xref: /netbsd-src/sys/dev/pci/if_wm.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: if_wm.c,v 1.83 2004/10/30 18:09:22 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.83 2004/10/30 18:09:22 thorpej Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 
67 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
68 
69 #if NRND > 0
70 #include <sys/rnd.h>
71 #endif
72 
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_ether.h>
77 
78 #if NBPFILTER > 0
79 #include <net/bpf.h>
80 #endif
81 
82 #include <netinet/in.h>			/* XXX for struct ip */
83 #include <netinet/in_systm.h>		/* XXX for struct ip */
84 #include <netinet/ip.h>			/* XXX for struct ip */
85 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
86 
87 #include <machine/bus.h>
88 #include <machine/intr.h>
89 #include <machine/endian.h>
90 
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/mii_bitbang.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98 
99 #include <dev/pci/if_wmreg.h>
100 
101 #ifdef WM_DEBUG
102 #define	WM_DEBUG_LINK		0x01
103 #define	WM_DEBUG_TX		0x02
104 #define	WM_DEBUG_RX		0x04
105 #define	WM_DEBUG_GMII		0x08
106 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
107 
108 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
109 #else
110 #define	DPRINTF(x, y)	/* nothing */
111 #endif /* WM_DEBUG */
112 
113 /*
114  * Transmit descriptor list size.  Due to errata, we can only have
115  * 256 hardware descriptors in the ring on < 82544, but we use 4096
116  * on >= 82544.  We tell the upper layers that they can queue a lot
117  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
118  * of them at a time.
119  *
120  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
121  * chains containing many small mbufs have been observed in zero-copy
122  * situations with jumbo frames.
123  */
124 #define	WM_NTXSEGS		256
125 #define	WM_IFQUEUELEN		256
126 #define	WM_TXQUEUELEN_MAX	64
127 #define	WM_TXQUEUELEN_MAX_82547	16
128 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
129 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
130 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
131 #define	WM_NTXDESC_82542	256
132 #define	WM_NTXDESC_82544	4096
133 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
134 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
135 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
136 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
137 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
138 
139 #define	WM_MAXTXDMA		ETHER_MAX_LEN_JUMBO
140 
141 /*
142  * Receive descriptor list size.  We have one Rx buffer for normal
143  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
144  * packet.  We allocate 256 receive descriptors, each with a 2k
145  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
146  */
147 #define	WM_NRXDESC		256
148 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
149 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
150 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
151 
152 /*
153  * Control structures are DMA'd to the i82542 chip.  We allocate them in
154  * a single clump that maps to a single DMA segment to make serveral things
155  * easier.
156  */
157 struct wm_control_data_82544 {
158 	/*
159 	 * The receive descriptors.
160 	 */
161 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
162 
163 	/*
164 	 * The transmit descriptors.  Put these at the end, because
165 	 * we might use a smaller number of them.
166 	 */
167 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
168 };
169 
170 struct wm_control_data_82542 {
171 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
172 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
173 };
174 
175 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
176 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
177 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
178 
179 /*
180  * Software state for transmit jobs.
181  */
182 struct wm_txsoft {
183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
185 	int txs_firstdesc;		/* first descriptor in packet */
186 	int txs_lastdesc;		/* last descriptor in packet */
187 	int txs_ndesc;			/* # of descriptors used */
188 };
189 
190 /*
191  * Software state for receive buffers.  Each descriptor gets a
192  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
193  * more than one buffer, we chain them together.
194  */
195 struct wm_rxsoft {
196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
198 };
199 
200 typedef enum {
201 	WM_T_unknown		= 0,
202 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
203 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
204 	WM_T_82543,			/* i82543 */
205 	WM_T_82544,			/* i82544 */
206 	WM_T_82540,			/* i82540 */
207 	WM_T_82545,			/* i82545 */
208 	WM_T_82545_3,			/* i82545 3.0+ */
209 	WM_T_82546,			/* i82546 */
210 	WM_T_82546_3,			/* i82546 3.0+ */
211 	WM_T_82541,			/* i82541 */
212 	WM_T_82541_2,			/* i82541 2.0+ */
213 	WM_T_82547,			/* i82547 */
214 	WM_T_82547_2,			/* i82547 2.0+ */
215 } wm_chip_type;
216 
217 /*
218  * Software state per device.
219  */
220 struct wm_softc {
221 	struct device sc_dev;		/* generic device information */
222 	bus_space_tag_t sc_st;		/* bus space tag */
223 	bus_space_handle_t sc_sh;	/* bus space handle */
224 	bus_space_tag_t sc_iot;		/* I/O space tag */
225 	bus_space_handle_t sc_ioh;	/* I/O space handle */
226 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
227 	struct ethercom sc_ethercom;	/* ethernet common data */
228 	void *sc_sdhook;		/* shutdown hook */
229 
230 	wm_chip_type sc_type;		/* chip type */
231 	int sc_flags;			/* flags; see below */
232 	int sc_bus_speed;		/* PCI/PCIX bus speed */
233 	int sc_pcix_offset;		/* PCIX capability register offset */
234 	int sc_flowflags;		/* 802.3x flow control flags */
235 
236 	void *sc_ih;			/* interrupt cookie */
237 
238 	int sc_ee_addrbits;		/* EEPROM address bits */
239 
240 	struct mii_data sc_mii;		/* MII/media information */
241 
242 	struct callout sc_tick_ch;	/* tick callout */
243 
244 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
245 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
246 
247 	int		sc_align_tweak;
248 
249 	/*
250 	 * Software state for the transmit and receive descriptors.
251 	 */
252 	int			sc_txnum;	/* must be a power of two */
253 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
254 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
255 
256 	/*
257 	 * Control data structures.
258 	 */
259 	int			sc_ntxdesc;	/* must be a power of two */
260 	struct wm_control_data_82544 *sc_control_data;
261 #define	sc_txdescs	sc_control_data->wcd_txdescs
262 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
263 
264 #ifdef WM_EVENT_COUNTERS
265 	/* Event counters. */
266 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
267 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
268 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
269 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
270 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
271 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
272 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
273 
274 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
275 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
277 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
278 
279 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
280 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
281 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
282 
283 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
284 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
285 
286 	struct evcnt sc_ev_tu;		/* Tx underrun */
287 
288 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
289 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
290 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
291 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
292 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
293 #endif /* WM_EVENT_COUNTERS */
294 
295 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
296 
297 	int	sc_txfree;		/* number of free Tx descriptors */
298 	int	sc_txnext;		/* next ready Tx descriptor */
299 
300 	int	sc_txsfree;		/* number of free Tx jobs */
301 	int	sc_txsnext;		/* next free Tx job */
302 	int	sc_txsdirty;		/* dirty Tx jobs */
303 
304 	/* These 5 variables are used only on the 82547. */
305 	int	sc_txfifo_size;		/* Tx FIFO size */
306 	int	sc_txfifo_head;		/* current head of FIFO */
307 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
308 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
309 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
310 
311 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
312 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
313 
314 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
315 
316 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
317 	int	sc_rxdiscard;
318 	int	sc_rxlen;
319 	struct mbuf *sc_rxhead;
320 	struct mbuf *sc_rxtail;
321 	struct mbuf **sc_rxtailp;
322 
323 	uint32_t sc_ctrl;		/* prototype CTRL register */
324 #if 0
325 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
326 #endif
327 	uint32_t sc_icr;		/* prototype interrupt bits */
328 	uint32_t sc_tctl;		/* prototype TCTL register */
329 	uint32_t sc_rctl;		/* prototype RCTL register */
330 	uint32_t sc_txcw;		/* prototype TXCW register */
331 	uint32_t sc_tipg;		/* prototype TIPG register */
332 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
333 	uint32_t sc_pba;		/* prototype PBA register */
334 
335 	int sc_tbi_linkup;		/* TBI link status */
336 	int sc_tbi_anstate;		/* autonegotiation state */
337 
338 	int sc_mchash_type;		/* multicast filter offset */
339 
340 #if NRND > 0
341 	rndsource_element_t rnd_source;	/* random source */
342 #endif
343 };
344 
345 #define	WM_RXCHAIN_RESET(sc)						\
346 do {									\
347 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
348 	*(sc)->sc_rxtailp = NULL;					\
349 	(sc)->sc_rxlen = 0;						\
350 } while (/*CONSTCOND*/0)
351 
352 #define	WM_RXCHAIN_LINK(sc, m)						\
353 do {									\
354 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
355 	(sc)->sc_rxtailp = &(m)->m_next;				\
356 } while (/*CONSTCOND*/0)
357 
358 /* sc_flags */
359 #define	WM_F_HAS_MII		0x01	/* has MII */
360 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
361 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
362 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
363 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
364 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
365 #define	WM_F_CSA		0x80	/* bus is CSA */
366 
367 #ifdef WM_EVENT_COUNTERS
368 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
369 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
370 #else
371 #define	WM_EVCNT_INCR(ev)	/* nothing */
372 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
373 #endif
374 
375 #define	CSR_READ(sc, reg)						\
376 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
377 #define	CSR_WRITE(sc, reg, val)						\
378 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
379 #define	CSR_WRITE_FLUSH(sc)						\
380 	(void) CSR_READ((sc), WMREG_STATUS)
381 
382 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
383 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
384 
385 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
386 #define	WM_CDTXADDR_HI(sc, x)						\
387 	(sizeof(bus_addr_t) == 8 ?					\
388 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
389 
390 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
391 #define	WM_CDRXADDR_HI(sc, x)						\
392 	(sizeof(bus_addr_t) == 8 ?					\
393 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
394 
395 #define	WM_CDTXSYNC(sc, x, n, ops)					\
396 do {									\
397 	int __x, __n;							\
398 									\
399 	__x = (x);							\
400 	__n = (n);							\
401 									\
402 	/* If it will wrap around, sync to the end of the ring. */	\
403 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
404 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
405 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
406 		    (WM_NTXDESC(sc) - __x), (ops));			\
407 		__n -= (WM_NTXDESC(sc) - __x);				\
408 		__x = 0;						\
409 	}								\
410 									\
411 	/* Now sync whatever is left. */				\
412 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
413 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
414 } while (/*CONSTCOND*/0)
415 
416 #define	WM_CDRXSYNC(sc, x, ops)						\
417 do {									\
418 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
419 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
420 } while (/*CONSTCOND*/0)
421 
422 #define	WM_INIT_RXDESC(sc, x)						\
423 do {									\
424 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
425 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
426 	struct mbuf *__m = __rxs->rxs_mbuf;				\
427 									\
428 	/*								\
429 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
430 	 * so that the payload after the Ethernet header is aligned	\
431 	 * to a 4-byte boundary.					\
432 	 *								\
433 	 * XXX BRAINDAMAGE ALERT!					\
434 	 * The stupid chip uses the same size for every buffer, which	\
435 	 * is set in the Receive Control register.  We are using the 2K	\
436 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
437 	 * reason, we can't "scoot" packets longer than the standard	\
438 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
439 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
440 	 * the upper layer copy the headers.				\
441 	 */								\
442 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
443 									\
444 	wm_set_dma_addr(&__rxd->wrx_addr,				\
445 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
446 	__rxd->wrx_len = 0;						\
447 	__rxd->wrx_cksum = 0;						\
448 	__rxd->wrx_status = 0;						\
449 	__rxd->wrx_errors = 0;						\
450 	__rxd->wrx_special = 0;						\
451 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
452 									\
453 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
454 } while (/*CONSTCOND*/0)
455 
456 static void	wm_start(struct ifnet *);
457 static void	wm_watchdog(struct ifnet *);
458 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
459 static int	wm_init(struct ifnet *);
460 static void	wm_stop(struct ifnet *, int);
461 
462 static void	wm_shutdown(void *);
463 
464 static void	wm_reset(struct wm_softc *);
465 static void	wm_rxdrain(struct wm_softc *);
466 static int	wm_add_rxbuf(struct wm_softc *, int);
467 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
468 static void	wm_tick(void *);
469 
470 static void	wm_set_filter(struct wm_softc *);
471 
472 static int	wm_intr(void *);
473 static void	wm_txintr(struct wm_softc *);
474 static void	wm_rxintr(struct wm_softc *);
475 static void	wm_linkintr(struct wm_softc *, uint32_t);
476 
477 static void	wm_tbi_mediainit(struct wm_softc *);
478 static int	wm_tbi_mediachange(struct ifnet *);
479 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
480 
481 static void	wm_tbi_set_linkled(struct wm_softc *);
482 static void	wm_tbi_check_link(struct wm_softc *);
483 
484 static void	wm_gmii_reset(struct wm_softc *);
485 
486 static int	wm_gmii_i82543_readreg(struct device *, int, int);
487 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
488 
489 static int	wm_gmii_i82544_readreg(struct device *, int, int);
490 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
491 
492 static void	wm_gmii_statchg(struct device *);
493 
494 static void	wm_gmii_mediainit(struct wm_softc *);
495 static int	wm_gmii_mediachange(struct ifnet *);
496 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
497 
498 static int	wm_match(struct device *, struct cfdata *, void *);
499 static void	wm_attach(struct device *, struct device *, void *);
500 
501 CFATTACH_DECL(wm, sizeof(struct wm_softc),
502     wm_match, wm_attach, NULL, NULL);
503 
504 static void	wm_82547_txfifo_stall(void *);
505 
506 /*
507  * Devices supported by this driver.
508  */
509 static const struct wm_product {
510 	pci_vendor_id_t		wmp_vendor;
511 	pci_product_id_t	wmp_product;
512 	const char		*wmp_name;
513 	wm_chip_type		wmp_type;
514 	int			wmp_flags;
515 #define	WMP_F_1000X		0x01
516 #define	WMP_F_1000T		0x02
517 } wm_products[] = {
518 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
519 	  "Intel i82542 1000BASE-X Ethernet",
520 	  WM_T_82542_2_1,	WMP_F_1000X },
521 
522 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
523 	  "Intel i82543GC 1000BASE-X Ethernet",
524 	  WM_T_82543,		WMP_F_1000X },
525 
526 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
527 	  "Intel i82543GC 1000BASE-T Ethernet",
528 	  WM_T_82543,		WMP_F_1000T },
529 
530 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
531 	  "Intel i82544EI 1000BASE-T Ethernet",
532 	  WM_T_82544,		WMP_F_1000T },
533 
534 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
535 	  "Intel i82544EI 1000BASE-X Ethernet",
536 	  WM_T_82544,		WMP_F_1000X },
537 
538 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
539 	  "Intel i82544GC 1000BASE-T Ethernet",
540 	  WM_T_82544,		WMP_F_1000T },
541 
542 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
543 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
544 	  WM_T_82544,		WMP_F_1000T },
545 
546 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
547 	  "Intel i82540EM 1000BASE-T Ethernet",
548 	  WM_T_82540,		WMP_F_1000T },
549 
550 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
551 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
552 	  WM_T_82540,		WMP_F_1000T },
553 
554 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
555 	  "Intel i82540EP 1000BASE-T Ethernet",
556 	  WM_T_82540,		WMP_F_1000T },
557 
558 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
559 	  "Intel i82540EP 1000BASE-T Ethernet",
560 	  WM_T_82540,		WMP_F_1000T },
561 
562 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
563 	  "Intel i82540EP 1000BASE-T Ethernet",
564 	  WM_T_82540,		WMP_F_1000T },
565 
566 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
567 	  "Intel i82545EM 1000BASE-T Ethernet",
568 	  WM_T_82545,		WMP_F_1000T },
569 
570 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
571 	  "Intel i82545GM 1000BASE-T Ethernet",
572 	  WM_T_82545_3,		WMP_F_1000T },
573 
574 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
575 	  "Intel i82545GM 1000BASE-X Ethernet",
576 	  WM_T_82545_3,		WMP_F_1000X },
577 #if 0
578 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
579 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
580 	  WM_T_82545_3,		WMP_F_SERDES },
581 #endif
582 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
583 	  "Intel i82546EB 1000BASE-T Ethernet",
584 	  WM_T_82546,		WMP_F_1000T },
585 
586 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
587 	  "Intel i82546EB 1000BASE-T Ethernet",
588 	  WM_T_82546,		WMP_F_1000T },
589 
590 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
591 	  "Intel i82545EM 1000BASE-X Ethernet",
592 	  WM_T_82545,		WMP_F_1000X },
593 
594 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
595 	  "Intel i82546EB 1000BASE-X Ethernet",
596 	  WM_T_82546,		WMP_F_1000X },
597 
598 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
599 	  "Intel i82546GB 1000BASE-T Ethernet",
600 	  WM_T_82546_3,		WMP_F_1000T },
601 
602 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
603 	  "Intel i82546GB 1000BASE-X Ethernet",
604 	  WM_T_82546_3,		WMP_F_1000X },
605 #if 0
606 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
607 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
608 	  WM_T_82546_3,		WMP_F_SERDES },
609 #endif
610 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
611 	  "Intel i82541EI 1000BASE-T Ethernet",
612 	  WM_T_82541,		WMP_F_1000T },
613 
614 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
615 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
616 	  WM_T_82541,		WMP_F_1000T },
617 
618 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
619 	  "Intel i82541ER 1000BASE-T Ethernet",
620 	  WM_T_82541_2,		WMP_F_1000T },
621 
622 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
623 	  "Intel i82541GI 1000BASE-T Ethernet",
624 	  WM_T_82541_2,		WMP_F_1000T },
625 
626 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
627 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
628 	  WM_T_82541_2,		WMP_F_1000T },
629 
630 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
631 	  "Intel i82547EI 1000BASE-T Ethernet",
632 	  WM_T_82547,		WMP_F_1000T },
633 
634 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
635 	  "Intel i82547GI 1000BASE-T Ethernet",
636 	  WM_T_82547_2,		WMP_F_1000T },
637 	{ 0,			0,
638 	  NULL,
639 	  0,			0 },
640 };
641 
642 #ifdef WM_EVENT_COUNTERS
643 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
644 #endif /* WM_EVENT_COUNTERS */
645 
646 #if 0 /* Not currently used */
647 static __inline uint32_t
648 wm_io_read(struct wm_softc *sc, int reg)
649 {
650 
651 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
652 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
653 }
654 #endif
655 
656 static __inline void
657 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
658 {
659 
660 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
661 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
662 }
663 
664 static __inline void
665 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
666 {
667 	wa->wa_low = htole32(v & 0xffffffffU);
668 	if (sizeof(bus_addr_t) == 8)
669 		wa->wa_high = htole32((uint64_t) v >> 32);
670 	else
671 		wa->wa_high = 0;
672 }
673 
674 static const struct wm_product *
675 wm_lookup(const struct pci_attach_args *pa)
676 {
677 	const struct wm_product *wmp;
678 
679 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
680 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
681 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
682 			return (wmp);
683 	}
684 	return (NULL);
685 }
686 
687 static int
688 wm_match(struct device *parent, struct cfdata *cf, void *aux)
689 {
690 	struct pci_attach_args *pa = aux;
691 
692 	if (wm_lookup(pa) != NULL)
693 		return (1);
694 
695 	return (0);
696 }
697 
698 static void
699 wm_attach(struct device *parent, struct device *self, void *aux)
700 {
701 	struct wm_softc *sc = (void *) self;
702 	struct pci_attach_args *pa = aux;
703 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 	pci_chipset_tag_t pc = pa->pa_pc;
705 	pci_intr_handle_t ih;
706 	size_t cdata_size;
707 	const char *intrstr = NULL;
708 	const char *eetype;
709 	bus_space_tag_t memt;
710 	bus_space_handle_t memh;
711 	bus_dma_segment_t seg;
712 	int memh_valid;
713 	int i, rseg, error;
714 	const struct wm_product *wmp;
715 	uint8_t enaddr[ETHER_ADDR_LEN];
716 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
717 	pcireg_t preg, memtype;
718 	uint32_t reg;
719 	int pmreg;
720 
721 	callout_init(&sc->sc_tick_ch);
722 
723 	wmp = wm_lookup(pa);
724 	if (wmp == NULL) {
725 		printf("\n");
726 		panic("wm_attach: impossible");
727 	}
728 
729 	if (pci_dma64_available(pa))
730 		sc->sc_dmat = pa->pa_dmat64;
731 	else
732 		sc->sc_dmat = pa->pa_dmat;
733 
734 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
735 	aprint_naive(": Ethernet controller\n");
736 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
737 
738 	sc->sc_type = wmp->wmp_type;
739 	if (sc->sc_type < WM_T_82543) {
740 		if (preg < 2) {
741 			aprint_error("%s: i82542 must be at least rev. 2\n",
742 			    sc->sc_dev.dv_xname);
743 			return;
744 		}
745 		if (preg < 3)
746 			sc->sc_type = WM_T_82542_2_0;
747 	}
748 
749 	/*
750 	 * Map the device.  All devices support memory-mapped acccess,
751 	 * and it is really required for normal operation.
752 	 */
753 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
754 	switch (memtype) {
755 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
756 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
757 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
758 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
759 		break;
760 	default:
761 		memh_valid = 0;
762 	}
763 
764 	if (memh_valid) {
765 		sc->sc_st = memt;
766 		sc->sc_sh = memh;
767 	} else {
768 		aprint_error("%s: unable to map device registers\n",
769 		    sc->sc_dev.dv_xname);
770 		return;
771 	}
772 
773 	/*
774 	 * In addition, i82544 and later support I/O mapped indirect
775 	 * register access.  It is not desirable (nor supported in
776 	 * this driver) to use it for normal operation, though it is
777 	 * required to work around bugs in some chip versions.
778 	 */
779 	if (sc->sc_type >= WM_T_82544) {
780 		/* First we have to find the I/O BAR. */
781 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
782 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
783 			    PCI_MAPREG_TYPE_IO)
784 				break;
785 		}
786 		if (i == PCI_MAPREG_END)
787 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
788 			    sc->sc_dev.dv_xname);
789 		else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
790 					0, &sc->sc_iot, &sc->sc_ioh,
791 					NULL, NULL) == 0)
792 			sc->sc_flags |= WM_F_IOH_VALID;
793 		else
794 			aprint_error("%s: WARNING: unable to map I/O space\n",
795 			    sc->sc_dev.dv_xname);
796 	}
797 
798 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
799 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
800 	preg |= PCI_COMMAND_MASTER_ENABLE;
801 	if (sc->sc_type < WM_T_82542_2_1)
802 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
803 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
804 
805 	/* Get it out of power save mode, if needed. */
806 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
807 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
808 		    PCI_PMCSR_STATE_MASK;
809 		if (preg == PCI_PMCSR_STATE_D3) {
810 			/*
811 			 * The card has lost all configuration data in
812 			 * this state, so punt.
813 			 */
814 			aprint_error("%s: unable to wake from power state D3\n",
815 			    sc->sc_dev.dv_xname);
816 			return;
817 		}
818 		if (preg != PCI_PMCSR_STATE_D0) {
819 			aprint_normal("%s: waking up from power state D%d\n",
820 			    sc->sc_dev.dv_xname, preg);
821 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
822 			    PCI_PMCSR_STATE_D0);
823 		}
824 	}
825 
826 	/*
827 	 * Map and establish our interrupt.
828 	 */
829 	if (pci_intr_map(pa, &ih)) {
830 		aprint_error("%s: unable to map interrupt\n",
831 		    sc->sc_dev.dv_xname);
832 		return;
833 	}
834 	intrstr = pci_intr_string(pc, ih);
835 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
836 	if (sc->sc_ih == NULL) {
837 		aprint_error("%s: unable to establish interrupt",
838 		    sc->sc_dev.dv_xname);
839 		if (intrstr != NULL)
840 			aprint_normal(" at %s", intrstr);
841 		aprint_normal("\n");
842 		return;
843 	}
844 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
845 
846 	/*
847 	 * Determine a few things about the bus we're connected to.
848 	 */
849 	if (sc->sc_type < WM_T_82543) {
850 		/* We don't really know the bus characteristics here. */
851 		sc->sc_bus_speed = 33;
852 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
853 		/*
854 		 * CSA (Communication Streaming Architecture) is about as fast
855 		 * a 32-bit 66MHz PCI Bus.
856 		 */
857 		sc->sc_flags |= WM_F_CSA;
858 		sc->sc_bus_speed = 66;
859 		aprint_verbose("%s: Communication Streaming Architecture\n",
860 		    sc->sc_dev.dv_xname);
861 		if (sc->sc_type == WM_T_82547) {
862 			callout_init(&sc->sc_txfifo_ch);
863 			callout_setfunc(&sc->sc_txfifo_ch,
864 					wm_82547_txfifo_stall, sc);
865 			aprint_verbose("%s: using 82547 Tx FIFO stall "
866 				       "work-around\n", sc->sc_dev.dv_xname);
867 		}
868 	} else {
869 		reg = CSR_READ(sc, WMREG_STATUS);
870 		if (reg & STATUS_BUS64)
871 			sc->sc_flags |= WM_F_BUS64;
872 		if (sc->sc_type >= WM_T_82544 &&
873 		    (reg & STATUS_PCIX_MODE) != 0) {
874 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
875 
876 			sc->sc_flags |= WM_F_PCIX;
877 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
878 					       PCI_CAP_PCIX,
879 					       &sc->sc_pcix_offset, NULL) == 0)
880 				aprint_error("%s: unable to find PCIX "
881 				    "capability\n", sc->sc_dev.dv_xname);
882 			else if (sc->sc_type != WM_T_82545_3 &&
883 				 sc->sc_type != WM_T_82546_3) {
884 				/*
885 				 * Work around a problem caused by the BIOS
886 				 * setting the max memory read byte count
887 				 * incorrectly.
888 				 */
889 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
890 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
891 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
892 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
893 
894 				bytecnt =
895 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
896 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
897 				maxb =
898 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
899 				    PCI_PCIX_STATUS_MAXB_SHIFT;
900 				if (bytecnt > maxb) {
901 					aprint_verbose("%s: resetting PCI-X "
902 					    "MMRBC: %d -> %d\n",
903 					    sc->sc_dev.dv_xname,
904 					    512 << bytecnt, 512 << maxb);
905 					pcix_cmd = (pcix_cmd &
906 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
907 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
908 					pci_conf_write(pa->pa_pc, pa->pa_tag,
909 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
910 					    pcix_cmd);
911 				}
912 			}
913 		}
914 		/*
915 		 * The quad port adapter is special; it has a PCIX-PCIX
916 		 * bridge on the board, and can run the secondary bus at
917 		 * a higher speed.
918 		 */
919 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
920 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
921 								      : 66;
922 		} else if (sc->sc_flags & WM_F_PCIX) {
923 			switch (reg & STATUS_PCIXSPD_MASK) {
924 			case STATUS_PCIXSPD_50_66:
925 				sc->sc_bus_speed = 66;
926 				break;
927 			case STATUS_PCIXSPD_66_100:
928 				sc->sc_bus_speed = 100;
929 				break;
930 			case STATUS_PCIXSPD_100_133:
931 				sc->sc_bus_speed = 133;
932 				break;
933 			default:
934 				aprint_error(
935 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
936 				    sc->sc_dev.dv_xname,
937 				    reg & STATUS_PCIXSPD_MASK);
938 				sc->sc_bus_speed = 66;
939 			}
940 		} else
941 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
942 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
943 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
944 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
945 	}
946 
947 	/*
948 	 * Allocate the control data structures, and create and load the
949 	 * DMA map for it.
950 	 *
951 	 * NOTE: All Tx descriptors must be in the same 4G segment of
952 	 * memory.  So must Rx descriptors.  We simplify by allocating
953 	 * both sets within the same 4G segment.
954 	 */
955 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
956 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
957 	cdata_size = sc->sc_type < WM_T_82544 ?
958 	    sizeof(struct wm_control_data_82542) :
959 	    sizeof(struct wm_control_data_82544);
960 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
961 				      (bus_size_t) 0x100000000ULL,
962 				      &seg, 1, &rseg, 0)) != 0) {
963 		aprint_error(
964 		    "%s: unable to allocate control data, error = %d\n",
965 		    sc->sc_dev.dv_xname, error);
966 		goto fail_0;
967 	}
968 
969 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
970 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
971 		aprint_error("%s: unable to map control data, error = %d\n",
972 		    sc->sc_dev.dv_xname, error);
973 		goto fail_1;
974 	}
975 
976 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
977 				       0, 0, &sc->sc_cddmamap)) != 0) {
978 		aprint_error("%s: unable to create control data DMA map, "
979 		    "error = %d\n", sc->sc_dev.dv_xname, error);
980 		goto fail_2;
981 	}
982 
983 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
984 				     sc->sc_control_data, cdata_size, NULL,
985 				     0)) != 0) {
986 		aprint_error(
987 		    "%s: unable to load control data DMA map, error = %d\n",
988 		    sc->sc_dev.dv_xname, error);
989 		goto fail_3;
990 	}
991 
992 
993 	/*
994 	 * Create the transmit buffer DMA maps.
995 	 */
996 	WM_TXQUEUELEN(sc) =
997 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
998 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
999 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1000 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1001 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1002 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1003 			aprint_error("%s: unable to create Tx DMA map %d, "
1004 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1005 			goto fail_4;
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * Create the receive buffer DMA maps.
1011 	 */
1012 	for (i = 0; i < WM_NRXDESC; i++) {
1013 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1014 					       MCLBYTES, 0, 0,
1015 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1016 			aprint_error("%s: unable to create Rx DMA map %d, "
1017 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1018 			goto fail_5;
1019 		}
1020 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1021 	}
1022 
1023 	/*
1024 	 * Reset the chip to a known state.
1025 	 */
1026 	wm_reset(sc);
1027 
1028 	/*
1029 	 * Get some information about the EEPROM.
1030 	 */
1031 	if (sc->sc_type >= WM_T_82540)
1032 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1033 	if (sc->sc_type <= WM_T_82544)
1034 		sc->sc_ee_addrbits = 6;
1035 	else if (sc->sc_type <= WM_T_82546_3) {
1036 		reg = CSR_READ(sc, WMREG_EECD);
1037 		if (reg & EECD_EE_SIZE)
1038 			sc->sc_ee_addrbits = 8;
1039 		else
1040 			sc->sc_ee_addrbits = 6;
1041 	} else if (sc->sc_type <= WM_T_82547_2) {
1042 		reg = CSR_READ(sc, WMREG_EECD);
1043 		if (reg & EECD_EE_TYPE) {
1044 			sc->sc_flags |= WM_F_EEPROM_SPI;
1045 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1046 		} else
1047 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1048 	} else {
1049 		/* Assume everything else is SPI. */
1050 		reg = CSR_READ(sc, WMREG_EECD);
1051 		sc->sc_flags |= WM_F_EEPROM_SPI;
1052 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1053 	}
1054 	if (sc->sc_flags & WM_F_EEPROM_SPI)
1055 		eetype = "SPI";
1056 	else
1057 		eetype = "MicroWire";
1058 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1059 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1060 	    sc->sc_ee_addrbits, eetype);
1061 
1062 	/*
1063 	 * Read the Ethernet address from the EEPROM.
1064 	 */
1065 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1066 	    sizeof(myea) / sizeof(myea[0]), myea)) {
1067 		aprint_error("%s: unable to read Ethernet address\n",
1068 		    sc->sc_dev.dv_xname);
1069 		return;
1070 	}
1071 	enaddr[0] = myea[0] & 0xff;
1072 	enaddr[1] = myea[0] >> 8;
1073 	enaddr[2] = myea[1] & 0xff;
1074 	enaddr[3] = myea[1] >> 8;
1075 	enaddr[4] = myea[2] & 0xff;
1076 	enaddr[5] = myea[2] >> 8;
1077 
1078 	/*
1079 	 * Toggle the LSB of the MAC address on the second port
1080 	 * of the i82546.
1081 	 */
1082 	if (sc->sc_type == WM_T_82546) {
1083 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1084 			enaddr[5] ^= 1;
1085 	}
1086 
1087 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1088 	    ether_sprintf(enaddr));
1089 
1090 	/*
1091 	 * Read the config info from the EEPROM, and set up various
1092 	 * bits in the control registers based on their contents.
1093 	 */
1094 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1095 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
1096 		    sc->sc_dev.dv_xname);
1097 		return;
1098 	}
1099 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1100 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
1101 		    sc->sc_dev.dv_xname);
1102 		return;
1103 	}
1104 	if (sc->sc_type >= WM_T_82544) {
1105 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1106 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1107 			    sc->sc_dev.dv_xname);
1108 			return;
1109 		}
1110 	}
1111 
1112 	if (cfg1 & EEPROM_CFG1_ILOS)
1113 		sc->sc_ctrl |= CTRL_ILOS;
1114 	if (sc->sc_type >= WM_T_82544) {
1115 		sc->sc_ctrl |=
1116 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1117 		    CTRL_SWDPIO_SHIFT;
1118 		sc->sc_ctrl |=
1119 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1120 		    CTRL_SWDPINS_SHIFT;
1121 	} else {
1122 		sc->sc_ctrl |=
1123 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1124 		    CTRL_SWDPIO_SHIFT;
1125 	}
1126 
1127 #if 0
1128 	if (sc->sc_type >= WM_T_82544) {
1129 		if (cfg1 & EEPROM_CFG1_IPS0)
1130 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1131 		if (cfg1 & EEPROM_CFG1_IPS1)
1132 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1133 		sc->sc_ctrl_ext |=
1134 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1135 		    CTRL_EXT_SWDPIO_SHIFT;
1136 		sc->sc_ctrl_ext |=
1137 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1138 		    CTRL_EXT_SWDPINS_SHIFT;
1139 	} else {
1140 		sc->sc_ctrl_ext |=
1141 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1142 		    CTRL_EXT_SWDPIO_SHIFT;
1143 	}
1144 #endif
1145 
1146 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1147 #if 0
1148 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1149 #endif
1150 
1151 	/*
1152 	 * Set up some register offsets that are different between
1153 	 * the i82542 and the i82543 and later chips.
1154 	 */
1155 	if (sc->sc_type < WM_T_82543) {
1156 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1157 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1158 	} else {
1159 		sc->sc_rdt_reg = WMREG_RDT;
1160 		sc->sc_tdt_reg = WMREG_TDT;
1161 	}
1162 
1163 	/*
1164 	 * Determine if we're TBI or GMII mode, and initialize the
1165 	 * media structures accordingly.
1166 	 */
1167 	if (sc->sc_type < WM_T_82543 ||
1168 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1169 		if (wmp->wmp_flags & WMP_F_1000T)
1170 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1171 			    "product!\n", sc->sc_dev.dv_xname);
1172 		wm_tbi_mediainit(sc);
1173 	} else {
1174 		if (wmp->wmp_flags & WMP_F_1000X)
1175 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1176 			    "product!\n", sc->sc_dev.dv_xname);
1177 		wm_gmii_mediainit(sc);
1178 	}
1179 
1180 	ifp = &sc->sc_ethercom.ec_if;
1181 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1182 	ifp->if_softc = sc;
1183 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1184 	ifp->if_ioctl = wm_ioctl;
1185 	ifp->if_start = wm_start;
1186 	ifp->if_watchdog = wm_watchdog;
1187 	ifp->if_init = wm_init;
1188 	ifp->if_stop = wm_stop;
1189 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1190 	IFQ_SET_READY(&ifp->if_snd);
1191 
1192 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1193 
1194 	/*
1195 	 * If we're a i82543 or greater, we can support VLANs.
1196 	 */
1197 	if (sc->sc_type >= WM_T_82543)
1198 		sc->sc_ethercom.ec_capabilities |=
1199 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1200 
1201 	/*
1202 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1203 	 * on i82543 and later.
1204 	 */
1205 	if (sc->sc_type >= WM_T_82543)
1206 		ifp->if_capabilities |=
1207 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1208 
1209 	/*
1210 	 * Attach the interface.
1211 	 */
1212 	if_attach(ifp);
1213 	ether_ifattach(ifp, enaddr);
1214 #if NRND > 0
1215 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1216 	    RND_TYPE_NET, 0);
1217 #endif
1218 
1219 #ifdef WM_EVENT_COUNTERS
1220 	/* Attach event counters. */
1221 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1222 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1223 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1224 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1225 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1226 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1227 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1228 	    NULL, sc->sc_dev.dv_xname, "txdw");
1229 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1230 	    NULL, sc->sc_dev.dv_xname, "txqe");
1231 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1232 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1233 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1234 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1235 
1236 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1237 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1238 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1239 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1240 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1241 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1242 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1243 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1244 
1245 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
1246 	    NULL, sc->sc_dev.dv_xname, "txctx init");
1247 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
1248 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
1249 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
1250 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
1251 
1252 	for (i = 0; i < WM_NTXSEGS; i++) {
1253 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1254 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1255 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1256 	}
1257 
1258 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1259 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1260 
1261 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1262 	    NULL, sc->sc_dev.dv_xname, "tu");
1263 
1264 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1265 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1266 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1267 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1268 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1269 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1270 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1271 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1272 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1273 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1274 #endif /* WM_EVENT_COUNTERS */
1275 
1276 	/*
1277 	 * Make sure the interface is shutdown during reboot.
1278 	 */
1279 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1280 	if (sc->sc_sdhook == NULL)
1281 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1282 		    sc->sc_dev.dv_xname);
1283 	return;
1284 
1285 	/*
1286 	 * Free any resources we've allocated during the failed attach
1287 	 * attempt.  Do this in reverse order and fall through.
1288 	 */
1289  fail_5:
1290 	for (i = 0; i < WM_NRXDESC; i++) {
1291 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1292 			bus_dmamap_destroy(sc->sc_dmat,
1293 			    sc->sc_rxsoft[i].rxs_dmamap);
1294 	}
1295  fail_4:
1296 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1297 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1298 			bus_dmamap_destroy(sc->sc_dmat,
1299 			    sc->sc_txsoft[i].txs_dmamap);
1300 	}
1301 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1302  fail_3:
1303 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1304  fail_2:
1305 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1306 	    cdata_size);
1307  fail_1:
1308 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1309  fail_0:
1310 	return;
1311 }
1312 
1313 /*
1314  * wm_shutdown:
1315  *
1316  *	Make sure the interface is stopped at reboot time.
1317  */
1318 static void
1319 wm_shutdown(void *arg)
1320 {
1321 	struct wm_softc *sc = arg;
1322 
1323 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1324 }
1325 
1326 /*
1327  * wm_tx_cksum:
1328  *
1329  *	Set up TCP/IP checksumming parameters for the
1330  *	specified packet.
1331  */
1332 static int
1333 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1334     uint8_t *fieldsp)
1335 {
1336 	struct mbuf *m0 = txs->txs_mbuf;
1337 	struct livengood_tcpip_ctxdesc *t;
1338 	uint32_t ipcs, tucs;
1339 	struct ip *ip;
1340 	struct ether_header *eh;
1341 	int offset, iphl;
1342 	uint8_t fields = 0;
1343 
1344 	/*
1345 	 * XXX It would be nice if the mbuf pkthdr had offset
1346 	 * fields for the protocol headers.
1347 	 */
1348 
1349 	eh = mtod(m0, struct ether_header *);
1350 	switch (htons(eh->ether_type)) {
1351 	case ETHERTYPE_IP:
1352 		iphl = sizeof(struct ip);
1353 		offset = ETHER_HDR_LEN;
1354 		break;
1355 
1356 	case ETHERTYPE_VLAN:
1357 		iphl = sizeof(struct ip);
1358 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1359 		break;
1360 
1361 	default:
1362 		/*
1363 		 * Don't support this protocol or encapsulation.
1364 		 */
1365 		*fieldsp = 0;
1366 		*cmdp = 0;
1367 		return (0);
1368 	}
1369 
1370 	if (m0->m_len < (offset + iphl)) {
1371 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1372 			printf("%s: wm_tx_cksum: mbuf allocation failed, "
1373 			    "packet dropped\n", sc->sc_dev.dv_xname);
1374 			return (ENOMEM);
1375 		}
1376 		m0 = txs->txs_mbuf;
1377 	}
1378 
1379 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1380 	iphl = ip->ip_hl << 2;
1381 
1382 	/*
1383 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1384 	 * offload feature, if we load the context descriptor, we
1385 	 * MUST provide valid values for IPCSS and TUCSS fields.
1386 	 */
1387 
1388 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1389 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1390 		fields |= WTX_IXSM;
1391 		ipcs = WTX_TCPIP_IPCSS(offset) |
1392 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1393 		    WTX_TCPIP_IPCSE(offset + iphl - 1);
1394 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1395 		/* Use the cached value. */
1396 		ipcs = sc->sc_txctx_ipcs;
1397 	} else {
1398 		/* Just initialize it to the likely value anyway. */
1399 		ipcs = WTX_TCPIP_IPCSS(offset) |
1400 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1401 		    WTX_TCPIP_IPCSE(offset + iphl - 1);
1402 	}
1403 
1404 	offset += iphl;
1405 
1406 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1407 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1408 		fields |= WTX_TXSM;
1409 		tucs = WTX_TCPIP_TUCSS(offset) |
1410 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1411 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1412 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1413 		/* Use the cached value. */
1414 		tucs = sc->sc_txctx_tucs;
1415 	} else {
1416 		/* Just initialize it to a valid TCP context. */
1417 		tucs = WTX_TCPIP_TUCSS(offset) |
1418 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1419 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1420 	}
1421 
1422 	if (sc->sc_txctx_ipcs == ipcs &&
1423 	    sc->sc_txctx_tucs == tucs) {
1424 		/* Cached context is fine. */
1425 		WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1426 	} else {
1427 		/* Fill in the context descriptor. */
1428 #ifdef WM_EVENT_COUNTERS
1429 		if (sc->sc_txctx_ipcs == 0xffffffff &&
1430 		    sc->sc_txctx_tucs == 0xffffffff)
1431 			WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
1432 		else
1433 			WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1434 #endif
1435 		t = (struct livengood_tcpip_ctxdesc *)
1436 		    &sc->sc_txdescs[sc->sc_txnext];
1437 		t->tcpip_ipcs = htole32(ipcs);
1438 		t->tcpip_tucs = htole32(tucs);
1439 		t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1440 		t->tcpip_seg = 0;
1441 		WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1442 
1443 		sc->sc_txctx_ipcs = ipcs;
1444 		sc->sc_txctx_tucs = tucs;
1445 
1446 		sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1447 		txs->txs_ndesc++;
1448 	}
1449 
1450 	*cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1451 	*fieldsp = fields;
1452 
1453 	return (0);
1454 }
1455 
1456 static void
1457 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1458 {
1459 	struct mbuf *m;
1460 	int i;
1461 
1462 	printf("%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1463 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1464 		printf("\tm_data = %p, m_len = %d, m_flags = 0x%08x\n",
1465 		    m->m_data, m->m_len, m->m_flags);
1466 	printf("\t%d mbuf%s in chain\n", i, i == 1 ? "" : "s");
1467 }
1468 
1469 /*
1470  * wm_82547_txfifo_stall:
1471  *
1472  *	Callout used to wait for the 82547 Tx FIFO to drain,
1473  *	reset the FIFO pointers, and restart packet transmission.
1474  */
1475 static void
1476 wm_82547_txfifo_stall(void *arg)
1477 {
1478 	struct wm_softc *sc = arg;
1479 	int s;
1480 
1481 	s = splnet();
1482 
1483 	if (sc->sc_txfifo_stall) {
1484 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1485 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1486 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1487 			/*
1488 			 * Packets have drained.  Stop transmitter, reset
1489 			 * FIFO pointers, restart transmitter, and kick
1490 			 * the packet queue.
1491 			 */
1492 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1493 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1494 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1495 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1496 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1497 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1498 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1499 			CSR_WRITE_FLUSH(sc);
1500 
1501 			sc->sc_txfifo_head = 0;
1502 			sc->sc_txfifo_stall = 0;
1503 			wm_start(&sc->sc_ethercom.ec_if);
1504 		} else {
1505 			/*
1506 			 * Still waiting for packets to drain; try again in
1507 			 * another tick.
1508 			 */
1509 			callout_schedule(&sc->sc_txfifo_ch, 1);
1510 		}
1511 	}
1512 
1513 	splx(s);
1514 }
1515 
1516 /*
1517  * wm_82547_txfifo_bugchk:
1518  *
1519  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1520  *	prevent enqueueing a packet that would wrap around the end
1521  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1522  *
1523  *	We do this by checking the amount of space before the end
1524  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1525  *	the Tx FIFO, wait for all remaining packets to drain, reset
1526  *	the internal FIFO pointers to the beginning, and restart
1527  *	transmission on the interface.
1528  */
1529 #define	WM_FIFO_HDR		0x10
1530 #define	WM_82547_PAD_LEN	0x3e0
1531 static int
1532 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1533 {
1534 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1535 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1536 
1537 	/* Just return if already stalled. */
1538 	if (sc->sc_txfifo_stall)
1539 		return (1);
1540 
1541 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1542 		/* Stall only occurs in half-duplex mode. */
1543 		goto send_packet;
1544 	}
1545 
1546 	if (len >= WM_82547_PAD_LEN + space) {
1547 		sc->sc_txfifo_stall = 1;
1548 		callout_schedule(&sc->sc_txfifo_ch, 1);
1549 		return (1);
1550 	}
1551 
1552  send_packet:
1553 	sc->sc_txfifo_head += len;
1554 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1555 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1556 
1557 	return (0);
1558 }
1559 
1560 /*
1561  * wm_start:		[ifnet interface function]
1562  *
1563  *	Start packet transmission on the interface.
1564  */
1565 static void
1566 wm_start(struct ifnet *ifp)
1567 {
1568 	struct wm_softc *sc = ifp->if_softc;
1569 	struct mbuf *m0;
1570 #if 0 /* XXXJRT */
1571 	struct m_tag *mtag;
1572 #endif
1573 	struct wm_txsoft *txs;
1574 	bus_dmamap_t dmamap;
1575 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1576 	bus_addr_t curaddr;
1577 	bus_size_t seglen, curlen;
1578 	uint32_t cksumcmd;
1579 	uint8_t cksumfields;
1580 
1581 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1582 		return;
1583 
1584 	/*
1585 	 * Remember the previous number of free descriptors.
1586 	 */
1587 	ofree = sc->sc_txfree;
1588 
1589 	/*
1590 	 * Loop through the send queue, setting up transmit descriptors
1591 	 * until we drain the queue, or use up all available transmit
1592 	 * descriptors.
1593 	 */
1594 	for (;;) {
1595 		/* Grab a packet off the queue. */
1596 		IFQ_POLL(&ifp->if_snd, m0);
1597 		if (m0 == NULL)
1598 			break;
1599 
1600 		DPRINTF(WM_DEBUG_TX,
1601 		    ("%s: TX: have packet to transmit: %p\n",
1602 		    sc->sc_dev.dv_xname, m0));
1603 
1604 		/* Get a work queue entry. */
1605 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1606 			wm_txintr(sc);
1607 			if (sc->sc_txsfree == 0) {
1608 				DPRINTF(WM_DEBUG_TX,
1609 				    ("%s: TX: no free job descriptors\n",
1610 					sc->sc_dev.dv_xname));
1611 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1612 				break;
1613 			}
1614 		}
1615 
1616 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1617 		dmamap = txs->txs_dmamap;
1618 
1619 		/*
1620 		 * Load the DMA map.  If this fails, the packet either
1621 		 * didn't fit in the allotted number of segments, or we
1622 		 * were short on resources.  For the too-many-segments
1623 		 * case, we simply report an error and drop the packet,
1624 		 * since we can't sanely copy a jumbo packet to a single
1625 		 * buffer.
1626 		 */
1627 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1628 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1629 		if (error) {
1630 			if (error == EFBIG) {
1631 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1632 				printf("%s: Tx packet consumes too many "
1633 				    "DMA segments, dropping...\n",
1634 				    sc->sc_dev.dv_xname);
1635 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1636 				wm_dump_mbuf_chain(sc, m0);
1637 				m_freem(m0);
1638 				continue;
1639 			}
1640 			/*
1641 			 * Short on resources, just stop for now.
1642 			 */
1643 			DPRINTF(WM_DEBUG_TX,
1644 			    ("%s: TX: dmamap load failed: %d\n",
1645 			    sc->sc_dev.dv_xname, error));
1646 			break;
1647 		}
1648 
1649 		segs_needed = dmamap->dm_nsegs;
1650 
1651 		/*
1652 		 * Ensure we have enough descriptors free to describe
1653 		 * the packet.  Note, we always reserve one descriptor
1654 		 * at the end of the ring due to the semantics of the
1655 		 * TDT register, plus one more in the event we need
1656 		 * to re-load checksum offload context.
1657 		 */
1658 		if (segs_needed > sc->sc_txfree - 2) {
1659 			/*
1660 			 * Not enough free descriptors to transmit this
1661 			 * packet.  We haven't committed anything yet,
1662 			 * so just unload the DMA map, put the packet
1663 			 * pack on the queue, and punt.  Notify the upper
1664 			 * layer that there are no more slots left.
1665 			 */
1666 			DPRINTF(WM_DEBUG_TX,
1667 			    ("%s: TX: need %d (%) descriptors, have %d\n",
1668 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1669 			    sc->sc_txfree - 1));
1670 			ifp->if_flags |= IFF_OACTIVE;
1671 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1672 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1673 			break;
1674 		}
1675 
1676 		/*
1677 		 * Check for 82547 Tx FIFO bug.  We need to do this
1678 		 * once we know we can transmit the packet, since we
1679 		 * do some internal FIFO space accounting here.
1680 		 */
1681 		if (sc->sc_type == WM_T_82547 &&
1682 		    wm_82547_txfifo_bugchk(sc, m0)) {
1683 			DPRINTF(WM_DEBUG_TX,
1684 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
1685 			    sc->sc_dev.dv_xname));
1686 			ifp->if_flags |= IFF_OACTIVE;
1687 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1688 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1689 			break;
1690 		}
1691 
1692 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1693 
1694 		/*
1695 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1696 		 */
1697 
1698 		DPRINTF(WM_DEBUG_TX,
1699 		    ("%s: TX: packet has %d (%d) DMA segments\n",
1700 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1701 
1702 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1703 
1704 		/*
1705 		 * Store a pointer to the packet so that we can free it
1706 		 * later.
1707 		 *
1708 		 * Initially, we consider the number of descriptors the
1709 		 * packet uses the number of DMA segments.  This may be
1710 		 * incremented by 1 if we do checksum offload (a descriptor
1711 		 * is used to set the checksum context).
1712 		 */
1713 		txs->txs_mbuf = m0;
1714 		txs->txs_firstdesc = sc->sc_txnext;
1715 		txs->txs_ndesc = segs_needed;
1716 
1717 		/*
1718 		 * Set up checksum offload parameters for
1719 		 * this packet.
1720 		 */
1721 		if (m0->m_pkthdr.csum_flags &
1722 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1723 			if (wm_tx_cksum(sc, txs, &cksumcmd,
1724 					&cksumfields) != 0) {
1725 				/* Error message already displayed. */
1726 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1727 				continue;
1728 			}
1729 		} else {
1730 			cksumcmd = 0;
1731 			cksumfields = 0;
1732 		}
1733 
1734 		cksumcmd |= WTX_CMD_IDE;
1735 
1736 		/* Sync the DMA map. */
1737 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1738 		    BUS_DMASYNC_PREWRITE);
1739 
1740 		/*
1741 		 * Initialize the transmit descriptor.
1742 		 */
1743 		for (nexttx = sc->sc_txnext, seg = 0;
1744 		     seg < dmamap->dm_nsegs; seg++) {
1745 			for (seglen = dmamap->dm_segs[seg].ds_len,
1746 			     curaddr = dmamap->dm_segs[seg].ds_addr;
1747 			     seglen != 0;
1748 			     curaddr += curlen, seglen -= curlen,
1749 			     nexttx = WM_NEXTTX(sc, nexttx)) {
1750 				curlen = seglen;
1751 
1752 				wm_set_dma_addr(
1753 				    &sc->sc_txdescs[nexttx].wtx_addr,
1754 				    curaddr);
1755 				sc->sc_txdescs[nexttx].wtx_cmdlen =
1756 				    htole32(cksumcmd | curlen);
1757 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1758 				    0;
1759 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1760 				    cksumfields;
1761 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1762 				lasttx = nexttx;
1763 
1764 				DPRINTF(WM_DEBUG_TX,
1765 				    ("%s: TX: desc %d: low 0x%08x, "
1766 				     "len 0x%04x\n",
1767 				    sc->sc_dev.dv_xname, nexttx,
1768 				    curaddr & 0xffffffffU, curlen, curlen));
1769 			}
1770 		}
1771 
1772 		KASSERT(lasttx != -1);
1773 
1774 		/*
1775 		 * Set up the command byte on the last descriptor of
1776 		 * the packet.  If we're in the interrupt delay window,
1777 		 * delay the interrupt.
1778 		 */
1779 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
1780 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1781 
1782 #if 0 /* XXXJRT */
1783 		/*
1784 		 * If VLANs are enabled and the packet has a VLAN tag, set
1785 		 * up the descriptor to encapsulate the packet for us.
1786 		 *
1787 		 * This is only valid on the last descriptor of the packet.
1788 		 */
1789 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1790 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1791 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
1792 			    htole32(WTX_CMD_VLE);
1793 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1794 			    = htole16(*(u_int *)(mtag + 1) & 0xffff);
1795 		}
1796 #endif /* XXXJRT */
1797 
1798 		txs->txs_lastdesc = lasttx;
1799 
1800 		DPRINTF(WM_DEBUG_TX,
1801 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1802 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1803 
1804 		/* Sync the descriptors we're using. */
1805 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1806 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1807 
1808 		/* Give the packet to the chip. */
1809 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1810 
1811 		DPRINTF(WM_DEBUG_TX,
1812 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1813 
1814 		DPRINTF(WM_DEBUG_TX,
1815 		    ("%s: TX: finished transmitting packet, job %d\n",
1816 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
1817 
1818 		/* Advance the tx pointer. */
1819 		sc->sc_txfree -= txs->txs_ndesc;
1820 		sc->sc_txnext = nexttx;
1821 
1822 		sc->sc_txsfree--;
1823 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1824 
1825 #if NBPFILTER > 0
1826 		/* Pass the packet to any BPF listeners. */
1827 		if (ifp->if_bpf)
1828 			bpf_mtap(ifp->if_bpf, m0);
1829 #endif /* NBPFILTER > 0 */
1830 	}
1831 
1832 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1833 		/* No more slots; notify upper layer. */
1834 		ifp->if_flags |= IFF_OACTIVE;
1835 	}
1836 
1837 	if (sc->sc_txfree != ofree) {
1838 		/* Set a watchdog timer in case the chip flakes out. */
1839 		ifp->if_timer = 5;
1840 	}
1841 }
1842 
1843 /*
1844  * wm_watchdog:		[ifnet interface function]
1845  *
1846  *	Watchdog timer handler.
1847  */
1848 static void
1849 wm_watchdog(struct ifnet *ifp)
1850 {
1851 	struct wm_softc *sc = ifp->if_softc;
1852 
1853 	/*
1854 	 * Since we're using delayed interrupts, sweep up
1855 	 * before we report an error.
1856 	 */
1857 	wm_txintr(sc);
1858 
1859 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
1860 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1861 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1862 		    sc->sc_txnext);
1863 		ifp->if_oerrors++;
1864 
1865 		/* Reset the interface. */
1866 		(void) wm_init(ifp);
1867 	}
1868 
1869 	/* Try to get more packets going. */
1870 	wm_start(ifp);
1871 }
1872 
1873 /*
1874  * wm_ioctl:		[ifnet interface function]
1875  *
1876  *	Handle control requests from the operator.
1877  */
1878 static int
1879 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1880 {
1881 	struct wm_softc *sc = ifp->if_softc;
1882 	struct ifreq *ifr = (struct ifreq *) data;
1883 	int s, error;
1884 
1885 	s = splnet();
1886 
1887 	switch (cmd) {
1888 	case SIOCSIFMEDIA:
1889 	case SIOCGIFMEDIA:
1890 		/* Flow control requires full-duplex mode. */
1891 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1892 		    (ifr->ifr_media & IFM_FDX) == 0)
1893 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1894 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1895 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1896 				/* We can do both TXPAUSE and RXPAUSE. */
1897 				ifr->ifr_media |=
1898 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1899 			}
1900 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1901 		}
1902 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1903 		break;
1904 	default:
1905 		error = ether_ioctl(ifp, cmd, data);
1906 		if (error == ENETRESET) {
1907 			/*
1908 			 * Multicast list has changed; set the hardware filter
1909 			 * accordingly.
1910 			 */
1911 			if (ifp->if_flags & IFF_RUNNING)
1912 				wm_set_filter(sc);
1913 			error = 0;
1914 		}
1915 		break;
1916 	}
1917 
1918 	/* Try to get more packets going. */
1919 	wm_start(ifp);
1920 
1921 	splx(s);
1922 	return (error);
1923 }
1924 
1925 /*
1926  * wm_intr:
1927  *
1928  *	Interrupt service routine.
1929  */
1930 static int
1931 wm_intr(void *arg)
1932 {
1933 	struct wm_softc *sc = arg;
1934 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1935 	uint32_t icr;
1936 	int wantinit, handled = 0;
1937 
1938 	for (wantinit = 0; wantinit == 0;) {
1939 		icr = CSR_READ(sc, WMREG_ICR);
1940 		if ((icr & sc->sc_icr) == 0)
1941 			break;
1942 
1943 #if 0 /*NRND > 0*/
1944 		if (RND_ENABLED(&sc->rnd_source))
1945 			rnd_add_uint32(&sc->rnd_source, icr);
1946 #endif
1947 
1948 		handled = 1;
1949 
1950 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1951 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1952 			DPRINTF(WM_DEBUG_RX,
1953 			    ("%s: RX: got Rx intr 0x%08x\n",
1954 			    sc->sc_dev.dv_xname,
1955 			    icr & (ICR_RXDMT0|ICR_RXT0)));
1956 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1957 		}
1958 #endif
1959 		wm_rxintr(sc);
1960 
1961 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1962 		if (icr & ICR_TXDW) {
1963 			DPRINTF(WM_DEBUG_TX,
1964 			    ("%s: TX: got TXDW interrupt\n",
1965 			    sc->sc_dev.dv_xname));
1966 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
1967 		}
1968 #endif
1969 		wm_txintr(sc);
1970 
1971 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1972 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1973 			wm_linkintr(sc, icr);
1974 		}
1975 
1976 		if (icr & ICR_RXO) {
1977 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1978 			wantinit = 1;
1979 		}
1980 	}
1981 
1982 	if (handled) {
1983 		if (wantinit)
1984 			wm_init(ifp);
1985 
1986 		/* Try to get more packets going. */
1987 		wm_start(ifp);
1988 	}
1989 
1990 	return (handled);
1991 }
1992 
1993 /*
1994  * wm_txintr:
1995  *
1996  *	Helper; handle transmit interrupts.
1997  */
1998 static void
1999 wm_txintr(struct wm_softc *sc)
2000 {
2001 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2002 	struct wm_txsoft *txs;
2003 	uint8_t status;
2004 	int i;
2005 
2006 	ifp->if_flags &= ~IFF_OACTIVE;
2007 
2008 	/*
2009 	 * Go through the Tx list and free mbufs for those
2010 	 * frames which have been transmitted.
2011 	 */
2012 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2013 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2014 		txs = &sc->sc_txsoft[i];
2015 
2016 		DPRINTF(WM_DEBUG_TX,
2017 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2018 
2019 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2020 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2021 
2022 		status =
2023 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2024 		if ((status & WTX_ST_DD) == 0) {
2025 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2026 			    BUS_DMASYNC_PREREAD);
2027 			break;
2028 		}
2029 
2030 		DPRINTF(WM_DEBUG_TX,
2031 		    ("%s: TX: job %d done: descs %d..%d\n",
2032 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2033 		    txs->txs_lastdesc));
2034 
2035 		/*
2036 		 * XXX We should probably be using the statistics
2037 		 * XXX registers, but I don't know if they exist
2038 		 * XXX on chips before the i82544.
2039 		 */
2040 
2041 #ifdef WM_EVENT_COUNTERS
2042 		if (status & WTX_ST_TU)
2043 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2044 #endif /* WM_EVENT_COUNTERS */
2045 
2046 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2047 			ifp->if_oerrors++;
2048 			if (status & WTX_ST_LC)
2049 				printf("%s: late collision\n",
2050 				    sc->sc_dev.dv_xname);
2051 			else if (status & WTX_ST_EC) {
2052 				ifp->if_collisions += 16;
2053 				printf("%s: excessive collisions\n",
2054 				    sc->sc_dev.dv_xname);
2055 			}
2056 		} else
2057 			ifp->if_opackets++;
2058 
2059 		sc->sc_txfree += txs->txs_ndesc;
2060 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2061 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2062 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2063 		m_freem(txs->txs_mbuf);
2064 		txs->txs_mbuf = NULL;
2065 	}
2066 
2067 	/* Update the dirty transmit buffer pointer. */
2068 	sc->sc_txsdirty = i;
2069 	DPRINTF(WM_DEBUG_TX,
2070 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2071 
2072 	/*
2073 	 * If there are no more pending transmissions, cancel the watchdog
2074 	 * timer.
2075 	 */
2076 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2077 		ifp->if_timer = 0;
2078 }
2079 
2080 /*
2081  * wm_rxintr:
2082  *
2083  *	Helper; handle receive interrupts.
2084  */
2085 static void
2086 wm_rxintr(struct wm_softc *sc)
2087 {
2088 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2089 	struct wm_rxsoft *rxs;
2090 	struct mbuf *m;
2091 	int i, len;
2092 	uint8_t status, errors;
2093 
2094 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2095 		rxs = &sc->sc_rxsoft[i];
2096 
2097 		DPRINTF(WM_DEBUG_RX,
2098 		    ("%s: RX: checking descriptor %d\n",
2099 		    sc->sc_dev.dv_xname, i));
2100 
2101 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2102 
2103 		status = sc->sc_rxdescs[i].wrx_status;
2104 		errors = sc->sc_rxdescs[i].wrx_errors;
2105 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2106 
2107 		if ((status & WRX_ST_DD) == 0) {
2108 			/*
2109 			 * We have processed all of the receive descriptors.
2110 			 */
2111 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2112 			break;
2113 		}
2114 
2115 		if (__predict_false(sc->sc_rxdiscard)) {
2116 			DPRINTF(WM_DEBUG_RX,
2117 			    ("%s: RX: discarding contents of descriptor %d\n",
2118 			    sc->sc_dev.dv_xname, i));
2119 			WM_INIT_RXDESC(sc, i);
2120 			if (status & WRX_ST_EOP) {
2121 				/* Reset our state. */
2122 				DPRINTF(WM_DEBUG_RX,
2123 				    ("%s: RX: resetting rxdiscard -> 0\n",
2124 				    sc->sc_dev.dv_xname));
2125 				sc->sc_rxdiscard = 0;
2126 			}
2127 			continue;
2128 		}
2129 
2130 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2131 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2132 
2133 		m = rxs->rxs_mbuf;
2134 
2135 		/*
2136 		 * Add a new receive buffer to the ring.
2137 		 */
2138 		if (wm_add_rxbuf(sc, i) != 0) {
2139 			/*
2140 			 * Failed, throw away what we've done so
2141 			 * far, and discard the rest of the packet.
2142 			 */
2143 			ifp->if_ierrors++;
2144 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2145 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2146 			WM_INIT_RXDESC(sc, i);
2147 			if ((status & WRX_ST_EOP) == 0)
2148 				sc->sc_rxdiscard = 1;
2149 			if (sc->sc_rxhead != NULL)
2150 				m_freem(sc->sc_rxhead);
2151 			WM_RXCHAIN_RESET(sc);
2152 			DPRINTF(WM_DEBUG_RX,
2153 			    ("%s: RX: Rx buffer allocation failed, "
2154 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2155 			    sc->sc_rxdiscard ? " (discard)" : ""));
2156 			continue;
2157 		}
2158 
2159 		WM_RXCHAIN_LINK(sc, m);
2160 
2161 		m->m_len = len;
2162 
2163 		DPRINTF(WM_DEBUG_RX,
2164 		    ("%s: RX: buffer at %p len %d\n",
2165 		    sc->sc_dev.dv_xname, m->m_data, len));
2166 
2167 		/*
2168 		 * If this is not the end of the packet, keep
2169 		 * looking.
2170 		 */
2171 		if ((status & WRX_ST_EOP) == 0) {
2172 			sc->sc_rxlen += len;
2173 			DPRINTF(WM_DEBUG_RX,
2174 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2175 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2176 			continue;
2177 		}
2178 
2179 		/*
2180 		 * Okay, we have the entire packet now...
2181 		 */
2182 		*sc->sc_rxtailp = NULL;
2183 		m = sc->sc_rxhead;
2184 		len += sc->sc_rxlen;
2185 
2186 		WM_RXCHAIN_RESET(sc);
2187 
2188 		DPRINTF(WM_DEBUG_RX,
2189 		    ("%s: RX: have entire packet, len -> %d\n",
2190 		    sc->sc_dev.dv_xname, len));
2191 
2192 		/*
2193 		 * If an error occurred, update stats and drop the packet.
2194 		 */
2195 		if (errors &
2196 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2197 			ifp->if_ierrors++;
2198 			if (errors & WRX_ER_SE)
2199 				printf("%s: symbol error\n",
2200 				    sc->sc_dev.dv_xname);
2201 			else if (errors & WRX_ER_SEQ)
2202 				printf("%s: receive sequence error\n",
2203 				    sc->sc_dev.dv_xname);
2204 			else if (errors & WRX_ER_CE)
2205 				printf("%s: CRC error\n",
2206 				    sc->sc_dev.dv_xname);
2207 			m_freem(m);
2208 			continue;
2209 		}
2210 
2211 		/*
2212 		 * No errors.  Receive the packet.
2213 		 *
2214 		 * Note, we have configured the chip to include the
2215 		 * CRC with every packet.
2216 		 */
2217 		m->m_flags |= M_HASFCS;
2218 		m->m_pkthdr.rcvif = ifp;
2219 		m->m_pkthdr.len = len;
2220 
2221 #if 0 /* XXXJRT */
2222 		/*
2223 		 * If VLANs are enabled, VLAN packets have been unwrapped
2224 		 * for us.  Associate the tag with the packet.
2225 		 */
2226 		if (sc->sc_ethercom.ec_nvlans != 0 &&
2227 		    (status & WRX_ST_VP) != 0) {
2228 			struct m_tag *vtag;
2229 
2230 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2231 			    M_NOWAIT);
2232 			if (vtag == NULL) {
2233 				ifp->if_ierrors++;
2234 				printf("%s: unable to allocate VLAN tag\n",
2235 				    sc->sc_dev.dv_xname);
2236 				m_freem(m);
2237 				continue;
2238 			}
2239 
2240 			*(u_int *)(vtag + 1) =
2241 			    le16toh(sc->sc_rxdescs[i].wrx_special);
2242 		}
2243 #endif /* XXXJRT */
2244 
2245 		/*
2246 		 * Set up checksum info for this packet.
2247 		 */
2248 		if (status & WRX_ST_IPCS) {
2249 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2250 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2251 			if (errors & WRX_ER_IPE)
2252 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2253 		}
2254 		if (status & WRX_ST_TCPCS) {
2255 			/*
2256 			 * Note: we don't know if this was TCP or UDP,
2257 			 * so we just set both bits, and expect the
2258 			 * upper layers to deal.
2259 			 */
2260 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2261 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2262 			if (errors & WRX_ER_TCPE)
2263 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2264 		}
2265 
2266 		ifp->if_ipackets++;
2267 
2268 #if NBPFILTER > 0
2269 		/* Pass this up to any BPF listeners. */
2270 		if (ifp->if_bpf)
2271 			bpf_mtap(ifp->if_bpf, m);
2272 #endif /* NBPFILTER > 0 */
2273 
2274 		/* Pass it on. */
2275 		(*ifp->if_input)(ifp, m);
2276 	}
2277 
2278 	/* Update the receive pointer. */
2279 	sc->sc_rxptr = i;
2280 
2281 	DPRINTF(WM_DEBUG_RX,
2282 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2283 }
2284 
2285 /*
2286  * wm_linkintr:
2287  *
2288  *	Helper; handle link interrupts.
2289  */
2290 static void
2291 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2292 {
2293 	uint32_t status;
2294 
2295 	/*
2296 	 * If we get a link status interrupt on a 1000BASE-T
2297 	 * device, just fall into the normal MII tick path.
2298 	 */
2299 	if (sc->sc_flags & WM_F_HAS_MII) {
2300 		if (icr & ICR_LSC) {
2301 			DPRINTF(WM_DEBUG_LINK,
2302 			    ("%s: LINK: LSC -> mii_tick\n",
2303 			    sc->sc_dev.dv_xname));
2304 			mii_tick(&sc->sc_mii);
2305 		} else if (icr & ICR_RXSEQ) {
2306 			DPRINTF(WM_DEBUG_LINK,
2307 			    ("%s: LINK Receive sequence error\n",
2308 			    sc->sc_dev.dv_xname));
2309 		}
2310 		return;
2311 	}
2312 
2313 	/*
2314 	 * If we are now receiving /C/, check for link again in
2315 	 * a couple of link clock ticks.
2316 	 */
2317 	if (icr & ICR_RXCFG) {
2318 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2319 		    sc->sc_dev.dv_xname));
2320 		sc->sc_tbi_anstate = 2;
2321 	}
2322 
2323 	if (icr & ICR_LSC) {
2324 		status = CSR_READ(sc, WMREG_STATUS);
2325 		if (status & STATUS_LU) {
2326 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2327 			    sc->sc_dev.dv_xname,
2328 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2329 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2330 			sc->sc_fcrtl &= ~FCRTL_XONE;
2331 			if (status & STATUS_FD)
2332 				sc->sc_tctl |=
2333 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2334 			else
2335 				sc->sc_tctl |=
2336 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2337 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2338 				sc->sc_fcrtl |= FCRTL_XONE;
2339 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2340 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2341 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2342 				      sc->sc_fcrtl);
2343 			sc->sc_tbi_linkup = 1;
2344 		} else {
2345 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2346 			    sc->sc_dev.dv_xname));
2347 			sc->sc_tbi_linkup = 0;
2348 		}
2349 		sc->sc_tbi_anstate = 2;
2350 		wm_tbi_set_linkled(sc);
2351 	} else if (icr & ICR_RXSEQ) {
2352 		DPRINTF(WM_DEBUG_LINK,
2353 		    ("%s: LINK: Receive sequence error\n",
2354 		    sc->sc_dev.dv_xname));
2355 	}
2356 }
2357 
2358 /*
2359  * wm_tick:
2360  *
2361  *	One second timer, used to check link status, sweep up
2362  *	completed transmit jobs, etc.
2363  */
2364 static void
2365 wm_tick(void *arg)
2366 {
2367 	struct wm_softc *sc = arg;
2368 	int s;
2369 
2370 	s = splnet();
2371 
2372 	if (sc->sc_type >= WM_T_82542_2_1) {
2373 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2374 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2375 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2376 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2377 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2378 	}
2379 
2380 	if (sc->sc_flags & WM_F_HAS_MII)
2381 		mii_tick(&sc->sc_mii);
2382 	else
2383 		wm_tbi_check_link(sc);
2384 
2385 	splx(s);
2386 
2387 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2388 }
2389 
2390 /*
2391  * wm_reset:
2392  *
2393  *	Reset the i82542 chip.
2394  */
2395 static void
2396 wm_reset(struct wm_softc *sc)
2397 {
2398 	int i;
2399 
2400 	/*
2401 	 * Allocate on-chip memory according to the MTU size.
2402 	 * The Packet Buffer Allocation register must be written
2403 	 * before the chip is reset.
2404 	 */
2405 	if (sc->sc_type < WM_T_82547) {
2406 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2407 		    PBA_40K : PBA_48K;
2408 	} else {
2409 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2410 		    PBA_22K : PBA_30K;
2411 		sc->sc_txfifo_head = 0;
2412 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2413 		sc->sc_txfifo_size =
2414 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2415 		sc->sc_txfifo_stall = 0;
2416 	}
2417 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2418 
2419 	switch (sc->sc_type) {
2420 	case WM_T_82544:
2421 	case WM_T_82540:
2422 	case WM_T_82545:
2423 	case WM_T_82546:
2424 	case WM_T_82541:
2425 	case WM_T_82541_2:
2426 		/*
2427 		 * These chips have a problem with the memory-mapped
2428 		 * write cycle when issuing the reset, so use I/O-mapped
2429 		 * access, if possible.
2430 		 */
2431 		if (sc->sc_flags & WM_F_IOH_VALID)
2432 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2433 		else
2434 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2435 		break;
2436 
2437 	case WM_T_82545_3:
2438 	case WM_T_82546_3:
2439 		/* Use the shadow control register on these chips. */
2440 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2441 		break;
2442 
2443 	default:
2444 		/* Everything else can safely use the documented method. */
2445 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2446 		break;
2447 	}
2448 	delay(10000);
2449 
2450 	for (i = 0; i < 1000; i++) {
2451 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2452 			return;
2453 		delay(20);
2454 	}
2455 
2456 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2457 		printf("%s: WARNING: reset failed to complete\n",
2458 		    sc->sc_dev.dv_xname);
2459 }
2460 
2461 /*
2462  * wm_init:		[ifnet interface function]
2463  *
2464  *	Initialize the interface.  Must be called at splnet().
2465  */
2466 static int
2467 wm_init(struct ifnet *ifp)
2468 {
2469 	struct wm_softc *sc = ifp->if_softc;
2470 	struct wm_rxsoft *rxs;
2471 	int i, error = 0;
2472 	uint32_t reg;
2473 
2474 	/*
2475 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2476 	 * There is a small but measurable benefit to avoiding the adjusment
2477 	 * of the descriptor so that the headers are aligned, for normal mtu,
2478 	 * on such platforms.  One possibility is that the DMA itself is
2479 	 * slightly more efficient if the front of the entire packet (instead
2480 	 * of the front of the headers) is aligned.
2481 	 *
2482 	 * Note we must always set align_tweak to 0 if we are using
2483 	 * jumbo frames.
2484 	 */
2485 #ifdef __NO_STRICT_ALIGNMENT
2486 	sc->sc_align_tweak = 0;
2487 #else
2488 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2489 		sc->sc_align_tweak = 0;
2490 	else
2491 		sc->sc_align_tweak = 2;
2492 #endif /* __NO_STRICT_ALIGNMENT */
2493 
2494 	/* Cancel any pending I/O. */
2495 	wm_stop(ifp, 0);
2496 
2497 	/* Reset the chip to a known state. */
2498 	wm_reset(sc);
2499 
2500 	/* Initialize the transmit descriptor ring. */
2501 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2502 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2503 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2504 	sc->sc_txfree = WM_NTXDESC(sc);
2505 	sc->sc_txnext = 0;
2506 
2507 	sc->sc_txctx_ipcs = 0xffffffff;
2508 	sc->sc_txctx_tucs = 0xffffffff;
2509 
2510 	if (sc->sc_type < WM_T_82543) {
2511 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2512 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2513 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2514 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2515 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2516 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2517 	} else {
2518 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2519 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2520 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2521 		CSR_WRITE(sc, WMREG_TDH, 0);
2522 		CSR_WRITE(sc, WMREG_TDT, 0);
2523 		CSR_WRITE(sc, WMREG_TIDV, 128);
2524 
2525 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2526 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2527 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2528 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2529 	}
2530 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2531 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2532 
2533 	/* Initialize the transmit job descriptors. */
2534 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2535 		sc->sc_txsoft[i].txs_mbuf = NULL;
2536 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2537 	sc->sc_txsnext = 0;
2538 	sc->sc_txsdirty = 0;
2539 
2540 	/*
2541 	 * Initialize the receive descriptor and receive job
2542 	 * descriptor rings.
2543 	 */
2544 	if (sc->sc_type < WM_T_82543) {
2545 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2546 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2547 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2548 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2549 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2550 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2551 
2552 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2553 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2554 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2555 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2556 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2557 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2558 	} else {
2559 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2560 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2561 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2562 		CSR_WRITE(sc, WMREG_RDH, 0);
2563 		CSR_WRITE(sc, WMREG_RDT, 0);
2564 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2565 	}
2566 	for (i = 0; i < WM_NRXDESC; i++) {
2567 		rxs = &sc->sc_rxsoft[i];
2568 		if (rxs->rxs_mbuf == NULL) {
2569 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2570 				printf("%s: unable to allocate or map rx "
2571 				    "buffer %d, error = %d\n",
2572 				    sc->sc_dev.dv_xname, i, error);
2573 				/*
2574 				 * XXX Should attempt to run with fewer receive
2575 				 * XXX buffers instead of just failing.
2576 				 */
2577 				wm_rxdrain(sc);
2578 				goto out;
2579 			}
2580 		} else
2581 			WM_INIT_RXDESC(sc, i);
2582 	}
2583 	sc->sc_rxptr = 0;
2584 	sc->sc_rxdiscard = 0;
2585 	WM_RXCHAIN_RESET(sc);
2586 
2587 	/*
2588 	 * Clear out the VLAN table -- we don't use it (yet).
2589 	 */
2590 	CSR_WRITE(sc, WMREG_VET, 0);
2591 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2592 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2593 
2594 	/*
2595 	 * Set up flow-control parameters.
2596 	 *
2597 	 * XXX Values could probably stand some tuning.
2598 	 */
2599 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2600 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2601 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2602 
2603 	sc->sc_fcrtl = FCRTL_DFLT;
2604 	if (sc->sc_type < WM_T_82543) {
2605 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2606 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2607 	} else {
2608 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2609 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2610 	}
2611 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2612 
2613 #if 0 /* XXXJRT */
2614 	/* Deal with VLAN enables. */
2615 	if (sc->sc_ethercom.ec_nvlans != 0)
2616 		sc->sc_ctrl |= CTRL_VME;
2617 	else
2618 #endif /* XXXJRT */
2619 		sc->sc_ctrl &= ~CTRL_VME;
2620 
2621 	/* Write the control registers. */
2622 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2623 #if 0
2624 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2625 #endif
2626 
2627 	/*
2628 	 * Set up checksum offload parameters.
2629 	 */
2630 	reg = CSR_READ(sc, WMREG_RXCSUM);
2631 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2632 		reg |= RXCSUM_IPOFL;
2633 	else
2634 		reg &= ~RXCSUM_IPOFL;
2635 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2636 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2637 	else {
2638 		reg &= ~RXCSUM_TUOFL;
2639 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2640 			reg &= ~RXCSUM_IPOFL;
2641 	}
2642 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2643 
2644 	/*
2645 	 * Set up the interrupt registers.
2646 	 */
2647 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2648 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2649 	    ICR_RXO | ICR_RXT0;
2650 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2651 		sc->sc_icr |= ICR_RXCFG;
2652 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2653 
2654 	/* Set up the inter-packet gap. */
2655 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2656 
2657 #if 0 /* XXXJRT */
2658 	/* Set the VLAN ethernetype. */
2659 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2660 #endif
2661 
2662 	/*
2663 	 * Set up the transmit control register; we start out with
2664 	 * a collision distance suitable for FDX, but update it whe
2665 	 * we resolve the media type.
2666 	 */
2667 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2668 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2669 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2670 
2671 	/* Set the media. */
2672 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2673 
2674 	/*
2675 	 * Set up the receive control register; we actually program
2676 	 * the register when we set the receive filter.  Use multicast
2677 	 * address offset type 0.
2678 	 *
2679 	 * Only the i82544 has the ability to strip the incoming
2680 	 * CRC, so we don't enable that feature.
2681 	 */
2682 	sc->sc_mchash_type = 0;
2683 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2684 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2685 
2686 	if(MCLBYTES == 2048) {
2687 		sc->sc_rctl |= RCTL_2k;
2688 	} else {
2689 		if(sc->sc_type >= WM_T_82543) {
2690 			switch(MCLBYTES) {
2691 			case 4096:
2692 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2693 				break;
2694 			case 8192:
2695 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2696 				break;
2697 			case 16384:
2698 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2699 				break;
2700 			default:
2701 				panic("wm_init: MCLBYTES %d unsupported",
2702 				    MCLBYTES);
2703 				break;
2704 			}
2705 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
2706 	}
2707 
2708 	/* Set the receive filter. */
2709 	wm_set_filter(sc);
2710 
2711 	/* Start the one second link check clock. */
2712 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2713 
2714 	/* ...all done! */
2715 	ifp->if_flags |= IFF_RUNNING;
2716 	ifp->if_flags &= ~IFF_OACTIVE;
2717 
2718  out:
2719 	if (error)
2720 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2721 	return (error);
2722 }
2723 
2724 /*
2725  * wm_rxdrain:
2726  *
2727  *	Drain the receive queue.
2728  */
2729 static void
2730 wm_rxdrain(struct wm_softc *sc)
2731 {
2732 	struct wm_rxsoft *rxs;
2733 	int i;
2734 
2735 	for (i = 0; i < WM_NRXDESC; i++) {
2736 		rxs = &sc->sc_rxsoft[i];
2737 		if (rxs->rxs_mbuf != NULL) {
2738 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2739 			m_freem(rxs->rxs_mbuf);
2740 			rxs->rxs_mbuf = NULL;
2741 		}
2742 	}
2743 }
2744 
2745 /*
2746  * wm_stop:		[ifnet interface function]
2747  *
2748  *	Stop transmission on the interface.
2749  */
2750 static void
2751 wm_stop(struct ifnet *ifp, int disable)
2752 {
2753 	struct wm_softc *sc = ifp->if_softc;
2754 	struct wm_txsoft *txs;
2755 	int i;
2756 
2757 	/* Stop the one second clock. */
2758 	callout_stop(&sc->sc_tick_ch);
2759 
2760 	/* Stop the 82547 Tx FIFO stall check timer. */
2761 	if (sc->sc_type == WM_T_82547)
2762 		callout_stop(&sc->sc_txfifo_ch);
2763 
2764 	if (sc->sc_flags & WM_F_HAS_MII) {
2765 		/* Down the MII. */
2766 		mii_down(&sc->sc_mii);
2767 	}
2768 
2769 	/* Stop the transmit and receive processes. */
2770 	CSR_WRITE(sc, WMREG_TCTL, 0);
2771 	CSR_WRITE(sc, WMREG_RCTL, 0);
2772 
2773 	/* Release any queued transmit buffers. */
2774 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2775 		txs = &sc->sc_txsoft[i];
2776 		if (txs->txs_mbuf != NULL) {
2777 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2778 			m_freem(txs->txs_mbuf);
2779 			txs->txs_mbuf = NULL;
2780 		}
2781 	}
2782 
2783 	if (disable)
2784 		wm_rxdrain(sc);
2785 
2786 	/* Mark the interface as down and cancel the watchdog timer. */
2787 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2788 	ifp->if_timer = 0;
2789 }
2790 
2791 /*
2792  * wm_acquire_eeprom:
2793  *
2794  *	Perform the EEPROM handshake required on some chips.
2795  */
2796 static int
2797 wm_acquire_eeprom(struct wm_softc *sc)
2798 {
2799 	uint32_t reg;
2800 	int x;
2801 
2802 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
2803 		reg = CSR_READ(sc, WMREG_EECD);
2804 
2805 		/* Request EEPROM access. */
2806 		reg |= EECD_EE_REQ;
2807 		CSR_WRITE(sc, WMREG_EECD, reg);
2808 
2809 		/* ..and wait for it to be granted. */
2810 		for (x = 0; x < 100; x++) {
2811 			reg = CSR_READ(sc, WMREG_EECD);
2812 			if (reg & EECD_EE_GNT)
2813 				break;
2814 			delay(5);
2815 		}
2816 		if ((reg & EECD_EE_GNT) == 0) {
2817 			aprint_error("%s: could not acquire EEPROM GNT\n",
2818 			    sc->sc_dev.dv_xname);
2819 			reg &= ~EECD_EE_REQ;
2820 			CSR_WRITE(sc, WMREG_EECD, reg);
2821 			return (1);
2822 		}
2823 	}
2824 
2825 	return (0);
2826 }
2827 
2828 /*
2829  * wm_release_eeprom:
2830  *
2831  *	Release the EEPROM mutex.
2832  */
2833 static void
2834 wm_release_eeprom(struct wm_softc *sc)
2835 {
2836 	uint32_t reg;
2837 
2838 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2839 		reg = CSR_READ(sc, WMREG_EECD);
2840 		reg &= ~EECD_EE_REQ;
2841 		CSR_WRITE(sc, WMREG_EECD, reg);
2842 	}
2843 }
2844 
2845 /*
2846  * wm_eeprom_sendbits:
2847  *
2848  *	Send a series of bits to the EEPROM.
2849  */
2850 static void
2851 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2852 {
2853 	uint32_t reg;
2854 	int x;
2855 
2856 	reg = CSR_READ(sc, WMREG_EECD);
2857 
2858 	for (x = nbits; x > 0; x--) {
2859 		if (bits & (1U << (x - 1)))
2860 			reg |= EECD_DI;
2861 		else
2862 			reg &= ~EECD_DI;
2863 		CSR_WRITE(sc, WMREG_EECD, reg);
2864 		delay(2);
2865 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2866 		delay(2);
2867 		CSR_WRITE(sc, WMREG_EECD, reg);
2868 		delay(2);
2869 	}
2870 }
2871 
2872 /*
2873  * wm_eeprom_recvbits:
2874  *
2875  *	Receive a series of bits from the EEPROM.
2876  */
2877 static void
2878 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2879 {
2880 	uint32_t reg, val;
2881 	int x;
2882 
2883 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2884 
2885 	val = 0;
2886 	for (x = nbits; x > 0; x--) {
2887 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2888 		delay(2);
2889 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2890 			val |= (1U << (x - 1));
2891 		CSR_WRITE(sc, WMREG_EECD, reg);
2892 		delay(2);
2893 	}
2894 	*valp = val;
2895 }
2896 
2897 /*
2898  * wm_read_eeprom_uwire:
2899  *
2900  *	Read a word from the EEPROM using the MicroWire protocol.
2901  */
2902 static int
2903 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2904 {
2905 	uint32_t reg, val;
2906 	int i;
2907 
2908 	for (i = 0; i < wordcnt; i++) {
2909 		/* Clear SK and DI. */
2910 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2911 		CSR_WRITE(sc, WMREG_EECD, reg);
2912 
2913 		/* Set CHIP SELECT. */
2914 		reg |= EECD_CS;
2915 		CSR_WRITE(sc, WMREG_EECD, reg);
2916 		delay(2);
2917 
2918 		/* Shift in the READ command. */
2919 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2920 
2921 		/* Shift in address. */
2922 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2923 
2924 		/* Shift out the data. */
2925 		wm_eeprom_recvbits(sc, &val, 16);
2926 		data[i] = val & 0xffff;
2927 
2928 		/* Clear CHIP SELECT. */
2929 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2930 		CSR_WRITE(sc, WMREG_EECD, reg);
2931 		delay(2);
2932 	}
2933 
2934 	return (0);
2935 }
2936 
2937 /*
2938  * wm_spi_eeprom_ready:
2939  *
2940  *	Wait for a SPI EEPROM to be ready for commands.
2941  */
2942 static int
2943 wm_spi_eeprom_ready(struct wm_softc *sc)
2944 {
2945 	uint32_t val;
2946 	int usec;
2947 
2948 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2949 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2950 		wm_eeprom_recvbits(sc, &val, 8);
2951 		if ((val & SPI_SR_RDY) == 0)
2952 			break;
2953 	}
2954 	if (usec >= SPI_MAX_RETRIES) {
2955 		aprint_error("%s: EEPROM failed to become ready\n",
2956 		    sc->sc_dev.dv_xname);
2957 		return (1);
2958 	}
2959 	return (0);
2960 }
2961 
2962 /*
2963  * wm_read_eeprom_spi:
2964  *
2965  *	Read a work from the EEPROM using the SPI protocol.
2966  */
2967 static int
2968 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2969 {
2970 	uint32_t reg, val;
2971 	int i;
2972 	uint8_t opc;
2973 
2974 	/* Clear SK and CS. */
2975 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2976 	CSR_WRITE(sc, WMREG_EECD, reg);
2977 	delay(2);
2978 
2979 	if (wm_spi_eeprom_ready(sc))
2980 		return (1);
2981 
2982 	/* Toggle CS to flush commands. */
2983 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2984 	delay(2);
2985 	CSR_WRITE(sc, WMREG_EECD, reg);
2986 	delay(2);
2987 
2988 	opc = SPI_OPC_READ;
2989 	if (sc->sc_ee_addrbits == 8 && word >= 128)
2990 		opc |= SPI_OPC_A8;
2991 
2992 	wm_eeprom_sendbits(sc, opc, 8);
2993 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
2994 
2995 	for (i = 0; i < wordcnt; i++) {
2996 		wm_eeprom_recvbits(sc, &val, 16);
2997 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
2998 	}
2999 
3000 	/* Raise CS and clear SK. */
3001 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3002 	CSR_WRITE(sc, WMREG_EECD, reg);
3003 	delay(2);
3004 
3005 	return (0);
3006 }
3007 
3008 /*
3009  * wm_read_eeprom:
3010  *
3011  *	Read data from the serial EEPROM.
3012  */
3013 static int
3014 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3015 {
3016 	int rv;
3017 
3018 	if (wm_acquire_eeprom(sc))
3019 		return (1);
3020 
3021 	if (sc->sc_flags & WM_F_EEPROM_SPI)
3022 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3023 	else
3024 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3025 
3026 	wm_release_eeprom(sc);
3027 	return (rv);
3028 }
3029 
3030 /*
3031  * wm_add_rxbuf:
3032  *
3033  *	Add a receive buffer to the indiciated descriptor.
3034  */
3035 static int
3036 wm_add_rxbuf(struct wm_softc *sc, int idx)
3037 {
3038 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3039 	struct mbuf *m;
3040 	int error;
3041 
3042 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3043 	if (m == NULL)
3044 		return (ENOBUFS);
3045 
3046 	MCLGET(m, M_DONTWAIT);
3047 	if ((m->m_flags & M_EXT) == 0) {
3048 		m_freem(m);
3049 		return (ENOBUFS);
3050 	}
3051 
3052 	if (rxs->rxs_mbuf != NULL)
3053 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3054 
3055 	rxs->rxs_mbuf = m;
3056 
3057 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3058 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3059 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3060 	if (error) {
3061 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3062 		    sc->sc_dev.dv_xname, idx, error);
3063 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
3064 	}
3065 
3066 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3067 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3068 
3069 	WM_INIT_RXDESC(sc, idx);
3070 
3071 	return (0);
3072 }
3073 
3074 /*
3075  * wm_set_ral:
3076  *
3077  *	Set an entery in the receive address list.
3078  */
3079 static void
3080 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3081 {
3082 	uint32_t ral_lo, ral_hi;
3083 
3084 	if (enaddr != NULL) {
3085 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3086 		    (enaddr[3] << 24);
3087 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3088 		ral_hi |= RAL_AV;
3089 	} else {
3090 		ral_lo = 0;
3091 		ral_hi = 0;
3092 	}
3093 
3094 	if (sc->sc_type >= WM_T_82544) {
3095 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3096 		    ral_lo);
3097 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3098 		    ral_hi);
3099 	} else {
3100 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3101 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3102 	}
3103 }
3104 
3105 /*
3106  * wm_mchash:
3107  *
3108  *	Compute the hash of the multicast address for the 4096-bit
3109  *	multicast filter.
3110  */
3111 static uint32_t
3112 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3113 {
3114 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3115 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3116 	uint32_t hash;
3117 
3118 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3119 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3120 
3121 	return (hash & 0xfff);
3122 }
3123 
3124 /*
3125  * wm_set_filter:
3126  *
3127  *	Set up the receive filter.
3128  */
3129 static void
3130 wm_set_filter(struct wm_softc *sc)
3131 {
3132 	struct ethercom *ec = &sc->sc_ethercom;
3133 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3134 	struct ether_multi *enm;
3135 	struct ether_multistep step;
3136 	bus_addr_t mta_reg;
3137 	uint32_t hash, reg, bit;
3138 	int i;
3139 
3140 	if (sc->sc_type >= WM_T_82544)
3141 		mta_reg = WMREG_CORDOVA_MTA;
3142 	else
3143 		mta_reg = WMREG_MTA;
3144 
3145 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3146 
3147 	if (ifp->if_flags & IFF_BROADCAST)
3148 		sc->sc_rctl |= RCTL_BAM;
3149 	if (ifp->if_flags & IFF_PROMISC) {
3150 		sc->sc_rctl |= RCTL_UPE;
3151 		goto allmulti;
3152 	}
3153 
3154 	/*
3155 	 * Set the station address in the first RAL slot, and
3156 	 * clear the remaining slots.
3157 	 */
3158 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3159 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3160 		wm_set_ral(sc, NULL, i);
3161 
3162 	/* Clear out the multicast table. */
3163 	for (i = 0; i < WM_MC_TABSIZE; i++)
3164 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3165 
3166 	ETHER_FIRST_MULTI(step, ec, enm);
3167 	while (enm != NULL) {
3168 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3169 			/*
3170 			 * We must listen to a range of multicast addresses.
3171 			 * For now, just accept all multicasts, rather than
3172 			 * trying to set only those filter bits needed to match
3173 			 * the range.  (At this time, the only use of address
3174 			 * ranges is for IP multicast routing, for which the
3175 			 * range is big enough to require all bits set.)
3176 			 */
3177 			goto allmulti;
3178 		}
3179 
3180 		hash = wm_mchash(sc, enm->enm_addrlo);
3181 
3182 		reg = (hash >> 5) & 0x7f;
3183 		bit = hash & 0x1f;
3184 
3185 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3186 		hash |= 1U << bit;
3187 
3188 		/* XXX Hardware bug?? */
3189 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3190 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3191 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3192 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3193 		} else
3194 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3195 
3196 		ETHER_NEXT_MULTI(step, enm);
3197 	}
3198 
3199 	ifp->if_flags &= ~IFF_ALLMULTI;
3200 	goto setit;
3201 
3202  allmulti:
3203 	ifp->if_flags |= IFF_ALLMULTI;
3204 	sc->sc_rctl |= RCTL_MPE;
3205 
3206  setit:
3207 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3208 }
3209 
3210 /*
3211  * wm_tbi_mediainit:
3212  *
3213  *	Initialize media for use on 1000BASE-X devices.
3214  */
3215 static void
3216 wm_tbi_mediainit(struct wm_softc *sc)
3217 {
3218 	const char *sep = "";
3219 
3220 	if (sc->sc_type < WM_T_82543)
3221 		sc->sc_tipg = TIPG_WM_DFLT;
3222 	else
3223 		sc->sc_tipg = TIPG_LG_DFLT;
3224 
3225 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3226 	    wm_tbi_mediastatus);
3227 
3228 	/*
3229 	 * SWD Pins:
3230 	 *
3231 	 *	0 = Link LED (output)
3232 	 *	1 = Loss Of Signal (input)
3233 	 */
3234 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3235 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3236 
3237 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3238 
3239 #define	ADD(ss, mm, dd)							\
3240 do {									\
3241 	printf("%s%s", sep, ss);					\
3242 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3243 	sep = ", ";							\
3244 } while (/*CONSTCOND*/0)
3245 
3246 	printf("%s: ", sc->sc_dev.dv_xname);
3247 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3248 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3249 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3250 	printf("\n");
3251 
3252 #undef ADD
3253 
3254 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3255 }
3256 
3257 /*
3258  * wm_tbi_mediastatus:	[ifmedia interface function]
3259  *
3260  *	Get the current interface media status on a 1000BASE-X device.
3261  */
3262 static void
3263 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3264 {
3265 	struct wm_softc *sc = ifp->if_softc;
3266 	uint32_t ctrl;
3267 
3268 	ifmr->ifm_status = IFM_AVALID;
3269 	ifmr->ifm_active = IFM_ETHER;
3270 
3271 	if (sc->sc_tbi_linkup == 0) {
3272 		ifmr->ifm_active |= IFM_NONE;
3273 		return;
3274 	}
3275 
3276 	ifmr->ifm_status |= IFM_ACTIVE;
3277 	ifmr->ifm_active |= IFM_1000_SX;
3278 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3279 		ifmr->ifm_active |= IFM_FDX;
3280 	ctrl = CSR_READ(sc, WMREG_CTRL);
3281 	if (ctrl & CTRL_RFCE)
3282 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3283 	if (ctrl & CTRL_TFCE)
3284 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3285 }
3286 
3287 /*
3288  * wm_tbi_mediachange:	[ifmedia interface function]
3289  *
3290  *	Set hardware to newly-selected media on a 1000BASE-X device.
3291  */
3292 static int
3293 wm_tbi_mediachange(struct ifnet *ifp)
3294 {
3295 	struct wm_softc *sc = ifp->if_softc;
3296 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3297 	uint32_t status;
3298 	int i;
3299 
3300 	sc->sc_txcw = ife->ifm_data;
3301 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3302 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3303 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3304 	sc->sc_txcw |= TXCW_ANE;
3305 
3306 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3307 	delay(10000);
3308 
3309 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3310 
3311 	sc->sc_tbi_anstate = 0;
3312 
3313 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3314 		/* Have signal; wait for the link to come up. */
3315 		for (i = 0; i < 50; i++) {
3316 			delay(10000);
3317 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3318 				break;
3319 		}
3320 
3321 		status = CSR_READ(sc, WMREG_STATUS);
3322 		if (status & STATUS_LU) {
3323 			/* Link is up. */
3324 			DPRINTF(WM_DEBUG_LINK,
3325 			    ("%s: LINK: set media -> link up %s\n",
3326 			    sc->sc_dev.dv_xname,
3327 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3328 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3329 			sc->sc_fcrtl &= ~FCRTL_XONE;
3330 			if (status & STATUS_FD)
3331 				sc->sc_tctl |=
3332 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3333 			else
3334 				sc->sc_tctl |=
3335 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3336 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3337 				sc->sc_fcrtl |= FCRTL_XONE;
3338 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3339 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3340 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3341 				      sc->sc_fcrtl);
3342 			sc->sc_tbi_linkup = 1;
3343 		} else {
3344 			/* Link is down. */
3345 			DPRINTF(WM_DEBUG_LINK,
3346 			    ("%s: LINK: set media -> link down\n",
3347 			    sc->sc_dev.dv_xname));
3348 			sc->sc_tbi_linkup = 0;
3349 		}
3350 	} else {
3351 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3352 		    sc->sc_dev.dv_xname));
3353 		sc->sc_tbi_linkup = 0;
3354 	}
3355 
3356 	wm_tbi_set_linkled(sc);
3357 
3358 	return (0);
3359 }
3360 
3361 /*
3362  * wm_tbi_set_linkled:
3363  *
3364  *	Update the link LED on 1000BASE-X devices.
3365  */
3366 static void
3367 wm_tbi_set_linkled(struct wm_softc *sc)
3368 {
3369 
3370 	if (sc->sc_tbi_linkup)
3371 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3372 	else
3373 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3374 
3375 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3376 }
3377 
3378 /*
3379  * wm_tbi_check_link:
3380  *
3381  *	Check the link on 1000BASE-X devices.
3382  */
3383 static void
3384 wm_tbi_check_link(struct wm_softc *sc)
3385 {
3386 	uint32_t rxcw, ctrl, status;
3387 
3388 	if (sc->sc_tbi_anstate == 0)
3389 		return;
3390 	else if (sc->sc_tbi_anstate > 1) {
3391 		DPRINTF(WM_DEBUG_LINK,
3392 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3393 		    sc->sc_tbi_anstate));
3394 		sc->sc_tbi_anstate--;
3395 		return;
3396 	}
3397 
3398 	sc->sc_tbi_anstate = 0;
3399 
3400 	rxcw = CSR_READ(sc, WMREG_RXCW);
3401 	ctrl = CSR_READ(sc, WMREG_CTRL);
3402 	status = CSR_READ(sc, WMREG_STATUS);
3403 
3404 	if ((status & STATUS_LU) == 0) {
3405 		DPRINTF(WM_DEBUG_LINK,
3406 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3407 		sc->sc_tbi_linkup = 0;
3408 	} else {
3409 		DPRINTF(WM_DEBUG_LINK,
3410 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3411 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3412 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3413 		sc->sc_fcrtl &= ~FCRTL_XONE;
3414 		if (status & STATUS_FD)
3415 			sc->sc_tctl |=
3416 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3417 		else
3418 			sc->sc_tctl |=
3419 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3420 		if (ctrl & CTRL_TFCE)
3421 			sc->sc_fcrtl |= FCRTL_XONE;
3422 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3423 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3424 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3425 			      sc->sc_fcrtl);
3426 		sc->sc_tbi_linkup = 1;
3427 	}
3428 
3429 	wm_tbi_set_linkled(sc);
3430 }
3431 
3432 /*
3433  * wm_gmii_reset:
3434  *
3435  *	Reset the PHY.
3436  */
3437 static void
3438 wm_gmii_reset(struct wm_softc *sc)
3439 {
3440 	uint32_t reg;
3441 
3442 	if (sc->sc_type >= WM_T_82544) {
3443 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3444 		delay(20000);
3445 
3446 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3447 		delay(20000);
3448 	} else {
3449 		/* The PHY reset pin is active-low. */
3450 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3451 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3452 		    CTRL_EXT_SWDPIN(4));
3453 		reg |= CTRL_EXT_SWDPIO(4);
3454 
3455 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3456 		delay(10);
3457 
3458 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3459 		delay(10);
3460 
3461 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3462 		delay(10);
3463 #if 0
3464 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3465 #endif
3466 	}
3467 }
3468 
3469 /*
3470  * wm_gmii_mediainit:
3471  *
3472  *	Initialize media for use on 1000BASE-T devices.
3473  */
3474 static void
3475 wm_gmii_mediainit(struct wm_softc *sc)
3476 {
3477 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3478 
3479 	/* We have MII. */
3480 	sc->sc_flags |= WM_F_HAS_MII;
3481 
3482 	sc->sc_tipg = TIPG_1000T_DFLT;
3483 
3484 	/*
3485 	 * Let the chip set speed/duplex on its own based on
3486 	 * signals from the PHY.
3487 	 */
3488 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3489 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3490 
3491 	/* Initialize our media structures and probe the GMII. */
3492 	sc->sc_mii.mii_ifp = ifp;
3493 
3494 	if (sc->sc_type >= WM_T_82544) {
3495 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3496 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3497 	} else {
3498 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3499 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3500 	}
3501 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
3502 
3503 	wm_gmii_reset(sc);
3504 
3505 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3506 	    wm_gmii_mediastatus);
3507 
3508 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3509 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
3510 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3511 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3512 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3513 	} else
3514 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3515 }
3516 
3517 /*
3518  * wm_gmii_mediastatus:	[ifmedia interface function]
3519  *
3520  *	Get the current interface media status on a 1000BASE-T device.
3521  */
3522 static void
3523 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3524 {
3525 	struct wm_softc *sc = ifp->if_softc;
3526 
3527 	mii_pollstat(&sc->sc_mii);
3528 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3529 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3530 			   sc->sc_flowflags;
3531 }
3532 
3533 /*
3534  * wm_gmii_mediachange:	[ifmedia interface function]
3535  *
3536  *	Set hardware to newly-selected media on a 1000BASE-T device.
3537  */
3538 static int
3539 wm_gmii_mediachange(struct ifnet *ifp)
3540 {
3541 	struct wm_softc *sc = ifp->if_softc;
3542 
3543 	if (ifp->if_flags & IFF_UP)
3544 		mii_mediachg(&sc->sc_mii);
3545 	return (0);
3546 }
3547 
3548 #define	MDI_IO		CTRL_SWDPIN(2)
3549 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
3550 #define	MDI_CLK		CTRL_SWDPIN(3)
3551 
3552 static void
3553 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3554 {
3555 	uint32_t i, v;
3556 
3557 	v = CSR_READ(sc, WMREG_CTRL);
3558 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3559 	v |= MDI_DIR | CTRL_SWDPIO(3);
3560 
3561 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3562 		if (data & i)
3563 			v |= MDI_IO;
3564 		else
3565 			v &= ~MDI_IO;
3566 		CSR_WRITE(sc, WMREG_CTRL, v);
3567 		delay(10);
3568 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3569 		delay(10);
3570 		CSR_WRITE(sc, WMREG_CTRL, v);
3571 		delay(10);
3572 	}
3573 }
3574 
3575 static uint32_t
3576 i82543_mii_recvbits(struct wm_softc *sc)
3577 {
3578 	uint32_t v, i, data = 0;
3579 
3580 	v = CSR_READ(sc, WMREG_CTRL);
3581 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3582 	v |= CTRL_SWDPIO(3);
3583 
3584 	CSR_WRITE(sc, WMREG_CTRL, v);
3585 	delay(10);
3586 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3587 	delay(10);
3588 	CSR_WRITE(sc, WMREG_CTRL, v);
3589 	delay(10);
3590 
3591 	for (i = 0; i < 16; i++) {
3592 		data <<= 1;
3593 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3594 		delay(10);
3595 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3596 			data |= 1;
3597 		CSR_WRITE(sc, WMREG_CTRL, v);
3598 		delay(10);
3599 	}
3600 
3601 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3602 	delay(10);
3603 	CSR_WRITE(sc, WMREG_CTRL, v);
3604 	delay(10);
3605 
3606 	return (data);
3607 }
3608 
3609 #undef MDI_IO
3610 #undef MDI_DIR
3611 #undef MDI_CLK
3612 
3613 /*
3614  * wm_gmii_i82543_readreg:	[mii interface function]
3615  *
3616  *	Read a PHY register on the GMII (i82543 version).
3617  */
3618 static int
3619 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3620 {
3621 	struct wm_softc *sc = (void *) self;
3622 	int rv;
3623 
3624 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3625 	i82543_mii_sendbits(sc, reg | (phy << 5) |
3626 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3627 	rv = i82543_mii_recvbits(sc) & 0xffff;
3628 
3629 	DPRINTF(WM_DEBUG_GMII,
3630 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3631 	    sc->sc_dev.dv_xname, phy, reg, rv));
3632 
3633 	return (rv);
3634 }
3635 
3636 /*
3637  * wm_gmii_i82543_writereg:	[mii interface function]
3638  *
3639  *	Write a PHY register on the GMII (i82543 version).
3640  */
3641 static void
3642 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3643 {
3644 	struct wm_softc *sc = (void *) self;
3645 
3646 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3647 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3648 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3649 	    (MII_COMMAND_START << 30), 32);
3650 }
3651 
3652 /*
3653  * wm_gmii_i82544_readreg:	[mii interface function]
3654  *
3655  *	Read a PHY register on the GMII.
3656  */
3657 static int
3658 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3659 {
3660 	struct wm_softc *sc = (void *) self;
3661 	uint32_t mdic = 0;
3662 	int i, rv;
3663 
3664 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3665 	    MDIC_REGADD(reg));
3666 
3667 	for (i = 0; i < 100; i++) {
3668 		mdic = CSR_READ(sc, WMREG_MDIC);
3669 		if (mdic & MDIC_READY)
3670 			break;
3671 		delay(10);
3672 	}
3673 
3674 	if ((mdic & MDIC_READY) == 0) {
3675 		printf("%s: MDIC read timed out: phy %d reg %d\n",
3676 		    sc->sc_dev.dv_xname, phy, reg);
3677 		rv = 0;
3678 	} else if (mdic & MDIC_E) {
3679 #if 0 /* This is normal if no PHY is present. */
3680 		printf("%s: MDIC read error: phy %d reg %d\n",
3681 		    sc->sc_dev.dv_xname, phy, reg);
3682 #endif
3683 		rv = 0;
3684 	} else {
3685 		rv = MDIC_DATA(mdic);
3686 		if (rv == 0xffff)
3687 			rv = 0;
3688 	}
3689 
3690 	return (rv);
3691 }
3692 
3693 /*
3694  * wm_gmii_i82544_writereg:	[mii interface function]
3695  *
3696  *	Write a PHY register on the GMII.
3697  */
3698 static void
3699 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3700 {
3701 	struct wm_softc *sc = (void *) self;
3702 	uint32_t mdic = 0;
3703 	int i;
3704 
3705 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3706 	    MDIC_REGADD(reg) | MDIC_DATA(val));
3707 
3708 	for (i = 0; i < 100; i++) {
3709 		mdic = CSR_READ(sc, WMREG_MDIC);
3710 		if (mdic & MDIC_READY)
3711 			break;
3712 		delay(10);
3713 	}
3714 
3715 	if ((mdic & MDIC_READY) == 0)
3716 		printf("%s: MDIC write timed out: phy %d reg %d\n",
3717 		    sc->sc_dev.dv_xname, phy, reg);
3718 	else if (mdic & MDIC_E)
3719 		printf("%s: MDIC write error: phy %d reg %d\n",
3720 		    sc->sc_dev.dv_xname, phy, reg);
3721 }
3722 
3723 /*
3724  * wm_gmii_statchg:	[mii interface function]
3725  *
3726  *	Callback from MII layer when media changes.
3727  */
3728 static void
3729 wm_gmii_statchg(struct device *self)
3730 {
3731 	struct wm_softc *sc = (void *) self;
3732 	struct mii_data *mii = &sc->sc_mii;
3733 
3734 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3735 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3736 	sc->sc_fcrtl &= ~FCRTL_XONE;
3737 
3738 	/*
3739 	 * Get flow control negotiation result.
3740 	 */
3741 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3742 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3743 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3744 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3745 	}
3746 
3747 	if (sc->sc_flowflags & IFM_FLOW) {
3748 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3749 			sc->sc_ctrl |= CTRL_TFCE;
3750 			sc->sc_fcrtl |= FCRTL_XONE;
3751 		}
3752 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3753 			sc->sc_ctrl |= CTRL_RFCE;
3754 	}
3755 
3756 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
3757 		DPRINTF(WM_DEBUG_LINK,
3758 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3759 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3760 	} else  {
3761 		DPRINTF(WM_DEBUG_LINK,
3762 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3763 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3764 	}
3765 
3766 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3767 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3768 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3769 						 : WMREG_FCRTL, sc->sc_fcrtl);
3770 }
3771