, &val, false, 12850 false); 12851 12852 /* 12853 * Lower than page 768 works differently than the rest so it has its 12854 * own func 12855 */ 12856 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) { 12857 device_printf(dev, "gmii_hv_writereg!!!\n"); 12858 return -1; 12859 } 12860 12861 { 12862 /* 12863 * XXX I21[789] documents say that the SMBus Address register 12864 * is at PHY address 01, Page 0 (not 768), Register 26. 12865 */ 12866 if (page == HV_INTC_FC_PAGE_START) 12867 page = 0; 12868 12869 /* 12870 * XXX Workaround MDIO accesses being disabled after entering 12871 * IEEE Power Down (whenever bit 11 of the PHY control 12872 * register is set) 12873 */ 12874 if (sc->sc_phytype == WMPHY_82578) { 12875 struct mii_softc *child; 12876 12877 child = LIST_FIRST(&sc->sc_mii.mii_phys); 12878 if ((child != NULL) && (child->mii_mpd_rev >= 1) 12879 && (phy == 2) && ((regnum & MII_ADDRMASK) == 0) 12880 && ((val & (1 << 11)) != 0)) { 12881 device_printf(dev, "XXX need workaround\n"); 12882 } 12883 } 12884 12885 if (regnum > BME1000_MAX_MULTI_PAGE_REG) { 12886 rv = wm_gmii_mdic_writereg(dev, 1, 12887 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT); 12888 if (rv != 0) 12889 return rv; 12890 } 12891 } 12892 12893 return wm_gmii_mdic_writereg(dev, phy, regnum & MII_ADDRMASK, val); 12894 } 12895 12896 /* 12897 * wm_gmii_82580_readreg: [mii interface function] 12898 * 12899 * Read a PHY register on the 82580 and I350. 12900 * This could be handled by the PHY layer if we didn't have to lock the 12901 * resource ... 12902 */ 12903 static int 12904 wm_gmii_82580_readreg(device_t dev, int phy, int reg, uint16_t *val) 12905 { 12906 struct wm_softc *sc = device_private(dev); 12907 int rv; 12908 12909 rv = sc->phy.acquire(sc); 12910 if (rv != 0) { 12911 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12912 return rv; 12913 } 12914 12915 #ifdef DIAGNOSTIC 12916 if (reg > MII_ADDRMASK) { 12917 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n", 12918 __func__, sc->sc_phytype, reg); 12919 reg &= MII_ADDRMASK; 12920 } 12921 #endif 12922 rv = wm_gmii_mdic_readreg(dev, phy, reg, val); 12923 12924 sc->phy.release(sc); 12925 return rv; 12926 } 12927 12928 /* 12929 * wm_gmii_82580_writereg: [mii interface function] 12930 * 12931 * Write a PHY register on the 82580 and I350. 12932 * This could be handled by the PHY layer if we didn't have to lock the 12933 * resource ... 12934 */ 12935 static int 12936 wm_gmii_82580_writereg(device_t dev, int phy, int reg, uint16_t val) 12937 { 12938 struct wm_softc *sc = device_private(dev); 12939 int rv; 12940 12941 rv = sc->phy.acquire(sc); 12942 if (rv != 0) { 12943 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12944 return rv; 12945 } 12946 12947 #ifdef DIAGNOSTIC 12948 if (reg > MII_ADDRMASK) { 12949 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n", 12950 __func__, sc->sc_phytype, reg); 12951 reg &= MII_ADDRMASK; 12952 } 12953 #endif 12954 rv = wm_gmii_mdic_writereg(dev, phy, reg, val); 12955 12956 sc->phy.release(sc); 12957 return rv; 12958 } 12959 12960 /* 12961 * wm_gmii_gs40g_readreg: [mii interface function] 12962 * 12963 * Read a PHY register on the I2100 and I211. 12964 * This could be handled by the PHY layer if we didn't have to lock the 12965 * resource ... 12966 */ 12967 static int 12968 wm_gmii_gs40g_readreg(device_t dev, int phy, int reg, uint16_t *val) 12969 { 12970 struct wm_softc *sc = device_private(dev); 12971 int page, offset; 12972 int rv; 12973 12974 /* Acquire semaphore */ 12975 rv = sc->phy.acquire(sc); 12976 if (rv != 0) { 12977 device_printf(dev, "%s: failed to get semaphore\n", __func__); 12978 return rv; 12979 } 12980 12981 /* Page select */ 12982 page = reg >> GS40G_PAGE_SHIFT; 12983 rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page); 12984 if (rv != 0) 12985 goto release; 12986 12987 /* Read reg */ 12988 offset = reg & GS40G_OFFSET_MASK; 12989 rv = wm_gmii_mdic_readreg(dev, phy, offset, val); 12990 12991 release: 12992 sc->phy.release(sc); 12993 return rv; 12994 } 12995 12996 /* 12997 * wm_gmii_gs40g_writereg: [mii interface function] 12998 * 12999 * Write a PHY register on the I210 and I211. 13000 * This could be handled by the PHY layer if we didn't have to lock the 13001 * resource ... 13002 */ 13003 static int 13004 wm_gmii_gs40g_writereg(device_t dev, int phy, int reg, uint16_t val) 13005 { 13006 struct wm_softc *sc = device_private(dev); 13007 uint16_t page; 13008 int offset, rv; 13009 13010 /* Acquire semaphore */ 13011 rv = sc->phy.acquire(sc); 13012 if (rv != 0) { 13013 device_printf(dev, "%s: failed to get semaphore\n", __func__); 13014 return rv; 13015 } 13016 13017 /* Page select */ 13018 page = reg >> GS40G_PAGE_SHIFT; 13019 rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page); 13020 if (rv != 0) 13021 goto release; 13022 13023 /* Write reg */ 13024 offset = reg & GS40G_OFFSET_MASK; 13025 rv = wm_gmii_mdic_writereg(dev, phy, offset, val); 13026 13027 release: 13028 /* Release semaphore */ 13029 sc->phy.release(sc); 13030 return rv; 13031 } 13032 13033 /* 13034 * wm_gmii_statchg: [mii interface function] 13035 * 13036 * Callback from MII layer when media changes. 13037 */ 13038 static void 13039 wm_gmii_statchg(struct ifnet *ifp) 13040 { 13041 struct wm_softc *sc = ifp->if_softc; 13042 struct mii_data *mii = &sc->sc_mii; 13043 13044 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE); 13045 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 13046 sc->sc_fcrtl &= ~FCRTL_XONE; 13047 13048 /* Get flow control negotiation result. */ 13049 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 13050 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 13051 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 13052 mii->mii_media_active &= ~IFM_ETH_FMASK; 13053 } 13054 13055 if (sc->sc_flowflags & IFM_FLOW) { 13056 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) { 13057 sc->sc_ctrl |= CTRL_TFCE; 13058 sc->sc_fcrtl |= FCRTL_XONE; 13059 } 13060 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 13061 sc->sc_ctrl |= CTRL_RFCE; 13062 } 13063 13064 if (mii->mii_media_active & IFM_FDX) { 13065 DPRINTF(sc, WM_DEBUG_LINK, 13066 ("%s: LINK: statchg: FDX\n", ifp->if_xname)); 13067 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 13068 } else { 13069 DPRINTF(sc, WM_DEBUG_LINK, 13070 ("%s: LINK: statchg: HDX\n", ifp->if_xname)); 13071 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 13072 } 13073 13074 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 13075 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 13076 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? 13077 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl); 13078 if (sc->sc_type == WM_T_80003) { 13079 switch (IFM_SUBTYPE(mii->mii_media_active)) { 13080 case IFM_1000_T: 13081 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL, 13082 KUMCTRLSTA_HD_CTRL_1000_DEFAULT); 13083 sc->sc_tipg = TIPG_1000T_80003_DFLT; 13084 break; 13085 default: 13086 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL, 13087 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT); 13088 sc->sc_tipg = TIPG_10_100_80003_DFLT; 13089 break; 13090 } 13091 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg); 13092 } 13093 } 13094 13095 /* kumeran related (80003, ICH* and PCH*) */ 13096 13097 /* 13098 * wm_kmrn_readreg: 13099 * 13100 * Read a kumeran register 13101 */ 13102 static int 13103 wm_kmrn_readreg(struct wm_softc *sc, int reg, uint16_t *val) 13104 { 13105 int rv; 13106 13107 if (sc->sc_type == WM_T_80003) 13108 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM); 13109 else 13110 rv = sc->phy.acquire(sc); 13111 if (rv != 0) { 13112 device_printf(sc->sc_dev, "%s: failed to get semaphore\n", 13113 __func__); 13114 return rv; 13115 } 13116 13117 rv = wm_kmrn_readreg_locked(sc, reg, val); 13118 13119 if (sc->sc_type == WM_T_80003) 13120 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM); 13121 else 13122 sc->phy.release(sc); 13123 13124 return rv; 13125 } 13126 13127 static int 13128 wm_kmrn_readreg_locked(struct wm_softc *sc, int reg, uint16_t *val) 13129 { 13130 13131 CSR_WRITE(sc, WMREG_KUMCTRLSTA, 13132 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) | 13133 KUMCTRLSTA_REN); 13134 CSR_WRITE_FLUSH(sc); 13135 delay(2); 13136 13137 *val = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK; 13138 13139 return 0; 13140 } 13141 13142 /* 13143 * wm_kmrn_writereg: 13144 * 13145 * Write a kumeran register 13146 */ 13147 static int 13148 wm_kmrn_writereg(struct wm_softc *sc, int reg, uint16_t val) 13149 { 13150 int rv; 13151 13152 if (sc->sc_type == WM_T_80003) 13153 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM); 13154 else 13155 rv = sc->phy.acquire(sc); 13156 if (rv != 0) { 13157 device_printf(sc->sc_dev, "%s: failed to get semaphore\n", 13158 __func__); 13159 return rv; 13160 } 13161 13162 rv = wm_kmrn_writereg_locked(sc, reg, val); 13163 13164 if (sc->sc_type == WM_T_80003) 13165 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM); 13166 else 13167 sc->phy.release(sc); 13168 13169 return rv; 13170 } 13171 13172 static int 13173 wm_kmrn_writereg_locked(struct wm_softc *sc, int reg, uint16_t val) 13174 { 13175 13176 CSR_WRITE(sc, WMREG_KUMCTRLSTA, 13177 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) | val); 13178 13179 return 0; 13180 } 13181 13182 /* 13183 * EMI register related (82579, WMPHY_I217(PCH2 and newer)) 13184 * This access method is different from IEEE MMD. 13185 */ 13186 static int 13187 wm_access_emi_reg_locked(device_t dev, int reg, uint16_t *val, bool rd) 13188 { 13189 struct wm_softc *sc = device_private(dev); 13190 int rv; 13191 13192 rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_ADDR, reg); 13193 if (rv != 0) 13194 return rv; 13195 13196 if (rd) 13197 rv = sc->phy.readreg_locked(dev, 2, I82579_EMI_DATA, val); 13198 else 13199 rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_DATA, *val); 13200 return rv; 13201 } 13202 13203 static int 13204 wm_read_emi_reg_locked(device_t dev, int reg, uint16_t *val) 13205 { 13206 13207 return wm_access_emi_reg_locked(dev, reg, val, true); 13208 } 13209 13210 static int 13211 wm_write_emi_reg_locked(device_t dev, int reg, uint16_t val) 13212 { 13213 13214 return wm_access_emi_reg_locked(dev, reg, &val, false); 13215 } 13216 13217 /* SGMII related */ 13218 13219 /* 13220 * wm_sgmii_uses_mdio 13221 * 13222 * Check whether the transaction is to the internal PHY or the external 13223 * MDIO interface. Return true if it's MDIO. 13224 */ 13225 static bool 13226 wm_sgmii_uses_mdio(struct wm_softc *sc) 13227 { 13228 uint32_t reg; 13229 bool ismdio = false; 13230 13231 switch (sc->sc_type) { 13232 case WM_T_82575: 13233 case WM_T_82576: 13234 reg = CSR_READ(sc, WMREG_MDIC); 13235 ismdio = ((reg & MDIC_DEST) != 0); 13236 break; 13237 case WM_T_82580: 13238 case WM_T_I350: 13239 case WM_T_I354: 13240 case WM_T_I210: 13241 case WM_T_I211: 13242 reg = CSR_READ(sc, WMREG_MDICNFG); 13243 ismdio = ((reg & MDICNFG_DEST) != 0); 13244 break; 13245 default: 13246 break; 13247 } 13248 13249 return ismdio; 13250 } 13251 13252 /* Setup internal SGMII PHY for SFP */ 13253 static void 13254 wm_sgmii_sfp_preconfig(struct wm_softc *sc) 13255 { 13256 uint16_t id1, id2, phyreg; 13257 int i, rv; 13258 13259 if (((sc->sc_flags & WM_F_SGMII) == 0) 13260 || ((sc->sc_flags & WM_F_SFP) == 0)) 13261 return; 13262 13263 for (i = 0; i < MII_NPHY; i++) { 13264 sc->phy.no_errprint = true; 13265 rv = sc->phy.readreg_locked(sc->sc_dev, i, MII_PHYIDR1, &id1); 13266 if (rv != 0) 13267 continue; 13268 rv = sc->phy.readreg_locked(sc->sc_dev, i, MII_PHYIDR2, &id2); 13269 if (rv != 0) 13270 continue; 13271 if (MII_OUI(id1, id2) != MII_OUI_xxMARVELL) 13272 continue; 13273 sc->phy.no_errprint = false; 13274 13275 sc->phy.readreg_locked(sc->sc_dev, i, MAKPHY_ESSR, &phyreg); 13276 phyreg &= ~(ESSR_SER_ANEG_BYPASS | ESSR_HWCFG_MODE); 13277 phyreg |= ESSR_SGMII_WOC_COPPER; 13278 sc->phy.writereg_locked(sc->sc_dev, i, MAKPHY_ESSR, phyreg); 13279 break; 13280 } 13281 13282 } 13283 13284 /* 13285 * wm_sgmii_readreg: [mii interface function] 13286 * 13287 * Read a PHY register on the SGMII 13288 * This could be handled by the PHY layer if we didn't have to lock the 13289 * resource ... 13290 */ 13291 static int 13292 wm_sgmii_readreg(device_t dev, int phy, int reg, uint16_t *val) 13293 { 13294 struct wm_softc *sc = device_private(dev); 13295 int rv; 13296 13297 rv = sc->phy.acquire(sc); 13298 if (rv != 0) { 13299 device_printf(dev, "%s: failed to get semaphore\n", __func__); 13300 return rv; 13301 } 13302 13303 rv = wm_sgmii_readreg_locked(dev, phy, reg, val); 13304 13305 sc->phy.release(sc); 13306 return rv; 13307 } 13308 13309 static int 13310 wm_sgmii_readreg_locked(device_t dev, int phy, int reg, uint16_t *val) 13311 { 13312 struct wm_softc *sc = device_private(dev); 13313 uint32_t i2ccmd; 13314 int i, rv = 0; 13315 13316 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT) 13317 | (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_READ; 13318 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd); 13319 13320 /* Poll the ready bit */ 13321 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) { 13322 delay(50); 13323 i2ccmd = CSR_READ(sc, WMREG_I2CCMD); 13324 if (i2ccmd & I2CCMD_READY) 13325 break; 13326 } 13327 if ((i2ccmd & I2CCMD_READY) == 0) { 13328 device_printf(dev, "I2CCMD Read did not complete\n"); 13329 rv = ETIMEDOUT; 13330 } 13331 if ((i2ccmd & I2CCMD_ERROR) != 0) { 13332 if (!sc->phy.no_errprint) 13333 device_printf(dev, "I2CCMD Error bit set\n"); 13334 rv = EIO; 13335 } 13336 13337 *val = (uint16_t)((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00); 13338 13339 return rv; 13340 } 13341 13342 /* 13343 * wm_sgmii_writereg: [mii interface function] 13344 * 13345 * Write a PHY register on the SGMII. 13346 * This could be handled by the PHY layer if we didn't have to lock the 13347 * resource ... 13348 */ 13349 static int 13350 wm_sgmii_writereg(device_t dev, int phy, int reg, uint16_t val) 13351 { 13352 struct wm_softc *sc = device_private(dev); 13353 int rv; 13354 13355 rv = sc->phy.acquire(sc); 13356 if (rv != 0) { 13357 device_printf(dev, "%s: failed to get semaphore\n", __func__); 13358 return rv; 13359 } 13360 13361 rv = wm_sgmii_writereg_locked(dev, phy, reg, val); 13362 13363 sc->phy.release(sc); 13364 13365 return rv; 13366 } 13367 13368 static int 13369 wm_sgmii_writereg_locked(device_t dev, int phy, int reg, uint16_t val) 13370 { 13371 struct wm_softc *sc = device_private(dev); 13372 uint32_t i2ccmd; 13373 uint16_t swapdata; 13374 int rv = 0; 13375 int i; 13376 13377 /* Swap the data bytes for the I2C interface */ 13378 swapdata = ((val >> 8) & 0x00FF) | ((val << 8) & 0xFF00); 13379 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT) 13380 | (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_WRITE | swapdata; 13381 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd); 13382 13383 /* Poll the ready bit */ 13384 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) { 13385 delay(50); 13386 i2ccmd = CSR_READ(sc, WMREG_I2CCMD); 13387 if (i2ccmd & I2CCMD_READY) 13388 break; 13389 } 13390 if ((i2ccmd & I2CCMD_READY) == 0) { 13391 device_printf(dev, "I2CCMD Write did not complete\n"); 13392 rv = ETIMEDOUT; 13393 } 13394 if ((i2ccmd & I2CCMD_ERROR) != 0) { 13395 device_printf(dev, "I2CCMD Error bit set\n"); 13396 rv = EIO; 13397 } 13398 13399 return rv; 13400 } 13401 13402 /* TBI related */ 13403 13404 static bool 13405 wm_tbi_havesignal(struct wm_softc *sc, uint32_t ctrl) 13406 { 13407 bool sig; 13408 13409 sig = ctrl & CTRL_SWDPIN(1); 13410 13411 /* 13412 * On 82543 and 82544, the CTRL_SWDPIN(1) bit will be 0 if the optics 13413 * detect a signal, 1 if they don't. 13414 */ 13415 if ((sc->sc_type == WM_T_82543) || (sc->sc_type == WM_T_82544)) 13416 sig = !sig; 13417 13418 return sig; 13419 } 13420 13421 /* 13422 * wm_tbi_mediainit: 13423 * 13424 * Initialize media for use on 1000BASE-X devices. 13425 */ 13426 static void 13427 wm_tbi_mediainit(struct wm_softc *sc) 13428 { 13429 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 13430 const char *sep = ""; 13431 13432 if (sc->sc_type < WM_T_82543) 13433 sc->sc_tipg = TIPG_WM_DFLT; 13434 else 13435 sc->sc_tipg = TIPG_LG_DFLT; 13436 13437 sc->sc_tbi_serdes_anegticks = 5; 13438 13439 /* Initialize our media structures */ 13440 sc->sc_mii.mii_ifp = ifp; 13441 sc->sc_ethercom.ec_mii = &sc->sc_mii; 13442 13443 ifp->if_baudrate = IF_Gbps(1); 13444 if (((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)) 13445 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) { 13446 ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK, 13447 wm_serdes_mediachange, wm_serdes_mediastatus, 13448 sc->sc_core_lock); 13449 } else { 13450 ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK, 13451 wm_tbi_mediachange, wm_tbi_mediastatus, sc->sc_core_lock); 13452 } 13453 13454 /* 13455 * SWD Pins: 13456 * 13457 * 0 = Link LED (output) 13458 * 1 = Loss Of Signal (input) 13459 */ 13460 sc->sc_ctrl |= CTRL_SWDPIO(0); 13461 13462 /* XXX Perhaps this is only for TBI */ 13463 if (sc->sc_mediatype != WM_MEDIATYPE_SERDES) 13464 sc->sc_ctrl &= ~CTRL_SWDPIO(1); 13465 13466 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) 13467 sc->sc_ctrl &= ~CTRL_LRST; 13468 13469 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 13470 13471 #define ADD(ss, mm, dd) \ 13472 do { \ 13473 aprint_normal("%s%s", sep, ss); \ 13474 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | (mm), (dd), NULL); \ 13475 sep = ", "; \ 13476 } while (/*CONSTCOND*/0) 13477 13478 aprint_normal_dev(sc->sc_dev, ""); 13479 13480 if (sc->sc_type == WM_T_I354) { 13481 uint32_t status; 13482 13483 status = CSR_READ(sc, WMREG_STATUS); 13484 if (((status & STATUS_2P5_SKU) != 0) 13485 && ((status & STATUS_2P5_SKU_OVER) == 0)) { 13486 ADD("2500baseKX-FDX", IFM_2500_KX | IFM_FDX,ANAR_X_FD); 13487 } else 13488 ADD("1000baseKX-FDX", IFM_1000_KX | IFM_FDX,ANAR_X_FD); 13489 } else if (sc->sc_type == WM_T_82545) { 13490 /* Only 82545 is LX (XXX except SFP) */ 13491 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD); 13492 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD); 13493 } else if (sc->sc_sfptype != 0) { 13494 /* XXX wm(4) fiber/serdes don't use ifm_data */ 13495 switch (sc->sc_sfptype) { 13496 default: 13497 case SFF_SFP_ETH_FLAGS_1000SX: 13498 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD); 13499 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD); 13500 break; 13501 case SFF_SFP_ETH_FLAGS_1000LX: 13502 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD); 13503 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD); 13504 break; 13505 case SFF_SFP_ETH_FLAGS_1000CX: 13506 ADD("1000baseCX", IFM_1000_CX, ANAR_X_HD); 13507 ADD("1000baseCX-FDX", IFM_1000_CX | IFM_FDX, ANAR_X_FD); 13508 break; 13509 case SFF_SFP_ETH_FLAGS_1000T: 13510 ADD("1000baseT", IFM_1000_T, 0); 13511 ADD("1000baseT-FDX", IFM_1000_T | IFM_FDX, 0); 13512 break; 13513 case SFF_SFP_ETH_FLAGS_100FX: 13514 ADD("100baseFX", IFM_100_FX, ANAR_TX); 13515 ADD("100baseFX-FDX", IFM_100_FX | IFM_FDX, ANAR_TX_FD); 13516 break; 13517 } 13518 } else { 13519 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD); 13520 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD); 13521 } 13522 ADD("auto", IFM_AUTO, ANAR_X_FD | ANAR_X_HD); 13523 aprint_normal("\n"); 13524 13525 #undef ADD 13526 13527 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO); 13528 } 13529 13530 /* 13531 * wm_tbi_mediachange: [ifmedia interface function] 13532 * 13533 * Set hardware to newly-selected media on a 1000BASE-X device. 13534 */ 13535 static int 13536 wm_tbi_mediachange(struct ifnet *ifp) 13537 { 13538 struct wm_softc *sc = ifp->if_softc; 13539 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 13540 uint32_t status, ctrl; 13541 bool signal; 13542 int i; 13543 13544 KASSERT(sc->sc_mediatype != WM_MEDIATYPE_COPPER); 13545 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) { 13546 /* XXX need some work for >= 82571 and < 82575 */ 13547 if (sc->sc_type < WM_T_82575) 13548 return 0; 13549 } 13550 13551 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572) 13552 || (sc->sc_type >= WM_T_82575)) 13553 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK); 13554 13555 sc->sc_ctrl &= ~CTRL_LRST; 13556 sc->sc_txcw = TXCW_ANE; 13557 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) 13558 sc->sc_txcw |= TXCW_FD | TXCW_HD; 13559 else if (ife->ifm_media & IFM_FDX) 13560 sc->sc_txcw |= TXCW_FD; 13561 else 13562 sc->sc_txcw |= TXCW_HD; 13563 13564 if ((sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0) 13565 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE; 13566 13567 DPRINTF(sc, WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n", 13568 device_xname(sc->sc_dev), sc->sc_txcw)); 13569 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw); 13570 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 13571 CSR_WRITE_FLUSH(sc); 13572 delay(1000); 13573 13574 ctrl = CSR_READ(sc, WMREG_CTRL); 13575 signal = wm_tbi_havesignal(sc, ctrl); 13576 13577 DPRINTF(sc, WM_DEBUG_LINK, 13578 ("%s: signal = %d\n", device_xname(sc->sc_dev), signal)); 13579 13580 if (signal) { 13581 /* Have signal; wait for the link to come up. */ 13582 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) { 13583 delay(10000); 13584 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU) 13585 break; 13586 } 13587 13588 DPRINTF(sc, WM_DEBUG_LINK, 13589 ("%s: i = %d after waiting for link\n", 13590 device_xname(sc->sc_dev), i)); 13591 13592 status = CSR_READ(sc, WMREG_STATUS); 13593 DPRINTF(sc, WM_DEBUG_LINK, 13594 ("%s: status after final read = 0x%x, STATUS_LU = %#" 13595 __PRIxBIT "\n", 13596 device_xname(sc->sc_dev), status, STATUS_LU)); 13597 if (status & STATUS_LU) { 13598 /* Link is up. */ 13599 DPRINTF(sc, WM_DEBUG_LINK, 13600 ("%s: LINK: set media -> link up %s\n", 13601 device_xname(sc->sc_dev), 13602 (status & STATUS_FD) ? "FDX" : "HDX")); 13603 13604 /* 13605 * NOTE: CTRL will update TFCE and RFCE automatically, 13606 * so we should update sc->sc_ctrl 13607 */ 13608 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL); 13609 sc->sc_tctl &= ~TCTL_COLD(0x3ff); 13610 sc->sc_fcrtl &= ~FCRTL_XONE; 13611 if (status & STATUS_FD) 13612 sc->sc_tctl |= 13613 TCTL_COLD(TX_COLLISION_DISTANCE_FDX); 13614 else 13615 sc->sc_tctl |= 13616 TCTL_COLD(TX_COLLISION_DISTANCE_HDX); 13617 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE) 13618 sc->sc_fcrtl |= FCRTL_XONE; 13619 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl); 13620 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? 13621 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl); 13622 sc->sc_tbi_linkup = 1; 13623 } else { 13624 if (i == WM_LINKUP_TIMEOUT) 13625 wm_check_for_link(sc); 13626 /* Link is down. */ 13627 DPRINTF(sc, WM_DEBUG_LINK, 13628 ("%s: LINK: set media -> link down\n", 13629 device_xname(sc->sc_dev))); 13630 sc->sc_tbi_linkup = 0; 13631 } 13632 } else { 13633 DPRINTF(sc, WM_DEBUG_LINK, 13634 ("%s: LINK: set media -> no signal\n", 13635 device_xname(sc->sc_dev))); 13636 sc->sc_tbi_linkup = 0; 13637 } 13638 13639 wm_tbi_serdes_set_linkled(sc); 13640 13641 return 0; 13642 } 13643 13644 /* 13645 * wm_tbi_mediastatus: [ifmedia interface function] 13646 * 13647 * Get the current interface media status on a 1000BASE-X device. 13648 */ 13649 static void 13650 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 13651 { 13652 struct wm_softc *sc = ifp->if_softc; 13653 uint32_t ctrl, status; 13654 13655 ifmr->ifm_status = IFM_AVALID; 13656 ifmr->ifm_active = IFM_ETHER; 13657 13658 status = CSR_READ(sc, WMREG_STATUS); 13659 if ((status & STATUS_LU) == 0) { 13660 ifmr->ifm_active |= IFM_NONE; 13661 return; 13662 } 13663 13664 ifmr->ifm_status |= IFM_ACTIVE; 13665 /* Only 82545 is LX */ 13666 if (sc->sc_type == WM_T_82545) 13667 ifmr->ifm_active |= IFM_1000_LX; 13668 else 13669 ifmr->ifm_active |= IFM_1000_SX; 13670 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD) 13671 ifmr->ifm_active |= IFM_FDX; 13672 else 13673 ifmr->ifm_active |= IFM_HDX; 13674 ctrl = CSR_READ(sc, WMREG_CTRL); 13675 if (ctrl & CTRL_RFCE) 13676 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE; 13677 if (ctrl & CTRL_TFCE) 13678 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE; 13679 } 13680 13681 /* XXX TBI only */ 13682 static int 13683 wm_check_for_link(struct wm_softc *sc) 13684 { 13685 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; 13686 uint32_t rxcw; 13687 uint32_t ctrl; 13688 uint32_t status; 13689 bool signal; 13690 13691 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s called\n", 13692 device_xname(sc->sc_dev), __func__)); 13693 13694 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) { 13695 /* XXX need some work for >= 82571 */ 13696 if (sc->sc_type >= WM_T_82571) { 13697 sc->sc_tbi_linkup = 1; 13698 return 0; 13699 } 13700 } 13701 13702 rxcw = CSR_READ(sc, WMREG_RXCW); 13703 ctrl = CSR_READ(sc, WMREG_CTRL); 13704 status = CSR_READ(sc, WMREG_STATUS); 13705 signal = wm_tbi_havesignal(sc, ctrl); 13706 13707 DPRINTF(sc, WM_DEBUG_LINK, 13708 ("%s: %s: signal = %d, status_lu = %d, rxcw_c = %d\n", 13709 device_xname(sc->sc_dev), __func__, signal, 13710 ((status & STATUS_LU) != 0), ((rxcw & RXCW_C) != 0))); 13711 13712 /* 13713 * SWDPIN LU RXCW 13714 * 0 0 0 13715 * 0 0 1 (should not happen) 13716 * 0 1 0 (should not happen) 13717 * 0 1 1 (should not happen) 13718 * 1 0 0 Disable autonego and force linkup 13719 * 1 0 1 got /C/ but not linkup yet 13720 * 1 1 0 (linkup) 13721 * 1 1 1 If IFM_AUTO, back to autonego 13722 * 13723 */ 13724 if (signal && ((status & STATUS_LU) == 0) && ((rxcw & RXCW_C) == 0)) { 13725 DPRINTF(sc, WM_DEBUG_LINK, 13726 ("%s: %s: force linkup and fullduplex\n", 13727 device_xname(sc->sc_dev), __func__)); 13728 sc->sc_tbi_linkup = 0; 13729 /* Disable auto-negotiation in the TXCW register */ 13730 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE)); 13731 13732 /* 13733 * Force link-up and also force full-duplex. 13734 * 13735 * NOTE: CTRL was updated TFCE and RFCE automatically, 13736 * so we should update sc->sc_ctrl 13737 */ 13738 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD; 13739 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 13740 } else if (((status & STATUS_LU) != 0) 13741 && ((rxcw & RXCW_C) != 0) 13742 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) { 13743 sc->sc_tbi_linkup = 1; 13744 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: go back to autonego\n", 13745 device_xname(sc->sc_dev), __func__)); 13746 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw); 13747 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU)); 13748 } else if (signal && ((rxcw & RXCW_C) != 0)) { 13749 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: /C/", 13750 device_xname(sc->sc_dev), __func__)); 13751 } else { 13752 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: linkup %08x,%08x,%08x\n", 13753 device_xname(sc->sc_dev), __func__, rxcw, ctrl, 13754 status)); 13755 } 13756 13757 return 0; 13758 } 13759 13760 /* 13761 * wm_tbi_tick: 13762 * 13763 * Check the link on TBI devices. 13764 * This function acts as mii_tick(). 13765 */ 13766 static void 13767 wm_tbi_tick(struct wm_softc *sc) 13768 { 13769 struct mii_data *mii = &sc->sc_mii; 13770 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 13771 uint32_t status; 13772 13773 KASSERT(mutex_owned(sc->sc_core_lock)); 13774 13775 status = CSR_READ(sc, WMREG_STATUS); 13776 13777 /* XXX is this needed? */ 13778 (void)CSR_READ(sc, WMREG_RXCW); 13779 (void)CSR_READ(sc, WMREG_CTRL); 13780 13781 /* set link status */ 13782 if ((status & STATUS_LU) == 0) { 13783 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: checklink -> down\n", 13784 device_xname(sc->sc_dev))); 13785 sc->sc_tbi_linkup = 0; 13786 } else if (sc->sc_tbi_linkup == 0) { 13787 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: checklink -> up %s\n", 13788 device_xname(sc->sc_dev), 13789 (status & STATUS_FD) ? "FDX" : "HDX")); 13790 sc->sc_tbi_linkup = 1; 13791 sc->sc_tbi_serdes_ticks = 0; 13792 } 13793 13794 if ((sc->sc_if_flags & IFF_UP) == 0) 13795 goto setled; 13796 13797 if ((status & STATUS_LU) == 0) { 13798 sc->sc_tbi_linkup = 0; 13799 /* If the timer expired, retry autonegotiation */ 13800 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) 13801 && (++sc->sc_tbi_serdes_ticks 13802 >= sc->sc_tbi_serdes_anegticks)) { 13803 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: EXPIRE\n", 13804 device_xname(sc->sc_dev), __func__)); 13805 sc->sc_tbi_serdes_ticks = 0; 13806 /* 13807 * Reset the link, and let autonegotiation do 13808 * its thing 13809 */ 13810 sc->sc_ctrl |= CTRL_LRST; 13811 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 13812 CSR_WRITE_FLUSH(sc); 13813 delay(1000); 13814 sc->sc_ctrl &= ~CTRL_LRST; 13815 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 13816 CSR_WRITE_FLUSH(sc); 13817 delay(1000); 13818 CSR_WRITE(sc, WMREG_TXCW, 13819 sc->sc_txcw & ~TXCW_ANE); 13820 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw); 13821 } 13822 } 13823 13824 setled: 13825 wm_tbi_serdes_set_linkled(sc); 13826 } 13827 13828 /* SERDES related */ 13829 static void 13830 wm_serdes_power_up_link_82575(struct wm_softc *sc) 13831 { 13832 uint32_t reg; 13833 13834 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES) 13835 && ((sc->sc_flags & WM_F_SGMII) == 0)) 13836 return; 13837 13838 /* Enable PCS to turn on link */ 13839 reg = CSR_READ(sc, WMREG_PCS_CFG); 13840 reg |= PCS_CFG_PCS_EN; 13841 CSR_WRITE(sc, WMREG_PCS_CFG, reg); 13842 13843 /* Power up the laser */ 13844 reg = CSR_READ(sc, WMREG_CTRL_EXT); 13845 reg &= ~CTRL_EXT_SWDPIN(3); 13846 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 13847 13848 /* Flush the write to verify completion */ 13849 CSR_WRITE_FLUSH(sc); 13850 delay(1000); 13851 } 13852 13853 static int 13854 wm_serdes_mediachange(struct ifnet *ifp) 13855 { 13856 struct wm_softc *sc = ifp->if_softc; 13857 bool pcs_autoneg = true; /* XXX */ 13858 uint32_t ctrl_ext, pcs_lctl, reg; 13859 13860 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES) 13861 && ((sc->sc_flags & WM_F_SGMII) == 0)) 13862 return 0; 13863 13864 /* XXX Currently, this function is not called on 8257[12] */ 13865 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572) 13866 || (sc->sc_type >= WM_T_82575)) 13867 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK); 13868 13869 /* Power on the sfp cage if present */ 13870 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT); 13871 ctrl_ext &= ~CTRL_EXT_SWDPIN(3); 13872 ctrl_ext |= CTRL_EXT_I2C_ENA; 13873 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext); 13874 13875 sc->sc_ctrl |= CTRL_SLU; 13876 13877 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)) { 13878 sc->sc_ctrl |= CTRL_SWDPIN(0) | CTRL_SWDPIN(1); 13879 13880 reg = CSR_READ(sc, WMREG_CONNSW); 13881 reg |= CONNSW_ENRGSRC; 13882 CSR_WRITE(sc, WMREG_CONNSW, reg); 13883 } 13884 13885 pcs_lctl = CSR_READ(sc, WMREG_PCS_LCTL); 13886 switch (ctrl_ext & CTRL_EXT_LINK_MODE_MASK) { 13887 case CTRL_EXT_LINK_MODE_SGMII: 13888 /* SGMII mode lets the phy handle forcing speed/duplex */ 13889 pcs_autoneg = true; 13890 /* Autoneg time out should be disabled for SGMII mode */ 13891 pcs_lctl &= ~PCS_LCTL_AN_TIMEOUT; 13892 break; 13893 case CTRL_EXT_LINK_MODE_1000KX: 13894 pcs_autoneg = false; 13895 /* FALLTHROUGH */ 13896 default: 13897 if ((sc->sc_type == WM_T_82575) 13898 || (sc->sc_type == WM_T_82576)) { 13899 if ((sc->sc_flags & WM_F_PCS_DIS_AUTONEGO) != 0) 13900 pcs_autoneg = false; 13901 } 13902 sc->sc_ctrl |= CTRL_SPEED_1000 | CTRL_FRCSPD | CTRL_FD 13903 | CTRL_FRCFDX; 13904 13905 /* Set speed of 1000/Full if speed/duplex is forced */ 13906 pcs_lctl |= PCS_LCTL_FSV_1000 | PCS_LCTL_FDV_FULL; 13907 } 13908 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl); 13909 13910 pcs_lctl &= ~(PCS_LCTL_AN_ENABLE | PCS_LCTL_FLV_LINK_UP | 13911 PCS_LCTL_FSD | PCS_LCTL_FORCE_LINK); 13912 13913 if (pcs_autoneg) { 13914 /* Set PCS register for autoneg */ 13915 pcs_lctl |= PCS_LCTL_AN_ENABLE | PCS_LCTL_AN_RESTART; 13916 13917 /* Disable force flow control for autoneg */ 13918 pcs_lctl &= ~PCS_LCTL_FORCE_FC; 13919 13920 /* Configure flow control advertisement for autoneg */ 13921 reg = CSR_READ(sc, WMREG_PCS_ANADV); 13922 reg &= ~(TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE); 13923 reg |= TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE; 13924 CSR_WRITE(sc, WMREG_PCS_ANADV, reg); 13925 } else 13926 pcs_lctl |= PCS_LCTL_FSD | PCS_LCTL_FORCE_FC; 13927 13928 CSR_WRITE(sc, WMREG_PCS_LCTL, pcs_lctl); 13929 13930 return 0; 13931 } 13932 13933 static void 13934 wm_serdes_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 13935 { 13936 struct wm_softc *sc = ifp->if_softc; 13937 struct mii_data *mii = &sc->sc_mii; 13938 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 13939 uint32_t pcs_adv, pcs_lpab, reg; 13940 13941 ifmr->ifm_status = IFM_AVALID; 13942 ifmr->ifm_active = IFM_ETHER; 13943 13944 /* Check PCS */ 13945 reg = CSR_READ(sc, WMREG_PCS_LSTS); 13946 if ((reg & PCS_LSTS_LINKOK) == 0) { 13947 ifmr->ifm_active |= IFM_NONE; 13948 sc->sc_tbi_linkup = 0; 13949 goto setled; 13950 } 13951 13952 sc->sc_tbi_linkup = 1; 13953 ifmr->ifm_status |= IFM_ACTIVE; 13954 if (sc->sc_type == WM_T_I354) { 13955 uint32_t status; 13956 13957 status = CSR_READ(sc, WMREG_STATUS); 13958 if (((status & STATUS_2P5_SKU) != 0) 13959 && ((status & STATUS_2P5_SKU_OVER) == 0)) { 13960 ifmr->ifm_active |= IFM_2500_KX; 13961 } else 13962 ifmr->ifm_active |= IFM_1000_KX; 13963 } else { 13964 switch (__SHIFTOUT(reg, PCS_LSTS_SPEED)) { 13965 case PCS_LSTS_SPEED_10: 13966 ifmr->ifm_active |= IFM_10_T; /* XXX */ 13967 break; 13968 case PCS_LSTS_SPEED_100: 13969 ifmr->ifm_active |= IFM_100_FX; /* XXX */ 13970 break; 13971 case PCS_LSTS_SPEED_1000: 13972 ifmr->ifm_active |= IFM_1000_SX; /* XXX */ 13973 break; 13974 default: 13975 device_printf(sc->sc_dev, "Unknown speed\n"); 13976 ifmr->ifm_active |= IFM_1000_SX; /* XXX */ 13977 break; 13978 } 13979 } 13980 ifp->if_baudrate = ifmedia_baudrate(ifmr->ifm_active); 13981 if ((reg & PCS_LSTS_FDX) != 0) 13982 ifmr->ifm_active |= IFM_FDX; 13983 else 13984 ifmr->ifm_active |= IFM_HDX; 13985 mii->mii_media_active &= ~IFM_ETH_FMASK; 13986 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) { 13987 /* Check flow */ 13988 reg = CSR_READ(sc, WMREG_PCS_LSTS); 13989 if ((reg & PCS_LSTS_AN_COMP) == 0) { 13990 DPRINTF(sc, WM_DEBUG_LINK, 13991 ("XXX LINKOK but not ACOMP\n")); 13992 goto setled; 13993 } 13994 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV); 13995 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB); 13996 DPRINTF(sc, WM_DEBUG_LINK, 13997 ("XXX AN result(2) %08x, %08x\n", pcs_adv, pcs_lpab)); 13998 if ((pcs_adv & TXCW_SYM_PAUSE) 13999 && (pcs_lpab & TXCW_SYM_PAUSE)) { 14000 mii->mii_media_active |= IFM_FLOW 14001 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 14002 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0) 14003 && (pcs_adv & TXCW_ASYM_PAUSE) 14004 && (pcs_lpab & TXCW_SYM_PAUSE) 14005 && (pcs_lpab & TXCW_ASYM_PAUSE)) { 14006 mii->mii_media_active |= IFM_FLOW 14007 | IFM_ETH_TXPAUSE; 14008 } else if ((pcs_adv & TXCW_SYM_PAUSE) 14009 && (pcs_adv & TXCW_ASYM_PAUSE) 14010 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0) 14011 && (pcs_lpab & TXCW_ASYM_PAUSE)) { 14012 mii->mii_media_active |= IFM_FLOW 14013 | IFM_ETH_RXPAUSE; 14014 } 14015 } 14016 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) 14017 | (mii->mii_media_active & IFM_ETH_FMASK); 14018 setled: 14019 wm_tbi_serdes_set_linkled(sc); 14020 } 14021 14022 /* 14023 * wm_serdes_tick: 14024 * 14025 * Check the link on serdes devices. 14026 */ 14027 static void 14028 wm_serdes_tick(struct wm_softc *sc) 14029 { 14030 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 14031 struct mii_data *mii = &sc->sc_mii; 14032 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 14033 uint32_t reg; 14034 14035 KASSERT(mutex_owned(sc->sc_core_lock)); 14036 14037 mii->mii_media_status = IFM_AVALID; 14038 mii->mii_media_active = IFM_ETHER; 14039 14040 /* Check PCS */ 14041 reg = CSR_READ(sc, WMREG_PCS_LSTS); 14042 if ((reg & PCS_LSTS_LINKOK) != 0) { 14043 mii->mii_media_status |= IFM_ACTIVE; 14044 sc->sc_tbi_linkup = 1; 14045 sc->sc_tbi_serdes_ticks = 0; 14046 mii->mii_media_active |= IFM_1000_SX; /* XXX */ 14047 if ((reg & PCS_LSTS_FDX) != 0) 14048 mii->mii_media_active |= IFM_FDX; 14049 else 14050 mii->mii_media_active |= IFM_HDX; 14051 } else { 14052 mii->mii_media_status |= IFM_NONE; 14053 sc->sc_tbi_linkup = 0; 14054 /* If the timer expired, retry autonegotiation */ 14055 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) 14056 && (++sc->sc_tbi_serdes_ticks 14057 >= sc->sc_tbi_serdes_anegticks)) { 14058 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: EXPIRE\n", 14059 device_xname(sc->sc_dev), __func__)); 14060 sc->sc_tbi_serdes_ticks = 0; 14061 /* XXX */ 14062 wm_serdes_mediachange(ifp); 14063 } 14064 } 14065 14066 wm_tbi_serdes_set_linkled(sc); 14067 } 14068 14069 /* SFP related */ 14070 14071 static int 14072 wm_sfp_read_data_byte(struct wm_softc *sc, uint16_t offset, uint8_t *data) 14073 { 14074 uint32_t i2ccmd; 14075 int i; 14076 14077 i2ccmd = (offset << I2CCMD_REG_ADDR_SHIFT) | I2CCMD_OPCODE_READ; 14078 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd); 14079 14080 /* Poll the ready bit */ 14081 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) { 14082 delay(50); 14083 i2ccmd = CSR_READ(sc, WMREG_I2CCMD); 14084 if (i2ccmd & I2CCMD_READY) 14085 break; 14086 } 14087 if ((i2ccmd & I2CCMD_READY) == 0) 14088 return -1; 14089 if ((i2ccmd & I2CCMD_ERROR) != 0) 14090 return -1; 14091 14092 *data = i2ccmd & 0x00ff; 14093 14094 return 0; 14095 } 14096 14097 static uint32_t 14098 wm_sfp_get_media_type(struct wm_softc *sc) 14099 { 14100 uint32_t ctrl_ext; 14101 uint8_t val = 0; 14102 int timeout = 3; 14103 uint32_t mediatype = WM_MEDIATYPE_UNKNOWN; 14104 int rv = -1; 14105 14106 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT); 14107 ctrl_ext &= ~CTRL_EXT_SWDPIN(3); 14108 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_I2C_ENA); 14109 CSR_WRITE_FLUSH(sc); 14110 14111 /* Read SFP module data */ 14112 while (timeout) { 14113 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ID_OFF, &val); 14114 if (rv == 0) 14115 break; 14116 delay(100*1000); /* XXX too big */ 14117 timeout--; 14118 } 14119 if (rv != 0) 14120 goto out; 14121 14122 switch (val) { 14123 case SFF_SFP_ID_SFF: 14124 aprint_normal_dev(sc->sc_dev, 14125 "Module/Connector soldered to board\n"); 14126 break; 14127 case SFF_SFP_ID_SFP: 14128 sc->sc_flags |= WM_F_SFP; 14129 break; 14130 case SFF_SFP_ID_UNKNOWN: 14131 goto out; 14132 default: 14133 break; 14134 } 14135 14136 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ETH_FLAGS_OFF, &val); 14137 if (rv != 0) 14138 goto out; 14139 14140 sc->sc_sfptype = val; 14141 if ((val & (SFF_SFP_ETH_FLAGS_1000SX | SFF_SFP_ETH_FLAGS_1000LX)) != 0) 14142 mediatype = WM_MEDIATYPE_SERDES; 14143 else if ((val & SFF_SFP_ETH_FLAGS_1000T) != 0) { 14144 sc->sc_flags |= WM_F_SGMII; 14145 mediatype = WM_MEDIATYPE_COPPER; 14146 } else if ((val & SFF_SFP_ETH_FLAGS_100FX) != 0) { 14147 sc->sc_flags |= WM_F_SGMII; 14148 mediatype = WM_MEDIATYPE_SERDES; 14149 } else { 14150 device_printf(sc->sc_dev, "%s: unknown media type? (0x%hhx)\n", 14151 __func__, sc->sc_sfptype); 14152 sc->sc_sfptype = 0; /* XXX unknown */ 14153 } 14154 14155 out: 14156 /* Restore I2C interface setting */ 14157 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext); 14158 14159 return mediatype; 14160 } 14161 14162 /* 14163 * NVM related. 14164 * Microwire, SPI (w/wo EERD) and Flash. 14165 */ 14166 14167 /* Both spi and uwire */ 14168 14169 /* 14170 * wm_eeprom_sendbits: 14171 * 14172 * Send a series of bits to the EEPROM. 14173 */ 14174 static void 14175 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits) 14176 { 14177 uint32_t reg; 14178 int x; 14179 14180 reg = CSR_READ(sc, WMREG_EECD); 14181 14182 for (x = nbits; x > 0; x--) { 14183 if (bits & (1U << (x - 1))) 14184 reg |= EECD_DI; 14185 else 14186 reg &= ~EECD_DI; 14187 CSR_WRITE(sc, WMREG_EECD, reg); 14188 CSR_WRITE_FLUSH(sc); 14189 delay(2); 14190 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK); 14191 CSR_WRITE_FLUSH(sc); 14192 delay(2); 14193 CSR_WRITE(sc, WMREG_EECD, reg); 14194 CSR_WRITE_FLUSH(sc); 14195 delay(2); 14196 } 14197 } 14198 14199 /* 14200 * wm_eeprom_recvbits: 14201 * 14202 * Receive a series of bits from the EEPROM. 14203 */ 14204 static void 14205 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits) 14206 { 14207 uint32_t reg, val; 14208 int x; 14209 14210 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI; 14211 14212 val = 0; 14213 for (x = nbits; x > 0; x--) { 14214 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK); 14215 CSR_WRITE_FLUSH(sc); 14216 delay(2); 14217 if (CSR_READ(sc, WMREG_EECD) & EECD_DO) 14218 val |= (1U << (x - 1)); 14219 CSR_WRITE(sc, WMREG_EECD, reg); 14220 CSR_WRITE_FLUSH(sc); 14221 delay(2); 14222 } 14223 *valp = val; 14224 } 14225 14226 /* Microwire */ 14227 14228 /* 14229 * wm_nvm_read_uwire: 14230 * 14231 * Read a word from the EEPROM using the MicroWire protocol. 14232 */ 14233 static int 14234 wm_nvm_read_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 14235 { 14236 uint32_t reg, val; 14237 int i, rv; 14238 14239 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 14240 device_xname(sc->sc_dev), __func__)); 14241 14242 rv = sc->nvm.acquire(sc); 14243 if (rv != 0) 14244 return rv; 14245 14246 for (i = 0; i < wordcnt; i++) { 14247 /* Clear SK and DI. */ 14248 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI); 14249 CSR_WRITE(sc, WMREG_EECD, reg); 14250 14251 /* 14252 * XXX: workaround for a bug in qemu-0.12.x and prior 14253 * and Xen. 14254 * 14255 * We use this workaround only for 82540 because qemu's 14256 * e1000 act as 82540. 14257 */ 14258 if (sc->sc_type == WM_T_82540) { 14259 reg |= EECD_SK; 14260 CSR_WRITE(sc, WMREG_EECD, reg); 14261 reg &= ~EECD_SK; 14262 CSR_WRITE(sc, WMREG_EECD, reg); 14263 CSR_WRITE_FLUSH(sc); 14264 delay(2); 14265 } 14266 /* XXX: end of workaround */ 14267 14268 /* Set CHIP SELECT. */ 14269 reg |= EECD_CS; 14270 CSR_WRITE(sc, WMREG_EECD, reg); 14271 CSR_WRITE_FLUSH(sc); 14272 delay(2); 14273 14274 /* Shift in the READ command. */ 14275 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3); 14276 14277 /* Shift in address. */ 14278 wm_eeprom_sendbits(sc, word + i, sc->sc_nvm_addrbits); 14279 14280 /* Shift out the data. */ 14281 wm_eeprom_recvbits(sc, &val, 16); 14282 data[i] = val & 0xffff; 14283 14284 /* Clear CHIP SELECT. */ 14285 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS; 14286 CSR_WRITE(sc, WMREG_EECD, reg); 14287 CSR_WRITE_FLUSH(sc); 14288 delay(2); 14289 } 14290 14291 sc->nvm.release(sc); 14292 return 0; 14293 } 14294 14295 /* SPI */ 14296 14297 /* 14298 * Set SPI and FLASH related information from the EECD register. 14299 * For 82541 and 82547, the word size is taken from EEPROM. 14300 */ 14301 static int 14302 wm_nvm_set_addrbits_size_eecd(struct wm_softc *sc) 14303 { 14304 int size; 14305 uint32_t reg; 14306 uint16_t data; 14307 14308 reg = CSR_READ(sc, WMREG_EECD); 14309 sc->sc_nvm_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8; 14310 14311 /* Read the size of NVM from EECD by default */ 14312 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK); 14313 switch (sc->sc_type) { 14314 case WM_T_82541: 14315 case WM_T_82541_2: 14316 case WM_T_82547: 14317 case WM_T_82547_2: 14318 /* Set dummy value to access EEPROM */ 14319 sc->sc_nvm_wordsize = 64; 14320 if (wm_nvm_read(sc, NVM_OFF_EEPROM_SIZE, 1, &data) != 0) { 14321 aprint_error_dev(sc->sc_dev, 14322 "%s: failed to read EEPROM size\n", __func__); 14323 } 14324 reg = data; 14325 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK); 14326 if (size == 0) 14327 size = 6; /* 64 word size */ 14328 else 14329 size += NVM_WORD_SIZE_BASE_SHIFT + 1; 14330 break; 14331 case WM_T_80003: 14332 case WM_T_82571: 14333 case WM_T_82572: 14334 case WM_T_82573: /* SPI case */ 14335 case WM_T_82574: /* SPI case */ 14336 case WM_T_82583: /* SPI case */ 14337 size += NVM_WORD_SIZE_BASE_SHIFT; 14338 if (size > 14) 14339 size = 14; 14340 break; 14341 case WM_T_82575: 14342 case WM_T_82576: 14343 case WM_T_82580: 14344 case WM_T_I350: 14345 case WM_T_I354: 14346 case WM_T_I210: 14347 case WM_T_I211: 14348 size += NVM_WORD_SIZE_BASE_SHIFT; 14349 if (size > 15) 14350 size = 15; 14351 break; 14352 default: 14353 aprint_error_dev(sc->sc_dev, 14354 "%s: unknown device(%d)?\n", __func__, sc->sc_type); 14355 return -1; 14356 break; 14357 } 14358 14359 sc->sc_nvm_wordsize = 1 << size; 14360 14361 return 0; 14362 } 14363 14364 /* 14365 * wm_nvm_ready_spi: 14366 * 14367 * Wait for a SPI EEPROM to be ready for commands. 14368 */ 14369 static int 14370 wm_nvm_ready_spi(struct wm_softc *sc) 14371 { 14372 uint32_t val; 14373 int usec; 14374 14375 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 14376 device_xname(sc->sc_dev), __func__)); 14377 14378 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) { 14379 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8); 14380 wm_eeprom_recvbits(sc, &val, 8); 14381 if ((val & SPI_SR_RDY) == 0) 14382 break; 14383 } 14384 if (usec >= SPI_MAX_RETRIES) { 14385 aprint_error_dev(sc->sc_dev,"EEPROM failed to become ready\n"); 14386 return -1; 14387 } 14388 return 0; 14389 } 14390 14391 /* 14392 * wm_nvm_read_spi: 14393 * 14394 * Read a work from the EEPROM using the SPI protocol. 14395 */ 14396 static int 14397 wm_nvm_read_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 14398 { 14399 uint32_t reg, val; 14400 int i; 14401 uint8_t opc; 14402 int rv; 14403 14404 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 14405 device_xname(sc->sc_dev), __func__)); 14406 14407 rv = sc->nvm.acquire(sc); 14408 if (rv != 0) 14409 return rv; 14410 14411 /* Clear SK and CS. */ 14412 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS); 14413 CSR_WRITE(sc, WMREG_EECD, reg); 14414 CSR_WRITE_FLUSH(sc); 14415 delay(2); 14416 14417 if ((rv = wm_nvm_ready_spi(sc)) != 0) 14418 goto out; 14419 14420 /* Toggle CS to flush commands. */ 14421 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS); 14422 CSR_WRITE_FLUSH(sc); 14423 delay(2); 14424 CSR_WRITE(sc, WMREG_EECD, reg); 14425 CSR_WRITE_FLUSH(sc); 14426 delay(2); 14427 14428 opc = SPI_OPC_READ; 14429 if (sc->sc_nvm_addrbits == 8 && word >= 128) 14430 opc |= SPI_OPC_A8; 14431 14432 wm_eeprom_sendbits(sc, opc, 8); 14433 wm_eeprom_sendbits(sc, word << 1, sc->sc_nvm_addrbits); 14434 14435 for (i = 0; i < wordcnt; i++) { 14436 wm_eeprom_recvbits(sc, &val, 16); 14437 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8); 14438 } 14439 14440 /* Raise CS and clear SK. */ 14441 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS; 14442 CSR_WRITE(sc, WMREG_EECD, reg); 14443 CSR_WRITE_FLUSH(sc); 14444 delay(2); 14445 14446 out: 14447 sc->nvm.release(sc); 14448 return rv; 14449 } 14450 14451 /* Using with EERD */ 14452 14453 static int 14454 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw) 14455 { 14456 uint32_t attempts = 100000; 14457 uint32_t i, reg = 0; 14458 int32_t done = -1; 14459 14460 for (i = 0; i < attempts; i++) { 14461 reg = CSR_READ(sc, rw); 14462 14463 if (reg & EERD_DONE) { 14464 done = 0; 14465 break; 14466 } 14467 delay(5); 14468 } 14469 14470 return done; 14471 } 14472 14473 static int 14474 wm_nvm_read_eerd(struct wm_softc *sc, int offset, int wordcnt, uint16_t *data) 14475 { 14476 int i, eerd = 0; 14477 int rv; 14478 14479 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 14480 device_xname(sc->sc_dev), __func__)); 14481 14482 rv = sc->nvm.acquire(sc); 14483 if (rv != 0) 14484 return rv; 14485 14486 for (i = 0; i < wordcnt; i++) { 14487 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START; 14488 CSR_WRITE(sc, WMREG_EERD, eerd); 14489 rv = wm_poll_eerd_eewr_done(sc, WMREG_EERD); 14490 if (rv != 0) { 14491 aprint_error_dev(sc->sc_dev, "EERD polling failed: " 14492 "offset=%d. wordcnt=%d\n", offset, wordcnt); 14493 break; 14494 } 14495 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT); 14496 } 14497 14498 sc->nvm.release(sc); 14499 return rv; 14500 } 14501 14502 /* Flash */ 14503 14504 static int 14505 wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank) 14506 { 14507 uint32_t eecd; 14508 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1; 14509 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t); 14510 uint32_t nvm_dword = 0; 14511 uint8_t sig_byte = 0; 14512 int rv; 14513 14514 switch (sc->sc_type) { 14515 case WM_T_PCH_SPT: 14516 case WM_T_PCH_CNP: 14517 case WM_T_PCH_TGP: 14518 bank1_offset = sc->sc_ich8_flash_bank_size * 2; 14519 act_offset = ICH_NVM_SIG_WORD * 2; 14520 14521 /* Set bank to 0 in case flash read fails. */ 14522 *bank = 0; 14523 14524 /* Check bank 0 */ 14525 rv = wm_read_ich8_dword(sc, act_offset, &nvm_dword); 14526 if (rv != 0) 14527 return rv; 14528 sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8); 14529 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) { 14530 *bank = 0; 14531 return 0; 14532 } 14533 14534 /* Check bank 1 */ 14535 rv = wm_read_ich8_dword(sc, act_offset + bank1_offset, 14536 &nvm_dword); 14537 sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8); 14538 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) { 14539 *bank = 1; 14540 return 0; 14541 } 14542 aprint_error_dev(sc->sc_dev, 14543 "%s: no valid NVM bank present (%u)\n", __func__, *bank); 14544 return -1; 14545 case WM_T_ICH8: 14546 case WM_T_ICH9: 14547 eecd = CSR_READ(sc, WMREG_EECD); 14548 if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) { 14549 *bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0; 14550 return 0; 14551 } 14552 /* FALLTHROUGH */ 14553 default: 14554 /* Default to 0 */ 14555 *bank = 0; 14556 14557 /* Check bank 0 */ 14558 wm_read_ich8_byte(sc, act_offset, &sig_byte); 14559 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) { 14560 *bank = 0; 14561 return 0; 14562 } 14563 14564 /* Check bank 1 */ 14565 wm_read_ich8_byte(sc, act_offset + bank1_offset, 14566 &sig_byte); 14567 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) { 14568 *bank = 1; 14569 return 0; 14570 } 14571 } 14572 14573 DPRINTF(sc, WM_DEBUG_NVM, ("%s: No valid NVM bank present\n", 14574 device_xname(sc->sc_dev))); 14575 return -1; 14576 } 14577 14578 /****************************************************************************** 14579 * This function does initial flash setup so that a new read/write/erase cycle 14580 * can be started. 14581 * 14582 * sc - The pointer to the hw structure 14583 ****************************************************************************/ 14584 static int32_t 14585 wm_ich8_cycle_init(struct wm_softc *sc) 14586 { 14587 uint16_t hsfsts; 14588 int32_t error = 1; 14589 int32_t i = 0; 14590 14591 if (sc->sc_type >= WM_T_PCH_SPT) 14592 hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) & 0xffffUL; 14593 else 14594 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS); 14595 14596 /* May be check the Flash Des Valid bit in Hw status */ 14597 if ((hsfsts & HSFSTS_FLDVAL) == 0) 14598 return error; 14599 14600 /* Clear FCERR in Hw status by writing 1 */ 14601 /* Clear DAEL in Hw status by writing a 1 */ 14602 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL; 14603 14604 if (sc->sc_type >= WM_T_PCH_SPT) 14605 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, hsfsts & 0xffffUL); 14606 else 14607 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts); 14608 14609 /* 14610 * Either we should have a hardware SPI cycle in progress bit to check 14611 * against, in order to start a new cycle or FDONE bit should be 14612 * changed in the hardware so that it is 1 after hardware reset, which 14613 * can then be used as an indication whether a cycle is in progress or 14614 * has been completed .. we should also have some software semaphore 14615 * mechanism to guard FDONE or the cycle in progress bit so that two 14616 * threads access to those bits can be sequentiallized or a way so that 14617 * 2 threads don't start the cycle at the same time 14618 */ 14619 14620 if ((hsfsts & HSFSTS_FLINPRO) == 0) { 14621 /* 14622 * There is no cycle running at present, so we can start a 14623 * cycle 14624 */ 14625 14626 /* Begin by setting Flash Cycle Done. */ 14627 hsfsts |= HSFSTS_DONE; 14628 if (sc->sc_type >= WM_T_PCH_SPT) 14629 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, 14630 hsfsts & 0xffffUL); 14631 else 14632 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts); 14633 error = 0; 14634 } else { 14635 /* 14636 * Otherwise poll for sometime so the current cycle has a 14637 * chance to end before giving up. 14638 */ 14639 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { 14640 if (sc->sc_type >= WM_T_PCH_SPT) 14641 hsfsts = ICH8_FLASH_READ32(sc, 14642 ICH_FLASH_HSFSTS) & 0xffffUL; 14643 else 14644 hsfsts = ICH8_FLASH_READ16(sc, 14645 ICH_FLASH_HSFSTS); 14646 if ((hsfsts & HSFSTS_FLINPRO) == 0) { 14647 error = 0; 14648 break; 14649 } 14650 delay(1); 14651 } 14652 if (error == 0) { 14653 /* 14654 * Successful in waiting for previous cycle to timeout, 14655 * now set the Flash Cycle Done. 14656 */ 14657 hsfsts |= HSFSTS_DONE; 14658 if (sc->sc_type >= WM_T_PCH_SPT) 14659 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, 14660 hsfsts & 0xffffUL); 14661 else 14662 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, 14663 hsfsts); 14664 } 14665 } 14666 return error; 14667 } 14668 14669 /****************************************************************************** 14670 * This function starts a flash cycle and waits for its completion 14671 * 14672 * sc - The pointer to the hw structure 14673 ****************************************************************************/ 14674 static int32_t 14675 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout) 14676 { 14677 uint16_t hsflctl; 14678 uint16_t hsfsts; 14679 int32_t error = 1; 14680 uint32_t i = 0; 14681 14682 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 14683 if (sc->sc_type >= WM_T_PCH_SPT) 14684 hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) >> 16; 14685 else 14686 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL); 14687 hsflctl |= HSFCTL_GO; 14688 if (sc->sc_type >= WM_T_PCH_SPT) 14689 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, 14690 (uint32_t)hsflctl << 16); 14691 else 14692 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl); 14693 14694 /* Wait till FDONE bit is set to 1 */ 14695 do { 14696 if (sc->sc_type >= WM_T_PCH_SPT) 14697 hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) 14698 & 0xffffUL; 14699 else 14700 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS); 14701 if (hsfsts & HSFSTS_DONE) 14702 break; 14703 delay(1); 14704 i++; 14705 } while (i < timeout); 14706 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0) 14707 error = 0; 14708 14709 return error; 14710 } 14711 14712 /****************************************************************************** 14713 * Reads a byte or (d)word from the NVM using the ICH8 flash access registers. 14714 * 14715 * sc - The pointer to the hw structure 14716 * index - The index of the byte or word to read. 14717 * size - Size of data to read, 1=byte 2=word, 4=dword 14718 * data - Pointer to the word to store the value read. 14719 *****************************************************************************/ 14720 static int32_t 14721 wm_read_ich8_data(struct wm_softc *sc, uint32_t index, 14722 uint32_t size, uint32_t *data) 14723 { 14724 uint16_t hsfsts; 14725 uint16_t hsflctl; 14726 uint32_t flash_linear_address; 14727 uint32_t flash_data = 0; 14728 int32_t error = 1; 14729 int32_t count = 0; 14730 14731 if (size < 1 || size > 4 || data == 0x0 || 14732 index > ICH_FLASH_LINEAR_ADDR_MASK) 14733 return error; 14734 14735 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + 14736 sc->sc_ich8_flash_base; 14737 14738 do { 14739 delay(1); 14740 /* Steps */ 14741 error = wm_ich8_cycle_init(sc); 14742 if (error) 14743 break; 14744 14745 if (sc->sc_type >= WM_T_PCH_SPT) 14746 hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) 14747 >> 16; 14748 else 14749 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL); 14750 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 14751 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT) 14752 & HSFCTL_BCOUNT_MASK; 14753 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT; 14754 if (sc->sc_type >= WM_T_PCH_SPT) { 14755 /* 14756 * In SPT, This register is in Lan memory space, not 14757 * flash. Therefore, only 32 bit access is supported. 14758 */ 14759 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, 14760 (uint32_t)hsflctl << 16); 14761 } else 14762 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl); 14763 14764 /* 14765 * Write the last 24 bits of index into Flash Linear address 14766 * field in Flash Address 14767 */ 14768 /* TODO: TBD maybe check the index against the size of flash */ 14769 14770 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address); 14771 14772 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT); 14773 14774 /* 14775 * Check if FCERR is set to 1, if set to 1, clear it and try 14776 * the whole sequence a few more times, else read in (shift in) 14777 * the Flash Data0, the order is least significant byte first 14778 * msb to lsb 14779 */ 14780 if (error == 0) { 14781 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0); 14782 if (size == 1) 14783 *data = (uint8_t)(flash_data & 0x000000FF); 14784 else if (size == 2) 14785 *data = (uint16_t)(flash_data & 0x0000FFFF); 14786 else if (size == 4) 14787 *data = (uint32_t)flash_data; 14788 break; 14789 } else { 14790 /* 14791 * If we've gotten here, then things are probably 14792 * completely hosed, but if the error condition is 14793 * detected, it won't hurt to give it another try... 14794 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 14795 */ 14796 if (sc->sc_type >= WM_T_PCH_SPT) 14797 hsfsts = ICH8_FLASH_READ32(sc, 14798 ICH_FLASH_HSFSTS) & 0xffffUL; 14799 else 14800 hsfsts = ICH8_FLASH_READ16(sc, 14801 ICH_FLASH_HSFSTS); 14802 14803 if (hsfsts & HSFSTS_ERR) { 14804 /* Repeat for some time before giving up. */ 14805 continue; 14806 } else if ((hsfsts & HSFSTS_DONE) == 0) 14807 break; 14808 } 14809 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 14810 14811 return error; 14812 } 14813 14814 /****************************************************************************** 14815 * Reads a single byte from the NVM using the ICH8 flash access registers. 14816 * 14817 * sc - pointer to wm_hw structure 14818 * index - The index of the byte to read. 14819 * data - Pointer to a byte to store the value read. 14820 *****************************************************************************/ 14821 static int32_t 14822 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data) 14823 { 14824 int32_t status; 14825 uint32_t word = 0; 14826 14827 status = wm_read_ich8_data(sc, index, 1, &word); 14828 if (status == 0) 14829 *data = (uint8_t)word; 14830 else 14831 *data = 0; 14832 14833 return status; 14834 } 14835 14836 /****************************************************************************** 14837 * Reads a word from the NVM using the ICH8 flash access registers. 14838 * 14839 * sc - pointer to wm_hw structure 14840 * index - The starting byte index of the word to read. 14841 * data - Pointer to a word to store the value read. 14842 *****************************************************************************/ 14843 static int32_t 14844 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data) 14845 { 14846 int32_t status; 14847 uint32_t word = 0; 14848 14849 status = wm_read_ich8_data(sc, index, 2, &word); 14850 if (status == 0) 14851 *data = (uint16_t)word; 14852 else 14853 *data = 0; 14854 14855 return status; 14856 } 14857 14858 /****************************************************************************** 14859 * Reads a dword from the NVM using the ICH8 flash access registers. 14860 * 14861 * sc - pointer to wm_hw structure 14862 * index - The starting byte index of the word to read. 14863 * data - Pointer to a word to store the value read. 14864 *****************************************************************************/ 14865 static int32_t 14866 wm_read_ich8_dword(struct wm_softc *sc, uint32_t index, uint32_t *data) 14867 { 14868 int32_t status; 14869 14870 status = wm_read_ich8_data(sc, index, 4, data); 14871 return status; 14872 } 14873 14874 /****************************************************************************** 14875 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access 14876 * register. 14877 * 14878 * sc - Struct containing variables accessed by shared code 14879 * offset - offset of word in the EEPROM to read 14880 * data - word read from the EEPROM 14881 * words - number of words to read 14882 *****************************************************************************/ 14883 static int 14884 wm_nvm_read_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data) 14885 { 14886 int rv; 14887 uint32_t flash_bank = 0; 14888 uint32_t act_offset = 0; 14889 uint32_t bank_offset = 0; 14890 uint16_t word = 0; 14891 uint16_t i = 0; 14892 14893 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 14894 device_xname(sc->sc_dev), __func__)); 14895 14896 rv = sc->nvm.acquire(sc); 14897 if (rv != 0) 14898 return rv; 14899 14900 /* 14901 * We need to know which is the valid flash bank. In the event 14902 * that we didn't allocate eeprom_shadow_ram, we may not be 14903 * managing flash_bank. So it cannot be trusted and needs 14904 * to be updated with each read. 14905 */ 14906 rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank); 14907 if (rv) { 14908 DPRINTF(sc, WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n", 14909 device_xname(sc->sc_dev))); 14910 flash_bank = 0; 14911 } 14912 14913 /* 14914 * Adjust offset appropriately if we're on bank 1 - adjust for word 14915 * size 14916 */ 14917 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2); 14918 14919 for (i = 0; i < words; i++) { 14920 /* The NVM part needs a byte offset, hence * 2 */ 14921 act_offset = bank_offset + ((offset + i) * 2); 14922 rv = wm_read_ich8_word(sc, act_offset, &word); 14923 if (rv) { 14924 aprint_error_dev(sc->sc_dev, 14925 "%s: failed to read NVM\n", __func__); 14926 break; 14927 } 14928 data[i] = word; 14929 } 14930 14931 sc->nvm.release(sc); 14932 return rv; 14933 } 14934 14935 /****************************************************************************** 14936 * Reads a 16 bit word or words from the EEPROM using the SPT's flash access 14937 * register. 14938 * 14939 * sc - Struct containing variables accessed by shared code 14940 * offset - offset of word in the EEPROM to read 14941 * data - word read from the EEPROM 14942 * words - number of words to read 14943 *****************************************************************************/ 14944 static int 14945 wm_nvm_read_spt(struct wm_softc *sc, int offset, int words, uint16_t *data) 14946 { 14947 int rv; 14948 uint32_t flash_bank = 0; 14949 uint32_t act_offset = 0; 14950 uint32_t bank_offset = 0; 14951 uint32_t dword = 0; 14952 uint16_t i = 0; 14953 14954 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 14955 device_xname(sc->sc_dev), __func__)); 14956 14957 rv = sc->nvm.acquire(sc); 14958 if (rv != 0) 14959 return rv; 14960 14961 /* 14962 * We need to know which is the valid flash bank. In the event 14963 * that we didn't allocate eeprom_shadow_ram, we may not be 14964 * managing flash_bank. So it cannot be trusted and needs 14965 * to be updated with each read. 14966 */ 14967 rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank); 14968 if (rv) { 14969 DPRINTF(sc, WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n", 14970 device_xname(sc->sc_dev))); 14971 flash_bank = 0; 14972 } 14973 14974 /* 14975 * Adjust offset appropriately if we're on bank 1 - adjust for word 14976 * size 14977 */ 14978 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2); 14979 14980 for (i = 0; i < words; i++) { 14981 /* The NVM part needs a byte offset, hence * 2 */ 14982 act_offset = bank_offset + ((offset + i) * 2); 14983 /* but we must read dword aligned, so mask ... */ 14984 rv = wm_read_ich8_dword(sc, act_offset & ~0x3, &dword); 14985 if (rv) { 14986 aprint_error_dev(sc->sc_dev, 14987 "%s: failed to read NVM\n", __func__); 14988 break; 14989 } 14990 /* ... and pick out low or high word */ 14991 if ((act_offset & 0x2) == 0) 14992 data[i] = (uint16_t)(dword & 0xFFFF); 14993 else 14994 data[i] = (uint16_t)((dword >> 16) & 0xFFFF); 14995 } 14996 14997 sc->nvm.release(sc); 14998 return rv; 14999 } 15000 15001 /* iNVM */ 15002 15003 static int 15004 wm_nvm_read_word_invm(struct wm_softc *sc, uint16_t address, uint16_t *data) 15005 { 15006 int32_t rv = 0; 15007 uint32_t invm_dword; 15008 uint16_t i; 15009 uint8_t record_type, word_address; 15010 15011 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 15012 device_xname(sc->sc_dev), __func__)); 15013 15014 for (i = 0; i < INVM_SIZE; i++) { 15015 invm_dword = CSR_READ(sc, WM_INVM_DATA_REG(i)); 15016 /* Get record type */ 15017 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); 15018 if (record_type == INVM_UNINITIALIZED_STRUCTURE) 15019 break; 15020 if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE) 15021 i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; 15022 if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE) 15023 i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; 15024 if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE) { 15025 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); 15026 if (word_address == address) { 15027 *data = INVM_DWORD_TO_WORD_DATA(invm_dword); 15028 rv = 0; 15029 break; 15030 } 15031 } 15032 } 15033 15034 return rv; 15035 } 15036 15037 static int 15038 wm_nvm_read_invm(struct wm_softc *sc, int offset, int words, uint16_t *data) 15039 { 15040 int i, rv; 15041 15042 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 15043 device_xname(sc->sc_dev), __func__)); 15044 15045 rv = sc->nvm.acquire(sc); 15046 if (rv != 0) 15047 return rv; 15048 15049 for (i = 0; i < words; i++) { 15050 switch (offset + i) { 15051 case NVM_OFF_MACADDR: 15052 case NVM_OFF_MACADDR1: 15053 case NVM_OFF_MACADDR2: 15054 rv = wm_nvm_read_word_invm(sc, offset + i, &data[i]); 15055 if (rv != 0) { 15056 data[i] = 0xffff; 15057 rv = -1; 15058 } 15059 break; 15060 case NVM_OFF_CFG1: /* == INVM_AUTOLOAD */ 15061 rv = wm_nvm_read_word_invm(sc, offset, data); 15062 if (rv != 0) { 15063 *data = INVM_DEFAULT_AL; 15064 rv = 0; 15065 } 15066 break; 15067 case NVM_OFF_CFG2: 15068 rv = wm_nvm_read_word_invm(sc, offset, data); 15069 if (rv != 0) { 15070 *data = NVM_INIT_CTRL_2_DEFAULT_I211; 15071 rv = 0; 15072 } 15073 break; 15074 case NVM_OFF_CFG4: 15075 rv = wm_nvm_read_word_invm(sc, offset, data); 15076 if (rv != 0) { 15077 *data = NVM_INIT_CTRL_4_DEFAULT_I211; 15078 rv = 0; 15079 } 15080 break; 15081 case NVM_OFF_LED_1_CFG: 15082 rv = wm_nvm_read_word_invm(sc, offset, data); 15083 if (rv != 0) { 15084 *data = NVM_LED_1_CFG_DEFAULT_I211; 15085 rv = 0; 15086 } 15087 break; 15088 case NVM_OFF_LED_0_2_CFG: 15089 rv = wm_nvm_read_word_invm(sc, offset, data); 15090 if (rv != 0) { 15091 *data = NVM_LED_0_2_CFG_DEFAULT_I211; 15092 rv = 0; 15093 } 15094 break; 15095 case NVM_OFF_ID_LED_SETTINGS: 15096 rv = wm_nvm_read_word_invm(sc, offset, data); 15097 if (rv != 0) { 15098 *data = ID_LED_RESERVED_FFFF; 15099 rv = 0; 15100 } 15101 break; 15102 default: 15103 DPRINTF(sc, WM_DEBUG_NVM, 15104 ("NVM word 0x%02x is not mapped.\n", offset)); 15105 *data = NVM_RESERVED_WORD; 15106 break; 15107 } 15108 } 15109 15110 sc->nvm.release(sc); 15111 return rv; 15112 } 15113 15114 /* Lock, detecting NVM type, validate checksum, version and read */ 15115 15116 static int 15117 wm_nvm_is_onboard_eeprom(struct wm_softc *sc) 15118 { 15119 uint32_t eecd = 0; 15120 15121 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574 15122 || sc->sc_type == WM_T_82583) { 15123 eecd = CSR_READ(sc, WMREG_EECD); 15124 15125 /* Isolate bits 15 & 16 */ 15126 eecd = ((eecd >> 15) & 0x03); 15127 15128 /* If both bits are set, device is Flash type */ 15129 if (eecd == 0x03) 15130 return 0; 15131 } 15132 return 1; 15133 } 15134 15135 static int 15136 wm_nvm_flash_presence_i210(struct wm_softc *sc) 15137 { 15138 uint32_t eec; 15139 15140 eec = CSR_READ(sc, WMREG_EEC); 15141 if ((eec & EEC_FLASH_DETECTED) != 0) 15142 return 1; 15143 15144 return 0; 15145 } 15146 15147 /* 15148 * wm_nvm_validate_checksum 15149 * 15150 * The checksum is defined as the sum of the first 64 (16 bit) words. 15151 */ 15152 static int 15153 wm_nvm_validate_checksum(struct wm_softc *sc) 15154 { 15155 uint16_t checksum; 15156 uint16_t eeprom_data; 15157 #ifdef WM_DEBUG 15158 uint16_t csum_wordaddr, valid_checksum; 15159 #endif 15160 int i; 15161 15162 checksum = 0; 15163 15164 /* Don't check for I211 */ 15165 if (sc->sc_type == WM_T_I211) 15166 return 0; 15167 15168 #ifdef WM_DEBUG 15169 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT) || 15170 (sc->sc_type == WM_T_PCH_CNP) || (sc->sc_type == WM_T_PCH_TGP)) { 15171 csum_wordaddr = NVM_OFF_COMPAT; 15172 valid_checksum = NVM_COMPAT_VALID_CHECKSUM; 15173 } else { 15174 csum_wordaddr = NVM_OFF_FUTURE_INIT_WORD1; 15175 valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM; 15176 } 15177 15178 /* Dump EEPROM image for debug */ 15179 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 15180 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) 15181 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) { 15182 /* XXX PCH_SPT? */ 15183 wm_nvm_read(sc, csum_wordaddr, 1, &eeprom_data); 15184 if ((eeprom_data & valid_checksum) == 0) 15185 DPRINTF(sc, WM_DEBUG_NVM, 15186 ("%s: NVM need to be updated (%04x != %04x)\n", 15187 device_xname(sc->sc_dev), eeprom_data, 15188 valid_checksum)); 15189 } 15190 15191 if ((sc->sc_debug & WM_DEBUG_NVM) != 0) { 15192 printf("%s: NVM dump:\n", device_xname(sc->sc_dev)); 15193 for (i = 0; i < NVM_SIZE; i++) { 15194 if (wm_nvm_read(sc, i, 1, &eeprom_data)) 15195 printf("XXXX "); 15196 else 15197 printf("%04hx ", eeprom_data); 15198 if (i % 8 == 7) 15199 printf("\n"); 15200 } 15201 } 15202 15203 #endif /* WM_DEBUG */ 15204 15205 for (i = 0; i < NVM_SIZE; i++) { 15206 if (wm_nvm_read(sc, i, 1, &eeprom_data)) 15207 return -1; 15208 checksum += eeprom_data; 15209 } 15210 15211 if (checksum != (uint16_t) NVM_CHECKSUM) { 15212 #ifdef WM_DEBUG 15213 printf("%s: NVM checksum mismatch (%04x != %04x)\n", 15214 device_xname(sc->sc_dev), checksum, NVM_CHECKSUM); 15215 #endif 15216 } 15217 15218 return 0; 15219 } 15220 15221 static void 15222 wm_nvm_version_invm(struct wm_softc *sc) 15223 { 15224 uint32_t dword; 15225 15226 /* 15227 * Linux's code to decode version is very strange, so we don't 15228 * obey that algorithm and just use word 61 as the document. 15229 * Perhaps it's not perfect though... 15230 * 15231 * Example: 15232 * 15233 * Word61: 00800030 -> Version 0.6 (I211 spec update notes about 0.6) 15234 */ 15235 dword = CSR_READ(sc, WM_INVM_DATA_REG(61)); 15236 dword = __SHIFTOUT(dword, INVM_VER_1); 15237 sc->sc_nvm_ver_major = __SHIFTOUT(dword, INVM_MAJOR); 15238 sc->sc_nvm_ver_minor = __SHIFTOUT(dword, INVM_MINOR); 15239 } 15240 15241 static void 15242 wm_nvm_version(struct wm_softc *sc) 15243 { 15244 uint16_t major, minor, build, patch; 15245 uint16_t uid0, uid1; 15246 uint16_t nvm_data; 15247 uint16_t off; 15248 bool check_version = false; 15249 bool check_optionrom = false; 15250 bool have_build = false; 15251 bool have_uid = true; 15252 15253 /* 15254 * Version format: 15255 * 15256 * XYYZ 15257 * X0YZ 15258 * X0YY 15259 * 15260 * Example: 15261 * 15262 * 82571 0x50a2 5.10.2? (the spec update notes about 5.6-5.10) 15263 * 82571 0x50a6 5.10.6? 15264 * 82572 0x506a 5.6.10? 15265 * 82572EI 0x5069 5.6.9? 15266 * 82574L 0x1080 1.8.0? (the spec update notes about 2.1.4) 15267 * 0x2013 2.1.3? 15268 * 82583 0x10a0 1.10.0? (document says it's default value) 15269 * ICH8+82567 0x0040 0.4.0? 15270 * ICH9+82566 0x1040 1.4.0? 15271 *ICH10+82567 0x0043 0.4.3? 15272 * PCH+82577 0x00c1 0.12.1? 15273 * PCH2+82579 0x00d3 0.13.3? 15274 * 0x00d4 0.13.4? 15275 * LPT+I218 0x0023 0.2.3? 15276 * SPT+I219 0x0084 0.8.4? 15277 * CNP+I219 0x0054 0.5.4? 15278 */ 15279 15280 /* 15281 * XXX 15282 * Qemu's e1000e emulation (82574L)'s SPI has only 64 words. 15283 * I've never seen real 82574 hardware with such small SPI ROM. 15284 */ 15285 if ((sc->sc_nvm_wordsize < NVM_OFF_IMAGE_UID1) 15286 || (wm_nvm_read(sc, NVM_OFF_IMAGE_UID1, 1, &uid1) != 0)) 15287 have_uid = false; 15288 15289 switch (sc->sc_type) { 15290 case WM_T_82571: 15291 case WM_T_82572: 15292 case WM_T_82574: 15293 case WM_T_82583: 15294 check_version = true; 15295 check_optionrom = true; 15296 have_build = true; 15297 break; 15298 case WM_T_ICH8: 15299 case WM_T_ICH9: 15300 case WM_T_ICH10: 15301 case WM_T_PCH: 15302 case WM_T_PCH2: 15303 case WM_T_PCH_LPT: 15304 case WM_T_PCH_SPT: 15305 case WM_T_PCH_CNP: 15306 case WM_T_PCH_TGP: 15307 check_version = true; 15308 have_build = true; 15309 have_uid = false; 15310 break; 15311 case WM_T_82575: 15312 case WM_T_82576: 15313 case WM_T_82580: 15314 if (have_uid && (uid1 & NVM_MAJOR_MASK) != NVM_UID_VALID) 15315 check_version = true; 15316 break; 15317 case WM_T_I211: 15318 wm_nvm_version_invm(sc); 15319 have_uid = false; 15320 goto printver; 15321 case WM_T_I210: 15322 if (!wm_nvm_flash_presence_i210(sc)) { 15323 wm_nvm_version_invm(sc); 15324 have_uid = false; 15325 goto printver; 15326 } 15327 /* FALLTHROUGH */ 15328 case WM_T_I350: 15329 case WM_T_I354: 15330 check_version = true; 15331 check_optionrom = true; 15332 break; 15333 default: 15334 return; 15335 } 15336 if (check_version 15337 && (wm_nvm_read(sc, NVM_OFF_VERSION, 1, &nvm_data) == 0)) { 15338 major = (nvm_data & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT; 15339 if (have_build || ((nvm_data & 0x0f00) != 0x0000)) { 15340 minor = (nvm_data & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT; 15341 build = nvm_data & NVM_BUILD_MASK; 15342 have_build = true; 15343 } else 15344 minor = nvm_data & 0x00ff; 15345 15346 /* Decimal */ 15347 minor = (minor / 16) * 10 + (minor % 16); 15348 sc->sc_nvm_ver_major = major; 15349 sc->sc_nvm_ver_minor = minor; 15350 15351 printver: 15352 aprint_verbose(", version %d.%d", sc->sc_nvm_ver_major, 15353 sc->sc_nvm_ver_minor); 15354 if (have_build) { 15355 sc->sc_nvm_ver_build = build; 15356 aprint_verbose(".%d", build); 15357 } 15358 } 15359 15360 /* Assume the Option ROM area is at avove NVM_SIZE */ 15361 if ((sc->sc_nvm_wordsize > NVM_SIZE) && check_optionrom 15362 && (wm_nvm_read(sc, NVM_OFF_COMB_VER_PTR, 1, &off) == 0)) { 15363 /* Option ROM Version */ 15364 if ((off != 0x0000) && (off != 0xffff)) { 15365 int rv; 15366 uint16_t oid0, oid1; 15367 15368 off += NVM_COMBO_VER_OFF; 15369 rv = wm_nvm_read(sc, off + 1, 1, &oid1); 15370 rv |= wm_nvm_read(sc, off, 1, &oid0); 15371 if ((rv == 0) && (oid0 != 0) && (oid0 != 0xffff) 15372 && (oid1 != 0) && (oid1 != 0xffff)) { 15373 /* 16bits */ 15374 major = oid0 >> 8; 15375 build = (oid0 << 8) | (oid1 >> 8); 15376 patch = oid1 & 0x00ff; 15377 aprint_verbose(", option ROM Version %d.%d.%d", 15378 major, build, patch); 15379 } 15380 } 15381 } 15382 15383 if (have_uid && (wm_nvm_read(sc, NVM_OFF_IMAGE_UID0, 1, &uid0) == 0)) 15384 aprint_verbose(", Image Unique ID %08x", 15385 ((uint32_t)uid1 << 16) | uid0); 15386 } 15387 15388 /* 15389 * wm_nvm_read: 15390 * 15391 * Read data from the serial EEPROM. 15392 */ 15393 static int 15394 wm_nvm_read(struct wm_softc *sc, int word, int wordcnt, uint16_t *data) 15395 { 15396 int rv; 15397 15398 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n", 15399 device_xname(sc->sc_dev), __func__)); 15400 15401 if (sc->sc_flags & WM_F_EEPROM_INVALID) 15402 return -1; 15403 15404 rv = sc->nvm.read(sc, word, wordcnt, data); 15405 15406 return rv; 15407 } 15408 15409 /* 15410 * Hardware semaphores. 15411 * Very complexed... 15412 */ 15413 15414 static int 15415 wm_get_null(struct wm_softc *sc) 15416 { 15417 15418 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15419 device_xname(sc->sc_dev), __func__)); 15420 return 0; 15421 } 15422 15423 static void 15424 wm_put_null(struct wm_softc *sc) 15425 { 15426 15427 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15428 device_xname(sc->sc_dev), __func__)); 15429 return; 15430 } 15431 15432 static int 15433 wm_get_eecd(struct wm_softc *sc) 15434 { 15435 uint32_t reg; 15436 int x; 15437 15438 DPRINTF(sc, WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n", 15439 device_xname(sc->sc_dev), __func__)); 15440 15441 reg = CSR_READ(sc, WMREG_EECD); 15442 15443 /* Request EEPROM access. */ 15444 reg |= EECD_EE_REQ; 15445 CSR_WRITE(sc, WMREG_EECD, reg); 15446 15447 /* ..and wait for it to be granted. */ 15448 for (x = 0; x < 1000; x++) { 15449 reg = CSR_READ(sc, WMREG_EECD); 15450 if (reg & EECD_EE_GNT) 15451 break; 15452 delay(5); 15453 } 15454 if ((reg & EECD_EE_GNT) == 0) { 15455 aprint_error_dev(sc->sc_dev, 15456 "could not acquire EEPROM GNT\n"); 15457 reg &= ~EECD_EE_REQ; 15458 CSR_WRITE(sc, WMREG_EECD, reg); 15459 return -1; 15460 } 15461 15462 return 0; 15463 } 15464 15465 static void 15466 wm_nvm_eec_clock_raise(struct wm_softc *sc, uint32_t *eecd) 15467 { 15468 15469 *eecd |= EECD_SK; 15470 CSR_WRITE(sc, WMREG_EECD, *eecd); 15471 CSR_WRITE_FLUSH(sc); 15472 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0) 15473 delay(1); 15474 else 15475 delay(50); 15476 } 15477 15478 static void 15479 wm_nvm_eec_clock_lower(struct wm_softc *sc, uint32_t *eecd) 15480 { 15481 15482 *eecd &= ~EECD_SK; 15483 CSR_WRITE(sc, WMREG_EECD, *eecd); 15484 CSR_WRITE_FLUSH(sc); 15485 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0) 15486 delay(1); 15487 else 15488 delay(50); 15489 } 15490 15491 static void 15492 wm_put_eecd(struct wm_softc *sc) 15493 { 15494 uint32_t reg; 15495 15496 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15497 device_xname(sc->sc_dev), __func__)); 15498 15499 /* Stop nvm */ 15500 reg = CSR_READ(sc, WMREG_EECD); 15501 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0) { 15502 /* Pull CS high */ 15503 reg |= EECD_CS; 15504 wm_nvm_eec_clock_lower(sc, ®); 15505 } else { 15506 /* CS on Microwire is active-high */ 15507 reg &= ~(EECD_CS | EECD_DI); 15508 CSR_WRITE(sc, WMREG_EECD, reg); 15509 wm_nvm_eec_clock_raise(sc, ®); 15510 wm_nvm_eec_clock_lower(sc, ®); 15511 } 15512 15513 reg = CSR_READ(sc, WMREG_EECD); 15514 reg &= ~EECD_EE_REQ; 15515 CSR_WRITE(sc, WMREG_EECD, reg); 15516 15517 return; 15518 } 15519 15520 /* 15521 * Get hardware semaphore. 15522 * Same as e1000_get_hw_semaphore_generic() 15523 */ 15524 static int 15525 wm_get_swsm_semaphore(struct wm_softc *sc) 15526 { 15527 int32_t timeout; 15528 uint32_t swsm; 15529 15530 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15531 device_xname(sc->sc_dev), __func__)); 15532 KASSERT(sc->sc_nvm_wordsize > 0); 15533 15534 retry: 15535 /* Get the SW semaphore. */ 15536 timeout = sc->sc_nvm_wordsize + 1; 15537 while (timeout) { 15538 swsm = CSR_READ(sc, WMREG_SWSM); 15539 15540 if ((swsm & SWSM_SMBI) == 0) 15541 break; 15542 15543 delay(50); 15544 timeout--; 15545 } 15546 15547 if (timeout == 0) { 15548 if ((sc->sc_flags & WM_F_WA_I210_CLSEM) != 0) { 15549 /* 15550 * In rare circumstances, the SW semaphore may already 15551 * be held unintentionally. Clear the semaphore once 15552 * before giving up. 15553 */ 15554 sc->sc_flags &= ~WM_F_WA_I210_CLSEM; 15555 wm_put_swsm_semaphore(sc); 15556 goto retry; 15557 } 15558 aprint_error_dev(sc->sc_dev, "could not acquire SWSM SMBI\n"); 15559 return -1; 15560 } 15561 15562 /* Get the FW semaphore. */ 15563 timeout = sc->sc_nvm_wordsize + 1; 15564 while (timeout) { 15565 swsm = CSR_READ(sc, WMREG_SWSM); 15566 swsm |= SWSM_SWESMBI; 15567 CSR_WRITE(sc, WMREG_SWSM, swsm); 15568 /* If we managed to set the bit we got the semaphore. */ 15569 swsm = CSR_READ(sc, WMREG_SWSM); 15570 if (swsm & SWSM_SWESMBI) 15571 break; 15572 15573 delay(50); 15574 timeout--; 15575 } 15576 15577 if (timeout == 0) { 15578 aprint_error_dev(sc->sc_dev, 15579 "could not acquire SWSM SWESMBI\n"); 15580 /* Release semaphores */ 15581 wm_put_swsm_semaphore(sc); 15582 return -1; 15583 } 15584 return 0; 15585 } 15586 15587 /* 15588 * Put hardware semaphore. 15589 * Same as e1000_put_hw_semaphore_generic() 15590 */ 15591 static void 15592 wm_put_swsm_semaphore(struct wm_softc *sc) 15593 { 15594 uint32_t swsm; 15595 15596 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15597 device_xname(sc->sc_dev), __func__)); 15598 15599 swsm = CSR_READ(sc, WMREG_SWSM); 15600 swsm &= ~(SWSM_SMBI | SWSM_SWESMBI); 15601 CSR_WRITE(sc, WMREG_SWSM, swsm); 15602 } 15603 15604 /* 15605 * Get SW/FW semaphore. 15606 * Same as e1000_acquire_swfw_sync_{80003es2lan,82575}(). 15607 */ 15608 static int 15609 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask) 15610 { 15611 uint32_t swfw_sync; 15612 uint32_t swmask = mask << SWFW_SOFT_SHIFT; 15613 uint32_t fwmask = mask << SWFW_FIRM_SHIFT; 15614 int timeout; 15615 15616 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15617 device_xname(sc->sc_dev), __func__)); 15618 15619 if (sc->sc_type == WM_T_80003) 15620 timeout = 50; 15621 else 15622 timeout = 200; 15623 15624 while (timeout) { 15625 if (wm_get_swsm_semaphore(sc)) { 15626 aprint_error_dev(sc->sc_dev, 15627 "%s: failed to get semaphore\n", 15628 __func__); 15629 return -1; 15630 } 15631 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC); 15632 if ((swfw_sync & (swmask | fwmask)) == 0) { 15633 swfw_sync |= swmask; 15634 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync); 15635 wm_put_swsm_semaphore(sc); 15636 return 0; 15637 } 15638 wm_put_swsm_semaphore(sc); 15639 delay(5000); 15640 timeout--; 15641 } 15642 device_printf(sc->sc_dev, 15643 "failed to get swfw semaphore mask 0x%x swfw 0x%x\n", 15644 mask, swfw_sync); 15645 return -1; 15646 } 15647 15648 static void 15649 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask) 15650 { 15651 uint32_t swfw_sync; 15652 15653 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15654 device_xname(sc->sc_dev), __func__)); 15655 15656 while (wm_get_swsm_semaphore(sc) != 0) 15657 continue; 15658 15659 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC); 15660 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT); 15661 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync); 15662 15663 wm_put_swsm_semaphore(sc); 15664 } 15665 15666 static int 15667 wm_get_nvm_80003(struct wm_softc *sc) 15668 { 15669 int rv; 15670 15671 DPRINTF(sc, WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n", 15672 device_xname(sc->sc_dev), __func__)); 15673 15674 if ((rv = wm_get_swfw_semaphore(sc, SWFW_EEP_SM)) != 0) { 15675 aprint_error_dev(sc->sc_dev, 15676 "%s: failed to get semaphore(SWFW)\n", __func__); 15677 return rv; 15678 } 15679 15680 if (((sc->sc_flags & WM_F_LOCK_EECD) != 0) 15681 && (rv = wm_get_eecd(sc)) != 0) { 15682 aprint_error_dev(sc->sc_dev, 15683 "%s: failed to get semaphore(EECD)\n", __func__); 15684 wm_put_swfw_semaphore(sc, SWFW_EEP_SM); 15685 return rv; 15686 } 15687 15688 return 0; 15689 } 15690 15691 static void 15692 wm_put_nvm_80003(struct wm_softc *sc) 15693 { 15694 15695 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15696 device_xname(sc->sc_dev), __func__)); 15697 15698 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0) 15699 wm_put_eecd(sc); 15700 wm_put_swfw_semaphore(sc, SWFW_EEP_SM); 15701 } 15702 15703 static int 15704 wm_get_nvm_82571(struct wm_softc *sc) 15705 { 15706 int rv; 15707 15708 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15709 device_xname(sc->sc_dev), __func__)); 15710 15711 if ((rv = wm_get_swsm_semaphore(sc)) != 0) 15712 return rv; 15713 15714 switch (sc->sc_type) { 15715 case WM_T_82573: 15716 break; 15717 default: 15718 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0) 15719 rv = wm_get_eecd(sc); 15720 break; 15721 } 15722 15723 if (rv != 0) { 15724 aprint_error_dev(sc->sc_dev, 15725 "%s: failed to get semaphore\n", 15726 __func__); 15727 wm_put_swsm_semaphore(sc); 15728 } 15729 15730 return rv; 15731 } 15732 15733 static void 15734 wm_put_nvm_82571(struct wm_softc *sc) 15735 { 15736 15737 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15738 device_xname(sc->sc_dev), __func__)); 15739 15740 switch (sc->sc_type) { 15741 case WM_T_82573: 15742 break; 15743 default: 15744 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0) 15745 wm_put_eecd(sc); 15746 break; 15747 } 15748 15749 wm_put_swsm_semaphore(sc); 15750 } 15751 15752 static int 15753 wm_get_phy_82575(struct wm_softc *sc) 15754 { 15755 15756 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15757 device_xname(sc->sc_dev), __func__)); 15758 return wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]); 15759 } 15760 15761 static void 15762 wm_put_phy_82575(struct wm_softc *sc) 15763 { 15764 15765 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15766 device_xname(sc->sc_dev), __func__)); 15767 wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]); 15768 } 15769 15770 static int 15771 wm_get_swfwhw_semaphore(struct wm_softc *sc) 15772 { 15773 uint32_t ext_ctrl; 15774 int timeout = 200; 15775 15776 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15777 device_xname(sc->sc_dev), __func__)); 15778 15779 mutex_enter(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */ 15780 for (timeout = 0; timeout < 200; timeout++) { 15781 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 15782 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP; 15783 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl); 15784 15785 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 15786 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) 15787 return 0; 15788 delay(5000); 15789 } 15790 device_printf(sc->sc_dev, 15791 "failed to get swfwhw semaphore ext_ctrl 0x%x\n", ext_ctrl); 15792 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */ 15793 return -1; 15794 } 15795 15796 static void 15797 wm_put_swfwhw_semaphore(struct wm_softc *sc) 15798 { 15799 uint32_t ext_ctrl; 15800 15801 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15802 device_xname(sc->sc_dev), __func__)); 15803 15804 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 15805 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP; 15806 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl); 15807 15808 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */ 15809 } 15810 15811 static int 15812 wm_get_swflag_ich8lan(struct wm_softc *sc) 15813 { 15814 uint32_t ext_ctrl; 15815 int timeout; 15816 15817 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15818 device_xname(sc->sc_dev), __func__)); 15819 mutex_enter(sc->sc_ich_phymtx); 15820 for (timeout = 0; timeout < WM_PHY_CFG_TIMEOUT; timeout++) { 15821 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 15822 if ((ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) == 0) 15823 break; 15824 delay(1000); 15825 } 15826 if (timeout >= WM_PHY_CFG_TIMEOUT) { 15827 device_printf(sc->sc_dev, 15828 "SW has already locked the resource\n"); 15829 goto out; 15830 } 15831 15832 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP; 15833 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl); 15834 for (timeout = 0; timeout < 1000; timeout++) { 15835 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 15836 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) 15837 break; 15838 delay(1000); 15839 } 15840 if (timeout >= 1000) { 15841 device_printf(sc->sc_dev, "failed to acquire semaphore\n"); 15842 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP; 15843 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl); 15844 goto out; 15845 } 15846 return 0; 15847 15848 out: 15849 mutex_exit(sc->sc_ich_phymtx); 15850 return -1; 15851 } 15852 15853 static void 15854 wm_put_swflag_ich8lan(struct wm_softc *sc) 15855 { 15856 uint32_t ext_ctrl; 15857 15858 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15859 device_xname(sc->sc_dev), __func__)); 15860 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR); 15861 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) { 15862 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP; 15863 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl); 15864 } else 15865 device_printf(sc->sc_dev, "Semaphore unexpectedly released\n"); 15866 15867 mutex_exit(sc->sc_ich_phymtx); 15868 } 15869 15870 static int 15871 wm_get_nvm_ich8lan(struct wm_softc *sc) 15872 { 15873 15874 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15875 device_xname(sc->sc_dev), __func__)); 15876 mutex_enter(sc->sc_ich_nvmmtx); 15877 15878 return 0; 15879 } 15880 15881 static void 15882 wm_put_nvm_ich8lan(struct wm_softc *sc) 15883 { 15884 15885 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15886 device_xname(sc->sc_dev), __func__)); 15887 mutex_exit(sc->sc_ich_nvmmtx); 15888 } 15889 15890 static int 15891 wm_get_hw_semaphore_82573(struct wm_softc *sc) 15892 { 15893 int i = 0; 15894 uint32_t reg; 15895 15896 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15897 device_xname(sc->sc_dev), __func__)); 15898 15899 reg = CSR_READ(sc, WMREG_EXTCNFCTR); 15900 do { 15901 CSR_WRITE(sc, WMREG_EXTCNFCTR, 15902 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP); 15903 reg = CSR_READ(sc, WMREG_EXTCNFCTR); 15904 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0) 15905 break; 15906 delay(2*1000); 15907 i++; 15908 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT); 15909 15910 if (i == WM_MDIO_OWNERSHIP_TIMEOUT) { 15911 wm_put_hw_semaphore_82573(sc); 15912 log(LOG_ERR, "%s: Driver can't access the PHY\n", 15913 device_xname(sc->sc_dev)); 15914 return -1; 15915 } 15916 15917 return 0; 15918 } 15919 15920 static void 15921 wm_put_hw_semaphore_82573(struct wm_softc *sc) 15922 { 15923 uint32_t reg; 15924 15925 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 15926 device_xname(sc->sc_dev), __func__)); 15927 15928 reg = CSR_READ(sc, WMREG_EXTCNFCTR); 15929 reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP; 15930 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg); 15931 } 15932 15933 /* 15934 * Management mode and power management related subroutines. 15935 * BMC, AMT, suspend/resume and EEE. 15936 */ 15937 15938 #ifdef WM_WOL 15939 static int 15940 wm_check_mng_mode(struct wm_softc *sc) 15941 { 15942 int rv; 15943 15944 switch (sc->sc_type) { 15945 case WM_T_ICH8: 15946 case WM_T_ICH9: 15947 case WM_T_ICH10: 15948 case WM_T_PCH: 15949 case WM_T_PCH2: 15950 case WM_T_PCH_LPT: 15951 case WM_T_PCH_SPT: 15952 case WM_T_PCH_CNP: 15953 case WM_T_PCH_TGP: 15954 rv = wm_check_mng_mode_ich8lan(sc); 15955 break; 15956 case WM_T_82574: 15957 case WM_T_82583: 15958 rv = wm_check_mng_mode_82574(sc); 15959 break; 15960 case WM_T_82571: 15961 case WM_T_82572: 15962 case WM_T_82573: 15963 case WM_T_80003: 15964 rv = wm_check_mng_mode_generic(sc); 15965 break; 15966 default: 15967 /* Noting to do */ 15968 rv = 0; 15969 break; 15970 } 15971 15972 return rv; 15973 } 15974 15975 static int 15976 wm_check_mng_mode_ich8lan(struct wm_softc *sc) 15977 { 15978 uint32_t fwsm; 15979 15980 fwsm = CSR_READ(sc, WMREG_FWSM); 15981 15982 if (((fwsm & FWSM_FW_VALID) != 0) 15983 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE)) 15984 return 1; 15985 15986 return 0; 15987 } 15988 15989 static int 15990 wm_check_mng_mode_82574(struct wm_softc *sc) 15991 { 15992 uint16_t data; 15993 15994 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data); 15995 15996 if ((data & NVM_CFG2_MNGM_MASK) != 0) 15997 return 1; 15998 15999 return 0; 16000 } 16001 16002 static int 16003 wm_check_mng_mode_generic(struct wm_softc *sc) 16004 { 16005 uint32_t fwsm; 16006 16007 fwsm = CSR_READ(sc, WMREG_FWSM); 16008 16009 if (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_IAMT_MODE) 16010 return 1; 16011 16012 return 0; 16013 } 16014 #endif /* WM_WOL */ 16015 16016 static int 16017 wm_enable_mng_pass_thru(struct wm_softc *sc) 16018 { 16019 uint32_t manc, fwsm, factps; 16020 16021 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0) 16022 return 0; 16023 16024 manc = CSR_READ(sc, WMREG_MANC); 16025 16026 DPRINTF(sc, WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n", 16027 device_xname(sc->sc_dev), manc)); 16028 if ((manc & MANC_RECV_TCO_EN) == 0) 16029 return 0; 16030 16031 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) { 16032 fwsm = CSR_READ(sc, WMREG_FWSM); 16033 factps = CSR_READ(sc, WMREG_FACTPS); 16034 if (((factps & FACTPS_MNGCG) == 0) 16035 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE)) 16036 return 1; 16037 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){ 16038 uint16_t data; 16039 16040 factps = CSR_READ(sc, WMREG_FACTPS); 16041 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data); 16042 DPRINTF(sc, WM_DEBUG_MANAGE, ("%s: FACTPS = %08x, CFG2=%04x\n", 16043 device_xname(sc->sc_dev), factps, data)); 16044 if (((factps & FACTPS_MNGCG) == 0) 16045 && ((data & NVM_CFG2_MNGM_MASK) 16046 == (NVM_CFG2_MNGM_PT << NVM_CFG2_MNGM_SHIFT))) 16047 return 1; 16048 } else if (((manc & MANC_SMBUS_EN) != 0) 16049 && ((manc & MANC_ASF_EN) == 0)) 16050 return 1; 16051 16052 return 0; 16053 } 16054 16055 static bool 16056 wm_phy_resetisblocked(struct wm_softc *sc) 16057 { 16058 bool blocked = false; 16059 uint32_t reg; 16060 int i = 0; 16061 16062 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 16063 device_xname(sc->sc_dev), __func__)); 16064 16065 switch (sc->sc_type) { 16066 case WM_T_ICH8: 16067 case WM_T_ICH9: 16068 case WM_T_ICH10: 16069 case WM_T_PCH: 16070 case WM_T_PCH2: 16071 case WM_T_PCH_LPT: 16072 case WM_T_PCH_SPT: 16073 case WM_T_PCH_CNP: 16074 case WM_T_PCH_TGP: 16075 do { 16076 reg = CSR_READ(sc, WMREG_FWSM); 16077 if ((reg & FWSM_RSPCIPHY) == 0) { 16078 blocked = true; 16079 delay(10*1000); 16080 continue; 16081 } 16082 blocked = false; 16083 } while (blocked && (i++ < 30)); 16084 return blocked; 16085 break; 16086 case WM_T_82571: 16087 case WM_T_82572: 16088 case WM_T_82573: 16089 case WM_T_82574: 16090 case WM_T_82583: 16091 case WM_T_80003: 16092 reg = CSR_READ(sc, WMREG_MANC); 16093 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0) 16094 return true; 16095 else 16096 return false; 16097 break; 16098 default: 16099 /* No problem */ 16100 break; 16101 } 16102 16103 return false; 16104 } 16105 16106 static void 16107 wm_get_hw_control(struct wm_softc *sc) 16108 { 16109 uint32_t reg; 16110 16111 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 16112 device_xname(sc->sc_dev), __func__)); 16113 16114 if (sc->sc_type == WM_T_82573) { 16115 reg = CSR_READ(sc, WMREG_SWSM); 16116 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD); 16117 } else if (sc->sc_type >= WM_T_82571) { 16118 reg = CSR_READ(sc, WMREG_CTRL_EXT); 16119 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD); 16120 } 16121 } 16122 16123 static void 16124 wm_release_hw_control(struct wm_softc *sc) 16125 { 16126 uint32_t reg; 16127 16128 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n", 16129 device_xname(sc->sc_dev), __func__)); 16130 16131 if (sc->sc_type == WM_T_82573) { 16132 reg = CSR_READ(sc, WMREG_SWSM); 16133 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD); 16134 } else if (sc->sc_type >= WM_T_82571) { 16135 reg = CSR_READ(sc, WMREG_CTRL_EXT); 16136 CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD); 16137 } 16138 } 16139 16140 static void 16141 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, bool gate) 16142 { 16143 uint32_t reg; 16144 16145 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 16146 device_xname(sc->sc_dev), __func__)); 16147 16148 if (sc->sc_type < WM_T_PCH2) 16149 return; 16150 16151 reg = CSR_READ(sc, WMREG_EXTCNFCTR); 16152 16153 if (gate) 16154 reg |= EXTCNFCTR_GATE_PHY_CFG; 16155 else 16156 reg &= ~EXTCNFCTR_GATE_PHY_CFG; 16157 16158 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg); 16159 } 16160 16161 static int 16162 wm_init_phy_workarounds_pchlan(struct wm_softc *sc) 16163 { 16164 uint32_t fwsm, reg; 16165 int rv; 16166 16167 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 16168 device_xname(sc->sc_dev), __func__)); 16169 16170 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 16171 wm_gate_hw_phy_config_ich8lan(sc, true); 16172 16173 /* Disable ULP */ 16174 wm_ulp_disable(sc); 16175 16176 /* Acquire PHY semaphore */ 16177 rv = sc->phy.acquire(sc); 16178 if (rv != 0) { 16179 DPRINTF(sc, WM_DEBUG_INIT, 16180 ("%s: %s: failed\n", device_xname(sc->sc_dev), __func__)); 16181 return rv; 16182 } 16183 16184 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 16185 * inaccessible and resetting the PHY is not blocked, toggle the 16186 * LANPHYPC Value bit to force the interconnect to PCIe mode. 16187 */ 16188 fwsm = CSR_READ(sc, WMREG_FWSM); 16189 switch (sc->sc_type) { 16190 case WM_T_PCH_LPT: 16191 case WM_T_PCH_SPT: 16192 case WM_T_PCH_CNP: 16193 case WM_T_PCH_TGP: 16194 if (wm_phy_is_accessible_pchlan(sc)) 16195 break; 16196 16197 /* Before toggling LANPHYPC, see if PHY is accessible by 16198 * forcing MAC to SMBus mode first. 16199 */ 16200 reg = CSR_READ(sc, WMREG_CTRL_EXT); 16201 reg |= CTRL_EXT_FORCE_SMBUS; 16202 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 16203 #if 0 16204 /* XXX Isn't this required??? */ 16205 CSR_WRITE_FLUSH(sc); 16206 #endif 16207 /* Wait 50 milliseconds for MAC to finish any retries 16208 * that it might be trying to perform from previous 16209 * attempts to acknowledge any phy read requests. 16210 */ 16211 delay(50 * 1000); 16212 /* FALLTHROUGH */ 16213 case WM_T_PCH2: 16214 if (wm_phy_is_accessible_pchlan(sc) == true) 16215 break; 16216 /* FALLTHROUGH */ 16217 case WM_T_PCH: 16218 if (sc->sc_type == WM_T_PCH) 16219 if ((fwsm & FWSM_FW_VALID) != 0) 16220 break; 16221 16222 if (wm_phy_resetisblocked(sc) == true) { 16223 device_printf(sc->sc_dev, "XXX reset is blocked(2)\n"); 16224 break; 16225 } 16226 16227 /* Toggle LANPHYPC Value bit */ 16228 wm_toggle_lanphypc_pch_lpt(sc); 16229 16230 if (sc->sc_type >= WM_T_PCH_LPT) { 16231 if (wm_phy_is_accessible_pchlan(sc) == true) 16232 break; 16233 16234 /* Toggling LANPHYPC brings the PHY out of SMBus mode 16235 * so ensure that the MAC is also out of SMBus mode 16236 */ 16237 reg = CSR_READ(sc, WMREG_CTRL_EXT); 16238 reg &= ~CTRL_EXT_FORCE_SMBUS; 16239 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 16240 16241 if (wm_phy_is_accessible_pchlan(sc) == true) 16242 break; 16243 rv = -1; 16244 } 16245 break; 16246 default: 16247 break; 16248 } 16249 16250 /* Release semaphore */ 16251 sc->phy.release(sc); 16252 16253 if (rv == 0) { 16254 /* Check to see if able to reset PHY. Print error if not */ 16255 if (wm_phy_resetisblocked(sc)) { 16256 device_printf(sc->sc_dev, "XXX reset is blocked(3)\n"); 16257 goto out; 16258 } 16259 16260 /* Reset the PHY before any access to it. Doing so, ensures 16261 * that the PHY is in a known good state before we read/write 16262 * PHY registers. The generic reset is sufficient here, 16263 * because we haven't determined the PHY type yet. 16264 */ 16265 if (wm_reset_phy(sc) != 0) 16266 goto out; 16267 16268 /* On a successful reset, possibly need to wait for the PHY 16269 * to quiesce to an accessible state before returning control 16270 * to the calling function. If the PHY does not quiesce, then 16271 * return E1000E_BLK_PHY_RESET, as this is the condition that 16272 * the PHY is in. 16273 */ 16274 if (wm_phy_resetisblocked(sc)) 16275 device_printf(sc->sc_dev, "XXX reset is blocked(4)\n"); 16276 } 16277 16278 out: 16279 /* Ungate automatic PHY configuration on non-managed 82579 */ 16280 if ((sc->sc_type == WM_T_PCH2) && ((fwsm & FWSM_FW_VALID) == 0)) { 16281 delay(10*1000); 16282 wm_gate_hw_phy_config_ich8lan(sc, false); 16283 } 16284 16285 return 0; 16286 } 16287 16288 static void 16289 wm_init_manageability(struct wm_softc *sc) 16290 { 16291 16292 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 16293 device_xname(sc->sc_dev), __func__)); 16294 KASSERT(IFNET_LOCKED(&sc->sc_ethercom.ec_if)); 16295 16296 if (sc->sc_flags & WM_F_HAS_MANAGE) { 16297 uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H); 16298 uint32_t manc = CSR_READ(sc, WMREG_MANC); 16299 16300 /* Disable hardware interception of ARP */ 16301 manc &= ~MANC_ARP_EN; 16302 16303 /* Enable receiving management packets to the host */ 16304 if (sc->sc_type >= WM_T_82571) { 16305 manc |= MANC_EN_MNG2HOST; 16306 manc2h |= MANC2H_PORT_623 | MANC2H_PORT_624; 16307 CSR_WRITE(sc, WMREG_MANC2H, manc2h); 16308 } 16309 16310 CSR_WRITE(sc, WMREG_MANC, manc); 16311 } 16312 } 16313 16314 static void 16315 wm_release_manageability(struct wm_softc *sc) 16316 { 16317 16318 if (sc->sc_flags & WM_F_HAS_MANAGE) { 16319 uint32_t manc = CSR_READ(sc, WMREG_MANC); 16320 16321 manc |= MANC_ARP_EN; 16322 if (sc->sc_type >= WM_T_82571) 16323 manc &= ~MANC_EN_MNG2HOST; 16324 16325 CSR_WRITE(sc, WMREG_MANC, manc); 16326 } 16327 } 16328 16329 static void 16330 wm_get_wakeup(struct wm_softc *sc) 16331 { 16332 16333 /* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */ 16334 switch (sc->sc_type) { 16335 case WM_T_82573: 16336 case WM_T_82583: 16337 sc->sc_flags |= WM_F_HAS_AMT; 16338 /* FALLTHROUGH */ 16339 case WM_T_80003: 16340 case WM_T_82575: 16341 case WM_T_82576: 16342 case WM_T_82580: 16343 case WM_T_I350: 16344 case WM_T_I354: 16345 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE) != 0) 16346 sc->sc_flags |= WM_F_ARC_SUBSYS_VALID; 16347 /* FALLTHROUGH */ 16348 case WM_T_82541: 16349 case WM_T_82541_2: 16350 case WM_T_82547: 16351 case WM_T_82547_2: 16352 case WM_T_82571: 16353 case WM_T_82572: 16354 case WM_T_82574: 16355 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES; 16356 break; 16357 case WM_T_ICH8: 16358 case WM_T_ICH9: 16359 case WM_T_ICH10: 16360 case WM_T_PCH: 16361 case WM_T_PCH2: 16362 case WM_T_PCH_LPT: 16363 case WM_T_PCH_SPT: 16364 case WM_T_PCH_CNP: 16365 case WM_T_PCH_TGP: 16366 sc->sc_flags |= WM_F_HAS_AMT; 16367 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES; 16368 break; 16369 default: 16370 break; 16371 } 16372 16373 /* 1: HAS_MANAGE */ 16374 if (wm_enable_mng_pass_thru(sc) != 0) 16375 sc->sc_flags |= WM_F_HAS_MANAGE; 16376 16377 /* 16378 * Note that the WOL flags is set after the resetting of the eeprom 16379 * stuff 16380 */ 16381 } 16382 16383 /* 16384 * Unconfigure Ultra Low Power mode. 16385 * Only for I217 and newer (see below). 16386 */ 16387 static int 16388 wm_ulp_disable(struct wm_softc *sc) 16389 { 16390 uint32_t reg; 16391 uint16_t phyreg; 16392 int i = 0, rv; 16393 16394 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 16395 device_xname(sc->sc_dev), __func__)); 16396 /* Exclude old devices */ 16397 if ((sc->sc_type < WM_T_PCH_LPT) 16398 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_LM) 16399 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_V) 16400 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM2) 16401 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V2)) 16402 return 0; 16403 16404 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) != 0) { 16405 /* Request ME un-configure ULP mode in the PHY */ 16406 reg = CSR_READ(sc, WMREG_H2ME); 16407 reg &= ~H2ME_ULP; 16408 reg |= H2ME_ENFORCE_SETTINGS; 16409 CSR_WRITE(sc, WMREG_H2ME, reg); 16410 16411 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ 16412 while ((CSR_READ(sc, WMREG_FWSM) & FWSM_ULP_CFG_DONE) != 0) { 16413 if (i++ == 30) { 16414 device_printf(sc->sc_dev, "%s timed out\n", 16415 __func__); 16416 return -1; 16417 } 16418 delay(10 * 1000); 16419 } 16420 reg = CSR_READ(sc, WMREG_H2ME); 16421 reg &= ~H2ME_ENFORCE_SETTINGS; 16422 CSR_WRITE(sc, WMREG_H2ME, reg); 16423 16424 return 0; 16425 } 16426 16427 /* Acquire semaphore */ 16428 rv = sc->phy.acquire(sc); 16429 if (rv != 0) { 16430 DPRINTF(sc, WM_DEBUG_INIT, 16431 ("%s: %s: failed\n", device_xname(sc->sc_dev), __func__)); 16432 return rv; 16433 } 16434 16435 /* Toggle LANPHYPC */ 16436 wm_toggle_lanphypc_pch_lpt(sc); 16437 16438 /* Unforce SMBus mode in PHY */ 16439 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL, &phyreg); 16440 if (rv != 0) { 16441 uint32_t reg2; 16442 16443 aprint_debug_dev(sc->sc_dev, "%s: Force SMBus first.\n", 16444 __func__); 16445 reg2 = CSR_READ(sc, WMREG_CTRL_EXT); 16446 reg2 |= CTRL_EXT_FORCE_SMBUS; 16447 CSR_WRITE(sc, WMREG_CTRL_EXT, reg2); 16448 delay(50 * 1000); 16449 16450 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL, 16451 &phyreg); 16452 if (rv != 0) 16453 goto release; 16454 } 16455 phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS; 16456 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, CV_SMB_CTRL, phyreg); 16457 16458 /* Unforce SMBus mode in MAC */ 16459 reg = CSR_READ(sc, WMREG_CTRL_EXT); 16460 reg &= ~CTRL_EXT_FORCE_SMBUS; 16461 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 16462 16463 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_PM_CTRL, &phyreg); 16464 if (rv != 0) 16465 goto release; 16466 phyreg |= HV_PM_CTRL_K1_ENA; 16467 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_PM_CTRL, phyreg); 16468 16469 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, 16470 &phyreg); 16471 if (rv != 0) 16472 goto release; 16473 phyreg &= ~(I218_ULP_CONFIG1_IND 16474 | I218_ULP_CONFIG1_STICKY_ULP 16475 | I218_ULP_CONFIG1_RESET_TO_SMBUS 16476 | I218_ULP_CONFIG1_WOL_HOST 16477 | I218_ULP_CONFIG1_INBAND_EXIT 16478 | I218_ULP_CONFIG1_EN_ULP_LANPHYPC 16479 | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST 16480 | I218_ULP_CONFIG1_DIS_SMB_PERST); 16481 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg); 16482 phyreg |= I218_ULP_CONFIG1_START; 16483 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg); 16484 16485 reg = CSR_READ(sc, WMREG_FEXTNVM7); 16486 reg &= ~FEXTNVM7_DIS_SMB_PERST; 16487 CSR_WRITE(sc, WMREG_FEXTNVM7, reg); 16488 16489 release: 16490 /* Release semaphore */ 16491 sc->phy.release(sc); 16492 wm_gmii_reset(sc); 16493 delay(50 * 1000); 16494 16495 return rv; 16496 } 16497 16498 /* WOL in the newer chipset interfaces (pchlan) */ 16499 static int 16500 wm_enable_phy_wakeup(struct wm_softc *sc) 16501 { 16502 device_t dev = sc->sc_dev; 16503 uint32_t mreg, moff; 16504 uint16_t wuce, wuc, wufc, preg; 16505 int i, rv; 16506 16507 KASSERT(sc->sc_type >= WM_T_PCH); 16508 16509 /* Copy MAC RARs to PHY RARs */ 16510 wm_copy_rx_addrs_to_phy_ich8lan(sc); 16511 16512 /* Activate PHY wakeup */ 16513 rv = sc->phy.acquire(sc); 16514 if (rv != 0) { 16515 device_printf(dev, "%s: failed to acquire semaphore\n", 16516 __func__); 16517 return rv; 16518 } 16519 16520 /* 16521 * Enable access to PHY wakeup registers. 16522 * BM_MTA, BM_RCTL, BM_WUFC and BM_WUC are in BM_WUC_PAGE. 16523 */ 16524 rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce); 16525 if (rv != 0) { 16526 device_printf(dev, 16527 "%s: Could not enable PHY wakeup reg access\n", __func__); 16528 goto release; 16529 } 16530 16531 /* Copy MAC MTA to PHY MTA */ 16532 for (i = 0; i < WM_ICH8_MC_TABSIZE; i++) { 16533 uint16_t lo, hi; 16534 16535 mreg = CSR_READ(sc, WMREG_CORDOVA_MTA + (i * 4)); 16536 lo = (uint16_t)(mreg & 0xffff); 16537 hi = (uint16_t)((mreg >> 16) & 0xffff); 16538 wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i), &lo, 0, true); 16539 wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i) + 1, &hi, 0, true); 16540 } 16541 16542 /* Configure PHY Rx Control register */ 16543 wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 1, true); 16544 mreg = CSR_READ(sc, WMREG_RCTL); 16545 if (mreg & RCTL_UPE) 16546 preg |= BM_RCTL_UPE; 16547 if (mreg & RCTL_MPE) 16548 preg |= BM_RCTL_MPE; 16549 preg &= ~(BM_RCTL_MO_MASK); 16550 moff = __SHIFTOUT(mreg, RCTL_MO); 16551 if (moff != 0) 16552 preg |= moff << BM_RCTL_MO_SHIFT; 16553 if (mreg & RCTL_BAM) 16554 preg |= BM_RCTL_BAM; 16555 if (mreg & RCTL_PMCF) 16556 preg |= BM_RCTL_PMCF; 16557 mreg = CSR_READ(sc, WMREG_CTRL); 16558 if (mreg & CTRL_RFCE) 16559 preg |= BM_RCTL_RFCE; 16560 wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 0, true); 16561 16562 wuc = WUC_APME | WUC_PME_EN; 16563 wufc = WUFC_MAG; 16564 /* Enable PHY wakeup in MAC register */ 16565 CSR_WRITE(sc, WMREG_WUC, 16566 WUC_PHY_WAKE | WUC_PME_STATUS | WUC_APMPME | wuc); 16567 CSR_WRITE(sc, WMREG_WUFC, wufc); 16568 16569 /* Configure and enable PHY wakeup in PHY registers */ 16570 wm_access_phy_wakeup_reg_bm(dev, BM_WUC, &wuc, 0, true); 16571 wm_access_phy_wakeup_reg_bm(dev, BM_WUFC, &wufc, 0, true); 16572 16573 wuce |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 16574 wm_disable_phy_wakeup_reg_access_bm(dev, &wuce); 16575 16576 release: 16577 sc->phy.release(sc); 16578 16579 return 0; 16580 } 16581 16582 /* Power down workaround on D3 */ 16583 static void 16584 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc) 16585 { 16586 uint32_t reg; 16587 uint16_t phyreg; 16588 int i; 16589 16590 for (i = 0; i < 2; i++) { 16591 /* Disable link */ 16592 reg = CSR_READ(sc, WMREG_PHY_CTRL); 16593 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS; 16594 CSR_WRITE(sc, WMREG_PHY_CTRL, reg); 16595 16596 /* 16597 * Call gig speed drop workaround on Gig disable before 16598 * accessing any PHY registers 16599 */ 16600 if (sc->sc_type == WM_T_ICH8) 16601 wm_gig_downshift_workaround_ich8lan(sc); 16602 16603 /* Write VR power-down enable */ 16604 sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg); 16605 phyreg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 16606 phyreg |= IGP3_VR_CTRL_MODE_SHUTDOWN; 16607 sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, phyreg); 16608 16609 /* Read it back and test */ 16610 sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg); 16611 phyreg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 16612 if ((phyreg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0)) 16613 break; 16614 16615 /* Issue PHY reset and repeat at most one more time */ 16616 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET); 16617 } 16618 } 16619 16620 /* 16621 * wm_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 16622 * @sc: pointer to the HW structure 16623 * 16624 * During S0 to Sx transition, it is possible the link remains at gig 16625 * instead of negotiating to a lower speed. Before going to Sx, set 16626 * 'Gig Disable' to force link speed negotiation to a lower speed based on 16627 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 16628 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 16629 * needs to be written. 16630 * Parts that support (and are linked to a partner which support) EEE in 16631 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 16632 * than 10Mbps w/o EEE. 16633 */ 16634 static void 16635 wm_suspend_workarounds_ich8lan(struct wm_softc *sc) 16636 { 16637 device_t dev = sc->sc_dev; 16638 struct ethercom *ec = &sc->sc_ethercom; 16639 uint32_t phy_ctrl; 16640 int rv; 16641 16642 phy_ctrl = CSR_READ(sc, WMREG_PHY_CTRL); 16643 phy_ctrl |= PHY_CTRL_GBE_DIS; 16644 16645 KASSERT((sc->sc_type >= WM_T_ICH8) && (sc->sc_type <= WM_T_PCH_TGP)); 16646 16647 if (sc->sc_phytype == WMPHY_I217) { 16648 uint16_t devid = sc->sc_pcidevid; 16649 16650 if ((devid == PCI_PRODUCT_INTEL_I218_LM) || 16651 (devid == PCI_PRODUCT_INTEL_I218_V) || 16652 (devid == PCI_PRODUCT_INTEL_I218_LM3) || 16653 (devid == PCI_PRODUCT_INTEL_I218_V3) || 16654 (sc->sc_type >= WM_T_PCH_SPT)) 16655 CSR_WRITE(sc, WMREG_FEXTNVM6, 16656 CSR_READ(sc, WMREG_FEXTNVM6) 16657 & ~FEXTNVM6_REQ_PLL_CLK); 16658 16659 if (sc->phy.acquire(sc) != 0) 16660 goto out; 16661 16662 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) { 16663 uint16_t eee_advert; 16664 16665 rv = wm_read_emi_reg_locked(dev, 16666 I217_EEE_ADVERTISEMENT, &eee_advert); 16667 if (rv) 16668 goto release; 16669 16670 /* 16671 * Disable LPLU if both link partners support 100BaseT 16672 * EEE and 100Full is advertised on both ends of the 16673 * link, and enable Auto Enable LPI since there will 16674 * be no driver to enable LPI while in Sx. 16675 */ 16676 if ((eee_advert & AN_EEEADVERT_100_TX) && 16677 (sc->eee_lp_ability & AN_EEEADVERT_100_TX)) { 16678 uint16_t anar, phy_reg; 16679 16680 sc->phy.readreg_locked(dev, 2, MII_ANAR, 16681 &anar); 16682 if (anar & ANAR_TX_FD) { 16683 phy_ctrl &= ~(PHY_CTRL_D0A_LPLU | 16684 PHY_CTRL_NOND0A_LPLU); 16685 16686 /* Set Auto Enable LPI after link up */ 16687 sc->phy.readreg_locked(dev, 2, 16688 I217_LPI_GPIO_CTRL, &phy_reg); 16689 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 16690 sc->phy.writereg_locked(dev, 2, 16691 I217_LPI_GPIO_CTRL, phy_reg); 16692 } 16693 } 16694 } 16695 16696 /* 16697 * For i217 Intel Rapid Start Technology support, 16698 * when the system is going into Sx and no manageability engine 16699 * is present, the driver must configure proxy to reset only on 16700 * power good. LPI (Low Power Idle) state must also reset only 16701 * on power good, as well as the MTA (Multicast table array). 16702 * The SMBus release must also be disabled on LCD reset. 16703 */ 16704 16705 /* 16706 * Enable MTA to reset for Intel Rapid Start Technology 16707 * Support 16708 */ 16709 16710 release: 16711 sc->phy.release(sc); 16712 } 16713 out: 16714 CSR_WRITE(sc, WMREG_PHY_CTRL, phy_ctrl); 16715 16716 if (sc->sc_type == WM_T_ICH8) 16717 wm_gig_downshift_workaround_ich8lan(sc); 16718 16719 if (sc->sc_type >= WM_T_PCH) { 16720 wm_oem_bits_config_ich8lan(sc, false); 16721 16722 /* Reset PHY to activate OEM bits on 82577/8 */ 16723 if (sc->sc_type == WM_T_PCH) 16724 wm_reset_phy(sc); 16725 16726 if (sc->phy.acquire(sc) != 0) 16727 return; 16728 wm_write_smbus_addr(sc); 16729 sc->phy.release(sc); 16730 } 16731 } 16732 16733 /* 16734 * wm_resume_workarounds_pchlan - workarounds needed during Sx->S0 16735 * @sc: pointer to the HW structure 16736 * 16737 * During Sx to S0 transitions on non-managed devices or managed devices 16738 * on which PHY resets are not blocked, if the PHY registers cannot be 16739 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 16740 * the PHY. 16741 * On i217, setup Intel Rapid Start Technology. 16742 */ 16743 static int 16744 wm_resume_workarounds_pchlan(struct wm_softc *sc) 16745 { 16746 device_t dev = sc->sc_dev; 16747 int rv; 16748 16749 if (sc->sc_type < WM_T_PCH2) 16750 return 0; 16751 16752 rv = wm_init_phy_workarounds_pchlan(sc); 16753 if (rv != 0) 16754 return rv; 16755 16756 /* For i217 Intel Rapid Start Technology support when the system 16757 * is transitioning from Sx and no manageability engine is present 16758 * configure SMBus to restore on reset, disable proxy, and enable 16759 * the reset on MTA (Multicast table array). 16760 */ 16761 if (sc->sc_phytype == WMPHY_I217) { 16762 uint16_t phy_reg; 16763 16764 rv = sc->phy.acquire(sc); 16765 if (rv != 0) 16766 return rv; 16767 16768 /* Clear Auto Enable LPI after link up */ 16769 sc->phy.readreg_locked(dev, 1, I217_LPI_GPIO_CTRL, &phy_reg); 16770 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 16771 sc->phy.writereg_locked(dev, 1, I217_LPI_GPIO_CTRL, phy_reg); 16772 16773 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) { 16774 /* Restore clear on SMB if no manageability engine 16775 * is present 16776 */ 16777 rv = sc->phy.readreg_locked(dev, 1, I217_MEMPWR, 16778 &phy_reg); 16779 if (rv != 0) 16780 goto release; 16781 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 16782 sc->phy.writereg_locked(dev, 1, I217_MEMPWR, phy_reg); 16783 16784 /* Disable Proxy */ 16785 sc->phy.writereg_locked(dev, 1, I217_PROXY_CTRL, 0); 16786 } 16787 /* Enable reset on MTA */ 16788 sc->phy.readreg_locked(dev, 1, I217_CFGREG, &phy_reg); 16789 if (rv != 0) 16790 goto release; 16791 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 16792 sc->phy.writereg_locked(dev, 1, I217_CFGREG, phy_reg); 16793 16794 release: 16795 sc->phy.release(sc); 16796 return rv; 16797 } 16798 16799 return 0; 16800 } 16801 16802 static void 16803 wm_enable_wakeup(struct wm_softc *sc) 16804 { 16805 uint32_t reg, pmreg; 16806 pcireg_t pmode; 16807 int rv = 0; 16808 16809 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 16810 device_xname(sc->sc_dev), __func__)); 16811 16812 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT, 16813 &pmreg, NULL) == 0) 16814 return; 16815 16816 if ((sc->sc_flags & WM_F_WOL) == 0) 16817 goto pme; 16818 16819 /* Advertise the wakeup capability */ 16820 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2) 16821 | CTRL_SWDPIN(3)); 16822 16823 /* Keep the laser running on fiber adapters */ 16824 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER) 16825 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) { 16826 reg = CSR_READ(sc, WMREG_CTRL_EXT); 16827 reg |= CTRL_EXT_SWDPIN(3); 16828 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 16829 } 16830 16831 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) || 16832 (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) || 16833 (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) || 16834 (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP) || 16835 (sc->sc_type == WM_T_PCH_TGP)) 16836 wm_suspend_workarounds_ich8lan(sc); 16837 16838 #if 0 /* For the multicast packet */ 16839 reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG; 16840 reg |= WUFC_MC; 16841 CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE); 16842 #endif 16843 16844 if (sc->sc_type >= WM_T_PCH) { 16845 rv = wm_enable_phy_wakeup(sc); 16846 if (rv != 0) 16847 goto pme; 16848 } else { 16849 /* Enable wakeup by the MAC */ 16850 CSR_WRITE(sc, WMREG_WUC, WUC_APME | WUC_PME_EN); 16851 CSR_WRITE(sc, WMREG_WUFC, WUFC_MAG); 16852 } 16853 16854 if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) 16855 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) 16856 || (sc->sc_type == WM_T_PCH2)) 16857 && (sc->sc_phytype == WMPHY_IGP_3)) 16858 wm_igp3_phy_powerdown_workaround_ich8lan(sc); 16859 16860 pme: 16861 /* Request PME */ 16862 pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR); 16863 pmode |= PCI_PMCSR_PME_STS; /* in case it's already set (W1C) */ 16864 if ((rv == 0) && (sc->sc_flags & WM_F_WOL) != 0) { 16865 /* For WOL */ 16866 pmode |= PCI_PMCSR_PME_EN; 16867 } else { 16868 /* Disable WOL */ 16869 pmode &= ~PCI_PMCSR_PME_EN; 16870 } 16871 pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode); 16872 } 16873 16874 /* Disable ASPM L0s and/or L1 for workaround */ 16875 static void 16876 wm_disable_aspm(struct wm_softc *sc) 16877 { 16878 pcireg_t reg, mask = 0; 16879 unsigned const char *str = ""; 16880 16881 /* 16882 * Only for PCIe device which has PCIe capability in the PCI config 16883 * space. 16884 */ 16885 if (((sc->sc_flags & WM_F_PCIE) == 0) || (sc->sc_pcixe_capoff == 0)) 16886 return; 16887 16888 switch (sc->sc_type) { 16889 case WM_T_82571: 16890 case WM_T_82572: 16891 /* 16892 * 8257[12] Errata 13: Device Does Not Support PCIe Active 16893 * State Power management L1 State (ASPM L1). 16894 */ 16895 mask = PCIE_LCSR_ASPM_L1; 16896 str = "L1 is"; 16897 break; 16898 case WM_T_82573: 16899 case WM_T_82574: 16900 case WM_T_82583: 16901 /* 16902 * The 82573 disappears when PCIe ASPM L0s is enabled. 16903 * 16904 * The 82574 and 82583 does not support PCIe ASPM L0s with 16905 * some chipset. The document of 82574 and 82583 says that 16906 * disabling L0s with some specific chipset is sufficient, 16907 * but we follow as of the Intel em driver does. 16908 * 16909 * References: 16910 * Errata 8 of the Specification Update of i82573. 16911 * Errata 20 of the Specification Update of i82574. 16912 * Errata 9 of the Specification Update of i82583. 16913 */ 16914 mask = PCIE_LCSR_ASPM_L1 | PCIE_LCSR_ASPM_L0S; 16915 str = "L0s and L1 are"; 16916 break; 16917 default: 16918 return; 16919 } 16920 16921 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 16922 sc->sc_pcixe_capoff + PCIE_LCSR); 16923 reg &= ~mask; 16924 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 16925 sc->sc_pcixe_capoff + PCIE_LCSR, reg); 16926 16927 /* Print only in wm_attach() */ 16928 if ((sc->sc_flags & WM_F_ATTACHED) == 0) 16929 aprint_verbose_dev(sc->sc_dev, 16930 "ASPM %s disabled to workaround the errata.\n", str); 16931 } 16932 16933 /* LPLU */ 16934 16935 static void 16936 wm_lplu_d0_disable(struct wm_softc *sc) 16937 { 16938 struct mii_data *mii = &sc->sc_mii; 16939 uint32_t reg; 16940 uint16_t phyval; 16941 16942 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 16943 device_xname(sc->sc_dev), __func__)); 16944 16945 if (sc->sc_phytype == WMPHY_IFE) 16946 return; 16947 16948 switch (sc->sc_type) { 16949 case WM_T_82571: 16950 case WM_T_82572: 16951 case WM_T_82573: 16952 case WM_T_82575: 16953 case WM_T_82576: 16954 mii->mii_readreg(sc->sc_dev, 1, IGPHY_POWER_MGMT, &phyval); 16955 phyval &= ~PMR_D0_LPLU; 16956 mii->mii_writereg(sc->sc_dev, 1, IGPHY_POWER_MGMT, phyval); 16957 break; 16958 case WM_T_82580: 16959 case WM_T_I350: 16960 case WM_T_I210: 16961 case WM_T_I211: 16962 reg = CSR_READ(sc, WMREG_PHPM); 16963 reg &= ~PHPM_D0A_LPLU; 16964 CSR_WRITE(sc, WMREG_PHPM, reg); 16965 break; 16966 case WM_T_82574: 16967 case WM_T_82583: 16968 case WM_T_ICH8: 16969 case WM_T_ICH9: 16970 case WM_T_ICH10: 16971 reg = CSR_READ(sc, WMREG_PHY_CTRL); 16972 reg &= ~(PHY_CTRL_GBE_DIS | PHY_CTRL_D0A_LPLU); 16973 CSR_WRITE(sc, WMREG_PHY_CTRL, reg); 16974 CSR_WRITE_FLUSH(sc); 16975 break; 16976 case WM_T_PCH: 16977 case WM_T_PCH2: 16978 case WM_T_PCH_LPT: 16979 case WM_T_PCH_SPT: 16980 case WM_T_PCH_CNP: 16981 case WM_T_PCH_TGP: 16982 wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS, &phyval); 16983 phyval &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU); 16984 if (wm_phy_resetisblocked(sc) == false) 16985 phyval |= HV_OEM_BITS_ANEGNOW; 16986 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, phyval); 16987 break; 16988 default: 16989 break; 16990 } 16991 } 16992 16993 /* EEE */ 16994 16995 static int 16996 wm_set_eee_i350(struct wm_softc *sc) 16997 { 16998 struct ethercom *ec = &sc->sc_ethercom; 16999 uint32_t ipcnfg, eeer; 17000 uint32_t ipcnfg_mask 17001 = IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN | IPCNFG_10BASE_TE; 17002 uint32_t eeer_mask = EEER_TX_LPI_EN | EEER_RX_LPI_EN | EEER_LPI_FC; 17003 17004 KASSERT(sc->sc_mediatype == WM_MEDIATYPE_COPPER); 17005 17006 ipcnfg = CSR_READ(sc, WMREG_IPCNFG); 17007 eeer = CSR_READ(sc, WMREG_EEER); 17008 17009 /* Enable or disable per user setting */ 17010 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) { 17011 ipcnfg |= ipcnfg_mask; 17012 eeer |= eeer_mask; 17013 } else { 17014 ipcnfg &= ~ipcnfg_mask; 17015 eeer &= ~eeer_mask; 17016 } 17017 17018 CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg); 17019 CSR_WRITE(sc, WMREG_EEER, eeer); 17020 CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */ 17021 CSR_READ(sc, WMREG_EEER); /* XXX flush? */ 17022 17023 return 0; 17024 } 17025 17026 static int 17027 wm_set_eee_pchlan(struct wm_softc *sc) 17028 { 17029 device_t dev = sc->sc_dev; 17030 struct ethercom *ec = &sc->sc_ethercom; 17031 uint16_t lpa, pcs_status, adv_addr, adv, lpi_ctrl, data; 17032 int rv; 17033 17034 switch (sc->sc_phytype) { 17035 case WMPHY_82579: 17036 lpa = I82579_EEE_LP_ABILITY; 17037 pcs_status = I82579_EEE_PCS_STATUS; 17038 adv_addr = I82579_EEE_ADVERTISEMENT; 17039 break; 17040 case WMPHY_I217: 17041 lpa = I217_EEE_LP_ABILITY; 17042 pcs_status = I217_EEE_PCS_STATUS; 17043 adv_addr = I217_EEE_ADVERTISEMENT; 17044 break; 17045 default: 17046 return 0; 17047 } 17048 17049 rv = sc->phy.acquire(sc); 17050 if (rv != 0) { 17051 device_printf(dev, "%s: failed to get semaphore\n", __func__); 17052 return rv; 17053 } 17054 17055 rv = sc->phy.readreg_locked(dev, 1, I82579_LPI_CTRL, &lpi_ctrl); 17056 if (rv != 0) 17057 goto release; 17058 17059 /* Clear bits that enable EEE in various speeds */ 17060 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE; 17061 17062 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) { 17063 /* Save off link partner's EEE ability */ 17064 rv = wm_read_emi_reg_locked(dev, lpa, &sc->eee_lp_ability); 17065 if (rv != 0) 17066 goto release; 17067 17068 /* Read EEE advertisement */ 17069 if ((rv = wm_read_emi_reg_locked(dev, adv_addr, &adv)) != 0) 17070 goto release; 17071 17072 /* 17073 * Enable EEE only for speeds in which the link partner is 17074 * EEE capable and for which we advertise EEE. 17075 */ 17076 if (adv & sc->eee_lp_ability & AN_EEEADVERT_1000_T) 17077 lpi_ctrl |= I82579_LPI_CTRL_EN_1000; 17078 if (adv & sc->eee_lp_ability & AN_EEEADVERT_100_TX) { 17079 sc->phy.readreg_locked(dev, 2, MII_ANLPAR, &data); 17080 if ((data & ANLPAR_TX_FD) != 0) 17081 lpi_ctrl |= I82579_LPI_CTRL_EN_100; 17082 else { 17083 /* 17084 * EEE is not supported in 100Half, so ignore 17085 * partner's EEE in 100 ability if full-duplex 17086 * is not advertised. 17087 */ 17088 sc->eee_lp_ability 17089 &= ~AN_EEEADVERT_100_TX; 17090 } 17091 } 17092 } 17093 17094 if (sc->sc_phytype == WMPHY_82579) { 17095 rv = wm_read_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, &data); 17096 if (rv != 0) 17097 goto release; 17098 17099 data &= ~I82579_LPI_PLL_SHUT_100; 17100 rv = wm_write_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, data); 17101 } 17102 17103 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 17104 if ((rv = wm_read_emi_reg_locked(dev, pcs_status, &data)) != 0) 17105 goto release; 17106 17107 rv = sc->phy.writereg_locked(dev, 1, I82579_LPI_CTRL, lpi_ctrl); 17108 release: 17109 sc->phy.release(sc); 17110 17111 return rv; 17112 } 17113 17114 static int 17115 wm_set_eee(struct wm_softc *sc) 17116 { 17117 struct ethercom *ec = &sc->sc_ethercom; 17118 17119 if ((ec->ec_capabilities & ETHERCAP_EEE) == 0) 17120 return 0; 17121 17122 if (sc->sc_type == WM_T_I354) { 17123 /* I354 uses an external PHY */ 17124 return 0; /* not yet */ 17125 } else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211)) 17126 return wm_set_eee_i350(sc); 17127 else if (sc->sc_type >= WM_T_PCH2) 17128 return wm_set_eee_pchlan(sc); 17129 17130 return 0; 17131 } 17132 17133 /* 17134 * Workarounds (mainly PHY related). 17135 * Basically, PHY's workarounds are in the PHY drivers. 17136 */ 17137 17138 /* Workaround for 82566 Kumeran PCS lock loss */ 17139 static int 17140 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc) 17141 { 17142 struct mii_data *mii = &sc->sc_mii; 17143 uint32_t status = CSR_READ(sc, WMREG_STATUS); 17144 int i, reg, rv; 17145 uint16_t phyreg; 17146 17147 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 17148 device_xname(sc->sc_dev), __func__)); 17149 17150 /* If the link is not up, do nothing */ 17151 if ((status & STATUS_LU) == 0) 17152 return 0; 17153 17154 /* Nothing to do if the link is other than 1Gbps */ 17155 if (__SHIFTOUT(status, STATUS_SPEED) != STATUS_SPEED_1000) 17156 return 0; 17157 17158 for (i = 0; i < 10; i++) { 17159 /* read twice */ 17160 rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg); 17161 if (rv != 0) 17162 return rv; 17163 rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg); 17164 if (rv != 0) 17165 return rv; 17166 17167 if ((phyreg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) == 0) 17168 goto out; /* GOOD! */ 17169 17170 /* Reset the PHY */ 17171 wm_reset_phy(sc); 17172 delay(5*1000); 17173 } 17174 17175 /* Disable GigE link negotiation */ 17176 reg = CSR_READ(sc, WMREG_PHY_CTRL); 17177 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS; 17178 CSR_WRITE(sc, WMREG_PHY_CTRL, reg); 17179 17180 /* 17181 * Call gig speed drop workaround on Gig disable before accessing 17182 * any PHY registers. 17183 */ 17184 wm_gig_downshift_workaround_ich8lan(sc); 17185 17186 out: 17187 return 0; 17188 } 17189 17190 /* 17191 * wm_gig_downshift_workaround_ich8lan - WoL from S5 stops working 17192 * @sc: pointer to the HW structure 17193 * 17194 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 17195 * LPLU, Gig disable, MDIC PHY reset): 17196 * 1) Set Kumeran Near-end loopback 17197 * 2) Clear Kumeran Near-end loopback 17198 * Should only be called for ICH8[m] devices with any 1G Phy. 17199 */ 17200 static void 17201 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc) 17202 { 17203 uint16_t kmreg; 17204 17205 /* Only for igp3 */ 17206 if (sc->sc_phytype == WMPHY_IGP_3) { 17207 if (wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG, &kmreg) != 0) 17208 return; 17209 kmreg |= KUMCTRLSTA_DIAG_NELPBK; 17210 if (wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg) != 0) 17211 return; 17212 kmreg &= ~KUMCTRLSTA_DIAG_NELPBK; 17213 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg); 17214 } 17215 } 17216 17217 /* 17218 * Workaround for pch's PHYs 17219 * XXX should be moved to new PHY driver? 17220 */ 17221 static int 17222 wm_hv_phy_workarounds_ich8lan(struct wm_softc *sc) 17223 { 17224 device_t dev = sc->sc_dev; 17225 struct mii_data *mii = &sc->sc_mii; 17226 struct mii_softc *child; 17227 uint16_t phy_data, phyrev = 0; 17228 int phytype = sc->sc_phytype; 17229 int rv; 17230 17231 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 17232 device_xname(dev), __func__)); 17233 KASSERT(sc->sc_type == WM_T_PCH); 17234 17235 /* Set MDIO slow mode before any other MDIO access */ 17236 if (phytype == WMPHY_82577) 17237 if ((rv = wm_set_mdio_slow_mode_hv(sc)) != 0) 17238 return rv; 17239 17240 child = LIST_FIRST(&mii->mii_phys); 17241 if (child != NULL) 17242 phyrev = child->mii_mpd_rev; 17243 17244 /* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/ 17245 if ((child != NULL) && 17246 (((phytype == WMPHY_82577) && ((phyrev == 1) || (phyrev == 2))) || 17247 ((phytype == WMPHY_82578) && (phyrev == 1)))) { 17248 /* Disable generation of early preamble (0x4431) */ 17249 rv = mii->mii_readreg(dev, 2, BM_RATE_ADAPTATION_CTRL, 17250 &phy_data); 17251 if (rv != 0) 17252 return rv; 17253 phy_data &= ~(BM_RATE_ADAPTATION_CTRL_RX_RXDV_PRE | 17254 BM_RATE_ADAPTATION_CTRL_RX_CRS_PRE); 17255 rv = mii->mii_writereg(dev, 2, BM_RATE_ADAPTATION_CTRL, 17256 phy_data); 17257 if (rv != 0) 17258 return rv; 17259 17260 /* Preamble tuning for SSC */ 17261 rv = mii->mii_writereg(dev, 2, HV_KMRN_FIFO_CTRLSTA, 0xa204); 17262 if (rv != 0) 17263 return rv; 17264 } 17265 17266 /* 82578 */ 17267 if (phytype == WMPHY_82578) { 17268 /* 17269 * Return registers to default by doing a soft reset then 17270 * writing 0x3140 to the control register 17271 * 0x3140 == BMCR_SPEED0 | BMCR_AUTOEN | BMCR_FDX | BMCR_SPEED1 17272 */ 17273 if ((child != NULL) && (phyrev < 2)) { 17274 PHY_RESET(child); 17275 rv = mii->mii_writereg(dev, 2, MII_BMCR, 0x3140); 17276 if (rv != 0) 17277 return rv; 17278 } 17279 } 17280 17281 /* Select page 0 */ 17282 if ((rv = sc->phy.acquire(sc)) != 0) 17283 return rv; 17284 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT, 0); 17285 sc->phy.release(sc); 17286 if (rv != 0) 17287 return rv; 17288 17289 /* 17290 * Configure the K1 Si workaround during phy reset assuming there is 17291 * link so that it disables K1 if link is in 1Gbps. 17292 */ 17293 if ((rv = wm_k1_gig_workaround_hv(sc, 1)) != 0) 17294 return rv; 17295 17296 /* Workaround for link disconnects on a busy hub in half duplex */ 17297 rv = sc->phy.acquire(sc); 17298 if (rv) 17299 return rv; 17300 rv = sc->phy.readreg_locked(dev, 2, BM_PORT_GEN_CFG, &phy_data); 17301 if (rv) 17302 goto release; 17303 rv = sc->phy.writereg_locked(dev, 2, BM_PORT_GEN_CFG, 17304 phy_data & 0x00ff); 17305 if (rv) 17306 goto release; 17307 17308 /* Set MSE higher to enable link to stay up when noise is high */ 17309 rv = wm_write_emi_reg_locked(dev, I82577_MSE_THRESHOLD, 0x0034); 17310 release: 17311 sc->phy.release(sc); 17312 17313 return rv; 17314 } 17315 17316 /* 17317 * wm_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 17318 * @sc: pointer to the HW structure 17319 */ 17320 static void 17321 wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *sc) 17322 { 17323 17324 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 17325 device_xname(sc->sc_dev), __func__)); 17326 17327 if (sc->phy.acquire(sc) != 0) 17328 return; 17329 17330 wm_copy_rx_addrs_to_phy_ich8lan_locked(sc); 17331 17332 sc->phy.release(sc); 17333 } 17334 17335 static void 17336 wm_copy_rx_addrs_to_phy_ich8lan_locked(struct wm_softc *sc) 17337 { 17338 device_t dev = sc->sc_dev; 17339 uint32_t mac_reg; 17340 uint16_t i, wuce; 17341 int count; 17342 17343 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 17344 device_xname(dev), __func__)); 17345 17346 if (wm_enable_phy_wakeup_reg_access_bm(dev, &wuce) != 0) 17347 return; 17348 17349 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 17350 count = wm_rar_count(sc); 17351 for (i = 0; i < count; i++) { 17352 uint16_t lo, hi; 17353 mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAL(i)); 17354 lo = (uint16_t)(mac_reg & 0xffff); 17355 hi = (uint16_t)((mac_reg >> 16) & 0xffff); 17356 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_L(i), &lo, 0, true); 17357 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_M(i), &hi, 0, true); 17358 17359 mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAH(i)); 17360 lo = (uint16_t)(mac_reg & 0xffff); 17361 hi = (uint16_t)((mac_reg & RAL_AV) >> 16); 17362 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_H(i), &lo, 0, true); 17363 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_CTRL(i), &hi, 0, true); 17364 } 17365 17366 wm_disable_phy_wakeup_reg_access_bm(dev, &wuce); 17367 } 17368 17369 /* 17370 * wm_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 17371 * with 82579 PHY 17372 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 17373 */ 17374 static int 17375 wm_lv_jumbo_workaround_ich8lan(struct wm_softc *sc, bool enable) 17376 { 17377 device_t dev = sc->sc_dev; 17378 int rar_count; 17379 int rv; 17380 uint32_t mac_reg; 17381 uint16_t dft_ctrl, data; 17382 uint16_t i; 17383 17384 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 17385 device_xname(dev), __func__)); 17386 17387 if (sc->sc_type < WM_T_PCH2) 17388 return 0; 17389 17390 /* Acquire PHY semaphore */ 17391 rv = sc->phy.acquire(sc); 17392 if (rv != 0) 17393 return rv; 17394 17395 /* Disable Rx path while enabling/disabling workaround */ 17396 rv = sc->phy.readreg_locked(dev, 2, I82579_DFT_CTRL, &dft_ctrl); 17397 if (rv != 0) 17398 goto out; 17399 rv = sc->phy.writereg_locked(dev, 2, I82579_DFT_CTRL, 17400 dft_ctrl | (1 << 14)); 17401 if (rv != 0) 17402 goto out; 17403 17404 if (enable) { 17405 /* Write Rx addresses (rar_entry_count for RAL/H, and 17406 * SHRAL/H) and initial CRC values to the MAC 17407 */ 17408 rar_count = wm_rar_count(sc); 17409 for (i = 0; i < rar_count; i++) { 17410 uint8_t mac_addr[ETHER_ADDR_LEN] = {0}; 17411 uint32_t addr_high, addr_low; 17412 17413 addr_high = CSR_READ(sc, WMREG_CORDOVA_RAH(i)); 17414 if (!(addr_high & RAL_AV)) 17415 continue; 17416 addr_low = CSR_READ(sc, WMREG_CORDOVA_RAL(i)); 17417 mac_addr[0] = (addr_low & 0xFF); 17418 mac_addr[1] = ((addr_low >> 8) & 0xFF); 17419 mac_addr[2] = ((addr_low >> 16) & 0xFF); 17420 mac_addr[3] = ((addr_low >> 24) & 0xFF); 17421 mac_addr[4] = (addr_high & 0xFF); 17422 mac_addr[5] = ((addr_high >> 8) & 0xFF); 17423 17424 CSR_WRITE(sc, WMREG_PCH_RAICC(i), 17425 ~ether_crc32_le(mac_addr, ETHER_ADDR_LEN)); 17426 } 17427 17428 /* Write Rx addresses to the PHY */ 17429 wm_copy_rx_addrs_to_phy_ich8lan_locked(sc); 17430 } 17431 17432 /* 17433 * If enable == 17434 * true: Enable jumbo frame workaround in the MAC. 17435 * false: Write MAC register values back to h/w defaults. 17436 */ 17437 mac_reg = CSR_READ(sc, WMREG_FFLT_DBG); 17438 if (enable) { 17439 mac_reg &= ~(1 << 14); 17440 mac_reg |= (7 << 15); 17441 } else 17442 mac_reg &= ~(0xf << 14); 17443 CSR_WRITE(sc, WMREG_FFLT_DBG, mac_reg); 17444 17445 mac_reg = CSR_READ(sc, WMREG_RCTL); 17446 if (enable) { 17447 mac_reg |= RCTL_SECRC; 17448 sc->sc_rctl |= RCTL_SECRC; 17449 sc->sc_flags |= WM_F_CRC_STRIP; 17450 } else { 17451 mac_reg &= ~RCTL_SECRC; 17452 sc->sc_rctl &= ~RCTL_SECRC; 17453 sc->sc_flags &= ~WM_F_CRC_STRIP; 17454 } 17455 CSR_WRITE(sc, WMREG_RCTL, mac_reg); 17456 17457 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_CTRL, &data); 17458 if (rv != 0) 17459 goto out; 17460 if (enable) 17461 data |= 1 << 0; 17462 else 17463 data &= ~(1 << 0); 17464 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_CTRL, data); 17465 if (rv != 0) 17466 goto out; 17467 17468 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_HD_CTRL, &data); 17469 if (rv != 0) 17470 goto out; 17471 /* 17472 * XXX FreeBSD and Linux do the same thing that they set the same value 17473 * on both the enable case and the disable case. Is it correct? 17474 */ 17475 data &= ~(0xf << 8); 17476 data |= (0xb << 8); 17477 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_HD_CTRL, data); 17478 if (rv != 0) 17479 goto out; 17480 17481 /* 17482 * If enable == 17483 * true: Enable jumbo frame workaround in the PHY. 17484 * false: Write PHY register values back to h/w defaults. 17485 */ 17486 rv = sc->phy.readreg_locked(dev, 2, BME1000_REG(769, 23), &data); 17487 if (rv != 0) 17488 goto out; 17489 data &= ~(0x7F << 5); 17490 if (enable) 17491 data |= (0x37 << 5); 17492 rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(769, 23), data); 17493 if (rv != 0) 17494 goto out; 17495 17496 rv = sc->phy.readreg_locked(dev, 2, BME1000_REG(769, 16), &data); 17497 if (rv != 0) 17498 goto out; 17499 if (enable) 17500 data &= ~(1 << 13); 17501 else 17502 data |= (1 << 13); 17503 rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(769, 16), data); 17504 if (rv != 0) 17505 goto out; 17506 17507 rv = sc->phy.readreg_locked(dev, 2, I82579_UNKNOWN1, &data); 17508 if (rv != 0) 17509 goto out; 17510 data &= ~(0x3FF << 2); 17511 if (enable) 17512 data |= (I82579_TX_PTR_GAP << 2); 17513 else 17514 data |= (0x8 << 2); 17515 rv = sc->phy.writereg_locked(dev, 2, I82579_UNKNOWN1, data); 17516 if (rv != 0) 17517 goto out; 17518 17519 rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(776, 23), 17520 enable ? 0xf100 : 0x7e00); 17521 if (rv != 0) 17522 goto out; 17523 17524 rv = sc->phy.readreg_locked(dev, 2, HV_PM_CTRL, &data); 17525 if (rv != 0) 17526 goto out; 17527 if (enable) 17528 data |= 1 << 10; 17529 else 17530 data &= ~(1 << 10); 17531 rv = sc->phy.writereg_locked(dev, 2, HV_PM_CTRL, data); 17532 if (rv != 0) 17533 goto out; 17534 17535 /* Re-enable Rx path after enabling/disabling workaround */ 17536 rv = sc->phy.writereg_locked(dev, 2, I82579_DFT_CTRL, 17537 dft_ctrl & ~(1 << 14)); 17538 17539 out: 17540 sc->phy.release(sc); 17541 17542 return rv; 17543 } 17544 17545 /* 17546 * wm_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 17547 * done after every PHY reset. 17548 */ 17549 static int 17550 wm_lv_phy_workarounds_ich8lan(struct wm_softc *sc) 17551 { 17552 device_t dev = sc->sc_dev; 17553 int rv; 17554 17555 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 17556 device_xname(dev), __func__)); 17557 KASSERT(sc->sc_type == WM_T_PCH2); 17558 17559 /* Set MDIO slow mode before any other MDIO access */ 17560 rv = wm_set_mdio_slow_mode_hv(sc); 17561 if (rv != 0) 17562 return rv; 17563 17564 rv = sc->phy.acquire(sc); 17565 if (rv != 0) 17566 return rv; 17567 /* Set MSE higher to enable link to stay up when noise is high */ 17568 rv = wm_write_emi_reg_locked(dev, I82579_MSE_THRESHOLD, 0x0034); 17569 if (rv != 0) 17570 goto release; 17571 /* Drop link after 5 times MSE threshold was reached */ 17572 rv = wm_write_emi_reg_locked(dev, I82579_MSE_LINK_DOWN, 0x0005); 17573 release: 17574 sc->phy.release(sc); 17575 17576 return rv; 17577 } 17578 17579 /** 17580 * wm_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 17581 * @link: link up bool flag 17582 * 17583 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 17584 * preventing further DMA write requests. Workaround the issue by disabling 17585 * the de-assertion of the clock request when in 1Gpbs mode. 17586 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 17587 * speeds in order to avoid Tx hangs. 17588 **/ 17589 static int 17590 wm_k1_workaround_lpt_lp(struct wm_softc *sc, bool link) 17591 { 17592 uint32_t fextnvm6 = CSR_READ(sc, WMREG_FEXTNVM6); 17593 uint32_t status = CSR_READ(sc, WMREG_STATUS); 17594 uint32_t speed = __SHIFTOUT(status, STATUS_SPEED); 17595 uint16_t phyreg; 17596 17597 if (link && (speed == STATUS_SPEED_1000)) { 17598 int rv; 17599 17600 rv = sc->phy.acquire(sc); 17601 if (rv != 0) 17602 return rv; 17603 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, 17604 &phyreg); 17605 if (rv != 0) 17606 goto release; 17607 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, 17608 phyreg & ~KUMCTRLSTA_K1_ENABLE); 17609 if (rv != 0) 17610 goto release; 17611 delay(20); 17612 CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6 | FEXTNVM6_REQ_PLL_CLK); 17613 17614 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, 17615 &phyreg); 17616 release: 17617 sc->phy.release(sc); 17618 return rv; 17619 } 17620 17621 fextnvm6 &= ~FEXTNVM6_REQ_PLL_CLK; 17622 17623 struct mii_softc *child = LIST_FIRST(&sc->sc_mii.mii_phys); 17624 if (((child != NULL) && (child->mii_mpd_rev > 5)) 17625 || !link 17626 || ((speed == STATUS_SPEED_100) && (status & STATUS_FD))) 17627 goto update_fextnvm6; 17628 17629 wm_gmii_hv_readreg(sc->sc_dev, 2, I217_INBAND_CTRL, &phyreg); 17630 17631 /* Clear link status transmit timeout */ 17632 phyreg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 17633 if (speed == STATUS_SPEED_100) { 17634 /* Set inband Tx timeout to 5x10us for 100Half */ 17635 phyreg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 17636 17637 /* Do not extend the K1 entry latency for 100Half */ 17638 fextnvm6 &= ~FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 17639 } else { 17640 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 17641 phyreg |= 50 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 17642 17643 /* Extend the K1 entry latency for 10 Mbps */ 17644 fextnvm6 |= FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 17645 } 17646 17647 wm_gmii_hv_writereg(sc->sc_dev, 2, I217_INBAND_CTRL, phyreg); 17648 17649 update_fextnvm6: 17650 CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6); 17651 return 0; 17652 } 17653 17654 /* 17655 * wm_k1_gig_workaround_hv - K1 Si workaround 17656 * @sc: pointer to the HW structure 17657 * @link: link up bool flag 17658 * 17659 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 17660 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 17661 * If link is down, the function will restore the default K1 setting located 17662 * in the NVM. 17663 */ 17664 static int 17665 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link) 17666 { 17667 int k1_enable = sc->sc_nvm_k1_enabled; 17668 int rv; 17669 17670 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 17671 device_xname(sc->sc_dev), __func__)); 17672 17673 rv = sc->phy.acquire(sc); 17674 if (rv != 0) 17675 return rv; 17676 17677 if (link) { 17678 k1_enable = 0; 17679 17680 /* Link stall fix for link up */ 17681 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG, 17682 0x0100); 17683 } else { 17684 /* Link stall fix for link down */ 17685 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG, 17686 0x4100); 17687 } 17688 17689 wm_configure_k1_ich8lan(sc, k1_enable); 17690 sc->phy.release(sc); 17691 17692 return 0; 17693 } 17694 17695 /* 17696 * wm_k1_workaround_lv - K1 Si workaround 17697 * @sc: pointer to the HW structure 17698 * 17699 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 17700 * Disable K1 for 1000 and 100 speeds 17701 */ 17702 static int 17703 wm_k1_workaround_lv(struct wm_softc *sc) 17704 { 17705 uint32_t reg; 17706 uint16_t phyreg; 17707 int rv; 17708 17709 if (sc->sc_type != WM_T_PCH2) 17710 return 0; 17711 17712 /* Set K1 beacon duration based on 10Mbps speed */ 17713 rv = wm_gmii_hv_readreg(sc->sc_dev, 2, HV_M_STATUS, &phyreg); 17714 if (rv != 0) 17715 return rv; 17716 17717 if ((phyreg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 17718 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 17719 if (phyreg & 17720 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 17721 /* LV 1G/100 Packet drop issue wa */ 17722 rv = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_PM_CTRL, 17723 &phyreg); 17724 if (rv != 0) 17725 return rv; 17726 phyreg &= ~HV_PM_CTRL_K1_ENA; 17727 rv = wm_gmii_hv_writereg(sc->sc_dev, 1, HV_PM_CTRL, 17728 phyreg); 17729 if (rv != 0) 17730 return rv; 17731 } else { 17732 /* For 10Mbps */ 17733 reg = CSR_READ(sc, WMREG_FEXTNVM4); 17734 reg &= ~FEXTNVM4_BEACON_DURATION; 17735 reg |= FEXTNVM4_BEACON_DURATION_16US; 17736 CSR_WRITE(sc, WMREG_FEXTNVM4, reg); 17737 } 17738 } 17739 17740 return 0; 17741 } 17742 17743 /* 17744 * wm_link_stall_workaround_hv - Si workaround 17745 * @sc: pointer to the HW structure 17746 * 17747 * This function works around a Si bug where the link partner can get 17748 * a link up indication before the PHY does. If small packets are sent 17749 * by the link partner they can be placed in the packet buffer without 17750 * being properly accounted for by the PHY and will stall preventing 17751 * further packets from being received. The workaround is to clear the 17752 * packet buffer after the PHY detects link up. 17753 */ 17754 static int 17755 wm_link_stall_workaround_hv(struct wm_softc *sc) 17756 { 17757 uint16_t phyreg; 17758 17759 if (sc->sc_phytype != WMPHY_82578) 17760 return 0; 17761 17762 /* Do not apply workaround if in PHY loopback bit 14 set */ 17763 wm_gmii_hv_readreg(sc->sc_dev, 2, MII_BMCR, &phyreg); 17764 if ((phyreg & BMCR_LOOP) != 0) 17765 return 0; 17766 17767 /* Check if link is up and at 1Gbps */ 17768 wm_gmii_hv_readreg(sc->sc_dev, 2, BM_CS_STATUS, &phyreg); 17769 phyreg &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED 17770 | BM_CS_STATUS_SPEED_MASK; 17771 if (phyreg != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED 17772 | BM_CS_STATUS_SPEED_1000)) 17773 return 0; 17774 17775 delay(200 * 1000); /* XXX too big */ 17776 17777 /* Flush the packets in the fifo buffer */ 17778 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL, 17779 HV_MUX_DATA_CTRL_GEN_TO_MAC | HV_MUX_DATA_CTRL_FORCE_SPEED); 17780 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL, 17781 HV_MUX_DATA_CTRL_GEN_TO_MAC); 17782 17783 return 0; 17784 } 17785 17786 static int 17787 wm_set_mdio_slow_mode_hv(struct wm_softc *sc) 17788 { 17789 int rv; 17790 17791 rv = sc->phy.acquire(sc); 17792 if (rv != 0) { 17793 device_printf(sc->sc_dev, "%s: failed to get semaphore\n", 17794 __func__); 17795 return rv; 17796 } 17797 17798 rv = wm_set_mdio_slow_mode_hv_locked(sc); 17799 17800 sc->phy.release(sc); 17801 17802 return rv; 17803 } 17804 17805 static int 17806 wm_set_mdio_slow_mode_hv_locked(struct wm_softc *sc) 17807 { 17808 int rv; 17809 uint16_t reg; 17810 17811 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 1, HV_KMRN_MODE_CTRL, ®); 17812 if (rv != 0) 17813 return rv; 17814 17815 return wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_KMRN_MODE_CTRL, 17816 reg | HV_KMRN_MDIO_SLOW); 17817 } 17818 17819 /* 17820 * wm_configure_k1_ich8lan - Configure K1 power state 17821 * @sc: pointer to the HW structure 17822 * @enable: K1 state to configure 17823 * 17824 * Configure the K1 power state based on the provided parameter. 17825 * Assumes semaphore already acquired. 17826 */ 17827 static void 17828 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable) 17829 { 17830 uint32_t ctrl, ctrl_ext, tmp; 17831 uint16_t kmreg; 17832 int rv; 17833 17834 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP); 17835 17836 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, &kmreg); 17837 if (rv != 0) 17838 return; 17839 17840 if (k1_enable) 17841 kmreg |= KUMCTRLSTA_K1_ENABLE; 17842 else 17843 kmreg &= ~KUMCTRLSTA_K1_ENABLE; 17844 17845 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmreg); 17846 if (rv != 0) 17847 return; 17848 17849 delay(20); 17850 17851 ctrl = CSR_READ(sc, WMREG_CTRL); 17852 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT); 17853 17854 tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100); 17855 tmp |= CTRL_FRCSPD; 17856 17857 CSR_WRITE(sc, WMREG_CTRL, tmp); 17858 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS); 17859 CSR_WRITE_FLUSH(sc); 17860 delay(20); 17861 17862 CSR_WRITE(sc, WMREG_CTRL, ctrl); 17863 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext); 17864 CSR_WRITE_FLUSH(sc); 17865 delay(20); 17866 17867 return; 17868 } 17869 17870 /* special case - for 82575 - need to do manual init ... */ 17871 static void 17872 wm_reset_init_script_82575(struct wm_softc *sc) 17873 { 17874 /* 17875 * Remark: this is untested code - we have no board without EEPROM 17876 * same setup as mentioned int the FreeBSD driver for the i82575 17877 */ 17878 17879 /* SerDes configuration via SERDESCTRL */ 17880 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c); 17881 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78); 17882 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23); 17883 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15); 17884 17885 /* CCM configuration via CCMCTL register */ 17886 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00); 17887 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00); 17888 17889 /* PCIe lanes configuration */ 17890 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec); 17891 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf); 17892 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05); 17893 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81); 17894 17895 /* PCIe PLL Configuration */ 17896 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47); 17897 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00); 17898 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00); 17899 } 17900 17901 static void 17902 wm_reset_mdicnfg_82580(struct wm_softc *sc) 17903 { 17904 uint32_t reg; 17905 uint16_t nvmword; 17906 int rv; 17907 17908 if (sc->sc_type != WM_T_82580) 17909 return; 17910 if ((sc->sc_flags & WM_F_SGMII) == 0) 17911 return; 17912 17913 rv = wm_nvm_read(sc, NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) 17914 + NVM_OFF_CFG3_PORTA, 1, &nvmword); 17915 if (rv != 0) { 17916 aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n", 17917 __func__); 17918 return; 17919 } 17920 17921 reg = CSR_READ(sc, WMREG_MDICNFG); 17922 if (nvmword & NVM_CFG3_PORTA_EXT_MDIO) 17923 reg |= MDICNFG_DEST; 17924 if (nvmword & NVM_CFG3_PORTA_COM_MDIO) 17925 reg |= MDICNFG_COM_MDIO; 17926 CSR_WRITE(sc, WMREG_MDICNFG, reg); 17927 } 17928 17929 #define MII_INVALIDID(x) (((x) == 0x0000) || ((x) == 0xffff)) 17930 17931 static bool 17932 wm_phy_is_accessible_pchlan(struct wm_softc *sc) 17933 { 17934 uint32_t reg; 17935 uint16_t id1, id2; 17936 int i, rv; 17937 17938 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 17939 device_xname(sc->sc_dev), __func__)); 17940 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP); 17941 17942 id1 = id2 = 0xffff; 17943 for (i = 0; i < 2; i++) { 17944 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR1, 17945 &id1); 17946 if ((rv != 0) || MII_INVALIDID(id1)) 17947 continue; 17948 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR2, 17949 &id2); 17950 if ((rv != 0) || MII_INVALIDID(id2)) 17951 continue; 17952 break; 17953 } 17954 if ((rv == 0) && !MII_INVALIDID(id1) && !MII_INVALIDID(id2)) 17955 goto out; 17956 17957 /* 17958 * In case the PHY needs to be in mdio slow mode, 17959 * set slow mode and try to get the PHY id again. 17960 */ 17961 rv = 0; 17962 if (sc->sc_type < WM_T_PCH_LPT) { 17963 wm_set_mdio_slow_mode_hv_locked(sc); 17964 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR1, 17965 &id1); 17966 rv |= wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR2, 17967 &id2); 17968 } 17969 if ((rv != 0) || MII_INVALIDID(id1) || MII_INVALIDID(id2)) { 17970 device_printf(sc->sc_dev, "XXX return with false\n"); 17971 return false; 17972 } 17973 out: 17974 if (sc->sc_type >= WM_T_PCH_LPT) { 17975 /* Only unforce SMBus if ME is not active */ 17976 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) { 17977 uint16_t phyreg; 17978 17979 /* Unforce SMBus mode in PHY */ 17980 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, 17981 CV_SMB_CTRL, &phyreg); 17982 phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS; 17983 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, 17984 CV_SMB_CTRL, phyreg); 17985 17986 /* Unforce SMBus mode in MAC */ 17987 reg = CSR_READ(sc, WMREG_CTRL_EXT); 17988 reg &= ~CTRL_EXT_FORCE_SMBUS; 17989 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 17990 } 17991 } 17992 return true; 17993 } 17994 17995 static void 17996 wm_toggle_lanphypc_pch_lpt(struct wm_softc *sc) 17997 { 17998 uint32_t reg; 17999 int i; 18000 18001 /* Set PHY Config Counter to 50msec */ 18002 reg = CSR_READ(sc, WMREG_FEXTNVM3); 18003 reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK; 18004 reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS; 18005 CSR_WRITE(sc, WMREG_FEXTNVM3, reg); 18006 18007 /* Toggle LANPHYPC */ 18008 reg = CSR_READ(sc, WMREG_CTRL); 18009 reg |= CTRL_LANPHYPC_OVERRIDE; 18010 reg &= ~CTRL_LANPHYPC_VALUE; 18011 CSR_WRITE(sc, WMREG_CTRL, reg); 18012 CSR_WRITE_FLUSH(sc); 18013 delay(1000); 18014 reg &= ~CTRL_LANPHYPC_OVERRIDE; 18015 CSR_WRITE(sc, WMREG_CTRL, reg); 18016 CSR_WRITE_FLUSH(sc); 18017 18018 if (sc->sc_type < WM_T_PCH_LPT) 18019 delay(50 * 1000); 18020 else { 18021 i = 20; 18022 18023 do { 18024 delay(5 * 1000); 18025 } while (((CSR_READ(sc, WMREG_CTRL_EXT) & CTRL_EXT_LPCD) == 0) 18026 && i--); 18027 18028 delay(30 * 1000); 18029 } 18030 } 18031 18032 static int 18033 wm_platform_pm_pch_lpt(struct wm_softc *sc, bool link) 18034 { 18035 uint32_t reg = __SHIFTIN(link, LTRV_NONSNOOP_REQ) 18036 | __SHIFTIN(link, LTRV_SNOOP_REQ) | LTRV_SEND; 18037 uint32_t rxa; 18038 uint16_t scale = 0, lat_enc = 0; 18039 int32_t obff_hwm = 0; 18040 int64_t lat_ns, value; 18041 18042 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 18043 device_xname(sc->sc_dev), __func__)); 18044 18045 if (link) { 18046 uint16_t max_snoop, max_nosnoop, max_ltr_enc; 18047 uint32_t status; 18048 uint16_t speed; 18049 pcireg_t preg; 18050 18051 status = CSR_READ(sc, WMREG_STATUS); 18052 switch (__SHIFTOUT(status, STATUS_SPEED)) { 18053 case STATUS_SPEED_10: 18054 speed = 10; 18055 break; 18056 case STATUS_SPEED_100: 18057 speed = 100; 18058 break; 18059 case STATUS_SPEED_1000: 18060 speed = 1000; 18061 break; 18062 default: 18063 device_printf(sc->sc_dev, "Unknown speed " 18064 "(status = %08x)\n", status); 18065 return -1; 18066 } 18067 18068 /* Rx Packet Buffer Allocation size (KB) */ 18069 rxa = CSR_READ(sc, WMREG_PBA) & PBA_RXA_MASK; 18070 18071 /* 18072 * Determine the maximum latency tolerated by the device. 18073 * 18074 * Per the PCIe spec, the tolerated latencies are encoded as 18075 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 18076 * a 10-bit value (0-1023) to provide a range from 1 ns to 18077 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 18078 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 18079 */ 18080 lat_ns = ((int64_t)rxa * 1024 - 18081 (2 * ((int64_t)sc->sc_ethercom.ec_if.if_mtu 18082 + ETHER_HDR_LEN))) * 8 * 1000; 18083 if (lat_ns < 0) 18084 lat_ns = 0; 18085 else 18086 lat_ns /= speed; 18087 value = lat_ns; 18088 18089 while (value > LTRV_VALUE) { 18090 scale ++; 18091 value = howmany(value, __BIT(5)); 18092 } 18093 if (scale > LTRV_SCALE_MAX) { 18094 device_printf(sc->sc_dev, 18095 "Invalid LTR latency scale %d\n", scale); 18096 return -1; 18097 } 18098 lat_enc = (uint16_t)(__SHIFTIN(scale, LTRV_SCALE) | value); 18099 18100 /* Determine the maximum latency tolerated by the platform */ 18101 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 18102 WM_PCI_LTR_CAP_LPT); 18103 max_snoop = preg & 0xffff; 18104 max_nosnoop = preg >> 16; 18105 18106 max_ltr_enc = MAX(max_snoop, max_nosnoop); 18107 18108 if (lat_enc > max_ltr_enc) { 18109 lat_enc = max_ltr_enc; 18110 lat_ns = __SHIFTOUT(lat_enc, PCI_LTR_MAXSNOOPLAT_VAL) 18111 * PCI_LTR_SCALETONS( 18112 __SHIFTOUT(lat_enc, 18113 PCI_LTR_MAXSNOOPLAT_SCALE)); 18114 } 18115 18116 if (lat_ns) { 18117 lat_ns *= speed * 1000; 18118 lat_ns /= 8; 18119 lat_ns /= 1000000000; 18120 obff_hwm = (int32_t)(rxa - lat_ns); 18121 } 18122 if ((obff_hwm < 0) || (obff_hwm > SVT_OFF_HWM)) { 18123 device_printf(sc->sc_dev, "Invalid high water mark %d" 18124 "(rxa = %d, lat_ns = %d)\n", 18125 obff_hwm, (int32_t)rxa, (int32_t)lat_ns); 18126 return -1; 18127 } 18128 } 18129 /* Snoop and No-Snoop latencies the same */ 18130 reg |= lat_enc | __SHIFTIN(lat_enc, LTRV_NONSNOOP); 18131 CSR_WRITE(sc, WMREG_LTRV, reg); 18132 18133 /* Set OBFF high water mark */ 18134 reg = CSR_READ(sc, WMREG_SVT) & ~SVT_OFF_HWM; 18135 reg |= obff_hwm; 18136 CSR_WRITE(sc, WMREG_SVT, reg); 18137 18138 /* Enable OBFF */ 18139 reg = CSR_READ(sc, WMREG_SVCR); 18140 reg |= SVCR_OFF_EN | SVCR_OFF_MASKINT; 18141 CSR_WRITE(sc, WMREG_SVCR, reg); 18142 18143 return 0; 18144 } 18145 18146 /* 18147 * I210 Errata 25 and I211 Errata 10 18148 * Slow System Clock. 18149 * 18150 * Note that this function is called on both FLASH and iNVM case on NetBSD. 18151 */ 18152 static int 18153 wm_pll_workaround_i210(struct wm_softc *sc) 18154 { 18155 uint32_t mdicnfg, wuc; 18156 uint32_t reg; 18157 pcireg_t pcireg; 18158 uint32_t pmreg; 18159 uint16_t nvmword, tmp_nvmword; 18160 uint16_t phyval; 18161 bool wa_done = false; 18162 int i, rv = 0; 18163 18164 /* Get Power Management cap offset */ 18165 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT, 18166 &pmreg, NULL) == 0) 18167 return -1; 18168 18169 /* Save WUC and MDICNFG registers */ 18170 wuc = CSR_READ(sc, WMREG_WUC); 18171 mdicnfg = CSR_READ(sc, WMREG_MDICNFG); 18172 18173 reg = mdicnfg & ~MDICNFG_DEST; 18174 CSR_WRITE(sc, WMREG_MDICNFG, reg); 18175 18176 if (wm_nvm_read(sc, INVM_AUTOLOAD, 1, &nvmword) != 0) { 18177 /* 18178 * The default value of the Initialization Control Word 1 18179 * is the same on both I210's FLASH_HW and I21[01]'s iNVM. 18180 */ 18181 nvmword = INVM_DEFAULT_AL; 18182 } 18183 tmp_nvmword = nvmword | INVM_PLL_WO_VAL; 18184 18185 for (i = 0; i < WM_MAX_PLL_TRIES; i++) { 18186 wm_gmii_gs40g_readreg(sc->sc_dev, 1, 18187 GS40G_PHY_PLL_FREQ_PAGE | GS40G_PHY_PLL_FREQ_REG, &phyval); 18188 18189 if ((phyval & GS40G_PHY_PLL_UNCONF) != GS40G_PHY_PLL_UNCONF) { 18190 rv = 0; 18191 break; /* OK */ 18192 } else 18193 rv = -1; 18194 18195 wa_done = true; 18196 /* Directly reset the internal PHY */ 18197 reg = CSR_READ(sc, WMREG_CTRL); 18198 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET); 18199 18200 reg = CSR_READ(sc, WMREG_CTRL_EXT); 18201 reg |= CTRL_EXT_PHYPDEN | CTRL_EXT_SDLPE; 18202 CSR_WRITE(sc, WMREG_CTRL_EXT, reg); 18203 18204 CSR_WRITE(sc, WMREG_WUC, 0); 18205 reg = (INVM_AUTOLOAD << 4) | (tmp_nvmword << 16); 18206 CSR_WRITE(sc, WMREG_EEARBC_I210, reg); 18207 18208 pcireg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 18209 pmreg + PCI_PMCSR); 18210 pcireg |= PCI_PMCSR_STATE_D3; 18211 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 18212 pmreg + PCI_PMCSR, pcireg); 18213 delay(1000); 18214 pcireg &= ~PCI_PMCSR_STATE_D3; 18215 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 18216 pmreg + PCI_PMCSR, pcireg); 18217 18218 reg = (INVM_AUTOLOAD << 4) | (nvmword << 16); 18219 CSR_WRITE(sc, WMREG_EEARBC_I210, reg); 18220 18221 /* Restore WUC register */ 18222 CSR_WRITE(sc, WMREG_WUC, wuc); 18223 } 18224 18225 /* Restore MDICNFG setting */ 18226 CSR_WRITE(sc, WMREG_MDICNFG, mdicnfg); 18227 if (wa_done) 18228 aprint_verbose_dev(sc->sc_dev, "I210 workaround done\n"); 18229 return rv; 18230 } 18231 18232 static void 18233 wm_legacy_irq_quirk_spt(struct wm_softc *sc) 18234 { 18235 uint32_t reg; 18236 18237 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n", 18238 device_xname(sc->sc_dev), __func__)); 18239 KASSERT((sc->sc_type == WM_T_PCH_SPT) 18240 || (sc->sc_type == WM_T_PCH_CNP) || (sc->sc_type == WM_T_PCH_TGP)); 18241 18242 reg = CSR_READ(sc, WMREG_FEXTNVM7); 18243 reg |= FEXTNVM7_SIDE_CLK_UNGATE; 18244 CSR_WRITE(sc, WMREG_FEXTNVM7, reg); 18245 18246 reg = CSR_READ(sc, WMREG_FEXTNVM9); 18247 reg |= FEXTNVM9_IOSFSB_CLKGATE_DIS | FEXTNVM9_IOSFSB_CLKREQ_DIS; 18248 CSR_WRITE(sc, WMREG_FEXTNVM9, reg); 18249 } 18250 18251 /* Sysctl functions */ 18252 static int 18253 wm_sysctl_tdh_handler(SYSCTLFN_ARGS) 18254 { 18255 struct sysctlnode node = *rnode; 18256 struct wm_txqueue *txq = (struct wm_txqueue *)node.sysctl_data; 18257 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq); 18258 struct wm_softc *sc = txq->txq_sc; 18259 uint32_t reg; 18260 18261 reg = CSR_READ(sc, WMREG_TDH(wmq->wmq_id)); 18262 node.sysctl_data = ® 18263 return sysctl_lookup(SYSCTLFN_CALL(&node)); 18264 } 18265 18266 static int 18267 wm_sysctl_tdt_handler(SYSCTLFN_ARGS) 18268 { 18269 struct sysctlnode node = *rnode; 18270 struct wm_txqueue *txq = (struct wm_txqueue *)node.sysctl_data; 18271 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq); 18272 struct wm_softc *sc = txq->txq_sc; 18273 uint32_t reg; 18274 18275 reg = CSR_READ(sc, WMREG_TDT(wmq->wmq_id)); 18276 node.sysctl_data = ® 18277 return sysctl_lookup(SYSCTLFN_CALL(&node)); 18278 } 18279 18280 #ifdef WM_DEBUG 18281 static int 18282 wm_sysctl_debug(SYSCTLFN_ARGS) 18283 { 18284 struct sysctlnode node = *rnode; 18285 struct wm_softc *sc = (struct wm_softc *)node.sysctl_data; 18286 uint32_t dflags; 18287 int error; 18288 18289 dflags = sc->sc_debug; 18290 node.sysctl_data = &dflags; 18291 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 18292 18293 if (error || newp == NULL) 18294 return error; 18295 18296 sc->sc_debug = dflags; 18297 device_printf(sc->sc_dev, "TARC0: %08x\n", CSR_READ(sc, WMREG_TARC0)); 18298 device_printf(sc->sc_dev, "TDT0: %08x\n", CSR_READ(sc, WMREG_TDT(0))); 18299 18300 return 0; 18301 } 18302 #endif 18303