xref: /netbsd-src/sys/dev/pci/if_vte.c (revision daf6c4152fcddc27c445489775ed1f66ab4ea9a9)
1 /*	$NetBSD: if_vte.c,v 1.1 2011/01/26 18:48:13 bouyer Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54 
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56 
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.1 2011/01/26 18:48:13 bouyer Exp $");
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71 
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 
79 #include <net/bpf.h>
80 #include <net/bpfdesc.h>
81 
82 #include "rnd.h"
83 #if NRND > 0
84 #include <sys/rnd.h>
85 #endif
86 
87 #include "opt_inet.h"
88 #include <net/if_ether.h>
89 #ifdef INET
90 #include <netinet/in.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip.h>
94 #include <netinet/if_inarp.h>
95 #endif
96 
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 
100 #include <dev/pci/pcireg.h>
101 #include <dev/pci/pcivar.h>
102 #include <dev/pci/pcidevs.h>
103 
104 #include <dev/mii/mii.h>
105 #include <dev/mii/miivar.h>
106 
107 #include <dev/pci/if_vtereg.h>
108 #include <dev/pci/if_vtevar.h>
109 
110 static int	vte_match(device_t, cfdata_t, void *);
111 static void	vte_attach(device_t, device_t, void *);
112 static int	vte_detach(device_t, int);
113 static int	vte_dma_alloc(struct vte_softc *);
114 static void	vte_dma_free(struct vte_softc *);
115 static struct vte_txdesc *
116 		vte_encap(struct vte_softc *, struct mbuf **);
117 static void	vte_get_macaddr(struct vte_softc *);
118 static int	vte_init(struct ifnet *);
119 static int	vte_init_rx_ring(struct vte_softc *);
120 static int	vte_init_tx_ring(struct vte_softc *);
121 static int	vte_intr(void *);
122 static int	vte_ifioctl(struct ifnet *, u_long, void *);
123 static void	vte_mac_config(struct vte_softc *);
124 static int	vte_miibus_readreg(device_t, int, int);
125 static void	vte_miibus_statchg(device_t);
126 static void	vte_miibus_writereg(device_t, int, int, int);
127 static int	vte_mediachange(struct ifnet *);
128 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
129 static void	vte_reset(struct vte_softc *);
130 static void	vte_rxeof(struct vte_softc *);
131 static void	vte_rxfilter(struct vte_softc *);
132 static bool	vte_shutdown(device_t, int);
133 static bool	vte_suspend(device_t, const pmf_qual_t *);
134 static bool	vte_resume(device_t, const pmf_qual_t *);
135 static void	vte_ifstart(struct ifnet *);
136 static void	vte_start_mac(struct vte_softc *);
137 static void	vte_stats_clear(struct vte_softc *);
138 static void	vte_stats_update(struct vte_softc *);
139 static void	vte_stop(struct ifnet *, int);
140 static void	vte_stop_mac(struct vte_softc *);
141 static void	vte_tick(void *);
142 static void	vte_txeof(struct vte_softc *);
143 static void	vte_ifwatchdog(struct ifnet *);
144 
145 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
146 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
147 static int vte_root_num;
148 
149 #define DPRINTF(a)
150 
151 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
152     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
153 
154 
155 static int
156 vte_match(device_t parent, cfdata_t cf, void *aux)
157 {
158 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
159 
160 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
161 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
162 		return 1;
163 
164 	return 0;
165 }
166 
167 static void
168 vte_attach(device_t parent, device_t self, void *aux)
169 {
170 	struct vte_softc *sc = device_private(self);
171 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
172 	struct ifnet * const ifp = &sc->vte_if;
173 	int h_valid;
174 	pcireg_t reg, csr;
175 	pci_intr_handle_t intrhandle;
176 	const char *intrstr;
177 	int error;
178 	char devinfo[256];
179 	const struct sysctlnode *node;
180 	int vte_nodenum;
181 
182 	sc->vte_dev = self;
183 	aprint_normal("\n");
184 
185 	callout_init(&sc->vte_tick_ch, 0);
186 
187 	/* Map the device. */
188 	h_valid = 0;
189 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
190 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
191 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
192 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
193 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
194 	}
195 	if (h_valid == 0) {
196 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
197 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
198 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
199 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
200 			    &sc->vte_bushandle, NULL, NULL) == 0);
201 		}
202 	}
203 	if (h_valid == 0) {
204 		aprint_error_dev(self, "unable to map device registers\n");
205 		return;
206 	}
207 	sc->vte_dmatag = pa->pa_dmat;
208 	/* Enable the device. */
209 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
210 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
211 	    csr | PCI_COMMAND_MASTER_ENABLE);
212 
213 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
214 	aprint_normal_dev(self, "%s\n", devinfo);
215 
216 	/* Reset the ethernet controller. */
217 	vte_reset(sc);
218 
219 	if ((error = vte_dma_alloc(sc) != 0))
220 		return;
221 
222 	/* Load station address. */
223 	vte_get_macaddr(sc);
224 
225 	aprint_normal_dev(self, "Ethernet address %s\n",
226 	    ether_sprintf(sc->vte_eaddr));
227 
228 	/* Map and establish interrupts */
229 	if (pci_intr_map(pa, &intrhandle)) {
230 	    aprint_error_dev(self, "couldn't map interrupt\n");
231 	    return;
232 	}
233 	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
234 	sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
235 	    vte_intr, sc);
236 	if (sc->vte_ih == NULL) {
237 		aprint_error_dev(self, "couldn't establish interrupt");
238 		if (intrstr != NULL)
239 			aprint_error(" at %s", intrstr);
240 		aprint_error("\n");
241 		return;
242 	}
243 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
244 
245 	sc->vte_if.if_softc = sc;
246 	sc->vte_mii.mii_ifp = ifp;
247 	sc->vte_mii.mii_readreg = vte_miibus_readreg;
248 	sc->vte_mii.mii_writereg = vte_miibus_writereg;
249 	sc->vte_mii.mii_statchg = vte_miibus_statchg;
250 	sc->vte_ec.ec_mii = &sc->vte_mii;
251 	ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
252 	    ether_mediastatus);
253 	mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
254 	    MII_OFFSET_ANY, 0);
255 	if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
256 		ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
257 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
258 	} else
259 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
260 
261 	/*
262 	 * We can support 802.1Q VLAN-sized frames.
263 	 */
264 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
265 
266         strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
267         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
268         ifp->if_ioctl = vte_ifioctl;
269         ifp->if_start = vte_ifstart;
270         ifp->if_watchdog = vte_ifwatchdog;
271         ifp->if_init = vte_init;
272         ifp->if_stop = vte_stop;
273         ifp->if_timer = 0;
274         IFQ_SET_READY(&ifp->if_snd);
275         if_attach(ifp);
276         ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
277 
278 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
279 		pmf_class_network_register(self, ifp);
280 	else
281 		aprint_error_dev(self, "couldn't establish power handler\n");
282 
283 #if NRND > 0
284         rnd_attach_source(&sc->rnd_source, device_xname(self),
285             RND_TYPE_NET, 0);
286 #endif
287 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
288 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
289 	    SYSCTL_DESCR("vte per-controller controls"),
290 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
291 	    CTL_EOL) != 0) {
292 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
293 		return;
294 	}
295 	vte_nodenum = node->sysctl_num;
296 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
297 	    CTLFLAG_READWRITE,
298 	    CTLTYPE_INT, "int_rxct",
299 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
300 	    vte_sysctl_intrxct, 0, sc,
301 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
302 	    CTL_EOL) != 0) {
303 		aprint_normal_dev(sc->vte_dev,
304 		    "couldn't create int_rxct sysctl node\n");
305 	}
306 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
307 	    CTLFLAG_READWRITE,
308 	    CTLTYPE_INT, "int_txct",
309 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
310 	    vte_sysctl_inttxct, 0, sc,
311 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
312 	    CTL_EOL) != 0) {
313 		aprint_normal_dev(sc->vte_dev,
314 		    "couldn't create int_txct sysctl node\n");
315 	}
316 }
317 
318 static int
319 vte_detach(device_t dev, int flags __unused)
320 {
321 	struct vte_softc *sc = device_private(dev);
322 	struct ifnet *ifp = &sc->vte_if;
323 	int s;
324 
325 	s = splnet();
326 	/* Stop the interface. Callouts are stopped in it. */
327 	vte_stop(ifp, 1);
328 	splx(s);
329 
330 	pmf_device_deregister(dev);
331 
332 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
333 	ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
334 
335 	ether_ifdetach(ifp);
336 	if_detach(ifp);
337 
338 	vte_dma_free(sc);
339 
340 	return (0);
341 }
342 
343 static int
344 vte_miibus_readreg(device_t dev, int phy, int reg)
345 {
346 	struct vte_softc *sc = device_private(dev);
347 	int i;
348 
349 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
350 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
351 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
352 		DELAY(5);
353 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
354 			break;
355 	}
356 
357 	if (i == 0) {
358 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
359 		return (0);
360 	}
361 
362 	return (CSR_READ_2(sc, VTE_MMRD));
363 }
364 
365 static void
366 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
367 {
368 	struct vte_softc *sc = device_private(dev);
369 	int i;
370 
371 	CSR_WRITE_2(sc, VTE_MMWD, val);
372 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
373 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
374 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
375 		DELAY(5);
376 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
377 			break;
378 	}
379 
380 	if (i == 0)
381 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
382 
383 }
384 
385 static void
386 vte_miibus_statchg(device_t dev)
387 {
388 	struct vte_softc *sc = device_private(dev);
389 	struct ifnet *ifp;
390 	uint16_t val;
391 
392 	ifp = &sc->vte_if;
393 
394 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
395 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
396 
397 	sc->vte_flags &= ~VTE_FLAG_LINK;
398 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
399 	    (IFM_ACTIVE | IFM_AVALID)) {
400 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
401 		case IFM_10_T:
402 		case IFM_100_TX:
403 			sc->vte_flags |= VTE_FLAG_LINK;
404 			break;
405 		default:
406 			break;
407 		}
408 	}
409 
410 	/* Stop RX/TX MACs. */
411 	vte_stop_mac(sc);
412 	/* Program MACs with resolved duplex and flow control. */
413 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
414 		/*
415 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
416 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
417 		 */
418 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
419 			val = 18 << VTE_IM_TIMER_SHIFT;
420 		else
421 			val = 1 << VTE_IM_TIMER_SHIFT;
422 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
423 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
424 		CSR_WRITE_2(sc, VTE_MRICR, val);
425 
426 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
427 			val = 18 << VTE_IM_TIMER_SHIFT;
428 		else
429 			val = 1 << VTE_IM_TIMER_SHIFT;
430 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
431 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
432 		CSR_WRITE_2(sc, VTE_MTICR, val);
433 
434 		vte_mac_config(sc);
435 		vte_start_mac(sc);
436 		DPRINTF(("vte_miibus_statchg: link\n"));
437 	}
438 }
439 
440 static void
441 vte_get_macaddr(struct vte_softc *sc)
442 {
443 	uint16_t mid;
444 
445 	/*
446 	 * It seems there is no way to reload station address and
447 	 * it is supposed to be set by BIOS.
448 	 */
449 	mid = CSR_READ_2(sc, VTE_MID0L);
450 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
451 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
452 	mid = CSR_READ_2(sc, VTE_MID0M);
453 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
454 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
455 	mid = CSR_READ_2(sc, VTE_MID0H);
456 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
457 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
458 }
459 
460 
461 static int
462 vte_dma_alloc(struct vte_softc *sc)
463 {
464 	struct vte_txdesc *txd;
465 	struct vte_rxdesc *rxd;
466 	int error, i, rseg;
467 
468 	/* create DMA map for TX ring */
469 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
470 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
471 	    &sc->vte_cdata.vte_tx_ring_map);
472 	if (error) {
473 		aprint_error_dev(sc->vte_dev,
474 		    "could not create dma map for TX ring (%d)\n",
475 		    error);
476 		goto fail;
477 	}
478 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
479 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
480 	    VTE_TX_RING_ALIGN, 0,
481 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
482 	    BUS_DMA_NOWAIT);
483 	if (error != 0) {
484 		aprint_error_dev(sc->vte_dev,
485 		    "could not allocate DMA'able memory for TX ring (%d).\n",
486 		    error);
487 		goto fail;
488 	}
489 	KASSERT(rseg == 1);
490 	error = bus_dmamem_map(sc->vte_dmatag,
491 	    sc->vte_cdata.vte_tx_ring_seg, 1,
492 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
493 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
494 	if (error != 0) {
495 		aprint_error_dev(sc->vte_dev,
496 		    "could not map DMA'able memory for TX ring (%d).\n",
497 		    error);
498 		goto fail;
499 	}
500 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
501 	error = bus_dmamap_load(sc->vte_dmatag,
502 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
503 	    VTE_TX_RING_SZ, NULL,
504 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
505 	if (error != 0) {
506 		aprint_error_dev(sc->vte_dev,
507 		    "could not load DMA'able memory for TX ring.\n");
508 		goto fail;
509 	}
510 
511 	/* create DMA map for RX ring */
512 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
513 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
514 	    &sc->vte_cdata.vte_rx_ring_map);
515 	if (error) {
516 		aprint_error_dev(sc->vte_dev,
517 		    "could not create dma map for RX ring (%d)\n",
518 		    error);
519 		goto fail;
520 	}
521 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
522 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
523 	    VTE_RX_RING_ALIGN, 0,
524 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
525 	    BUS_DMA_NOWAIT);
526 	if (error != 0) {
527 		aprint_error_dev(sc->vte_dev,
528 		    "could not allocate DMA'able memory for RX ring (%d).\n",
529 		    error);
530 		goto fail;
531 	}
532 	KASSERT(rseg == 1);
533 	error = bus_dmamem_map(sc->vte_dmatag,
534 	    sc->vte_cdata.vte_rx_ring_seg, 1,
535 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
536 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
537 	if (error != 0) {
538 		aprint_error_dev(sc->vte_dev,
539 		    "could not map DMA'able memory for RX ring (%d).\n",
540 		    error);
541 		goto fail;
542 	}
543 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
544 	error = bus_dmamap_load(sc->vte_dmatag,
545 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
546 	    VTE_RX_RING_SZ, NULL,
547 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
548 	if (error != 0) {
549 		aprint_error_dev(sc->vte_dev,
550 		    "could not load DMA'able memory for RX ring (%d).\n",
551 		    error);
552 		goto fail;
553 	}
554 
555 	/* Create DMA maps for TX buffers. */
556 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
557 		txd = &sc->vte_cdata.vte_txdesc[i];
558 		txd->tx_m = NULL;
559 		txd->tx_dmamap = NULL;
560 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
561 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
562 		    &txd->tx_dmamap);
563 		if (error != 0) {
564 			aprint_error_dev(sc->vte_dev,
565 			    "could not create TX DMA map %d (%d).\n", i, error);
566 			goto fail;
567 		}
568 	}
569 	/* Create DMA maps for RX buffers. */
570 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
571 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
572 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
573 		aprint_error_dev(sc->vte_dev,
574 		    "could not create spare RX dmamap (%d).\n", error);
575 		goto fail;
576 	}
577 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
578 		rxd = &sc->vte_cdata.vte_rxdesc[i];
579 		rxd->rx_m = NULL;
580 		rxd->rx_dmamap = NULL;
581 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
582 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
583 		    &rxd->rx_dmamap);
584 		if (error != 0) {
585 			aprint_error_dev(sc->vte_dev,
586 			    "could not create RX dmamap %d (%d).\n", i, error);
587 			goto fail;
588 		}
589 	}
590 	return 0;
591 
592 fail:
593 	vte_dma_free(sc);
594 	return (error);
595 }
596 
597 static void
598 vte_dma_free(struct vte_softc *sc)
599 {
600 	struct vte_txdesc *txd;
601 	struct vte_rxdesc *rxd;
602 	int i;
603 
604 	/* TX buffers. */
605 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
606 		txd = &sc->vte_cdata.vte_txdesc[i];
607 		if (txd->tx_dmamap != NULL) {
608 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
609 			txd->tx_dmamap = NULL;
610 		}
611 	}
612 	/* RX buffers */
613 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
614 		rxd = &sc->vte_cdata.vte_rxdesc[i];
615 		if (rxd->rx_dmamap != NULL) {
616 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
617 			rxd->rx_dmamap = NULL;
618 		}
619 	}
620 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
621 		bus_dmamap_destroy(sc->vte_dmatag,
622 		    sc->vte_cdata.vte_rx_sparemap);
623 		sc->vte_cdata.vte_rx_sparemap = NULL;
624 	}
625 	/* TX descriptor ring. */
626 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
627 		bus_dmamap_unload(sc->vte_dmatag,
628 		    sc->vte_cdata.vte_tx_ring_map);
629 		bus_dmamap_destroy(sc->vte_dmatag,
630 		    sc->vte_cdata.vte_tx_ring_map);
631 	}
632 	if (sc->vte_cdata.vte_tx_ring != NULL) {
633 		bus_dmamem_unmap(sc->vte_dmatag,
634 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
635 		bus_dmamem_free(sc->vte_dmatag,
636 		    sc->vte_cdata.vte_tx_ring_seg, 1);
637 	}
638 	sc->vte_cdata.vte_tx_ring = NULL;
639 	sc->vte_cdata.vte_tx_ring_map = NULL;
640 	/* RX ring. */
641 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
642 		bus_dmamap_unload(sc->vte_dmatag,
643 		    sc->vte_cdata.vte_rx_ring_map);
644 		bus_dmamap_destroy(sc->vte_dmatag,
645 		    sc->vte_cdata.vte_rx_ring_map);
646 	}
647 	if (sc->vte_cdata.vte_rx_ring != NULL) {
648 		bus_dmamem_unmap(sc->vte_dmatag,
649 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
650 		bus_dmamem_free(sc->vte_dmatag,
651 		    sc->vte_cdata.vte_rx_ring_seg, 1);
652 	}
653 	sc->vte_cdata.vte_rx_ring = NULL;
654 	sc->vte_cdata.vte_rx_ring_map = NULL;
655 }
656 
657 static bool
658 vte_shutdown(device_t dev, int howto)
659 {
660 
661 	return (vte_suspend(dev, NULL));
662 }
663 
664 static bool
665 vte_suspend(device_t dev, const pmf_qual_t *qual)
666 {
667 	struct vte_softc *sc = device_private(dev);
668 	struct ifnet *ifp = &sc->vte_if;
669 
670 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
671 	if ((ifp->if_flags & IFF_RUNNING) != 0)
672 		vte_stop(ifp, 1);
673 	return (0);
674 }
675 
676 static bool
677 vte_resume(device_t dev, const pmf_qual_t *qual)
678 {
679 	struct vte_softc *sc = device_private(dev);
680 	struct ifnet *ifp;
681 
682 	ifp = &sc->vte_if;
683 	if ((ifp->if_flags & IFF_UP) != 0) {
684 		ifp->if_flags &= ~IFF_RUNNING;
685 		vte_init(ifp);
686 	}
687 
688 	return (0);
689 }
690 
691 static struct vte_txdesc *
692 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
693 {
694 	struct vte_txdesc *txd;
695 	struct mbuf *m, *n;
696 	int copy, error, padlen;
697 
698 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
699 	m = *m_head;
700 	/*
701 	 * Controller doesn't auto-pad, so we have to make sure pad
702 	 * short frames out to the minimum frame length.
703 	 */
704 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
705 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
706 	else
707 		padlen = 0;
708 
709 	/*
710 	 * Controller does not support multi-fragmented TX buffers.
711 	 * Controller spends most of its TX processing time in
712 	 * de-fragmenting TX buffers.  Either faster CPU or more
713 	 * advanced controller DMA engine is required to speed up
714 	 * TX path processing.
715 	 * To mitigate the de-fragmenting issue, perform deep copy
716 	 * from fragmented mbuf chains to a pre-allocated mbuf
717 	 * cluster with extra cost of kernel memory.  For frames
718 	 * that is composed of single TX buffer, the deep copy is
719 	 * bypassed.
720 	 */
721 	copy = 0;
722 	if (m->m_next != NULL)
723 		copy++;
724 	if (padlen > 0 && (M_READONLY(m) ||
725 	    padlen > M_TRAILINGSPACE(m)))
726 		copy++;
727 	if (copy != 0) {
728 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
729 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
730 		n->m_pkthdr.len = m->m_pkthdr.len;
731 		n->m_len = m->m_pkthdr.len;
732 		m = n;
733 		txd->tx_flags |= VTE_TXMBUF;
734 	}
735 
736 	if (padlen > 0) {
737 		/* Zero out the bytes in the pad area. */
738 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
739 		m->m_pkthdr.len += padlen;
740 		m->m_len = m->m_pkthdr.len;
741 	}
742 
743 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
744 	if (error != 0) {
745 		txd->tx_flags &= ~VTE_TXMBUF;
746 		return (NULL);
747 	}
748 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
749 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
750 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
751 
752 	txd->tx_desc->dtlen =
753 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
754 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
755 	sc->vte_cdata.vte_tx_cnt++;
756 	/* Update producer index. */
757 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
758 
759 	/* Finally hand over ownership to controller. */
760 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
761 	txd->tx_m = m;
762 
763 	return (txd);
764 }
765 
766 static void
767 vte_ifstart(struct ifnet *ifp)
768 {
769 	struct vte_softc *sc = ifp->if_softc;
770 	struct vte_txdesc *txd;
771 	struct mbuf *m_head, *m;
772 	int enq;
773 
774 	ifp = &sc->vte_if;
775 
776 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
777 
778 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
779 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
780 		return;
781 
782 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
783 		/* Reserve one free TX descriptor. */
784 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
785 			ifp->if_flags |= IFF_OACTIVE;
786 			break;
787 		}
788 		IFQ_POLL(&ifp->if_snd, m_head);
789 		if (m_head == NULL)
790 			break;
791 		/*
792 		 * Pack the data into the transmit ring. If we
793 		 * don't have room, set the OACTIVE flag and wait
794 		 * for the NIC to drain the ring.
795 		 */
796 		DPRINTF(("vte_encap:"));
797 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
798 			DPRINTF((" failed\n"));
799 			break;
800 		}
801 		DPRINTF((" ok\n"));
802 		IFQ_DEQUEUE(&ifp->if_snd, m);
803 		KASSERT(m == m_head);
804 
805 		enq++;
806 		/*
807 		 * If there's a BPF listener, bounce a copy of this frame
808 		 * to him.
809 		 */
810 		bpf_mtap(ifp, m_head);
811 		/* Free consumed TX frame. */
812 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
813 			m_freem(m_head);
814 	}
815 
816 	if (enq > 0) {
817 		bus_dmamap_sync(sc->vte_dmatag,
818 		    sc->vte_cdata.vte_tx_ring_map, 0,
819 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
820 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
821 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
822 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
823 	}
824 }
825 
826 static void
827 vte_ifwatchdog(struct ifnet *ifp)
828 {
829 	struct vte_softc *sc = ifp->if_softc;
830 
831 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
832 		return;
833 
834 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
835 	ifp->if_oerrors++;
836 	vte_init(ifp);
837 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
838 		vte_ifstart(ifp);
839 }
840 
841 static int
842 vte_mediachange(struct ifnet *ifp)
843 {
844 	int error;
845 	struct vte_softc *sc = ifp->if_softc;
846 
847 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
848 		error = 0;
849 	else if (error != 0) {
850 		aprint_error_dev(sc->vte_dev, "could not set media\n");
851 		return error;
852 	}
853 											return 0;
854 
855 }
856 
857 static int
858 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
859 {
860 	struct vte_softc *sc = ifp->if_softc;
861 	int error, s;
862 
863 	s = splnet();
864 	error = ether_ioctl(ifp, cmd, data);
865 	if (error == ENETRESET) {
866 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
867 		if (ifp->if_flags & IFF_RUNNING)
868 			vte_rxfilter(sc);
869 		error = 0;
870 	}
871 	splx(s);
872 	return error;
873 }
874 
875 static void
876 vte_mac_config(struct vte_softc *sc)
877 {
878 	uint16_t mcr;
879 
880 	mcr = CSR_READ_2(sc, VTE_MCR0);
881 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
882 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
883 		mcr |= MCR0_FULL_DUPLEX;
884 #ifdef notyet
885 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
886 			mcr |= MCR0_FC_ENB;
887 		/*
888 		 * The data sheet is not clear whether the controller
889 		 * honors received pause frames or not.  The is no
890 		 * separate control bit for RX pause frame so just
891 		 * enable MCR0_FC_ENB bit.
892 		 */
893 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
894 			mcr |= MCR0_FC_ENB;
895 #endif
896 	}
897 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
898 }
899 
900 static void
901 vte_stats_clear(struct vte_softc *sc)
902 {
903 
904 	/* Reading counter registers clears its contents. */
905 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
906 	CSR_READ_2(sc, VTE_CNT_MECNT0);
907 	CSR_READ_2(sc, VTE_CNT_MECNT1);
908 	CSR_READ_2(sc, VTE_CNT_MECNT2);
909 	CSR_READ_2(sc, VTE_CNT_MECNT3);
910 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
911 	CSR_READ_2(sc, VTE_CNT_MECNT4);
912 	CSR_READ_2(sc, VTE_CNT_PAUSE);
913 }
914 
915 static void
916 vte_stats_update(struct vte_softc *sc)
917 {
918 	struct vte_hw_stats *stat;
919 	struct ifnet *ifp = &sc->vte_if;
920 	uint16_t value;
921 
922 	stat = &sc->vte_stats;
923 
924 	CSR_READ_2(sc, VTE_MECISR);
925 	/* RX stats. */
926 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
927 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
928 	stat->rx_bcast_frames += (value >> 8);
929 	stat->rx_mcast_frames += (value & 0xFF);
930 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
931 	stat->rx_runts += (value >> 8);
932 	stat->rx_crcerrs += (value & 0xFF);
933 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
934 	stat->rx_long_frames += (value & 0xFF);
935 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
936 	stat->rx_fifo_full += (value >> 8);
937 	stat->rx_desc_unavail += (value & 0xFF);
938 
939 	/* TX stats. */
940 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
941 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
942 	stat->tx_underruns += (value >> 8);
943 	stat->tx_late_colls += (value & 0xFF);
944 
945 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
946 	stat->tx_pause_frames += (value >> 8);
947 	stat->rx_pause_frames += (value & 0xFF);
948 
949 	/* Update ifp counters. */
950 	ifp->if_opackets = stat->tx_frames;
951 	ifp->if_collisions = stat->tx_late_colls;
952 	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
953 	ifp->if_ipackets = stat->rx_frames;
954 	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
955 	    stat->rx_long_frames + stat->rx_fifo_full;
956 }
957 
958 static int
959 vte_intr(void *arg)
960 {
961 	struct vte_softc *sc = (struct vte_softc *)arg;
962 	struct ifnet *ifp = &sc->vte_if;
963 	uint16_t status;
964 	int n;
965 
966 	/* Reading VTE_MISR acknowledges interrupts. */
967 	status = CSR_READ_2(sc, VTE_MISR);
968 	DPRINTF(("vte_intr status 0x%x\n", status));
969 	if ((status & VTE_INTRS) == 0) {
970 		/* Not ours. */
971 		return 0;
972 	}
973 
974 	/* Disable interrupts. */
975 	CSR_WRITE_2(sc, VTE_MIER, 0);
976 	for (n = 8; (status & VTE_INTRS) != 0;) {
977 		if ((ifp->if_flags & IFF_RUNNING) == 0)
978 			break;
979 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
980 		    MISR_RX_FIFO_FULL)) != 0)
981 			vte_rxeof(sc);
982 		if ((status & MISR_TX_DONE) != 0)
983 			vte_txeof(sc);
984 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
985 			vte_stats_update(sc);
986 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
987 			vte_ifstart(ifp);
988 		if (--n > 0)
989 			status = CSR_READ_2(sc, VTE_MISR);
990 		else
991 			break;
992 	}
993 
994 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
995 		/* Re-enable interrupts. */
996 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
997 	}
998 	return 1;
999 }
1000 
1001 static void
1002 vte_txeof(struct vte_softc *sc)
1003 {
1004 	struct ifnet *ifp;
1005 	struct vte_txdesc *txd;
1006 	uint16_t status;
1007 	int cons, prog;
1008 
1009 	ifp = &sc->vte_if;
1010 
1011 	if (sc->vte_cdata.vte_tx_cnt == 0)
1012 		return;
1013 	bus_dmamap_sync(sc->vte_dmatag,
1014 	    sc->vte_cdata.vte_tx_ring_map, 0,
1015 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1016 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1017 	cons = sc->vte_cdata.vte_tx_cons;
1018 	/*
1019 	 * Go through our TX list and free mbufs for those
1020 	 * frames which have been transmitted.
1021 	 */
1022 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1023 		txd = &sc->vte_cdata.vte_txdesc[cons];
1024 		status = le16toh(txd->tx_desc->dtst);
1025 		if ((status & VTE_DTST_TX_OWN) != 0)
1026 			break;
1027 		sc->vte_cdata.vte_tx_cnt--;
1028 		/* Reclaim transmitted mbufs. */
1029 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1030 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1031 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1032 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1033 			m_freem(txd->tx_m);
1034 		txd->tx_flags &= ~VTE_TXMBUF;
1035 		txd->tx_m = NULL;
1036 		prog++;
1037 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1038 	}
1039 
1040 	if (prog > 0) {
1041 		ifp->if_flags &= ~IFF_OACTIVE;
1042 		sc->vte_cdata.vte_tx_cons = cons;
1043 		/*
1044 		 * Unarm watchdog timer only when there is no pending
1045 		 * frames in TX queue.
1046 		 */
1047 		if (sc->vte_cdata.vte_tx_cnt == 0)
1048 			sc->vte_watchdog_timer = 0;
1049 	}
1050 }
1051 
1052 static int
1053 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1054 {
1055 	struct mbuf *m;
1056 	bus_dmamap_t map;
1057 
1058 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1059 	if (m == NULL)
1060 		return (ENOBUFS);
1061 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1062 	m_adj(m, sizeof(uint32_t));
1063 
1064 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1065 	    sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
1066 		m_freem(m);
1067 		return (ENOBUFS);
1068 	}
1069 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1070 
1071 	if (rxd->rx_m != NULL) {
1072 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1073 		    0, rxd->rx_dmamap->dm_mapsize,
1074 		    BUS_DMASYNC_POSTREAD);
1075 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1076 	}
1077 	map = rxd->rx_dmamap;
1078 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1079 	sc->vte_cdata.vte_rx_sparemap = map;
1080 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1081 	    0, rxd->rx_dmamap->dm_mapsize,
1082 	    BUS_DMASYNC_PREREAD);
1083 	rxd->rx_m = m;
1084 	rxd->rx_desc->drbp =
1085 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1086 	rxd->rx_desc->drlen = htole16(
1087 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1088 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m, (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr, rxd->rx_dmamap->dm_segs[0].ds_len));
1089 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1090 
1091 	return (0);
1092 }
1093 
1094 static void
1095 vte_rxeof(struct vte_softc *sc)
1096 {
1097 	struct ifnet *ifp;
1098 	struct vte_rxdesc *rxd;
1099 	struct mbuf *m;
1100 	uint16_t status, total_len;
1101 	int cons, prog;
1102 
1103 	bus_dmamap_sync(sc->vte_dmatag,
1104 	    sc->vte_cdata.vte_rx_ring_map, 0,
1105 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1106 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1107 	cons = sc->vte_cdata.vte_rx_cons;
1108 	ifp = &sc->vte_if;
1109 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1110 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1111 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1112 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1113 		status = le16toh(rxd->rx_desc->drst);
1114 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n", cons, rxd, rxd->rx_m, status, VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1115 		if ((status & VTE_DRST_RX_OWN) != 0)
1116 			break;
1117 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1118 		m = rxd->rx_m;
1119 		if ((status & VTE_DRST_RX_OK) == 0) {
1120 			/* Discard errored frame. */
1121 			rxd->rx_desc->drlen =
1122 			    htole16(MCLBYTES - sizeof(uint32_t));
1123 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1124 			continue;
1125 		}
1126 		if (vte_newbuf(sc, rxd) != 0) {
1127 			DPRINTF(("vte_rxeof newbuf failed\n"));
1128 			ifp->if_ierrors++;
1129 			rxd->rx_desc->drlen =
1130 			    htole16(MCLBYTES - sizeof(uint32_t));
1131 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1132 			continue;
1133 		}
1134 
1135 		/*
1136 		 * It seems there is no way to strip FCS bytes.
1137 		 */
1138 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1139 		m->m_pkthdr.rcvif = ifp;
1140 		ifp->if_ipackets++;
1141 		bpf_mtap(ifp, m);
1142 		(*ifp->if_input)(ifp, m);
1143 	}
1144 
1145 	if (prog > 0) {
1146 		/* Update the consumer index. */
1147 		sc->vte_cdata.vte_rx_cons = cons;
1148 		/*
1149 		 * Sync updated RX descriptors such that controller see
1150 		 * modified RX buffer addresses.
1151 		 */
1152 		bus_dmamap_sync(sc->vte_dmatag,
1153 		    sc->vte_cdata.vte_rx_ring_map, 0,
1154 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1155 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1156 #ifdef notyet
1157 		/*
1158 		 * Update residue counter.  Controller does not
1159 		 * keep track of number of available RX descriptors
1160 		 * such that driver should have to update VTE_MRDCR
1161 		 * to make controller know how many free RX
1162 		 * descriptors were added to controller.  This is
1163 		 * a similar mechanism used in VIA velocity
1164 		 * controllers and it indicates controller just
1165 		 * polls OWN bit of current RX descriptor pointer.
1166 		 * A couple of severe issues were seen on sample
1167 		 * board where the controller continuously emits TX
1168 		 * pause frames once RX pause threshold crossed.
1169 		 * Once triggered it never recovered form that
1170 		 * state, I couldn't find a way to make it back to
1171 		 * work at least.  This issue effectively
1172 		 * disconnected the system from network.  Also, the
1173 		 * controller used 00:00:00:00:00:00 as source
1174 		 * station address of TX pause frame. Probably this
1175 		 * is one of reason why vendor recommends not to
1176 		 * enable flow control on R6040 controller.
1177 		 */
1178 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1179 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1180 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1181 #endif
1182 #if NRND > 0
1183         if (RND_ENABLED(&sc->rnd_source))
1184 		rnd_add_uint32(&sc->rnd_source, prog);
1185 #endif /* NRND > 0 */
1186 	}
1187 }
1188 
1189 static void
1190 vte_tick(void *arg)
1191 {
1192 	struct vte_softc *sc;
1193 	int s = splnet();
1194 
1195 	sc = (struct vte_softc *)arg;
1196 
1197 	mii_tick(&sc->vte_mii);
1198 	vte_stats_update(sc);
1199 	vte_txeof(sc);
1200 	vte_ifwatchdog(&sc->vte_if);
1201 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1202 	splx(s);
1203 }
1204 
1205 static void
1206 vte_reset(struct vte_softc *sc)
1207 {
1208 	uint16_t mcr;
1209 	int i;
1210 
1211 	mcr = CSR_READ_2(sc, VTE_MCR1);
1212 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1213 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1214 		DELAY(10);
1215 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1216 			break;
1217 	}
1218 	if (i == 0)
1219 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1220 	/*
1221 	 * Follow the guide of vendor recommended way to reset MAC.
1222 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1223 	 * not reliable so manually reset internal state machine.
1224 	 */
1225 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1226 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1227 	DELAY(5000);
1228 }
1229 
1230 
1231 static int
1232 vte_init(struct ifnet *ifp)
1233 {
1234 	struct vte_softc *sc = ifp->if_softc;
1235 	bus_addr_t paddr;
1236 	uint8_t eaddr[ETHER_ADDR_LEN];
1237 	int s, error;
1238 
1239 	s = splnet();
1240 	/*
1241 	 * Cancel any pending I/O.
1242 	 */
1243 	vte_stop(ifp, 1);
1244 	/*
1245 	 * Reset the chip to a known state.
1246 	 */
1247 	vte_reset(sc);
1248 
1249 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1250 		splx(s);
1251 		return 0;
1252 	}
1253 
1254 	/* Initialize RX descriptors. */
1255 	if (vte_init_rx_ring(sc) != 0) {
1256 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1257 		vte_stop(ifp, 1);
1258 		splx(s);
1259 		return ENOMEM;
1260 	}
1261 	if (vte_init_tx_ring(sc) != 0) {
1262 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1263 		vte_stop(ifp, 1);
1264 		splx(s);
1265 		return ENOMEM;
1266 	}
1267 
1268 	/*
1269 	 * Reprogram the station address.  Controller supports up
1270 	 * to 4 different station addresses so driver programs the
1271 	 * first station address as its own ethernet address and
1272 	 * configure the remaining three addresses as perfect
1273 	 * multicast addresses.
1274 	 */
1275 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1276 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1277 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1278 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1279 
1280 	/* Set TX descriptor base addresses. */
1281 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1282 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1283 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1284 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1285 
1286 	/* Set RX descriptor base addresses. */
1287 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1288 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1289 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1290 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1291 	/*
1292 	 * Initialize RX descriptor residue counter and set RX
1293 	 * pause threshold to 20% of available RX descriptors.
1294 	 * See comments on vte_rxeof() for details on flow control
1295 	 * issues.
1296 	 */
1297 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1298 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1299 
1300 	/*
1301 	 * Always use maximum frame size that controller can
1302 	 * support.  Otherwise received frames that has longer
1303 	 * frame length than vte(4) MTU would be silently dropped
1304 	 * in controller.  This would break path-MTU discovery as
1305 	 * sender wouldn't get any responses from receiver. The
1306 	 * RX buffer size should be multiple of 4.
1307 	 * Note, jumbo frames are silently ignored by controller
1308 	 * and even MAC counters do not detect them.
1309 	 */
1310 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1311 
1312 	/* Configure FIFO. */
1313 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1314 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1315 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1316 
1317 	/*
1318 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1319 	 * control configuration is done after detecting a valid
1320 	 * link.  Note, we don't generate early interrupt here
1321 	 * as well since FreeBSD does not have interrupt latency
1322 	 * problems like Windows.
1323 	 */
1324 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1325 	/*
1326 	 * We manually keep track of PHY status changes to
1327 	 * configure resolved duplex and flow control since only
1328 	 * duplex configuration can be automatically reflected to
1329 	 * MCR0.
1330 	 */
1331 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1332 	    MCR1_EXCESS_COL_RETRY_16);
1333 
1334 	/* Initialize RX filter. */
1335 	vte_rxfilter(sc);
1336 
1337 	/* Disable TX/RX interrupt moderation control. */
1338 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1339 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1340 
1341 	/* Enable MAC event counter interrupts. */
1342 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1343 	/* Clear MAC statistics. */
1344 	vte_stats_clear(sc);
1345 
1346 	/* Acknowledge all pending interrupts and clear it. */
1347 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1348 	CSR_WRITE_2(sc, VTE_MISR, 0);
1349 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
1350 
1351 	sc->vte_flags &= ~VTE_FLAG_LINK;
1352 	ifp->if_flags |= IFF_RUNNING;
1353 	ifp->if_flags &= ~IFF_OACTIVE;
1354 
1355 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1356 		error = 0;
1357 	else if (error != 0) {
1358 		aprint_error_dev(sc->vte_dev, "could not set media\n");
1359 		splx(s);
1360 		return error;
1361 	}
1362 
1363 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1364 
1365 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
1366 	splx(s);
1367 	return 0;
1368 }
1369 
1370 static void
1371 vte_stop(struct ifnet *ifp, int disable)
1372 {
1373 	struct vte_softc *sc = ifp->if_softc;
1374 	struct vte_txdesc *txd;
1375 	struct vte_rxdesc *rxd;
1376 	int i;
1377 
1378 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1379 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1380 		return;
1381 	/*
1382 	 * Mark the interface down and cancel the watchdog timer.
1383 	 */
1384 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1385 	sc->vte_flags &= ~VTE_FLAG_LINK;
1386 	callout_stop(&sc->vte_tick_ch);
1387 	sc->vte_watchdog_timer = 0;
1388 	vte_stats_update(sc);
1389 	/* Disable interrupts. */
1390 	CSR_WRITE_2(sc, VTE_MIER, 0);
1391 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1392 	/* Stop RX/TX MACs. */
1393 	vte_stop_mac(sc);
1394 	/* Clear interrupts. */
1395 	CSR_READ_2(sc, VTE_MISR);
1396 	/*
1397 	 * Free TX/RX mbufs still in the queues.
1398 	 */
1399 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1400 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1401 		if (rxd->rx_m != NULL) {
1402 			bus_dmamap_sync(sc->vte_dmatag,
1403 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1404 			    BUS_DMASYNC_POSTREAD);
1405 			bus_dmamap_unload(sc->vte_dmatag,
1406 			    rxd->rx_dmamap);
1407 			m_freem(rxd->rx_m);
1408 			rxd->rx_m = NULL;
1409 		}
1410 	}
1411 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1412 		txd = &sc->vte_cdata.vte_txdesc[i];
1413 		if (txd->tx_m != NULL) {
1414 			bus_dmamap_sync(sc->vte_dmatag,
1415 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1416 			    BUS_DMASYNC_POSTWRITE);
1417 			bus_dmamap_unload(sc->vte_dmatag,
1418 			    txd->tx_dmamap);
1419 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1420 				m_freem(txd->tx_m);
1421 			txd->tx_m = NULL;
1422 			txd->tx_flags &= ~VTE_TXMBUF;
1423 		}
1424 	}
1425 	/* Free TX mbuf pools used for deep copy. */
1426 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1427 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1428 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1429 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1430 		}
1431 	}
1432 }
1433 
1434 static void
1435 vte_start_mac(struct vte_softc *sc)
1436 {
1437 	struct ifnet *ifp = &sc->vte_if;
1438 	uint16_t mcr;
1439 	int i;
1440 
1441 	/* Enable RX/TX MACs. */
1442 	mcr = CSR_READ_2(sc, VTE_MCR0);
1443 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1444 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
1445 	    (ifp->if_flags & IFF_RUNNING) != 0) {
1446 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1447 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1448 		for (i = VTE_TIMEOUT; i > 0; i--) {
1449 			mcr = CSR_READ_2(sc, VTE_MCR0);
1450 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1451 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1452 				break;
1453 			DELAY(10);
1454 		}
1455 		if (i == 0)
1456 			aprint_error_dev(sc->vte_dev,
1457 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1458 	}
1459 }
1460 
1461 static void
1462 vte_stop_mac(struct vte_softc *sc)
1463 {
1464 	uint16_t mcr;
1465 	int i;
1466 
1467 	/* Disable RX/TX MACs. */
1468 	mcr = CSR_READ_2(sc, VTE_MCR0);
1469 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1470 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1471 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1472 		for (i = VTE_TIMEOUT; i > 0; i--) {
1473 			mcr = CSR_READ_2(sc, VTE_MCR0);
1474 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1475 				break;
1476 			DELAY(10);
1477 		}
1478 		if (i == 0)
1479 			aprint_error_dev(sc->vte_dev,
1480 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1481 	}
1482 }
1483 
1484 static int
1485 vte_init_tx_ring(struct vte_softc *sc)
1486 {
1487 	struct vte_tx_desc *desc;
1488 	struct vte_txdesc *txd;
1489 	bus_addr_t addr;
1490 	int i;
1491 
1492 	sc->vte_cdata.vte_tx_prod = 0;
1493 	sc->vte_cdata.vte_tx_cons = 0;
1494 	sc->vte_cdata.vte_tx_cnt = 0;
1495 
1496 	/* Pre-allocate TX mbufs for deep copy. */
1497 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1498 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1499 		    MT_DATA, M_PKTHDR);
1500 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1501 			return (ENOBUFS);
1502 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1503 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1504 	}
1505 	desc = sc->vte_cdata.vte_tx_ring;
1506 	bzero(desc, VTE_TX_RING_SZ);
1507 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1508 		txd = &sc->vte_cdata.vte_txdesc[i];
1509 		txd->tx_m = NULL;
1510 		if (i != VTE_TX_RING_CNT - 1)
1511 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1512 			    sizeof(struct vte_tx_desc) * (i + 1);
1513 		else
1514 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1515 			    sizeof(struct vte_tx_desc) * 0;
1516 		desc = &sc->vte_cdata.vte_tx_ring[i];
1517 		desc->dtnp = htole32(addr);
1518 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1519 		txd->tx_desc = desc;
1520 	}
1521 
1522 	bus_dmamap_sync(sc->vte_dmatag,
1523 	    sc->vte_cdata.vte_tx_ring_map, 0,
1524 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1525 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1526 	return (0);
1527 }
1528 
1529 static int
1530 vte_init_rx_ring(struct vte_softc *sc)
1531 {
1532 	struct vte_rx_desc *desc;
1533 	struct vte_rxdesc *rxd;
1534 	bus_addr_t addr;
1535 	int i;
1536 
1537 	sc->vte_cdata.vte_rx_cons = 0;
1538 	desc = sc->vte_cdata.vte_rx_ring;
1539 	bzero(desc, VTE_RX_RING_SZ);
1540 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1541 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1542 		rxd->rx_m = NULL;
1543 		if (i != VTE_RX_RING_CNT - 1)
1544 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1545 			    + sizeof(struct vte_rx_desc) * (i + 1);
1546 		else
1547 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1548 			    + sizeof(struct vte_rx_desc) * 0;
1549 		desc = &sc->vte_cdata.vte_rx_ring[i];
1550 		desc->drnp = htole32(addr);
1551 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1552 		rxd->rx_desc = desc;
1553 		if (vte_newbuf(sc, rxd) != 0)
1554 			return (ENOBUFS);
1555 	}
1556 
1557 	bus_dmamap_sync(sc->vte_dmatag,
1558 	    sc->vte_cdata.vte_rx_ring_map, 0,
1559 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1560 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1561 
1562 	return (0);
1563 }
1564 
1565 static void
1566 vte_rxfilter(struct vte_softc *sc)
1567 {
1568 	struct ether_multistep step;
1569 	struct ether_multi *enm;
1570 	struct ifnet *ifp;
1571 	uint8_t *eaddr;
1572 	uint32_t crc;
1573 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1574 	uint16_t mchash[4], mcr;
1575 	int i, nperf;
1576 
1577 	ifp = &sc->vte_if;
1578 
1579 	DPRINTF(("vte_rxfilter\n"));
1580 	bzero(mchash, sizeof(mchash));
1581 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1582 		rxfilt_perf[i][0] = 0xFFFF;
1583 		rxfilt_perf[i][1] = 0xFFFF;
1584 		rxfilt_perf[i][2] = 0xFFFF;
1585 	}
1586 
1587 	mcr = CSR_READ_2(sc, VTE_MCR0);
1588 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1589 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST | MCR0_MULTICAST);
1590 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1591 		mcr |= MCR0_BROADCAST;
1592 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1593 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1594 			mcr |= MCR0_PROMISC;
1595 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1596 			mcr |= MCR0_MULTICAST;
1597 		mchash[0] = 0xFFFF;
1598 		mchash[1] = 0xFFFF;
1599 		mchash[2] = 0xFFFF;
1600 		mchash[3] = 0xFFFF;
1601 		goto chipit;
1602 	}
1603 
1604 	ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1605 	nperf = 0;
1606 	while (enm != NULL) {
1607 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
1608 			sc->vte_if.if_flags |= IFF_ALLMULTI;
1609 			mcr |= MCR0_MULTICAST;
1610 			mchash[0] = 0xFFFF;
1611 			mchash[1] = 0xFFFF;
1612 			mchash[2] = 0xFFFF;
1613 			mchash[3] = 0xFFFF;
1614 			goto chipit;
1615 		}
1616 		/*
1617 		 * Program the first 3 multicast groups into
1618 		 * the perfect filter.  For all others, use the
1619 		 * hash table.
1620 		 */
1621 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
1622 			eaddr = enm->enm_addrlo;
1623 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1624 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1625 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1626 			nperf++;
1627 			continue;
1628 		}
1629 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1630 		mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1631 		ETHER_NEXT_MULTI(step, enm);
1632 	}
1633 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1634 	    mchash[3] != 0)
1635 		mcr |= MCR0_MULTICAST;
1636 
1637 chipit:
1638 	/* Program multicast hash table. */
1639 	DPRINTF(("chipit write multicast\n"));
1640 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1641 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1642 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1643 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1644 	/* Program perfect filter table. */
1645 	DPRINTF(("chipit write perfect filter\n"));
1646 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1647 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1648 		    rxfilt_perf[i][0]);
1649 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1650 		    rxfilt_perf[i][1]);
1651 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1652 		    rxfilt_perf[i][2]);
1653 	}
1654 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
1655 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1656 	DPRINTF(("chipit read mcro\n"));
1657 	CSR_READ_2(sc, VTE_MCR0);
1658 	DPRINTF(("chipit done\n"));
1659 }
1660 
1661 /*
1662  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1663  * set up in vte_pci_attach()
1664  */
1665 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1666 {
1667 	int rc;
1668 	const struct sysctlnode *node;
1669 
1670 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1671 	    0, CTLTYPE_NODE, "hw", NULL,
1672 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1673 		goto err;
1674 	}
1675 
1676 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1677 	    0, CTLTYPE_NODE, "vte",
1678 	    SYSCTL_DESCR("vte interface controls"),
1679 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1680 		goto err;
1681 	}
1682 
1683 	vte_root_num = node->sysctl_num;
1684 	return;
1685 
1686 err:
1687 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1688 }
1689 
1690 static int
1691 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1692 {
1693 	int error, t;
1694 	struct sysctlnode node;
1695 	struct vte_softc *sc;
1696 
1697 	node = *rnode;
1698 	sc = node.sysctl_data;
1699 	t = sc->vte_int_rx_mod;
1700 	node.sysctl_data = &t;
1701 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1702 	if (error || newp == NULL)
1703 		return error;
1704 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1705 		return EINVAL;
1706 
1707 	sc->vte_int_rx_mod = t;
1708 	vte_miibus_statchg(sc->vte_dev);
1709 	return 0;
1710 }
1711 
1712 static int
1713 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1714 {
1715 	int error, t;
1716 	struct sysctlnode node;
1717 	struct vte_softc *sc;
1718 
1719 	node = *rnode;
1720 	sc = node.sysctl_data;
1721 	t = sc->vte_int_tx_mod;
1722 	node.sysctl_data = &t;
1723 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1724 	if (error || newp == NULL)
1725 		return error;
1726 
1727 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1728 		return EINVAL;
1729 	sc->vte_int_tx_mod = t;
1730 	vte_miibus_statchg(sc->vte_dev);
1731 	return 0;
1732 }
1733