xref: /netbsd-src/sys/dev/pci/if_vte.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: if_vte.c,v 1.18 2017/06/26 18:23:49 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54 
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56 
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.18 2017/06/26 18:23:49 christos Exp $");
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71 
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 
79 #include <net/bpf.h>
80 #include <net/bpfdesc.h>
81 
82 #include <sys/rndsource.h>
83 
84 #include "opt_inet.h"
85 #include <net/if_ether.h>
86 #ifdef INET
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip.h>
91 #include <netinet/if_inarp.h>
92 #endif
93 
94 #include <sys/bus.h>
95 #include <sys/intr.h>
96 
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 #include <dev/pci/pcidevs.h>
100 
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 
104 #include <dev/pci/if_vtereg.h>
105 #include <dev/pci/if_vtevar.h>
106 
107 static int	vte_match(device_t, cfdata_t, void *);
108 static void	vte_attach(device_t, device_t, void *);
109 static int	vte_detach(device_t, int);
110 static int	vte_dma_alloc(struct vte_softc *);
111 static void	vte_dma_free(struct vte_softc *);
112 static struct vte_txdesc *
113 		vte_encap(struct vte_softc *, struct mbuf **);
114 static void	vte_get_macaddr(struct vte_softc *);
115 static int	vte_init(struct ifnet *);
116 static int	vte_init_rx_ring(struct vte_softc *);
117 static int	vte_init_tx_ring(struct vte_softc *);
118 static int	vte_intr(void *);
119 static int	vte_ifioctl(struct ifnet *, u_long, void *);
120 static void	vte_mac_config(struct vte_softc *);
121 static int	vte_miibus_readreg(device_t, int, int);
122 static void	vte_miibus_statchg(struct ifnet *);
123 static void	vte_miibus_writereg(device_t, int, int, int);
124 static int	vte_mediachange(struct ifnet *);
125 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
126 static void	vte_reset(struct vte_softc *);
127 static void	vte_rxeof(struct vte_softc *);
128 static void	vte_rxfilter(struct vte_softc *);
129 static bool	vte_shutdown(device_t, int);
130 static bool	vte_suspend(device_t, const pmf_qual_t *);
131 static bool	vte_resume(device_t, const pmf_qual_t *);
132 static void	vte_ifstart(struct ifnet *);
133 static void	vte_start_mac(struct vte_softc *);
134 static void	vte_stats_clear(struct vte_softc *);
135 static void	vte_stats_update(struct vte_softc *);
136 static void	vte_stop(struct ifnet *, int);
137 static void	vte_stop_mac(struct vte_softc *);
138 static void	vte_tick(void *);
139 static void	vte_txeof(struct vte_softc *);
140 static void	vte_ifwatchdog(struct ifnet *);
141 
142 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
143 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
144 static int vte_root_num;
145 
146 #define DPRINTF(a)
147 
148 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
149     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
150 
151 
152 static int
153 vte_match(device_t parent, cfdata_t cf, void *aux)
154 {
155 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
156 
157 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
158 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
159 		return 1;
160 
161 	return 0;
162 }
163 
164 static void
165 vte_attach(device_t parent, device_t self, void *aux)
166 {
167 	struct vte_softc *sc = device_private(self);
168 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
169 	struct ifnet * const ifp = &sc->vte_if;
170 	int h_valid;
171 	pcireg_t reg, csr;
172 	pci_intr_handle_t intrhandle;
173 	const char *intrstr;
174 	int error;
175 	const struct sysctlnode *node;
176 	int vte_nodenum;
177 	char intrbuf[PCI_INTRSTR_LEN];
178 
179 	sc->vte_dev = self;
180 
181 	callout_init(&sc->vte_tick_ch, 0);
182 
183 	/* Map the device. */
184 	h_valid = 0;
185 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
186 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
187 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
188 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
189 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
190 	}
191 	if (h_valid == 0) {
192 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
193 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
194 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
195 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
196 			    &sc->vte_bushandle, NULL, NULL) == 0);
197 		}
198 	}
199 	if (h_valid == 0) {
200 		aprint_error_dev(self, "unable to map device registers\n");
201 		return;
202 	}
203 	sc->vte_dmatag = pa->pa_dmat;
204 	/* Enable the device. */
205 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
206 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
207 	    csr | PCI_COMMAND_MASTER_ENABLE);
208 
209 	pci_aprint_devinfo(pa, NULL);
210 
211 	/* Reset the ethernet controller. */
212 	vte_reset(sc);
213 
214 	if ((error = vte_dma_alloc(sc)) != 0)
215 		return;
216 
217 	/* Load station address. */
218 	vte_get_macaddr(sc);
219 
220 	aprint_normal_dev(self, "Ethernet address %s\n",
221 	    ether_sprintf(sc->vte_eaddr));
222 
223 	/* Map and establish interrupts */
224 	if (pci_intr_map(pa, &intrhandle)) {
225 		aprint_error_dev(self, "couldn't map interrupt\n");
226 		return;
227 	}
228 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
229 	    sizeof(intrbuf));
230 	sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
231 	    vte_intr, sc);
232 	if (sc->vte_ih == NULL) {
233 		aprint_error_dev(self, "couldn't establish interrupt");
234 		if (intrstr != NULL)
235 			aprint_error(" at %s", intrstr);
236 		aprint_error("\n");
237 		return;
238 	}
239 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
240 
241 	sc->vte_if.if_softc = sc;
242 	sc->vte_mii.mii_ifp = ifp;
243 	sc->vte_mii.mii_readreg = vte_miibus_readreg;
244 	sc->vte_mii.mii_writereg = vte_miibus_writereg;
245 	sc->vte_mii.mii_statchg = vte_miibus_statchg;
246 	sc->vte_ec.ec_mii = &sc->vte_mii;
247 	ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
248 	    ether_mediastatus);
249 	mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
250 	    MII_OFFSET_ANY, 0);
251 	if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
252 		ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
253 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
254 	} else
255 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
256 
257 	/*
258 	 * We can support 802.1Q VLAN-sized frames.
259 	 */
260 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
261 
262         strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
263         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
264         ifp->if_ioctl = vte_ifioctl;
265         ifp->if_start = vte_ifstart;
266         ifp->if_watchdog = vte_ifwatchdog;
267         ifp->if_init = vte_init;
268         ifp->if_stop = vte_stop;
269         ifp->if_timer = 0;
270         IFQ_SET_READY(&ifp->if_snd);
271         if_attach(ifp);
272 	if_deferred_start_init(ifp, NULL);
273         ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
274 
275 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
276 		pmf_class_network_register(self, ifp);
277 	else
278 		aprint_error_dev(self, "couldn't establish power handler\n");
279 
280         rnd_attach_source(&sc->rnd_source, device_xname(self),
281             RND_TYPE_NET, RND_FLAG_DEFAULT);
282 
283 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
284 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
285 	    SYSCTL_DESCR("vte per-controller controls"),
286 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
287 	    CTL_EOL) != 0) {
288 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
289 		return;
290 	}
291 	vte_nodenum = node->sysctl_num;
292 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
293 	    CTLFLAG_READWRITE,
294 	    CTLTYPE_INT, "int_rxct",
295 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
296 	    vte_sysctl_intrxct, 0, (void *)sc,
297 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
298 	    CTL_EOL) != 0) {
299 		aprint_normal_dev(sc->vte_dev,
300 		    "couldn't create int_rxct sysctl node\n");
301 	}
302 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
303 	    CTLFLAG_READWRITE,
304 	    CTLTYPE_INT, "int_txct",
305 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
306 	    vte_sysctl_inttxct, 0, (void *)sc,
307 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
308 	    CTL_EOL) != 0) {
309 		aprint_normal_dev(sc->vte_dev,
310 		    "couldn't create int_txct sysctl node\n");
311 	}
312 }
313 
314 static int
315 vte_detach(device_t dev, int flags __unused)
316 {
317 	struct vte_softc *sc = device_private(dev);
318 	struct ifnet *ifp = &sc->vte_if;
319 	int s;
320 
321 	s = splnet();
322 	/* Stop the interface. Callouts are stopped in it. */
323 	vte_stop(ifp, 1);
324 	splx(s);
325 
326 	pmf_device_deregister(dev);
327 
328 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
329 	ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
330 
331 	ether_ifdetach(ifp);
332 	if_detach(ifp);
333 
334 	vte_dma_free(sc);
335 
336 	return (0);
337 }
338 
339 static int
340 vte_miibus_readreg(device_t dev, int phy, int reg)
341 {
342 	struct vte_softc *sc = device_private(dev);
343 	int i;
344 
345 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
346 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
347 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
348 		DELAY(5);
349 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
350 			break;
351 	}
352 
353 	if (i == 0) {
354 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
355 		return (0);
356 	}
357 
358 	return (CSR_READ_2(sc, VTE_MMRD));
359 }
360 
361 static void
362 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
363 {
364 	struct vte_softc *sc = device_private(dev);
365 	int i;
366 
367 	CSR_WRITE_2(sc, VTE_MMWD, val);
368 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
369 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
370 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
371 		DELAY(5);
372 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
373 			break;
374 	}
375 
376 	if (i == 0)
377 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
378 
379 }
380 
381 static void
382 vte_miibus_statchg(struct ifnet *ifp)
383 {
384 	struct vte_softc *sc = ifp->if_softc;
385 	uint16_t val;
386 
387 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
388 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
389 
390 	sc->vte_flags &= ~VTE_FLAG_LINK;
391 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
392 	    (IFM_ACTIVE | IFM_AVALID)) {
393 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
394 		case IFM_10_T:
395 		case IFM_100_TX:
396 			sc->vte_flags |= VTE_FLAG_LINK;
397 			break;
398 		default:
399 			break;
400 		}
401 	}
402 
403 	/* Stop RX/TX MACs. */
404 	vte_stop_mac(sc);
405 	/* Program MACs with resolved duplex and flow control. */
406 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
407 		/*
408 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
409 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
410 		 */
411 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
412 			val = 18 << VTE_IM_TIMER_SHIFT;
413 		else
414 			val = 1 << VTE_IM_TIMER_SHIFT;
415 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
416 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
417 		CSR_WRITE_2(sc, VTE_MRICR, val);
418 
419 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
420 			val = 18 << VTE_IM_TIMER_SHIFT;
421 		else
422 			val = 1 << VTE_IM_TIMER_SHIFT;
423 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
424 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
425 		CSR_WRITE_2(sc, VTE_MTICR, val);
426 
427 		vte_mac_config(sc);
428 		vte_start_mac(sc);
429 		DPRINTF(("vte_miibus_statchg: link\n"));
430 	}
431 }
432 
433 static void
434 vte_get_macaddr(struct vte_softc *sc)
435 {
436 	uint16_t mid;
437 
438 	/*
439 	 * It seems there is no way to reload station address and
440 	 * it is supposed to be set by BIOS.
441 	 */
442 	mid = CSR_READ_2(sc, VTE_MID0L);
443 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
444 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
445 	mid = CSR_READ_2(sc, VTE_MID0M);
446 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
447 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
448 	mid = CSR_READ_2(sc, VTE_MID0H);
449 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
450 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
451 }
452 
453 
454 static int
455 vte_dma_alloc(struct vte_softc *sc)
456 {
457 	struct vte_txdesc *txd;
458 	struct vte_rxdesc *rxd;
459 	int error, i, rseg;
460 
461 	/* create DMA map for TX ring */
462 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
463 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
464 	    &sc->vte_cdata.vte_tx_ring_map);
465 	if (error) {
466 		aprint_error_dev(sc->vte_dev,
467 		    "could not create dma map for TX ring (%d)\n",
468 		    error);
469 		goto fail;
470 	}
471 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
472 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
473 	    VTE_TX_RING_ALIGN, 0,
474 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
475 	    BUS_DMA_NOWAIT);
476 	if (error != 0) {
477 		aprint_error_dev(sc->vte_dev,
478 		    "could not allocate DMA'able memory for TX ring (%d).\n",
479 		    error);
480 		goto fail;
481 	}
482 	KASSERT(rseg == 1);
483 	error = bus_dmamem_map(sc->vte_dmatag,
484 	    sc->vte_cdata.vte_tx_ring_seg, 1,
485 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
486 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
487 	if (error != 0) {
488 		aprint_error_dev(sc->vte_dev,
489 		    "could not map DMA'able memory for TX ring (%d).\n",
490 		    error);
491 		goto fail;
492 	}
493 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
494 	error = bus_dmamap_load(sc->vte_dmatag,
495 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
496 	    VTE_TX_RING_SZ, NULL,
497 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
498 	if (error != 0) {
499 		aprint_error_dev(sc->vte_dev,
500 		    "could not load DMA'able memory for TX ring.\n");
501 		goto fail;
502 	}
503 
504 	/* create DMA map for RX ring */
505 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
506 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
507 	    &sc->vte_cdata.vte_rx_ring_map);
508 	if (error) {
509 		aprint_error_dev(sc->vte_dev,
510 		    "could not create dma map for RX ring (%d)\n",
511 		    error);
512 		goto fail;
513 	}
514 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
515 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
516 	    VTE_RX_RING_ALIGN, 0,
517 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
518 	    BUS_DMA_NOWAIT);
519 	if (error != 0) {
520 		aprint_error_dev(sc->vte_dev,
521 		    "could not allocate DMA'able memory for RX ring (%d).\n",
522 		    error);
523 		goto fail;
524 	}
525 	KASSERT(rseg == 1);
526 	error = bus_dmamem_map(sc->vte_dmatag,
527 	    sc->vte_cdata.vte_rx_ring_seg, 1,
528 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
529 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
530 	if (error != 0) {
531 		aprint_error_dev(sc->vte_dev,
532 		    "could not map DMA'able memory for RX ring (%d).\n",
533 		    error);
534 		goto fail;
535 	}
536 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
537 	error = bus_dmamap_load(sc->vte_dmatag,
538 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
539 	    VTE_RX_RING_SZ, NULL,
540 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
541 	if (error != 0) {
542 		aprint_error_dev(sc->vte_dev,
543 		    "could not load DMA'able memory for RX ring (%d).\n",
544 		    error);
545 		goto fail;
546 	}
547 
548 	/* Create DMA maps for TX buffers. */
549 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
550 		txd = &sc->vte_cdata.vte_txdesc[i];
551 		txd->tx_m = NULL;
552 		txd->tx_dmamap = NULL;
553 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
554 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
555 		    &txd->tx_dmamap);
556 		if (error != 0) {
557 			aprint_error_dev(sc->vte_dev,
558 			    "could not create TX DMA map %d (%d).\n", i, error);
559 			goto fail;
560 		}
561 	}
562 	/* Create DMA maps for RX buffers. */
563 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
564 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
565 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
566 		aprint_error_dev(sc->vte_dev,
567 		    "could not create spare RX dmamap (%d).\n", error);
568 		goto fail;
569 	}
570 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
571 		rxd = &sc->vte_cdata.vte_rxdesc[i];
572 		rxd->rx_m = NULL;
573 		rxd->rx_dmamap = NULL;
574 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
575 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
576 		    &rxd->rx_dmamap);
577 		if (error != 0) {
578 			aprint_error_dev(sc->vte_dev,
579 			    "could not create RX dmamap %d (%d).\n", i, error);
580 			goto fail;
581 		}
582 	}
583 	return 0;
584 
585 fail:
586 	vte_dma_free(sc);
587 	return (error);
588 }
589 
590 static void
591 vte_dma_free(struct vte_softc *sc)
592 {
593 	struct vte_txdesc *txd;
594 	struct vte_rxdesc *rxd;
595 	int i;
596 
597 	/* TX buffers. */
598 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
599 		txd = &sc->vte_cdata.vte_txdesc[i];
600 		if (txd->tx_dmamap != NULL) {
601 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
602 			txd->tx_dmamap = NULL;
603 		}
604 	}
605 	/* RX buffers */
606 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
607 		rxd = &sc->vte_cdata.vte_rxdesc[i];
608 		if (rxd->rx_dmamap != NULL) {
609 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
610 			rxd->rx_dmamap = NULL;
611 		}
612 	}
613 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
614 		bus_dmamap_destroy(sc->vte_dmatag,
615 		    sc->vte_cdata.vte_rx_sparemap);
616 		sc->vte_cdata.vte_rx_sparemap = NULL;
617 	}
618 	/* TX descriptor ring. */
619 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
620 		bus_dmamap_unload(sc->vte_dmatag,
621 		    sc->vte_cdata.vte_tx_ring_map);
622 		bus_dmamap_destroy(sc->vte_dmatag,
623 		    sc->vte_cdata.vte_tx_ring_map);
624 	}
625 	if (sc->vte_cdata.vte_tx_ring != NULL) {
626 		bus_dmamem_unmap(sc->vte_dmatag,
627 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
628 		bus_dmamem_free(sc->vte_dmatag,
629 		    sc->vte_cdata.vte_tx_ring_seg, 1);
630 	}
631 	sc->vte_cdata.vte_tx_ring = NULL;
632 	sc->vte_cdata.vte_tx_ring_map = NULL;
633 	/* RX ring. */
634 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
635 		bus_dmamap_unload(sc->vte_dmatag,
636 		    sc->vte_cdata.vte_rx_ring_map);
637 		bus_dmamap_destroy(sc->vte_dmatag,
638 		    sc->vte_cdata.vte_rx_ring_map);
639 	}
640 	if (sc->vte_cdata.vte_rx_ring != NULL) {
641 		bus_dmamem_unmap(sc->vte_dmatag,
642 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
643 		bus_dmamem_free(sc->vte_dmatag,
644 		    sc->vte_cdata.vte_rx_ring_seg, 1);
645 	}
646 	sc->vte_cdata.vte_rx_ring = NULL;
647 	sc->vte_cdata.vte_rx_ring_map = NULL;
648 }
649 
650 static bool
651 vte_shutdown(device_t dev, int howto)
652 {
653 
654 	return (vte_suspend(dev, NULL));
655 }
656 
657 static bool
658 vte_suspend(device_t dev, const pmf_qual_t *qual)
659 {
660 	struct vte_softc *sc = device_private(dev);
661 	struct ifnet *ifp = &sc->vte_if;
662 
663 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
664 	if ((ifp->if_flags & IFF_RUNNING) != 0)
665 		vte_stop(ifp, 1);
666 	return (0);
667 }
668 
669 static bool
670 vte_resume(device_t dev, const pmf_qual_t *qual)
671 {
672 	struct vte_softc *sc = device_private(dev);
673 	struct ifnet *ifp;
674 
675 	ifp = &sc->vte_if;
676 	if ((ifp->if_flags & IFF_UP) != 0) {
677 		ifp->if_flags &= ~IFF_RUNNING;
678 		vte_init(ifp);
679 	}
680 
681 	return (0);
682 }
683 
684 static struct vte_txdesc *
685 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
686 {
687 	struct vte_txdesc *txd;
688 	struct mbuf *m, *n;
689 	int copy, error, padlen;
690 
691 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
692 	m = *m_head;
693 	/*
694 	 * Controller doesn't auto-pad, so we have to make sure pad
695 	 * short frames out to the minimum frame length.
696 	 */
697 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
698 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
699 	else
700 		padlen = 0;
701 
702 	/*
703 	 * Controller does not support multi-fragmented TX buffers.
704 	 * Controller spends most of its TX processing time in
705 	 * de-fragmenting TX buffers.  Either faster CPU or more
706 	 * advanced controller DMA engine is required to speed up
707 	 * TX path processing.
708 	 * To mitigate the de-fragmenting issue, perform deep copy
709 	 * from fragmented mbuf chains to a pre-allocated mbuf
710 	 * cluster with extra cost of kernel memory.  For frames
711 	 * that is composed of single TX buffer, the deep copy is
712 	 * bypassed.
713 	 */
714 	copy = 0;
715 	if (m->m_next != NULL)
716 		copy++;
717 	if (padlen > 0 && (M_READONLY(m) ||
718 	    padlen > M_TRAILINGSPACE(m)))
719 		copy++;
720 	if (copy != 0) {
721 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
722 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
723 		n->m_pkthdr.len = m->m_pkthdr.len;
724 		n->m_len = m->m_pkthdr.len;
725 		m = n;
726 		txd->tx_flags |= VTE_TXMBUF;
727 	}
728 
729 	if (padlen > 0) {
730 		/* Zero out the bytes in the pad area. */
731 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
732 		m->m_pkthdr.len += padlen;
733 		m->m_len = m->m_pkthdr.len;
734 	}
735 
736 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
737 	    BUS_DMA_NOWAIT);
738 	if (error != 0) {
739 		txd->tx_flags &= ~VTE_TXMBUF;
740 		return (NULL);
741 	}
742 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
743 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
744 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
745 
746 	txd->tx_desc->dtlen =
747 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
748 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
749 	sc->vte_cdata.vte_tx_cnt++;
750 	/* Update producer index. */
751 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
752 
753 	/* Finally hand over ownership to controller. */
754 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
755 	txd->tx_m = m;
756 
757 	return (txd);
758 }
759 
760 static void
761 vte_ifstart(struct ifnet *ifp)
762 {
763 	struct vte_softc *sc = ifp->if_softc;
764 	struct vte_txdesc *txd;
765 	struct mbuf *m_head, *m;
766 	int enq;
767 
768 	ifp = &sc->vte_if;
769 
770 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
771 
772 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
773 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
774 		return;
775 
776 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
777 		/* Reserve one free TX descriptor. */
778 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
779 			ifp->if_flags |= IFF_OACTIVE;
780 			break;
781 		}
782 		IFQ_POLL(&ifp->if_snd, m_head);
783 		if (m_head == NULL)
784 			break;
785 		/*
786 		 * Pack the data into the transmit ring. If we
787 		 * don't have room, set the OACTIVE flag and wait
788 		 * for the NIC to drain the ring.
789 		 */
790 		DPRINTF(("vte_encap:"));
791 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
792 			DPRINTF((" failed\n"));
793 			break;
794 		}
795 		DPRINTF((" ok\n"));
796 		IFQ_DEQUEUE(&ifp->if_snd, m);
797 		KASSERT(m == m_head);
798 
799 		enq++;
800 		/*
801 		 * If there's a BPF listener, bounce a copy of this frame
802 		 * to him.
803 		 */
804 		bpf_mtap(ifp, m_head);
805 		/* Free consumed TX frame. */
806 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
807 			m_freem(m_head);
808 	}
809 
810 	if (enq > 0) {
811 		bus_dmamap_sync(sc->vte_dmatag,
812 		    sc->vte_cdata.vte_tx_ring_map, 0,
813 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
814 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
816 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
817 	}
818 }
819 
820 static void
821 vte_ifwatchdog(struct ifnet *ifp)
822 {
823 	struct vte_softc *sc = ifp->if_softc;
824 
825 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
826 		return;
827 
828 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
829 	ifp->if_oerrors++;
830 	vte_init(ifp);
831 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
832 		vte_ifstart(ifp);
833 }
834 
835 static int
836 vte_mediachange(struct ifnet *ifp)
837 {
838 	int error;
839 	struct vte_softc *sc = ifp->if_softc;
840 
841 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
842 		error = 0;
843 	else if (error != 0) {
844 		aprint_error_dev(sc->vte_dev, "could not set media\n");
845 		return error;
846 	}
847 											return 0;
848 
849 }
850 
851 static int
852 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
853 {
854 	struct vte_softc *sc = ifp->if_softc;
855 	int error, s;
856 
857 	s = splnet();
858 	error = ether_ioctl(ifp, cmd, data);
859 	if (error == ENETRESET) {
860 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
861 		if (ifp->if_flags & IFF_RUNNING)
862 			vte_rxfilter(sc);
863 		error = 0;
864 	}
865 	splx(s);
866 	return error;
867 }
868 
869 static void
870 vte_mac_config(struct vte_softc *sc)
871 {
872 	uint16_t mcr;
873 
874 	mcr = CSR_READ_2(sc, VTE_MCR0);
875 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
876 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
877 		mcr |= MCR0_FULL_DUPLEX;
878 #ifdef notyet
879 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
880 			mcr |= MCR0_FC_ENB;
881 		/*
882 		 * The data sheet is not clear whether the controller
883 		 * honors received pause frames or not.  The is no
884 		 * separate control bit for RX pause frame so just
885 		 * enable MCR0_FC_ENB bit.
886 		 */
887 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
888 			mcr |= MCR0_FC_ENB;
889 #endif
890 	}
891 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
892 }
893 
894 static void
895 vte_stats_clear(struct vte_softc *sc)
896 {
897 
898 	/* Reading counter registers clears its contents. */
899 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
900 	CSR_READ_2(sc, VTE_CNT_MECNT0);
901 	CSR_READ_2(sc, VTE_CNT_MECNT1);
902 	CSR_READ_2(sc, VTE_CNT_MECNT2);
903 	CSR_READ_2(sc, VTE_CNT_MECNT3);
904 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
905 	CSR_READ_2(sc, VTE_CNT_MECNT4);
906 	CSR_READ_2(sc, VTE_CNT_PAUSE);
907 }
908 
909 static void
910 vte_stats_update(struct vte_softc *sc)
911 {
912 	struct vte_hw_stats *stat;
913 	struct ifnet *ifp = &sc->vte_if;
914 	uint16_t value;
915 
916 	stat = &sc->vte_stats;
917 
918 	CSR_READ_2(sc, VTE_MECISR);
919 	/* RX stats. */
920 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
921 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
922 	stat->rx_bcast_frames += (value >> 8);
923 	stat->rx_mcast_frames += (value & 0xFF);
924 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
925 	stat->rx_runts += (value >> 8);
926 	stat->rx_crcerrs += (value & 0xFF);
927 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
928 	stat->rx_long_frames += (value & 0xFF);
929 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
930 	stat->rx_fifo_full += (value >> 8);
931 	stat->rx_desc_unavail += (value & 0xFF);
932 
933 	/* TX stats. */
934 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
935 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
936 	stat->tx_underruns += (value >> 8);
937 	stat->tx_late_colls += (value & 0xFF);
938 
939 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
940 	stat->tx_pause_frames += (value >> 8);
941 	stat->rx_pause_frames += (value & 0xFF);
942 
943 	/* Update ifp counters. */
944 	ifp->if_opackets = stat->tx_frames;
945 	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
946 	ifp->if_ipackets = stat->rx_frames;
947 	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
948 	    stat->rx_long_frames + stat->rx_fifo_full;
949 }
950 
951 static int
952 vte_intr(void *arg)
953 {
954 	struct vte_softc *sc = (struct vte_softc *)arg;
955 	struct ifnet *ifp = &sc->vte_if;
956 	uint16_t status;
957 	int n;
958 
959 	/* Reading VTE_MISR acknowledges interrupts. */
960 	status = CSR_READ_2(sc, VTE_MISR);
961 	DPRINTF(("vte_intr status 0x%x\n", status));
962 	if ((status & VTE_INTRS) == 0) {
963 		/* Not ours. */
964 		return 0;
965 	}
966 
967 	/* Disable interrupts. */
968 	CSR_WRITE_2(sc, VTE_MIER, 0);
969 	for (n = 8; (status & VTE_INTRS) != 0;) {
970 		if ((ifp->if_flags & IFF_RUNNING) == 0)
971 			break;
972 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
973 		    MISR_RX_FIFO_FULL)) != 0)
974 			vte_rxeof(sc);
975 		if ((status & MISR_TX_DONE) != 0)
976 			vte_txeof(sc);
977 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
978 			vte_stats_update(sc);
979 		if_schedule_deferred_start(ifp);
980 		if (--n > 0)
981 			status = CSR_READ_2(sc, VTE_MISR);
982 		else
983 			break;
984 	}
985 
986 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
987 		/* Re-enable interrupts. */
988 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
989 	}
990 	return 1;
991 }
992 
993 static void
994 vte_txeof(struct vte_softc *sc)
995 {
996 	struct ifnet *ifp;
997 	struct vte_txdesc *txd;
998 	uint16_t status;
999 	int cons, prog;
1000 
1001 	ifp = &sc->vte_if;
1002 
1003 	if (sc->vte_cdata.vte_tx_cnt == 0)
1004 		return;
1005 	bus_dmamap_sync(sc->vte_dmatag,
1006 	    sc->vte_cdata.vte_tx_ring_map, 0,
1007 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1008 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1009 	cons = sc->vte_cdata.vte_tx_cons;
1010 	/*
1011 	 * Go through our TX list and free mbufs for those
1012 	 * frames which have been transmitted.
1013 	 */
1014 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1015 		txd = &sc->vte_cdata.vte_txdesc[cons];
1016 		status = le16toh(txd->tx_desc->dtst);
1017 		if ((status & VTE_DTST_TX_OWN) != 0)
1018 			break;
1019 		if ((status & VTE_DTST_TX_OK) != 0)
1020 			ifp->if_collisions += (status & 0xf);
1021 		sc->vte_cdata.vte_tx_cnt--;
1022 		/* Reclaim transmitted mbufs. */
1023 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1024 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1025 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1026 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1027 			m_freem(txd->tx_m);
1028 		txd->tx_flags &= ~VTE_TXMBUF;
1029 		txd->tx_m = NULL;
1030 		prog++;
1031 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1032 	}
1033 
1034 	if (prog > 0) {
1035 		ifp->if_flags &= ~IFF_OACTIVE;
1036 		sc->vte_cdata.vte_tx_cons = cons;
1037 		/*
1038 		 * Unarm watchdog timer only when there is no pending
1039 		 * frames in TX queue.
1040 		 */
1041 		if (sc->vte_cdata.vte_tx_cnt == 0)
1042 			sc->vte_watchdog_timer = 0;
1043 	}
1044 }
1045 
1046 static int
1047 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1048 {
1049 	struct mbuf *m;
1050 	bus_dmamap_t map;
1051 
1052 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1053 	if (m == NULL)
1054 		return (ENOBUFS);
1055 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1056 	m_adj(m, sizeof(uint32_t));
1057 
1058 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1059 	    sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1060 		m_freem(m);
1061 		return (ENOBUFS);
1062 	}
1063 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1064 
1065 	if (rxd->rx_m != NULL) {
1066 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1067 		    0, rxd->rx_dmamap->dm_mapsize,
1068 		    BUS_DMASYNC_POSTREAD);
1069 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1070 	}
1071 	map = rxd->rx_dmamap;
1072 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1073 	sc->vte_cdata.vte_rx_sparemap = map;
1074 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1075 	    0, rxd->rx_dmamap->dm_mapsize,
1076 	    BUS_DMASYNC_PREREAD);
1077 	rxd->rx_m = m;
1078 	rxd->rx_desc->drbp =
1079 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1080 	rxd->rx_desc->drlen = htole16(
1081 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1082 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1083 		(u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1084 		rxd->rx_dmamap->dm_segs[0].ds_len));
1085 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1086 
1087 	return (0);
1088 }
1089 
1090 static void
1091 vte_rxeof(struct vte_softc *sc)
1092 {
1093 	struct ifnet *ifp;
1094 	struct vte_rxdesc *rxd;
1095 	struct mbuf *m;
1096 	uint16_t status, total_len;
1097 	int cons, prog;
1098 
1099 	bus_dmamap_sync(sc->vte_dmatag,
1100 	    sc->vte_cdata.vte_rx_ring_map, 0,
1101 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1102 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1103 	cons = sc->vte_cdata.vte_rx_cons;
1104 	ifp = &sc->vte_if;
1105 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1106 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1107 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1108 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1109 		status = le16toh(rxd->rx_desc->drst);
1110 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1111 			cons, rxd, rxd->rx_m, status,
1112 			VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1113 		if ((status & VTE_DRST_RX_OWN) != 0)
1114 			break;
1115 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1116 		m = rxd->rx_m;
1117 		if ((status & VTE_DRST_RX_OK) == 0) {
1118 			/* Discard errored frame. */
1119 			rxd->rx_desc->drlen =
1120 			    htole16(MCLBYTES - sizeof(uint32_t));
1121 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1122 			continue;
1123 		}
1124 		if (vte_newbuf(sc, rxd) != 0) {
1125 			DPRINTF(("vte_rxeof newbuf failed\n"));
1126 			ifp->if_ierrors++;
1127 			rxd->rx_desc->drlen =
1128 			    htole16(MCLBYTES - sizeof(uint32_t));
1129 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1130 			continue;
1131 		}
1132 
1133 		/*
1134 		 * It seems there is no way to strip FCS bytes.
1135 		 */
1136 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1137 		m_set_rcvif(m, ifp);
1138 		if_percpuq_enqueue(ifp->if_percpuq, m);
1139 	}
1140 
1141 	if (prog > 0) {
1142 		/* Update the consumer index. */
1143 		sc->vte_cdata.vte_rx_cons = cons;
1144 		/*
1145 		 * Sync updated RX descriptors such that controller see
1146 		 * modified RX buffer addresses.
1147 		 */
1148 		bus_dmamap_sync(sc->vte_dmatag,
1149 		    sc->vte_cdata.vte_rx_ring_map, 0,
1150 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1151 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1152 #ifdef notyet
1153 		/*
1154 		 * Update residue counter.  Controller does not
1155 		 * keep track of number of available RX descriptors
1156 		 * such that driver should have to update VTE_MRDCR
1157 		 * to make controller know how many free RX
1158 		 * descriptors were added to controller.  This is
1159 		 * a similar mechanism used in VIA velocity
1160 		 * controllers and it indicates controller just
1161 		 * polls OWN bit of current RX descriptor pointer.
1162 		 * A couple of severe issues were seen on sample
1163 		 * board where the controller continuously emits TX
1164 		 * pause frames once RX pause threshold crossed.
1165 		 * Once triggered it never recovered form that
1166 		 * state, I couldn't find a way to make it back to
1167 		 * work at least.  This issue effectively
1168 		 * disconnected the system from network.  Also, the
1169 		 * controller used 00:00:00:00:00:00 as source
1170 		 * station address of TX pause frame. Probably this
1171 		 * is one of reason why vendor recommends not to
1172 		 * enable flow control on R6040 controller.
1173 		 */
1174 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1175 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1176 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1177 #endif
1178 	rnd_add_uint32(&sc->rnd_source, prog);
1179 	}
1180 }
1181 
1182 static void
1183 vte_tick(void *arg)
1184 {
1185 	struct vte_softc *sc;
1186 	int s = splnet();
1187 
1188 	sc = (struct vte_softc *)arg;
1189 
1190 	mii_tick(&sc->vte_mii);
1191 	vte_stats_update(sc);
1192 	vte_txeof(sc);
1193 	vte_ifwatchdog(&sc->vte_if);
1194 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1195 	splx(s);
1196 }
1197 
1198 static void
1199 vte_reset(struct vte_softc *sc)
1200 {
1201 	uint16_t mcr;
1202 	int i;
1203 
1204 	mcr = CSR_READ_2(sc, VTE_MCR1);
1205 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1206 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1207 		DELAY(10);
1208 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1209 			break;
1210 	}
1211 	if (i == 0)
1212 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1213 	/*
1214 	 * Follow the guide of vendor recommended way to reset MAC.
1215 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1216 	 * not reliable so manually reset internal state machine.
1217 	 */
1218 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1219 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1220 	DELAY(5000);
1221 }
1222 
1223 
1224 static int
1225 vte_init(struct ifnet *ifp)
1226 {
1227 	struct vte_softc *sc = ifp->if_softc;
1228 	bus_addr_t paddr;
1229 	uint8_t eaddr[ETHER_ADDR_LEN];
1230 	int s, error;
1231 
1232 	s = splnet();
1233 	/*
1234 	 * Cancel any pending I/O.
1235 	 */
1236 	vte_stop(ifp, 1);
1237 	/*
1238 	 * Reset the chip to a known state.
1239 	 */
1240 	vte_reset(sc);
1241 
1242 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1243 		splx(s);
1244 		return 0;
1245 	}
1246 
1247 	/* Initialize RX descriptors. */
1248 	if (vte_init_rx_ring(sc) != 0) {
1249 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1250 		vte_stop(ifp, 1);
1251 		splx(s);
1252 		return ENOMEM;
1253 	}
1254 	if (vte_init_tx_ring(sc) != 0) {
1255 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1256 		vte_stop(ifp, 1);
1257 		splx(s);
1258 		return ENOMEM;
1259 	}
1260 
1261 	/*
1262 	 * Reprogram the station address.  Controller supports up
1263 	 * to 4 different station addresses so driver programs the
1264 	 * first station address as its own ethernet address and
1265 	 * configure the remaining three addresses as perfect
1266 	 * multicast addresses.
1267 	 */
1268 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1269 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1270 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1271 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1272 
1273 	/* Set TX descriptor base addresses. */
1274 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1275 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1276 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1277 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1278 
1279 	/* Set RX descriptor base addresses. */
1280 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1281 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1282 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1283 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1284 	/*
1285 	 * Initialize RX descriptor residue counter and set RX
1286 	 * pause threshold to 20% of available RX descriptors.
1287 	 * See comments on vte_rxeof() for details on flow control
1288 	 * issues.
1289 	 */
1290 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1291 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1292 
1293 	/*
1294 	 * Always use maximum frame size that controller can
1295 	 * support.  Otherwise received frames that has longer
1296 	 * frame length than vte(4) MTU would be silently dropped
1297 	 * in controller.  This would break path-MTU discovery as
1298 	 * sender wouldn't get any responses from receiver. The
1299 	 * RX buffer size should be multiple of 4.
1300 	 * Note, jumbo frames are silently ignored by controller
1301 	 * and even MAC counters do not detect them.
1302 	 */
1303 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1304 
1305 	/* Configure FIFO. */
1306 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1307 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1308 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1309 
1310 	/*
1311 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1312 	 * control configuration is done after detecting a valid
1313 	 * link.  Note, we don't generate early interrupt here
1314 	 * as well since FreeBSD does not have interrupt latency
1315 	 * problems like Windows.
1316 	 */
1317 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1318 	/*
1319 	 * We manually keep track of PHY status changes to
1320 	 * configure resolved duplex and flow control since only
1321 	 * duplex configuration can be automatically reflected to
1322 	 * MCR0.
1323 	 */
1324 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1325 	    MCR1_EXCESS_COL_RETRY_16);
1326 
1327 	/* Initialize RX filter. */
1328 	vte_rxfilter(sc);
1329 
1330 	/* Disable TX/RX interrupt moderation control. */
1331 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1332 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1333 
1334 	/* Enable MAC event counter interrupts. */
1335 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1336 	/* Clear MAC statistics. */
1337 	vte_stats_clear(sc);
1338 
1339 	/* Acknowledge all pending interrupts and clear it. */
1340 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1341 	CSR_WRITE_2(sc, VTE_MISR, 0);
1342 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1343 		CSR_READ_2(sc, VTE_MISR)));
1344 
1345 	sc->vte_flags &= ~VTE_FLAG_LINK;
1346 	ifp->if_flags |= IFF_RUNNING;
1347 	ifp->if_flags &= ~IFF_OACTIVE;
1348 
1349 	/* calling mii_mediachg will call back vte_start_mac() */
1350 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1351 		error = 0;
1352 	else if (error != 0) {
1353 		aprint_error_dev(sc->vte_dev, "could not set media\n");
1354 		splx(s);
1355 		return error;
1356 	}
1357 
1358 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1359 
1360 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1361 		CSR_READ_2(sc, VTE_MISR)));
1362 	splx(s);
1363 	return 0;
1364 }
1365 
1366 static void
1367 vte_stop(struct ifnet *ifp, int disable)
1368 {
1369 	struct vte_softc *sc = ifp->if_softc;
1370 	struct vte_txdesc *txd;
1371 	struct vte_rxdesc *rxd;
1372 	int i;
1373 
1374 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1375 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1376 		return;
1377 	/*
1378 	 * Mark the interface down and cancel the watchdog timer.
1379 	 */
1380 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1381 	sc->vte_flags &= ~VTE_FLAG_LINK;
1382 	callout_stop(&sc->vte_tick_ch);
1383 	sc->vte_watchdog_timer = 0;
1384 	vte_stats_update(sc);
1385 	/* Disable interrupts. */
1386 	CSR_WRITE_2(sc, VTE_MIER, 0);
1387 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1388 	/* Stop RX/TX MACs. */
1389 	vte_stop_mac(sc);
1390 	/* Clear interrupts. */
1391 	CSR_READ_2(sc, VTE_MISR);
1392 	/*
1393 	 * Free TX/RX mbufs still in the queues.
1394 	 */
1395 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1396 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1397 		if (rxd->rx_m != NULL) {
1398 			bus_dmamap_sync(sc->vte_dmatag,
1399 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1400 			    BUS_DMASYNC_POSTREAD);
1401 			bus_dmamap_unload(sc->vte_dmatag,
1402 			    rxd->rx_dmamap);
1403 			m_freem(rxd->rx_m);
1404 			rxd->rx_m = NULL;
1405 		}
1406 	}
1407 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1408 		txd = &sc->vte_cdata.vte_txdesc[i];
1409 		if (txd->tx_m != NULL) {
1410 			bus_dmamap_sync(sc->vte_dmatag,
1411 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1412 			    BUS_DMASYNC_POSTWRITE);
1413 			bus_dmamap_unload(sc->vte_dmatag,
1414 			    txd->tx_dmamap);
1415 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1416 				m_freem(txd->tx_m);
1417 			txd->tx_m = NULL;
1418 			txd->tx_flags &= ~VTE_TXMBUF;
1419 		}
1420 	}
1421 	/* Free TX mbuf pools used for deep copy. */
1422 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1423 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1424 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1425 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1426 		}
1427 	}
1428 }
1429 
1430 static void
1431 vte_start_mac(struct vte_softc *sc)
1432 {
1433 	struct ifnet *ifp = &sc->vte_if;
1434 	uint16_t mcr;
1435 	int i;
1436 
1437 	/* Enable RX/TX MACs. */
1438 	mcr = CSR_READ_2(sc, VTE_MCR0);
1439 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1440 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
1441 	    (ifp->if_flags & IFF_RUNNING) != 0) {
1442 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1443 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1444 		for (i = VTE_TIMEOUT; i > 0; i--) {
1445 			mcr = CSR_READ_2(sc, VTE_MCR0);
1446 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1447 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1448 				break;
1449 			DELAY(10);
1450 		}
1451 		if (i == 0)
1452 			aprint_error_dev(sc->vte_dev,
1453 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1454 	}
1455 	vte_rxfilter(sc);
1456 }
1457 
1458 static void
1459 vte_stop_mac(struct vte_softc *sc)
1460 {
1461 	uint16_t mcr;
1462 	int i;
1463 
1464 	/* Disable RX/TX MACs. */
1465 	mcr = CSR_READ_2(sc, VTE_MCR0);
1466 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1467 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1468 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1469 		for (i = VTE_TIMEOUT; i > 0; i--) {
1470 			mcr = CSR_READ_2(sc, VTE_MCR0);
1471 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1472 				break;
1473 			DELAY(10);
1474 		}
1475 		if (i == 0)
1476 			aprint_error_dev(sc->vte_dev,
1477 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1478 	}
1479 }
1480 
1481 static int
1482 vte_init_tx_ring(struct vte_softc *sc)
1483 {
1484 	struct vte_tx_desc *desc;
1485 	struct vte_txdesc *txd;
1486 	bus_addr_t addr;
1487 	int i;
1488 
1489 	sc->vte_cdata.vte_tx_prod = 0;
1490 	sc->vte_cdata.vte_tx_cons = 0;
1491 	sc->vte_cdata.vte_tx_cnt = 0;
1492 
1493 	/* Pre-allocate TX mbufs for deep copy. */
1494 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1495 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1496 		    MT_DATA, M_PKTHDR);
1497 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1498 			return (ENOBUFS);
1499 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1500 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1501 	}
1502 	desc = sc->vte_cdata.vte_tx_ring;
1503 	bzero(desc, VTE_TX_RING_SZ);
1504 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1505 		txd = &sc->vte_cdata.vte_txdesc[i];
1506 		txd->tx_m = NULL;
1507 		if (i != VTE_TX_RING_CNT - 1)
1508 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1509 			    sizeof(struct vte_tx_desc) * (i + 1);
1510 		else
1511 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1512 			    sizeof(struct vte_tx_desc) * 0;
1513 		desc = &sc->vte_cdata.vte_tx_ring[i];
1514 		desc->dtnp = htole32(addr);
1515 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1516 		txd->tx_desc = desc;
1517 	}
1518 
1519 	bus_dmamap_sync(sc->vte_dmatag,
1520 	    sc->vte_cdata.vte_tx_ring_map, 0,
1521 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1522 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1523 	return (0);
1524 }
1525 
1526 static int
1527 vte_init_rx_ring(struct vte_softc *sc)
1528 {
1529 	struct vte_rx_desc *desc;
1530 	struct vte_rxdesc *rxd;
1531 	bus_addr_t addr;
1532 	int i;
1533 
1534 	sc->vte_cdata.vte_rx_cons = 0;
1535 	desc = sc->vte_cdata.vte_rx_ring;
1536 	bzero(desc, VTE_RX_RING_SZ);
1537 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1538 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1539 		rxd->rx_m = NULL;
1540 		if (i != VTE_RX_RING_CNT - 1)
1541 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1542 			    + sizeof(struct vte_rx_desc) * (i + 1);
1543 		else
1544 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1545 			    + sizeof(struct vte_rx_desc) * 0;
1546 		desc = &sc->vte_cdata.vte_rx_ring[i];
1547 		desc->drnp = htole32(addr);
1548 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1549 		rxd->rx_desc = desc;
1550 		if (vte_newbuf(sc, rxd) != 0)
1551 			return (ENOBUFS);
1552 	}
1553 
1554 	bus_dmamap_sync(sc->vte_dmatag,
1555 	    sc->vte_cdata.vte_rx_ring_map, 0,
1556 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1557 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1558 
1559 	return (0);
1560 }
1561 
1562 static void
1563 vte_rxfilter(struct vte_softc *sc)
1564 {
1565 	struct ether_multistep step;
1566 	struct ether_multi *enm;
1567 	struct ifnet *ifp;
1568 	uint8_t *eaddr;
1569 	uint32_t crc;
1570 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1571 	uint16_t mchash[4], mcr;
1572 	int i, nperf;
1573 
1574 	ifp = &sc->vte_if;
1575 
1576 	DPRINTF(("vte_rxfilter\n"));
1577 	memset(mchash, 0, sizeof(mchash));
1578 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1579 		rxfilt_perf[i][0] = 0xFFFF;
1580 		rxfilt_perf[i][1] = 0xFFFF;
1581 		rxfilt_perf[i][2] = 0xFFFF;
1582 	}
1583 
1584 	mcr = CSR_READ_2(sc, VTE_MCR0);
1585 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1586 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1587 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1588 		mcr |= MCR0_BROADCAST_DIS;
1589 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1590 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1591 			mcr |= MCR0_PROMISC;
1592 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1593 			mcr |= MCR0_MULTICAST;
1594 		mchash[0] = 0xFFFF;
1595 		mchash[1] = 0xFFFF;
1596 		mchash[2] = 0xFFFF;
1597 		mchash[3] = 0xFFFF;
1598 		goto chipit;
1599 	}
1600 
1601 	ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1602 	nperf = 0;
1603 	while (enm != NULL) {
1604 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1605 			sc->vte_if.if_flags |= IFF_ALLMULTI;
1606 			mcr |= MCR0_MULTICAST;
1607 			mchash[0] = 0xFFFF;
1608 			mchash[1] = 0xFFFF;
1609 			mchash[2] = 0xFFFF;
1610 			mchash[3] = 0xFFFF;
1611 			goto chipit;
1612 		}
1613 		/*
1614 		 * Program the first 3 multicast groups into
1615 		 * the perfect filter.  For all others, use the
1616 		 * hash table.
1617 		 */
1618 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
1619 			eaddr = enm->enm_addrlo;
1620 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1621 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1622 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1623 			nperf++;
1624 		} else {
1625 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1626 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1627 		}
1628 		ETHER_NEXT_MULTI(step, enm);
1629 	}
1630 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1631 	    mchash[3] != 0)
1632 		mcr |= MCR0_MULTICAST;
1633 
1634 chipit:
1635 	/* Program multicast hash table. */
1636 	DPRINTF(("chipit write multicast\n"));
1637 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1638 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1639 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1640 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1641 	/* Program perfect filter table. */
1642 	DPRINTF(("chipit write perfect filter\n"));
1643 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1644 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1645 		    rxfilt_perf[i][0]);
1646 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1647 		    rxfilt_perf[i][1]);
1648 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1649 		    rxfilt_perf[i][2]);
1650 	}
1651 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
1652 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1653 	DPRINTF(("chipit read mcro\n"));
1654 	CSR_READ_2(sc, VTE_MCR0);
1655 	DPRINTF(("chipit done\n"));
1656 }
1657 
1658 /*
1659  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1660  * set up in vte_pci_attach()
1661  */
1662 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1663 {
1664 	int rc;
1665 	const struct sysctlnode *node;
1666 
1667 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1668 	    0, CTLTYPE_NODE, "vte",
1669 	    SYSCTL_DESCR("vte interface controls"),
1670 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1671 		goto err;
1672 	}
1673 
1674 	vte_root_num = node->sysctl_num;
1675 	return;
1676 
1677 err:
1678 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1679 }
1680 
1681 static int
1682 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1683 {
1684 	int error, t;
1685 	struct sysctlnode node;
1686 	struct vte_softc *sc;
1687 
1688 	node = *rnode;
1689 	sc = node.sysctl_data;
1690 	t = sc->vte_int_rx_mod;
1691 	node.sysctl_data = &t;
1692 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1693 	if (error || newp == NULL)
1694 		return error;
1695 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1696 		return EINVAL;
1697 
1698 	sc->vte_int_rx_mod = t;
1699 	vte_miibus_statchg(&sc->vte_if);
1700 	return 0;
1701 }
1702 
1703 static int
1704 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1705 {
1706 	int error, t;
1707 	struct sysctlnode node;
1708 	struct vte_softc *sc;
1709 
1710 	node = *rnode;
1711 	sc = node.sysctl_data;
1712 	t = sc->vte_int_tx_mod;
1713 	node.sysctl_data = &t;
1714 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1715 	if (error || newp == NULL)
1716 		return error;
1717 
1718 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1719 		return EINVAL;
1720 	sc->vte_int_tx_mod = t;
1721 	vte_miibus_statchg(&sc->vte_if);
1722 	return 0;
1723 }
1724