xref: /netbsd-src/sys/dev/pci/if_wm.c (revision 20e85ad185ab16980f1219a557c42e057edb42ea)
1 /*	$NetBSD: if_wm.c,v 1.101 2005/03/19 11:58:03 tron Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Rework how parameters are loaded from the EEPROM.
44  *	- Figure out what to do with the i82545GM and i82546GB
45  *	  SERDES controllers.
46  *	- Fix hw VLAN assist.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.101 2005/03/19 11:58:03 tron Exp $");
51 
52 #include "bpfilter.h"
53 #include "rnd.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67 
68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
69 
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78 
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82 
83 #include <netinet/in.h>			/* XXX for struct ip */
84 #include <netinet/in_systm.h>		/* XXX for struct ip */
85 #include <netinet/ip.h>			/* XXX for struct ip */
86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
87 
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99 
100 #include <dev/pci/if_wmreg.h>
101 
102 #ifdef WM_DEBUG
103 #define	WM_DEBUG_LINK		0x01
104 #define	WM_DEBUG_TX		0x02
105 #define	WM_DEBUG_RX		0x04
106 #define	WM_DEBUG_GMII		0x08
107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108 
109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
110 #else
111 #define	DPRINTF(x, y)	/* nothing */
112 #endif /* WM_DEBUG */
113 
114 /*
115  * Transmit descriptor list size.  Due to errata, we can only have
116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
117  * on >= 82544.  We tell the upper layers that they can queue a lot
118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119  * of them at a time.
120  *
121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
122  * chains containing many small mbufs have been observed in zero-copy
123  * situations with jumbo frames.
124  */
125 #define	WM_NTXSEGS		256
126 #define	WM_IFQUEUELEN		256
127 #define	WM_TXQUEUELEN_MAX	64
128 #define	WM_TXQUEUELEN_MAX_82547	16
129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
132 #define	WM_NTXDESC_82542	256
133 #define	WM_NTXDESC_82544	4096
134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139 
140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
141 
142 /*
143  * Receive descriptor list size.  We have one Rx buffer for normal
144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
145  * packet.  We allocate 256 receive descriptors, each with a 2k
146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147  */
148 #define	WM_NRXDESC		256
149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
152 
153 /*
154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
155  * a single clump that maps to a single DMA segment to make serveral things
156  * easier.
157  */
158 struct wm_control_data_82544 {
159 	/*
160 	 * The receive descriptors.
161 	 */
162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163 
164 	/*
165 	 * The transmit descriptors.  Put these at the end, because
166 	 * we might use a smaller number of them.
167 	 */
168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170 
171 struct wm_control_data_82542 {
172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175 
176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
179 
180 /*
181  * Software state for transmit jobs.
182  */
183 struct wm_txsoft {
184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
186 	int txs_firstdesc;		/* first descriptor in packet */
187 	int txs_lastdesc;		/* last descriptor in packet */
188 	int txs_ndesc;			/* # of descriptors used */
189 };
190 
191 /*
192  * Software state for receive buffers.  Each descriptor gets a
193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
194  * more than one buffer, we chain them together.
195  */
196 struct wm_rxsoft {
197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
199 };
200 
201 typedef enum {
202 	WM_T_unknown		= 0,
203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
205 	WM_T_82543,			/* i82543 */
206 	WM_T_82544,			/* i82544 */
207 	WM_T_82540,			/* i82540 */
208 	WM_T_82545,			/* i82545 */
209 	WM_T_82545_3,			/* i82545 3.0+ */
210 	WM_T_82546,			/* i82546 */
211 	WM_T_82546_3,			/* i82546 3.0+ */
212 	WM_T_82541,			/* i82541 */
213 	WM_T_82541_2,			/* i82541 2.0+ */
214 	WM_T_82547,			/* i82547 */
215 	WM_T_82547_2,			/* i82547 2.0+ */
216 } wm_chip_type;
217 
218 /*
219  * Software state per device.
220  */
221 struct wm_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_space_tag_t sc_iot;		/* I/O space tag */
226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
228 	struct ethercom sc_ethercom;	/* ethernet common data */
229 	void *sc_sdhook;		/* shutdown hook */
230 
231 	wm_chip_type sc_type;		/* chip type */
232 	int sc_flags;			/* flags; see below */
233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
234 	int sc_pcix_offset;		/* PCIX capability register offset */
235 	int sc_flowflags;		/* 802.3x flow control flags */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	int sc_ee_addrbits;		/* EEPROM address bits */
240 
241 	struct mii_data sc_mii;		/* MII/media information */
242 
243 	struct callout sc_tick_ch;	/* tick callout */
244 
245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
247 
248 	int		sc_align_tweak;
249 
250 	/*
251 	 * Software state for the transmit and receive descriptors.
252 	 */
253 	int			sc_txnum;	/* must be a power of two */
254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
256 
257 	/*
258 	 * Control data structures.
259 	 */
260 	int			sc_ntxdesc;	/* must be a power of two */
261 	struct wm_control_data_82544 *sc_control_data;
262 #define	sc_txdescs	sc_control_data->wcd_txdescs
263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
264 
265 #ifdef WM_EVENT_COUNTERS
266 	/* Event counters. */
267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
274 
275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
279 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
280 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
281 
282 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
283 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
284 
285 	struct evcnt sc_ev_tu;		/* Tx underrun */
286 
287 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
288 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
289 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
290 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
291 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
292 #endif /* WM_EVENT_COUNTERS */
293 
294 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
295 
296 	int	sc_txfree;		/* number of free Tx descriptors */
297 	int	sc_txnext;		/* next ready Tx descriptor */
298 
299 	int	sc_txsfree;		/* number of free Tx jobs */
300 	int	sc_txsnext;		/* next free Tx job */
301 	int	sc_txsdirty;		/* dirty Tx jobs */
302 
303 	/* These 5 variables are used only on the 82547. */
304 	int	sc_txfifo_size;		/* Tx FIFO size */
305 	int	sc_txfifo_head;		/* current head of FIFO */
306 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
307 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
308 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
309 
310 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
311 
312 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
313 	int	sc_rxdiscard;
314 	int	sc_rxlen;
315 	struct mbuf *sc_rxhead;
316 	struct mbuf *sc_rxtail;
317 	struct mbuf **sc_rxtailp;
318 
319 	uint32_t sc_ctrl;		/* prototype CTRL register */
320 #if 0
321 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
322 #endif
323 	uint32_t sc_icr;		/* prototype interrupt bits */
324 	uint32_t sc_itr;		/* prototype intr throttling reg */
325 	uint32_t sc_tctl;		/* prototype TCTL register */
326 	uint32_t sc_rctl;		/* prototype RCTL register */
327 	uint32_t sc_txcw;		/* prototype TXCW register */
328 	uint32_t sc_tipg;		/* prototype TIPG register */
329 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
330 	uint32_t sc_pba;		/* prototype PBA register */
331 
332 	int sc_tbi_linkup;		/* TBI link status */
333 	int sc_tbi_anstate;		/* autonegotiation state */
334 
335 	int sc_mchash_type;		/* multicast filter offset */
336 
337 #if NRND > 0
338 	rndsource_element_t rnd_source;	/* random source */
339 #endif
340 };
341 
342 #define	WM_RXCHAIN_RESET(sc)						\
343 do {									\
344 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
345 	*(sc)->sc_rxtailp = NULL;					\
346 	(sc)->sc_rxlen = 0;						\
347 } while (/*CONSTCOND*/0)
348 
349 #define	WM_RXCHAIN_LINK(sc, m)						\
350 do {									\
351 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
352 	(sc)->sc_rxtailp = &(m)->m_next;				\
353 } while (/*CONSTCOND*/0)
354 
355 /* sc_flags */
356 #define	WM_F_HAS_MII		0x01	/* has MII */
357 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
358 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
359 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
360 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
361 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
362 #define	WM_F_CSA		0x80	/* bus is CSA */
363 
364 #ifdef WM_EVENT_COUNTERS
365 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
366 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
367 #else
368 #define	WM_EVCNT_INCR(ev)	/* nothing */
369 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
370 #endif
371 
372 #define	CSR_READ(sc, reg)						\
373 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
374 #define	CSR_WRITE(sc, reg, val)						\
375 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
376 #define	CSR_WRITE_FLUSH(sc)						\
377 	(void) CSR_READ((sc), WMREG_STATUS)
378 
379 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
380 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
381 
382 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
383 #define	WM_CDTXADDR_HI(sc, x)						\
384 	(sizeof(bus_addr_t) == 8 ?					\
385 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
386 
387 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
388 #define	WM_CDRXADDR_HI(sc, x)						\
389 	(sizeof(bus_addr_t) == 8 ?					\
390 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
391 
392 #define	WM_CDTXSYNC(sc, x, n, ops)					\
393 do {									\
394 	int __x, __n;							\
395 									\
396 	__x = (x);							\
397 	__n = (n);							\
398 									\
399 	/* If it will wrap around, sync to the end of the ring. */	\
400 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
401 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
402 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
403 		    (WM_NTXDESC(sc) - __x), (ops));			\
404 		__n -= (WM_NTXDESC(sc) - __x);				\
405 		__x = 0;						\
406 	}								\
407 									\
408 	/* Now sync whatever is left. */				\
409 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
410 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
411 } while (/*CONSTCOND*/0)
412 
413 #define	WM_CDRXSYNC(sc, x, ops)						\
414 do {									\
415 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
416 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
417 } while (/*CONSTCOND*/0)
418 
419 #define	WM_INIT_RXDESC(sc, x)						\
420 do {									\
421 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
422 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
423 	struct mbuf *__m = __rxs->rxs_mbuf;				\
424 									\
425 	/*								\
426 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
427 	 * so that the payload after the Ethernet header is aligned	\
428 	 * to a 4-byte boundary.					\
429 	 *								\
430 	 * XXX BRAINDAMAGE ALERT!					\
431 	 * The stupid chip uses the same size for every buffer, which	\
432 	 * is set in the Receive Control register.  We are using the 2K	\
433 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
434 	 * reason, we can't "scoot" packets longer than the standard	\
435 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
436 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
437 	 * the upper layer copy the headers.				\
438 	 */								\
439 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
440 									\
441 	wm_set_dma_addr(&__rxd->wrx_addr,				\
442 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
443 	__rxd->wrx_len = 0;						\
444 	__rxd->wrx_cksum = 0;						\
445 	__rxd->wrx_status = 0;						\
446 	__rxd->wrx_errors = 0;						\
447 	__rxd->wrx_special = 0;						\
448 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
449 									\
450 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
451 } while (/*CONSTCOND*/0)
452 
453 static void	wm_start(struct ifnet *);
454 static void	wm_watchdog(struct ifnet *);
455 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
456 static int	wm_init(struct ifnet *);
457 static void	wm_stop(struct ifnet *, int);
458 
459 static void	wm_shutdown(void *);
460 
461 static void	wm_reset(struct wm_softc *);
462 static void	wm_rxdrain(struct wm_softc *);
463 static int	wm_add_rxbuf(struct wm_softc *, int);
464 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
465 static void	wm_tick(void *);
466 
467 static void	wm_set_filter(struct wm_softc *);
468 
469 static int	wm_intr(void *);
470 static void	wm_txintr(struct wm_softc *);
471 static void	wm_rxintr(struct wm_softc *);
472 static void	wm_linkintr(struct wm_softc *, uint32_t);
473 
474 static void	wm_tbi_mediainit(struct wm_softc *);
475 static int	wm_tbi_mediachange(struct ifnet *);
476 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
477 
478 static void	wm_tbi_set_linkled(struct wm_softc *);
479 static void	wm_tbi_check_link(struct wm_softc *);
480 
481 static void	wm_gmii_reset(struct wm_softc *);
482 
483 static int	wm_gmii_i82543_readreg(struct device *, int, int);
484 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
485 
486 static int	wm_gmii_i82544_readreg(struct device *, int, int);
487 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
488 
489 static void	wm_gmii_statchg(struct device *);
490 
491 static void	wm_gmii_mediainit(struct wm_softc *);
492 static int	wm_gmii_mediachange(struct ifnet *);
493 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
494 
495 static int	wm_match(struct device *, struct cfdata *, void *);
496 static void	wm_attach(struct device *, struct device *, void *);
497 
498 CFATTACH_DECL(wm, sizeof(struct wm_softc),
499     wm_match, wm_attach, NULL, NULL);
500 
501 static void	wm_82547_txfifo_stall(void *);
502 
503 /*
504  * Devices supported by this driver.
505  */
506 static const struct wm_product {
507 	pci_vendor_id_t		wmp_vendor;
508 	pci_product_id_t	wmp_product;
509 	const char		*wmp_name;
510 	wm_chip_type		wmp_type;
511 	int			wmp_flags;
512 #define	WMP_F_1000X		0x01
513 #define	WMP_F_1000T		0x02
514 } wm_products[] = {
515 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
516 	  "Intel i82542 1000BASE-X Ethernet",
517 	  WM_T_82542_2_1,	WMP_F_1000X },
518 
519 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
520 	  "Intel i82543GC 1000BASE-X Ethernet",
521 	  WM_T_82543,		WMP_F_1000X },
522 
523 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
524 	  "Intel i82543GC 1000BASE-T Ethernet",
525 	  WM_T_82543,		WMP_F_1000T },
526 
527 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
528 	  "Intel i82544EI 1000BASE-T Ethernet",
529 	  WM_T_82544,		WMP_F_1000T },
530 
531 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
532 	  "Intel i82544EI 1000BASE-X Ethernet",
533 	  WM_T_82544,		WMP_F_1000X },
534 
535 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
536 	  "Intel i82544GC 1000BASE-T Ethernet",
537 	  WM_T_82544,		WMP_F_1000T },
538 
539 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
540 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
541 	  WM_T_82544,		WMP_F_1000T },
542 
543 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
544 	  "Intel i82540EM 1000BASE-T Ethernet",
545 	  WM_T_82540,		WMP_F_1000T },
546 
547 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
548 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
549 	  WM_T_82540,		WMP_F_1000T },
550 
551 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
552 	  "Intel i82540EP 1000BASE-T Ethernet",
553 	  WM_T_82540,		WMP_F_1000T },
554 
555 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
556 	  "Intel i82540EP 1000BASE-T Ethernet",
557 	  WM_T_82540,		WMP_F_1000T },
558 
559 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
560 	  "Intel i82540EP 1000BASE-T Ethernet",
561 	  WM_T_82540,		WMP_F_1000T },
562 
563 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
564 	  "Intel i82545EM 1000BASE-T Ethernet",
565 	  WM_T_82545,		WMP_F_1000T },
566 
567 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
568 	  "Intel i82545GM 1000BASE-T Ethernet",
569 	  WM_T_82545_3,		WMP_F_1000T },
570 
571 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
572 	  "Intel i82545GM 1000BASE-X Ethernet",
573 	  WM_T_82545_3,		WMP_F_1000X },
574 #if 0
575 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
576 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
577 	  WM_T_82545_3,		WMP_F_SERDES },
578 #endif
579 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
580 	  "Intel i82546EB 1000BASE-T Ethernet",
581 	  WM_T_82546,		WMP_F_1000T },
582 
583 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
584 	  "Intel i82546EB 1000BASE-T Ethernet",
585 	  WM_T_82546,		WMP_F_1000T },
586 
587 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
588 	  "Intel i82545EM 1000BASE-X Ethernet",
589 	  WM_T_82545,		WMP_F_1000X },
590 
591 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
592 	  "Intel i82546EB 1000BASE-X Ethernet",
593 	  WM_T_82546,		WMP_F_1000X },
594 
595 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
596 	  "Intel i82546GB 1000BASE-T Ethernet",
597 	  WM_T_82546_3,		WMP_F_1000T },
598 
599 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
600 	  "Intel i82546GB 1000BASE-X Ethernet",
601 	  WM_T_82546_3,		WMP_F_1000X },
602 #if 0
603 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
604 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
605 	  WM_T_82546_3,		WMP_F_SERDES },
606 #endif
607 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
608 	  "Intel i82541EI 1000BASE-T Ethernet",
609 	  WM_T_82541,		WMP_F_1000T },
610 
611 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
612 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
613 	  WM_T_82541,		WMP_F_1000T },
614 
615 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
616 	  "Intel i82541ER 1000BASE-T Ethernet",
617 	  WM_T_82541_2,		WMP_F_1000T },
618 
619 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
620 	  "Intel i82541GI 1000BASE-T Ethernet",
621 	  WM_T_82541_2,		WMP_F_1000T },
622 
623 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
624 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
625 	  WM_T_82541_2,		WMP_F_1000T },
626 
627 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
628 	  "Intel i82541PI 1000BASE-T Ethernet",
629 	  WM_T_82541_2,		WMP_F_1000T },
630 
631 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
632 	  "Intel i82547EI 1000BASE-T Ethernet",
633 	  WM_T_82547,		WMP_F_1000T },
634 
635 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
636 	  "Intel i82547GI 1000BASE-T Ethernet",
637 	  WM_T_82547_2,		WMP_F_1000T },
638 	{ 0,			0,
639 	  NULL,
640 	  0,			0 },
641 };
642 
643 #ifdef WM_EVENT_COUNTERS
644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
645 #endif /* WM_EVENT_COUNTERS */
646 
647 #if 0 /* Not currently used */
648 static __inline uint32_t
649 wm_io_read(struct wm_softc *sc, int reg)
650 {
651 
652 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
653 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
654 }
655 #endif
656 
657 static __inline void
658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
659 {
660 
661 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
662 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
663 }
664 
665 static __inline void
666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
667 {
668 	wa->wa_low = htole32(v & 0xffffffffU);
669 	if (sizeof(bus_addr_t) == 8)
670 		wa->wa_high = htole32((uint64_t) v >> 32);
671 	else
672 		wa->wa_high = 0;
673 }
674 
675 static const struct wm_product *
676 wm_lookup(const struct pci_attach_args *pa)
677 {
678 	const struct wm_product *wmp;
679 
680 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
681 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
682 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
683 			return (wmp);
684 	}
685 	return (NULL);
686 }
687 
688 static int
689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
690 {
691 	struct pci_attach_args *pa = aux;
692 
693 	if (wm_lookup(pa) != NULL)
694 		return (1);
695 
696 	return (0);
697 }
698 
699 static void
700 wm_attach(struct device *parent, struct device *self, void *aux)
701 {
702 	struct wm_softc *sc = (void *) self;
703 	struct pci_attach_args *pa = aux;
704 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 	pci_chipset_tag_t pc = pa->pa_pc;
706 	pci_intr_handle_t ih;
707 	size_t cdata_size;
708 	const char *intrstr = NULL;
709 	const char *eetype;
710 	bus_space_tag_t memt;
711 	bus_space_handle_t memh;
712 	bus_dma_segment_t seg;
713 	int memh_valid;
714 	int i, rseg, error;
715 	const struct wm_product *wmp;
716 	uint8_t enaddr[ETHER_ADDR_LEN];
717 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
718 	pcireg_t preg, memtype;
719 	uint32_t reg;
720 	int pmreg;
721 
722 	callout_init(&sc->sc_tick_ch);
723 
724 	wmp = wm_lookup(pa);
725 	if (wmp == NULL) {
726 		printf("\n");
727 		panic("wm_attach: impossible");
728 	}
729 
730 	if (pci_dma64_available(pa))
731 		sc->sc_dmat = pa->pa_dmat64;
732 	else
733 		sc->sc_dmat = pa->pa_dmat;
734 
735 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
736 	aprint_naive(": Ethernet controller\n");
737 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
738 
739 	sc->sc_type = wmp->wmp_type;
740 	if (sc->sc_type < WM_T_82543) {
741 		if (preg < 2) {
742 			aprint_error("%s: i82542 must be at least rev. 2\n",
743 			    sc->sc_dev.dv_xname);
744 			return;
745 		}
746 		if (preg < 3)
747 			sc->sc_type = WM_T_82542_2_0;
748 	}
749 
750 	/*
751 	 * Map the device.  All devices support memory-mapped acccess,
752 	 * and it is really required for normal operation.
753 	 */
754 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
755 	switch (memtype) {
756 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
757 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
758 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
759 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
760 		break;
761 	default:
762 		memh_valid = 0;
763 	}
764 
765 	if (memh_valid) {
766 		sc->sc_st = memt;
767 		sc->sc_sh = memh;
768 	} else {
769 		aprint_error("%s: unable to map device registers\n",
770 		    sc->sc_dev.dv_xname);
771 		return;
772 	}
773 
774 	/*
775 	 * In addition, i82544 and later support I/O mapped indirect
776 	 * register access.  It is not desirable (nor supported in
777 	 * this driver) to use it for normal operation, though it is
778 	 * required to work around bugs in some chip versions.
779 	 */
780 	if (sc->sc_type >= WM_T_82544) {
781 		/* First we have to find the I/O BAR. */
782 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
783 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
784 			    PCI_MAPREG_TYPE_IO)
785 				break;
786 		}
787 		if (i == PCI_MAPREG_END)
788 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
789 			    sc->sc_dev.dv_xname);
790 		else {
791 			/*
792 			 * The i8254x doesn't apparently respond when the
793 			 * I/O BAR is 0, which looks somewhat like it's not
794 			 * been configured.
795 			 */
796 			preg = pci_conf_read(pc, pa->pa_tag, i);
797 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
798 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
799 				    sc->sc_dev.dv_xname);
800 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
801 					0, &sc->sc_iot, &sc->sc_ioh,
802 					NULL, NULL) == 0) {
803 				sc->sc_flags |= WM_F_IOH_VALID;
804 			} else {
805 				aprint_error("%s: WARNING: unable to map "
806 				    "I/O space\n", sc->sc_dev.dv_xname);
807 			}
808 		}
809 
810 	}
811 
812 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
813 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
814 	preg |= PCI_COMMAND_MASTER_ENABLE;
815 	if (sc->sc_type < WM_T_82542_2_1)
816 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
817 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
818 
819 	/* Get it out of power save mode, if needed. */
820 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
821 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
822 		    PCI_PMCSR_STATE_MASK;
823 		if (preg == PCI_PMCSR_STATE_D3) {
824 			/*
825 			 * The card has lost all configuration data in
826 			 * this state, so punt.
827 			 */
828 			aprint_error("%s: unable to wake from power state D3\n",
829 			    sc->sc_dev.dv_xname);
830 			return;
831 		}
832 		if (preg != PCI_PMCSR_STATE_D0) {
833 			aprint_normal("%s: waking up from power state D%d\n",
834 			    sc->sc_dev.dv_xname, preg);
835 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
836 			    PCI_PMCSR_STATE_D0);
837 		}
838 	}
839 
840 	/*
841 	 * Map and establish our interrupt.
842 	 */
843 	if (pci_intr_map(pa, &ih)) {
844 		aprint_error("%s: unable to map interrupt\n",
845 		    sc->sc_dev.dv_xname);
846 		return;
847 	}
848 	intrstr = pci_intr_string(pc, ih);
849 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
850 	if (sc->sc_ih == NULL) {
851 		aprint_error("%s: unable to establish interrupt",
852 		    sc->sc_dev.dv_xname);
853 		if (intrstr != NULL)
854 			aprint_normal(" at %s", intrstr);
855 		aprint_normal("\n");
856 		return;
857 	}
858 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
859 
860 	/*
861 	 * Determine a few things about the bus we're connected to.
862 	 */
863 	if (sc->sc_type < WM_T_82543) {
864 		/* We don't really know the bus characteristics here. */
865 		sc->sc_bus_speed = 33;
866 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
867 		/*
868 		 * CSA (Communication Streaming Architecture) is about as fast
869 		 * a 32-bit 66MHz PCI Bus.
870 		 */
871 		sc->sc_flags |= WM_F_CSA;
872 		sc->sc_bus_speed = 66;
873 		aprint_verbose("%s: Communication Streaming Architecture\n",
874 		    sc->sc_dev.dv_xname);
875 		if (sc->sc_type == WM_T_82547) {
876 			callout_init(&sc->sc_txfifo_ch);
877 			callout_setfunc(&sc->sc_txfifo_ch,
878 					wm_82547_txfifo_stall, sc);
879 			aprint_verbose("%s: using 82547 Tx FIFO stall "
880 				       "work-around\n", sc->sc_dev.dv_xname);
881 		}
882 	} else {
883 		reg = CSR_READ(sc, WMREG_STATUS);
884 		if (reg & STATUS_BUS64)
885 			sc->sc_flags |= WM_F_BUS64;
886 		if (sc->sc_type >= WM_T_82544 &&
887 		    (reg & STATUS_PCIX_MODE) != 0) {
888 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
889 
890 			sc->sc_flags |= WM_F_PCIX;
891 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
892 					       PCI_CAP_PCIX,
893 					       &sc->sc_pcix_offset, NULL) == 0)
894 				aprint_error("%s: unable to find PCIX "
895 				    "capability\n", sc->sc_dev.dv_xname);
896 			else if (sc->sc_type != WM_T_82545_3 &&
897 				 sc->sc_type != WM_T_82546_3) {
898 				/*
899 				 * Work around a problem caused by the BIOS
900 				 * setting the max memory read byte count
901 				 * incorrectly.
902 				 */
903 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
904 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
905 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
906 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
907 
908 				bytecnt =
909 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
910 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
911 				maxb =
912 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
913 				    PCI_PCIX_STATUS_MAXB_SHIFT;
914 				if (bytecnt > maxb) {
915 					aprint_verbose("%s: resetting PCI-X "
916 					    "MMRBC: %d -> %d\n",
917 					    sc->sc_dev.dv_xname,
918 					    512 << bytecnt, 512 << maxb);
919 					pcix_cmd = (pcix_cmd &
920 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
921 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
922 					pci_conf_write(pa->pa_pc, pa->pa_tag,
923 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
924 					    pcix_cmd);
925 				}
926 			}
927 		}
928 		/*
929 		 * The quad port adapter is special; it has a PCIX-PCIX
930 		 * bridge on the board, and can run the secondary bus at
931 		 * a higher speed.
932 		 */
933 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
934 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
935 								      : 66;
936 		} else if (sc->sc_flags & WM_F_PCIX) {
937 			switch (reg & STATUS_PCIXSPD_MASK) {
938 			case STATUS_PCIXSPD_50_66:
939 				sc->sc_bus_speed = 66;
940 				break;
941 			case STATUS_PCIXSPD_66_100:
942 				sc->sc_bus_speed = 100;
943 				break;
944 			case STATUS_PCIXSPD_100_133:
945 				sc->sc_bus_speed = 133;
946 				break;
947 			default:
948 				aprint_error(
949 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
950 				    sc->sc_dev.dv_xname,
951 				    reg & STATUS_PCIXSPD_MASK);
952 				sc->sc_bus_speed = 66;
953 			}
954 		} else
955 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
956 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
957 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
958 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
959 	}
960 
961 	/*
962 	 * Allocate the control data structures, and create and load the
963 	 * DMA map for it.
964 	 *
965 	 * NOTE: All Tx descriptors must be in the same 4G segment of
966 	 * memory.  So must Rx descriptors.  We simplify by allocating
967 	 * both sets within the same 4G segment.
968 	 */
969 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
970 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
971 	cdata_size = sc->sc_type < WM_T_82544 ?
972 	    sizeof(struct wm_control_data_82542) :
973 	    sizeof(struct wm_control_data_82544);
974 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
975 				      (bus_size_t) 0x100000000ULL,
976 				      &seg, 1, &rseg, 0)) != 0) {
977 		aprint_error(
978 		    "%s: unable to allocate control data, error = %d\n",
979 		    sc->sc_dev.dv_xname, error);
980 		goto fail_0;
981 	}
982 
983 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
984 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
985 		aprint_error("%s: unable to map control data, error = %d\n",
986 		    sc->sc_dev.dv_xname, error);
987 		goto fail_1;
988 	}
989 
990 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
991 				       0, 0, &sc->sc_cddmamap)) != 0) {
992 		aprint_error("%s: unable to create control data DMA map, "
993 		    "error = %d\n", sc->sc_dev.dv_xname, error);
994 		goto fail_2;
995 	}
996 
997 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
998 				     sc->sc_control_data, cdata_size, NULL,
999 				     0)) != 0) {
1000 		aprint_error(
1001 		    "%s: unable to load control data DMA map, error = %d\n",
1002 		    sc->sc_dev.dv_xname, error);
1003 		goto fail_3;
1004 	}
1005 
1006 
1007 	/*
1008 	 * Create the transmit buffer DMA maps.
1009 	 */
1010 	WM_TXQUEUELEN(sc) =
1011 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1012 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1013 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1014 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1015 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1016 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1017 			aprint_error("%s: unable to create Tx DMA map %d, "
1018 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1019 			goto fail_4;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * Create the receive buffer DMA maps.
1025 	 */
1026 	for (i = 0; i < WM_NRXDESC; i++) {
1027 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1028 					       MCLBYTES, 0, 0,
1029 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1030 			aprint_error("%s: unable to create Rx DMA map %d, "
1031 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1032 			goto fail_5;
1033 		}
1034 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1035 	}
1036 
1037 	/*
1038 	 * Reset the chip to a known state.
1039 	 */
1040 	wm_reset(sc);
1041 
1042 	/*
1043 	 * Get some information about the EEPROM.
1044 	 */
1045 	if (sc->sc_type >= WM_T_82540)
1046 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1047 	if (sc->sc_type <= WM_T_82544)
1048 		sc->sc_ee_addrbits = 6;
1049 	else if (sc->sc_type <= WM_T_82546_3) {
1050 		reg = CSR_READ(sc, WMREG_EECD);
1051 		if (reg & EECD_EE_SIZE)
1052 			sc->sc_ee_addrbits = 8;
1053 		else
1054 			sc->sc_ee_addrbits = 6;
1055 	} else if (sc->sc_type <= WM_T_82547_2) {
1056 		reg = CSR_READ(sc, WMREG_EECD);
1057 		if (reg & EECD_EE_TYPE) {
1058 			sc->sc_flags |= WM_F_EEPROM_SPI;
1059 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1060 		} else
1061 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1062 	} else {
1063 		/* Assume everything else is SPI. */
1064 		reg = CSR_READ(sc, WMREG_EECD);
1065 		sc->sc_flags |= WM_F_EEPROM_SPI;
1066 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1067 	}
1068 	if (sc->sc_flags & WM_F_EEPROM_SPI)
1069 		eetype = "SPI";
1070 	else
1071 		eetype = "MicroWire";
1072 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1073 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1074 	    sc->sc_ee_addrbits, eetype);
1075 
1076 	/*
1077 	 * Read the Ethernet address from the EEPROM.
1078 	 */
1079 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1080 	    sizeof(myea) / sizeof(myea[0]), myea)) {
1081 		aprint_error("%s: unable to read Ethernet address\n",
1082 		    sc->sc_dev.dv_xname);
1083 		return;
1084 	}
1085 	enaddr[0] = myea[0] & 0xff;
1086 	enaddr[1] = myea[0] >> 8;
1087 	enaddr[2] = myea[1] & 0xff;
1088 	enaddr[3] = myea[1] >> 8;
1089 	enaddr[4] = myea[2] & 0xff;
1090 	enaddr[5] = myea[2] >> 8;
1091 
1092 	/*
1093 	 * Toggle the LSB of the MAC address on the second port
1094 	 * of the i82546.
1095 	 */
1096 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1097 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1098 			enaddr[5] ^= 1;
1099 	}
1100 
1101 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1102 	    ether_sprintf(enaddr));
1103 
1104 	/*
1105 	 * Read the config info from the EEPROM, and set up various
1106 	 * bits in the control registers based on their contents.
1107 	 */
1108 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1109 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
1110 		    sc->sc_dev.dv_xname);
1111 		return;
1112 	}
1113 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1114 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
1115 		    sc->sc_dev.dv_xname);
1116 		return;
1117 	}
1118 	if (sc->sc_type >= WM_T_82544) {
1119 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1120 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1121 			    sc->sc_dev.dv_xname);
1122 			return;
1123 		}
1124 	}
1125 
1126 	if (cfg1 & EEPROM_CFG1_ILOS)
1127 		sc->sc_ctrl |= CTRL_ILOS;
1128 	if (sc->sc_type >= WM_T_82544) {
1129 		sc->sc_ctrl |=
1130 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1131 		    CTRL_SWDPIO_SHIFT;
1132 		sc->sc_ctrl |=
1133 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1134 		    CTRL_SWDPINS_SHIFT;
1135 	} else {
1136 		sc->sc_ctrl |=
1137 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1138 		    CTRL_SWDPIO_SHIFT;
1139 	}
1140 
1141 #if 0
1142 	if (sc->sc_type >= WM_T_82544) {
1143 		if (cfg1 & EEPROM_CFG1_IPS0)
1144 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1145 		if (cfg1 & EEPROM_CFG1_IPS1)
1146 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1147 		sc->sc_ctrl_ext |=
1148 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1149 		    CTRL_EXT_SWDPIO_SHIFT;
1150 		sc->sc_ctrl_ext |=
1151 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1152 		    CTRL_EXT_SWDPINS_SHIFT;
1153 	} else {
1154 		sc->sc_ctrl_ext |=
1155 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1156 		    CTRL_EXT_SWDPIO_SHIFT;
1157 	}
1158 #endif
1159 
1160 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1161 #if 0
1162 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1163 #endif
1164 
1165 	/*
1166 	 * Set up some register offsets that are different between
1167 	 * the i82542 and the i82543 and later chips.
1168 	 */
1169 	if (sc->sc_type < WM_T_82543) {
1170 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
1171 		sc->sc_tdt_reg = WMREG_OLD_TDT;
1172 	} else {
1173 		sc->sc_rdt_reg = WMREG_RDT;
1174 		sc->sc_tdt_reg = WMREG_TDT;
1175 	}
1176 
1177 	/*
1178 	 * Determine if we're TBI or GMII mode, and initialize the
1179 	 * media structures accordingly.
1180 	 */
1181 	if (sc->sc_type < WM_T_82543 ||
1182 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1183 		if (wmp->wmp_flags & WMP_F_1000T)
1184 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1185 			    "product!\n", sc->sc_dev.dv_xname);
1186 		wm_tbi_mediainit(sc);
1187 	} else {
1188 		if (wmp->wmp_flags & WMP_F_1000X)
1189 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1190 			    "product!\n", sc->sc_dev.dv_xname);
1191 		wm_gmii_mediainit(sc);
1192 	}
1193 
1194 	ifp = &sc->sc_ethercom.ec_if;
1195 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1196 	ifp->if_softc = sc;
1197 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1198 	ifp->if_ioctl = wm_ioctl;
1199 	ifp->if_start = wm_start;
1200 	ifp->if_watchdog = wm_watchdog;
1201 	ifp->if_init = wm_init;
1202 	ifp->if_stop = wm_stop;
1203 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1204 	IFQ_SET_READY(&ifp->if_snd);
1205 
1206 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1207 
1208 	/*
1209 	 * If we're a i82543 or greater, we can support VLANs.
1210 	 */
1211 	if (sc->sc_type >= WM_T_82543)
1212 		sc->sc_ethercom.ec_capabilities |=
1213 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1214 
1215 	/*
1216 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
1217 	 * on i82543 and later.
1218 	 */
1219 	if (sc->sc_type >= WM_T_82543)
1220 		ifp->if_capabilities |=
1221 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1222 
1223 	/*
1224 	 * If we're a i82544 or greater (except i82547), we can do
1225 	 * TCP segmentation offload.
1226 	 */
1227 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1228 		ifp->if_capabilities |= IFCAP_TSOv4;
1229 
1230 	/*
1231 	 * Attach the interface.
1232 	 */
1233 	if_attach(ifp);
1234 	ether_ifattach(ifp, enaddr);
1235 #if NRND > 0
1236 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1237 	    RND_TYPE_NET, 0);
1238 #endif
1239 
1240 #ifdef WM_EVENT_COUNTERS
1241 	/* Attach event counters. */
1242 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1243 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1244 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1245 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1246 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1247 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1248 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1249 	    NULL, sc->sc_dev.dv_xname, "txdw");
1250 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1251 	    NULL, sc->sc_dev.dv_xname, "txqe");
1252 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1253 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1254 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1255 	    NULL, sc->sc_dev.dv_xname, "linkintr");
1256 
1257 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1258 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1259 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1260 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
1261 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1262 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1263 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1264 	    NULL, sc->sc_dev.dv_xname, "txtusum");
1265 
1266 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1267 	    NULL, sc->sc_dev.dv_xname, "txtso");
1268 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1269 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
1270 
1271 	for (i = 0; i < WM_NTXSEGS; i++) {
1272 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1273 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1274 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1275 	}
1276 
1277 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1278 	    NULL, sc->sc_dev.dv_xname, "txdrop");
1279 
1280 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1281 	    NULL, sc->sc_dev.dv_xname, "tu");
1282 
1283 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1284 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
1285 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1286 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
1287 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1288 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
1289 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1290 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
1291 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1292 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
1293 #endif /* WM_EVENT_COUNTERS */
1294 
1295 	/*
1296 	 * Make sure the interface is shutdown during reboot.
1297 	 */
1298 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1299 	if (sc->sc_sdhook == NULL)
1300 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1301 		    sc->sc_dev.dv_xname);
1302 	return;
1303 
1304 	/*
1305 	 * Free any resources we've allocated during the failed attach
1306 	 * attempt.  Do this in reverse order and fall through.
1307 	 */
1308  fail_5:
1309 	for (i = 0; i < WM_NRXDESC; i++) {
1310 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1311 			bus_dmamap_destroy(sc->sc_dmat,
1312 			    sc->sc_rxsoft[i].rxs_dmamap);
1313 	}
1314  fail_4:
1315 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1316 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1317 			bus_dmamap_destroy(sc->sc_dmat,
1318 			    sc->sc_txsoft[i].txs_dmamap);
1319 	}
1320 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1321  fail_3:
1322 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1323  fail_2:
1324 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1325 	    cdata_size);
1326  fail_1:
1327 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1328  fail_0:
1329 	return;
1330 }
1331 
1332 /*
1333  * wm_shutdown:
1334  *
1335  *	Make sure the interface is stopped at reboot time.
1336  */
1337 static void
1338 wm_shutdown(void *arg)
1339 {
1340 	struct wm_softc *sc = arg;
1341 
1342 	wm_stop(&sc->sc_ethercom.ec_if, 1);
1343 }
1344 
1345 /*
1346  * wm_tx_offload:
1347  *
1348  *	Set up TCP/IP checksumming parameters for the
1349  *	specified packet.
1350  */
1351 static int
1352 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1353     uint8_t *fieldsp)
1354 {
1355 	struct mbuf *m0 = txs->txs_mbuf;
1356 	struct livengood_tcpip_ctxdesc *t;
1357 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
1358 	struct ether_header *eh;
1359 	int offset, iphl;
1360 	uint8_t fields;
1361 
1362 	/*
1363 	 * XXX It would be nice if the mbuf pkthdr had offset
1364 	 * fields for the protocol headers.
1365 	 */
1366 
1367 	eh = mtod(m0, struct ether_header *);
1368 	switch (htons(eh->ether_type)) {
1369 	case ETHERTYPE_IP:
1370 		offset = ETHER_HDR_LEN;
1371 		break;
1372 
1373 	case ETHERTYPE_VLAN:
1374 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1375 		break;
1376 
1377 	default:
1378 		/*
1379 		 * Don't support this protocol or encapsulation.
1380 		 */
1381 		*fieldsp = 0;
1382 		*cmdp = 0;
1383 		return (0);
1384 	}
1385 
1386 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1387 
1388 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1389 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1390 	seg = 0;
1391 	fields = 0;
1392 
1393 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1394 		int hlen = offset + iphl;
1395 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
1396 		if (__predict_false(m0->m_len <
1397 				    (hlen + sizeof(struct tcphdr)))) {
1398 			/*
1399 			 * TCP/IP headers are not in the first mbuf; we need
1400 			 * to do this the slow and painful way.  Let's just
1401 			 * hope this doesn't happen very often.
1402 			 */
1403 			struct ip ip;
1404 			struct tcphdr th;
1405 
1406 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1407 
1408 			m_copydata(m0, offset, sizeof(ip), &ip);
1409 			m_copydata(m0, hlen, sizeof(th), &th);
1410 
1411 			ip.ip_len = 0;
1412 
1413 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1414 			    sizeof(ip.ip_len), &ip.ip_len);
1415 
1416 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1417 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1418 
1419 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1420 			    sizeof(th.th_sum), &th.th_sum);
1421 
1422 			hlen += th.th_off << 2;
1423 		} else {
1424 			/*
1425 			 * TCP/IP headers are in the first mbuf; we can do
1426 			 * this the easy way.
1427 			 */
1428 			struct ip *ip =
1429 			    (struct ip *) (mtod(m0, caddr_t) + offset);
1430 			struct tcphdr *th =
1431 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1432 
1433 			ip->ip_len = 0;
1434 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1435 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1436 
1437 			hlen += th->th_off << 2;
1438 		}
1439 
1440 		cmd |= WTX_TCPIP_CMD_TSE;
1441 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1442 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1443 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1444 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1445 	}
1446 
1447 	/*
1448 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1449 	 * offload feature, if we load the context descriptor, we
1450 	 * MUST provide valid values for IPCSS and TUCSS fields.
1451 	 */
1452 
1453 	ipcs = WTX_TCPIP_IPCSS(offset) |
1454 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1455 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
1456 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1457 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1458 		fields |= WTX_IXSM;
1459 	}
1460 
1461 	offset += iphl;
1462 
1463 	if (m0->m_pkthdr.csum_flags &
1464 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1465 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1466 		fields |= WTX_TXSM;
1467 		tucs = WTX_TCPIP_TUCSS(offset) |
1468 		   WTX_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1469 		   WTX_TCPIP_TUCSE(0) /* rest of packet */;
1470 	} else {
1471 		/* Just initialize it to a valid TCP context. */
1472 		tucs = WTX_TCPIP_TUCSS(offset) |
1473 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1474 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
1475 	}
1476 
1477 	/* Fill in the context descriptor. */
1478 	t = (struct livengood_tcpip_ctxdesc *)
1479 	    &sc->sc_txdescs[sc->sc_txnext];
1480 	t->tcpip_ipcs = htole32(ipcs);
1481 	t->tcpip_tucs = htole32(tucs);
1482 	t->tcpip_cmdlen = htole32(cmdlen);
1483 	t->tcpip_seg = htole32(seg);
1484 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1485 
1486 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1487 	txs->txs_ndesc++;
1488 
1489 	*cmdp = cmd;
1490 	*fieldsp = fields;
1491 
1492 	return (0);
1493 }
1494 
1495 static void
1496 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1497 {
1498 	struct mbuf *m;
1499 	int i;
1500 
1501 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1502 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1503 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1504 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1505 		    m->m_data, m->m_len, m->m_flags);
1506 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1507 	    i, i == 1 ? "" : "s");
1508 }
1509 
1510 /*
1511  * wm_82547_txfifo_stall:
1512  *
1513  *	Callout used to wait for the 82547 Tx FIFO to drain,
1514  *	reset the FIFO pointers, and restart packet transmission.
1515  */
1516 static void
1517 wm_82547_txfifo_stall(void *arg)
1518 {
1519 	struct wm_softc *sc = arg;
1520 	int s;
1521 
1522 	s = splnet();
1523 
1524 	if (sc->sc_txfifo_stall) {
1525 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1526 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1527 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1528 			/*
1529 			 * Packets have drained.  Stop transmitter, reset
1530 			 * FIFO pointers, restart transmitter, and kick
1531 			 * the packet queue.
1532 			 */
1533 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1534 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1535 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1536 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1537 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1538 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1539 			CSR_WRITE(sc, WMREG_TCTL, tctl);
1540 			CSR_WRITE_FLUSH(sc);
1541 
1542 			sc->sc_txfifo_head = 0;
1543 			sc->sc_txfifo_stall = 0;
1544 			wm_start(&sc->sc_ethercom.ec_if);
1545 		} else {
1546 			/*
1547 			 * Still waiting for packets to drain; try again in
1548 			 * another tick.
1549 			 */
1550 			callout_schedule(&sc->sc_txfifo_ch, 1);
1551 		}
1552 	}
1553 
1554 	splx(s);
1555 }
1556 
1557 /*
1558  * wm_82547_txfifo_bugchk:
1559  *
1560  *	Check for bug condition in the 82547 Tx FIFO.  We need to
1561  *	prevent enqueueing a packet that would wrap around the end
1562  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
1563  *
1564  *	We do this by checking the amount of space before the end
1565  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
1566  *	the Tx FIFO, wait for all remaining packets to drain, reset
1567  *	the internal FIFO pointers to the beginning, and restart
1568  *	transmission on the interface.
1569  */
1570 #define	WM_FIFO_HDR		0x10
1571 #define	WM_82547_PAD_LEN	0x3e0
1572 static int
1573 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1574 {
1575 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1576 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1577 
1578 	/* Just return if already stalled. */
1579 	if (sc->sc_txfifo_stall)
1580 		return (1);
1581 
1582 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1583 		/* Stall only occurs in half-duplex mode. */
1584 		goto send_packet;
1585 	}
1586 
1587 	if (len >= WM_82547_PAD_LEN + space) {
1588 		sc->sc_txfifo_stall = 1;
1589 		callout_schedule(&sc->sc_txfifo_ch, 1);
1590 		return (1);
1591 	}
1592 
1593  send_packet:
1594 	sc->sc_txfifo_head += len;
1595 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1596 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
1597 
1598 	return (0);
1599 }
1600 
1601 /*
1602  * wm_start:		[ifnet interface function]
1603  *
1604  *	Start packet transmission on the interface.
1605  */
1606 static void
1607 wm_start(struct ifnet *ifp)
1608 {
1609 	struct wm_softc *sc = ifp->if_softc;
1610 	struct mbuf *m0;
1611 #if 0 /* XXXJRT */
1612 	struct m_tag *mtag;
1613 #endif
1614 	struct wm_txsoft *txs;
1615 	bus_dmamap_t dmamap;
1616 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1617 	bus_addr_t curaddr;
1618 	bus_size_t seglen, curlen;
1619 	uint32_t cksumcmd;
1620 	uint8_t cksumfields;
1621 
1622 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1623 		return;
1624 
1625 	/*
1626 	 * Remember the previous number of free descriptors.
1627 	 */
1628 	ofree = sc->sc_txfree;
1629 
1630 	/*
1631 	 * Loop through the send queue, setting up transmit descriptors
1632 	 * until we drain the queue, or use up all available transmit
1633 	 * descriptors.
1634 	 */
1635 	for (;;) {
1636 		/* Grab a packet off the queue. */
1637 		IFQ_POLL(&ifp->if_snd, m0);
1638 		if (m0 == NULL)
1639 			break;
1640 
1641 		DPRINTF(WM_DEBUG_TX,
1642 		    ("%s: TX: have packet to transmit: %p\n",
1643 		    sc->sc_dev.dv_xname, m0));
1644 
1645 		/* Get a work queue entry. */
1646 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1647 			wm_txintr(sc);
1648 			if (sc->sc_txsfree == 0) {
1649 				DPRINTF(WM_DEBUG_TX,
1650 				    ("%s: TX: no free job descriptors\n",
1651 					sc->sc_dev.dv_xname));
1652 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1653 				break;
1654 			}
1655 		}
1656 
1657 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1658 		dmamap = txs->txs_dmamap;
1659 
1660 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1661 
1662 		/*
1663 		 * So says the Linux driver:
1664 		 * The controller does a simple calculation to make sure
1665 		 * there is enough room in the FIFO before initiating the
1666 		 * DMA for each buffer.  The calc is:
1667 		 *	4 = ceil(buffer len / MSS)
1668 		 * To make sure we don't overrun the FIFO, adjust the max
1669 		 * buffer len if the MSS drops.
1670 		 */
1671 		dmamap->dm_maxsegsz =
1672 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1673 		    ? m0->m_pkthdr.segsz << 2
1674 		    : WTX_MAX_LEN;
1675 
1676 		/*
1677 		 * Load the DMA map.  If this fails, the packet either
1678 		 * didn't fit in the allotted number of segments, or we
1679 		 * were short on resources.  For the too-many-segments
1680 		 * case, we simply report an error and drop the packet,
1681 		 * since we can't sanely copy a jumbo packet to a single
1682 		 * buffer.
1683 		 */
1684 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1685 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1686 		if (error) {
1687 			if (error == EFBIG) {
1688 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1689 				log(LOG_ERR, "%s: Tx packet consumes too many "
1690 				    "DMA segments, dropping...\n",
1691 				    sc->sc_dev.dv_xname);
1692 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1693 				wm_dump_mbuf_chain(sc, m0);
1694 				m_freem(m0);
1695 				continue;
1696 			}
1697 			/*
1698 			 * Short on resources, just stop for now.
1699 			 */
1700 			DPRINTF(WM_DEBUG_TX,
1701 			    ("%s: TX: dmamap load failed: %d\n",
1702 			    sc->sc_dev.dv_xname, error));
1703 			break;
1704 		}
1705 
1706 		segs_needed = dmamap->dm_nsegs;
1707 		if (use_tso) {
1708 			/* For sentinel descriptor; see below. */
1709 			segs_needed++;
1710 		}
1711 
1712 		/*
1713 		 * Ensure we have enough descriptors free to describe
1714 		 * the packet.  Note, we always reserve one descriptor
1715 		 * at the end of the ring due to the semantics of the
1716 		 * TDT register, plus one more in the event we need
1717 		 * to load offload context.
1718 		 */
1719 		if (segs_needed > sc->sc_txfree - 2) {
1720 			/*
1721 			 * Not enough free descriptors to transmit this
1722 			 * packet.  We haven't committed anything yet,
1723 			 * so just unload the DMA map, put the packet
1724 			 * pack on the queue, and punt.  Notify the upper
1725 			 * layer that there are no more slots left.
1726 			 */
1727 			DPRINTF(WM_DEBUG_TX,
1728 			    ("%s: TX: need %d (%) descriptors, have %d\n",
1729 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1730 			    sc->sc_txfree - 1));
1731 			ifp->if_flags |= IFF_OACTIVE;
1732 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1733 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1734 			break;
1735 		}
1736 
1737 		/*
1738 		 * Check for 82547 Tx FIFO bug.  We need to do this
1739 		 * once we know we can transmit the packet, since we
1740 		 * do some internal FIFO space accounting here.
1741 		 */
1742 		if (sc->sc_type == WM_T_82547 &&
1743 		    wm_82547_txfifo_bugchk(sc, m0)) {
1744 			DPRINTF(WM_DEBUG_TX,
1745 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
1746 			    sc->sc_dev.dv_xname));
1747 			ifp->if_flags |= IFF_OACTIVE;
1748 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1749 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1750 			break;
1751 		}
1752 
1753 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1754 
1755 		/*
1756 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1757 		 */
1758 
1759 		DPRINTF(WM_DEBUG_TX,
1760 		    ("%s: TX: packet has %d (%d) DMA segments\n",
1761 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1762 
1763 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1764 
1765 		/*
1766 		 * Store a pointer to the packet so that we can free it
1767 		 * later.
1768 		 *
1769 		 * Initially, we consider the number of descriptors the
1770 		 * packet uses the number of DMA segments.  This may be
1771 		 * incremented by 1 if we do checksum offload (a descriptor
1772 		 * is used to set the checksum context).
1773 		 */
1774 		txs->txs_mbuf = m0;
1775 		txs->txs_firstdesc = sc->sc_txnext;
1776 		txs->txs_ndesc = segs_needed;
1777 
1778 		/* Set up offload parameters for this packet. */
1779 		if (m0->m_pkthdr.csum_flags &
1780 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1781 			if (wm_tx_offload(sc, txs, &cksumcmd,
1782 					  &cksumfields) != 0) {
1783 				/* Error message already displayed. */
1784 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1785 				continue;
1786 			}
1787 		} else {
1788 			cksumcmd = 0;
1789 			cksumfields = 0;
1790 		}
1791 
1792 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1793 
1794 		/* Sync the DMA map. */
1795 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1796 		    BUS_DMASYNC_PREWRITE);
1797 
1798 		/*
1799 		 * Initialize the transmit descriptor.
1800 		 */
1801 		for (nexttx = sc->sc_txnext, seg = 0;
1802 		     seg < dmamap->dm_nsegs; seg++) {
1803 			for (seglen = dmamap->dm_segs[seg].ds_len,
1804 			     curaddr = dmamap->dm_segs[seg].ds_addr;
1805 			     seglen != 0;
1806 			     curaddr += curlen, seglen -= curlen,
1807 			     nexttx = WM_NEXTTX(sc, nexttx)) {
1808 				curlen = seglen;
1809 
1810 				/*
1811 				 * So says the Linux driver:
1812 				 * Work around for premature descriptor
1813 				 * write-backs in TSO mode.  Append a
1814 				 * 4-byte sentinel descriptor.
1815 				 */
1816 				if (use_tso &&
1817 				    seg == dmamap->dm_nsegs - 1 &&
1818 				    curlen > 8)
1819 					curlen -= 4;
1820 
1821 				wm_set_dma_addr(
1822 				    &sc->sc_txdescs[nexttx].wtx_addr,
1823 				    curaddr);
1824 				sc->sc_txdescs[nexttx].wtx_cmdlen =
1825 				    htole32(cksumcmd | curlen);
1826 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1827 				    0;
1828 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1829 				    cksumfields;
1830 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1831 				lasttx = nexttx;
1832 
1833 				DPRINTF(WM_DEBUG_TX,
1834 				    ("%s: TX: desc %d: low 0x%08x, "
1835 				     "len 0x%04x\n",
1836 				    sc->sc_dev.dv_xname, nexttx,
1837 				    curaddr & 0xffffffffU, curlen, curlen));
1838 			}
1839 		}
1840 
1841 		KASSERT(lasttx != -1);
1842 
1843 		/*
1844 		 * Set up the command byte on the last descriptor of
1845 		 * the packet.  If we're in the interrupt delay window,
1846 		 * delay the interrupt.
1847 		 */
1848 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
1849 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
1850 
1851 #if 0 /* XXXJRT */
1852 		/*
1853 		 * If VLANs are enabled and the packet has a VLAN tag, set
1854 		 * up the descriptor to encapsulate the packet for us.
1855 		 *
1856 		 * This is only valid on the last descriptor of the packet.
1857 		 */
1858 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1859 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
1860 			    htole32(WTX_CMD_VLE);
1861 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1862 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1863 		}
1864 #endif /* XXXJRT */
1865 
1866 		txs->txs_lastdesc = lasttx;
1867 
1868 		DPRINTF(WM_DEBUG_TX,
1869 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1870 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1871 
1872 		/* Sync the descriptors we're using. */
1873 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1874 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1875 
1876 		/* Give the packet to the chip. */
1877 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1878 
1879 		DPRINTF(WM_DEBUG_TX,
1880 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1881 
1882 		DPRINTF(WM_DEBUG_TX,
1883 		    ("%s: TX: finished transmitting packet, job %d\n",
1884 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
1885 
1886 		/* Advance the tx pointer. */
1887 		sc->sc_txfree -= txs->txs_ndesc;
1888 		sc->sc_txnext = nexttx;
1889 
1890 		sc->sc_txsfree--;
1891 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1892 
1893 #if NBPFILTER > 0
1894 		/* Pass the packet to any BPF listeners. */
1895 		if (ifp->if_bpf)
1896 			bpf_mtap(ifp->if_bpf, m0);
1897 #endif /* NBPFILTER > 0 */
1898 	}
1899 
1900 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1901 		/* No more slots; notify upper layer. */
1902 		ifp->if_flags |= IFF_OACTIVE;
1903 	}
1904 
1905 	if (sc->sc_txfree != ofree) {
1906 		/* Set a watchdog timer in case the chip flakes out. */
1907 		ifp->if_timer = 5;
1908 	}
1909 }
1910 
1911 /*
1912  * wm_watchdog:		[ifnet interface function]
1913  *
1914  *	Watchdog timer handler.
1915  */
1916 static void
1917 wm_watchdog(struct ifnet *ifp)
1918 {
1919 	struct wm_softc *sc = ifp->if_softc;
1920 
1921 	/*
1922 	 * Since we're using delayed interrupts, sweep up
1923 	 * before we report an error.
1924 	 */
1925 	wm_txintr(sc);
1926 
1927 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
1928 		log(LOG_ERR,
1929 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1930 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1931 		    sc->sc_txnext);
1932 		ifp->if_oerrors++;
1933 
1934 		/* Reset the interface. */
1935 		(void) wm_init(ifp);
1936 	}
1937 
1938 	/* Try to get more packets going. */
1939 	wm_start(ifp);
1940 }
1941 
1942 /*
1943  * wm_ioctl:		[ifnet interface function]
1944  *
1945  *	Handle control requests from the operator.
1946  */
1947 static int
1948 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1949 {
1950 	struct wm_softc *sc = ifp->if_softc;
1951 	struct ifreq *ifr = (struct ifreq *) data;
1952 	int s, error;
1953 
1954 	s = splnet();
1955 
1956 	switch (cmd) {
1957 	case SIOCSIFMEDIA:
1958 	case SIOCGIFMEDIA:
1959 		/* Flow control requires full-duplex mode. */
1960 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1961 		    (ifr->ifr_media & IFM_FDX) == 0)
1962 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1963 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1964 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1965 				/* We can do both TXPAUSE and RXPAUSE. */
1966 				ifr->ifr_media |=
1967 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1968 			}
1969 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1970 		}
1971 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1972 		break;
1973 	default:
1974 		error = ether_ioctl(ifp, cmd, data);
1975 		if (error == ENETRESET) {
1976 			/*
1977 			 * Multicast list has changed; set the hardware filter
1978 			 * accordingly.
1979 			 */
1980 			if (ifp->if_flags & IFF_RUNNING)
1981 				wm_set_filter(sc);
1982 			error = 0;
1983 		}
1984 		break;
1985 	}
1986 
1987 	/* Try to get more packets going. */
1988 	wm_start(ifp);
1989 
1990 	splx(s);
1991 	return (error);
1992 }
1993 
1994 /*
1995  * wm_intr:
1996  *
1997  *	Interrupt service routine.
1998  */
1999 static int
2000 wm_intr(void *arg)
2001 {
2002 	struct wm_softc *sc = arg;
2003 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2004 	uint32_t icr;
2005 	int wantinit, handled = 0;
2006 
2007 	for (wantinit = 0; wantinit == 0;) {
2008 		icr = CSR_READ(sc, WMREG_ICR);
2009 		if ((icr & sc->sc_icr) == 0)
2010 			break;
2011 
2012 #if 0 /*NRND > 0*/
2013 		if (RND_ENABLED(&sc->rnd_source))
2014 			rnd_add_uint32(&sc->rnd_source, icr);
2015 #endif
2016 
2017 		handled = 1;
2018 
2019 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2020 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2021 			DPRINTF(WM_DEBUG_RX,
2022 			    ("%s: RX: got Rx intr 0x%08x\n",
2023 			    sc->sc_dev.dv_xname,
2024 			    icr & (ICR_RXDMT0|ICR_RXT0)));
2025 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2026 		}
2027 #endif
2028 		wm_rxintr(sc);
2029 
2030 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2031 		if (icr & ICR_TXDW) {
2032 			DPRINTF(WM_DEBUG_TX,
2033 			    ("%s: TX: got TXDW interrupt\n",
2034 			    sc->sc_dev.dv_xname));
2035 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
2036 		}
2037 #endif
2038 		wm_txintr(sc);
2039 
2040 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2041 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2042 			wm_linkintr(sc, icr);
2043 		}
2044 
2045 		if (icr & ICR_RXO) {
2046 			log(LOG_WARNING, "%s: Receive overrun\n",
2047 			    sc->sc_dev.dv_xname);
2048 			wantinit = 1;
2049 		}
2050 	}
2051 
2052 	if (handled) {
2053 		if (wantinit)
2054 			wm_init(ifp);
2055 
2056 		/* Try to get more packets going. */
2057 		wm_start(ifp);
2058 	}
2059 
2060 	return (handled);
2061 }
2062 
2063 /*
2064  * wm_txintr:
2065  *
2066  *	Helper; handle transmit interrupts.
2067  */
2068 static void
2069 wm_txintr(struct wm_softc *sc)
2070 {
2071 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2072 	struct wm_txsoft *txs;
2073 	uint8_t status;
2074 	int i;
2075 
2076 	ifp->if_flags &= ~IFF_OACTIVE;
2077 
2078 	/*
2079 	 * Go through the Tx list and free mbufs for those
2080 	 * frames which have been transmitted.
2081 	 */
2082 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2083 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2084 		txs = &sc->sc_txsoft[i];
2085 
2086 		DPRINTF(WM_DEBUG_TX,
2087 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2088 
2089 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2090 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2091 
2092 		status =
2093 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2094 		if ((status & WTX_ST_DD) == 0) {
2095 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2096 			    BUS_DMASYNC_PREREAD);
2097 			break;
2098 		}
2099 
2100 		DPRINTF(WM_DEBUG_TX,
2101 		    ("%s: TX: job %d done: descs %d..%d\n",
2102 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2103 		    txs->txs_lastdesc));
2104 
2105 		/*
2106 		 * XXX We should probably be using the statistics
2107 		 * XXX registers, but I don't know if they exist
2108 		 * XXX on chips before the i82544.
2109 		 */
2110 
2111 #ifdef WM_EVENT_COUNTERS
2112 		if (status & WTX_ST_TU)
2113 			WM_EVCNT_INCR(&sc->sc_ev_tu);
2114 #endif /* WM_EVENT_COUNTERS */
2115 
2116 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
2117 			ifp->if_oerrors++;
2118 			if (status & WTX_ST_LC)
2119 				log(LOG_WARNING, "%s: late collision\n",
2120 				    sc->sc_dev.dv_xname);
2121 			else if (status & WTX_ST_EC) {
2122 				ifp->if_collisions += 16;
2123 				log(LOG_WARNING, "%s: excessive collisions\n",
2124 				    sc->sc_dev.dv_xname);
2125 			}
2126 		} else
2127 			ifp->if_opackets++;
2128 
2129 		sc->sc_txfree += txs->txs_ndesc;
2130 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2131 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2132 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2133 		m_freem(txs->txs_mbuf);
2134 		txs->txs_mbuf = NULL;
2135 	}
2136 
2137 	/* Update the dirty transmit buffer pointer. */
2138 	sc->sc_txsdirty = i;
2139 	DPRINTF(WM_DEBUG_TX,
2140 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2141 
2142 	/*
2143 	 * If there are no more pending transmissions, cancel the watchdog
2144 	 * timer.
2145 	 */
2146 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2147 		ifp->if_timer = 0;
2148 }
2149 
2150 /*
2151  * wm_rxintr:
2152  *
2153  *	Helper; handle receive interrupts.
2154  */
2155 static void
2156 wm_rxintr(struct wm_softc *sc)
2157 {
2158 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2159 	struct wm_rxsoft *rxs;
2160 	struct mbuf *m;
2161 	int i, len;
2162 	uint8_t status, errors;
2163 
2164 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2165 		rxs = &sc->sc_rxsoft[i];
2166 
2167 		DPRINTF(WM_DEBUG_RX,
2168 		    ("%s: RX: checking descriptor %d\n",
2169 		    sc->sc_dev.dv_xname, i));
2170 
2171 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2172 
2173 		status = sc->sc_rxdescs[i].wrx_status;
2174 		errors = sc->sc_rxdescs[i].wrx_errors;
2175 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
2176 
2177 		if ((status & WRX_ST_DD) == 0) {
2178 			/*
2179 			 * We have processed all of the receive descriptors.
2180 			 */
2181 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2182 			break;
2183 		}
2184 
2185 		if (__predict_false(sc->sc_rxdiscard)) {
2186 			DPRINTF(WM_DEBUG_RX,
2187 			    ("%s: RX: discarding contents of descriptor %d\n",
2188 			    sc->sc_dev.dv_xname, i));
2189 			WM_INIT_RXDESC(sc, i);
2190 			if (status & WRX_ST_EOP) {
2191 				/* Reset our state. */
2192 				DPRINTF(WM_DEBUG_RX,
2193 				    ("%s: RX: resetting rxdiscard -> 0\n",
2194 				    sc->sc_dev.dv_xname));
2195 				sc->sc_rxdiscard = 0;
2196 			}
2197 			continue;
2198 		}
2199 
2200 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2201 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2202 
2203 		m = rxs->rxs_mbuf;
2204 
2205 		/*
2206 		 * Add a new receive buffer to the ring.
2207 		 */
2208 		if (wm_add_rxbuf(sc, i) != 0) {
2209 			/*
2210 			 * Failed, throw away what we've done so
2211 			 * far, and discard the rest of the packet.
2212 			 */
2213 			ifp->if_ierrors++;
2214 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2215 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2216 			WM_INIT_RXDESC(sc, i);
2217 			if ((status & WRX_ST_EOP) == 0)
2218 				sc->sc_rxdiscard = 1;
2219 			if (sc->sc_rxhead != NULL)
2220 				m_freem(sc->sc_rxhead);
2221 			WM_RXCHAIN_RESET(sc);
2222 			DPRINTF(WM_DEBUG_RX,
2223 			    ("%s: RX: Rx buffer allocation failed, "
2224 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
2225 			    sc->sc_rxdiscard ? " (discard)" : ""));
2226 			continue;
2227 		}
2228 
2229 		WM_RXCHAIN_LINK(sc, m);
2230 
2231 		m->m_len = len;
2232 
2233 		DPRINTF(WM_DEBUG_RX,
2234 		    ("%s: RX: buffer at %p len %d\n",
2235 		    sc->sc_dev.dv_xname, m->m_data, len));
2236 
2237 		/*
2238 		 * If this is not the end of the packet, keep
2239 		 * looking.
2240 		 */
2241 		if ((status & WRX_ST_EOP) == 0) {
2242 			sc->sc_rxlen += len;
2243 			DPRINTF(WM_DEBUG_RX,
2244 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
2245 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
2246 			continue;
2247 		}
2248 
2249 		/*
2250 		 * Okay, we have the entire packet now.  The chip is
2251 		 * configured to include the FCS (not all chips can
2252 		 * be configured to strip it), so we need to trim it.
2253 		 */
2254 		m->m_len -= ETHER_CRC_LEN;
2255 
2256 		*sc->sc_rxtailp = NULL;
2257 		m = sc->sc_rxhead;
2258 		len = m->m_len + sc->sc_rxlen;
2259 
2260 		WM_RXCHAIN_RESET(sc);
2261 
2262 		DPRINTF(WM_DEBUG_RX,
2263 		    ("%s: RX: have entire packet, len -> %d\n",
2264 		    sc->sc_dev.dv_xname, len));
2265 
2266 		/*
2267 		 * If an error occurred, update stats and drop the packet.
2268 		 */
2269 		if (errors &
2270 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2271 			ifp->if_ierrors++;
2272 			if (errors & WRX_ER_SE)
2273 				log(LOG_WARNING, "%s: symbol error\n",
2274 				    sc->sc_dev.dv_xname);
2275 			else if (errors & WRX_ER_SEQ)
2276 				log(LOG_WARNING, "%s: receive sequence error\n",
2277 				    sc->sc_dev.dv_xname);
2278 			else if (errors & WRX_ER_CE)
2279 				log(LOG_WARNING, "%s: CRC error\n",
2280 				    sc->sc_dev.dv_xname);
2281 			m_freem(m);
2282 			continue;
2283 		}
2284 
2285 		/*
2286 		 * No errors.  Receive the packet.
2287 		 */
2288 		m->m_pkthdr.rcvif = ifp;
2289 		m->m_pkthdr.len = len;
2290 
2291 #if 0 /* XXXJRT */
2292 		/*
2293 		 * If VLANs are enabled, VLAN packets have been unwrapped
2294 		 * for us.  Associate the tag with the packet.
2295 		 */
2296 		if ((status & WRX_ST_VP) != 0) {
2297 			VLAN_INPUT_TAG(ifp, m,
2298 			    le16toh(sc->sc_rxdescs[i].wrx_special,
2299 			    continue);
2300 		}
2301 #endif /* XXXJRT */
2302 
2303 		/*
2304 		 * Set up checksum info for this packet.
2305 		 */
2306 		if (status & WRX_ST_IPCS) {
2307 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2308 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2309 			if (errors & WRX_ER_IPE)
2310 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2311 		}
2312 		if (status & WRX_ST_TCPCS) {
2313 			/*
2314 			 * Note: we don't know if this was TCP or UDP,
2315 			 * so we just set both bits, and expect the
2316 			 * upper layers to deal.
2317 			 */
2318 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2319 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2320 			if (errors & WRX_ER_TCPE)
2321 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2322 		}
2323 
2324 		ifp->if_ipackets++;
2325 
2326 #if NBPFILTER > 0
2327 		/* Pass this up to any BPF listeners. */
2328 		if (ifp->if_bpf)
2329 			bpf_mtap(ifp->if_bpf, m);
2330 #endif /* NBPFILTER > 0 */
2331 
2332 		/* Pass it on. */
2333 		(*ifp->if_input)(ifp, m);
2334 	}
2335 
2336 	/* Update the receive pointer. */
2337 	sc->sc_rxptr = i;
2338 
2339 	DPRINTF(WM_DEBUG_RX,
2340 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2341 }
2342 
2343 /*
2344  * wm_linkintr:
2345  *
2346  *	Helper; handle link interrupts.
2347  */
2348 static void
2349 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2350 {
2351 	uint32_t status;
2352 
2353 	/*
2354 	 * If we get a link status interrupt on a 1000BASE-T
2355 	 * device, just fall into the normal MII tick path.
2356 	 */
2357 	if (sc->sc_flags & WM_F_HAS_MII) {
2358 		if (icr & ICR_LSC) {
2359 			DPRINTF(WM_DEBUG_LINK,
2360 			    ("%s: LINK: LSC -> mii_tick\n",
2361 			    sc->sc_dev.dv_xname));
2362 			mii_tick(&sc->sc_mii);
2363 		} else if (icr & ICR_RXSEQ) {
2364 			DPRINTF(WM_DEBUG_LINK,
2365 			    ("%s: LINK Receive sequence error\n",
2366 			    sc->sc_dev.dv_xname));
2367 		}
2368 		return;
2369 	}
2370 
2371 	/*
2372 	 * If we are now receiving /C/, check for link again in
2373 	 * a couple of link clock ticks.
2374 	 */
2375 	if (icr & ICR_RXCFG) {
2376 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2377 		    sc->sc_dev.dv_xname));
2378 		sc->sc_tbi_anstate = 2;
2379 	}
2380 
2381 	if (icr & ICR_LSC) {
2382 		status = CSR_READ(sc, WMREG_STATUS);
2383 		if (status & STATUS_LU) {
2384 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2385 			    sc->sc_dev.dv_xname,
2386 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2387 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2388 			sc->sc_fcrtl &= ~FCRTL_XONE;
2389 			if (status & STATUS_FD)
2390 				sc->sc_tctl |=
2391 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2392 			else
2393 				sc->sc_tctl |=
2394 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2395 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2396 				sc->sc_fcrtl |= FCRTL_XONE;
2397 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2398 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2399 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
2400 				      sc->sc_fcrtl);
2401 			sc->sc_tbi_linkup = 1;
2402 		} else {
2403 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2404 			    sc->sc_dev.dv_xname));
2405 			sc->sc_tbi_linkup = 0;
2406 		}
2407 		sc->sc_tbi_anstate = 2;
2408 		wm_tbi_set_linkled(sc);
2409 	} else if (icr & ICR_RXSEQ) {
2410 		DPRINTF(WM_DEBUG_LINK,
2411 		    ("%s: LINK: Receive sequence error\n",
2412 		    sc->sc_dev.dv_xname));
2413 	}
2414 }
2415 
2416 /*
2417  * wm_tick:
2418  *
2419  *	One second timer, used to check link status, sweep up
2420  *	completed transmit jobs, etc.
2421  */
2422 static void
2423 wm_tick(void *arg)
2424 {
2425 	struct wm_softc *sc = arg;
2426 	int s;
2427 
2428 	s = splnet();
2429 
2430 	if (sc->sc_type >= WM_T_82542_2_1) {
2431 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2432 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2433 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2434 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2435 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2436 	}
2437 
2438 	if (sc->sc_flags & WM_F_HAS_MII)
2439 		mii_tick(&sc->sc_mii);
2440 	else
2441 		wm_tbi_check_link(sc);
2442 
2443 	splx(s);
2444 
2445 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2446 }
2447 
2448 /*
2449  * wm_reset:
2450  *
2451  *	Reset the i82542 chip.
2452  */
2453 static void
2454 wm_reset(struct wm_softc *sc)
2455 {
2456 	int i;
2457 
2458 	/*
2459 	 * Allocate on-chip memory according to the MTU size.
2460 	 * The Packet Buffer Allocation register must be written
2461 	 * before the chip is reset.
2462 	 */
2463 	if (sc->sc_type < WM_T_82547) {
2464 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2465 		    PBA_40K : PBA_48K;
2466 	} else {
2467 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2468 		    PBA_22K : PBA_30K;
2469 		sc->sc_txfifo_head = 0;
2470 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2471 		sc->sc_txfifo_size =
2472 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2473 		sc->sc_txfifo_stall = 0;
2474 	}
2475 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2476 
2477 	switch (sc->sc_type) {
2478 	case WM_T_82544:
2479 	case WM_T_82540:
2480 	case WM_T_82545:
2481 	case WM_T_82546:
2482 	case WM_T_82541:
2483 	case WM_T_82541_2:
2484 		/*
2485 		 * On some chipsets, a reset through a memory-mapped write
2486 		 * cycle can cause the chip to reset before completing the
2487 		 * write cycle.  This causes major headache that can be
2488 		 * avoided by issuing the reset via indirect register writes
2489 		 * through I/O space.
2490 		 *
2491 		 * So, if we successfully mapped the I/O BAR at attach time,
2492 		 * use that.  Otherwise, try our luck with a memory-mapped
2493 		 * reset.
2494 		 */
2495 		if (sc->sc_flags & WM_F_IOH_VALID)
2496 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2497 		else
2498 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2499 		break;
2500 
2501 	case WM_T_82545_3:
2502 	case WM_T_82546_3:
2503 		/* Use the shadow control register on these chips. */
2504 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2505 		break;
2506 
2507 	default:
2508 		/* Everything else can safely use the documented method. */
2509 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2510 		break;
2511 	}
2512 	delay(10000);
2513 
2514 	for (i = 0; i < 1000; i++) {
2515 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2516 			return;
2517 		delay(20);
2518 	}
2519 
2520 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2521 		log(LOG_ERR, "%s: reset failed to complete\n",
2522 		    sc->sc_dev.dv_xname);
2523 }
2524 
2525 /*
2526  * wm_init:		[ifnet interface function]
2527  *
2528  *	Initialize the interface.  Must be called at splnet().
2529  */
2530 static int
2531 wm_init(struct ifnet *ifp)
2532 {
2533 	struct wm_softc *sc = ifp->if_softc;
2534 	struct wm_rxsoft *rxs;
2535 	int i, error = 0;
2536 	uint32_t reg;
2537 
2538 	/*
2539 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2540 	 * There is a small but measurable benefit to avoiding the adjusment
2541 	 * of the descriptor so that the headers are aligned, for normal mtu,
2542 	 * on such platforms.  One possibility is that the DMA itself is
2543 	 * slightly more efficient if the front of the entire packet (instead
2544 	 * of the front of the headers) is aligned.
2545 	 *
2546 	 * Note we must always set align_tweak to 0 if we are using
2547 	 * jumbo frames.
2548 	 */
2549 #ifdef __NO_STRICT_ALIGNMENT
2550 	sc->sc_align_tweak = 0;
2551 #else
2552 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2553 		sc->sc_align_tweak = 0;
2554 	else
2555 		sc->sc_align_tweak = 2;
2556 #endif /* __NO_STRICT_ALIGNMENT */
2557 
2558 	/* Cancel any pending I/O. */
2559 	wm_stop(ifp, 0);
2560 
2561 	/* Reset the chip to a known state. */
2562 	wm_reset(sc);
2563 
2564 	/* Initialize the transmit descriptor ring. */
2565 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2566 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2567 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2568 	sc->sc_txfree = WM_NTXDESC(sc);
2569 	sc->sc_txnext = 0;
2570 
2571 	if (sc->sc_type < WM_T_82543) {
2572 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2573 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2574 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2575 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2576 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2577 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2578 	} else {
2579 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2580 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2581 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2582 		CSR_WRITE(sc, WMREG_TDH, 0);
2583 		CSR_WRITE(sc, WMREG_TDT, 0);
2584 		CSR_WRITE(sc, WMREG_TIDV, 64);
2585 		CSR_WRITE(sc, WMREG_TADV, 128);
2586 
2587 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2588 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2589 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2590 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2591 	}
2592 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2593 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2594 
2595 	/* Initialize the transmit job descriptors. */
2596 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2597 		sc->sc_txsoft[i].txs_mbuf = NULL;
2598 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
2599 	sc->sc_txsnext = 0;
2600 	sc->sc_txsdirty = 0;
2601 
2602 	/*
2603 	 * Initialize the receive descriptor and receive job
2604 	 * descriptor rings.
2605 	 */
2606 	if (sc->sc_type < WM_T_82543) {
2607 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2608 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2609 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2610 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2611 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2612 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2613 
2614 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2615 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2616 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2617 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2618 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2619 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2620 	} else {
2621 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2622 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2623 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2624 		CSR_WRITE(sc, WMREG_RDH, 0);
2625 		CSR_WRITE(sc, WMREG_RDT, 0);
2626 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2627 		CSR_WRITE(sc, WMREG_RADV, 128);
2628 	}
2629 	for (i = 0; i < WM_NRXDESC; i++) {
2630 		rxs = &sc->sc_rxsoft[i];
2631 		if (rxs->rxs_mbuf == NULL) {
2632 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2633 				log(LOG_ERR, "%s: unable to allocate or map rx "
2634 				    "buffer %d, error = %d\n",
2635 				    sc->sc_dev.dv_xname, i, error);
2636 				/*
2637 				 * XXX Should attempt to run with fewer receive
2638 				 * XXX buffers instead of just failing.
2639 				 */
2640 				wm_rxdrain(sc);
2641 				goto out;
2642 			}
2643 		} else
2644 			WM_INIT_RXDESC(sc, i);
2645 	}
2646 	sc->sc_rxptr = 0;
2647 	sc->sc_rxdiscard = 0;
2648 	WM_RXCHAIN_RESET(sc);
2649 
2650 	/*
2651 	 * Clear out the VLAN table -- we don't use it (yet).
2652 	 */
2653 	CSR_WRITE(sc, WMREG_VET, 0);
2654 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2655 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2656 
2657 	/*
2658 	 * Set up flow-control parameters.
2659 	 *
2660 	 * XXX Values could probably stand some tuning.
2661 	 */
2662 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2663 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2664 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2665 
2666 	sc->sc_fcrtl = FCRTL_DFLT;
2667 	if (sc->sc_type < WM_T_82543) {
2668 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2669 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2670 	} else {
2671 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2672 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2673 	}
2674 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2675 
2676 #if 0 /* XXXJRT */
2677 	/* Deal with VLAN enables. */
2678 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2679 		sc->sc_ctrl |= CTRL_VME;
2680 	else
2681 #endif /* XXXJRT */
2682 		sc->sc_ctrl &= ~CTRL_VME;
2683 
2684 	/* Write the control registers. */
2685 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2686 #if 0
2687 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2688 #endif
2689 
2690 	/*
2691 	 * Set up checksum offload parameters.
2692 	 */
2693 	reg = CSR_READ(sc, WMREG_RXCSUM);
2694 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2695 		reg |= RXCSUM_IPOFL;
2696 	else
2697 		reg &= ~RXCSUM_IPOFL;
2698 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2699 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2700 	else {
2701 		reg &= ~RXCSUM_TUOFL;
2702 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2703 			reg &= ~RXCSUM_IPOFL;
2704 	}
2705 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2706 
2707 	/*
2708 	 * Set up the interrupt registers.
2709 	 */
2710 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2711 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2712 	    ICR_RXO | ICR_RXT0;
2713 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2714 		sc->sc_icr |= ICR_RXCFG;
2715 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2716 
2717 	/* Set up the inter-packet gap. */
2718 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2719 
2720 	if (sc->sc_type >= WM_T_82543) {
2721 		/* Set up the interrupt throttling register (units of 256ns) */
2722 		sc->sc_itr = 1000000000 / (7000 * 256);
2723 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2724 	}
2725 
2726 #if 0 /* XXXJRT */
2727 	/* Set the VLAN ethernetype. */
2728 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2729 #endif
2730 
2731 	/*
2732 	 * Set up the transmit control register; we start out with
2733 	 * a collision distance suitable for FDX, but update it whe
2734 	 * we resolve the media type.
2735 	 */
2736 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2737 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2738 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2739 
2740 	/* Set the media. */
2741 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2742 
2743 	/*
2744 	 * Set up the receive control register; we actually program
2745 	 * the register when we set the receive filter.  Use multicast
2746 	 * address offset type 0.
2747 	 *
2748 	 * Only the i82544 has the ability to strip the incoming
2749 	 * CRC, so we don't enable that feature.
2750 	 */
2751 	sc->sc_mchash_type = 0;
2752 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2753 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2754 
2755 	if(MCLBYTES == 2048) {
2756 		sc->sc_rctl |= RCTL_2k;
2757 	} else {
2758 		if(sc->sc_type >= WM_T_82543) {
2759 			switch(MCLBYTES) {
2760 			case 4096:
2761 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2762 				break;
2763 			case 8192:
2764 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2765 				break;
2766 			case 16384:
2767 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2768 				break;
2769 			default:
2770 				panic("wm_init: MCLBYTES %d unsupported",
2771 				    MCLBYTES);
2772 				break;
2773 			}
2774 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
2775 	}
2776 
2777 	/* Set the receive filter. */
2778 	wm_set_filter(sc);
2779 
2780 	/* Start the one second link check clock. */
2781 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2782 
2783 	/* ...all done! */
2784 	ifp->if_flags |= IFF_RUNNING;
2785 	ifp->if_flags &= ~IFF_OACTIVE;
2786 
2787  out:
2788 	if (error)
2789 		log(LOG_ERR, "%s: interface not running\n",
2790 		    sc->sc_dev.dv_xname);
2791 	return (error);
2792 }
2793 
2794 /*
2795  * wm_rxdrain:
2796  *
2797  *	Drain the receive queue.
2798  */
2799 static void
2800 wm_rxdrain(struct wm_softc *sc)
2801 {
2802 	struct wm_rxsoft *rxs;
2803 	int i;
2804 
2805 	for (i = 0; i < WM_NRXDESC; i++) {
2806 		rxs = &sc->sc_rxsoft[i];
2807 		if (rxs->rxs_mbuf != NULL) {
2808 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2809 			m_freem(rxs->rxs_mbuf);
2810 			rxs->rxs_mbuf = NULL;
2811 		}
2812 	}
2813 }
2814 
2815 /*
2816  * wm_stop:		[ifnet interface function]
2817  *
2818  *	Stop transmission on the interface.
2819  */
2820 static void
2821 wm_stop(struct ifnet *ifp, int disable)
2822 {
2823 	struct wm_softc *sc = ifp->if_softc;
2824 	struct wm_txsoft *txs;
2825 	int i;
2826 
2827 	/* Stop the one second clock. */
2828 	callout_stop(&sc->sc_tick_ch);
2829 
2830 	/* Stop the 82547 Tx FIFO stall check timer. */
2831 	if (sc->sc_type == WM_T_82547)
2832 		callout_stop(&sc->sc_txfifo_ch);
2833 
2834 	if (sc->sc_flags & WM_F_HAS_MII) {
2835 		/* Down the MII. */
2836 		mii_down(&sc->sc_mii);
2837 	}
2838 
2839 	/* Stop the transmit and receive processes. */
2840 	CSR_WRITE(sc, WMREG_TCTL, 0);
2841 	CSR_WRITE(sc, WMREG_RCTL, 0);
2842 
2843 	/* Release any queued transmit buffers. */
2844 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2845 		txs = &sc->sc_txsoft[i];
2846 		if (txs->txs_mbuf != NULL) {
2847 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2848 			m_freem(txs->txs_mbuf);
2849 			txs->txs_mbuf = NULL;
2850 		}
2851 	}
2852 
2853 	if (disable)
2854 		wm_rxdrain(sc);
2855 
2856 	/* Mark the interface as down and cancel the watchdog timer. */
2857 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2858 	ifp->if_timer = 0;
2859 }
2860 
2861 /*
2862  * wm_acquire_eeprom:
2863  *
2864  *	Perform the EEPROM handshake required on some chips.
2865  */
2866 static int
2867 wm_acquire_eeprom(struct wm_softc *sc)
2868 {
2869 	uint32_t reg;
2870 	int x;
2871 
2872 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
2873 		reg = CSR_READ(sc, WMREG_EECD);
2874 
2875 		/* Request EEPROM access. */
2876 		reg |= EECD_EE_REQ;
2877 		CSR_WRITE(sc, WMREG_EECD, reg);
2878 
2879 		/* ..and wait for it to be granted. */
2880 		for (x = 0; x < 100; x++) {
2881 			reg = CSR_READ(sc, WMREG_EECD);
2882 			if (reg & EECD_EE_GNT)
2883 				break;
2884 			delay(5);
2885 		}
2886 		if ((reg & EECD_EE_GNT) == 0) {
2887 			aprint_error("%s: could not acquire EEPROM GNT\n",
2888 			    sc->sc_dev.dv_xname);
2889 			reg &= ~EECD_EE_REQ;
2890 			CSR_WRITE(sc, WMREG_EECD, reg);
2891 			return (1);
2892 		}
2893 	}
2894 
2895 	return (0);
2896 }
2897 
2898 /*
2899  * wm_release_eeprom:
2900  *
2901  *	Release the EEPROM mutex.
2902  */
2903 static void
2904 wm_release_eeprom(struct wm_softc *sc)
2905 {
2906 	uint32_t reg;
2907 
2908 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2909 		reg = CSR_READ(sc, WMREG_EECD);
2910 		reg &= ~EECD_EE_REQ;
2911 		CSR_WRITE(sc, WMREG_EECD, reg);
2912 	}
2913 }
2914 
2915 /*
2916  * wm_eeprom_sendbits:
2917  *
2918  *	Send a series of bits to the EEPROM.
2919  */
2920 static void
2921 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2922 {
2923 	uint32_t reg;
2924 	int x;
2925 
2926 	reg = CSR_READ(sc, WMREG_EECD);
2927 
2928 	for (x = nbits; x > 0; x--) {
2929 		if (bits & (1U << (x - 1)))
2930 			reg |= EECD_DI;
2931 		else
2932 			reg &= ~EECD_DI;
2933 		CSR_WRITE(sc, WMREG_EECD, reg);
2934 		delay(2);
2935 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2936 		delay(2);
2937 		CSR_WRITE(sc, WMREG_EECD, reg);
2938 		delay(2);
2939 	}
2940 }
2941 
2942 /*
2943  * wm_eeprom_recvbits:
2944  *
2945  *	Receive a series of bits from the EEPROM.
2946  */
2947 static void
2948 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2949 {
2950 	uint32_t reg, val;
2951 	int x;
2952 
2953 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2954 
2955 	val = 0;
2956 	for (x = nbits; x > 0; x--) {
2957 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2958 		delay(2);
2959 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2960 			val |= (1U << (x - 1));
2961 		CSR_WRITE(sc, WMREG_EECD, reg);
2962 		delay(2);
2963 	}
2964 	*valp = val;
2965 }
2966 
2967 /*
2968  * wm_read_eeprom_uwire:
2969  *
2970  *	Read a word from the EEPROM using the MicroWire protocol.
2971  */
2972 static int
2973 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2974 {
2975 	uint32_t reg, val;
2976 	int i;
2977 
2978 	for (i = 0; i < wordcnt; i++) {
2979 		/* Clear SK and DI. */
2980 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2981 		CSR_WRITE(sc, WMREG_EECD, reg);
2982 
2983 		/* Set CHIP SELECT. */
2984 		reg |= EECD_CS;
2985 		CSR_WRITE(sc, WMREG_EECD, reg);
2986 		delay(2);
2987 
2988 		/* Shift in the READ command. */
2989 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2990 
2991 		/* Shift in address. */
2992 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2993 
2994 		/* Shift out the data. */
2995 		wm_eeprom_recvbits(sc, &val, 16);
2996 		data[i] = val & 0xffff;
2997 
2998 		/* Clear CHIP SELECT. */
2999 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3000 		CSR_WRITE(sc, WMREG_EECD, reg);
3001 		delay(2);
3002 	}
3003 
3004 	return (0);
3005 }
3006 
3007 /*
3008  * wm_spi_eeprom_ready:
3009  *
3010  *	Wait for a SPI EEPROM to be ready for commands.
3011  */
3012 static int
3013 wm_spi_eeprom_ready(struct wm_softc *sc)
3014 {
3015 	uint32_t val;
3016 	int usec;
3017 
3018 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3019 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3020 		wm_eeprom_recvbits(sc, &val, 8);
3021 		if ((val & SPI_SR_RDY) == 0)
3022 			break;
3023 	}
3024 	if (usec >= SPI_MAX_RETRIES) {
3025 		aprint_error("%s: EEPROM failed to become ready\n",
3026 		    sc->sc_dev.dv_xname);
3027 		return (1);
3028 	}
3029 	return (0);
3030 }
3031 
3032 /*
3033  * wm_read_eeprom_spi:
3034  *
3035  *	Read a work from the EEPROM using the SPI protocol.
3036  */
3037 static int
3038 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3039 {
3040 	uint32_t reg, val;
3041 	int i;
3042 	uint8_t opc;
3043 
3044 	/* Clear SK and CS. */
3045 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3046 	CSR_WRITE(sc, WMREG_EECD, reg);
3047 	delay(2);
3048 
3049 	if (wm_spi_eeprom_ready(sc))
3050 		return (1);
3051 
3052 	/* Toggle CS to flush commands. */
3053 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3054 	delay(2);
3055 	CSR_WRITE(sc, WMREG_EECD, reg);
3056 	delay(2);
3057 
3058 	opc = SPI_OPC_READ;
3059 	if (sc->sc_ee_addrbits == 8 && word >= 128)
3060 		opc |= SPI_OPC_A8;
3061 
3062 	wm_eeprom_sendbits(sc, opc, 8);
3063 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3064 
3065 	for (i = 0; i < wordcnt; i++) {
3066 		wm_eeprom_recvbits(sc, &val, 16);
3067 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3068 	}
3069 
3070 	/* Raise CS and clear SK. */
3071 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3072 	CSR_WRITE(sc, WMREG_EECD, reg);
3073 	delay(2);
3074 
3075 	return (0);
3076 }
3077 
3078 /*
3079  * wm_read_eeprom:
3080  *
3081  *	Read data from the serial EEPROM.
3082  */
3083 static int
3084 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3085 {
3086 	int rv;
3087 
3088 	if (wm_acquire_eeprom(sc))
3089 		return (1);
3090 
3091 	if (sc->sc_flags & WM_F_EEPROM_SPI)
3092 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3093 	else
3094 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3095 
3096 	wm_release_eeprom(sc);
3097 	return (rv);
3098 }
3099 
3100 /*
3101  * wm_add_rxbuf:
3102  *
3103  *	Add a receive buffer to the indiciated descriptor.
3104  */
3105 static int
3106 wm_add_rxbuf(struct wm_softc *sc, int idx)
3107 {
3108 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3109 	struct mbuf *m;
3110 	int error;
3111 
3112 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3113 	if (m == NULL)
3114 		return (ENOBUFS);
3115 
3116 	MCLGET(m, M_DONTWAIT);
3117 	if ((m->m_flags & M_EXT) == 0) {
3118 		m_freem(m);
3119 		return (ENOBUFS);
3120 	}
3121 
3122 	if (rxs->rxs_mbuf != NULL)
3123 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3124 
3125 	rxs->rxs_mbuf = m;
3126 
3127 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3128 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3129 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3130 	if (error) {
3131 		/* XXX XXX XXX */
3132 		printf("%s: unable to load rx DMA map %d, error = %d\n",
3133 		    sc->sc_dev.dv_xname, idx, error);
3134 		panic("wm_add_rxbuf");
3135 	}
3136 
3137 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3138 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3139 
3140 	WM_INIT_RXDESC(sc, idx);
3141 
3142 	return (0);
3143 }
3144 
3145 /*
3146  * wm_set_ral:
3147  *
3148  *	Set an entery in the receive address list.
3149  */
3150 static void
3151 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3152 {
3153 	uint32_t ral_lo, ral_hi;
3154 
3155 	if (enaddr != NULL) {
3156 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3157 		    (enaddr[3] << 24);
3158 		ral_hi = enaddr[4] | (enaddr[5] << 8);
3159 		ral_hi |= RAL_AV;
3160 	} else {
3161 		ral_lo = 0;
3162 		ral_hi = 0;
3163 	}
3164 
3165 	if (sc->sc_type >= WM_T_82544) {
3166 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3167 		    ral_lo);
3168 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3169 		    ral_hi);
3170 	} else {
3171 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3172 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3173 	}
3174 }
3175 
3176 /*
3177  * wm_mchash:
3178  *
3179  *	Compute the hash of the multicast address for the 4096-bit
3180  *	multicast filter.
3181  */
3182 static uint32_t
3183 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3184 {
3185 	static const int lo_shift[4] = { 4, 3, 2, 0 };
3186 	static const int hi_shift[4] = { 4, 5, 6, 8 };
3187 	uint32_t hash;
3188 
3189 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3190 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3191 
3192 	return (hash & 0xfff);
3193 }
3194 
3195 /*
3196  * wm_set_filter:
3197  *
3198  *	Set up the receive filter.
3199  */
3200 static void
3201 wm_set_filter(struct wm_softc *sc)
3202 {
3203 	struct ethercom *ec = &sc->sc_ethercom;
3204 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3205 	struct ether_multi *enm;
3206 	struct ether_multistep step;
3207 	bus_addr_t mta_reg;
3208 	uint32_t hash, reg, bit;
3209 	int i;
3210 
3211 	if (sc->sc_type >= WM_T_82544)
3212 		mta_reg = WMREG_CORDOVA_MTA;
3213 	else
3214 		mta_reg = WMREG_MTA;
3215 
3216 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3217 
3218 	if (ifp->if_flags & IFF_BROADCAST)
3219 		sc->sc_rctl |= RCTL_BAM;
3220 	if (ifp->if_flags & IFF_PROMISC) {
3221 		sc->sc_rctl |= RCTL_UPE;
3222 		goto allmulti;
3223 	}
3224 
3225 	/*
3226 	 * Set the station address in the first RAL slot, and
3227 	 * clear the remaining slots.
3228 	 */
3229 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3230 	for (i = 1; i < WM_RAL_TABSIZE; i++)
3231 		wm_set_ral(sc, NULL, i);
3232 
3233 	/* Clear out the multicast table. */
3234 	for (i = 0; i < WM_MC_TABSIZE; i++)
3235 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
3236 
3237 	ETHER_FIRST_MULTI(step, ec, enm);
3238 	while (enm != NULL) {
3239 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3240 			/*
3241 			 * We must listen to a range of multicast addresses.
3242 			 * For now, just accept all multicasts, rather than
3243 			 * trying to set only those filter bits needed to match
3244 			 * the range.  (At this time, the only use of address
3245 			 * ranges is for IP multicast routing, for which the
3246 			 * range is big enough to require all bits set.)
3247 			 */
3248 			goto allmulti;
3249 		}
3250 
3251 		hash = wm_mchash(sc, enm->enm_addrlo);
3252 
3253 		reg = (hash >> 5) & 0x7f;
3254 		bit = hash & 0x1f;
3255 
3256 		hash = CSR_READ(sc, mta_reg + (reg << 2));
3257 		hash |= 1U << bit;
3258 
3259 		/* XXX Hardware bug?? */
3260 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3261 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3262 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3263 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3264 		} else
3265 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3266 
3267 		ETHER_NEXT_MULTI(step, enm);
3268 	}
3269 
3270 	ifp->if_flags &= ~IFF_ALLMULTI;
3271 	goto setit;
3272 
3273  allmulti:
3274 	ifp->if_flags |= IFF_ALLMULTI;
3275 	sc->sc_rctl |= RCTL_MPE;
3276 
3277  setit:
3278 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3279 }
3280 
3281 /*
3282  * wm_tbi_mediainit:
3283  *
3284  *	Initialize media for use on 1000BASE-X devices.
3285  */
3286 static void
3287 wm_tbi_mediainit(struct wm_softc *sc)
3288 {
3289 	const char *sep = "";
3290 
3291 	if (sc->sc_type < WM_T_82543)
3292 		sc->sc_tipg = TIPG_WM_DFLT;
3293 	else
3294 		sc->sc_tipg = TIPG_LG_DFLT;
3295 
3296 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3297 	    wm_tbi_mediastatus);
3298 
3299 	/*
3300 	 * SWD Pins:
3301 	 *
3302 	 *	0 = Link LED (output)
3303 	 *	1 = Loss Of Signal (input)
3304 	 */
3305 	sc->sc_ctrl |= CTRL_SWDPIO(0);
3306 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3307 
3308 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3309 
3310 #define	ADD(ss, mm, dd)							\
3311 do {									\
3312 	aprint_normal("%s%s", sep, ss);					\
3313 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
3314 	sep = ", ";							\
3315 } while (/*CONSTCOND*/0)
3316 
3317 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
3318 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3319 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3320 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3321 	aprint_normal("\n");
3322 
3323 #undef ADD
3324 
3325 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3326 }
3327 
3328 /*
3329  * wm_tbi_mediastatus:	[ifmedia interface function]
3330  *
3331  *	Get the current interface media status on a 1000BASE-X device.
3332  */
3333 static void
3334 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3335 {
3336 	struct wm_softc *sc = ifp->if_softc;
3337 	uint32_t ctrl;
3338 
3339 	ifmr->ifm_status = IFM_AVALID;
3340 	ifmr->ifm_active = IFM_ETHER;
3341 
3342 	if (sc->sc_tbi_linkup == 0) {
3343 		ifmr->ifm_active |= IFM_NONE;
3344 		return;
3345 	}
3346 
3347 	ifmr->ifm_status |= IFM_ACTIVE;
3348 	ifmr->ifm_active |= IFM_1000_SX;
3349 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3350 		ifmr->ifm_active |= IFM_FDX;
3351 	ctrl = CSR_READ(sc, WMREG_CTRL);
3352 	if (ctrl & CTRL_RFCE)
3353 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3354 	if (ctrl & CTRL_TFCE)
3355 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3356 }
3357 
3358 /*
3359  * wm_tbi_mediachange:	[ifmedia interface function]
3360  *
3361  *	Set hardware to newly-selected media on a 1000BASE-X device.
3362  */
3363 static int
3364 wm_tbi_mediachange(struct ifnet *ifp)
3365 {
3366 	struct wm_softc *sc = ifp->if_softc;
3367 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3368 	uint32_t status;
3369 	int i;
3370 
3371 	sc->sc_txcw = ife->ifm_data;
3372 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3373 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3374 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3375 	sc->sc_txcw |= TXCW_ANE;
3376 
3377 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3378 	delay(10000);
3379 
3380 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
3381 
3382 	sc->sc_tbi_anstate = 0;
3383 
3384 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3385 		/* Have signal; wait for the link to come up. */
3386 		for (i = 0; i < 50; i++) {
3387 			delay(10000);
3388 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3389 				break;
3390 		}
3391 
3392 		status = CSR_READ(sc, WMREG_STATUS);
3393 		if (status & STATUS_LU) {
3394 			/* Link is up. */
3395 			DPRINTF(WM_DEBUG_LINK,
3396 			    ("%s: LINK: set media -> link up %s\n",
3397 			    sc->sc_dev.dv_xname,
3398 			    (status & STATUS_FD) ? "FDX" : "HDX"));
3399 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3400 			sc->sc_fcrtl &= ~FCRTL_XONE;
3401 			if (status & STATUS_FD)
3402 				sc->sc_tctl |=
3403 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3404 			else
3405 				sc->sc_tctl |=
3406 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3407 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3408 				sc->sc_fcrtl |= FCRTL_XONE;
3409 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3410 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3411 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
3412 				      sc->sc_fcrtl);
3413 			sc->sc_tbi_linkup = 1;
3414 		} else {
3415 			/* Link is down. */
3416 			DPRINTF(WM_DEBUG_LINK,
3417 			    ("%s: LINK: set media -> link down\n",
3418 			    sc->sc_dev.dv_xname));
3419 			sc->sc_tbi_linkup = 0;
3420 		}
3421 	} else {
3422 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3423 		    sc->sc_dev.dv_xname));
3424 		sc->sc_tbi_linkup = 0;
3425 	}
3426 
3427 	wm_tbi_set_linkled(sc);
3428 
3429 	return (0);
3430 }
3431 
3432 /*
3433  * wm_tbi_set_linkled:
3434  *
3435  *	Update the link LED on 1000BASE-X devices.
3436  */
3437 static void
3438 wm_tbi_set_linkled(struct wm_softc *sc)
3439 {
3440 
3441 	if (sc->sc_tbi_linkup)
3442 		sc->sc_ctrl |= CTRL_SWDPIN(0);
3443 	else
3444 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3445 
3446 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3447 }
3448 
3449 /*
3450  * wm_tbi_check_link:
3451  *
3452  *	Check the link on 1000BASE-X devices.
3453  */
3454 static void
3455 wm_tbi_check_link(struct wm_softc *sc)
3456 {
3457 	uint32_t rxcw, ctrl, status;
3458 
3459 	if (sc->sc_tbi_anstate == 0)
3460 		return;
3461 	else if (sc->sc_tbi_anstate > 1) {
3462 		DPRINTF(WM_DEBUG_LINK,
3463 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3464 		    sc->sc_tbi_anstate));
3465 		sc->sc_tbi_anstate--;
3466 		return;
3467 	}
3468 
3469 	sc->sc_tbi_anstate = 0;
3470 
3471 	rxcw = CSR_READ(sc, WMREG_RXCW);
3472 	ctrl = CSR_READ(sc, WMREG_CTRL);
3473 	status = CSR_READ(sc, WMREG_STATUS);
3474 
3475 	if ((status & STATUS_LU) == 0) {
3476 		DPRINTF(WM_DEBUG_LINK,
3477 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3478 		sc->sc_tbi_linkup = 0;
3479 	} else {
3480 		DPRINTF(WM_DEBUG_LINK,
3481 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3482 		    (status & STATUS_FD) ? "FDX" : "HDX"));
3483 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3484 		sc->sc_fcrtl &= ~FCRTL_XONE;
3485 		if (status & STATUS_FD)
3486 			sc->sc_tctl |=
3487 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3488 		else
3489 			sc->sc_tctl |=
3490 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3491 		if (ctrl & CTRL_TFCE)
3492 			sc->sc_fcrtl |= FCRTL_XONE;
3493 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3494 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3495 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
3496 			      sc->sc_fcrtl);
3497 		sc->sc_tbi_linkup = 1;
3498 	}
3499 
3500 	wm_tbi_set_linkled(sc);
3501 }
3502 
3503 /*
3504  * wm_gmii_reset:
3505  *
3506  *	Reset the PHY.
3507  */
3508 static void
3509 wm_gmii_reset(struct wm_softc *sc)
3510 {
3511 	uint32_t reg;
3512 
3513 	if (sc->sc_type >= WM_T_82544) {
3514 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3515 		delay(20000);
3516 
3517 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3518 		delay(20000);
3519 	} else {
3520 		/* The PHY reset pin is active-low. */
3521 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
3522 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3523 		    CTRL_EXT_SWDPIN(4));
3524 		reg |= CTRL_EXT_SWDPIO(4);
3525 
3526 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3527 		delay(10);
3528 
3529 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3530 		delay(10);
3531 
3532 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3533 		delay(10);
3534 #if 0
3535 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3536 #endif
3537 	}
3538 }
3539 
3540 /*
3541  * wm_gmii_mediainit:
3542  *
3543  *	Initialize media for use on 1000BASE-T devices.
3544  */
3545 static void
3546 wm_gmii_mediainit(struct wm_softc *sc)
3547 {
3548 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3549 
3550 	/* We have MII. */
3551 	sc->sc_flags |= WM_F_HAS_MII;
3552 
3553 	sc->sc_tipg = TIPG_1000T_DFLT;
3554 
3555 	/*
3556 	 * Let the chip set speed/duplex on its own based on
3557 	 * signals from the PHY.
3558 	 */
3559 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3560 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3561 
3562 	/* Initialize our media structures and probe the GMII. */
3563 	sc->sc_mii.mii_ifp = ifp;
3564 
3565 	if (sc->sc_type >= WM_T_82544) {
3566 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3567 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3568 	} else {
3569 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3570 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3571 	}
3572 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
3573 
3574 	wm_gmii_reset(sc);
3575 
3576 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3577 	    wm_gmii_mediastatus);
3578 
3579 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3580 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
3581 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3582 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3583 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3584 	} else
3585 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3586 }
3587 
3588 /*
3589  * wm_gmii_mediastatus:	[ifmedia interface function]
3590  *
3591  *	Get the current interface media status on a 1000BASE-T device.
3592  */
3593 static void
3594 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3595 {
3596 	struct wm_softc *sc = ifp->if_softc;
3597 
3598 	mii_pollstat(&sc->sc_mii);
3599 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3600 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3601 			   sc->sc_flowflags;
3602 }
3603 
3604 /*
3605  * wm_gmii_mediachange:	[ifmedia interface function]
3606  *
3607  *	Set hardware to newly-selected media on a 1000BASE-T device.
3608  */
3609 static int
3610 wm_gmii_mediachange(struct ifnet *ifp)
3611 {
3612 	struct wm_softc *sc = ifp->if_softc;
3613 
3614 	if (ifp->if_flags & IFF_UP)
3615 		mii_mediachg(&sc->sc_mii);
3616 	return (0);
3617 }
3618 
3619 #define	MDI_IO		CTRL_SWDPIN(2)
3620 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
3621 #define	MDI_CLK		CTRL_SWDPIN(3)
3622 
3623 static void
3624 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3625 {
3626 	uint32_t i, v;
3627 
3628 	v = CSR_READ(sc, WMREG_CTRL);
3629 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3630 	v |= MDI_DIR | CTRL_SWDPIO(3);
3631 
3632 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3633 		if (data & i)
3634 			v |= MDI_IO;
3635 		else
3636 			v &= ~MDI_IO;
3637 		CSR_WRITE(sc, WMREG_CTRL, v);
3638 		delay(10);
3639 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3640 		delay(10);
3641 		CSR_WRITE(sc, WMREG_CTRL, v);
3642 		delay(10);
3643 	}
3644 }
3645 
3646 static uint32_t
3647 i82543_mii_recvbits(struct wm_softc *sc)
3648 {
3649 	uint32_t v, i, data = 0;
3650 
3651 	v = CSR_READ(sc, WMREG_CTRL);
3652 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3653 	v |= CTRL_SWDPIO(3);
3654 
3655 	CSR_WRITE(sc, WMREG_CTRL, v);
3656 	delay(10);
3657 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3658 	delay(10);
3659 	CSR_WRITE(sc, WMREG_CTRL, v);
3660 	delay(10);
3661 
3662 	for (i = 0; i < 16; i++) {
3663 		data <<= 1;
3664 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3665 		delay(10);
3666 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3667 			data |= 1;
3668 		CSR_WRITE(sc, WMREG_CTRL, v);
3669 		delay(10);
3670 	}
3671 
3672 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3673 	delay(10);
3674 	CSR_WRITE(sc, WMREG_CTRL, v);
3675 	delay(10);
3676 
3677 	return (data);
3678 }
3679 
3680 #undef MDI_IO
3681 #undef MDI_DIR
3682 #undef MDI_CLK
3683 
3684 /*
3685  * wm_gmii_i82543_readreg:	[mii interface function]
3686  *
3687  *	Read a PHY register on the GMII (i82543 version).
3688  */
3689 static int
3690 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3691 {
3692 	struct wm_softc *sc = (void *) self;
3693 	int rv;
3694 
3695 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3696 	i82543_mii_sendbits(sc, reg | (phy << 5) |
3697 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3698 	rv = i82543_mii_recvbits(sc) & 0xffff;
3699 
3700 	DPRINTF(WM_DEBUG_GMII,
3701 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3702 	    sc->sc_dev.dv_xname, phy, reg, rv));
3703 
3704 	return (rv);
3705 }
3706 
3707 /*
3708  * wm_gmii_i82543_writereg:	[mii interface function]
3709  *
3710  *	Write a PHY register on the GMII (i82543 version).
3711  */
3712 static void
3713 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3714 {
3715 	struct wm_softc *sc = (void *) self;
3716 
3717 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
3718 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3719 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3720 	    (MII_COMMAND_START << 30), 32);
3721 }
3722 
3723 /*
3724  * wm_gmii_i82544_readreg:	[mii interface function]
3725  *
3726  *	Read a PHY register on the GMII.
3727  */
3728 static int
3729 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3730 {
3731 	struct wm_softc *sc = (void *) self;
3732 	uint32_t mdic = 0;
3733 	int i, rv;
3734 
3735 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3736 	    MDIC_REGADD(reg));
3737 
3738 	for (i = 0; i < 100; i++) {
3739 		mdic = CSR_READ(sc, WMREG_MDIC);
3740 		if (mdic & MDIC_READY)
3741 			break;
3742 		delay(10);
3743 	}
3744 
3745 	if ((mdic & MDIC_READY) == 0) {
3746 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3747 		    sc->sc_dev.dv_xname, phy, reg);
3748 		rv = 0;
3749 	} else if (mdic & MDIC_E) {
3750 #if 0 /* This is normal if no PHY is present. */
3751 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3752 		    sc->sc_dev.dv_xname, phy, reg);
3753 #endif
3754 		rv = 0;
3755 	} else {
3756 		rv = MDIC_DATA(mdic);
3757 		if (rv == 0xffff)
3758 			rv = 0;
3759 	}
3760 
3761 	return (rv);
3762 }
3763 
3764 /*
3765  * wm_gmii_i82544_writereg:	[mii interface function]
3766  *
3767  *	Write a PHY register on the GMII.
3768  */
3769 static void
3770 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3771 {
3772 	struct wm_softc *sc = (void *) self;
3773 	uint32_t mdic = 0;
3774 	int i;
3775 
3776 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3777 	    MDIC_REGADD(reg) | MDIC_DATA(val));
3778 
3779 	for (i = 0; i < 100; i++) {
3780 		mdic = CSR_READ(sc, WMREG_MDIC);
3781 		if (mdic & MDIC_READY)
3782 			break;
3783 		delay(10);
3784 	}
3785 
3786 	if ((mdic & MDIC_READY) == 0)
3787 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3788 		    sc->sc_dev.dv_xname, phy, reg);
3789 	else if (mdic & MDIC_E)
3790 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3791 		    sc->sc_dev.dv_xname, phy, reg);
3792 }
3793 
3794 /*
3795  * wm_gmii_statchg:	[mii interface function]
3796  *
3797  *	Callback from MII layer when media changes.
3798  */
3799 static void
3800 wm_gmii_statchg(struct device *self)
3801 {
3802 	struct wm_softc *sc = (void *) self;
3803 	struct mii_data *mii = &sc->sc_mii;
3804 
3805 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3806 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3807 	sc->sc_fcrtl &= ~FCRTL_XONE;
3808 
3809 	/*
3810 	 * Get flow control negotiation result.
3811 	 */
3812 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3813 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3814 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3815 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3816 	}
3817 
3818 	if (sc->sc_flowflags & IFM_FLOW) {
3819 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3820 			sc->sc_ctrl |= CTRL_TFCE;
3821 			sc->sc_fcrtl |= FCRTL_XONE;
3822 		}
3823 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3824 			sc->sc_ctrl |= CTRL_RFCE;
3825 	}
3826 
3827 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
3828 		DPRINTF(WM_DEBUG_LINK,
3829 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3830 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3831 	} else  {
3832 		DPRINTF(WM_DEBUG_LINK,
3833 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3834 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3835 	}
3836 
3837 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3838 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3839 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3840 						 : WMREG_FCRTL, sc->sc_fcrtl);
3841 }
3842