xref: /netbsd-src/sys/dev/pci/if_vte.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*	$NetBSD: if_vte.c,v 1.5 2012/02/02 19:43:05 tls Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54 
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56 
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.5 2012/02/02 19:43:05 tls Exp $");
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71 
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 
79 #include <net/bpf.h>
80 #include <net/bpfdesc.h>
81 
82 #include <sys/rnd.h>
83 
84 #include "opt_inet.h"
85 #include <net/if_ether.h>
86 #ifdef INET
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip.h>
91 #include <netinet/if_inarp.h>
92 #endif
93 
94 #include <sys/bus.h>
95 #include <sys/intr.h>
96 
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 #include <dev/pci/pcidevs.h>
100 
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 
104 #include <dev/pci/if_vtereg.h>
105 #include <dev/pci/if_vtevar.h>
106 
107 static int	vte_match(device_t, cfdata_t, void *);
108 static void	vte_attach(device_t, device_t, void *);
109 static int	vte_detach(device_t, int);
110 static int	vte_dma_alloc(struct vte_softc *);
111 static void	vte_dma_free(struct vte_softc *);
112 static struct vte_txdesc *
113 		vte_encap(struct vte_softc *, struct mbuf **);
114 static void	vte_get_macaddr(struct vte_softc *);
115 static int	vte_init(struct ifnet *);
116 static int	vte_init_rx_ring(struct vte_softc *);
117 static int	vte_init_tx_ring(struct vte_softc *);
118 static int	vte_intr(void *);
119 static int	vte_ifioctl(struct ifnet *, u_long, void *);
120 static void	vte_mac_config(struct vte_softc *);
121 static int	vte_miibus_readreg(device_t, int, int);
122 static void	vte_miibus_statchg(device_t);
123 static void	vte_miibus_writereg(device_t, int, int, int);
124 static int	vte_mediachange(struct ifnet *);
125 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
126 static void	vte_reset(struct vte_softc *);
127 static void	vte_rxeof(struct vte_softc *);
128 static void	vte_rxfilter(struct vte_softc *);
129 static bool	vte_shutdown(device_t, int);
130 static bool	vte_suspend(device_t, const pmf_qual_t *);
131 static bool	vte_resume(device_t, const pmf_qual_t *);
132 static void	vte_ifstart(struct ifnet *);
133 static void	vte_start_mac(struct vte_softc *);
134 static void	vte_stats_clear(struct vte_softc *);
135 static void	vte_stats_update(struct vte_softc *);
136 static void	vte_stop(struct ifnet *, int);
137 static void	vte_stop_mac(struct vte_softc *);
138 static void	vte_tick(void *);
139 static void	vte_txeof(struct vte_softc *);
140 static void	vte_ifwatchdog(struct ifnet *);
141 
142 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
143 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
144 static int vte_root_num;
145 
146 #define DPRINTF(a)
147 
148 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
149     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
150 
151 
152 static int
153 vte_match(device_t parent, cfdata_t cf, void *aux)
154 {
155 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
156 
157 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
158 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
159 		return 1;
160 
161 	return 0;
162 }
163 
164 static void
165 vte_attach(device_t parent, device_t self, void *aux)
166 {
167 	struct vte_softc *sc = device_private(self);
168 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
169 	struct ifnet * const ifp = &sc->vte_if;
170 	int h_valid;
171 	pcireg_t reg, csr;
172 	pci_intr_handle_t intrhandle;
173 	const char *intrstr;
174 	int error;
175 	const struct sysctlnode *node;
176 	int vte_nodenum;
177 
178 	sc->vte_dev = self;
179 
180 	callout_init(&sc->vte_tick_ch, 0);
181 
182 	/* Map the device. */
183 	h_valid = 0;
184 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
185 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
186 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
187 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
188 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
189 	}
190 	if (h_valid == 0) {
191 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
192 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
193 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
194 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
195 			    &sc->vte_bushandle, NULL, NULL) == 0);
196 		}
197 	}
198 	if (h_valid == 0) {
199 		aprint_error_dev(self, "unable to map device registers\n");
200 		return;
201 	}
202 	sc->vte_dmatag = pa->pa_dmat;
203 	/* Enable the device. */
204 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
205 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
206 	    csr | PCI_COMMAND_MASTER_ENABLE);
207 
208 	pci_aprint_devinfo(pa, NULL);
209 
210 	/* Reset the ethernet controller. */
211 	vte_reset(sc);
212 
213 	if ((error = vte_dma_alloc(sc)) != 0)
214 		return;
215 
216 	/* Load station address. */
217 	vte_get_macaddr(sc);
218 
219 	aprint_normal_dev(self, "Ethernet address %s\n",
220 	    ether_sprintf(sc->vte_eaddr));
221 
222 	/* Map and establish interrupts */
223 	if (pci_intr_map(pa, &intrhandle)) {
224 	    aprint_error_dev(self, "couldn't map interrupt\n");
225 	    return;
226 	}
227 	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
228 	sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
229 	    vte_intr, sc);
230 	if (sc->vte_ih == NULL) {
231 		aprint_error_dev(self, "couldn't establish interrupt");
232 		if (intrstr != NULL)
233 			aprint_error(" at %s", intrstr);
234 		aprint_error("\n");
235 		return;
236 	}
237 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
238 
239 	sc->vte_if.if_softc = sc;
240 	sc->vte_mii.mii_ifp = ifp;
241 	sc->vte_mii.mii_readreg = vte_miibus_readreg;
242 	sc->vte_mii.mii_writereg = vte_miibus_writereg;
243 	sc->vte_mii.mii_statchg = vte_miibus_statchg;
244 	sc->vte_ec.ec_mii = &sc->vte_mii;
245 	ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
246 	    ether_mediastatus);
247 	mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
248 	    MII_OFFSET_ANY, 0);
249 	if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
250 		ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
251 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
252 	} else
253 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
254 
255 	/*
256 	 * We can support 802.1Q VLAN-sized frames.
257 	 */
258 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
259 
260         strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
261         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
262         ifp->if_ioctl = vte_ifioctl;
263         ifp->if_start = vte_ifstart;
264         ifp->if_watchdog = vte_ifwatchdog;
265         ifp->if_init = vte_init;
266         ifp->if_stop = vte_stop;
267         ifp->if_timer = 0;
268         IFQ_SET_READY(&ifp->if_snd);
269         if_attach(ifp);
270         ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
271 
272 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
273 		pmf_class_network_register(self, ifp);
274 	else
275 		aprint_error_dev(self, "couldn't establish power handler\n");
276 
277         rnd_attach_source(&sc->rnd_source, device_xname(self),
278             RND_TYPE_NET, 0);
279 
280 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
281 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
282 	    SYSCTL_DESCR("vte per-controller controls"),
283 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
284 	    CTL_EOL) != 0) {
285 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
286 		return;
287 	}
288 	vte_nodenum = node->sysctl_num;
289 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
290 	    CTLFLAG_READWRITE,
291 	    CTLTYPE_INT, "int_rxct",
292 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
293 	    vte_sysctl_intrxct, 0, sc,
294 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
295 	    CTL_EOL) != 0) {
296 		aprint_normal_dev(sc->vte_dev,
297 		    "couldn't create int_rxct sysctl node\n");
298 	}
299 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
300 	    CTLFLAG_READWRITE,
301 	    CTLTYPE_INT, "int_txct",
302 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
303 	    vte_sysctl_inttxct, 0, sc,
304 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
305 	    CTL_EOL) != 0) {
306 		aprint_normal_dev(sc->vte_dev,
307 		    "couldn't create int_txct sysctl node\n");
308 	}
309 }
310 
311 static int
312 vte_detach(device_t dev, int flags __unused)
313 {
314 	struct vte_softc *sc = device_private(dev);
315 	struct ifnet *ifp = &sc->vte_if;
316 	int s;
317 
318 	s = splnet();
319 	/* Stop the interface. Callouts are stopped in it. */
320 	vte_stop(ifp, 1);
321 	splx(s);
322 
323 	pmf_device_deregister(dev);
324 
325 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
326 	ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
327 
328 	ether_ifdetach(ifp);
329 	if_detach(ifp);
330 
331 	vte_dma_free(sc);
332 
333 	return (0);
334 }
335 
336 static int
337 vte_miibus_readreg(device_t dev, int phy, int reg)
338 {
339 	struct vte_softc *sc = device_private(dev);
340 	int i;
341 
342 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
343 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
344 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
345 		DELAY(5);
346 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
347 			break;
348 	}
349 
350 	if (i == 0) {
351 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
352 		return (0);
353 	}
354 
355 	return (CSR_READ_2(sc, VTE_MMRD));
356 }
357 
358 static void
359 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
360 {
361 	struct vte_softc *sc = device_private(dev);
362 	int i;
363 
364 	CSR_WRITE_2(sc, VTE_MMWD, val);
365 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
366 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
367 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
368 		DELAY(5);
369 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
370 			break;
371 	}
372 
373 	if (i == 0)
374 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
375 
376 }
377 
378 static void
379 vte_miibus_statchg(device_t dev)
380 {
381 	struct vte_softc *sc = device_private(dev);
382 	struct ifnet *ifp;
383 	uint16_t val;
384 
385 	ifp = &sc->vte_if;
386 
387 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
388 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
389 
390 	sc->vte_flags &= ~VTE_FLAG_LINK;
391 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
392 	    (IFM_ACTIVE | IFM_AVALID)) {
393 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
394 		case IFM_10_T:
395 		case IFM_100_TX:
396 			sc->vte_flags |= VTE_FLAG_LINK;
397 			break;
398 		default:
399 			break;
400 		}
401 	}
402 
403 	/* Stop RX/TX MACs. */
404 	vte_stop_mac(sc);
405 	/* Program MACs with resolved duplex and flow control. */
406 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
407 		/*
408 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
409 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
410 		 */
411 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
412 			val = 18 << VTE_IM_TIMER_SHIFT;
413 		else
414 			val = 1 << VTE_IM_TIMER_SHIFT;
415 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
416 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
417 		CSR_WRITE_2(sc, VTE_MRICR, val);
418 
419 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
420 			val = 18 << VTE_IM_TIMER_SHIFT;
421 		else
422 			val = 1 << VTE_IM_TIMER_SHIFT;
423 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
424 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
425 		CSR_WRITE_2(sc, VTE_MTICR, val);
426 
427 		vte_mac_config(sc);
428 		vte_start_mac(sc);
429 		DPRINTF(("vte_miibus_statchg: link\n"));
430 	}
431 }
432 
433 static void
434 vte_get_macaddr(struct vte_softc *sc)
435 {
436 	uint16_t mid;
437 
438 	/*
439 	 * It seems there is no way to reload station address and
440 	 * it is supposed to be set by BIOS.
441 	 */
442 	mid = CSR_READ_2(sc, VTE_MID0L);
443 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
444 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
445 	mid = CSR_READ_2(sc, VTE_MID0M);
446 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
447 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
448 	mid = CSR_READ_2(sc, VTE_MID0H);
449 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
450 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
451 }
452 
453 
454 static int
455 vte_dma_alloc(struct vte_softc *sc)
456 {
457 	struct vte_txdesc *txd;
458 	struct vte_rxdesc *rxd;
459 	int error, i, rseg;
460 
461 	/* create DMA map for TX ring */
462 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
463 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
464 	    &sc->vte_cdata.vte_tx_ring_map);
465 	if (error) {
466 		aprint_error_dev(sc->vte_dev,
467 		    "could not create dma map for TX ring (%d)\n",
468 		    error);
469 		goto fail;
470 	}
471 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
472 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
473 	    VTE_TX_RING_ALIGN, 0,
474 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
475 	    BUS_DMA_NOWAIT);
476 	if (error != 0) {
477 		aprint_error_dev(sc->vte_dev,
478 		    "could not allocate DMA'able memory for TX ring (%d).\n",
479 		    error);
480 		goto fail;
481 	}
482 	KASSERT(rseg == 1);
483 	error = bus_dmamem_map(sc->vte_dmatag,
484 	    sc->vte_cdata.vte_tx_ring_seg, 1,
485 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
486 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
487 	if (error != 0) {
488 		aprint_error_dev(sc->vte_dev,
489 		    "could not map DMA'able memory for TX ring (%d).\n",
490 		    error);
491 		goto fail;
492 	}
493 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
494 	error = bus_dmamap_load(sc->vte_dmatag,
495 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
496 	    VTE_TX_RING_SZ, NULL,
497 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
498 	if (error != 0) {
499 		aprint_error_dev(sc->vte_dev,
500 		    "could not load DMA'able memory for TX ring.\n");
501 		goto fail;
502 	}
503 
504 	/* create DMA map for RX ring */
505 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
506 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
507 	    &sc->vte_cdata.vte_rx_ring_map);
508 	if (error) {
509 		aprint_error_dev(sc->vte_dev,
510 		    "could not create dma map for RX ring (%d)\n",
511 		    error);
512 		goto fail;
513 	}
514 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
515 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
516 	    VTE_RX_RING_ALIGN, 0,
517 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
518 	    BUS_DMA_NOWAIT);
519 	if (error != 0) {
520 		aprint_error_dev(sc->vte_dev,
521 		    "could not allocate DMA'able memory for RX ring (%d).\n",
522 		    error);
523 		goto fail;
524 	}
525 	KASSERT(rseg == 1);
526 	error = bus_dmamem_map(sc->vte_dmatag,
527 	    sc->vte_cdata.vte_rx_ring_seg, 1,
528 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
529 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
530 	if (error != 0) {
531 		aprint_error_dev(sc->vte_dev,
532 		    "could not map DMA'able memory for RX ring (%d).\n",
533 		    error);
534 		goto fail;
535 	}
536 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
537 	error = bus_dmamap_load(sc->vte_dmatag,
538 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
539 	    VTE_RX_RING_SZ, NULL,
540 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
541 	if (error != 0) {
542 		aprint_error_dev(sc->vte_dev,
543 		    "could not load DMA'able memory for RX ring (%d).\n",
544 		    error);
545 		goto fail;
546 	}
547 
548 	/* Create DMA maps for TX buffers. */
549 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
550 		txd = &sc->vte_cdata.vte_txdesc[i];
551 		txd->tx_m = NULL;
552 		txd->tx_dmamap = NULL;
553 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
554 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
555 		    &txd->tx_dmamap);
556 		if (error != 0) {
557 			aprint_error_dev(sc->vte_dev,
558 			    "could not create TX DMA map %d (%d).\n", i, error);
559 			goto fail;
560 		}
561 	}
562 	/* Create DMA maps for RX buffers. */
563 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
564 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
565 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
566 		aprint_error_dev(sc->vte_dev,
567 		    "could not create spare RX dmamap (%d).\n", error);
568 		goto fail;
569 	}
570 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
571 		rxd = &sc->vte_cdata.vte_rxdesc[i];
572 		rxd->rx_m = NULL;
573 		rxd->rx_dmamap = NULL;
574 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
575 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
576 		    &rxd->rx_dmamap);
577 		if (error != 0) {
578 			aprint_error_dev(sc->vte_dev,
579 			    "could not create RX dmamap %d (%d).\n", i, error);
580 			goto fail;
581 		}
582 	}
583 	return 0;
584 
585 fail:
586 	vte_dma_free(sc);
587 	return (error);
588 }
589 
590 static void
591 vte_dma_free(struct vte_softc *sc)
592 {
593 	struct vte_txdesc *txd;
594 	struct vte_rxdesc *rxd;
595 	int i;
596 
597 	/* TX buffers. */
598 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
599 		txd = &sc->vte_cdata.vte_txdesc[i];
600 		if (txd->tx_dmamap != NULL) {
601 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
602 			txd->tx_dmamap = NULL;
603 		}
604 	}
605 	/* RX buffers */
606 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
607 		rxd = &sc->vte_cdata.vte_rxdesc[i];
608 		if (rxd->rx_dmamap != NULL) {
609 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
610 			rxd->rx_dmamap = NULL;
611 		}
612 	}
613 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
614 		bus_dmamap_destroy(sc->vte_dmatag,
615 		    sc->vte_cdata.vte_rx_sparemap);
616 		sc->vte_cdata.vte_rx_sparemap = NULL;
617 	}
618 	/* TX descriptor ring. */
619 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
620 		bus_dmamap_unload(sc->vte_dmatag,
621 		    sc->vte_cdata.vte_tx_ring_map);
622 		bus_dmamap_destroy(sc->vte_dmatag,
623 		    sc->vte_cdata.vte_tx_ring_map);
624 	}
625 	if (sc->vte_cdata.vte_tx_ring != NULL) {
626 		bus_dmamem_unmap(sc->vte_dmatag,
627 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
628 		bus_dmamem_free(sc->vte_dmatag,
629 		    sc->vte_cdata.vte_tx_ring_seg, 1);
630 	}
631 	sc->vte_cdata.vte_tx_ring = NULL;
632 	sc->vte_cdata.vte_tx_ring_map = NULL;
633 	/* RX ring. */
634 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
635 		bus_dmamap_unload(sc->vte_dmatag,
636 		    sc->vte_cdata.vte_rx_ring_map);
637 		bus_dmamap_destroy(sc->vte_dmatag,
638 		    sc->vte_cdata.vte_rx_ring_map);
639 	}
640 	if (sc->vte_cdata.vte_rx_ring != NULL) {
641 		bus_dmamem_unmap(sc->vte_dmatag,
642 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
643 		bus_dmamem_free(sc->vte_dmatag,
644 		    sc->vte_cdata.vte_rx_ring_seg, 1);
645 	}
646 	sc->vte_cdata.vte_rx_ring = NULL;
647 	sc->vte_cdata.vte_rx_ring_map = NULL;
648 }
649 
650 static bool
651 vte_shutdown(device_t dev, int howto)
652 {
653 
654 	return (vte_suspend(dev, NULL));
655 }
656 
657 static bool
658 vte_suspend(device_t dev, const pmf_qual_t *qual)
659 {
660 	struct vte_softc *sc = device_private(dev);
661 	struct ifnet *ifp = &sc->vte_if;
662 
663 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
664 	if ((ifp->if_flags & IFF_RUNNING) != 0)
665 		vte_stop(ifp, 1);
666 	return (0);
667 }
668 
669 static bool
670 vte_resume(device_t dev, const pmf_qual_t *qual)
671 {
672 	struct vte_softc *sc = device_private(dev);
673 	struct ifnet *ifp;
674 
675 	ifp = &sc->vte_if;
676 	if ((ifp->if_flags & IFF_UP) != 0) {
677 		ifp->if_flags &= ~IFF_RUNNING;
678 		vte_init(ifp);
679 	}
680 
681 	return (0);
682 }
683 
684 static struct vte_txdesc *
685 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
686 {
687 	struct vte_txdesc *txd;
688 	struct mbuf *m, *n;
689 	int copy, error, padlen;
690 
691 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
692 	m = *m_head;
693 	/*
694 	 * Controller doesn't auto-pad, so we have to make sure pad
695 	 * short frames out to the minimum frame length.
696 	 */
697 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
698 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
699 	else
700 		padlen = 0;
701 
702 	/*
703 	 * Controller does not support multi-fragmented TX buffers.
704 	 * Controller spends most of its TX processing time in
705 	 * de-fragmenting TX buffers.  Either faster CPU or more
706 	 * advanced controller DMA engine is required to speed up
707 	 * TX path processing.
708 	 * To mitigate the de-fragmenting issue, perform deep copy
709 	 * from fragmented mbuf chains to a pre-allocated mbuf
710 	 * cluster with extra cost of kernel memory.  For frames
711 	 * that is composed of single TX buffer, the deep copy is
712 	 * bypassed.
713 	 */
714 	copy = 0;
715 	if (m->m_next != NULL)
716 		copy++;
717 	if (padlen > 0 && (M_READONLY(m) ||
718 	    padlen > M_TRAILINGSPACE(m)))
719 		copy++;
720 	if (copy != 0) {
721 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
722 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
723 		n->m_pkthdr.len = m->m_pkthdr.len;
724 		n->m_len = m->m_pkthdr.len;
725 		m = n;
726 		txd->tx_flags |= VTE_TXMBUF;
727 	}
728 
729 	if (padlen > 0) {
730 		/* Zero out the bytes in the pad area. */
731 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
732 		m->m_pkthdr.len += padlen;
733 		m->m_len = m->m_pkthdr.len;
734 	}
735 
736 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
737 	if (error != 0) {
738 		txd->tx_flags &= ~VTE_TXMBUF;
739 		return (NULL);
740 	}
741 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
742 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
743 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
744 
745 	txd->tx_desc->dtlen =
746 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
747 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
748 	sc->vte_cdata.vte_tx_cnt++;
749 	/* Update producer index. */
750 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
751 
752 	/* Finally hand over ownership to controller. */
753 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
754 	txd->tx_m = m;
755 
756 	return (txd);
757 }
758 
759 static void
760 vte_ifstart(struct ifnet *ifp)
761 {
762 	struct vte_softc *sc = ifp->if_softc;
763 	struct vte_txdesc *txd;
764 	struct mbuf *m_head, *m;
765 	int enq;
766 
767 	ifp = &sc->vte_if;
768 
769 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
770 
771 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
772 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
773 		return;
774 
775 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
776 		/* Reserve one free TX descriptor. */
777 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
778 			ifp->if_flags |= IFF_OACTIVE;
779 			break;
780 		}
781 		IFQ_POLL(&ifp->if_snd, m_head);
782 		if (m_head == NULL)
783 			break;
784 		/*
785 		 * Pack the data into the transmit ring. If we
786 		 * don't have room, set the OACTIVE flag and wait
787 		 * for the NIC to drain the ring.
788 		 */
789 		DPRINTF(("vte_encap:"));
790 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
791 			DPRINTF((" failed\n"));
792 			break;
793 		}
794 		DPRINTF((" ok\n"));
795 		IFQ_DEQUEUE(&ifp->if_snd, m);
796 		KASSERT(m == m_head);
797 
798 		enq++;
799 		/*
800 		 * If there's a BPF listener, bounce a copy of this frame
801 		 * to him.
802 		 */
803 		bpf_mtap(ifp, m_head);
804 		/* Free consumed TX frame. */
805 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
806 			m_freem(m_head);
807 	}
808 
809 	if (enq > 0) {
810 		bus_dmamap_sync(sc->vte_dmatag,
811 		    sc->vte_cdata.vte_tx_ring_map, 0,
812 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
813 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
814 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
815 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
816 	}
817 }
818 
819 static void
820 vte_ifwatchdog(struct ifnet *ifp)
821 {
822 	struct vte_softc *sc = ifp->if_softc;
823 
824 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
825 		return;
826 
827 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
828 	ifp->if_oerrors++;
829 	vte_init(ifp);
830 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
831 		vte_ifstart(ifp);
832 }
833 
834 static int
835 vte_mediachange(struct ifnet *ifp)
836 {
837 	int error;
838 	struct vte_softc *sc = ifp->if_softc;
839 
840 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
841 		error = 0;
842 	else if (error != 0) {
843 		aprint_error_dev(sc->vte_dev, "could not set media\n");
844 		return error;
845 	}
846 											return 0;
847 
848 }
849 
850 static int
851 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
852 {
853 	struct vte_softc *sc = ifp->if_softc;
854 	int error, s;
855 
856 	s = splnet();
857 	error = ether_ioctl(ifp, cmd, data);
858 	if (error == ENETRESET) {
859 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
860 		if (ifp->if_flags & IFF_RUNNING)
861 			vte_rxfilter(sc);
862 		error = 0;
863 	}
864 	splx(s);
865 	return error;
866 }
867 
868 static void
869 vte_mac_config(struct vte_softc *sc)
870 {
871 	uint16_t mcr;
872 
873 	mcr = CSR_READ_2(sc, VTE_MCR0);
874 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
875 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
876 		mcr |= MCR0_FULL_DUPLEX;
877 #ifdef notyet
878 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
879 			mcr |= MCR0_FC_ENB;
880 		/*
881 		 * The data sheet is not clear whether the controller
882 		 * honors received pause frames or not.  The is no
883 		 * separate control bit for RX pause frame so just
884 		 * enable MCR0_FC_ENB bit.
885 		 */
886 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
887 			mcr |= MCR0_FC_ENB;
888 #endif
889 	}
890 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
891 }
892 
893 static void
894 vte_stats_clear(struct vte_softc *sc)
895 {
896 
897 	/* Reading counter registers clears its contents. */
898 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
899 	CSR_READ_2(sc, VTE_CNT_MECNT0);
900 	CSR_READ_2(sc, VTE_CNT_MECNT1);
901 	CSR_READ_2(sc, VTE_CNT_MECNT2);
902 	CSR_READ_2(sc, VTE_CNT_MECNT3);
903 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
904 	CSR_READ_2(sc, VTE_CNT_MECNT4);
905 	CSR_READ_2(sc, VTE_CNT_PAUSE);
906 }
907 
908 static void
909 vte_stats_update(struct vte_softc *sc)
910 {
911 	struct vte_hw_stats *stat;
912 	struct ifnet *ifp = &sc->vte_if;
913 	uint16_t value;
914 
915 	stat = &sc->vte_stats;
916 
917 	CSR_READ_2(sc, VTE_MECISR);
918 	/* RX stats. */
919 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
920 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
921 	stat->rx_bcast_frames += (value >> 8);
922 	stat->rx_mcast_frames += (value & 0xFF);
923 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
924 	stat->rx_runts += (value >> 8);
925 	stat->rx_crcerrs += (value & 0xFF);
926 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
927 	stat->rx_long_frames += (value & 0xFF);
928 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
929 	stat->rx_fifo_full += (value >> 8);
930 	stat->rx_desc_unavail += (value & 0xFF);
931 
932 	/* TX stats. */
933 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
934 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
935 	stat->tx_underruns += (value >> 8);
936 	stat->tx_late_colls += (value & 0xFF);
937 
938 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
939 	stat->tx_pause_frames += (value >> 8);
940 	stat->rx_pause_frames += (value & 0xFF);
941 
942 	/* Update ifp counters. */
943 	ifp->if_opackets = stat->tx_frames;
944 	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
945 	ifp->if_ipackets = stat->rx_frames;
946 	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
947 	    stat->rx_long_frames + stat->rx_fifo_full;
948 }
949 
950 static int
951 vte_intr(void *arg)
952 {
953 	struct vte_softc *sc = (struct vte_softc *)arg;
954 	struct ifnet *ifp = &sc->vte_if;
955 	uint16_t status;
956 	int n;
957 
958 	/* Reading VTE_MISR acknowledges interrupts. */
959 	status = CSR_READ_2(sc, VTE_MISR);
960 	DPRINTF(("vte_intr status 0x%x\n", status));
961 	if ((status & VTE_INTRS) == 0) {
962 		/* Not ours. */
963 		return 0;
964 	}
965 
966 	/* Disable interrupts. */
967 	CSR_WRITE_2(sc, VTE_MIER, 0);
968 	for (n = 8; (status & VTE_INTRS) != 0;) {
969 		if ((ifp->if_flags & IFF_RUNNING) == 0)
970 			break;
971 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
972 		    MISR_RX_FIFO_FULL)) != 0)
973 			vte_rxeof(sc);
974 		if ((status & MISR_TX_DONE) != 0)
975 			vte_txeof(sc);
976 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
977 			vte_stats_update(sc);
978 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
979 			vte_ifstart(ifp);
980 		if (--n > 0)
981 			status = CSR_READ_2(sc, VTE_MISR);
982 		else
983 			break;
984 	}
985 
986 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
987 		/* Re-enable interrupts. */
988 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
989 	}
990 	return 1;
991 }
992 
993 static void
994 vte_txeof(struct vte_softc *sc)
995 {
996 	struct ifnet *ifp;
997 	struct vte_txdesc *txd;
998 	uint16_t status;
999 	int cons, prog;
1000 
1001 	ifp = &sc->vte_if;
1002 
1003 	if (sc->vte_cdata.vte_tx_cnt == 0)
1004 		return;
1005 	bus_dmamap_sync(sc->vte_dmatag,
1006 	    sc->vte_cdata.vte_tx_ring_map, 0,
1007 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1008 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1009 	cons = sc->vte_cdata.vte_tx_cons;
1010 	/*
1011 	 * Go through our TX list and free mbufs for those
1012 	 * frames which have been transmitted.
1013 	 */
1014 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1015 		txd = &sc->vte_cdata.vte_txdesc[cons];
1016 		status = le16toh(txd->tx_desc->dtst);
1017 		if ((status & VTE_DTST_TX_OWN) != 0)
1018 			break;
1019 		if ((status & VTE_DTST_TX_OK) != 0)
1020 			ifp->if_collisions += (status & 0xf);
1021 		sc->vte_cdata.vte_tx_cnt--;
1022 		/* Reclaim transmitted mbufs. */
1023 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1024 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1025 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1026 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1027 			m_freem(txd->tx_m);
1028 		txd->tx_flags &= ~VTE_TXMBUF;
1029 		txd->tx_m = NULL;
1030 		prog++;
1031 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1032 	}
1033 
1034 	if (prog > 0) {
1035 		ifp->if_flags &= ~IFF_OACTIVE;
1036 		sc->vte_cdata.vte_tx_cons = cons;
1037 		/*
1038 		 * Unarm watchdog timer only when there is no pending
1039 		 * frames in TX queue.
1040 		 */
1041 		if (sc->vte_cdata.vte_tx_cnt == 0)
1042 			sc->vte_watchdog_timer = 0;
1043 	}
1044 }
1045 
1046 static int
1047 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1048 {
1049 	struct mbuf *m;
1050 	bus_dmamap_t map;
1051 
1052 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1053 	if (m == NULL)
1054 		return (ENOBUFS);
1055 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1056 	m_adj(m, sizeof(uint32_t));
1057 
1058 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1059 	    sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
1060 		m_freem(m);
1061 		return (ENOBUFS);
1062 	}
1063 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1064 
1065 	if (rxd->rx_m != NULL) {
1066 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1067 		    0, rxd->rx_dmamap->dm_mapsize,
1068 		    BUS_DMASYNC_POSTREAD);
1069 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1070 	}
1071 	map = rxd->rx_dmamap;
1072 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1073 	sc->vte_cdata.vte_rx_sparemap = map;
1074 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1075 	    0, rxd->rx_dmamap->dm_mapsize,
1076 	    BUS_DMASYNC_PREREAD);
1077 	rxd->rx_m = m;
1078 	rxd->rx_desc->drbp =
1079 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1080 	rxd->rx_desc->drlen = htole16(
1081 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1082 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m, (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr, rxd->rx_dmamap->dm_segs[0].ds_len));
1083 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1084 
1085 	return (0);
1086 }
1087 
1088 static void
1089 vte_rxeof(struct vte_softc *sc)
1090 {
1091 	struct ifnet *ifp;
1092 	struct vte_rxdesc *rxd;
1093 	struct mbuf *m;
1094 	uint16_t status, total_len;
1095 	int cons, prog;
1096 
1097 	bus_dmamap_sync(sc->vte_dmatag,
1098 	    sc->vte_cdata.vte_rx_ring_map, 0,
1099 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1100 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1101 	cons = sc->vte_cdata.vte_rx_cons;
1102 	ifp = &sc->vte_if;
1103 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1104 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1105 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1106 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1107 		status = le16toh(rxd->rx_desc->drst);
1108 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n", cons, rxd, rxd->rx_m, status, VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1109 		if ((status & VTE_DRST_RX_OWN) != 0)
1110 			break;
1111 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1112 		m = rxd->rx_m;
1113 		if ((status & VTE_DRST_RX_OK) == 0) {
1114 			/* Discard errored frame. */
1115 			rxd->rx_desc->drlen =
1116 			    htole16(MCLBYTES - sizeof(uint32_t));
1117 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1118 			continue;
1119 		}
1120 		if (vte_newbuf(sc, rxd) != 0) {
1121 			DPRINTF(("vte_rxeof newbuf failed\n"));
1122 			ifp->if_ierrors++;
1123 			rxd->rx_desc->drlen =
1124 			    htole16(MCLBYTES - sizeof(uint32_t));
1125 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1126 			continue;
1127 		}
1128 
1129 		/*
1130 		 * It seems there is no way to strip FCS bytes.
1131 		 */
1132 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1133 		m->m_pkthdr.rcvif = ifp;
1134 		ifp->if_ipackets++;
1135 		bpf_mtap(ifp, m);
1136 		(*ifp->if_input)(ifp, m);
1137 	}
1138 
1139 	if (prog > 0) {
1140 		/* Update the consumer index. */
1141 		sc->vte_cdata.vte_rx_cons = cons;
1142 		/*
1143 		 * Sync updated RX descriptors such that controller see
1144 		 * modified RX buffer addresses.
1145 		 */
1146 		bus_dmamap_sync(sc->vte_dmatag,
1147 		    sc->vte_cdata.vte_rx_ring_map, 0,
1148 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1149 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1150 #ifdef notyet
1151 		/*
1152 		 * Update residue counter.  Controller does not
1153 		 * keep track of number of available RX descriptors
1154 		 * such that driver should have to update VTE_MRDCR
1155 		 * to make controller know how many free RX
1156 		 * descriptors were added to controller.  This is
1157 		 * a similar mechanism used in VIA velocity
1158 		 * controllers and it indicates controller just
1159 		 * polls OWN bit of current RX descriptor pointer.
1160 		 * A couple of severe issues were seen on sample
1161 		 * board where the controller continuously emits TX
1162 		 * pause frames once RX pause threshold crossed.
1163 		 * Once triggered it never recovered form that
1164 		 * state, I couldn't find a way to make it back to
1165 		 * work at least.  This issue effectively
1166 		 * disconnected the system from network.  Also, the
1167 		 * controller used 00:00:00:00:00:00 as source
1168 		 * station address of TX pause frame. Probably this
1169 		 * is one of reason why vendor recommends not to
1170 		 * enable flow control on R6040 controller.
1171 		 */
1172 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1173 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1174 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1175 #endif
1176 	rnd_add_uint32(&sc->rnd_source, prog);
1177 	}
1178 }
1179 
1180 static void
1181 vte_tick(void *arg)
1182 {
1183 	struct vte_softc *sc;
1184 	int s = splnet();
1185 
1186 	sc = (struct vte_softc *)arg;
1187 
1188 	mii_tick(&sc->vte_mii);
1189 	vte_stats_update(sc);
1190 	vte_txeof(sc);
1191 	vte_ifwatchdog(&sc->vte_if);
1192 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1193 	splx(s);
1194 }
1195 
1196 static void
1197 vte_reset(struct vte_softc *sc)
1198 {
1199 	uint16_t mcr;
1200 	int i;
1201 
1202 	mcr = CSR_READ_2(sc, VTE_MCR1);
1203 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1204 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1205 		DELAY(10);
1206 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1207 			break;
1208 	}
1209 	if (i == 0)
1210 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1211 	/*
1212 	 * Follow the guide of vendor recommended way to reset MAC.
1213 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1214 	 * not reliable so manually reset internal state machine.
1215 	 */
1216 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1217 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1218 	DELAY(5000);
1219 }
1220 
1221 
1222 static int
1223 vte_init(struct ifnet *ifp)
1224 {
1225 	struct vte_softc *sc = ifp->if_softc;
1226 	bus_addr_t paddr;
1227 	uint8_t eaddr[ETHER_ADDR_LEN];
1228 	int s, error;
1229 
1230 	s = splnet();
1231 	/*
1232 	 * Cancel any pending I/O.
1233 	 */
1234 	vte_stop(ifp, 1);
1235 	/*
1236 	 * Reset the chip to a known state.
1237 	 */
1238 	vte_reset(sc);
1239 
1240 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1241 		splx(s);
1242 		return 0;
1243 	}
1244 
1245 	/* Initialize RX descriptors. */
1246 	if (vte_init_rx_ring(sc) != 0) {
1247 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1248 		vte_stop(ifp, 1);
1249 		splx(s);
1250 		return ENOMEM;
1251 	}
1252 	if (vte_init_tx_ring(sc) != 0) {
1253 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1254 		vte_stop(ifp, 1);
1255 		splx(s);
1256 		return ENOMEM;
1257 	}
1258 
1259 	/*
1260 	 * Reprogram the station address.  Controller supports up
1261 	 * to 4 different station addresses so driver programs the
1262 	 * first station address as its own ethernet address and
1263 	 * configure the remaining three addresses as perfect
1264 	 * multicast addresses.
1265 	 */
1266 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1267 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1268 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1269 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1270 
1271 	/* Set TX descriptor base addresses. */
1272 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1273 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1274 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1275 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1276 
1277 	/* Set RX descriptor base addresses. */
1278 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1279 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1280 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1281 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1282 	/*
1283 	 * Initialize RX descriptor residue counter and set RX
1284 	 * pause threshold to 20% of available RX descriptors.
1285 	 * See comments on vte_rxeof() for details on flow control
1286 	 * issues.
1287 	 */
1288 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1289 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1290 
1291 	/*
1292 	 * Always use maximum frame size that controller can
1293 	 * support.  Otherwise received frames that has longer
1294 	 * frame length than vte(4) MTU would be silently dropped
1295 	 * in controller.  This would break path-MTU discovery as
1296 	 * sender wouldn't get any responses from receiver. The
1297 	 * RX buffer size should be multiple of 4.
1298 	 * Note, jumbo frames are silently ignored by controller
1299 	 * and even MAC counters do not detect them.
1300 	 */
1301 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1302 
1303 	/* Configure FIFO. */
1304 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1305 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1306 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1307 
1308 	/*
1309 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1310 	 * control configuration is done after detecting a valid
1311 	 * link.  Note, we don't generate early interrupt here
1312 	 * as well since FreeBSD does not have interrupt latency
1313 	 * problems like Windows.
1314 	 */
1315 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1316 	/*
1317 	 * We manually keep track of PHY status changes to
1318 	 * configure resolved duplex and flow control since only
1319 	 * duplex configuration can be automatically reflected to
1320 	 * MCR0.
1321 	 */
1322 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1323 	    MCR1_EXCESS_COL_RETRY_16);
1324 
1325 	/* Initialize RX filter. */
1326 	vte_rxfilter(sc);
1327 
1328 	/* Disable TX/RX interrupt moderation control. */
1329 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1330 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1331 
1332 	/* Enable MAC event counter interrupts. */
1333 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1334 	/* Clear MAC statistics. */
1335 	vte_stats_clear(sc);
1336 
1337 	/* Acknowledge all pending interrupts and clear it. */
1338 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1339 	CSR_WRITE_2(sc, VTE_MISR, 0);
1340 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
1341 
1342 	sc->vte_flags &= ~VTE_FLAG_LINK;
1343 	ifp->if_flags |= IFF_RUNNING;
1344 	ifp->if_flags &= ~IFF_OACTIVE;
1345 
1346 	/* calling mii_mediachg will call back vte_start_mac() */
1347 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1348 		error = 0;
1349 	else if (error != 0) {
1350 		aprint_error_dev(sc->vte_dev, "could not set media\n");
1351 		splx(s);
1352 		return error;
1353 	}
1354 
1355 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1356 
1357 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
1358 	splx(s);
1359 	return 0;
1360 }
1361 
1362 static void
1363 vte_stop(struct ifnet *ifp, int disable)
1364 {
1365 	struct vte_softc *sc = ifp->if_softc;
1366 	struct vte_txdesc *txd;
1367 	struct vte_rxdesc *rxd;
1368 	int i;
1369 
1370 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1371 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1372 		return;
1373 	/*
1374 	 * Mark the interface down and cancel the watchdog timer.
1375 	 */
1376 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1377 	sc->vte_flags &= ~VTE_FLAG_LINK;
1378 	callout_stop(&sc->vte_tick_ch);
1379 	sc->vte_watchdog_timer = 0;
1380 	vte_stats_update(sc);
1381 	/* Disable interrupts. */
1382 	CSR_WRITE_2(sc, VTE_MIER, 0);
1383 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1384 	/* Stop RX/TX MACs. */
1385 	vte_stop_mac(sc);
1386 	/* Clear interrupts. */
1387 	CSR_READ_2(sc, VTE_MISR);
1388 	/*
1389 	 * Free TX/RX mbufs still in the queues.
1390 	 */
1391 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1392 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1393 		if (rxd->rx_m != NULL) {
1394 			bus_dmamap_sync(sc->vte_dmatag,
1395 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1396 			    BUS_DMASYNC_POSTREAD);
1397 			bus_dmamap_unload(sc->vte_dmatag,
1398 			    rxd->rx_dmamap);
1399 			m_freem(rxd->rx_m);
1400 			rxd->rx_m = NULL;
1401 		}
1402 	}
1403 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1404 		txd = &sc->vte_cdata.vte_txdesc[i];
1405 		if (txd->tx_m != NULL) {
1406 			bus_dmamap_sync(sc->vte_dmatag,
1407 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1408 			    BUS_DMASYNC_POSTWRITE);
1409 			bus_dmamap_unload(sc->vte_dmatag,
1410 			    txd->tx_dmamap);
1411 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1412 				m_freem(txd->tx_m);
1413 			txd->tx_m = NULL;
1414 			txd->tx_flags &= ~VTE_TXMBUF;
1415 		}
1416 	}
1417 	/* Free TX mbuf pools used for deep copy. */
1418 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1419 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1420 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1421 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1422 		}
1423 	}
1424 }
1425 
1426 static void
1427 vte_start_mac(struct vte_softc *sc)
1428 {
1429 	struct ifnet *ifp = &sc->vte_if;
1430 	uint16_t mcr;
1431 	int i;
1432 
1433 	/* Enable RX/TX MACs. */
1434 	mcr = CSR_READ_2(sc, VTE_MCR0);
1435 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1436 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
1437 	    (ifp->if_flags & IFF_RUNNING) != 0) {
1438 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1439 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1440 		for (i = VTE_TIMEOUT; i > 0; i--) {
1441 			mcr = CSR_READ_2(sc, VTE_MCR0);
1442 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1443 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1444 				break;
1445 			DELAY(10);
1446 		}
1447 		if (i == 0)
1448 			aprint_error_dev(sc->vte_dev,
1449 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1450 	}
1451 	vte_rxfilter(sc);
1452 }
1453 
1454 static void
1455 vte_stop_mac(struct vte_softc *sc)
1456 {
1457 	uint16_t mcr;
1458 	int i;
1459 
1460 	/* Disable RX/TX MACs. */
1461 	mcr = CSR_READ_2(sc, VTE_MCR0);
1462 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1463 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1464 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1465 		for (i = VTE_TIMEOUT; i > 0; i--) {
1466 			mcr = CSR_READ_2(sc, VTE_MCR0);
1467 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1468 				break;
1469 			DELAY(10);
1470 		}
1471 		if (i == 0)
1472 			aprint_error_dev(sc->vte_dev,
1473 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1474 	}
1475 }
1476 
1477 static int
1478 vte_init_tx_ring(struct vte_softc *sc)
1479 {
1480 	struct vte_tx_desc *desc;
1481 	struct vte_txdesc *txd;
1482 	bus_addr_t addr;
1483 	int i;
1484 
1485 	sc->vte_cdata.vte_tx_prod = 0;
1486 	sc->vte_cdata.vte_tx_cons = 0;
1487 	sc->vte_cdata.vte_tx_cnt = 0;
1488 
1489 	/* Pre-allocate TX mbufs for deep copy. */
1490 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1491 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1492 		    MT_DATA, M_PKTHDR);
1493 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1494 			return (ENOBUFS);
1495 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1496 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1497 	}
1498 	desc = sc->vte_cdata.vte_tx_ring;
1499 	bzero(desc, VTE_TX_RING_SZ);
1500 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1501 		txd = &sc->vte_cdata.vte_txdesc[i];
1502 		txd->tx_m = NULL;
1503 		if (i != VTE_TX_RING_CNT - 1)
1504 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1505 			    sizeof(struct vte_tx_desc) * (i + 1);
1506 		else
1507 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1508 			    sizeof(struct vte_tx_desc) * 0;
1509 		desc = &sc->vte_cdata.vte_tx_ring[i];
1510 		desc->dtnp = htole32(addr);
1511 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1512 		txd->tx_desc = desc;
1513 	}
1514 
1515 	bus_dmamap_sync(sc->vte_dmatag,
1516 	    sc->vte_cdata.vte_tx_ring_map, 0,
1517 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1518 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1519 	return (0);
1520 }
1521 
1522 static int
1523 vte_init_rx_ring(struct vte_softc *sc)
1524 {
1525 	struct vte_rx_desc *desc;
1526 	struct vte_rxdesc *rxd;
1527 	bus_addr_t addr;
1528 	int i;
1529 
1530 	sc->vte_cdata.vte_rx_cons = 0;
1531 	desc = sc->vte_cdata.vte_rx_ring;
1532 	bzero(desc, VTE_RX_RING_SZ);
1533 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1534 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1535 		rxd->rx_m = NULL;
1536 		if (i != VTE_RX_RING_CNT - 1)
1537 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1538 			    + sizeof(struct vte_rx_desc) * (i + 1);
1539 		else
1540 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1541 			    + sizeof(struct vte_rx_desc) * 0;
1542 		desc = &sc->vte_cdata.vte_rx_ring[i];
1543 		desc->drnp = htole32(addr);
1544 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1545 		rxd->rx_desc = desc;
1546 		if (vte_newbuf(sc, rxd) != 0)
1547 			return (ENOBUFS);
1548 	}
1549 
1550 	bus_dmamap_sync(sc->vte_dmatag,
1551 	    sc->vte_cdata.vte_rx_ring_map, 0,
1552 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1553 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1554 
1555 	return (0);
1556 }
1557 
1558 static void
1559 vte_rxfilter(struct vte_softc *sc)
1560 {
1561 	struct ether_multistep step;
1562 	struct ether_multi *enm;
1563 	struct ifnet *ifp;
1564 	uint8_t *eaddr;
1565 	uint32_t crc;
1566 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1567 	uint16_t mchash[4], mcr;
1568 	int i, nperf;
1569 
1570 	ifp = &sc->vte_if;
1571 
1572 	DPRINTF(("vte_rxfilter\n"));
1573 	memset(mchash, 0, sizeof(mchash));
1574 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1575 		rxfilt_perf[i][0] = 0xFFFF;
1576 		rxfilt_perf[i][1] = 0xFFFF;
1577 		rxfilt_perf[i][2] = 0xFFFF;
1578 	}
1579 
1580 	mcr = CSR_READ_2(sc, VTE_MCR0);
1581 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1582 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1583 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1584 		mcr |= MCR0_BROADCAST_DIS;
1585 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1586 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1587 			mcr |= MCR0_PROMISC;
1588 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1589 			mcr |= MCR0_MULTICAST;
1590 		mchash[0] = 0xFFFF;
1591 		mchash[1] = 0xFFFF;
1592 		mchash[2] = 0xFFFF;
1593 		mchash[3] = 0xFFFF;
1594 		goto chipit;
1595 	}
1596 
1597 	ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1598 	nperf = 0;
1599 	while (enm != NULL) {
1600 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1601 			sc->vte_if.if_flags |= IFF_ALLMULTI;
1602 			mcr |= MCR0_MULTICAST;
1603 			mchash[0] = 0xFFFF;
1604 			mchash[1] = 0xFFFF;
1605 			mchash[2] = 0xFFFF;
1606 			mchash[3] = 0xFFFF;
1607 			goto chipit;
1608 		}
1609 		/*
1610 		 * Program the first 3 multicast groups into
1611 		 * the perfect filter.  For all others, use the
1612 		 * hash table.
1613 		 */
1614 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
1615 			eaddr = enm->enm_addrlo;
1616 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1617 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1618 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1619 			nperf++;
1620 		} else {
1621 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1622 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1623 		}
1624 		ETHER_NEXT_MULTI(step, enm);
1625 	}
1626 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1627 	    mchash[3] != 0)
1628 		mcr |= MCR0_MULTICAST;
1629 
1630 chipit:
1631 	/* Program multicast hash table. */
1632 	DPRINTF(("chipit write multicast\n"));
1633 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1634 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1635 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1636 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1637 	/* Program perfect filter table. */
1638 	DPRINTF(("chipit write perfect filter\n"));
1639 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1640 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1641 		    rxfilt_perf[i][0]);
1642 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1643 		    rxfilt_perf[i][1]);
1644 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1645 		    rxfilt_perf[i][2]);
1646 	}
1647 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
1648 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1649 	DPRINTF(("chipit read mcro\n"));
1650 	CSR_READ_2(sc, VTE_MCR0);
1651 	DPRINTF(("chipit done\n"));
1652 }
1653 
1654 /*
1655  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1656  * set up in vte_pci_attach()
1657  */
1658 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1659 {
1660 	int rc;
1661 	const struct sysctlnode *node;
1662 
1663 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1664 	    0, CTLTYPE_NODE, "hw", NULL,
1665 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1666 		goto err;
1667 	}
1668 
1669 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1670 	    0, CTLTYPE_NODE, "vte",
1671 	    SYSCTL_DESCR("vte interface controls"),
1672 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1673 		goto err;
1674 	}
1675 
1676 	vte_root_num = node->sysctl_num;
1677 	return;
1678 
1679 err:
1680 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1681 }
1682 
1683 static int
1684 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1685 {
1686 	int error, t;
1687 	struct sysctlnode node;
1688 	struct vte_softc *sc;
1689 
1690 	node = *rnode;
1691 	sc = node.sysctl_data;
1692 	t = sc->vte_int_rx_mod;
1693 	node.sysctl_data = &t;
1694 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1695 	if (error || newp == NULL)
1696 		return error;
1697 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1698 		return EINVAL;
1699 
1700 	sc->vte_int_rx_mod = t;
1701 	vte_miibus_statchg(sc->vte_dev);
1702 	return 0;
1703 }
1704 
1705 static int
1706 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1707 {
1708 	int error, t;
1709 	struct sysctlnode node;
1710 	struct vte_softc *sc;
1711 
1712 	node = *rnode;
1713 	sc = node.sysctl_data;
1714 	t = sc->vte_int_tx_mod;
1715 	node.sysctl_data = &t;
1716 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1717 	if (error || newp == NULL)
1718 		return error;
1719 
1720 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1721 		return EINVAL;
1722 	sc->vte_int_tx_mod = t;
1723 	vte_miibus_statchg(sc->vte_dev);
1724 	return 0;
1725 }
1726