xref: /netbsd-src/sys/dev/pci/if_vte.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: if_vte.c,v 1.26 2019/05/28 07:41:49 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54 
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56 
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.26 2019/05/28 07:41:49 msaitoh Exp $");
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71 
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 #include <net/bpf.h>
79 
80 #include <sys/rndsource.h>
81 
82 #include "opt_inet.h"
83 #include <net/if_ether.h>
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/if_inarp.h>
90 #endif
91 
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98 
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101 
102 #include <dev/pci/if_vtereg.h>
103 #include <dev/pci/if_vtevar.h>
104 
105 static int	vte_match(device_t, cfdata_t, void *);
106 static void	vte_attach(device_t, device_t, void *);
107 static int	vte_detach(device_t, int);
108 static int	vte_dma_alloc(struct vte_softc *);
109 static void	vte_dma_free(struct vte_softc *);
110 static struct vte_txdesc *
111 		vte_encap(struct vte_softc *, struct mbuf **);
112 static void	vte_get_macaddr(struct vte_softc *);
113 static int	vte_init(struct ifnet *);
114 static int	vte_init_rx_ring(struct vte_softc *);
115 static int	vte_init_tx_ring(struct vte_softc *);
116 static int	vte_intr(void *);
117 static int	vte_ifioctl(struct ifnet *, u_long, void *);
118 static void	vte_mac_config(struct vte_softc *);
119 static int	vte_miibus_readreg(device_t, int, int, uint16_t *);
120 static void	vte_miibus_statchg(struct ifnet *);
121 static int	vte_miibus_writereg(device_t, int, int, uint16_t);
122 static int	vte_mediachange(struct ifnet *);
123 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
124 static void	vte_reset(struct vte_softc *);
125 static void	vte_rxeof(struct vte_softc *);
126 static void	vte_rxfilter(struct vte_softc *);
127 static bool	vte_shutdown(device_t, int);
128 static bool	vte_suspend(device_t, const pmf_qual_t *);
129 static bool	vte_resume(device_t, const pmf_qual_t *);
130 static void	vte_ifstart(struct ifnet *);
131 static void	vte_start_mac(struct vte_softc *);
132 static void	vte_stats_clear(struct vte_softc *);
133 static void	vte_stats_update(struct vte_softc *);
134 static void	vte_stop(struct ifnet *, int);
135 static void	vte_stop_mac(struct vte_softc *);
136 static void	vte_tick(void *);
137 static void	vte_txeof(struct vte_softc *);
138 static void	vte_ifwatchdog(struct ifnet *);
139 
140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
142 static int vte_root_num;
143 
144 #define DPRINTF(a)
145 
146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
147     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
148 
149 
150 static int
151 vte_match(device_t parent, cfdata_t cf, void *aux)
152 {
153 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
154 
155 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
156 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
157 		return 1;
158 
159 	return 0;
160 }
161 
162 static void
163 vte_attach(device_t parent, device_t self, void *aux)
164 {
165 	struct vte_softc *sc = device_private(self);
166 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
167 	struct ifnet * const ifp = &sc->vte_if;
168 	struct mii_data * const mii = &sc->vte_mii;
169 	int h_valid;
170 	pcireg_t reg, csr;
171 	pci_intr_handle_t intrhandle;
172 	const char *intrstr;
173 	int error;
174 	const struct sysctlnode *node;
175 	int vte_nodenum;
176 	char intrbuf[PCI_INTRSTR_LEN];
177 
178 	sc->vte_dev = self;
179 
180 	callout_init(&sc->vte_tick_ch, 0);
181 
182 	/* Map the device. */
183 	h_valid = 0;
184 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
185 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
186 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
187 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
188 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
189 	}
190 	if (h_valid == 0) {
191 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
192 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
193 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
194 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
195 			    &sc->vte_bushandle, NULL, NULL) == 0);
196 		}
197 	}
198 	if (h_valid == 0) {
199 		aprint_error_dev(self, "unable to map device registers\n");
200 		return;
201 	}
202 	sc->vte_dmatag = pa->pa_dmat;
203 	/* Enable the device. */
204 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
205 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
206 	    csr | PCI_COMMAND_MASTER_ENABLE);
207 
208 	pci_aprint_devinfo(pa, NULL);
209 
210 	/* Reset the ethernet controller. */
211 	vte_reset(sc);
212 
213 	if ((error = vte_dma_alloc(sc)) != 0)
214 		return;
215 
216 	/* Load station address. */
217 	vte_get_macaddr(sc);
218 
219 	aprint_normal_dev(self, "Ethernet address %s\n",
220 	    ether_sprintf(sc->vte_eaddr));
221 
222 	/* Map and establish interrupts */
223 	if (pci_intr_map(pa, &intrhandle)) {
224 		aprint_error_dev(self, "couldn't map interrupt\n");
225 		return;
226 	}
227 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
228 	    sizeof(intrbuf));
229 	sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
230 	    vte_intr, sc, device_xname(self));
231 	if (sc->vte_ih == NULL) {
232 		aprint_error_dev(self, "couldn't establish interrupt");
233 		if (intrstr != NULL)
234 			aprint_error(" at %s", intrstr);
235 		aprint_error("\n");
236 		return;
237 	}
238 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
239 
240 	sc->vte_if.if_softc = sc;
241 	mii->mii_ifp = ifp;
242 	mii->mii_readreg = vte_miibus_readreg;
243 	mii->mii_writereg = vte_miibus_writereg;
244 	mii->mii_statchg = vte_miibus_statchg;
245 	sc->vte_ec.ec_mii = mii;
246 	ifmedia_init(&mii->mii_media, IFM_IMASK, vte_mediachange,
247 	    ether_mediastatus);
248 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
249 	    MII_OFFSET_ANY, 0);
250 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
251 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
252 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
253 	} else
254 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
255 
256 	/*
257 	 * We can support 802.1Q VLAN-sized frames.
258 	 */
259 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
260 
261 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
262 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
263 	ifp->if_ioctl = vte_ifioctl;
264 	ifp->if_start = vte_ifstart;
265 	ifp->if_watchdog = vte_ifwatchdog;
266 	ifp->if_init = vte_init;
267 	ifp->if_stop = vte_stop;
268 	ifp->if_timer = 0;
269 	IFQ_SET_READY(&ifp->if_snd);
270 	if_attach(ifp);
271 	if_deferred_start_init(ifp, NULL);
272 	ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
273 
274 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
275 		pmf_class_network_register(self, ifp);
276 	else
277 		aprint_error_dev(self, "couldn't establish power handler\n");
278 
279 	rnd_attach_source(&sc->rnd_source, device_xname(self),
280 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
281 
282 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
283 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
284 	    SYSCTL_DESCR("vte per-controller controls"),
285 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
286 	    CTL_EOL) != 0) {
287 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
288 		return;
289 	}
290 	vte_nodenum = node->sysctl_num;
291 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
292 	    CTLFLAG_READWRITE,
293 	    CTLTYPE_INT, "int_rxct",
294 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
295 	    vte_sysctl_intrxct, 0, (void *)sc,
296 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
297 	    CTL_EOL) != 0) {
298 		aprint_normal_dev(sc->vte_dev,
299 		    "couldn't create int_rxct sysctl node\n");
300 	}
301 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
302 	    CTLFLAG_READWRITE,
303 	    CTLTYPE_INT, "int_txct",
304 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
305 	    vte_sysctl_inttxct, 0, (void *)sc,
306 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
307 	    CTL_EOL) != 0) {
308 		aprint_normal_dev(sc->vte_dev,
309 		    "couldn't create int_txct sysctl node\n");
310 	}
311 }
312 
313 static int
314 vte_detach(device_t dev, int flags __unused)
315 {
316 	struct vte_softc *sc = device_private(dev);
317 	struct ifnet *ifp = &sc->vte_if;
318 	int s;
319 
320 	s = splnet();
321 	/* Stop the interface. Callouts are stopped in it. */
322 	vte_stop(ifp, 1);
323 	splx(s);
324 
325 	pmf_device_deregister(dev);
326 
327 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
328 	ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
329 
330 	ether_ifdetach(ifp);
331 	if_detach(ifp);
332 
333 	vte_dma_free(sc);
334 
335 	return (0);
336 }
337 
338 static int
339 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
340 {
341 	struct vte_softc *sc = device_private(dev);
342 	int i;
343 
344 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
345 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
346 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
347 		DELAY(5);
348 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
349 			break;
350 	}
351 
352 	if (i == 0) {
353 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
354 		return ETIMEDOUT;
355 	}
356 
357 	*val = CSR_READ_2(sc, VTE_MMRD);
358 	return 0;
359 }
360 
361 static int
362 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
363 {
364 	struct vte_softc *sc = device_private(dev);
365 	int i;
366 
367 	CSR_WRITE_2(sc, VTE_MMWD, val);
368 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
369 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
370 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
371 		DELAY(5);
372 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
373 			break;
374 	}
375 
376 	if (i == 0) {
377 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
378 		return ETIMEDOUT;
379 	}
380 
381 	return 0;
382 }
383 
384 static void
385 vte_miibus_statchg(struct ifnet *ifp)
386 {
387 	struct vte_softc *sc = ifp->if_softc;
388 	uint16_t val;
389 
390 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
391 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
392 
393 	sc->vte_flags &= ~VTE_FLAG_LINK;
394 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
395 	    (IFM_ACTIVE | IFM_AVALID)) {
396 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
397 		case IFM_10_T:
398 		case IFM_100_TX:
399 			sc->vte_flags |= VTE_FLAG_LINK;
400 			break;
401 		default:
402 			break;
403 		}
404 	}
405 
406 	/* Stop RX/TX MACs. */
407 	vte_stop_mac(sc);
408 	/* Program MACs with resolved duplex and flow control. */
409 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
410 		/*
411 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
412 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
413 		 */
414 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
415 			val = 18 << VTE_IM_TIMER_SHIFT;
416 		else
417 			val = 1 << VTE_IM_TIMER_SHIFT;
418 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
419 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
420 		CSR_WRITE_2(sc, VTE_MRICR, val);
421 
422 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
423 			val = 18 << VTE_IM_TIMER_SHIFT;
424 		else
425 			val = 1 << VTE_IM_TIMER_SHIFT;
426 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
427 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
428 		CSR_WRITE_2(sc, VTE_MTICR, val);
429 
430 		vte_mac_config(sc);
431 		vte_start_mac(sc);
432 		DPRINTF(("vte_miibus_statchg: link\n"));
433 	}
434 }
435 
436 static void
437 vte_get_macaddr(struct vte_softc *sc)
438 {
439 	uint16_t mid;
440 
441 	/*
442 	 * It seems there is no way to reload station address and
443 	 * it is supposed to be set by BIOS.
444 	 */
445 	mid = CSR_READ_2(sc, VTE_MID0L);
446 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
447 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
448 	mid = CSR_READ_2(sc, VTE_MID0M);
449 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
450 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
451 	mid = CSR_READ_2(sc, VTE_MID0H);
452 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
453 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
454 }
455 
456 
457 static int
458 vte_dma_alloc(struct vte_softc *sc)
459 {
460 	struct vte_txdesc *txd;
461 	struct vte_rxdesc *rxd;
462 	int error, i, rseg;
463 
464 	/* create DMA map for TX ring */
465 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
466 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
467 	    &sc->vte_cdata.vte_tx_ring_map);
468 	if (error) {
469 		aprint_error_dev(sc->vte_dev,
470 		    "could not create dma map for TX ring (%d)\n",
471 		    error);
472 		goto fail;
473 	}
474 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
475 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
476 	    VTE_TX_RING_ALIGN, 0,
477 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
478 	    BUS_DMA_NOWAIT);
479 	if (error != 0) {
480 		aprint_error_dev(sc->vte_dev,
481 		    "could not allocate DMA'able memory for TX ring (%d).\n",
482 		    error);
483 		goto fail;
484 	}
485 	KASSERT(rseg == 1);
486 	error = bus_dmamem_map(sc->vte_dmatag,
487 	    sc->vte_cdata.vte_tx_ring_seg, 1,
488 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
489 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
490 	if (error != 0) {
491 		aprint_error_dev(sc->vte_dev,
492 		    "could not map DMA'able memory for TX ring (%d).\n",
493 		    error);
494 		goto fail;
495 	}
496 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
497 	error = bus_dmamap_load(sc->vte_dmatag,
498 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
499 	    VTE_TX_RING_SZ, NULL,
500 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
501 	if (error != 0) {
502 		aprint_error_dev(sc->vte_dev,
503 		    "could not load DMA'able memory for TX ring.\n");
504 		goto fail;
505 	}
506 
507 	/* create DMA map for RX ring */
508 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
509 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
510 	    &sc->vte_cdata.vte_rx_ring_map);
511 	if (error) {
512 		aprint_error_dev(sc->vte_dev,
513 		    "could not create dma map for RX ring (%d)\n",
514 		    error);
515 		goto fail;
516 	}
517 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
518 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
519 	    VTE_RX_RING_ALIGN, 0,
520 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
521 	    BUS_DMA_NOWAIT);
522 	if (error != 0) {
523 		aprint_error_dev(sc->vte_dev,
524 		    "could not allocate DMA'able memory for RX ring (%d).\n",
525 		    error);
526 		goto fail;
527 	}
528 	KASSERT(rseg == 1);
529 	error = bus_dmamem_map(sc->vte_dmatag,
530 	    sc->vte_cdata.vte_rx_ring_seg, 1,
531 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
532 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
533 	if (error != 0) {
534 		aprint_error_dev(sc->vte_dev,
535 		    "could not map DMA'able memory for RX ring (%d).\n",
536 		    error);
537 		goto fail;
538 	}
539 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
540 	error = bus_dmamap_load(sc->vte_dmatag,
541 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
542 	    VTE_RX_RING_SZ, NULL,
543 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
544 	if (error != 0) {
545 		aprint_error_dev(sc->vte_dev,
546 		    "could not load DMA'able memory for RX ring (%d).\n",
547 		    error);
548 		goto fail;
549 	}
550 
551 	/* Create DMA maps for TX buffers. */
552 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
553 		txd = &sc->vte_cdata.vte_txdesc[i];
554 		txd->tx_m = NULL;
555 		txd->tx_dmamap = NULL;
556 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
557 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
558 		    &txd->tx_dmamap);
559 		if (error != 0) {
560 			aprint_error_dev(sc->vte_dev,
561 			    "could not create TX DMA map %d (%d).\n", i, error);
562 			goto fail;
563 		}
564 	}
565 	/* Create DMA maps for RX buffers. */
566 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
567 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
568 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
569 		aprint_error_dev(sc->vte_dev,
570 		    "could not create spare RX dmamap (%d).\n", error);
571 		goto fail;
572 	}
573 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
574 		rxd = &sc->vte_cdata.vte_rxdesc[i];
575 		rxd->rx_m = NULL;
576 		rxd->rx_dmamap = NULL;
577 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
578 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
579 		    &rxd->rx_dmamap);
580 		if (error != 0) {
581 			aprint_error_dev(sc->vte_dev,
582 			    "could not create RX dmamap %d (%d).\n", i, error);
583 			goto fail;
584 		}
585 	}
586 	return 0;
587 
588 fail:
589 	vte_dma_free(sc);
590 	return (error);
591 }
592 
593 static void
594 vte_dma_free(struct vte_softc *sc)
595 {
596 	struct vte_txdesc *txd;
597 	struct vte_rxdesc *rxd;
598 	int i;
599 
600 	/* TX buffers. */
601 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
602 		txd = &sc->vte_cdata.vte_txdesc[i];
603 		if (txd->tx_dmamap != NULL) {
604 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
605 			txd->tx_dmamap = NULL;
606 		}
607 	}
608 	/* RX buffers */
609 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
610 		rxd = &sc->vte_cdata.vte_rxdesc[i];
611 		if (rxd->rx_dmamap != NULL) {
612 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
613 			rxd->rx_dmamap = NULL;
614 		}
615 	}
616 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
617 		bus_dmamap_destroy(sc->vte_dmatag,
618 		    sc->vte_cdata.vte_rx_sparemap);
619 		sc->vte_cdata.vte_rx_sparemap = NULL;
620 	}
621 	/* TX descriptor ring. */
622 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
623 		bus_dmamap_unload(sc->vte_dmatag,
624 		    sc->vte_cdata.vte_tx_ring_map);
625 		bus_dmamap_destroy(sc->vte_dmatag,
626 		    sc->vte_cdata.vte_tx_ring_map);
627 	}
628 	if (sc->vte_cdata.vte_tx_ring != NULL) {
629 		bus_dmamem_unmap(sc->vte_dmatag,
630 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
631 		bus_dmamem_free(sc->vte_dmatag,
632 		    sc->vte_cdata.vte_tx_ring_seg, 1);
633 	}
634 	sc->vte_cdata.vte_tx_ring = NULL;
635 	sc->vte_cdata.vte_tx_ring_map = NULL;
636 	/* RX ring. */
637 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
638 		bus_dmamap_unload(sc->vte_dmatag,
639 		    sc->vte_cdata.vte_rx_ring_map);
640 		bus_dmamap_destroy(sc->vte_dmatag,
641 		    sc->vte_cdata.vte_rx_ring_map);
642 	}
643 	if (sc->vte_cdata.vte_rx_ring != NULL) {
644 		bus_dmamem_unmap(sc->vte_dmatag,
645 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
646 		bus_dmamem_free(sc->vte_dmatag,
647 		    sc->vte_cdata.vte_rx_ring_seg, 1);
648 	}
649 	sc->vte_cdata.vte_rx_ring = NULL;
650 	sc->vte_cdata.vte_rx_ring_map = NULL;
651 }
652 
653 static bool
654 vte_shutdown(device_t dev, int howto)
655 {
656 
657 	return (vte_suspend(dev, NULL));
658 }
659 
660 static bool
661 vte_suspend(device_t dev, const pmf_qual_t *qual)
662 {
663 	struct vte_softc *sc = device_private(dev);
664 	struct ifnet *ifp = &sc->vte_if;
665 
666 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
667 	if ((ifp->if_flags & IFF_RUNNING) != 0)
668 		vte_stop(ifp, 1);
669 	return (0);
670 }
671 
672 static bool
673 vte_resume(device_t dev, const pmf_qual_t *qual)
674 {
675 	struct vte_softc *sc = device_private(dev);
676 	struct ifnet *ifp;
677 
678 	ifp = &sc->vte_if;
679 	if ((ifp->if_flags & IFF_UP) != 0) {
680 		ifp->if_flags &= ~IFF_RUNNING;
681 		vte_init(ifp);
682 	}
683 
684 	return (0);
685 }
686 
687 static struct vte_txdesc *
688 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
689 {
690 	struct vte_txdesc *txd;
691 	struct mbuf *m, *n;
692 	int copy, error, padlen;
693 
694 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
695 	m = *m_head;
696 	/*
697 	 * Controller doesn't auto-pad, so we have to make sure pad
698 	 * short frames out to the minimum frame length.
699 	 */
700 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
701 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
702 	else
703 		padlen = 0;
704 
705 	/*
706 	 * Controller does not support multi-fragmented TX buffers.
707 	 * Controller spends most of its TX processing time in
708 	 * de-fragmenting TX buffers.  Either faster CPU or more
709 	 * advanced controller DMA engine is required to speed up
710 	 * TX path processing.
711 	 * To mitigate the de-fragmenting issue, perform deep copy
712 	 * from fragmented mbuf chains to a pre-allocated mbuf
713 	 * cluster with extra cost of kernel memory.  For frames
714 	 * that is composed of single TX buffer, the deep copy is
715 	 * bypassed.
716 	 */
717 	copy = 0;
718 	if (m->m_next != NULL)
719 		copy++;
720 	if (padlen > 0 && (M_READONLY(m) ||
721 	    padlen > M_TRAILINGSPACE(m)))
722 		copy++;
723 	if (copy != 0) {
724 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
725 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
726 		n->m_pkthdr.len = m->m_pkthdr.len;
727 		n->m_len = m->m_pkthdr.len;
728 		m = n;
729 		txd->tx_flags |= VTE_TXMBUF;
730 	}
731 
732 	if (padlen > 0) {
733 		/* Zero out the bytes in the pad area. */
734 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
735 		m->m_pkthdr.len += padlen;
736 		m->m_len = m->m_pkthdr.len;
737 	}
738 
739 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
740 	    BUS_DMA_NOWAIT);
741 	if (error != 0) {
742 		txd->tx_flags &= ~VTE_TXMBUF;
743 		return (NULL);
744 	}
745 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
746 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
747 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
748 
749 	txd->tx_desc->dtlen =
750 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
751 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
752 	sc->vte_cdata.vte_tx_cnt++;
753 	/* Update producer index. */
754 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
755 
756 	/* Finally hand over ownership to controller. */
757 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
758 	txd->tx_m = m;
759 
760 	return (txd);
761 }
762 
763 static void
764 vte_ifstart(struct ifnet *ifp)
765 {
766 	struct vte_softc *sc = ifp->if_softc;
767 	struct vte_txdesc *txd;
768 	struct mbuf *m_head, *m;
769 	int enq;
770 
771 	ifp = &sc->vte_if;
772 
773 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
774 
775 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
776 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
777 		return;
778 
779 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
780 		/* Reserve one free TX descriptor. */
781 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
782 			ifp->if_flags |= IFF_OACTIVE;
783 			break;
784 		}
785 		IFQ_POLL(&ifp->if_snd, m_head);
786 		if (m_head == NULL)
787 			break;
788 		/*
789 		 * Pack the data into the transmit ring. If we
790 		 * don't have room, set the OACTIVE flag and wait
791 		 * for the NIC to drain the ring.
792 		 */
793 		DPRINTF(("vte_encap:"));
794 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
795 			DPRINTF((" failed\n"));
796 			break;
797 		}
798 		DPRINTF((" ok\n"));
799 		IFQ_DEQUEUE(&ifp->if_snd, m);
800 		KASSERT(m == m_head);
801 
802 		enq++;
803 		/*
804 		 * If there's a BPF listener, bounce a copy of this frame
805 		 * to him.
806 		 */
807 		bpf_mtap(ifp, m_head, BPF_D_OUT);
808 		/* Free consumed TX frame. */
809 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
810 			m_freem(m_head);
811 	}
812 
813 	if (enq > 0) {
814 		bus_dmamap_sync(sc->vte_dmatag,
815 		    sc->vte_cdata.vte_tx_ring_map, 0,
816 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
817 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
818 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
819 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
820 	}
821 }
822 
823 static void
824 vte_ifwatchdog(struct ifnet *ifp)
825 {
826 	struct vte_softc *sc = ifp->if_softc;
827 
828 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
829 		return;
830 
831 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
832 	ifp->if_oerrors++;
833 	vte_init(ifp);
834 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
835 		vte_ifstart(ifp);
836 }
837 
838 static int
839 vte_mediachange(struct ifnet *ifp)
840 {
841 	int error;
842 	struct vte_softc *sc = ifp->if_softc;
843 
844 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
845 		error = 0;
846 	else if (error != 0) {
847 		aprint_error_dev(sc->vte_dev, "could not set media\n");
848 		return error;
849 	}
850 											return 0;
851 
852 }
853 
854 static int
855 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
856 {
857 	struct vte_softc *sc = ifp->if_softc;
858 	int error, s;
859 
860 	s = splnet();
861 	error = ether_ioctl(ifp, cmd, data);
862 	if (error == ENETRESET) {
863 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
864 		if (ifp->if_flags & IFF_RUNNING)
865 			vte_rxfilter(sc);
866 		error = 0;
867 	}
868 	splx(s);
869 	return error;
870 }
871 
872 static void
873 vte_mac_config(struct vte_softc *sc)
874 {
875 	uint16_t mcr;
876 
877 	mcr = CSR_READ_2(sc, VTE_MCR0);
878 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
879 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
880 		mcr |= MCR0_FULL_DUPLEX;
881 #ifdef notyet
882 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
883 			mcr |= MCR0_FC_ENB;
884 		/*
885 		 * The data sheet is not clear whether the controller
886 		 * honors received pause frames or not.  The is no
887 		 * separate control bit for RX pause frame so just
888 		 * enable MCR0_FC_ENB bit.
889 		 */
890 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
891 			mcr |= MCR0_FC_ENB;
892 #endif
893 	}
894 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
895 }
896 
897 static void
898 vte_stats_clear(struct vte_softc *sc)
899 {
900 
901 	/* Reading counter registers clears its contents. */
902 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
903 	CSR_READ_2(sc, VTE_CNT_MECNT0);
904 	CSR_READ_2(sc, VTE_CNT_MECNT1);
905 	CSR_READ_2(sc, VTE_CNT_MECNT2);
906 	CSR_READ_2(sc, VTE_CNT_MECNT3);
907 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
908 	CSR_READ_2(sc, VTE_CNT_MECNT4);
909 	CSR_READ_2(sc, VTE_CNT_PAUSE);
910 }
911 
912 static void
913 vte_stats_update(struct vte_softc *sc)
914 {
915 	struct vte_hw_stats *stat;
916 	struct ifnet *ifp = &sc->vte_if;
917 	uint16_t value;
918 
919 	stat = &sc->vte_stats;
920 
921 	CSR_READ_2(sc, VTE_MECISR);
922 	/* RX stats. */
923 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
924 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
925 	stat->rx_bcast_frames += (value >> 8);
926 	stat->rx_mcast_frames += (value & 0xFF);
927 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
928 	stat->rx_runts += (value >> 8);
929 	stat->rx_crcerrs += (value & 0xFF);
930 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
931 	stat->rx_long_frames += (value & 0xFF);
932 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
933 	stat->rx_fifo_full += (value >> 8);
934 	stat->rx_desc_unavail += (value & 0xFF);
935 
936 	/* TX stats. */
937 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
938 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
939 	stat->tx_underruns += (value >> 8);
940 	stat->tx_late_colls += (value & 0xFF);
941 
942 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
943 	stat->tx_pause_frames += (value >> 8);
944 	stat->rx_pause_frames += (value & 0xFF);
945 
946 	/* Update ifp counters. */
947 	ifp->if_opackets = stat->tx_frames;
948 	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
949 	ifp->if_ipackets = stat->rx_frames;
950 	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
951 	    stat->rx_long_frames + stat->rx_fifo_full;
952 }
953 
954 static int
955 vte_intr(void *arg)
956 {
957 	struct vte_softc *sc = (struct vte_softc *)arg;
958 	struct ifnet *ifp = &sc->vte_if;
959 	uint16_t status;
960 	int n;
961 
962 	/* Reading VTE_MISR acknowledges interrupts. */
963 	status = CSR_READ_2(sc, VTE_MISR);
964 	DPRINTF(("vte_intr status 0x%x\n", status));
965 	if ((status & VTE_INTRS) == 0) {
966 		/* Not ours. */
967 		return 0;
968 	}
969 
970 	/* Disable interrupts. */
971 	CSR_WRITE_2(sc, VTE_MIER, 0);
972 	for (n = 8; (status & VTE_INTRS) != 0;) {
973 		if ((ifp->if_flags & IFF_RUNNING) == 0)
974 			break;
975 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
976 		    MISR_RX_FIFO_FULL)) != 0)
977 			vte_rxeof(sc);
978 		if ((status & MISR_TX_DONE) != 0)
979 			vte_txeof(sc);
980 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
981 			vte_stats_update(sc);
982 		if_schedule_deferred_start(ifp);
983 		if (--n > 0)
984 			status = CSR_READ_2(sc, VTE_MISR);
985 		else
986 			break;
987 	}
988 
989 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
990 		/* Re-enable interrupts. */
991 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
992 	}
993 	return 1;
994 }
995 
996 static void
997 vte_txeof(struct vte_softc *sc)
998 {
999 	struct ifnet *ifp;
1000 	struct vte_txdesc *txd;
1001 	uint16_t status;
1002 	int cons, prog;
1003 
1004 	ifp = &sc->vte_if;
1005 
1006 	if (sc->vte_cdata.vte_tx_cnt == 0)
1007 		return;
1008 	bus_dmamap_sync(sc->vte_dmatag,
1009 	    sc->vte_cdata.vte_tx_ring_map, 0,
1010 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1011 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1012 	cons = sc->vte_cdata.vte_tx_cons;
1013 	/*
1014 	 * Go through our TX list and free mbufs for those
1015 	 * frames which have been transmitted.
1016 	 */
1017 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1018 		txd = &sc->vte_cdata.vte_txdesc[cons];
1019 		status = le16toh(txd->tx_desc->dtst);
1020 		if ((status & VTE_DTST_TX_OWN) != 0)
1021 			break;
1022 		if ((status & VTE_DTST_TX_OK) != 0)
1023 			ifp->if_collisions += (status & 0xf);
1024 		sc->vte_cdata.vte_tx_cnt--;
1025 		/* Reclaim transmitted mbufs. */
1026 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1027 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1028 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1029 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1030 			m_freem(txd->tx_m);
1031 		txd->tx_flags &= ~VTE_TXMBUF;
1032 		txd->tx_m = NULL;
1033 		prog++;
1034 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1035 	}
1036 
1037 	if (prog > 0) {
1038 		ifp->if_flags &= ~IFF_OACTIVE;
1039 		sc->vte_cdata.vte_tx_cons = cons;
1040 		/*
1041 		 * Unarm watchdog timer only when there is no pending
1042 		 * frames in TX queue.
1043 		 */
1044 		if (sc->vte_cdata.vte_tx_cnt == 0)
1045 			sc->vte_watchdog_timer = 0;
1046 	}
1047 }
1048 
1049 static int
1050 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1051 {
1052 	struct mbuf *m;
1053 	bus_dmamap_t map;
1054 
1055 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1056 	if (m == NULL)
1057 		return (ENOBUFS);
1058 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1059 	m_adj(m, sizeof(uint32_t));
1060 
1061 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1062 	    sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1063 		m_freem(m);
1064 		return (ENOBUFS);
1065 	}
1066 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1067 
1068 	if (rxd->rx_m != NULL) {
1069 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1070 		    0, rxd->rx_dmamap->dm_mapsize,
1071 		    BUS_DMASYNC_POSTREAD);
1072 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1073 	}
1074 	map = rxd->rx_dmamap;
1075 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1076 	sc->vte_cdata.vte_rx_sparemap = map;
1077 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1078 	    0, rxd->rx_dmamap->dm_mapsize,
1079 	    BUS_DMASYNC_PREREAD);
1080 	rxd->rx_m = m;
1081 	rxd->rx_desc->drbp =
1082 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1083 	rxd->rx_desc->drlen = htole16(
1084 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1085 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1086 		(u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1087 		rxd->rx_dmamap->dm_segs[0].ds_len));
1088 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1089 
1090 	return (0);
1091 }
1092 
1093 static void
1094 vte_rxeof(struct vte_softc *sc)
1095 {
1096 	struct ifnet *ifp;
1097 	struct vte_rxdesc *rxd;
1098 	struct mbuf *m;
1099 	uint16_t status, total_len;
1100 	int cons, prog;
1101 
1102 	bus_dmamap_sync(sc->vte_dmatag,
1103 	    sc->vte_cdata.vte_rx_ring_map, 0,
1104 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1105 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1106 	cons = sc->vte_cdata.vte_rx_cons;
1107 	ifp = &sc->vte_if;
1108 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1109 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1110 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1111 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1112 		status = le16toh(rxd->rx_desc->drst);
1113 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1114 			cons, rxd, rxd->rx_m, status,
1115 			VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1116 		if ((status & VTE_DRST_RX_OWN) != 0)
1117 			break;
1118 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1119 		m = rxd->rx_m;
1120 		if ((status & VTE_DRST_RX_OK) == 0) {
1121 			/* Discard errored frame. */
1122 			rxd->rx_desc->drlen =
1123 			    htole16(MCLBYTES - sizeof(uint32_t));
1124 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1125 			continue;
1126 		}
1127 		if (vte_newbuf(sc, rxd) != 0) {
1128 			DPRINTF(("vte_rxeof newbuf failed\n"));
1129 			ifp->if_ierrors++;
1130 			rxd->rx_desc->drlen =
1131 			    htole16(MCLBYTES - sizeof(uint32_t));
1132 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1133 			continue;
1134 		}
1135 
1136 		/*
1137 		 * It seems there is no way to strip FCS bytes.
1138 		 */
1139 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1140 		m_set_rcvif(m, ifp);
1141 		if_percpuq_enqueue(ifp->if_percpuq, m);
1142 	}
1143 
1144 	if (prog > 0) {
1145 		/* Update the consumer index. */
1146 		sc->vte_cdata.vte_rx_cons = cons;
1147 		/*
1148 		 * Sync updated RX descriptors such that controller see
1149 		 * modified RX buffer addresses.
1150 		 */
1151 		bus_dmamap_sync(sc->vte_dmatag,
1152 		    sc->vte_cdata.vte_rx_ring_map, 0,
1153 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1154 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1155 #ifdef notyet
1156 		/*
1157 		 * Update residue counter.  Controller does not
1158 		 * keep track of number of available RX descriptors
1159 		 * such that driver should have to update VTE_MRDCR
1160 		 * to make controller know how many free RX
1161 		 * descriptors were added to controller.  This is
1162 		 * a similar mechanism used in VIA velocity
1163 		 * controllers and it indicates controller just
1164 		 * polls OWN bit of current RX descriptor pointer.
1165 		 * A couple of severe issues were seen on sample
1166 		 * board where the controller continuously emits TX
1167 		 * pause frames once RX pause threshold crossed.
1168 		 * Once triggered it never recovered form that
1169 		 * state, I couldn't find a way to make it back to
1170 		 * work at least.  This issue effectively
1171 		 * disconnected the system from network.  Also, the
1172 		 * controller used 00:00:00:00:00:00 as source
1173 		 * station address of TX pause frame. Probably this
1174 		 * is one of reason why vendor recommends not to
1175 		 * enable flow control on R6040 controller.
1176 		 */
1177 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1178 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1179 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1180 #endif
1181 	rnd_add_uint32(&sc->rnd_source, prog);
1182 	}
1183 }
1184 
1185 static void
1186 vte_tick(void *arg)
1187 {
1188 	struct vte_softc *sc;
1189 	int s = splnet();
1190 
1191 	sc = (struct vte_softc *)arg;
1192 
1193 	mii_tick(&sc->vte_mii);
1194 	vte_stats_update(sc);
1195 	vte_txeof(sc);
1196 	vte_ifwatchdog(&sc->vte_if);
1197 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1198 	splx(s);
1199 }
1200 
1201 static void
1202 vte_reset(struct vte_softc *sc)
1203 {
1204 	uint16_t mcr;
1205 	int i;
1206 
1207 	mcr = CSR_READ_2(sc, VTE_MCR1);
1208 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1209 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1210 		DELAY(10);
1211 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1212 			break;
1213 	}
1214 	if (i == 0)
1215 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1216 	/*
1217 	 * Follow the guide of vendor recommended way to reset MAC.
1218 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1219 	 * not reliable so manually reset internal state machine.
1220 	 */
1221 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1222 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1223 	DELAY(5000);
1224 }
1225 
1226 
1227 static int
1228 vte_init(struct ifnet *ifp)
1229 {
1230 	struct vte_softc *sc = ifp->if_softc;
1231 	bus_addr_t paddr;
1232 	uint8_t eaddr[ETHER_ADDR_LEN];
1233 	int s, error;
1234 
1235 	s = splnet();
1236 	/*
1237 	 * Cancel any pending I/O.
1238 	 */
1239 	vte_stop(ifp, 1);
1240 	/*
1241 	 * Reset the chip to a known state.
1242 	 */
1243 	vte_reset(sc);
1244 
1245 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1246 		splx(s);
1247 		return 0;
1248 	}
1249 
1250 	/* Initialize RX descriptors. */
1251 	if (vte_init_rx_ring(sc) != 0) {
1252 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1253 		vte_stop(ifp, 1);
1254 		splx(s);
1255 		return ENOMEM;
1256 	}
1257 	if (vte_init_tx_ring(sc) != 0) {
1258 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1259 		vte_stop(ifp, 1);
1260 		splx(s);
1261 		return ENOMEM;
1262 	}
1263 
1264 	/*
1265 	 * Reprogram the station address.  Controller supports up
1266 	 * to 4 different station addresses so driver programs the
1267 	 * first station address as its own ethernet address and
1268 	 * configure the remaining three addresses as perfect
1269 	 * multicast addresses.
1270 	 */
1271 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1272 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1273 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1274 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1275 
1276 	/* Set TX descriptor base addresses. */
1277 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1278 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1279 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1280 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1281 
1282 	/* Set RX descriptor base addresses. */
1283 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1284 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1285 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1286 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1287 	/*
1288 	 * Initialize RX descriptor residue counter and set RX
1289 	 * pause threshold to 20% of available RX descriptors.
1290 	 * See comments on vte_rxeof() for details on flow control
1291 	 * issues.
1292 	 */
1293 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1294 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1295 
1296 	/*
1297 	 * Always use maximum frame size that controller can
1298 	 * support.  Otherwise received frames that has longer
1299 	 * frame length than vte(4) MTU would be silently dropped
1300 	 * in controller.  This would break path-MTU discovery as
1301 	 * sender wouldn't get any responses from receiver. The
1302 	 * RX buffer size should be multiple of 4.
1303 	 * Note, jumbo frames are silently ignored by controller
1304 	 * and even MAC counters do not detect them.
1305 	 */
1306 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1307 
1308 	/* Configure FIFO. */
1309 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1310 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1311 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1312 
1313 	/*
1314 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1315 	 * control configuration is done after detecting a valid
1316 	 * link.  Note, we don't generate early interrupt here
1317 	 * as well since FreeBSD does not have interrupt latency
1318 	 * problems like Windows.
1319 	 */
1320 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1321 	/*
1322 	 * We manually keep track of PHY status changes to
1323 	 * configure resolved duplex and flow control since only
1324 	 * duplex configuration can be automatically reflected to
1325 	 * MCR0.
1326 	 */
1327 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1328 	    MCR1_EXCESS_COL_RETRY_16);
1329 
1330 	/* Initialize RX filter. */
1331 	vte_rxfilter(sc);
1332 
1333 	/* Disable TX/RX interrupt moderation control. */
1334 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1335 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1336 
1337 	/* Enable MAC event counter interrupts. */
1338 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1339 	/* Clear MAC statistics. */
1340 	vte_stats_clear(sc);
1341 
1342 	/* Acknowledge all pending interrupts and clear it. */
1343 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1344 	CSR_WRITE_2(sc, VTE_MISR, 0);
1345 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1346 		CSR_READ_2(sc, VTE_MISR)));
1347 
1348 	sc->vte_flags &= ~VTE_FLAG_LINK;
1349 	ifp->if_flags |= IFF_RUNNING;
1350 	ifp->if_flags &= ~IFF_OACTIVE;
1351 
1352 	/* calling mii_mediachg will call back vte_start_mac() */
1353 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1354 		error = 0;
1355 	else if (error != 0) {
1356 		aprint_error_dev(sc->vte_dev, "could not set media\n");
1357 		splx(s);
1358 		return error;
1359 	}
1360 
1361 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1362 
1363 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1364 		CSR_READ_2(sc, VTE_MISR)));
1365 	splx(s);
1366 	return 0;
1367 }
1368 
1369 static void
1370 vte_stop(struct ifnet *ifp, int disable)
1371 {
1372 	struct vte_softc *sc = ifp->if_softc;
1373 	struct vte_txdesc *txd;
1374 	struct vte_rxdesc *rxd;
1375 	int i;
1376 
1377 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1378 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1379 		return;
1380 	/*
1381 	 * Mark the interface down and cancel the watchdog timer.
1382 	 */
1383 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1384 	sc->vte_flags &= ~VTE_FLAG_LINK;
1385 	callout_stop(&sc->vte_tick_ch);
1386 	sc->vte_watchdog_timer = 0;
1387 	vte_stats_update(sc);
1388 	/* Disable interrupts. */
1389 	CSR_WRITE_2(sc, VTE_MIER, 0);
1390 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1391 	/* Stop RX/TX MACs. */
1392 	vte_stop_mac(sc);
1393 	/* Clear interrupts. */
1394 	CSR_READ_2(sc, VTE_MISR);
1395 	/*
1396 	 * Free TX/RX mbufs still in the queues.
1397 	 */
1398 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1399 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1400 		if (rxd->rx_m != NULL) {
1401 			bus_dmamap_sync(sc->vte_dmatag,
1402 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1403 			    BUS_DMASYNC_POSTREAD);
1404 			bus_dmamap_unload(sc->vte_dmatag,
1405 			    rxd->rx_dmamap);
1406 			m_freem(rxd->rx_m);
1407 			rxd->rx_m = NULL;
1408 		}
1409 	}
1410 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1411 		txd = &sc->vte_cdata.vte_txdesc[i];
1412 		if (txd->tx_m != NULL) {
1413 			bus_dmamap_sync(sc->vte_dmatag,
1414 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1415 			    BUS_DMASYNC_POSTWRITE);
1416 			bus_dmamap_unload(sc->vte_dmatag,
1417 			    txd->tx_dmamap);
1418 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1419 				m_freem(txd->tx_m);
1420 			txd->tx_m = NULL;
1421 			txd->tx_flags &= ~VTE_TXMBUF;
1422 		}
1423 	}
1424 	/* Free TX mbuf pools used for deep copy. */
1425 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1426 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1427 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1428 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1429 		}
1430 	}
1431 }
1432 
1433 static void
1434 vte_start_mac(struct vte_softc *sc)
1435 {
1436 	struct ifnet *ifp = &sc->vte_if;
1437 	uint16_t mcr;
1438 	int i;
1439 
1440 	/* Enable RX/TX MACs. */
1441 	mcr = CSR_READ_2(sc, VTE_MCR0);
1442 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1443 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
1444 	    (ifp->if_flags & IFF_RUNNING) != 0) {
1445 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1446 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1447 		for (i = VTE_TIMEOUT; i > 0; i--) {
1448 			mcr = CSR_READ_2(sc, VTE_MCR0);
1449 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1450 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1451 				break;
1452 			DELAY(10);
1453 		}
1454 		if (i == 0)
1455 			aprint_error_dev(sc->vte_dev,
1456 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1457 	}
1458 	vte_rxfilter(sc);
1459 }
1460 
1461 static void
1462 vte_stop_mac(struct vte_softc *sc)
1463 {
1464 	uint16_t mcr;
1465 	int i;
1466 
1467 	/* Disable RX/TX MACs. */
1468 	mcr = CSR_READ_2(sc, VTE_MCR0);
1469 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1470 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1471 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1472 		for (i = VTE_TIMEOUT; i > 0; i--) {
1473 			mcr = CSR_READ_2(sc, VTE_MCR0);
1474 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1475 				break;
1476 			DELAY(10);
1477 		}
1478 		if (i == 0)
1479 			aprint_error_dev(sc->vte_dev,
1480 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1481 	}
1482 }
1483 
1484 static int
1485 vte_init_tx_ring(struct vte_softc *sc)
1486 {
1487 	struct vte_tx_desc *desc;
1488 	struct vte_txdesc *txd;
1489 	bus_addr_t addr;
1490 	int i;
1491 
1492 	sc->vte_cdata.vte_tx_prod = 0;
1493 	sc->vte_cdata.vte_tx_cons = 0;
1494 	sc->vte_cdata.vte_tx_cnt = 0;
1495 
1496 	/* Pre-allocate TX mbufs for deep copy. */
1497 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1498 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1499 		    MT_DATA, M_PKTHDR);
1500 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1501 			return (ENOBUFS);
1502 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1503 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1504 	}
1505 	desc = sc->vte_cdata.vte_tx_ring;
1506 	bzero(desc, VTE_TX_RING_SZ);
1507 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1508 		txd = &sc->vte_cdata.vte_txdesc[i];
1509 		txd->tx_m = NULL;
1510 		if (i != VTE_TX_RING_CNT - 1)
1511 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1512 			    sizeof(struct vte_tx_desc) * (i + 1);
1513 		else
1514 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1515 			    sizeof(struct vte_tx_desc) * 0;
1516 		desc = &sc->vte_cdata.vte_tx_ring[i];
1517 		desc->dtnp = htole32(addr);
1518 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1519 		txd->tx_desc = desc;
1520 	}
1521 
1522 	bus_dmamap_sync(sc->vte_dmatag,
1523 	    sc->vte_cdata.vte_tx_ring_map, 0,
1524 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1525 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1526 	return (0);
1527 }
1528 
1529 static int
1530 vte_init_rx_ring(struct vte_softc *sc)
1531 {
1532 	struct vte_rx_desc *desc;
1533 	struct vte_rxdesc *rxd;
1534 	bus_addr_t addr;
1535 	int i;
1536 
1537 	sc->vte_cdata.vte_rx_cons = 0;
1538 	desc = sc->vte_cdata.vte_rx_ring;
1539 	bzero(desc, VTE_RX_RING_SZ);
1540 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1541 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1542 		rxd->rx_m = NULL;
1543 		if (i != VTE_RX_RING_CNT - 1)
1544 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1545 			    + sizeof(struct vte_rx_desc) * (i + 1);
1546 		else
1547 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1548 			    + sizeof(struct vte_rx_desc) * 0;
1549 		desc = &sc->vte_cdata.vte_rx_ring[i];
1550 		desc->drnp = htole32(addr);
1551 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1552 		rxd->rx_desc = desc;
1553 		if (vte_newbuf(sc, rxd) != 0)
1554 			return (ENOBUFS);
1555 	}
1556 
1557 	bus_dmamap_sync(sc->vte_dmatag,
1558 	    sc->vte_cdata.vte_rx_ring_map, 0,
1559 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1560 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1561 
1562 	return (0);
1563 }
1564 
1565 static void
1566 vte_rxfilter(struct vte_softc *sc)
1567 {
1568 	struct ethercom *ec = &sc->vte_ec;
1569 	struct ether_multistep step;
1570 	struct ether_multi *enm;
1571 	struct ifnet *ifp;
1572 	uint8_t *eaddr;
1573 	uint32_t crc;
1574 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1575 	uint16_t mchash[4], mcr;
1576 	int i, nperf;
1577 
1578 	ifp = &sc->vte_if;
1579 
1580 	DPRINTF(("vte_rxfilter\n"));
1581 	memset(mchash, 0, sizeof(mchash));
1582 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1583 		rxfilt_perf[i][0] = 0xFFFF;
1584 		rxfilt_perf[i][1] = 0xFFFF;
1585 		rxfilt_perf[i][2] = 0xFFFF;
1586 	}
1587 
1588 	mcr = CSR_READ_2(sc, VTE_MCR0);
1589 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1590 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1591 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1592 		mcr |= MCR0_BROADCAST_DIS;
1593 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1594 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1595 			mcr |= MCR0_PROMISC;
1596 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1597 			mcr |= MCR0_MULTICAST;
1598 		mchash[0] = 0xFFFF;
1599 		mchash[1] = 0xFFFF;
1600 		mchash[2] = 0xFFFF;
1601 		mchash[3] = 0xFFFF;
1602 		goto chipit;
1603 	}
1604 
1605 	ETHER_LOCK(ec);
1606 	ETHER_FIRST_MULTI(step, ec, enm);
1607 	nperf = 0;
1608 	while (enm != NULL) {
1609 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)
1610 		    != 0) {
1611 			sc->vte_if.if_flags |= IFF_ALLMULTI;
1612 			mcr |= MCR0_MULTICAST;
1613 			mchash[0] = 0xFFFF;
1614 			mchash[1] = 0xFFFF;
1615 			mchash[2] = 0xFFFF;
1616 			mchash[3] = 0xFFFF;
1617 			ETHER_UNLOCK(ec);
1618 			goto chipit;
1619 		}
1620 		/*
1621 		 * Program the first 3 multicast groups into
1622 		 * the perfect filter.  For all others, use the
1623 		 * hash table.
1624 		 */
1625 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
1626 			eaddr = enm->enm_addrlo;
1627 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1628 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1629 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1630 			nperf++;
1631 		} else {
1632 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1633 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1634 		}
1635 		ETHER_NEXT_MULTI(step, enm);
1636 	}
1637 	ETHER_UNLOCK(ec);
1638 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1639 	    mchash[3] != 0)
1640 		mcr |= MCR0_MULTICAST;
1641 
1642 chipit:
1643 	/* Program multicast hash table. */
1644 	DPRINTF(("chipit write multicast\n"));
1645 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1646 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1647 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1648 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1649 	/* Program perfect filter table. */
1650 	DPRINTF(("chipit write perfect filter\n"));
1651 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1652 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1653 		    rxfilt_perf[i][0]);
1654 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1655 		    rxfilt_perf[i][1]);
1656 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1657 		    rxfilt_perf[i][2]);
1658 	}
1659 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
1660 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1661 	DPRINTF(("chipit read mcro\n"));
1662 	CSR_READ_2(sc, VTE_MCR0);
1663 	DPRINTF(("chipit done\n"));
1664 }
1665 
1666 /*
1667  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1668  * set up in vte_pci_attach()
1669  */
1670 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1671 {
1672 	int rc;
1673 	const struct sysctlnode *node;
1674 
1675 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1676 	    0, CTLTYPE_NODE, "vte",
1677 	    SYSCTL_DESCR("vte interface controls"),
1678 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1679 		goto err;
1680 	}
1681 
1682 	vte_root_num = node->sysctl_num;
1683 	return;
1684 
1685 err:
1686 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1687 }
1688 
1689 static int
1690 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1691 {
1692 	int error, t;
1693 	struct sysctlnode node;
1694 	struct vte_softc *sc;
1695 
1696 	node = *rnode;
1697 	sc = node.sysctl_data;
1698 	t = sc->vte_int_rx_mod;
1699 	node.sysctl_data = &t;
1700 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1701 	if (error || newp == NULL)
1702 		return error;
1703 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1704 		return EINVAL;
1705 
1706 	sc->vte_int_rx_mod = t;
1707 	vte_miibus_statchg(&sc->vte_if);
1708 	return 0;
1709 }
1710 
1711 static int
1712 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1713 {
1714 	int error, t;
1715 	struct sysctlnode node;
1716 	struct vte_softc *sc;
1717 
1718 	node = *rnode;
1719 	sc = node.sysctl_data;
1720 	t = sc->vte_int_tx_mod;
1721 	node.sysctl_data = &t;
1722 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1723 	if (error || newp == NULL)
1724 		return error;
1725 
1726 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1727 		return EINVAL;
1728 	sc->vte_int_tx_mod = t;
1729 	vte_miibus_statchg(&sc->vte_if);
1730 	return 0;
1731 }
1732