1 /* $NetBSD: if_vte.c,v 1.20 2018/06/26 06:48:01 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /*- 28 * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org> 29 * All rights reserved. 30 * 31 * Redistribution and use in source and binary forms, with or without 32 * modification, are permitted provided that the following conditions 33 * are met: 34 * 1. Redistributions of source code must retain the above copyright 35 * notice unmodified, this list of conditions, and the following 36 * disclaimer. 37 * 2. Redistributions in binary form must reproduce the above copyright 38 * notice, this list of conditions and the following disclaimer in the 39 * documentation and/or other materials provided with the distribution. 40 * 41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 */ 53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */ 54 55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */ 56 57 #include <sys/cdefs.h> 58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.20 2018/06/26 06:48:01 msaitoh Exp $"); 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/mbuf.h> 63 #include <sys/protosw.h> 64 #include <sys/socket.h> 65 #include <sys/ioctl.h> 66 #include <sys/errno.h> 67 #include <sys/malloc.h> 68 #include <sys/kernel.h> 69 #include <sys/device.h> 70 #include <sys/sysctl.h> 71 72 #include <net/if.h> 73 #include <net/if_media.h> 74 #include <net/if_types.h> 75 #include <net/if_dl.h> 76 #include <net/route.h> 77 #include <net/netisr.h> 78 #include <net/bpf.h> 79 80 #include <sys/rndsource.h> 81 82 #include "opt_inet.h" 83 #include <net/if_ether.h> 84 #ifdef INET 85 #include <netinet/in.h> 86 #include <netinet/in_systm.h> 87 #include <netinet/in_var.h> 88 #include <netinet/ip.h> 89 #include <netinet/if_inarp.h> 90 #endif 91 92 #include <sys/bus.h> 93 #include <sys/intr.h> 94 95 #include <dev/pci/pcireg.h> 96 #include <dev/pci/pcivar.h> 97 #include <dev/pci/pcidevs.h> 98 99 #include <dev/mii/mii.h> 100 #include <dev/mii/miivar.h> 101 102 #include <dev/pci/if_vtereg.h> 103 #include <dev/pci/if_vtevar.h> 104 105 static int vte_match(device_t, cfdata_t, void *); 106 static void vte_attach(device_t, device_t, void *); 107 static int vte_detach(device_t, int); 108 static int vte_dma_alloc(struct vte_softc *); 109 static void vte_dma_free(struct vte_softc *); 110 static struct vte_txdesc * 111 vte_encap(struct vte_softc *, struct mbuf **); 112 static void vte_get_macaddr(struct vte_softc *); 113 static int vte_init(struct ifnet *); 114 static int vte_init_rx_ring(struct vte_softc *); 115 static int vte_init_tx_ring(struct vte_softc *); 116 static int vte_intr(void *); 117 static int vte_ifioctl(struct ifnet *, u_long, void *); 118 static void vte_mac_config(struct vte_softc *); 119 static int vte_miibus_readreg(device_t, int, int); 120 static void vte_miibus_statchg(struct ifnet *); 121 static void vte_miibus_writereg(device_t, int, int, int); 122 static int vte_mediachange(struct ifnet *); 123 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *); 124 static void vte_reset(struct vte_softc *); 125 static void vte_rxeof(struct vte_softc *); 126 static void vte_rxfilter(struct vte_softc *); 127 static bool vte_shutdown(device_t, int); 128 static bool vte_suspend(device_t, const pmf_qual_t *); 129 static bool vte_resume(device_t, const pmf_qual_t *); 130 static void vte_ifstart(struct ifnet *); 131 static void vte_start_mac(struct vte_softc *); 132 static void vte_stats_clear(struct vte_softc *); 133 static void vte_stats_update(struct vte_softc *); 134 static void vte_stop(struct ifnet *, int); 135 static void vte_stop_mac(struct vte_softc *); 136 static void vte_tick(void *); 137 static void vte_txeof(struct vte_softc *); 138 static void vte_ifwatchdog(struct ifnet *); 139 140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO); 141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO); 142 static int vte_root_num; 143 144 #define DPRINTF(a) 145 146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc), 147 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 148 149 150 static int 151 vte_match(device_t parent, cfdata_t cf, void *aux) 152 { 153 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 154 155 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC && 156 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040) 157 return 1; 158 159 return 0; 160 } 161 162 static void 163 vte_attach(device_t parent, device_t self, void *aux) 164 { 165 struct vte_softc *sc = device_private(self); 166 struct pci_attach_args * const pa = (struct pci_attach_args *)aux; 167 struct ifnet * const ifp = &sc->vte_if; 168 int h_valid; 169 pcireg_t reg, csr; 170 pci_intr_handle_t intrhandle; 171 const char *intrstr; 172 int error; 173 const struct sysctlnode *node; 174 int vte_nodenum; 175 char intrbuf[PCI_INTRSTR_LEN]; 176 177 sc->vte_dev = self; 178 179 callout_init(&sc->vte_tick_ch, 0); 180 181 /* Map the device. */ 182 h_valid = 0; 183 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM); 184 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) { 185 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM, 186 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 187 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0); 188 } 189 if (h_valid == 0) { 190 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO); 191 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) { 192 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO, 193 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag, 194 &sc->vte_bushandle, NULL, NULL) == 0); 195 } 196 } 197 if (h_valid == 0) { 198 aprint_error_dev(self, "unable to map device registers\n"); 199 return; 200 } 201 sc->vte_dmatag = pa->pa_dmat; 202 /* Enable the device. */ 203 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 204 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 205 csr | PCI_COMMAND_MASTER_ENABLE); 206 207 pci_aprint_devinfo(pa, NULL); 208 209 /* Reset the ethernet controller. */ 210 vte_reset(sc); 211 212 if ((error = vte_dma_alloc(sc)) != 0) 213 return; 214 215 /* Load station address. */ 216 vte_get_macaddr(sc); 217 218 aprint_normal_dev(self, "Ethernet address %s\n", 219 ether_sprintf(sc->vte_eaddr)); 220 221 /* Map and establish interrupts */ 222 if (pci_intr_map(pa, &intrhandle)) { 223 aprint_error_dev(self, "couldn't map interrupt\n"); 224 return; 225 } 226 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, 227 sizeof(intrbuf)); 228 sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET, 229 vte_intr, sc); 230 if (sc->vte_ih == NULL) { 231 aprint_error_dev(self, "couldn't establish interrupt"); 232 if (intrstr != NULL) 233 aprint_error(" at %s", intrstr); 234 aprint_error("\n"); 235 return; 236 } 237 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 238 239 sc->vte_if.if_softc = sc; 240 sc->vte_mii.mii_ifp = ifp; 241 sc->vte_mii.mii_readreg = vte_miibus_readreg; 242 sc->vte_mii.mii_writereg = vte_miibus_writereg; 243 sc->vte_mii.mii_statchg = vte_miibus_statchg; 244 sc->vte_ec.ec_mii = &sc->vte_mii; 245 ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange, 246 ether_mediastatus); 247 mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY, 248 MII_OFFSET_ANY, 0); 249 if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) { 250 ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 251 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE); 252 } else 253 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO); 254 255 /* 256 * We can support 802.1Q VLAN-sized frames. 257 */ 258 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; 259 260 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 261 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST; 262 ifp->if_ioctl = vte_ifioctl; 263 ifp->if_start = vte_ifstart; 264 ifp->if_watchdog = vte_ifwatchdog; 265 ifp->if_init = vte_init; 266 ifp->if_stop = vte_stop; 267 ifp->if_timer = 0; 268 IFQ_SET_READY(&ifp->if_snd); 269 if_attach(ifp); 270 if_deferred_start_init(ifp, NULL); 271 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr); 272 273 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown)) 274 pmf_class_network_register(self, ifp); 275 else 276 aprint_error_dev(self, "couldn't establish power handler\n"); 277 278 rnd_attach_source(&sc->rnd_source, device_xname(self), 279 RND_TYPE_NET, RND_FLAG_DEFAULT); 280 281 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node, 282 0, CTLTYPE_NODE, device_xname(sc->vte_dev), 283 SYSCTL_DESCR("vte per-controller controls"), 284 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE, 285 CTL_EOL) != 0) { 286 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n"); 287 return; 288 } 289 vte_nodenum = node->sysctl_num; 290 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node, 291 CTLFLAG_READWRITE, 292 CTLTYPE_INT, "int_rxct", 293 SYSCTL_DESCR("vte RX interrupt moderation packet counter"), 294 vte_sysctl_intrxct, 0, (void *)sc, 295 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE, 296 CTL_EOL) != 0) { 297 aprint_normal_dev(sc->vte_dev, 298 "couldn't create int_rxct sysctl node\n"); 299 } 300 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node, 301 CTLFLAG_READWRITE, 302 CTLTYPE_INT, "int_txct", 303 SYSCTL_DESCR("vte TX interrupt moderation packet counter"), 304 vte_sysctl_inttxct, 0, (void *)sc, 305 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE, 306 CTL_EOL) != 0) { 307 aprint_normal_dev(sc->vte_dev, 308 "couldn't create int_txct sysctl node\n"); 309 } 310 } 311 312 static int 313 vte_detach(device_t dev, int flags __unused) 314 { 315 struct vte_softc *sc = device_private(dev); 316 struct ifnet *ifp = &sc->vte_if; 317 int s; 318 319 s = splnet(); 320 /* Stop the interface. Callouts are stopped in it. */ 321 vte_stop(ifp, 1); 322 splx(s); 323 324 pmf_device_deregister(dev); 325 326 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY); 327 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY); 328 329 ether_ifdetach(ifp); 330 if_detach(ifp); 331 332 vte_dma_free(sc); 333 334 return (0); 335 } 336 337 static int 338 vte_miibus_readreg(device_t dev, int phy, int reg) 339 { 340 struct vte_softc *sc = device_private(dev); 341 int i; 342 343 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ | 344 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT)); 345 for (i = VTE_PHY_TIMEOUT; i > 0; i--) { 346 DELAY(5); 347 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0) 348 break; 349 } 350 351 if (i == 0) { 352 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg); 353 return (0); 354 } 355 356 return (CSR_READ_2(sc, VTE_MMRD)); 357 } 358 359 static void 360 vte_miibus_writereg(device_t dev, int phy, int reg, int val) 361 { 362 struct vte_softc *sc = device_private(dev); 363 int i; 364 365 CSR_WRITE_2(sc, VTE_MMWD, val); 366 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE | 367 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT)); 368 for (i = VTE_PHY_TIMEOUT; i > 0; i--) { 369 DELAY(5); 370 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0) 371 break; 372 } 373 374 if (i == 0) 375 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg); 376 377 } 378 379 static void 380 vte_miibus_statchg(struct ifnet *ifp) 381 { 382 struct vte_softc *sc = ifp->if_softc; 383 uint16_t val; 384 385 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n", 386 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active)); 387 388 sc->vte_flags &= ~VTE_FLAG_LINK; 389 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 390 (IFM_ACTIVE | IFM_AVALID)) { 391 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) { 392 case IFM_10_T: 393 case IFM_100_TX: 394 sc->vte_flags |= VTE_FLAG_LINK; 395 break; 396 default: 397 break; 398 } 399 } 400 401 /* Stop RX/TX MACs. */ 402 vte_stop_mac(sc); 403 /* Program MACs with resolved duplex and flow control. */ 404 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) { 405 /* 406 * Timer waiting time : (63 + TIMER * 64) MII clock. 407 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps). 408 */ 409 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX) 410 val = 18 << VTE_IM_TIMER_SHIFT; 411 else 412 val = 1 << VTE_IM_TIMER_SHIFT; 413 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT; 414 /* 48.6us for 100Mbps, 50.8us for 10Mbps */ 415 CSR_WRITE_2(sc, VTE_MRICR, val); 416 417 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX) 418 val = 18 << VTE_IM_TIMER_SHIFT; 419 else 420 val = 1 << VTE_IM_TIMER_SHIFT; 421 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT; 422 /* 48.6us for 100Mbps, 50.8us for 10Mbps */ 423 CSR_WRITE_2(sc, VTE_MTICR, val); 424 425 vte_mac_config(sc); 426 vte_start_mac(sc); 427 DPRINTF(("vte_miibus_statchg: link\n")); 428 } 429 } 430 431 static void 432 vte_get_macaddr(struct vte_softc *sc) 433 { 434 uint16_t mid; 435 436 /* 437 * It seems there is no way to reload station address and 438 * it is supposed to be set by BIOS. 439 */ 440 mid = CSR_READ_2(sc, VTE_MID0L); 441 sc->vte_eaddr[0] = (mid >> 0) & 0xFF; 442 sc->vte_eaddr[1] = (mid >> 8) & 0xFF; 443 mid = CSR_READ_2(sc, VTE_MID0M); 444 sc->vte_eaddr[2] = (mid >> 0) & 0xFF; 445 sc->vte_eaddr[3] = (mid >> 8) & 0xFF; 446 mid = CSR_READ_2(sc, VTE_MID0H); 447 sc->vte_eaddr[4] = (mid >> 0) & 0xFF; 448 sc->vte_eaddr[5] = (mid >> 8) & 0xFF; 449 } 450 451 452 static int 453 vte_dma_alloc(struct vte_softc *sc) 454 { 455 struct vte_txdesc *txd; 456 struct vte_rxdesc *rxd; 457 int error, i, rseg; 458 459 /* create DMA map for TX ring */ 460 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1, 461 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 462 &sc->vte_cdata.vte_tx_ring_map); 463 if (error) { 464 aprint_error_dev(sc->vte_dev, 465 "could not create dma map for TX ring (%d)\n", 466 error); 467 goto fail; 468 } 469 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */ 470 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ, 471 VTE_TX_RING_ALIGN, 0, 472 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg, 473 BUS_DMA_NOWAIT); 474 if (error != 0) { 475 aprint_error_dev(sc->vte_dev, 476 "could not allocate DMA'able memory for TX ring (%d).\n", 477 error); 478 goto fail; 479 } 480 KASSERT(rseg == 1); 481 error = bus_dmamem_map(sc->vte_dmatag, 482 sc->vte_cdata.vte_tx_ring_seg, 1, 483 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring), 484 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 485 if (error != 0) { 486 aprint_error_dev(sc->vte_dev, 487 "could not map DMA'able memory for TX ring (%d).\n", 488 error); 489 goto fail; 490 } 491 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ); 492 error = bus_dmamap_load(sc->vte_dmatag, 493 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring, 494 VTE_TX_RING_SZ, NULL, 495 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE); 496 if (error != 0) { 497 aprint_error_dev(sc->vte_dev, 498 "could not load DMA'able memory for TX ring.\n"); 499 goto fail; 500 } 501 502 /* create DMA map for RX ring */ 503 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1, 504 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 505 &sc->vte_cdata.vte_rx_ring_map); 506 if (error) { 507 aprint_error_dev(sc->vte_dev, 508 "could not create dma map for RX ring (%d)\n", 509 error); 510 goto fail; 511 } 512 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */ 513 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ, 514 VTE_RX_RING_ALIGN, 0, 515 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg, 516 BUS_DMA_NOWAIT); 517 if (error != 0) { 518 aprint_error_dev(sc->vte_dev, 519 "could not allocate DMA'able memory for RX ring (%d).\n", 520 error); 521 goto fail; 522 } 523 KASSERT(rseg == 1); 524 error = bus_dmamem_map(sc->vte_dmatag, 525 sc->vte_cdata.vte_rx_ring_seg, 1, 526 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring), 527 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 528 if (error != 0) { 529 aprint_error_dev(sc->vte_dev, 530 "could not map DMA'able memory for RX ring (%d).\n", 531 error); 532 goto fail; 533 } 534 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ); 535 error = bus_dmamap_load(sc->vte_dmatag, 536 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring, 537 VTE_RX_RING_SZ, NULL, 538 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE); 539 if (error != 0) { 540 aprint_error_dev(sc->vte_dev, 541 "could not load DMA'able memory for RX ring (%d).\n", 542 error); 543 goto fail; 544 } 545 546 /* Create DMA maps for TX buffers. */ 547 for (i = 0; i < VTE_TX_RING_CNT; i++) { 548 txd = &sc->vte_cdata.vte_txdesc[i]; 549 txd->tx_m = NULL; 550 txd->tx_dmamap = NULL; 551 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES, 552 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 553 &txd->tx_dmamap); 554 if (error != 0) { 555 aprint_error_dev(sc->vte_dev, 556 "could not create TX DMA map %d (%d).\n", i, error); 557 goto fail; 558 } 559 } 560 /* Create DMA maps for RX buffers. */ 561 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES, 562 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 563 &sc->vte_cdata.vte_rx_sparemap)) != 0) { 564 aprint_error_dev(sc->vte_dev, 565 "could not create spare RX dmamap (%d).\n", error); 566 goto fail; 567 } 568 for (i = 0; i < VTE_RX_RING_CNT; i++) { 569 rxd = &sc->vte_cdata.vte_rxdesc[i]; 570 rxd->rx_m = NULL; 571 rxd->rx_dmamap = NULL; 572 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES, 573 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 574 &rxd->rx_dmamap); 575 if (error != 0) { 576 aprint_error_dev(sc->vte_dev, 577 "could not create RX dmamap %d (%d).\n", i, error); 578 goto fail; 579 } 580 } 581 return 0; 582 583 fail: 584 vte_dma_free(sc); 585 return (error); 586 } 587 588 static void 589 vte_dma_free(struct vte_softc *sc) 590 { 591 struct vte_txdesc *txd; 592 struct vte_rxdesc *rxd; 593 int i; 594 595 /* TX buffers. */ 596 for (i = 0; i < VTE_TX_RING_CNT; i++) { 597 txd = &sc->vte_cdata.vte_txdesc[i]; 598 if (txd->tx_dmamap != NULL) { 599 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap); 600 txd->tx_dmamap = NULL; 601 } 602 } 603 /* RX buffers */ 604 for (i = 0; i < VTE_RX_RING_CNT; i++) { 605 rxd = &sc->vte_cdata.vte_rxdesc[i]; 606 if (rxd->rx_dmamap != NULL) { 607 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap); 608 rxd->rx_dmamap = NULL; 609 } 610 } 611 if (sc->vte_cdata.vte_rx_sparemap != NULL) { 612 bus_dmamap_destroy(sc->vte_dmatag, 613 sc->vte_cdata.vte_rx_sparemap); 614 sc->vte_cdata.vte_rx_sparemap = NULL; 615 } 616 /* TX descriptor ring. */ 617 if (sc->vte_cdata.vte_tx_ring_map != NULL) { 618 bus_dmamap_unload(sc->vte_dmatag, 619 sc->vte_cdata.vte_tx_ring_map); 620 bus_dmamap_destroy(sc->vte_dmatag, 621 sc->vte_cdata.vte_tx_ring_map); 622 } 623 if (sc->vte_cdata.vte_tx_ring != NULL) { 624 bus_dmamem_unmap(sc->vte_dmatag, 625 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ); 626 bus_dmamem_free(sc->vte_dmatag, 627 sc->vte_cdata.vte_tx_ring_seg, 1); 628 } 629 sc->vte_cdata.vte_tx_ring = NULL; 630 sc->vte_cdata.vte_tx_ring_map = NULL; 631 /* RX ring. */ 632 if (sc->vte_cdata.vte_rx_ring_map != NULL) { 633 bus_dmamap_unload(sc->vte_dmatag, 634 sc->vte_cdata.vte_rx_ring_map); 635 bus_dmamap_destroy(sc->vte_dmatag, 636 sc->vte_cdata.vte_rx_ring_map); 637 } 638 if (sc->vte_cdata.vte_rx_ring != NULL) { 639 bus_dmamem_unmap(sc->vte_dmatag, 640 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ); 641 bus_dmamem_free(sc->vte_dmatag, 642 sc->vte_cdata.vte_rx_ring_seg, 1); 643 } 644 sc->vte_cdata.vte_rx_ring = NULL; 645 sc->vte_cdata.vte_rx_ring_map = NULL; 646 } 647 648 static bool 649 vte_shutdown(device_t dev, int howto) 650 { 651 652 return (vte_suspend(dev, NULL)); 653 } 654 655 static bool 656 vte_suspend(device_t dev, const pmf_qual_t *qual) 657 { 658 struct vte_softc *sc = device_private(dev); 659 struct ifnet *ifp = &sc->vte_if; 660 661 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags)); 662 if ((ifp->if_flags & IFF_RUNNING) != 0) 663 vte_stop(ifp, 1); 664 return (0); 665 } 666 667 static bool 668 vte_resume(device_t dev, const pmf_qual_t *qual) 669 { 670 struct vte_softc *sc = device_private(dev); 671 struct ifnet *ifp; 672 673 ifp = &sc->vte_if; 674 if ((ifp->if_flags & IFF_UP) != 0) { 675 ifp->if_flags &= ~IFF_RUNNING; 676 vte_init(ifp); 677 } 678 679 return (0); 680 } 681 682 static struct vte_txdesc * 683 vte_encap(struct vte_softc *sc, struct mbuf **m_head) 684 { 685 struct vte_txdesc *txd; 686 struct mbuf *m, *n; 687 int copy, error, padlen; 688 689 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod]; 690 m = *m_head; 691 /* 692 * Controller doesn't auto-pad, so we have to make sure pad 693 * short frames out to the minimum frame length. 694 */ 695 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN) 696 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len; 697 else 698 padlen = 0; 699 700 /* 701 * Controller does not support multi-fragmented TX buffers. 702 * Controller spends most of its TX processing time in 703 * de-fragmenting TX buffers. Either faster CPU or more 704 * advanced controller DMA engine is required to speed up 705 * TX path processing. 706 * To mitigate the de-fragmenting issue, perform deep copy 707 * from fragmented mbuf chains to a pre-allocated mbuf 708 * cluster with extra cost of kernel memory. For frames 709 * that is composed of single TX buffer, the deep copy is 710 * bypassed. 711 */ 712 copy = 0; 713 if (m->m_next != NULL) 714 copy++; 715 if (padlen > 0 && (M_READONLY(m) || 716 padlen > M_TRAILINGSPACE(m))) 717 copy++; 718 if (copy != 0) { 719 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod]; 720 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *)); 721 n->m_pkthdr.len = m->m_pkthdr.len; 722 n->m_len = m->m_pkthdr.len; 723 m = n; 724 txd->tx_flags |= VTE_TXMBUF; 725 } 726 727 if (padlen > 0) { 728 /* Zero out the bytes in the pad area. */ 729 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 730 m->m_pkthdr.len += padlen; 731 m->m_len = m->m_pkthdr.len; 732 } 733 734 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 735 BUS_DMA_NOWAIT); 736 if (error != 0) { 737 txd->tx_flags &= ~VTE_TXMBUF; 738 return (NULL); 739 } 740 KASSERT(txd->tx_dmamap->dm_nsegs == 1); 741 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0, 742 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 743 744 txd->tx_desc->dtlen = 745 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len)); 746 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr); 747 sc->vte_cdata.vte_tx_cnt++; 748 /* Update producer index. */ 749 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT); 750 751 /* Finally hand over ownership to controller. */ 752 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN); 753 txd->tx_m = m; 754 755 return (txd); 756 } 757 758 static void 759 vte_ifstart(struct ifnet *ifp) 760 { 761 struct vte_softc *sc = ifp->if_softc; 762 struct vte_txdesc *txd; 763 struct mbuf *m_head, *m; 764 int enq; 765 766 ifp = &sc->vte_if; 767 768 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags)); 769 770 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != 771 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0) 772 return; 773 774 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) { 775 /* Reserve one free TX descriptor. */ 776 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) { 777 ifp->if_flags |= IFF_OACTIVE; 778 break; 779 } 780 IFQ_POLL(&ifp->if_snd, m_head); 781 if (m_head == NULL) 782 break; 783 /* 784 * Pack the data into the transmit ring. If we 785 * don't have room, set the OACTIVE flag and wait 786 * for the NIC to drain the ring. 787 */ 788 DPRINTF(("vte_encap:")); 789 if ((txd = vte_encap(sc, &m_head)) == NULL) { 790 DPRINTF((" failed\n")); 791 break; 792 } 793 DPRINTF((" ok\n")); 794 IFQ_DEQUEUE(&ifp->if_snd, m); 795 KASSERT(m == m_head); 796 797 enq++; 798 /* 799 * If there's a BPF listener, bounce a copy of this frame 800 * to him. 801 */ 802 bpf_mtap(ifp, m_head, BPF_D_OUT); 803 /* Free consumed TX frame. */ 804 if ((txd->tx_flags & VTE_TXMBUF) != 0) 805 m_freem(m_head); 806 } 807 808 if (enq > 0) { 809 bus_dmamap_sync(sc->vte_dmatag, 810 sc->vte_cdata.vte_tx_ring_map, 0, 811 sc->vte_cdata.vte_tx_ring_map->dm_mapsize, 812 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 813 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START); 814 sc->vte_watchdog_timer = VTE_TX_TIMEOUT; 815 } 816 } 817 818 static void 819 vte_ifwatchdog(struct ifnet *ifp) 820 { 821 struct vte_softc *sc = ifp->if_softc; 822 823 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer) 824 return; 825 826 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n"); 827 ifp->if_oerrors++; 828 vte_init(ifp); 829 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 830 vte_ifstart(ifp); 831 } 832 833 static int 834 vte_mediachange(struct ifnet *ifp) 835 { 836 int error; 837 struct vte_softc *sc = ifp->if_softc; 838 839 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO) 840 error = 0; 841 else if (error != 0) { 842 aprint_error_dev(sc->vte_dev, "could not set media\n"); 843 return error; 844 } 845 return 0; 846 847 } 848 849 static int 850 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 851 { 852 struct vte_softc *sc = ifp->if_softc; 853 int error, s; 854 855 s = splnet(); 856 error = ether_ioctl(ifp, cmd, data); 857 if (error == ENETRESET) { 858 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags)); 859 if (ifp->if_flags & IFF_RUNNING) 860 vte_rxfilter(sc); 861 error = 0; 862 } 863 splx(s); 864 return error; 865 } 866 867 static void 868 vte_mac_config(struct vte_softc *sc) 869 { 870 uint16_t mcr; 871 872 mcr = CSR_READ_2(sc, VTE_MCR0); 873 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX); 874 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) { 875 mcr |= MCR0_FULL_DUPLEX; 876 #ifdef notyet 877 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 878 mcr |= MCR0_FC_ENB; 879 /* 880 * The data sheet is not clear whether the controller 881 * honors received pause frames or not. The is no 882 * separate control bit for RX pause frame so just 883 * enable MCR0_FC_ENB bit. 884 */ 885 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 886 mcr |= MCR0_FC_ENB; 887 #endif 888 } 889 CSR_WRITE_2(sc, VTE_MCR0, mcr); 890 } 891 892 static void 893 vte_stats_clear(struct vte_softc *sc) 894 { 895 896 /* Reading counter registers clears its contents. */ 897 CSR_READ_2(sc, VTE_CNT_RX_DONE); 898 CSR_READ_2(sc, VTE_CNT_MECNT0); 899 CSR_READ_2(sc, VTE_CNT_MECNT1); 900 CSR_READ_2(sc, VTE_CNT_MECNT2); 901 CSR_READ_2(sc, VTE_CNT_MECNT3); 902 CSR_READ_2(sc, VTE_CNT_TX_DONE); 903 CSR_READ_2(sc, VTE_CNT_MECNT4); 904 CSR_READ_2(sc, VTE_CNT_PAUSE); 905 } 906 907 static void 908 vte_stats_update(struct vte_softc *sc) 909 { 910 struct vte_hw_stats *stat; 911 struct ifnet *ifp = &sc->vte_if; 912 uint16_t value; 913 914 stat = &sc->vte_stats; 915 916 CSR_READ_2(sc, VTE_MECISR); 917 /* RX stats. */ 918 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE); 919 value = CSR_READ_2(sc, VTE_CNT_MECNT0); 920 stat->rx_bcast_frames += (value >> 8); 921 stat->rx_mcast_frames += (value & 0xFF); 922 value = CSR_READ_2(sc, VTE_CNT_MECNT1); 923 stat->rx_runts += (value >> 8); 924 stat->rx_crcerrs += (value & 0xFF); 925 value = CSR_READ_2(sc, VTE_CNT_MECNT2); 926 stat->rx_long_frames += (value & 0xFF); 927 value = CSR_READ_2(sc, VTE_CNT_MECNT3); 928 stat->rx_fifo_full += (value >> 8); 929 stat->rx_desc_unavail += (value & 0xFF); 930 931 /* TX stats. */ 932 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE); 933 value = CSR_READ_2(sc, VTE_CNT_MECNT4); 934 stat->tx_underruns += (value >> 8); 935 stat->tx_late_colls += (value & 0xFF); 936 937 value = CSR_READ_2(sc, VTE_CNT_PAUSE); 938 stat->tx_pause_frames += (value >> 8); 939 stat->rx_pause_frames += (value & 0xFF); 940 941 /* Update ifp counters. */ 942 ifp->if_opackets = stat->tx_frames; 943 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns; 944 ifp->if_ipackets = stat->rx_frames; 945 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts + 946 stat->rx_long_frames + stat->rx_fifo_full; 947 } 948 949 static int 950 vte_intr(void *arg) 951 { 952 struct vte_softc *sc = (struct vte_softc *)arg; 953 struct ifnet *ifp = &sc->vte_if; 954 uint16_t status; 955 int n; 956 957 /* Reading VTE_MISR acknowledges interrupts. */ 958 status = CSR_READ_2(sc, VTE_MISR); 959 DPRINTF(("vte_intr status 0x%x\n", status)); 960 if ((status & VTE_INTRS) == 0) { 961 /* Not ours. */ 962 return 0; 963 } 964 965 /* Disable interrupts. */ 966 CSR_WRITE_2(sc, VTE_MIER, 0); 967 for (n = 8; (status & VTE_INTRS) != 0;) { 968 if ((ifp->if_flags & IFF_RUNNING) == 0) 969 break; 970 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL | 971 MISR_RX_FIFO_FULL)) != 0) 972 vte_rxeof(sc); 973 if ((status & MISR_TX_DONE) != 0) 974 vte_txeof(sc); 975 if ((status & MISR_EVENT_CNT_OFLOW) != 0) 976 vte_stats_update(sc); 977 if_schedule_deferred_start(ifp); 978 if (--n > 0) 979 status = CSR_READ_2(sc, VTE_MISR); 980 else 981 break; 982 } 983 984 if ((ifp->if_flags & IFF_RUNNING) != 0) { 985 /* Re-enable interrupts. */ 986 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS); 987 } 988 return 1; 989 } 990 991 static void 992 vte_txeof(struct vte_softc *sc) 993 { 994 struct ifnet *ifp; 995 struct vte_txdesc *txd; 996 uint16_t status; 997 int cons, prog; 998 999 ifp = &sc->vte_if; 1000 1001 if (sc->vte_cdata.vte_tx_cnt == 0) 1002 return; 1003 bus_dmamap_sync(sc->vte_dmatag, 1004 sc->vte_cdata.vte_tx_ring_map, 0, 1005 sc->vte_cdata.vte_tx_ring_map->dm_mapsize, 1006 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1007 cons = sc->vte_cdata.vte_tx_cons; 1008 /* 1009 * Go through our TX list and free mbufs for those 1010 * frames which have been transmitted. 1011 */ 1012 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) { 1013 txd = &sc->vte_cdata.vte_txdesc[cons]; 1014 status = le16toh(txd->tx_desc->dtst); 1015 if ((status & VTE_DTST_TX_OWN) != 0) 1016 break; 1017 if ((status & VTE_DTST_TX_OK) != 0) 1018 ifp->if_collisions += (status & 0xf); 1019 sc->vte_cdata.vte_tx_cnt--; 1020 /* Reclaim transmitted mbufs. */ 1021 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0, 1022 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1023 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap); 1024 if ((txd->tx_flags & VTE_TXMBUF) == 0) 1025 m_freem(txd->tx_m); 1026 txd->tx_flags &= ~VTE_TXMBUF; 1027 txd->tx_m = NULL; 1028 prog++; 1029 VTE_DESC_INC(cons, VTE_TX_RING_CNT); 1030 } 1031 1032 if (prog > 0) { 1033 ifp->if_flags &= ~IFF_OACTIVE; 1034 sc->vte_cdata.vte_tx_cons = cons; 1035 /* 1036 * Unarm watchdog timer only when there is no pending 1037 * frames in TX queue. 1038 */ 1039 if (sc->vte_cdata.vte_tx_cnt == 0) 1040 sc->vte_watchdog_timer = 0; 1041 } 1042 } 1043 1044 static int 1045 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd) 1046 { 1047 struct mbuf *m; 1048 bus_dmamap_t map; 1049 1050 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1051 if (m == NULL) 1052 return (ENOBUFS); 1053 m->m_len = m->m_pkthdr.len = MCLBYTES; 1054 m_adj(m, sizeof(uint32_t)); 1055 1056 if (bus_dmamap_load_mbuf(sc->vte_dmatag, 1057 sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) { 1058 m_freem(m); 1059 return (ENOBUFS); 1060 } 1061 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1); 1062 1063 if (rxd->rx_m != NULL) { 1064 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap, 1065 0, rxd->rx_dmamap->dm_mapsize, 1066 BUS_DMASYNC_POSTREAD); 1067 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap); 1068 } 1069 map = rxd->rx_dmamap; 1070 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap; 1071 sc->vte_cdata.vte_rx_sparemap = map; 1072 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap, 1073 0, rxd->rx_dmamap->dm_mapsize, 1074 BUS_DMASYNC_PREREAD); 1075 rxd->rx_m = m; 1076 rxd->rx_desc->drbp = 1077 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr); 1078 rxd->rx_desc->drlen = htole16( 1079 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len)); 1080 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m, 1081 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr, 1082 rxd->rx_dmamap->dm_segs[0].ds_len)); 1083 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); 1084 1085 return (0); 1086 } 1087 1088 static void 1089 vte_rxeof(struct vte_softc *sc) 1090 { 1091 struct ifnet *ifp; 1092 struct vte_rxdesc *rxd; 1093 struct mbuf *m; 1094 uint16_t status, total_len; 1095 int cons, prog; 1096 1097 bus_dmamap_sync(sc->vte_dmatag, 1098 sc->vte_cdata.vte_rx_ring_map, 0, 1099 sc->vte_cdata.vte_rx_ring_map->dm_mapsize, 1100 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1101 cons = sc->vte_cdata.vte_rx_cons; 1102 ifp = &sc->vte_if; 1103 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags)); 1104 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++, 1105 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) { 1106 rxd = &sc->vte_cdata.vte_rxdesc[cons]; 1107 status = le16toh(rxd->rx_desc->drst); 1108 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n", 1109 cons, rxd, rxd->rx_m, status, 1110 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen)))); 1111 if ((status & VTE_DRST_RX_OWN) != 0) 1112 break; 1113 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen)); 1114 m = rxd->rx_m; 1115 if ((status & VTE_DRST_RX_OK) == 0) { 1116 /* Discard errored frame. */ 1117 rxd->rx_desc->drlen = 1118 htole16(MCLBYTES - sizeof(uint32_t)); 1119 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); 1120 continue; 1121 } 1122 if (vte_newbuf(sc, rxd) != 0) { 1123 DPRINTF(("vte_rxeof newbuf failed\n")); 1124 ifp->if_ierrors++; 1125 rxd->rx_desc->drlen = 1126 htole16(MCLBYTES - sizeof(uint32_t)); 1127 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); 1128 continue; 1129 } 1130 1131 /* 1132 * It seems there is no way to strip FCS bytes. 1133 */ 1134 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN; 1135 m_set_rcvif(m, ifp); 1136 if_percpuq_enqueue(ifp->if_percpuq, m); 1137 } 1138 1139 if (prog > 0) { 1140 /* Update the consumer index. */ 1141 sc->vte_cdata.vte_rx_cons = cons; 1142 /* 1143 * Sync updated RX descriptors such that controller see 1144 * modified RX buffer addresses. 1145 */ 1146 bus_dmamap_sync(sc->vte_dmatag, 1147 sc->vte_cdata.vte_rx_ring_map, 0, 1148 sc->vte_cdata.vte_rx_ring_map->dm_mapsize, 1149 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1150 #ifdef notyet 1151 /* 1152 * Update residue counter. Controller does not 1153 * keep track of number of available RX descriptors 1154 * such that driver should have to update VTE_MRDCR 1155 * to make controller know how many free RX 1156 * descriptors were added to controller. This is 1157 * a similar mechanism used in VIA velocity 1158 * controllers and it indicates controller just 1159 * polls OWN bit of current RX descriptor pointer. 1160 * A couple of severe issues were seen on sample 1161 * board where the controller continuously emits TX 1162 * pause frames once RX pause threshold crossed. 1163 * Once triggered it never recovered form that 1164 * state, I couldn't find a way to make it back to 1165 * work at least. This issue effectively 1166 * disconnected the system from network. Also, the 1167 * controller used 00:00:00:00:00:00 as source 1168 * station address of TX pause frame. Probably this 1169 * is one of reason why vendor recommends not to 1170 * enable flow control on R6040 controller. 1171 */ 1172 CSR_WRITE_2(sc, VTE_MRDCR, prog | 1173 (((VTE_RX_RING_CNT * 2) / 10) << 1174 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT)); 1175 #endif 1176 rnd_add_uint32(&sc->rnd_source, prog); 1177 } 1178 } 1179 1180 static void 1181 vte_tick(void *arg) 1182 { 1183 struct vte_softc *sc; 1184 int s = splnet(); 1185 1186 sc = (struct vte_softc *)arg; 1187 1188 mii_tick(&sc->vte_mii); 1189 vte_stats_update(sc); 1190 vte_txeof(sc); 1191 vte_ifwatchdog(&sc->vte_if); 1192 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc); 1193 splx(s); 1194 } 1195 1196 static void 1197 vte_reset(struct vte_softc *sc) 1198 { 1199 uint16_t mcr; 1200 int i; 1201 1202 mcr = CSR_READ_2(sc, VTE_MCR1); 1203 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET); 1204 for (i = VTE_RESET_TIMEOUT; i > 0; i--) { 1205 DELAY(10); 1206 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0) 1207 break; 1208 } 1209 if (i == 0) 1210 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr); 1211 /* 1212 * Follow the guide of vendor recommended way to reset MAC. 1213 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is 1214 * not reliable so manually reset internal state machine. 1215 */ 1216 CSR_WRITE_2(sc, VTE_MACSM, 0x0002); 1217 CSR_WRITE_2(sc, VTE_MACSM, 0); 1218 DELAY(5000); 1219 } 1220 1221 1222 static int 1223 vte_init(struct ifnet *ifp) 1224 { 1225 struct vte_softc *sc = ifp->if_softc; 1226 bus_addr_t paddr; 1227 uint8_t eaddr[ETHER_ADDR_LEN]; 1228 int s, error; 1229 1230 s = splnet(); 1231 /* 1232 * Cancel any pending I/O. 1233 */ 1234 vte_stop(ifp, 1); 1235 /* 1236 * Reset the chip to a known state. 1237 */ 1238 vte_reset(sc); 1239 1240 if ((sc->vte_if.if_flags & IFF_UP) == 0) { 1241 splx(s); 1242 return 0; 1243 } 1244 1245 /* Initialize RX descriptors. */ 1246 if (vte_init_rx_ring(sc) != 0) { 1247 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n"); 1248 vte_stop(ifp, 1); 1249 splx(s); 1250 return ENOMEM; 1251 } 1252 if (vte_init_tx_ring(sc) != 0) { 1253 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n"); 1254 vte_stop(ifp, 1); 1255 splx(s); 1256 return ENOMEM; 1257 } 1258 1259 /* 1260 * Reprogram the station address. Controller supports up 1261 * to 4 different station addresses so driver programs the 1262 * first station address as its own ethernet address and 1263 * configure the remaining three addresses as perfect 1264 * multicast addresses. 1265 */ 1266 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); 1267 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]); 1268 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]); 1269 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]); 1270 1271 /* Set TX descriptor base addresses. */ 1272 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr; 1273 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr)); 1274 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16); 1275 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF); 1276 1277 /* Set RX descriptor base addresses. */ 1278 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr; 1279 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr)); 1280 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16); 1281 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF); 1282 /* 1283 * Initialize RX descriptor residue counter and set RX 1284 * pause threshold to 20% of available RX descriptors. 1285 * See comments on vte_rxeof() for details on flow control 1286 * issues. 1287 */ 1288 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) | 1289 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT)); 1290 1291 /* 1292 * Always use maximum frame size that controller can 1293 * support. Otherwise received frames that has longer 1294 * frame length than vte(4) MTU would be silently dropped 1295 * in controller. This would break path-MTU discovery as 1296 * sender wouldn't get any responses from receiver. The 1297 * RX buffer size should be multiple of 4. 1298 * Note, jumbo frames are silently ignored by controller 1299 * and even MAC counters do not detect them. 1300 */ 1301 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX); 1302 1303 /* Configure FIFO. */ 1304 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 | 1305 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 | 1306 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT); 1307 1308 /* 1309 * Configure TX/RX MACs. Actual resolved duplex and flow 1310 * control configuration is done after detecting a valid 1311 * link. Note, we don't generate early interrupt here 1312 * as well since FreeBSD does not have interrupt latency 1313 * problems like Windows. 1314 */ 1315 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT); 1316 /* 1317 * We manually keep track of PHY status changes to 1318 * configure resolved duplex and flow control since only 1319 * duplex configuration can be automatically reflected to 1320 * MCR0. 1321 */ 1322 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 | 1323 MCR1_EXCESS_COL_RETRY_16); 1324 1325 /* Initialize RX filter. */ 1326 vte_rxfilter(sc); 1327 1328 /* Disable TX/RX interrupt moderation control. */ 1329 CSR_WRITE_2(sc, VTE_MRICR, 0); 1330 CSR_WRITE_2(sc, VTE_MTICR, 0); 1331 1332 /* Enable MAC event counter interrupts. */ 1333 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS); 1334 /* Clear MAC statistics. */ 1335 vte_stats_clear(sc); 1336 1337 /* Acknowledge all pending interrupts and clear it. */ 1338 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS); 1339 CSR_WRITE_2(sc, VTE_MISR, 0); 1340 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), 1341 CSR_READ_2(sc, VTE_MISR))); 1342 1343 sc->vte_flags &= ~VTE_FLAG_LINK; 1344 ifp->if_flags |= IFF_RUNNING; 1345 ifp->if_flags &= ~IFF_OACTIVE; 1346 1347 /* calling mii_mediachg will call back vte_start_mac() */ 1348 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO) 1349 error = 0; 1350 else if (error != 0) { 1351 aprint_error_dev(sc->vte_dev, "could not set media\n"); 1352 splx(s); 1353 return error; 1354 } 1355 1356 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc); 1357 1358 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), 1359 CSR_READ_2(sc, VTE_MISR))); 1360 splx(s); 1361 return 0; 1362 } 1363 1364 static void 1365 vte_stop(struct ifnet *ifp, int disable) 1366 { 1367 struct vte_softc *sc = ifp->if_softc; 1368 struct vte_txdesc *txd; 1369 struct vte_rxdesc *rxd; 1370 int i; 1371 1372 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags)); 1373 if ((ifp->if_flags & IFF_RUNNING) == 0) 1374 return; 1375 /* 1376 * Mark the interface down and cancel the watchdog timer. 1377 */ 1378 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1379 sc->vte_flags &= ~VTE_FLAG_LINK; 1380 callout_stop(&sc->vte_tick_ch); 1381 sc->vte_watchdog_timer = 0; 1382 vte_stats_update(sc); 1383 /* Disable interrupts. */ 1384 CSR_WRITE_2(sc, VTE_MIER, 0); 1385 CSR_WRITE_2(sc, VTE_MECIER, 0); 1386 /* Stop RX/TX MACs. */ 1387 vte_stop_mac(sc); 1388 /* Clear interrupts. */ 1389 CSR_READ_2(sc, VTE_MISR); 1390 /* 1391 * Free TX/RX mbufs still in the queues. 1392 */ 1393 for (i = 0; i < VTE_RX_RING_CNT; i++) { 1394 rxd = &sc->vte_cdata.vte_rxdesc[i]; 1395 if (rxd->rx_m != NULL) { 1396 bus_dmamap_sync(sc->vte_dmatag, 1397 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, 1398 BUS_DMASYNC_POSTREAD); 1399 bus_dmamap_unload(sc->vte_dmatag, 1400 rxd->rx_dmamap); 1401 m_freem(rxd->rx_m); 1402 rxd->rx_m = NULL; 1403 } 1404 } 1405 for (i = 0; i < VTE_TX_RING_CNT; i++) { 1406 txd = &sc->vte_cdata.vte_txdesc[i]; 1407 if (txd->tx_m != NULL) { 1408 bus_dmamap_sync(sc->vte_dmatag, 1409 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize, 1410 BUS_DMASYNC_POSTWRITE); 1411 bus_dmamap_unload(sc->vte_dmatag, 1412 txd->tx_dmamap); 1413 if ((txd->tx_flags & VTE_TXMBUF) == 0) 1414 m_freem(txd->tx_m); 1415 txd->tx_m = NULL; 1416 txd->tx_flags &= ~VTE_TXMBUF; 1417 } 1418 } 1419 /* Free TX mbuf pools used for deep copy. */ 1420 for (i = 0; i < VTE_TX_RING_CNT; i++) { 1421 if (sc->vte_cdata.vte_txmbufs[i] != NULL) { 1422 m_freem(sc->vte_cdata.vte_txmbufs[i]); 1423 sc->vte_cdata.vte_txmbufs[i] = NULL; 1424 } 1425 } 1426 } 1427 1428 static void 1429 vte_start_mac(struct vte_softc *sc) 1430 { 1431 struct ifnet *ifp = &sc->vte_if; 1432 uint16_t mcr; 1433 int i; 1434 1435 /* Enable RX/TX MACs. */ 1436 mcr = CSR_READ_2(sc, VTE_MCR0); 1437 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 1438 (MCR0_RX_ENB | MCR0_TX_ENB) && 1439 (ifp->if_flags & IFF_RUNNING) != 0) { 1440 mcr |= MCR0_RX_ENB | MCR0_TX_ENB; 1441 CSR_WRITE_2(sc, VTE_MCR0, mcr); 1442 for (i = VTE_TIMEOUT; i > 0; i--) { 1443 mcr = CSR_READ_2(sc, VTE_MCR0); 1444 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 1445 (MCR0_RX_ENB | MCR0_TX_ENB)) 1446 break; 1447 DELAY(10); 1448 } 1449 if (i == 0) 1450 aprint_error_dev(sc->vte_dev, 1451 "could not enable RX/TX MAC(0x%04x)!\n", mcr); 1452 } 1453 vte_rxfilter(sc); 1454 } 1455 1456 static void 1457 vte_stop_mac(struct vte_softc *sc) 1458 { 1459 uint16_t mcr; 1460 int i; 1461 1462 /* Disable RX/TX MACs. */ 1463 mcr = CSR_READ_2(sc, VTE_MCR0); 1464 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) { 1465 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB); 1466 CSR_WRITE_2(sc, VTE_MCR0, mcr); 1467 for (i = VTE_TIMEOUT; i > 0; i--) { 1468 mcr = CSR_READ_2(sc, VTE_MCR0); 1469 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0) 1470 break; 1471 DELAY(10); 1472 } 1473 if (i == 0) 1474 aprint_error_dev(sc->vte_dev, 1475 "could not disable RX/TX MAC(0x%04x)!\n", mcr); 1476 } 1477 } 1478 1479 static int 1480 vte_init_tx_ring(struct vte_softc *sc) 1481 { 1482 struct vte_tx_desc *desc; 1483 struct vte_txdesc *txd; 1484 bus_addr_t addr; 1485 int i; 1486 1487 sc->vte_cdata.vte_tx_prod = 0; 1488 sc->vte_cdata.vte_tx_cons = 0; 1489 sc->vte_cdata.vte_tx_cnt = 0; 1490 1491 /* Pre-allocate TX mbufs for deep copy. */ 1492 for (i = 0; i < VTE_TX_RING_CNT; i++) { 1493 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT, 1494 MT_DATA, M_PKTHDR); 1495 if (sc->vte_cdata.vte_txmbufs[i] == NULL) 1496 return (ENOBUFS); 1497 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES; 1498 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES; 1499 } 1500 desc = sc->vte_cdata.vte_tx_ring; 1501 bzero(desc, VTE_TX_RING_SZ); 1502 for (i = 0; i < VTE_TX_RING_CNT; i++) { 1503 txd = &sc->vte_cdata.vte_txdesc[i]; 1504 txd->tx_m = NULL; 1505 if (i != VTE_TX_RING_CNT - 1) 1506 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr + 1507 sizeof(struct vte_tx_desc) * (i + 1); 1508 else 1509 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr + 1510 sizeof(struct vte_tx_desc) * 0; 1511 desc = &sc->vte_cdata.vte_tx_ring[i]; 1512 desc->dtnp = htole32(addr); 1513 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr)); 1514 txd->tx_desc = desc; 1515 } 1516 1517 bus_dmamap_sync(sc->vte_dmatag, 1518 sc->vte_cdata.vte_tx_ring_map, 0, 1519 sc->vte_cdata.vte_tx_ring_map->dm_mapsize, 1520 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1521 return (0); 1522 } 1523 1524 static int 1525 vte_init_rx_ring(struct vte_softc *sc) 1526 { 1527 struct vte_rx_desc *desc; 1528 struct vte_rxdesc *rxd; 1529 bus_addr_t addr; 1530 int i; 1531 1532 sc->vte_cdata.vte_rx_cons = 0; 1533 desc = sc->vte_cdata.vte_rx_ring; 1534 bzero(desc, VTE_RX_RING_SZ); 1535 for (i = 0; i < VTE_RX_RING_CNT; i++) { 1536 rxd = &sc->vte_cdata.vte_rxdesc[i]; 1537 rxd->rx_m = NULL; 1538 if (i != VTE_RX_RING_CNT - 1) 1539 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr 1540 + sizeof(struct vte_rx_desc) * (i + 1); 1541 else 1542 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr 1543 + sizeof(struct vte_rx_desc) * 0; 1544 desc = &sc->vte_cdata.vte_rx_ring[i]; 1545 desc->drnp = htole32(addr); 1546 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr)); 1547 rxd->rx_desc = desc; 1548 if (vte_newbuf(sc, rxd) != 0) 1549 return (ENOBUFS); 1550 } 1551 1552 bus_dmamap_sync(sc->vte_dmatag, 1553 sc->vte_cdata.vte_rx_ring_map, 0, 1554 sc->vte_cdata.vte_rx_ring_map->dm_mapsize, 1555 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1556 1557 return (0); 1558 } 1559 1560 static void 1561 vte_rxfilter(struct vte_softc *sc) 1562 { 1563 struct ether_multistep step; 1564 struct ether_multi *enm; 1565 struct ifnet *ifp; 1566 uint8_t *eaddr; 1567 uint32_t crc; 1568 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3]; 1569 uint16_t mchash[4], mcr; 1570 int i, nperf; 1571 1572 ifp = &sc->vte_if; 1573 1574 DPRINTF(("vte_rxfilter\n")); 1575 memset(mchash, 0, sizeof(mchash)); 1576 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) { 1577 rxfilt_perf[i][0] = 0xFFFF; 1578 rxfilt_perf[i][1] = 0xFFFF; 1579 rxfilt_perf[i][2] = 0xFFFF; 1580 } 1581 1582 mcr = CSR_READ_2(sc, VTE_MCR0); 1583 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr)); 1584 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST); 1585 if ((ifp->if_flags & IFF_BROADCAST) == 0) 1586 mcr |= MCR0_BROADCAST_DIS; 1587 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 1588 if ((ifp->if_flags & IFF_PROMISC) != 0) 1589 mcr |= MCR0_PROMISC; 1590 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 1591 mcr |= MCR0_MULTICAST; 1592 mchash[0] = 0xFFFF; 1593 mchash[1] = 0xFFFF; 1594 mchash[2] = 0xFFFF; 1595 mchash[3] = 0xFFFF; 1596 goto chipit; 1597 } 1598 1599 ETHER_FIRST_MULTI(step, &sc->vte_ec, enm); 1600 nperf = 0; 1601 while (enm != NULL) { 1602 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { 1603 sc->vte_if.if_flags |= IFF_ALLMULTI; 1604 mcr |= MCR0_MULTICAST; 1605 mchash[0] = 0xFFFF; 1606 mchash[1] = 0xFFFF; 1607 mchash[2] = 0xFFFF; 1608 mchash[3] = 0xFFFF; 1609 goto chipit; 1610 } 1611 /* 1612 * Program the first 3 multicast groups into 1613 * the perfect filter. For all others, use the 1614 * hash table. 1615 */ 1616 if (nperf < VTE_RXFILT_PERFECT_CNT) { 1617 eaddr = enm->enm_addrlo; 1618 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0]; 1619 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2]; 1620 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4]; 1621 nperf++; 1622 } else { 1623 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 1624 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F); 1625 } 1626 ETHER_NEXT_MULTI(step, enm); 1627 } 1628 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 || 1629 mchash[3] != 0) 1630 mcr |= MCR0_MULTICAST; 1631 1632 chipit: 1633 /* Program multicast hash table. */ 1634 DPRINTF(("chipit write multicast\n")); 1635 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]); 1636 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]); 1637 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]); 1638 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]); 1639 /* Program perfect filter table. */ 1640 DPRINTF(("chipit write perfect filter\n")); 1641 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) { 1642 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0, 1643 rxfilt_perf[i][0]); 1644 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2, 1645 rxfilt_perf[i][1]); 1646 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4, 1647 rxfilt_perf[i][2]); 1648 } 1649 DPRINTF(("chipit mcr0 0x%x\n", mcr)); 1650 CSR_WRITE_2(sc, VTE_MCR0, mcr); 1651 DPRINTF(("chipit read mcro\n")); 1652 CSR_READ_2(sc, VTE_MCR0); 1653 DPRINTF(("chipit done\n")); 1654 } 1655 1656 /* 1657 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be 1658 * set up in vte_pci_attach() 1659 */ 1660 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup") 1661 { 1662 int rc; 1663 const struct sysctlnode *node; 1664 1665 if ((rc = sysctl_createv(clog, 0, NULL, &node, 1666 0, CTLTYPE_NODE, "vte", 1667 SYSCTL_DESCR("vte interface controls"), 1668 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 1669 goto err; 1670 } 1671 1672 vte_root_num = node->sysctl_num; 1673 return; 1674 1675 err: 1676 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc); 1677 } 1678 1679 static int 1680 vte_sysctl_intrxct(SYSCTLFN_ARGS) 1681 { 1682 int error, t; 1683 struct sysctlnode node; 1684 struct vte_softc *sc; 1685 1686 node = *rnode; 1687 sc = node.sysctl_data; 1688 t = sc->vte_int_rx_mod; 1689 node.sysctl_data = &t; 1690 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1691 if (error || newp == NULL) 1692 return error; 1693 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX) 1694 return EINVAL; 1695 1696 sc->vte_int_rx_mod = t; 1697 vte_miibus_statchg(&sc->vte_if); 1698 return 0; 1699 } 1700 1701 static int 1702 vte_sysctl_inttxct(SYSCTLFN_ARGS) 1703 { 1704 int error, t; 1705 struct sysctlnode node; 1706 struct vte_softc *sc; 1707 1708 node = *rnode; 1709 sc = node.sysctl_data; 1710 t = sc->vte_int_tx_mod; 1711 node.sysctl_data = &t; 1712 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1713 if (error || newp == NULL) 1714 return error; 1715 1716 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX) 1717 return EINVAL; 1718 sc->vte_int_tx_mod = t; 1719 vte_miibus_statchg(&sc->vte_if); 1720 return 0; 1721 } 1722