xref: /netbsd-src/sys/dev/pci/if_wm.c (revision 001c68bd94f75ce9270b69227c4199fbf34ee396)
1 /*	$NetBSD: if_wm.c,v 1.37 2003/04/29 01:15:38 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40  *
41  * TODO (in order of importance):
42  *
43  *	- Make GMII work on the i82543.
44  *
45  *	- Fix hw VLAN assist.
46  *
47  *	- Jumbo frames -- requires changes to network stack due to
48  *	  lame buffer length handling on chip.
49  */
50 
51 #include "bpfilter.h"
52 #include "rnd.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/callout.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/queue.h>
65 
66 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
67 
68 #if NRND > 0
69 #include <sys/rnd.h>
70 #endif
71 
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_ether.h>
76 
77 #if NBPFILTER > 0
78 #include <net/bpf.h>
79 #endif
80 
81 #include <netinet/in.h>			/* XXX for struct ip */
82 #include <netinet/in_systm.h>		/* XXX for struct ip */
83 #include <netinet/ip.h>			/* XXX for struct ip */
84 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
85 
86 #include <machine/bus.h>
87 #include <machine/intr.h>
88 #include <machine/endian.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include <dev/mii/mii_bitbang.h>
93 
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97 
98 #include <dev/pci/if_wmreg.h>
99 
100 #ifdef WM_DEBUG
101 #define	WM_DEBUG_LINK		0x01
102 #define	WM_DEBUG_TX		0x02
103 #define	WM_DEBUG_RX		0x04
104 #define	WM_DEBUG_GMII		0x08
105 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
106 
107 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
108 #else
109 #define	DPRINTF(x, y)	/* nothing */
110 #endif /* WM_DEBUG */
111 
112 /*
113  * Transmit descriptor list size.  Due to errata, we can only have
114  * 256 hardware descriptors in the ring.  We tell the upper layers
115  * that they can queue a lot of packets, and we go ahead and manage
116  * up to 64 of them at a time.  We allow up to 16 DMA segments per
117  * packet.
118  */
119 #define	WM_NTXSEGS		16
120 #define	WM_IFQUEUELEN		256
121 #define	WM_TXQUEUELEN		64
122 #define	WM_TXQUEUELEN_MASK	(WM_TXQUEUELEN - 1)
123 #define	WM_TXQUEUE_GC		(WM_TXQUEUELEN / 8)
124 #define	WM_NTXDESC		256
125 #define	WM_NTXDESC_MASK		(WM_NTXDESC - 1)
126 #define	WM_NEXTTX(x)		(((x) + 1) & WM_NTXDESC_MASK)
127 #define	WM_NEXTTXS(x)		(((x) + 1) & WM_TXQUEUELEN_MASK)
128 
129 /*
130  * Receive descriptor list size.  We have one Rx buffer for normal
131  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
132  * packet.  We allocate 256 receive descriptors, each with a 2k
133  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
134  */
135 #define	WM_NRXDESC		256
136 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
137 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
138 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
139 
140 /*
141  * Control structures are DMA'd to the i82542 chip.  We allocate them in
142  * a single clump that maps to a single DMA segment to make serveral things
143  * easier.
144  */
145 struct wm_control_data {
146 	/*
147 	 * The transmit descriptors.
148 	 */
149 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC];
150 
151 	/*
152 	 * The receive descriptors.
153 	 */
154 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
155 };
156 
157 #define	WM_CDOFF(x)	offsetof(struct wm_control_data, x)
158 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
159 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
160 
161 /*
162  * Software state for transmit jobs.
163  */
164 struct wm_txsoft {
165 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
166 	bus_dmamap_t txs_dmamap;	/* our DMA map */
167 	int txs_firstdesc;		/* first descriptor in packet */
168 	int txs_lastdesc;		/* last descriptor in packet */
169 	int txs_ndesc;			/* # of descriptors used */
170 };
171 
172 /*
173  * Software state for receive buffers.  Each descriptor gets a
174  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
175  * more than one buffer, we chain them together.
176  */
177 struct wm_rxsoft {
178 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
179 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
180 };
181 
182 /*
183  * Software state per device.
184  */
185 struct wm_softc {
186 	struct device sc_dev;		/* generic device information */
187 	bus_space_tag_t sc_st;		/* bus space tag */
188 	bus_space_handle_t sc_sh;	/* bus space handle */
189 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
190 	struct ethercom sc_ethercom;	/* ethernet common data */
191 	void *sc_sdhook;		/* shutdown hook */
192 
193 	int sc_type;			/* chip type; see below */
194 	int sc_flags;			/* flags; see below */
195 
196 	void *sc_ih;			/* interrupt cookie */
197 
198 	struct mii_data sc_mii;		/* MII/media information */
199 
200 	struct callout sc_tick_ch;	/* tick callout */
201 
202 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
203 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
204 
205 	/*
206 	 * Software state for the transmit and receive descriptors.
207 	 */
208 	struct wm_txsoft sc_txsoft[WM_TXQUEUELEN];
209 	struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
210 
211 	/*
212 	 * Control data structures.
213 	 */
214 	struct wm_control_data *sc_control_data;
215 #define	sc_txdescs	sc_control_data->wcd_txdescs
216 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
217 
218 #ifdef WM_EVENT_COUNTERS
219 	/* Event counters. */
220 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
221 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
222 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
223 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
224 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
225 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
226 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
227 
228 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
229 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
230 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
231 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
232 
233 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
234 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
235 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
236 
237 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
238 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
239 
240 	struct evcnt sc_ev_tu;		/* Tx underrun */
241 #endif /* WM_EVENT_COUNTERS */
242 
243 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
244 
245 	int	sc_txfree;		/* number of free Tx descriptors */
246 	int	sc_txnext;		/* next ready Tx descriptor */
247 
248 	int	sc_txsfree;		/* number of free Tx jobs */
249 	int	sc_txsnext;		/* next free Tx job */
250 	int	sc_txsdirty;		/* dirty Tx jobs */
251 
252 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
253 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
254 
255 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
256 
257 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
258 	int	sc_rxdiscard;
259 	int	sc_rxlen;
260 	struct mbuf *sc_rxhead;
261 	struct mbuf *sc_rxtail;
262 	struct mbuf **sc_rxtailp;
263 
264 	uint32_t sc_ctrl;		/* prototype CTRL register */
265 #if 0
266 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
267 #endif
268 	uint32_t sc_icr;		/* prototype interrupt bits */
269 	uint32_t sc_tctl;		/* prototype TCTL register */
270 	uint32_t sc_rctl;		/* prototype RCTL register */
271 	uint32_t sc_txcw;		/* prototype TXCW register */
272 	uint32_t sc_tipg;		/* prototype TIPG register */
273 
274 	int sc_tbi_linkup;		/* TBI link status */
275 	int sc_tbi_anstate;		/* autonegotiation state */
276 
277 	int sc_mchash_type;		/* multicast filter offset */
278 
279 #if NRND > 0
280 	rndsource_element_t rnd_source;	/* random source */
281 #endif
282 };
283 
284 #define	WM_RXCHAIN_RESET(sc)						\
285 do {									\
286 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
287 	*(sc)->sc_rxtailp = NULL;					\
288 	(sc)->sc_rxlen = 0;						\
289 } while (/*CONSTCOND*/0)
290 
291 #define	WM_RXCHAIN_LINK(sc, m)						\
292 do {									\
293 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
294 	(sc)->sc_rxtailp = &(m)->m_next;				\
295 } while (/*CONSTCOND*/0)
296 
297 /* sc_type */
298 #define	WM_T_82542_2_0		0	/* i82542 2.0 (really old) */
299 #define	WM_T_82542_2_1		1	/* i82542 2.1+ (old) */
300 #define	WM_T_82543		2	/* i82543 */
301 #define	WM_T_82544		3	/* i82544 */
302 #define	WM_T_82540		4	/* i82540 */
303 #define	WM_T_82545		5	/* i82545 */
304 #define	WM_T_82546		6	/* i82546 */
305 
306 /* sc_flags */
307 #define	WM_F_HAS_MII		0x01	/* has MII */
308 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
309 
310 #ifdef WM_EVENT_COUNTERS
311 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
312 #else
313 #define	WM_EVCNT_INCR(ev)	/* nothing */
314 #endif
315 
316 #define	CSR_READ(sc, reg)						\
317 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
318 #define	CSR_WRITE(sc, reg, val)						\
319 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
320 
321 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
322 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
323 
324 #define	WM_CDTXSYNC(sc, x, n, ops)					\
325 do {									\
326 	int __x, __n;							\
327 									\
328 	__x = (x);							\
329 	__n = (n);							\
330 									\
331 	/* If it will wrap around, sync to the end of the ring. */	\
332 	if ((__x + __n) > WM_NTXDESC) {					\
333 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
334 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
335 		    (WM_NTXDESC - __x), (ops));				\
336 		__n -= (WM_NTXDESC - __x);				\
337 		__x = 0;						\
338 	}								\
339 									\
340 	/* Now sync whatever is left. */				\
341 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
342 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
343 } while (/*CONSTCOND*/0)
344 
345 #define	WM_CDRXSYNC(sc, x, ops)						\
346 do {									\
347 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
348 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
349 } while (/*CONSTCOND*/0)
350 
351 #define	WM_INIT_RXDESC(sc, x)						\
352 do {									\
353 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
354 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
355 	struct mbuf *__m = __rxs->rxs_mbuf;				\
356 									\
357 	/*								\
358 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
359 	 * so that the payload after the Ethernet header is aligned	\
360 	 * to a 4-byte boundary.					\
361 	 *								\
362 	 * XXX BRAINDAMAGE ALERT!					\
363 	 * The stupid chip uses the same size for every buffer, which	\
364 	 * is set in the Receive Control register.  We are using the 2K	\
365 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
366 	 * reason, we can't accept packets longer than the standard	\
367 	 * Ethernet MTU, without incurring a big penalty to copy every	\
368 	 * incoming packet to a new, suitably aligned buffer.		\
369 	 *								\
370 	 * We'll need to make some changes to the layer 3/4 parts of	\
371 	 * the stack (to copy the headers to a new buffer if not	\
372 	 * aligned) in order to support large MTU on this chip.  Lame.	\
373 	 */								\
374 	__m->m_data = __m->m_ext.ext_buf + 2;				\
375 									\
376 	__rxd->wrx_addr.wa_low =					\
377 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);		\
378 	__rxd->wrx_addr.wa_high = 0;					\
379 	__rxd->wrx_len = 0;						\
380 	__rxd->wrx_cksum = 0;						\
381 	__rxd->wrx_status = 0;						\
382 	__rxd->wrx_errors = 0;						\
383 	__rxd->wrx_special = 0;						\
384 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
385 									\
386 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
387 } while (/*CONSTCOND*/0)
388 
389 void	wm_start(struct ifnet *);
390 void	wm_watchdog(struct ifnet *);
391 int	wm_ioctl(struct ifnet *, u_long, caddr_t);
392 int	wm_init(struct ifnet *);
393 void	wm_stop(struct ifnet *, int);
394 
395 void	wm_shutdown(void *);
396 
397 void	wm_reset(struct wm_softc *);
398 void	wm_rxdrain(struct wm_softc *);
399 int	wm_add_rxbuf(struct wm_softc *, int);
400 void	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
401 void	wm_tick(void *);
402 
403 void	wm_set_filter(struct wm_softc *);
404 
405 int	wm_intr(void *);
406 void	wm_txintr(struct wm_softc *);
407 void	wm_rxintr(struct wm_softc *);
408 void	wm_linkintr(struct wm_softc *, uint32_t);
409 
410 void	wm_tbi_mediainit(struct wm_softc *);
411 int	wm_tbi_mediachange(struct ifnet *);
412 void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
413 
414 void	wm_tbi_set_linkled(struct wm_softc *);
415 void	wm_tbi_check_link(struct wm_softc *);
416 
417 void	wm_gmii_reset(struct wm_softc *);
418 
419 int	wm_gmii_i82543_readreg(struct device *, int, int);
420 void	wm_gmii_i82543_writereg(struct device *, int, int, int);
421 
422 int	wm_gmii_i82544_readreg(struct device *, int, int);
423 void	wm_gmii_i82544_writereg(struct device *, int, int, int);
424 
425 void	wm_gmii_statchg(struct device *);
426 
427 void	wm_gmii_mediainit(struct wm_softc *);
428 int	wm_gmii_mediachange(struct ifnet *);
429 void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
430 
431 int	wm_match(struct device *, struct cfdata *, void *);
432 void	wm_attach(struct device *, struct device *, void *);
433 
434 CFATTACH_DECL(wm, sizeof(struct wm_softc),
435     wm_match, wm_attach, NULL, NULL);
436 
437 /*
438  * Devices supported by this driver.
439  */
440 const struct wm_product {
441 	pci_vendor_id_t		wmp_vendor;
442 	pci_product_id_t	wmp_product;
443 	const char		*wmp_name;
444 	int			wmp_type;
445 	int			wmp_flags;
446 #define	WMP_F_1000X		0x01
447 #define	WMP_F_1000T		0x02
448 } wm_products[] = {
449 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
450 	  "Intel i82542 1000BASE-X Ethernet",
451 	  WM_T_82542_2_1,	WMP_F_1000X },
452 
453 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
454 	  "Intel i82543GC 1000BASE-X Ethernet",
455 	  WM_T_82543,		WMP_F_1000X },
456 
457 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
458 	  "Intel i82543GC 1000BASE-T Ethernet",
459 	  WM_T_82543,		WMP_F_1000T },
460 
461 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
462 	  "Intel i82544EI 1000BASE-T Ethernet",
463 	  WM_T_82544,		WMP_F_1000T },
464 
465 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
466 	  "Intel i82544EI 1000BASE-X Ethernet",
467 	  WM_T_82544,		WMP_F_1000X },
468 
469 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
470 	  "Intel i82544GC 1000BASE-T Ethernet",
471 	  WM_T_82544,		WMP_F_1000T },
472 
473 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
474 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
475 	  WM_T_82544,		WMP_F_1000T },
476 
477 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
478 	  "Intel i82540EM 1000BASE-T Ethernet",
479 	  WM_T_82540,		WMP_F_1000T },
480 
481 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
482 	  "Intel i82540EP 1000BASE-T Ethernet",
483 	  WM_T_82540,		WMP_F_1000T },
484 
485 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
486 	  "Intel i82540EP 1000BASE-T Ethernet",
487 	  WM_T_82540,		WMP_F_1000T },
488 
489 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
490 	  "Intel i82540EP 1000BASE-T Ethernet",
491 	  WM_T_82540,		WMP_F_1000T },
492 
493 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
494 	  "Intel i82545EM 1000BASE-T Ethernet",
495 	  WM_T_82545,		WMP_F_1000T },
496 
497 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
498 	  "Intel i82546EB 1000BASE-T Ethernet",
499 	  WM_T_82546,		WMP_F_1000T },
500 
501 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
502 	  "Intel i82545EM 1000BASE-X Ethernet",
503 	  WM_T_82545,		WMP_F_1000X },
504 
505 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
506 	  "Intel i82546EB 1000BASE-X Ethernet",
507 	  WM_T_82546,		WMP_F_1000X },
508 
509 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
510 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
511 	  WM_T_82540,		WMP_F_1000T },
512 
513 	{ 0,			0,
514 	  NULL,
515 	  0,			0 },
516 };
517 
518 #ifdef WM_EVENT_COUNTERS
519 #if WM_NTXSEGS != 16
520 #error Update wm_txseg_evcnt_names
521 #endif
522 static const char *wm_txseg_evcnt_names[WM_NTXSEGS] = {
523 	"txseg1",
524 	"txseg2",
525 	"txseg3",
526 	"txseg4",
527 	"txseg5",
528 	"txseg6",
529 	"txseg7",
530 	"txseg8",
531 	"txseg9",
532 	"txseg10",
533 	"txseg11",
534 	"txseg12",
535 	"txseg13",
536 	"txseg14",
537 	"txseg15",
538 	"txseg16",
539 };
540 #endif /* WM_EVENT_COUNTERS */
541 
542 static const struct wm_product *
543 wm_lookup(const struct pci_attach_args *pa)
544 {
545 	const struct wm_product *wmp;
546 
547 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
548 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
549 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
550 			return (wmp);
551 	}
552 	return (NULL);
553 }
554 
555 int
556 wm_match(struct device *parent, struct cfdata *cf, void *aux)
557 {
558 	struct pci_attach_args *pa = aux;
559 
560 	if (wm_lookup(pa) != NULL)
561 		return (1);
562 
563 	return (0);
564 }
565 
566 void
567 wm_attach(struct device *parent, struct device *self, void *aux)
568 {
569 	struct wm_softc *sc = (void *) self;
570 	struct pci_attach_args *pa = aux;
571 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
572 	pci_chipset_tag_t pc = pa->pa_pc;
573 	pci_intr_handle_t ih;
574 	const char *intrstr = NULL;
575 	bus_space_tag_t memt;
576 	bus_space_handle_t memh;
577 	bus_dma_segment_t seg;
578 	int memh_valid;
579 	int i, rseg, error;
580 	const struct wm_product *wmp;
581 	uint8_t enaddr[ETHER_ADDR_LEN];
582 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
583 	pcireg_t preg, memtype;
584 	int pmreg;
585 
586 	callout_init(&sc->sc_tick_ch);
587 
588 	wmp = wm_lookup(pa);
589 	if (wmp == NULL) {
590 		printf("\n");
591 		panic("wm_attach: impossible");
592 	}
593 
594 	sc->sc_dmat = pa->pa_dmat;
595 
596 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
597 	aprint_naive(": Ethernet controller\n");
598 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
599 
600 	sc->sc_type = wmp->wmp_type;
601 	if (sc->sc_type < WM_T_82543) {
602 		if (preg < 2) {
603 			aprint_error("%s: i82542 must be at least rev. 2\n",
604 			    sc->sc_dev.dv_xname);
605 			return;
606 		}
607 		if (preg < 3)
608 			sc->sc_type = WM_T_82542_2_0;
609 	}
610 
611 	/*
612 	 * Some chips require a handshake to access the EEPROM.
613 	 */
614 	if (sc->sc_type >= WM_T_82540)
615 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
616 
617 	/*
618 	 * Map the device.
619 	 */
620 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
621 	switch (memtype) {
622 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
623 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
624 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
625 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
626 		break;
627 	default:
628 		memh_valid = 0;
629 	}
630 
631 	if (memh_valid) {
632 		sc->sc_st = memt;
633 		sc->sc_sh = memh;
634 	} else {
635 		aprint_error("%s: unable to map device registers\n",
636 		    sc->sc_dev.dv_xname);
637 		return;
638 	}
639 
640 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
641 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
642 	preg |= PCI_COMMAND_MASTER_ENABLE;
643 	if (sc->sc_type < WM_T_82542_2_1)
644 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
645 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
646 
647 	/* Get it out of power save mode, if needed. */
648 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
649 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
650 		    PCI_PMCSR_STATE_MASK;
651 		if (preg == PCI_PMCSR_STATE_D3) {
652 			/*
653 			 * The card has lost all configuration data in
654 			 * this state, so punt.
655 			 */
656 			aprint_error("%s: unable to wake from power state D3\n",
657 			    sc->sc_dev.dv_xname);
658 			return;
659 		}
660 		if (preg != PCI_PMCSR_STATE_D0) {
661 			aprint_normal("%s: waking up from power state D%d\n",
662 			    sc->sc_dev.dv_xname, preg);
663 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
664 			    PCI_PMCSR_STATE_D0);
665 		}
666 	}
667 
668 	/*
669 	 * Map and establish our interrupt.
670 	 */
671 	if (pci_intr_map(pa, &ih)) {
672 		aprint_error("%s: unable to map interrupt\n",
673 		    sc->sc_dev.dv_xname);
674 		return;
675 	}
676 	intrstr = pci_intr_string(pc, ih);
677 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
678 	if (sc->sc_ih == NULL) {
679 		aprint_error("%s: unable to establish interrupt",
680 		    sc->sc_dev.dv_xname);
681 		if (intrstr != NULL)
682 			aprint_normal(" at %s", intrstr);
683 		aprint_normal("\n");
684 		return;
685 	}
686 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
687 
688 	/*
689 	 * Allocate the control data structures, and create and load the
690 	 * DMA map for it.
691 	 */
692 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
693 	    sizeof(struct wm_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
694 	    0)) != 0) {
695 		aprint_error(
696 		    "%s: unable to allocate control data, error = %d\n",
697 		    sc->sc_dev.dv_xname, error);
698 		goto fail_0;
699 	}
700 
701 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
702 	    sizeof(struct wm_control_data), (caddr_t *)&sc->sc_control_data,
703 	    0)) != 0) {
704 		aprint_error("%s: unable to map control data, error = %d\n",
705 		    sc->sc_dev.dv_xname, error);
706 		goto fail_1;
707 	}
708 
709 	if ((error = bus_dmamap_create(sc->sc_dmat,
710 	    sizeof(struct wm_control_data), 1,
711 	    sizeof(struct wm_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
712 		aprint_error("%s: unable to create control data DMA map, "
713 		    "error = %d\n", sc->sc_dev.dv_xname, error);
714 		goto fail_2;
715 	}
716 
717 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
718 	    sc->sc_control_data, sizeof(struct wm_control_data), NULL,
719 	    0)) != 0) {
720 		aprint_error(
721 		    "%s: unable to load control data DMA map, error = %d\n",
722 		    sc->sc_dev.dv_xname, error);
723 		goto fail_3;
724 	}
725 
726 	/*
727 	 * Create the transmit buffer DMA maps.
728 	 */
729 	for (i = 0; i < WM_TXQUEUELEN; i++) {
730 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
731 		    WM_NTXSEGS, MCLBYTES, 0, 0,
732 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
733 			aprint_error("%s: unable to create Tx DMA map %d, "
734 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
735 			goto fail_4;
736 		}
737 	}
738 
739 	/*
740 	 * Create the receive buffer DMA maps.
741 	 */
742 	for (i = 0; i < WM_NRXDESC; i++) {
743 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
744 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
745 			aprint_error("%s: unable to create Rx DMA map %d, "
746 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
747 			goto fail_5;
748 		}
749 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
750 	}
751 
752 	/*
753 	 * Reset the chip to a known state.
754 	 */
755 	wm_reset(sc);
756 
757 	/*
758 	 * Read the Ethernet address from the EEPROM.
759 	 */
760 	wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
761 	    sizeof(myea) / sizeof(myea[0]), myea);
762 	enaddr[0] = myea[0] & 0xff;
763 	enaddr[1] = myea[0] >> 8;
764 	enaddr[2] = myea[1] & 0xff;
765 	enaddr[3] = myea[1] >> 8;
766 	enaddr[4] = myea[2] & 0xff;
767 	enaddr[5] = myea[2] >> 8;
768 
769 	/*
770 	 * Toggle the LSB of the MAC address on the second port
771 	 * of the i82546.
772 	 */
773 	if (sc->sc_type == WM_T_82546) {
774 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
775 			enaddr[5] ^= 1;
776 	}
777 
778 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
779 	    ether_sprintf(enaddr));
780 
781 	/*
782 	 * Read the config info from the EEPROM, and set up various
783 	 * bits in the control registers based on their contents.
784 	 */
785 	wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1);
786 	wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2);
787 	if (sc->sc_type >= WM_T_82544)
788 		wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin);
789 
790 	if (cfg1 & EEPROM_CFG1_ILOS)
791 		sc->sc_ctrl |= CTRL_ILOS;
792 	if (sc->sc_type >= WM_T_82544) {
793 		sc->sc_ctrl |=
794 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
795 		    CTRL_SWDPIO_SHIFT;
796 		sc->sc_ctrl |=
797 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
798 		    CTRL_SWDPINS_SHIFT;
799 	} else {
800 		sc->sc_ctrl |=
801 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
802 		    CTRL_SWDPIO_SHIFT;
803 	}
804 
805 #if 0
806 	if (sc->sc_type >= WM_T_82544) {
807 		if (cfg1 & EEPROM_CFG1_IPS0)
808 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
809 		if (cfg1 & EEPROM_CFG1_IPS1)
810 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
811 		sc->sc_ctrl_ext |=
812 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
813 		    CTRL_EXT_SWDPIO_SHIFT;
814 		sc->sc_ctrl_ext |=
815 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
816 		    CTRL_EXT_SWDPINS_SHIFT;
817 	} else {
818 		sc->sc_ctrl_ext |=
819 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
820 		    CTRL_EXT_SWDPIO_SHIFT;
821 	}
822 #endif
823 
824 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
825 #if 0
826 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
827 #endif
828 
829 	/*
830 	 * Set up some register offsets that are different between
831 	 * the i82542 and the i82543 and later chips.
832 	 */
833 	if (sc->sc_type < WM_T_82543) {
834 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
835 		sc->sc_tdt_reg = WMREG_OLD_TDT;
836 	} else {
837 		sc->sc_rdt_reg = WMREG_RDT;
838 		sc->sc_tdt_reg = WMREG_TDT;
839 	}
840 
841 	/*
842 	 * Determine if we should use flow control.  We should
843 	 * always use it, unless we're on a i82542 < 2.1.
844 	 */
845 	if (sc->sc_type >= WM_T_82542_2_1)
846 		sc->sc_ctrl |= CTRL_TFCE | CTRL_RFCE;
847 
848 	/*
849 	 * Determine if we're TBI or GMII mode, and initialize the
850 	 * media structures accordingly.
851 	 */
852 	if (sc->sc_type < WM_T_82543 ||
853 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
854 		if (wmp->wmp_flags & WMP_F_1000T)
855 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
856 			    "product!\n", sc->sc_dev.dv_xname);
857 		wm_tbi_mediainit(sc);
858 	} else {
859 		if (wmp->wmp_flags & WMP_F_1000X)
860 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
861 			    "product!\n", sc->sc_dev.dv_xname);
862 		wm_gmii_mediainit(sc);
863 	}
864 
865 	ifp = &sc->sc_ethercom.ec_if;
866 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
867 	ifp->if_softc = sc;
868 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
869 	ifp->if_ioctl = wm_ioctl;
870 	ifp->if_start = wm_start;
871 	ifp->if_watchdog = wm_watchdog;
872 	ifp->if_init = wm_init;
873 	ifp->if_stop = wm_stop;
874 	IFQ_SET_MAXLEN(&ifp->if_snd, WM_IFQUEUELEN);
875 	IFQ_SET_READY(&ifp->if_snd);
876 
877 	/*
878 	 * If we're a i82543 or greater, we can support VLANs.
879 	 */
880 	if (sc->sc_type >= WM_T_82543)
881 		sc->sc_ethercom.ec_capabilities |=
882 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
883 
884 	/*
885 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
886 	 * on i82543 and later.
887 	 */
888 	if (sc->sc_type >= WM_T_82543)
889 		ifp->if_capabilities |=
890 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
891 
892 	/*
893 	 * Attach the interface.
894 	 */
895 	if_attach(ifp);
896 	ether_ifattach(ifp, enaddr);
897 #if NRND > 0
898 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
899 	    RND_TYPE_NET, 0);
900 #endif
901 
902 #ifdef WM_EVENT_COUNTERS
903 	/* Attach event counters. */
904 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
905 	    NULL, sc->sc_dev.dv_xname, "txsstall");
906 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
907 	    NULL, sc->sc_dev.dv_xname, "txdstall");
908 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
909 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
910 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
911 	    NULL, sc->sc_dev.dv_xname, "txdw");
912 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
913 	    NULL, sc->sc_dev.dv_xname, "txqe");
914 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
915 	    NULL, sc->sc_dev.dv_xname, "rxintr");
916 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
917 	    NULL, sc->sc_dev.dv_xname, "linkintr");
918 
919 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
920 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
921 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
922 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
923 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
924 	    NULL, sc->sc_dev.dv_xname, "txipsum");
925 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
926 	    NULL, sc->sc_dev.dv_xname, "txtusum");
927 
928 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
929 	    NULL, sc->sc_dev.dv_xname, "txctx init");
930 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
931 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
932 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
933 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
934 
935 	for (i = 0; i < WM_NTXSEGS; i++)
936 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
937 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
938 
939 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
940 	    NULL, sc->sc_dev.dv_xname, "txdrop");
941 
942 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
943 	    NULL, sc->sc_dev.dv_xname, "tu");
944 #endif /* WM_EVENT_COUNTERS */
945 
946 	/*
947 	 * Make sure the interface is shutdown during reboot.
948 	 */
949 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
950 	if (sc->sc_sdhook == NULL)
951 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
952 		    sc->sc_dev.dv_xname);
953 	return;
954 
955 	/*
956 	 * Free any resources we've allocated during the failed attach
957 	 * attempt.  Do this in reverse order and fall through.
958 	 */
959  fail_5:
960 	for (i = 0; i < WM_NRXDESC; i++) {
961 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
962 			bus_dmamap_destroy(sc->sc_dmat,
963 			    sc->sc_rxsoft[i].rxs_dmamap);
964 	}
965  fail_4:
966 	for (i = 0; i < WM_TXQUEUELEN; i++) {
967 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
968 			bus_dmamap_destroy(sc->sc_dmat,
969 			    sc->sc_txsoft[i].txs_dmamap);
970 	}
971 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
972  fail_3:
973 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
974  fail_2:
975 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
976 	    sizeof(struct wm_control_data));
977  fail_1:
978 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
979  fail_0:
980 	return;
981 }
982 
983 /*
984  * wm_shutdown:
985  *
986  *	Make sure the interface is stopped at reboot time.
987  */
988 void
989 wm_shutdown(void *arg)
990 {
991 	struct wm_softc *sc = arg;
992 
993 	wm_stop(&sc->sc_ethercom.ec_if, 1);
994 }
995 
996 /*
997  * wm_tx_cksum:
998  *
999  *	Set up TCP/IP checksumming parameters for the
1000  *	specified packet.
1001  */
1002 static int
1003 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1004     uint32_t *fieldsp)
1005 {
1006 	struct mbuf *m0 = txs->txs_mbuf;
1007 	struct livengood_tcpip_ctxdesc *t;
1008 	uint32_t fields = 0, ipcs, tucs;
1009 	struct ip *ip;
1010 	struct ether_header *eh;
1011 	int offset, iphl;
1012 
1013 	/*
1014 	 * XXX It would be nice if the mbuf pkthdr had offset
1015 	 * fields for the protocol headers.
1016 	 */
1017 
1018 	eh = mtod(m0, struct ether_header *);
1019 	switch (htons(eh->ether_type)) {
1020 	case ETHERTYPE_IP:
1021 		iphl = sizeof(struct ip);
1022 		offset = ETHER_HDR_LEN;
1023 		break;
1024 
1025 	case ETHERTYPE_VLAN:
1026 		iphl = sizeof(struct ip);
1027 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1028 		break;
1029 
1030 	default:
1031 		/*
1032 		 * Don't support this protocol or encapsulation.
1033 		 */
1034 		*fieldsp = 0;
1035 		*cmdp = 0;
1036 		return (0);
1037 	}
1038 
1039 	if (m0->m_len < (offset + iphl)) {
1040 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1041 			printf("%s: wm_tx_cksum: mbuf allocation failed, "
1042 			    "packet dropped\n", sc->sc_dev.dv_xname);
1043 			return (ENOMEM);
1044 		}
1045 		m0 = txs->txs_mbuf;
1046 	}
1047 
1048 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1049 	iphl = ip->ip_hl << 2;
1050 
1051 	/*
1052 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1053 	 * offload feature, if we load the context descriptor, we
1054 	 * MUST provide valid values for IPCSS and TUCSS fields.
1055 	 */
1056 
1057 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1058 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1059 		fields |= htole32(WTX_IXSM);
1060 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
1061 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1062 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
1063 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1064 		/* Use the cached value. */
1065 		ipcs = sc->sc_txctx_ipcs;
1066 	} else {
1067 		/* Just initialize it to the likely value anyway. */
1068 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
1069 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1070 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
1071 	}
1072 
1073 	offset += iphl;
1074 
1075 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1076 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1077 		fields |= htole32(WTX_TXSM);
1078 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
1079 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1080 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
1081 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1082 		/* Use the cached value. */
1083 		tucs = sc->sc_txctx_tucs;
1084 	} else {
1085 		/* Just initialize it to a valid TCP context. */
1086 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
1087 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1088 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
1089 	}
1090 
1091 	if (sc->sc_txctx_ipcs == ipcs &&
1092 	    sc->sc_txctx_tucs == tucs) {
1093 		/* Cached context is fine. */
1094 		WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1095 	} else {
1096 		/* Fill in the context descriptor. */
1097 #ifdef WM_EVENT_COUNTERS
1098 		if (sc->sc_txctx_ipcs == 0xffffffff &&
1099 		    sc->sc_txctx_tucs == 0xffffffff)
1100 			WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
1101 		else
1102 			WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1103 #endif
1104 		t = (struct livengood_tcpip_ctxdesc *)
1105 		    &sc->sc_txdescs[sc->sc_txnext];
1106 		t->tcpip_ipcs = ipcs;
1107 		t->tcpip_tucs = tucs;
1108 		t->tcpip_cmdlen =
1109 		    htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1110 		t->tcpip_seg = 0;
1111 		WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1112 
1113 		sc->sc_txctx_ipcs = ipcs;
1114 		sc->sc_txctx_tucs = tucs;
1115 
1116 		sc->sc_txnext = WM_NEXTTX(sc->sc_txnext);
1117 		txs->txs_ndesc++;
1118 	}
1119 
1120 	*cmdp = WTX_CMD_DEXT | WTC_DTYP_D;
1121 	*fieldsp = fields;
1122 
1123 	return (0);
1124 }
1125 
1126 /*
1127  * wm_start:		[ifnet interface function]
1128  *
1129  *	Start packet transmission on the interface.
1130  */
1131 void
1132 wm_start(struct ifnet *ifp)
1133 {
1134 	struct wm_softc *sc = ifp->if_softc;
1135 	struct mbuf *m0;
1136 #if 0 /* XXXJRT */
1137 	struct m_tag *mtag;
1138 #endif
1139 	struct wm_txsoft *txs;
1140 	bus_dmamap_t dmamap;
1141 	int error, nexttx, lasttx, ofree, seg;
1142 	uint32_t cksumcmd, cksumfields;
1143 
1144 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1145 		return;
1146 
1147 	/*
1148 	 * Remember the previous number of free descriptors.
1149 	 */
1150 	ofree = sc->sc_txfree;
1151 
1152 	/*
1153 	 * Loop through the send queue, setting up transmit descriptors
1154 	 * until we drain the queue, or use up all available transmit
1155 	 * descriptors.
1156 	 */
1157 	for (;;) {
1158 		/* Grab a packet off the queue. */
1159 		IFQ_POLL(&ifp->if_snd, m0);
1160 		if (m0 == NULL)
1161 			break;
1162 
1163 		DPRINTF(WM_DEBUG_TX,
1164 		    ("%s: TX: have packet to transmit: %p\n",
1165 		    sc->sc_dev.dv_xname, m0));
1166 
1167 		/* Get a work queue entry. */
1168 		if (sc->sc_txsfree < WM_TXQUEUE_GC) {
1169 			wm_txintr(sc);
1170 			if (sc->sc_txsfree == 0) {
1171 				DPRINTF(WM_DEBUG_TX,
1172 				    ("%s: TX: no free job descriptors\n",
1173 					sc->sc_dev.dv_xname));
1174 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1175 				break;
1176 			}
1177 		}
1178 
1179 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1180 		dmamap = txs->txs_dmamap;
1181 
1182 		/*
1183 		 * Load the DMA map.  If this fails, the packet either
1184 		 * didn't fit in the allotted number of segments, or we
1185 		 * were short on resources.  For the too-many-segments
1186 		 * case, we simply report an error and drop the packet,
1187 		 * since we can't sanely copy a jumbo packet to a single
1188 		 * buffer.
1189 		 */
1190 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1191 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1192 		if (error) {
1193 			if (error == EFBIG) {
1194 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1195 				printf("%s: Tx packet consumes too many "
1196 				    "DMA segments, dropping...\n",
1197 				    sc->sc_dev.dv_xname);
1198 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1199 				m_freem(m0);
1200 				continue;
1201 			}
1202 			/*
1203 			 * Short on resources, just stop for now.
1204 			 */
1205 			DPRINTF(WM_DEBUG_TX,
1206 			    ("%s: TX: dmamap load failed: %d\n",
1207 			    sc->sc_dev.dv_xname, error));
1208 			break;
1209 		}
1210 
1211 		/*
1212 		 * Ensure we have enough descriptors free to describe
1213 		 * the packet.  Note, we always reserve one descriptor
1214 		 * at the end of the ring due to the semantics of the
1215 		 * TDT register, plus one more in the event we need
1216 		 * to re-load checksum offload context.
1217 		 */
1218 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1219 			/*
1220 			 * Not enough free descriptors to transmit this
1221 			 * packet.  We haven't committed anything yet,
1222 			 * so just unload the DMA map, put the packet
1223 			 * pack on the queue, and punt.  Notify the upper
1224 			 * layer that there are no more slots left.
1225 			 */
1226 			DPRINTF(WM_DEBUG_TX,
1227 			    ("%s: TX: need %d descriptors, have %d\n",
1228 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
1229 			    sc->sc_txfree - 1));
1230 			ifp->if_flags |= IFF_OACTIVE;
1231 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1232 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1233 			break;
1234 		}
1235 
1236 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1237 
1238 		/*
1239 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1240 		 */
1241 
1242 		/* Sync the DMA map. */
1243 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1244 		    BUS_DMASYNC_PREWRITE);
1245 
1246 		DPRINTF(WM_DEBUG_TX,
1247 		    ("%s: TX: packet has %d DMA segments\n",
1248 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
1249 
1250 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1251 
1252 		/*
1253 		 * Store a pointer to the packet so that we can free it
1254 		 * later.
1255 		 *
1256 		 * Initially, we consider the number of descriptors the
1257 		 * packet uses the number of DMA segments.  This may be
1258 		 * incremented by 1 if we do checksum offload (a descriptor
1259 		 * is used to set the checksum context).
1260 		 */
1261 		txs->txs_mbuf = m0;
1262 		txs->txs_firstdesc = sc->sc_txnext;
1263 		txs->txs_ndesc = dmamap->dm_nsegs;
1264 
1265 		/*
1266 		 * Set up checksum offload parameters for
1267 		 * this packet.
1268 		 */
1269 		if (m0->m_pkthdr.csum_flags &
1270 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1271 			if (wm_tx_cksum(sc, txs, &cksumcmd,
1272 					&cksumfields) != 0) {
1273 				/* Error message already displayed. */
1274 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1275 				continue;
1276 			}
1277 		} else {
1278 			cksumcmd = 0;
1279 			cksumfields = 0;
1280 		}
1281 
1282 		cksumcmd |= htole32(WTX_CMD_IDE);
1283 
1284 		/*
1285 		 * Initialize the transmit descriptor.
1286 		 */
1287 		for (nexttx = sc->sc_txnext, seg = 0;
1288 		     seg < dmamap->dm_nsegs;
1289 		     seg++, nexttx = WM_NEXTTX(nexttx)) {
1290 			/*
1291 			 * Note: we currently only use 32-bit DMA
1292 			 * addresses.
1293 			 */
1294 			sc->sc_txdescs[nexttx].wtx_addr.wa_high = 0;
1295 			sc->sc_txdescs[nexttx].wtx_addr.wa_low =
1296 			    htole32(dmamap->dm_segs[seg].ds_addr);
1297 			sc->sc_txdescs[nexttx].wtx_cmdlen = cksumcmd |
1298 			    htole32(dmamap->dm_segs[seg].ds_len);
1299 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_bits =
1300 			    cksumfields;
1301 			lasttx = nexttx;
1302 
1303 			DPRINTF(WM_DEBUG_TX,
1304 			    ("%s: TX: desc %d: low 0x%08x, len 0x%04x\n",
1305 			    sc->sc_dev.dv_xname, nexttx,
1306 			    (uint32_t) dmamap->dm_segs[seg].ds_addr,
1307 			    (uint32_t) dmamap->dm_segs[seg].ds_len));
1308 		}
1309 
1310 		/*
1311 		 * Set up the command byte on the last descriptor of
1312 		 * the packet.  If we're in the interrupt delay window,
1313 		 * delay the interrupt.
1314 		 */
1315 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
1316 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1317 
1318 #if 0 /* XXXJRT */
1319 		/*
1320 		 * If VLANs are enabled and the packet has a VLAN tag, set
1321 		 * up the descriptor to encapsulate the packet for us.
1322 		 *
1323 		 * This is only valid on the last descriptor of the packet.
1324 		 */
1325 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1326 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1327 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
1328 			    htole32(WTX_CMD_VLE);
1329 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_fields.wtxu_vlan
1330 			    = htole16(*(u_int *)(mtag + 1) & 0xffff);
1331 		}
1332 #endif /* XXXJRT */
1333 
1334 		txs->txs_lastdesc = lasttx;
1335 
1336 		DPRINTF(WM_DEBUG_TX,
1337 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1338 		    lasttx, sc->sc_txdescs[lasttx].wtx_cmdlen));
1339 
1340 		/* Sync the descriptors we're using. */
1341 		WM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1342 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1343 
1344 		/* Give the packet to the chip. */
1345 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1346 
1347 		DPRINTF(WM_DEBUG_TX,
1348 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1349 
1350 		DPRINTF(WM_DEBUG_TX,
1351 		    ("%s: TX: finished transmitting packet, job %d\n",
1352 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
1353 
1354 		/* Advance the tx pointer. */
1355 		sc->sc_txfree -= txs->txs_ndesc;
1356 		sc->sc_txnext = nexttx;
1357 
1358 		sc->sc_txsfree--;
1359 		sc->sc_txsnext = WM_NEXTTXS(sc->sc_txsnext);
1360 
1361 #if NBPFILTER > 0
1362 		/* Pass the packet to any BPF listeners. */
1363 		if (ifp->if_bpf)
1364 			bpf_mtap(ifp->if_bpf, m0);
1365 #endif /* NBPFILTER > 0 */
1366 	}
1367 
1368 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1369 		/* No more slots; notify upper layer. */
1370 		ifp->if_flags |= IFF_OACTIVE;
1371 	}
1372 
1373 	if (sc->sc_txfree != ofree) {
1374 		/* Set a watchdog timer in case the chip flakes out. */
1375 		ifp->if_timer = 5;
1376 	}
1377 }
1378 
1379 /*
1380  * wm_watchdog:		[ifnet interface function]
1381  *
1382  *	Watchdog timer handler.
1383  */
1384 void
1385 wm_watchdog(struct ifnet *ifp)
1386 {
1387 	struct wm_softc *sc = ifp->if_softc;
1388 
1389 	/*
1390 	 * Since we're using delayed interrupts, sweep up
1391 	 * before we report an error.
1392 	 */
1393 	wm_txintr(sc);
1394 
1395 	if (sc->sc_txfree != WM_NTXDESC) {
1396 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1397 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1398 		    sc->sc_txnext);
1399 		ifp->if_oerrors++;
1400 
1401 		/* Reset the interface. */
1402 		(void) wm_init(ifp);
1403 	}
1404 
1405 	/* Try to get more packets going. */
1406 	wm_start(ifp);
1407 }
1408 
1409 /*
1410  * wm_ioctl:		[ifnet interface function]
1411  *
1412  *	Handle control requests from the operator.
1413  */
1414 int
1415 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1416 {
1417 	struct wm_softc *sc = ifp->if_softc;
1418 	struct ifreq *ifr = (struct ifreq *) data;
1419 	int s, error;
1420 
1421 	s = splnet();
1422 
1423 	switch (cmd) {
1424 	case SIOCSIFMEDIA:
1425 	case SIOCGIFMEDIA:
1426 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1427 		break;
1428 
1429 	default:
1430 		error = ether_ioctl(ifp, cmd, data);
1431 		if (error == ENETRESET) {
1432 			/*
1433 			 * Multicast list has changed; set the hardware filter
1434 			 * accordingly.
1435 			 */
1436 			wm_set_filter(sc);
1437 			error = 0;
1438 		}
1439 		break;
1440 	}
1441 
1442 	/* Try to get more packets going. */
1443 	wm_start(ifp);
1444 
1445 	splx(s);
1446 	return (error);
1447 }
1448 
1449 /*
1450  * wm_intr:
1451  *
1452  *	Interrupt service routine.
1453  */
1454 int
1455 wm_intr(void *arg)
1456 {
1457 	struct wm_softc *sc = arg;
1458 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1459 	uint32_t icr;
1460 	int wantinit, handled = 0;
1461 
1462 	for (wantinit = 0; wantinit == 0;) {
1463 		icr = CSR_READ(sc, WMREG_ICR);
1464 		if ((icr & sc->sc_icr) == 0)
1465 			break;
1466 
1467 #if 0 /*NRND > 0*/
1468 		if (RND_ENABLED(&sc->rnd_source))
1469 			rnd_add_uint32(&sc->rnd_source, icr);
1470 #endif
1471 
1472 		handled = 1;
1473 
1474 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1475 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1476 			DPRINTF(WM_DEBUG_RX,
1477 			    ("%s: RX: got Rx intr 0x%08x\n",
1478 			    sc->sc_dev.dv_xname,
1479 			    icr & (ICR_RXDMT0|ICR_RXT0)));
1480 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1481 		}
1482 #endif
1483 		wm_rxintr(sc);
1484 
1485 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1486 		if (icr & ICR_TXDW) {
1487 			DPRINTF(WM_DEBUG_TX,
1488 			    ("%s: TX: got TDXW interrupt\n",
1489 			    sc->sc_dev.dv_xname));
1490 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
1491 		}
1492 #endif
1493 		wm_txintr(sc);
1494 
1495 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1496 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1497 			wm_linkintr(sc, icr);
1498 		}
1499 
1500 		if (icr & ICR_RXO) {
1501 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1502 			wantinit = 1;
1503 		}
1504 	}
1505 
1506 	if (handled) {
1507 		if (wantinit)
1508 			wm_init(ifp);
1509 
1510 		/* Try to get more packets going. */
1511 		wm_start(ifp);
1512 	}
1513 
1514 	return (handled);
1515 }
1516 
1517 /*
1518  * wm_txintr:
1519  *
1520  *	Helper; handle transmit interrupts.
1521  */
1522 void
1523 wm_txintr(struct wm_softc *sc)
1524 {
1525 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1526 	struct wm_txsoft *txs;
1527 	uint8_t status;
1528 	int i;
1529 
1530 	ifp->if_flags &= ~IFF_OACTIVE;
1531 
1532 	/*
1533 	 * Go through the Tx list and free mbufs for those
1534 	 * frames which have been transmitted.
1535 	 */
1536 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN;
1537 	     i = WM_NEXTTXS(i), sc->sc_txsfree++) {
1538 		txs = &sc->sc_txsoft[i];
1539 
1540 		DPRINTF(WM_DEBUG_TX,
1541 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
1542 
1543 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1544 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1545 
1546 		status = le32toh(sc->sc_txdescs[
1547 		    txs->txs_lastdesc].wtx_fields.wtxu_bits);
1548 		if ((status & WTX_ST_DD) == 0) {
1549 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1550 			    BUS_DMASYNC_PREREAD);
1551 			break;
1552 		}
1553 
1554 		DPRINTF(WM_DEBUG_TX,
1555 		    ("%s: TX: job %d done: descs %d..%d\n",
1556 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
1557 		    txs->txs_lastdesc));
1558 
1559 		/*
1560 		 * XXX We should probably be using the statistics
1561 		 * XXX registers, but I don't know if they exist
1562 		 * XXX on chips before the i82544.
1563 		 */
1564 
1565 #ifdef WM_EVENT_COUNTERS
1566 		if (status & WTX_ST_TU)
1567 			WM_EVCNT_INCR(&sc->sc_ev_tu);
1568 #endif /* WM_EVENT_COUNTERS */
1569 
1570 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
1571 			ifp->if_oerrors++;
1572 			if (status & WTX_ST_LC)
1573 				printf("%s: late collision\n",
1574 				    sc->sc_dev.dv_xname);
1575 			else if (status & WTX_ST_EC) {
1576 				ifp->if_collisions += 16;
1577 				printf("%s: excessive collisions\n",
1578 				    sc->sc_dev.dv_xname);
1579 			}
1580 		} else
1581 			ifp->if_opackets++;
1582 
1583 		sc->sc_txfree += txs->txs_ndesc;
1584 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1585 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1586 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1587 		m_freem(txs->txs_mbuf);
1588 		txs->txs_mbuf = NULL;
1589 	}
1590 
1591 	/* Update the dirty transmit buffer pointer. */
1592 	sc->sc_txsdirty = i;
1593 	DPRINTF(WM_DEBUG_TX,
1594 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
1595 
1596 	/*
1597 	 * If there are no more pending transmissions, cancel the watchdog
1598 	 * timer.
1599 	 */
1600 	if (sc->sc_txsfree == WM_TXQUEUELEN)
1601 		ifp->if_timer = 0;
1602 }
1603 
1604 /*
1605  * wm_rxintr:
1606  *
1607  *	Helper; handle receive interrupts.
1608  */
1609 void
1610 wm_rxintr(struct wm_softc *sc)
1611 {
1612 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1613 	struct wm_rxsoft *rxs;
1614 	struct mbuf *m;
1615 	int i, len;
1616 	uint8_t status, errors;
1617 
1618 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
1619 		rxs = &sc->sc_rxsoft[i];
1620 
1621 		DPRINTF(WM_DEBUG_RX,
1622 		    ("%s: RX: checking descriptor %d\n",
1623 		    sc->sc_dev.dv_xname, i));
1624 
1625 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1626 
1627 		status = sc->sc_rxdescs[i].wrx_status;
1628 		errors = sc->sc_rxdescs[i].wrx_errors;
1629 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
1630 
1631 		if ((status & WRX_ST_DD) == 0) {
1632 			/*
1633 			 * We have processed all of the receive descriptors.
1634 			 */
1635 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1636 			break;
1637 		}
1638 
1639 		if (__predict_false(sc->sc_rxdiscard)) {
1640 			DPRINTF(WM_DEBUG_RX,
1641 			    ("%s: RX: discarding contents of descriptor %d\n",
1642 			    sc->sc_dev.dv_xname, i));
1643 			WM_INIT_RXDESC(sc, i);
1644 			if (status & WRX_ST_EOP) {
1645 				/* Reset our state. */
1646 				DPRINTF(WM_DEBUG_RX,
1647 				    ("%s: RX: resetting rxdiscard -> 0\n",
1648 				    sc->sc_dev.dv_xname));
1649 				sc->sc_rxdiscard = 0;
1650 			}
1651 			continue;
1652 		}
1653 
1654 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1655 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1656 
1657 		m = rxs->rxs_mbuf;
1658 
1659 		/*
1660 		 * Add a new receive buffer to the ring.
1661 		 */
1662 		if (wm_add_rxbuf(sc, i) != 0) {
1663 			/*
1664 			 * Failed, throw away what we've done so
1665 			 * far, and discard the rest of the packet.
1666 			 */
1667 			ifp->if_ierrors++;
1668 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1669 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1670 			WM_INIT_RXDESC(sc, i);
1671 			if ((status & WRX_ST_EOP) == 0)
1672 				sc->sc_rxdiscard = 1;
1673 			if (sc->sc_rxhead != NULL)
1674 				m_freem(sc->sc_rxhead);
1675 			WM_RXCHAIN_RESET(sc);
1676 			DPRINTF(WM_DEBUG_RX,
1677 			    ("%s: RX: Rx buffer allocation failed, "
1678 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
1679 			    sc->sc_rxdiscard ? " (discard)" : ""));
1680 			continue;
1681 		}
1682 
1683 		WM_RXCHAIN_LINK(sc, m);
1684 
1685 		m->m_len = len;
1686 
1687 		DPRINTF(WM_DEBUG_RX,
1688 		    ("%s: RX: buffer at %p len %d\n",
1689 		    sc->sc_dev.dv_xname, m->m_data, len));
1690 
1691 		/*
1692 		 * If this is not the end of the packet, keep
1693 		 * looking.
1694 		 */
1695 		if ((status & WRX_ST_EOP) == 0) {
1696 			sc->sc_rxlen += len;
1697 			DPRINTF(WM_DEBUG_RX,
1698 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
1699 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
1700 			continue;
1701 		}
1702 
1703 		/*
1704 		 * Okay, we have the entire packet now...
1705 		 */
1706 		*sc->sc_rxtailp = NULL;
1707 		m = sc->sc_rxhead;
1708 		len += sc->sc_rxlen;
1709 
1710 		WM_RXCHAIN_RESET(sc);
1711 
1712 		DPRINTF(WM_DEBUG_RX,
1713 		    ("%s: RX: have entire packet, len -> %d\n",
1714 		    sc->sc_dev.dv_xname, len));
1715 
1716 		/*
1717 		 * If an error occurred, update stats and drop the packet.
1718 		 */
1719 		if (errors &
1720 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
1721 			ifp->if_ierrors++;
1722 			if (errors & WRX_ER_SE)
1723 				printf("%s: symbol error\n",
1724 				    sc->sc_dev.dv_xname);
1725 			else if (errors & WRX_ER_SEQ)
1726 				printf("%s: receive sequence error\n",
1727 				    sc->sc_dev.dv_xname);
1728 			else if (errors & WRX_ER_CE)
1729 				printf("%s: CRC error\n",
1730 				    sc->sc_dev.dv_xname);
1731 			m_freem(m);
1732 			continue;
1733 		}
1734 
1735 		/*
1736 		 * No errors.  Receive the packet.
1737 		 *
1738 		 * Note, we have configured the chip to include the
1739 		 * CRC with every packet.
1740 		 */
1741 		m->m_flags |= M_HASFCS;
1742 		m->m_pkthdr.rcvif = ifp;
1743 		m->m_pkthdr.len = len;
1744 
1745 #if 0 /* XXXJRT */
1746 		/*
1747 		 * If VLANs are enabled, VLAN packets have been unwrapped
1748 		 * for us.  Associate the tag with the packet.
1749 		 */
1750 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1751 		    (status & WRX_ST_VP) != 0) {
1752 			struct m_tag *vtag;
1753 
1754 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1755 			    M_NOWAIT);
1756 			if (vtag == NULL) {
1757 				ifp->if_ierrors++;
1758 				printf("%s: unable to allocate VLAN tag\n",
1759 				    sc->sc_dev.dv_xname);
1760 				m_freem(m);
1761 				continue;
1762 			}
1763 
1764 			*(u_int *)(vtag + 1) =
1765 			    le16toh(sc->sc_rxdescs[i].wrx_special);
1766 		}
1767 #endif /* XXXJRT */
1768 
1769 		/*
1770 		 * Set up checksum info for this packet.
1771 		 */
1772 		if (status & WRX_ST_IPCS) {
1773 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
1774 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1775 			if (errors & WRX_ER_IPE)
1776 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1777 		}
1778 		if (status & WRX_ST_TCPCS) {
1779 			/*
1780 			 * Note: we don't know if this was TCP or UDP,
1781 			 * so we just set both bits, and expect the
1782 			 * upper layers to deal.
1783 			 */
1784 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
1785 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1786 			if (errors & WRX_ER_TCPE)
1787 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1788 		}
1789 
1790 		ifp->if_ipackets++;
1791 
1792 #if NBPFILTER > 0
1793 		/* Pass this up to any BPF listeners. */
1794 		if (ifp->if_bpf)
1795 			bpf_mtap(ifp->if_bpf, m);
1796 #endif /* NBPFILTER > 0 */
1797 
1798 		/* Pass it on. */
1799 		(*ifp->if_input)(ifp, m);
1800 	}
1801 
1802 	/* Update the receive pointer. */
1803 	sc->sc_rxptr = i;
1804 
1805 	DPRINTF(WM_DEBUG_RX,
1806 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
1807 }
1808 
1809 /*
1810  * wm_linkintr:
1811  *
1812  *	Helper; handle link interrupts.
1813  */
1814 void
1815 wm_linkintr(struct wm_softc *sc, uint32_t icr)
1816 {
1817 	uint32_t status;
1818 
1819 	/*
1820 	 * If we get a link status interrupt on a 1000BASE-T
1821 	 * device, just fall into the normal MII tick path.
1822 	 */
1823 	if (sc->sc_flags & WM_F_HAS_MII) {
1824 		if (icr & ICR_LSC) {
1825 			DPRINTF(WM_DEBUG_LINK,
1826 			    ("%s: LINK: LSC -> mii_tick\n",
1827 			    sc->sc_dev.dv_xname));
1828 			mii_tick(&sc->sc_mii);
1829 		} else if (icr & ICR_RXSEQ) {
1830 			DPRINTF(WM_DEBUG_LINK,
1831 			    ("%s: LINK Receive sequence error\n",
1832 			    sc->sc_dev.dv_xname));
1833 		}
1834 		return;
1835 	}
1836 
1837 	/*
1838 	 * If we are now receiving /C/, check for link again in
1839 	 * a couple of link clock ticks.
1840 	 */
1841 	if (icr & ICR_RXCFG) {
1842 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
1843 		    sc->sc_dev.dv_xname));
1844 		sc->sc_tbi_anstate = 2;
1845 	}
1846 
1847 	if (icr & ICR_LSC) {
1848 		status = CSR_READ(sc, WMREG_STATUS);
1849 		if (status & STATUS_LU) {
1850 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
1851 			    sc->sc_dev.dv_xname,
1852 			    (status & STATUS_FD) ? "FDX" : "HDX"));
1853 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
1854 			if (status & STATUS_FD)
1855 				sc->sc_tctl |=
1856 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
1857 			else
1858 				sc->sc_tctl |=
1859 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
1860 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
1861 			sc->sc_tbi_linkup = 1;
1862 		} else {
1863 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1864 			    sc->sc_dev.dv_xname));
1865 			sc->sc_tbi_linkup = 0;
1866 		}
1867 		sc->sc_tbi_anstate = 2;
1868 		wm_tbi_set_linkled(sc);
1869 	} else if (icr & ICR_RXSEQ) {
1870 		DPRINTF(WM_DEBUG_LINK,
1871 		    ("%s: LINK: Receive sequence error\n",
1872 		    sc->sc_dev.dv_xname));
1873 	}
1874 }
1875 
1876 /*
1877  * wm_tick:
1878  *
1879  *	One second timer, used to check link status, sweep up
1880  *	completed transmit jobs, etc.
1881  */
1882 void
1883 wm_tick(void *arg)
1884 {
1885 	struct wm_softc *sc = arg;
1886 	int s;
1887 
1888 	s = splnet();
1889 
1890 	if (sc->sc_flags & WM_F_HAS_MII)
1891 		mii_tick(&sc->sc_mii);
1892 	else
1893 		wm_tbi_check_link(sc);
1894 
1895 	splx(s);
1896 
1897 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
1898 }
1899 
1900 /*
1901  * wm_reset:
1902  *
1903  *	Reset the i82542 chip.
1904  */
1905 void
1906 wm_reset(struct wm_softc *sc)
1907 {
1908 	int i;
1909 
1910 	CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
1911 	delay(10000);
1912 
1913 	for (i = 0; i < 1000; i++) {
1914 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
1915 			return;
1916 		delay(20);
1917 	}
1918 
1919 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
1920 		printf("%s: WARNING: reset failed to complete\n",
1921 		    sc->sc_dev.dv_xname);
1922 }
1923 
1924 /*
1925  * wm_init:		[ifnet interface function]
1926  *
1927  *	Initialize the interface.  Must be called at splnet().
1928  */
1929 int
1930 wm_init(struct ifnet *ifp)
1931 {
1932 	struct wm_softc *sc = ifp->if_softc;
1933 	struct wm_rxsoft *rxs;
1934 	int i, error = 0;
1935 	uint32_t reg;
1936 
1937 	/* Cancel any pending I/O. */
1938 	wm_stop(ifp, 0);
1939 
1940 	/* Reset the chip to a known state. */
1941 	wm_reset(sc);
1942 
1943 	/* Initialize the transmit descriptor ring. */
1944 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1945 	WM_CDTXSYNC(sc, 0, WM_NTXDESC,
1946 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1947 	sc->sc_txfree = WM_NTXDESC;
1948 	sc->sc_txnext = 0;
1949 
1950 	sc->sc_txctx_ipcs = 0xffffffff;
1951 	sc->sc_txctx_tucs = 0xffffffff;
1952 
1953 	if (sc->sc_type < WM_T_82543) {
1954 		CSR_WRITE(sc, WMREG_OLD_TBDAH, 0);
1955 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR(sc, 0));
1956 		CSR_WRITE(sc, WMREG_OLD_TDLEN, sizeof(sc->sc_txdescs));
1957 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
1958 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
1959 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
1960 	} else {
1961 		CSR_WRITE(sc, WMREG_TBDAH, 0);
1962 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR(sc, 0));
1963 		CSR_WRITE(sc, WMREG_TDLEN, sizeof(sc->sc_txdescs));
1964 		CSR_WRITE(sc, WMREG_TDH, 0);
1965 		CSR_WRITE(sc, WMREG_TDT, 0);
1966 		CSR_WRITE(sc, WMREG_TIDV, 128);
1967 
1968 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
1969 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1970 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
1971 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
1972 	}
1973 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
1974 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
1975 
1976 	/* Initialize the transmit job descriptors. */
1977 	for (i = 0; i < WM_TXQUEUELEN; i++)
1978 		sc->sc_txsoft[i].txs_mbuf = NULL;
1979 	sc->sc_txsfree = WM_TXQUEUELEN;
1980 	sc->sc_txsnext = 0;
1981 	sc->sc_txsdirty = 0;
1982 
1983 	/*
1984 	 * Initialize the receive descriptor and receive job
1985 	 * descriptor rings.
1986 	 */
1987 	if (sc->sc_type < WM_T_82543) {
1988 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, 0);
1989 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR(sc, 0));
1990 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
1991 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
1992 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
1993 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
1994 
1995 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
1996 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
1997 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
1998 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
1999 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2000 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2001 	} else {
2002 		CSR_WRITE(sc, WMREG_RDBAH, 0);
2003 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR(sc, 0));
2004 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2005 		CSR_WRITE(sc, WMREG_RDH, 0);
2006 		CSR_WRITE(sc, WMREG_RDT, 0);
2007 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2008 	}
2009 	for (i = 0; i < WM_NRXDESC; i++) {
2010 		rxs = &sc->sc_rxsoft[i];
2011 		if (rxs->rxs_mbuf == NULL) {
2012 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
2013 				printf("%s: unable to allocate or map rx "
2014 				    "buffer %d, error = %d\n",
2015 				    sc->sc_dev.dv_xname, i, error);
2016 				/*
2017 				 * XXX Should attempt to run with fewer receive
2018 				 * XXX buffers instead of just failing.
2019 				 */
2020 				wm_rxdrain(sc);
2021 				goto out;
2022 			}
2023 		} else
2024 			WM_INIT_RXDESC(sc, i);
2025 	}
2026 	sc->sc_rxptr = 0;
2027 	sc->sc_rxdiscard = 0;
2028 	WM_RXCHAIN_RESET(sc);
2029 
2030 	/*
2031 	 * Clear out the VLAN table -- we don't use it (yet).
2032 	 */
2033 	CSR_WRITE(sc, WMREG_VET, 0);
2034 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
2035 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2036 
2037 	/*
2038 	 * Set up flow-control parameters.
2039 	 *
2040 	 * XXX Values could probably stand some tuning.
2041 	 */
2042 	if (sc->sc_ctrl & (CTRL_RFCE|CTRL_TFCE)) {
2043 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2044 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2045 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2046 
2047 		if (sc->sc_type < WM_T_82543) {
2048 			CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2049 			CSR_WRITE(sc, WMREG_OLD_FCRTL, FCRTL_DFLT);
2050 		} else {
2051 			CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2052 			CSR_WRITE(sc, WMREG_FCRTL, FCRTL_DFLT);
2053 		}
2054 		CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2055 	}
2056 
2057 #if 0 /* XXXJRT */
2058 	/* Deal with VLAN enables. */
2059 	if (sc->sc_ethercom.ec_nvlans != 0)
2060 		sc->sc_ctrl |= CTRL_VME;
2061 	else
2062 #endif /* XXXJRT */
2063 		sc->sc_ctrl &= ~CTRL_VME;
2064 
2065 	/* Write the control registers. */
2066 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2067 #if 0
2068 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2069 #endif
2070 
2071 	/*
2072 	 * Set up checksum offload parameters.
2073 	 */
2074 	reg = CSR_READ(sc, WMREG_RXCSUM);
2075 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2076 		reg |= RXCSUM_IPOFL;
2077 	else
2078 		reg &= ~RXCSUM_IPOFL;
2079 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2080 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2081 	else {
2082 		reg &= ~RXCSUM_TUOFL;
2083 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2084 			reg &= ~RXCSUM_IPOFL;
2085 	}
2086 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
2087 
2088 	/*
2089 	 * Set up the interrupt registers.
2090 	 */
2091 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2092 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2093 	    ICR_RXO | ICR_RXT0;
2094 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2095 		sc->sc_icr |= ICR_RXCFG;
2096 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2097 
2098 	/* Set up the inter-packet gap. */
2099 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2100 
2101 #if 0 /* XXXJRT */
2102 	/* Set the VLAN ethernetype. */
2103 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2104 #endif
2105 
2106 	/*
2107 	 * Set up the transmit control register; we start out with
2108 	 * a collision distance suitable for FDX, but update it whe
2109 	 * we resolve the media type.
2110 	 */
2111 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2112 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2113 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2114 
2115 	/* Set the media. */
2116 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2117 
2118 	/*
2119 	 * Set up the receive control register; we actually program
2120 	 * the register when we set the receive filter.  Use multicast
2121 	 * address offset type 0.
2122 	 *
2123 	 * Only the i82544 has the ability to strip the incoming
2124 	 * CRC, so we don't enable that feature.
2125 	 */
2126 	sc->sc_mchash_type = 0;
2127 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_2k |
2128 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2129 
2130 	/* Set the receive filter. */
2131 	wm_set_filter(sc);
2132 
2133 	/* Start the one second link check clock. */
2134 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2135 
2136 	/* ...all done! */
2137 	ifp->if_flags |= IFF_RUNNING;
2138 	ifp->if_flags &= ~IFF_OACTIVE;
2139 
2140  out:
2141 	if (error)
2142 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2143 	return (error);
2144 }
2145 
2146 /*
2147  * wm_rxdrain:
2148  *
2149  *	Drain the receive queue.
2150  */
2151 void
2152 wm_rxdrain(struct wm_softc *sc)
2153 {
2154 	struct wm_rxsoft *rxs;
2155 	int i;
2156 
2157 	for (i = 0; i < WM_NRXDESC; i++) {
2158 		rxs = &sc->sc_rxsoft[i];
2159 		if (rxs->rxs_mbuf != NULL) {
2160 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2161 			m_freem(rxs->rxs_mbuf);
2162 			rxs->rxs_mbuf = NULL;
2163 		}
2164 	}
2165 }
2166 
2167 /*
2168  * wm_stop:		[ifnet interface function]
2169  *
2170  *	Stop transmission on the interface.
2171  */
2172 void
2173 wm_stop(struct ifnet *ifp, int disable)
2174 {
2175 	struct wm_softc *sc = ifp->if_softc;
2176 	struct wm_txsoft *txs;
2177 	int i;
2178 
2179 	/* Stop the one second clock. */
2180 	callout_stop(&sc->sc_tick_ch);
2181 
2182 	if (sc->sc_flags & WM_F_HAS_MII) {
2183 		/* Down the MII. */
2184 		mii_down(&sc->sc_mii);
2185 	}
2186 
2187 	/* Stop the transmit and receive processes. */
2188 	CSR_WRITE(sc, WMREG_TCTL, 0);
2189 	CSR_WRITE(sc, WMREG_RCTL, 0);
2190 
2191 	/* Release any queued transmit buffers. */
2192 	for (i = 0; i < WM_TXQUEUELEN; i++) {
2193 		txs = &sc->sc_txsoft[i];
2194 		if (txs->txs_mbuf != NULL) {
2195 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2196 			m_freem(txs->txs_mbuf);
2197 			txs->txs_mbuf = NULL;
2198 		}
2199 	}
2200 
2201 	if (disable)
2202 		wm_rxdrain(sc);
2203 
2204 	/* Mark the interface as down and cancel the watchdog timer. */
2205 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2206 	ifp->if_timer = 0;
2207 }
2208 
2209 /*
2210  * wm_read_eeprom:
2211  *
2212  *	Read data from the serial EEPROM.
2213  */
2214 void
2215 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2216 {
2217 	uint32_t reg;
2218 	int i, x, addrbits = 6;
2219 
2220 	for (i = 0; i < wordcnt; i++) {
2221 		if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2222 			reg = CSR_READ(sc, WMREG_EECD);
2223 
2224 			/* Get number of address bits. */
2225 			if (reg & EECD_EE_SIZE)
2226 				addrbits = 8;
2227 
2228 			/* Request EEPROM access. */
2229 			reg |= EECD_EE_REQ;
2230 			CSR_WRITE(sc, WMREG_EECD, reg);
2231 
2232 			/* ..and wait for it to be granted. */
2233 			for (x = 0; x < 100; x++) {
2234 				reg = CSR_READ(sc, WMREG_EECD);
2235 				if (reg & EECD_EE_GNT)
2236 					break;
2237 				delay(5);
2238 			}
2239 			if ((reg & EECD_EE_GNT) == 0) {
2240 				printf("%s: could not acquire EEPROM GNT\n",
2241 				    sc->sc_dev.dv_xname);
2242 				*data = 0xffff;
2243 				reg &= ~EECD_EE_REQ;
2244 				CSR_WRITE(sc, WMREG_EECD, reg);
2245 				continue;
2246 			}
2247 		} else
2248 			reg = 0;
2249 
2250 		/* Clear SK and DI. */
2251 		reg &= ~(EECD_SK | EECD_DI);
2252 		CSR_WRITE(sc, WMREG_EECD, reg);
2253 
2254 		/* Set CHIP SELECT. */
2255 		reg |= EECD_CS;
2256 		CSR_WRITE(sc, WMREG_EECD, reg);
2257 		delay(2);
2258 
2259 		/* Shift in the READ command. */
2260 		for (x = 3; x > 0; x--) {
2261 			if (UWIRE_OPC_READ & (1 << (x - 1)))
2262 				reg |= EECD_DI;
2263 			else
2264 				reg &= ~EECD_DI;
2265 			CSR_WRITE(sc, WMREG_EECD, reg);
2266 			delay(2);
2267 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2268 			delay(2);
2269 			CSR_WRITE(sc, WMREG_EECD, reg);
2270 			delay(2);
2271 		}
2272 
2273 		/* Shift in address. */
2274 		for (x = addrbits; x > 0; x--) {
2275 			if ((word + i) & (1 << (x - 1)))
2276 				reg |= EECD_DI;
2277 			else
2278 				reg &= ~EECD_DI;
2279 			CSR_WRITE(sc, WMREG_EECD, reg);
2280 			delay(2);
2281 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2282 			delay(2);
2283 			CSR_WRITE(sc, WMREG_EECD, reg);
2284 			delay(2);
2285 		}
2286 
2287 		/* Shift out the data. */
2288 		reg &= ~EECD_DI;
2289 		data[i] = 0;
2290 		for (x = 16; x > 0; x--) {
2291 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2292 			delay(2);
2293 			if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2294 				data[i] |= (1 << (x - 1));
2295 			CSR_WRITE(sc, WMREG_EECD, reg);
2296 			delay(2);
2297 		}
2298 
2299 		/* Clear CHIP SELECT. */
2300 		reg &= ~EECD_CS;
2301 		CSR_WRITE(sc, WMREG_EECD, reg);
2302 		delay(2);
2303 
2304 		if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2305 			/* Release the EEPROM. */
2306 			reg &= ~EECD_EE_REQ;
2307 			CSR_WRITE(sc, WMREG_EECD, reg);
2308 		}
2309 	}
2310 }
2311 
2312 /*
2313  * wm_add_rxbuf:
2314  *
2315  *	Add a receive buffer to the indiciated descriptor.
2316  */
2317 int
2318 wm_add_rxbuf(struct wm_softc *sc, int idx)
2319 {
2320 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
2321 	struct mbuf *m;
2322 	int error;
2323 
2324 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2325 	if (m == NULL)
2326 		return (ENOBUFS);
2327 
2328 	MCLGET(m, M_DONTWAIT);
2329 	if ((m->m_flags & M_EXT) == 0) {
2330 		m_freem(m);
2331 		return (ENOBUFS);
2332 	}
2333 
2334 	if (rxs->rxs_mbuf != NULL)
2335 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2336 
2337 	rxs->rxs_mbuf = m;
2338 
2339 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2340 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2341 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2342 	if (error) {
2343 		printf("%s: unable to load rx DMA map %d, error = %d\n",
2344 		    sc->sc_dev.dv_xname, idx, error);
2345 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
2346 	}
2347 
2348 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2349 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2350 
2351 	WM_INIT_RXDESC(sc, idx);
2352 
2353 	return (0);
2354 }
2355 
2356 /*
2357  * wm_set_ral:
2358  *
2359  *	Set an entery in the receive address list.
2360  */
2361 static void
2362 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
2363 {
2364 	uint32_t ral_lo, ral_hi;
2365 
2366 	if (enaddr != NULL) {
2367 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2368 		    (enaddr[3] << 24);
2369 		ral_hi = enaddr[4] | (enaddr[5] << 8);
2370 		ral_hi |= RAL_AV;
2371 	} else {
2372 		ral_lo = 0;
2373 		ral_hi = 0;
2374 	}
2375 
2376 	if (sc->sc_type >= WM_T_82544) {
2377 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
2378 		    ral_lo);
2379 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
2380 		    ral_hi);
2381 	} else {
2382 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
2383 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
2384 	}
2385 }
2386 
2387 /*
2388  * wm_mchash:
2389  *
2390  *	Compute the hash of the multicast address for the 4096-bit
2391  *	multicast filter.
2392  */
2393 static uint32_t
2394 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
2395 {
2396 	static const int lo_shift[4] = { 4, 3, 2, 0 };
2397 	static const int hi_shift[4] = { 4, 5, 6, 8 };
2398 	uint32_t hash;
2399 
2400 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2401 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2402 
2403 	return (hash & 0xfff);
2404 }
2405 
2406 /*
2407  * wm_set_filter:
2408  *
2409  *	Set up the receive filter.
2410  */
2411 void
2412 wm_set_filter(struct wm_softc *sc)
2413 {
2414 	struct ethercom *ec = &sc->sc_ethercom;
2415 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2416 	struct ether_multi *enm;
2417 	struct ether_multistep step;
2418 	bus_addr_t mta_reg;
2419 	uint32_t hash, reg, bit;
2420 	int i;
2421 
2422 	if (sc->sc_type >= WM_T_82544)
2423 		mta_reg = WMREG_CORDOVA_MTA;
2424 	else
2425 		mta_reg = WMREG_MTA;
2426 
2427 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2428 
2429 	if (ifp->if_flags & IFF_BROADCAST)
2430 		sc->sc_rctl |= RCTL_BAM;
2431 	if (ifp->if_flags & IFF_PROMISC) {
2432 		sc->sc_rctl |= RCTL_UPE;
2433 		goto allmulti;
2434 	}
2435 
2436 	/*
2437 	 * Set the station address in the first RAL slot, and
2438 	 * clear the remaining slots.
2439 	 */
2440 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
2441 	for (i = 1; i < WM_RAL_TABSIZE; i++)
2442 		wm_set_ral(sc, NULL, i);
2443 
2444 	/* Clear out the multicast table. */
2445 	for (i = 0; i < WM_MC_TABSIZE; i++)
2446 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
2447 
2448 	ETHER_FIRST_MULTI(step, ec, enm);
2449 	while (enm != NULL) {
2450 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2451 			/*
2452 			 * We must listen to a range of multicast addresses.
2453 			 * For now, just accept all multicasts, rather than
2454 			 * trying to set only those filter bits needed to match
2455 			 * the range.  (At this time, the only use of address
2456 			 * ranges is for IP multicast routing, for which the
2457 			 * range is big enough to require all bits set.)
2458 			 */
2459 			goto allmulti;
2460 		}
2461 
2462 		hash = wm_mchash(sc, enm->enm_addrlo);
2463 
2464 		reg = (hash >> 5) & 0x7f;
2465 		bit = hash & 0x1f;
2466 
2467 		hash = CSR_READ(sc, mta_reg + (reg << 2));
2468 		hash |= 1U << bit;
2469 
2470 		/* XXX Hardware bug?? */
2471 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
2472 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
2473 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
2474 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
2475 		} else
2476 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
2477 
2478 		ETHER_NEXT_MULTI(step, enm);
2479 	}
2480 
2481 	ifp->if_flags &= ~IFF_ALLMULTI;
2482 	goto setit;
2483 
2484  allmulti:
2485 	ifp->if_flags |= IFF_ALLMULTI;
2486 	sc->sc_rctl |= RCTL_MPE;
2487 
2488  setit:
2489 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
2490 }
2491 
2492 /*
2493  * wm_tbi_mediainit:
2494  *
2495  *	Initialize media for use on 1000BASE-X devices.
2496  */
2497 void
2498 wm_tbi_mediainit(struct wm_softc *sc)
2499 {
2500 	const char *sep = "";
2501 
2502 	if (sc->sc_type < WM_T_82543)
2503 		sc->sc_tipg = TIPG_WM_DFLT;
2504 	else
2505 		sc->sc_tipg = TIPG_LG_DFLT;
2506 
2507 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
2508 	    wm_tbi_mediastatus);
2509 
2510 	/*
2511 	 * SWD Pins:
2512 	 *
2513 	 *	0 = Link LED (output)
2514 	 *	1 = Loss Of Signal (input)
2515 	 */
2516 	sc->sc_ctrl |= CTRL_SWDPIO(0);
2517 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
2518 
2519 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2520 
2521 #define	ADD(ss, mm, dd)							\
2522 do {									\
2523 	printf("%s%s", sep, ss);					\
2524 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
2525 	sep = ", ";							\
2526 } while (/*CONSTCOND*/0)
2527 
2528 	printf("%s: ", sc->sc_dev.dv_xname);
2529 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
2530 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
2531 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
2532 	printf("\n");
2533 
2534 #undef ADD
2535 
2536 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2537 }
2538 
2539 /*
2540  * wm_tbi_mediastatus:	[ifmedia interface function]
2541  *
2542  *	Get the current interface media status on a 1000BASE-X device.
2543  */
2544 void
2545 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2546 {
2547 	struct wm_softc *sc = ifp->if_softc;
2548 
2549 	ifmr->ifm_status = IFM_AVALID;
2550 	ifmr->ifm_active = IFM_ETHER;
2551 
2552 	if (sc->sc_tbi_linkup == 0) {
2553 		ifmr->ifm_active |= IFM_NONE;
2554 		return;
2555 	}
2556 
2557 	ifmr->ifm_status |= IFM_ACTIVE;
2558 	ifmr->ifm_active |= IFM_1000_SX;
2559 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
2560 		ifmr->ifm_active |= IFM_FDX;
2561 }
2562 
2563 /*
2564  * wm_tbi_mediachange:	[ifmedia interface function]
2565  *
2566  *	Set hardware to newly-selected media on a 1000BASE-X device.
2567  */
2568 int
2569 wm_tbi_mediachange(struct ifnet *ifp)
2570 {
2571 	struct wm_softc *sc = ifp->if_softc;
2572 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2573 	uint32_t status;
2574 	int i;
2575 
2576 	sc->sc_txcw = ife->ifm_data;
2577 	if (sc->sc_ctrl & CTRL_RFCE)
2578 		sc->sc_txcw |= ANAR_X_PAUSE_TOWARDS;
2579 	if (sc->sc_ctrl & CTRL_TFCE)
2580 		sc->sc_txcw |= ANAR_X_PAUSE_ASYM;
2581 	sc->sc_txcw |= TXCW_ANE;
2582 
2583 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
2584 	delay(10000);
2585 
2586 	sc->sc_tbi_anstate = 0;
2587 
2588 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
2589 		/* Have signal; wait for the link to come up. */
2590 		for (i = 0; i < 50; i++) {
2591 			delay(10000);
2592 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
2593 				break;
2594 		}
2595 
2596 		status = CSR_READ(sc, WMREG_STATUS);
2597 		if (status & STATUS_LU) {
2598 			/* Link is up. */
2599 			DPRINTF(WM_DEBUG_LINK,
2600 			    ("%s: LINK: set media -> link up %s\n",
2601 			    sc->sc_dev.dv_xname,
2602 			    (status & STATUS_FD) ? "FDX" : "HDX"));
2603 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2604 			if (status & STATUS_FD)
2605 				sc->sc_tctl |=
2606 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2607 			else
2608 				sc->sc_tctl |=
2609 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2610 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2611 			sc->sc_tbi_linkup = 1;
2612 		} else {
2613 			/* Link is down. */
2614 			DPRINTF(WM_DEBUG_LINK,
2615 			    ("%s: LINK: set media -> link down\n",
2616 			    sc->sc_dev.dv_xname));
2617 			sc->sc_tbi_linkup = 0;
2618 		}
2619 	} else {
2620 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
2621 		    sc->sc_dev.dv_xname));
2622 		sc->sc_tbi_linkup = 0;
2623 	}
2624 
2625 	wm_tbi_set_linkled(sc);
2626 
2627 	return (0);
2628 }
2629 
2630 /*
2631  * wm_tbi_set_linkled:
2632  *
2633  *	Update the link LED on 1000BASE-X devices.
2634  */
2635 void
2636 wm_tbi_set_linkled(struct wm_softc *sc)
2637 {
2638 
2639 	if (sc->sc_tbi_linkup)
2640 		sc->sc_ctrl |= CTRL_SWDPIN(0);
2641 	else
2642 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
2643 
2644 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2645 }
2646 
2647 /*
2648  * wm_tbi_check_link:
2649  *
2650  *	Check the link on 1000BASE-X devices.
2651  */
2652 void
2653 wm_tbi_check_link(struct wm_softc *sc)
2654 {
2655 	uint32_t rxcw, ctrl, status;
2656 
2657 	if (sc->sc_tbi_anstate == 0)
2658 		return;
2659 	else if (sc->sc_tbi_anstate > 1) {
2660 		DPRINTF(WM_DEBUG_LINK,
2661 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
2662 		    sc->sc_tbi_anstate));
2663 		sc->sc_tbi_anstate--;
2664 		return;
2665 	}
2666 
2667 	sc->sc_tbi_anstate = 0;
2668 
2669 	rxcw = CSR_READ(sc, WMREG_RXCW);
2670 	ctrl = CSR_READ(sc, WMREG_CTRL);
2671 	status = CSR_READ(sc, WMREG_STATUS);
2672 
2673 	if ((status & STATUS_LU) == 0) {
2674 		DPRINTF(WM_DEBUG_LINK,
2675 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
2676 		sc->sc_tbi_linkup = 0;
2677 	} else {
2678 		DPRINTF(WM_DEBUG_LINK,
2679 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
2680 		    (status & STATUS_FD) ? "FDX" : "HDX"));
2681 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2682 		if (status & STATUS_FD)
2683 			sc->sc_tctl |=
2684 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2685 		else
2686 			sc->sc_tctl |=
2687 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2688 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2689 		sc->sc_tbi_linkup = 1;
2690 	}
2691 
2692 	wm_tbi_set_linkled(sc);
2693 }
2694 
2695 /*
2696  * wm_gmii_reset:
2697  *
2698  *	Reset the PHY.
2699  */
2700 void
2701 wm_gmii_reset(struct wm_softc *sc)
2702 {
2703 	uint32_t reg;
2704 
2705 	if (sc->sc_type >= WM_T_82544) {
2706 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
2707 		delay(20000);
2708 
2709 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2710 		delay(20000);
2711 	} else {
2712 		/* The PHY reset pin is active-low. */
2713 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
2714 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
2715 		    CTRL_EXT_SWDPIN(4));
2716 		reg |= CTRL_EXT_SWDPIO(4);
2717 
2718 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
2719 		delay(10);
2720 
2721 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2722 		delay(10);
2723 
2724 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
2725 		delay(10);
2726 #if 0
2727 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
2728 #endif
2729 	}
2730 }
2731 
2732 /*
2733  * wm_gmii_mediainit:
2734  *
2735  *	Initialize media for use on 1000BASE-T devices.
2736  */
2737 void
2738 wm_gmii_mediainit(struct wm_softc *sc)
2739 {
2740 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2741 
2742 	/* We have MII. */
2743 	sc->sc_flags |= WM_F_HAS_MII;
2744 
2745 	sc->sc_tipg = TIPG_1000T_DFLT;
2746 
2747 	/*
2748 	 * Let the chip set speed/duplex on its own based on
2749 	 * signals from the PHY.
2750 	 */
2751 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
2752 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2753 
2754 	/* Initialize our media structures and probe the GMII. */
2755 	sc->sc_mii.mii_ifp = ifp;
2756 
2757 	if (sc->sc_type >= WM_T_82544) {
2758 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
2759 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
2760 	} else {
2761 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
2762 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
2763 	}
2764 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
2765 
2766 	wm_gmii_reset(sc);
2767 
2768 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
2769 	    wm_gmii_mediastatus);
2770 
2771 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2772 	    MII_OFFSET_ANY, 0);
2773 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2774 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2775 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2776 	} else
2777 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2778 }
2779 
2780 /*
2781  * wm_gmii_mediastatus:	[ifmedia interface function]
2782  *
2783  *	Get the current interface media status on a 1000BASE-T device.
2784  */
2785 void
2786 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2787 {
2788 	struct wm_softc *sc = ifp->if_softc;
2789 
2790 	mii_pollstat(&sc->sc_mii);
2791 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2792 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2793 }
2794 
2795 /*
2796  * wm_gmii_mediachange:	[ifmedia interface function]
2797  *
2798  *	Set hardware to newly-selected media on a 1000BASE-T device.
2799  */
2800 int
2801 wm_gmii_mediachange(struct ifnet *ifp)
2802 {
2803 	struct wm_softc *sc = ifp->if_softc;
2804 
2805 	if (ifp->if_flags & IFF_UP)
2806 		mii_mediachg(&sc->sc_mii);
2807 	return (0);
2808 }
2809 
2810 #define	MDI_IO		CTRL_SWDPIN(2)
2811 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
2812 #define	MDI_CLK		CTRL_SWDPIN(3)
2813 
2814 static void
2815 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
2816 {
2817 	uint32_t i, v;
2818 
2819 	v = CSR_READ(sc, WMREG_CTRL);
2820 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
2821 	v |= MDI_DIR | CTRL_SWDPIO(3);
2822 
2823 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
2824 		if (data & i)
2825 			v |= MDI_IO;
2826 		else
2827 			v &= ~MDI_IO;
2828 		CSR_WRITE(sc, WMREG_CTRL, v);
2829 		delay(10);
2830 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
2831 		delay(10);
2832 		CSR_WRITE(sc, WMREG_CTRL, v);
2833 		delay(10);
2834 	}
2835 }
2836 
2837 static uint32_t
2838 i82543_mii_recvbits(struct wm_softc *sc)
2839 {
2840 	uint32_t v, i, data = 0;
2841 
2842 	v = CSR_READ(sc, WMREG_CTRL);
2843 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
2844 	v |= CTRL_SWDPIO(3);
2845 
2846 	CSR_WRITE(sc, WMREG_CTRL, v);
2847 	delay(10);
2848 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
2849 	delay(10);
2850 	CSR_WRITE(sc, WMREG_CTRL, v);
2851 	delay(10);
2852 
2853 	for (i = 0; i < 16; i++) {
2854 		data <<= 1;
2855 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
2856 		delay(10);
2857 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
2858 			data |= 1;
2859 		CSR_WRITE(sc, WMREG_CTRL, v);
2860 		delay(10);
2861 	}
2862 
2863 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
2864 	delay(10);
2865 	CSR_WRITE(sc, WMREG_CTRL, v);
2866 	delay(10);
2867 
2868 	return (data);
2869 }
2870 
2871 #undef MDI_IO
2872 #undef MDI_DIR
2873 #undef MDI_CLK
2874 
2875 /*
2876  * wm_gmii_i82543_readreg:	[mii interface function]
2877  *
2878  *	Read a PHY register on the GMII (i82543 version).
2879  */
2880 int
2881 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
2882 {
2883 	struct wm_softc *sc = (void *) self;
2884 	int rv;
2885 
2886 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
2887 	i82543_mii_sendbits(sc, reg | (phy << 5) |
2888 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
2889 	rv = i82543_mii_recvbits(sc) & 0xffff;
2890 
2891 	DPRINTF(WM_DEBUG_GMII,
2892 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
2893 	    sc->sc_dev.dv_xname, phy, reg, rv));
2894 
2895 	return (rv);
2896 }
2897 
2898 /*
2899  * wm_gmii_i82543_writereg:	[mii interface function]
2900  *
2901  *	Write a PHY register on the GMII (i82543 version).
2902  */
2903 void
2904 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
2905 {
2906 	struct wm_softc *sc = (void *) self;
2907 
2908 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
2909 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
2910 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
2911 	    (MII_COMMAND_START << 30), 32);
2912 }
2913 
2914 /*
2915  * wm_gmii_i82544_readreg:	[mii interface function]
2916  *
2917  *	Read a PHY register on the GMII.
2918  */
2919 int
2920 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
2921 {
2922 	struct wm_softc *sc = (void *) self;
2923 	uint32_t mdic;
2924 	int i, rv;
2925 
2926 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
2927 	    MDIC_REGADD(reg));
2928 
2929 	for (i = 0; i < 100; i++) {
2930 		mdic = CSR_READ(sc, WMREG_MDIC);
2931 		if (mdic & MDIC_READY)
2932 			break;
2933 		delay(10);
2934 	}
2935 
2936 	if ((mdic & MDIC_READY) == 0) {
2937 		printf("%s: MDIC read timed out: phy %d reg %d\n",
2938 		    sc->sc_dev.dv_xname, phy, reg);
2939 		rv = 0;
2940 	} else if (mdic & MDIC_E) {
2941 #if 0 /* This is normal if no PHY is present. */
2942 		printf("%s: MDIC read error: phy %d reg %d\n",
2943 		    sc->sc_dev.dv_xname, phy, reg);
2944 #endif
2945 		rv = 0;
2946 	} else {
2947 		rv = MDIC_DATA(mdic);
2948 		if (rv == 0xffff)
2949 			rv = 0;
2950 	}
2951 
2952 	return (rv);
2953 }
2954 
2955 /*
2956  * wm_gmii_i82544_writereg:	[mii interface function]
2957  *
2958  *	Write a PHY register on the GMII.
2959  */
2960 void
2961 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
2962 {
2963 	struct wm_softc *sc = (void *) self;
2964 	uint32_t mdic;
2965 	int i;
2966 
2967 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
2968 	    MDIC_REGADD(reg) | MDIC_DATA(val));
2969 
2970 	for (i = 0; i < 100; i++) {
2971 		mdic = CSR_READ(sc, WMREG_MDIC);
2972 		if (mdic & MDIC_READY)
2973 			break;
2974 		delay(10);
2975 	}
2976 
2977 	if ((mdic & MDIC_READY) == 0)
2978 		printf("%s: MDIC write timed out: phy %d reg %d\n",
2979 		    sc->sc_dev.dv_xname, phy, reg);
2980 	else if (mdic & MDIC_E)
2981 		printf("%s: MDIC write error: phy %d reg %d\n",
2982 		    sc->sc_dev.dv_xname, phy, reg);
2983 }
2984 
2985 /*
2986  * wm_gmii_statchg:	[mii interface function]
2987  *
2988  *	Callback from MII layer when media changes.
2989  */
2990 void
2991 wm_gmii_statchg(struct device *self)
2992 {
2993 	struct wm_softc *sc = (void *) self;
2994 
2995 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2996 
2997 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
2998 		DPRINTF(WM_DEBUG_LINK,
2999 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3000 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3001 	} else  {
3002 		DPRINTF(WM_DEBUG_LINK,
3003 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3004 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3005 	}
3006 
3007 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3008 }
3009