xref: /netbsd-src/sys/dev/pci/if_vte.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: if_vte.c,v 1.32 2021/08/30 20:09:22 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54 
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56 
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.32 2021/08/30 20:09:22 andvar Exp $");
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71 
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 #include <net/bpf.h>
79 
80 #include <sys/rndsource.h>
81 
82 #include "opt_inet.h"
83 #include <net/if_ether.h>
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/if_inarp.h>
90 #endif
91 
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98 
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101 
102 #include <dev/pci/if_vtereg.h>
103 #include <dev/pci/if_vtevar.h>
104 
105 static int	vte_match(device_t, cfdata_t, void *);
106 static void	vte_attach(device_t, device_t, void *);
107 static int	vte_detach(device_t, int);
108 static int	vte_dma_alloc(struct vte_softc *);
109 static void	vte_dma_free(struct vte_softc *);
110 static struct vte_txdesc *
111 		vte_encap(struct vte_softc *, struct mbuf **);
112 static void	vte_get_macaddr(struct vte_softc *);
113 static int	vte_init(struct ifnet *);
114 static int	vte_init_rx_ring(struct vte_softc *);
115 static int	vte_init_tx_ring(struct vte_softc *);
116 static int	vte_intr(void *);
117 static int	vte_ifioctl(struct ifnet *, u_long, void *);
118 static void	vte_mac_config(struct vte_softc *);
119 static int	vte_miibus_readreg(device_t, int, int, uint16_t *);
120 static void	vte_miibus_statchg(struct ifnet *);
121 static int	vte_miibus_writereg(device_t, int, int, uint16_t);
122 static int	vte_mediachange(struct ifnet *);
123 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
124 static void	vte_reset(struct vte_softc *);
125 static void	vte_rxeof(struct vte_softc *);
126 static void	vte_rxfilter(struct vte_softc *);
127 static bool	vte_shutdown(device_t, int);
128 static bool	vte_suspend(device_t, const pmf_qual_t *);
129 static bool	vte_resume(device_t, const pmf_qual_t *);
130 static void	vte_ifstart(struct ifnet *);
131 static void	vte_start_mac(struct vte_softc *);
132 static void	vte_stats_clear(struct vte_softc *);
133 static void	vte_stats_update(struct vte_softc *);
134 static void	vte_stop(struct ifnet *, int);
135 static void	vte_stop_mac(struct vte_softc *);
136 static void	vte_tick(void *);
137 static void	vte_txeof(struct vte_softc *);
138 static void	vte_ifwatchdog(struct ifnet *);
139 
140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
142 static int vte_root_num;
143 
144 #define DPRINTF(a)
145 
146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
147     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
148 
149 
150 static int
151 vte_match(device_t parent, cfdata_t cf, void *aux)
152 {
153 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
154 
155 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
156 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
157 		return 1;
158 
159 	return 0;
160 }
161 
162 static void
163 vte_attach(device_t parent, device_t self, void *aux)
164 {
165 	struct vte_softc *sc = device_private(self);
166 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
167 	struct ifnet * const ifp = &sc->vte_if;
168 	struct mii_data * const mii = &sc->vte_mii;
169 	int h_valid;
170 	pcireg_t reg, csr;
171 	pci_intr_handle_t intrhandle;
172 	const char *intrstr;
173 	int error;
174 	const struct sysctlnode *node;
175 	int vte_nodenum;
176 	char intrbuf[PCI_INTRSTR_LEN];
177 
178 	sc->vte_dev = self;
179 
180 	callout_init(&sc->vte_tick_ch, 0);
181 	callout_setfunc(&sc->vte_tick_ch, vte_tick, sc);
182 
183 	/* Map the device. */
184 	h_valid = 0;
185 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
186 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
187 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
188 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
189 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
190 	}
191 	if (h_valid == 0) {
192 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
193 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
194 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
195 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
196 			    &sc->vte_bushandle, NULL, NULL) == 0);
197 		}
198 	}
199 	if (h_valid == 0) {
200 		aprint_error_dev(self, "unable to map device registers\n");
201 		return;
202 	}
203 	sc->vte_dmatag = pa->pa_dmat;
204 	/* Enable the device. */
205 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
206 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
207 	    csr | PCI_COMMAND_MASTER_ENABLE);
208 
209 	pci_aprint_devinfo(pa, NULL);
210 
211 	/* Reset the ethernet controller. */
212 	vte_reset(sc);
213 
214 	if ((error = vte_dma_alloc(sc)) != 0)
215 		return;
216 
217 	/* Load station address. */
218 	vte_get_macaddr(sc);
219 
220 	aprint_normal_dev(self, "Ethernet address %s\n",
221 	    ether_sprintf(sc->vte_eaddr));
222 
223 	/* Map and establish interrupts */
224 	if (pci_intr_map(pa, &intrhandle)) {
225 		aprint_error_dev(self, "couldn't map interrupt\n");
226 		return;
227 	}
228 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
229 	    sizeof(intrbuf));
230 	sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
231 	    vte_intr, sc, device_xname(self));
232 	if (sc->vte_ih == NULL) {
233 		aprint_error_dev(self, "couldn't establish interrupt");
234 		if (intrstr != NULL)
235 			aprint_error(" at %s", intrstr);
236 		aprint_error("\n");
237 		return;
238 	}
239 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
240 
241 	sc->vte_if.if_softc = sc;
242 	mii->mii_ifp = ifp;
243 	mii->mii_readreg = vte_miibus_readreg;
244 	mii->mii_writereg = vte_miibus_writereg;
245 	mii->mii_statchg = vte_miibus_statchg;
246 	sc->vte_ec.ec_mii = mii;
247 	ifmedia_init(&mii->mii_media, IFM_IMASK, vte_mediachange,
248 	    ether_mediastatus);
249 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
250 	    MII_OFFSET_ANY, 0);
251 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
252 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
253 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
254 	} else
255 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
256 
257 	/*
258 	 * We can support 802.1Q VLAN-sized frames.
259 	 */
260 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
261 
262 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
263 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
264 	ifp->if_ioctl = vte_ifioctl;
265 	ifp->if_start = vte_ifstart;
266 	ifp->if_watchdog = vte_ifwatchdog;
267 	ifp->if_init = vte_init;
268 	ifp->if_stop = vte_stop;
269 	ifp->if_timer = 0;
270 	IFQ_SET_READY(&ifp->if_snd);
271 	if_attach(ifp);
272 	if_deferred_start_init(ifp, NULL);
273 	ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
274 
275 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
276 		pmf_class_network_register(self, ifp);
277 	else
278 		aprint_error_dev(self, "couldn't establish power handler\n");
279 
280 	rnd_attach_source(&sc->rnd_source, device_xname(self),
281 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
282 
283 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
284 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
285 	    SYSCTL_DESCR("vte per-controller controls"),
286 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
287 	    CTL_EOL) != 0) {
288 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
289 		return;
290 	}
291 	vte_nodenum = node->sysctl_num;
292 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
293 	    CTLFLAG_READWRITE,
294 	    CTLTYPE_INT, "int_rxct",
295 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
296 	    vte_sysctl_intrxct, 0, (void *)sc,
297 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
298 	    CTL_EOL) != 0) {
299 		aprint_normal_dev(sc->vte_dev,
300 		    "couldn't create int_rxct sysctl node\n");
301 	}
302 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
303 	    CTLFLAG_READWRITE,
304 	    CTLTYPE_INT, "int_txct",
305 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
306 	    vte_sysctl_inttxct, 0, (void *)sc,
307 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
308 	    CTL_EOL) != 0) {
309 		aprint_normal_dev(sc->vte_dev,
310 		    "couldn't create int_txct sysctl node\n");
311 	}
312 }
313 
314 static int
315 vte_detach(device_t dev, int flags __unused)
316 {
317 	struct vte_softc *sc = device_private(dev);
318 	struct ifnet *ifp = &sc->vte_if;
319 	int s;
320 
321 	s = splnet();
322 	/* Stop the interface. Callouts are stopped in it. */
323 	vte_stop(ifp, 1);
324 	splx(s);
325 
326 	pmf_device_deregister(dev);
327 
328 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
329 
330 	ether_ifdetach(ifp);
331 	if_detach(ifp);
332 	ifmedia_fini(&sc->vte_mii.mii_media);
333 
334 	vte_dma_free(sc);
335 
336 	return (0);
337 }
338 
339 static int
340 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
341 {
342 	struct vte_softc *sc = device_private(dev);
343 	int i;
344 
345 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
346 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
347 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
348 		DELAY(5);
349 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
350 			break;
351 	}
352 
353 	if (i == 0) {
354 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
355 		return ETIMEDOUT;
356 	}
357 
358 	*val = CSR_READ_2(sc, VTE_MMRD);
359 	return 0;
360 }
361 
362 static int
363 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
364 {
365 	struct vte_softc *sc = device_private(dev);
366 	int i;
367 
368 	CSR_WRITE_2(sc, VTE_MMWD, val);
369 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
370 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
371 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
372 		DELAY(5);
373 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
374 			break;
375 	}
376 
377 	if (i == 0) {
378 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
379 		return ETIMEDOUT;
380 	}
381 
382 	return 0;
383 }
384 
385 static void
386 vte_miibus_statchg(struct ifnet *ifp)
387 {
388 	struct vte_softc *sc = ifp->if_softc;
389 	uint16_t val;
390 
391 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
392 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
393 
394 	sc->vte_flags &= ~VTE_FLAG_LINK;
395 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
396 	    (IFM_ACTIVE | IFM_AVALID)) {
397 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
398 		case IFM_10_T:
399 		case IFM_100_TX:
400 			sc->vte_flags |= VTE_FLAG_LINK;
401 			break;
402 		default:
403 			break;
404 		}
405 	}
406 
407 	/* Stop RX/TX MACs. */
408 	vte_stop_mac(sc);
409 	/* Program MACs with resolved duplex and flow control. */
410 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
411 		/*
412 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
413 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
414 		 */
415 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
416 			val = 18 << VTE_IM_TIMER_SHIFT;
417 		else
418 			val = 1 << VTE_IM_TIMER_SHIFT;
419 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
420 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
421 		CSR_WRITE_2(sc, VTE_MRICR, val);
422 
423 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
424 			val = 18 << VTE_IM_TIMER_SHIFT;
425 		else
426 			val = 1 << VTE_IM_TIMER_SHIFT;
427 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
428 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
429 		CSR_WRITE_2(sc, VTE_MTICR, val);
430 
431 		vte_mac_config(sc);
432 		vte_start_mac(sc);
433 		DPRINTF(("vte_miibus_statchg: link\n"));
434 	}
435 }
436 
437 static void
438 vte_get_macaddr(struct vte_softc *sc)
439 {
440 	uint16_t mid;
441 
442 	/*
443 	 * It seems there is no way to reload station address and
444 	 * it is supposed to be set by BIOS.
445 	 */
446 	mid = CSR_READ_2(sc, VTE_MID0L);
447 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
448 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
449 	mid = CSR_READ_2(sc, VTE_MID0M);
450 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
451 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
452 	mid = CSR_READ_2(sc, VTE_MID0H);
453 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
454 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
455 }
456 
457 
458 static int
459 vte_dma_alloc(struct vte_softc *sc)
460 {
461 	struct vte_txdesc *txd;
462 	struct vte_rxdesc *rxd;
463 	int error, i, rseg;
464 
465 	/* create DMA map for TX ring */
466 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
467 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
468 	    &sc->vte_cdata.vte_tx_ring_map);
469 	if (error) {
470 		aprint_error_dev(sc->vte_dev,
471 		    "could not create dma map for TX ring (%d)\n",
472 		    error);
473 		goto fail;
474 	}
475 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
476 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
477 	    VTE_TX_RING_ALIGN, 0,
478 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
479 	    BUS_DMA_NOWAIT);
480 	if (error != 0) {
481 		aprint_error_dev(sc->vte_dev,
482 		    "could not allocate DMA'able memory for TX ring (%d).\n",
483 		    error);
484 		goto fail;
485 	}
486 	KASSERT(rseg == 1);
487 	error = bus_dmamem_map(sc->vte_dmatag,
488 	    sc->vte_cdata.vte_tx_ring_seg, 1,
489 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
490 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
491 	if (error != 0) {
492 		aprint_error_dev(sc->vte_dev,
493 		    "could not map DMA'able memory for TX ring (%d).\n",
494 		    error);
495 		goto fail;
496 	}
497 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
498 	error = bus_dmamap_load(sc->vte_dmatag,
499 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
500 	    VTE_TX_RING_SZ, NULL,
501 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
502 	if (error != 0) {
503 		aprint_error_dev(sc->vte_dev,
504 		    "could not load DMA'able memory for TX ring.\n");
505 		goto fail;
506 	}
507 
508 	/* create DMA map for RX ring */
509 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
510 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
511 	    &sc->vte_cdata.vte_rx_ring_map);
512 	if (error) {
513 		aprint_error_dev(sc->vte_dev,
514 		    "could not create dma map for RX ring (%d)\n",
515 		    error);
516 		goto fail;
517 	}
518 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
519 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
520 	    VTE_RX_RING_ALIGN, 0,
521 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
522 	    BUS_DMA_NOWAIT);
523 	if (error != 0) {
524 		aprint_error_dev(sc->vte_dev,
525 		    "could not allocate DMA'able memory for RX ring (%d).\n",
526 		    error);
527 		goto fail;
528 	}
529 	KASSERT(rseg == 1);
530 	error = bus_dmamem_map(sc->vte_dmatag,
531 	    sc->vte_cdata.vte_rx_ring_seg, 1,
532 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
533 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
534 	if (error != 0) {
535 		aprint_error_dev(sc->vte_dev,
536 		    "could not map DMA'able memory for RX ring (%d).\n",
537 		    error);
538 		goto fail;
539 	}
540 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
541 	error = bus_dmamap_load(sc->vte_dmatag,
542 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
543 	    VTE_RX_RING_SZ, NULL,
544 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
545 	if (error != 0) {
546 		aprint_error_dev(sc->vte_dev,
547 		    "could not load DMA'able memory for RX ring (%d).\n",
548 		    error);
549 		goto fail;
550 	}
551 
552 	/* Create DMA maps for TX buffers. */
553 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
554 		txd = &sc->vte_cdata.vte_txdesc[i];
555 		txd->tx_m = NULL;
556 		txd->tx_dmamap = NULL;
557 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
558 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
559 		    &txd->tx_dmamap);
560 		if (error != 0) {
561 			aprint_error_dev(sc->vte_dev,
562 			    "could not create TX DMA map %d (%d).\n", i, error);
563 			goto fail;
564 		}
565 	}
566 	/* Create DMA maps for RX buffers. */
567 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
568 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
569 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
570 		aprint_error_dev(sc->vte_dev,
571 		    "could not create spare RX dmamap (%d).\n", error);
572 		goto fail;
573 	}
574 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
575 		rxd = &sc->vte_cdata.vte_rxdesc[i];
576 		rxd->rx_m = NULL;
577 		rxd->rx_dmamap = NULL;
578 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
579 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
580 		    &rxd->rx_dmamap);
581 		if (error != 0) {
582 			aprint_error_dev(sc->vte_dev,
583 			    "could not create RX dmamap %d (%d).\n", i, error);
584 			goto fail;
585 		}
586 	}
587 	return 0;
588 
589 fail:
590 	vte_dma_free(sc);
591 	return (error);
592 }
593 
594 static void
595 vte_dma_free(struct vte_softc *sc)
596 {
597 	struct vte_txdesc *txd;
598 	struct vte_rxdesc *rxd;
599 	int i;
600 
601 	/* TX buffers. */
602 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
603 		txd = &sc->vte_cdata.vte_txdesc[i];
604 		if (txd->tx_dmamap != NULL) {
605 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
606 			txd->tx_dmamap = NULL;
607 		}
608 	}
609 	/* RX buffers */
610 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
611 		rxd = &sc->vte_cdata.vte_rxdesc[i];
612 		if (rxd->rx_dmamap != NULL) {
613 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
614 			rxd->rx_dmamap = NULL;
615 		}
616 	}
617 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
618 		bus_dmamap_destroy(sc->vte_dmatag,
619 		    sc->vte_cdata.vte_rx_sparemap);
620 		sc->vte_cdata.vte_rx_sparemap = NULL;
621 	}
622 	/* TX descriptor ring. */
623 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
624 		bus_dmamap_unload(sc->vte_dmatag,
625 		    sc->vte_cdata.vte_tx_ring_map);
626 		bus_dmamap_destroy(sc->vte_dmatag,
627 		    sc->vte_cdata.vte_tx_ring_map);
628 	}
629 	if (sc->vte_cdata.vte_tx_ring != NULL) {
630 		bus_dmamem_unmap(sc->vte_dmatag,
631 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
632 		bus_dmamem_free(sc->vte_dmatag,
633 		    sc->vte_cdata.vte_tx_ring_seg, 1);
634 	}
635 	sc->vte_cdata.vte_tx_ring = NULL;
636 	sc->vte_cdata.vte_tx_ring_map = NULL;
637 	/* RX ring. */
638 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
639 		bus_dmamap_unload(sc->vte_dmatag,
640 		    sc->vte_cdata.vte_rx_ring_map);
641 		bus_dmamap_destroy(sc->vte_dmatag,
642 		    sc->vte_cdata.vte_rx_ring_map);
643 	}
644 	if (sc->vte_cdata.vte_rx_ring != NULL) {
645 		bus_dmamem_unmap(sc->vte_dmatag,
646 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
647 		bus_dmamem_free(sc->vte_dmatag,
648 		    sc->vte_cdata.vte_rx_ring_seg, 1);
649 	}
650 	sc->vte_cdata.vte_rx_ring = NULL;
651 	sc->vte_cdata.vte_rx_ring_map = NULL;
652 }
653 
654 static bool
655 vte_shutdown(device_t dev, int howto)
656 {
657 
658 	return (vte_suspend(dev, NULL));
659 }
660 
661 static bool
662 vte_suspend(device_t dev, const pmf_qual_t *qual)
663 {
664 	struct vte_softc *sc = device_private(dev);
665 	struct ifnet *ifp = &sc->vte_if;
666 
667 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
668 	if ((ifp->if_flags & IFF_RUNNING) != 0)
669 		vte_stop(ifp, 1);
670 	return (0);
671 }
672 
673 static bool
674 vte_resume(device_t dev, const pmf_qual_t *qual)
675 {
676 	struct vte_softc *sc = device_private(dev);
677 	struct ifnet *ifp;
678 
679 	ifp = &sc->vte_if;
680 	if ((ifp->if_flags & IFF_UP) != 0) {
681 		ifp->if_flags &= ~IFF_RUNNING;
682 		vte_init(ifp);
683 	}
684 
685 	return (0);
686 }
687 
688 static struct vte_txdesc *
689 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
690 {
691 	struct vte_txdesc *txd;
692 	struct mbuf *m, *n;
693 	int copy, error, padlen;
694 
695 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
696 	m = *m_head;
697 	/*
698 	 * Controller doesn't auto-pad, so we have to make sure pad
699 	 * short frames out to the minimum frame length.
700 	 */
701 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
702 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
703 	else
704 		padlen = 0;
705 
706 	/*
707 	 * Controller does not support multi-fragmented TX buffers.
708 	 * Controller spends most of its TX processing time in
709 	 * de-fragmenting TX buffers.  Either faster CPU or more
710 	 * advanced controller DMA engine is required to speed up
711 	 * TX path processing.
712 	 * To mitigate the de-fragmenting issue, perform deep copy
713 	 * from fragmented mbuf chains to a pre-allocated mbuf
714 	 * cluster with extra cost of kernel memory.  For frames
715 	 * that is composed of single TX buffer, the deep copy is
716 	 * bypassed.
717 	 */
718 	copy = 0;
719 	if (m->m_next != NULL)
720 		copy++;
721 	if (padlen > 0 && (M_READONLY(m) ||
722 	    padlen > M_TRAILINGSPACE(m)))
723 		copy++;
724 	if (copy != 0) {
725 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
726 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
727 		n->m_pkthdr.len = m->m_pkthdr.len;
728 		n->m_len = m->m_pkthdr.len;
729 		m = n;
730 		txd->tx_flags |= VTE_TXMBUF;
731 	}
732 
733 	if (padlen > 0) {
734 		/* Zero out the bytes in the pad area. */
735 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
736 		m->m_pkthdr.len += padlen;
737 		m->m_len = m->m_pkthdr.len;
738 	}
739 
740 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
741 	    BUS_DMA_NOWAIT);
742 	if (error != 0) {
743 		txd->tx_flags &= ~VTE_TXMBUF;
744 		return (NULL);
745 	}
746 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
747 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
748 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
749 
750 	txd->tx_desc->dtlen =
751 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
752 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
753 	sc->vte_cdata.vte_tx_cnt++;
754 	/* Update producer index. */
755 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
756 
757 	/* Finally hand over ownership to controller. */
758 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
759 	txd->tx_m = m;
760 
761 	return (txd);
762 }
763 
764 static void
765 vte_ifstart(struct ifnet *ifp)
766 {
767 	struct vte_softc *sc = ifp->if_softc;
768 	struct vte_txdesc *txd;
769 	struct mbuf *m_head, *m;
770 	int enq;
771 
772 	ifp = &sc->vte_if;
773 
774 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
775 
776 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
777 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
778 		return;
779 
780 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
781 		/* Reserve one free TX descriptor. */
782 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
783 			ifp->if_flags |= IFF_OACTIVE;
784 			break;
785 		}
786 		IFQ_POLL(&ifp->if_snd, m_head);
787 		if (m_head == NULL)
788 			break;
789 		/*
790 		 * Pack the data into the transmit ring. If we
791 		 * don't have room, set the OACTIVE flag and wait
792 		 * for the NIC to drain the ring.
793 		 */
794 		DPRINTF(("vte_encap:"));
795 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
796 			DPRINTF((" failed\n"));
797 			break;
798 		}
799 		DPRINTF((" ok\n"));
800 		IFQ_DEQUEUE(&ifp->if_snd, m);
801 		KASSERT(m == m_head);
802 
803 		enq++;
804 		/*
805 		 * If there's a BPF listener, bounce a copy of this frame
806 		 * to him.
807 		 */
808 		bpf_mtap(ifp, m_head, BPF_D_OUT);
809 		/* Free consumed TX frame. */
810 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
811 			m_freem(m_head);
812 	}
813 
814 	if (enq > 0) {
815 		bus_dmamap_sync(sc->vte_dmatag,
816 		    sc->vte_cdata.vte_tx_ring_map, 0,
817 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
818 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
819 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
820 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
821 	}
822 }
823 
824 static void
825 vte_ifwatchdog(struct ifnet *ifp)
826 {
827 	struct vte_softc *sc = ifp->if_softc;
828 
829 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
830 		return;
831 
832 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
833 	if_statinc(ifp, if_oerrors);
834 	vte_init(ifp);
835 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
836 		vte_ifstart(ifp);
837 }
838 
839 static int
840 vte_mediachange(struct ifnet *ifp)
841 {
842 	int error;
843 	struct vte_softc *sc = ifp->if_softc;
844 
845 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
846 		error = 0;
847 	else if (error != 0) {
848 		aprint_error_dev(sc->vte_dev, "could not set media\n");
849 		return error;
850 	}
851 	return 0;
852 
853 }
854 
855 static int
856 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
857 {
858 	struct vte_softc *sc = ifp->if_softc;
859 	int error, s;
860 
861 	s = splnet();
862 	error = ether_ioctl(ifp, cmd, data);
863 	if (error == ENETRESET) {
864 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
865 		if (ifp->if_flags & IFF_RUNNING)
866 			vte_rxfilter(sc);
867 		error = 0;
868 	}
869 	splx(s);
870 	return error;
871 }
872 
873 static void
874 vte_mac_config(struct vte_softc *sc)
875 {
876 	uint16_t mcr;
877 
878 	mcr = CSR_READ_2(sc, VTE_MCR0);
879 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
880 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
881 		mcr |= MCR0_FULL_DUPLEX;
882 #ifdef notyet
883 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
884 			mcr |= MCR0_FC_ENB;
885 		/*
886 		 * The data sheet is not clear whether the controller
887 		 * honors received pause frames or not.  The is no
888 		 * separate control bit for RX pause frame so just
889 		 * enable MCR0_FC_ENB bit.
890 		 */
891 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
892 			mcr |= MCR0_FC_ENB;
893 #endif
894 	}
895 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
896 }
897 
898 static void
899 vte_stats_clear(struct vte_softc *sc)
900 {
901 
902 	/* Reading counter registers clears its contents. */
903 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
904 	CSR_READ_2(sc, VTE_CNT_MECNT0);
905 	CSR_READ_2(sc, VTE_CNT_MECNT1);
906 	CSR_READ_2(sc, VTE_CNT_MECNT2);
907 	CSR_READ_2(sc, VTE_CNT_MECNT3);
908 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
909 	CSR_READ_2(sc, VTE_CNT_MECNT4);
910 	CSR_READ_2(sc, VTE_CNT_PAUSE);
911 }
912 
913 static void
914 vte_stats_update(struct vte_softc *sc)
915 {
916 	struct vte_hw_stats *stat;
917 	struct ifnet *ifp = &sc->vte_if;
918 	uint16_t value;
919 
920 	stat = &sc->vte_stats;
921 
922 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
923 
924 	CSR_READ_2(sc, VTE_MECISR);
925 
926 	/* RX stats. */
927 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
928 
929 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
930 	stat->rx_bcast_frames += (value >> 8);
931 	stat->rx_mcast_frames += (value & 0xFF);
932 
933 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
934 	if_statadd_ref(nsr, if_ierrors,
935 	    (value >> 8) +			/* rx_runts */
936 	    (value & 0xFF));			/* rx_crcerrs */
937 
938 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
939 	if_statadd_ref(nsr, if_ierrors,
940 	    (value & 0xFF));			/* rx_long_frames */
941 
942 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
943 	if_statadd_ref(nsr, if_ierrors,
944 	    (value >> 8));			/* rx_fifo_full */
945 	stat->rx_desc_unavail += (value & 0xFF);
946 
947 	/* TX stats. */
948 	if_statadd_ref(nsr, if_opackets,
949 	    CSR_READ_2(sc, VTE_CNT_TX_DONE));	/* tx_frames */
950 
951 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
952 	if_statadd_ref(nsr, if_oerrors,
953 	    (value >> 8) +			/* tx_underruns */
954 	    (value & 0xFF));			/* tx_late_colls */
955 
956 	/* Pause stats. */
957 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
958 	stat->tx_pause_frames += (value >> 8);
959 	stat->rx_pause_frames += (value & 0xFF);
960 
961 	IF_STAT_PUTREF(ifp);
962 }
963 
964 static int
965 vte_intr(void *arg)
966 {
967 	struct vte_softc *sc = (struct vte_softc *)arg;
968 	struct ifnet *ifp = &sc->vte_if;
969 	uint16_t status;
970 	int n;
971 
972 	/* Reading VTE_MISR acknowledges interrupts. */
973 	status = CSR_READ_2(sc, VTE_MISR);
974 	DPRINTF(("vte_intr status 0x%x\n", status));
975 	if ((status & VTE_INTRS) == 0) {
976 		/* Not ours. */
977 		return 0;
978 	}
979 
980 	/* Disable interrupts. */
981 	CSR_WRITE_2(sc, VTE_MIER, 0);
982 	for (n = 8; (status & VTE_INTRS) != 0;) {
983 		if ((ifp->if_flags & IFF_RUNNING) == 0)
984 			break;
985 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
986 		    MISR_RX_FIFO_FULL)) != 0)
987 			vte_rxeof(sc);
988 		if ((status & MISR_TX_DONE) != 0)
989 			vte_txeof(sc);
990 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
991 			vte_stats_update(sc);
992 		if_schedule_deferred_start(ifp);
993 		if (--n > 0)
994 			status = CSR_READ_2(sc, VTE_MISR);
995 		else
996 			break;
997 	}
998 
999 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
1000 		/* Re-enable interrupts. */
1001 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1002 	}
1003 	return 1;
1004 }
1005 
1006 static void
1007 vte_txeof(struct vte_softc *sc)
1008 {
1009 	struct ifnet *ifp;
1010 	struct vte_txdesc *txd;
1011 	uint16_t status;
1012 	int cons, prog;
1013 
1014 	ifp = &sc->vte_if;
1015 
1016 	if (sc->vte_cdata.vte_tx_cnt == 0)
1017 		return;
1018 	bus_dmamap_sync(sc->vte_dmatag,
1019 	    sc->vte_cdata.vte_tx_ring_map, 0,
1020 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1021 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1022 	cons = sc->vte_cdata.vte_tx_cons;
1023 	/*
1024 	 * Go through our TX list and free mbufs for those
1025 	 * frames which have been transmitted.
1026 	 */
1027 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1028 		txd = &sc->vte_cdata.vte_txdesc[cons];
1029 		status = le16toh(txd->tx_desc->dtst);
1030 		if ((status & VTE_DTST_TX_OWN) != 0)
1031 			break;
1032 		if ((status & VTE_DTST_TX_OK) != 0)
1033 			if_statadd(ifp, if_collisions, (status & 0xf));
1034 		sc->vte_cdata.vte_tx_cnt--;
1035 		/* Reclaim transmitted mbufs. */
1036 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1037 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1038 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1039 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1040 			m_freem(txd->tx_m);
1041 		txd->tx_flags &= ~VTE_TXMBUF;
1042 		txd->tx_m = NULL;
1043 		prog++;
1044 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1045 	}
1046 
1047 	if (prog > 0) {
1048 		ifp->if_flags &= ~IFF_OACTIVE;
1049 		sc->vte_cdata.vte_tx_cons = cons;
1050 		/*
1051 		 * Unarm watchdog timer only when there is no pending
1052 		 * frames in TX queue.
1053 		 */
1054 		if (sc->vte_cdata.vte_tx_cnt == 0)
1055 			sc->vte_watchdog_timer = 0;
1056 	}
1057 }
1058 
1059 static int
1060 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1061 {
1062 	struct mbuf *m;
1063 	bus_dmamap_t map;
1064 
1065 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1066 	if (m == NULL)
1067 		return (ENOBUFS);
1068 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1069 	m_adj(m, sizeof(uint32_t));
1070 
1071 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1072 	    sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1073 		m_freem(m);
1074 		return (ENOBUFS);
1075 	}
1076 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1077 
1078 	if (rxd->rx_m != NULL) {
1079 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1080 		    0, rxd->rx_dmamap->dm_mapsize,
1081 		    BUS_DMASYNC_POSTREAD);
1082 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1083 	}
1084 	map = rxd->rx_dmamap;
1085 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1086 	sc->vte_cdata.vte_rx_sparemap = map;
1087 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1088 	    0, rxd->rx_dmamap->dm_mapsize,
1089 	    BUS_DMASYNC_PREREAD);
1090 	rxd->rx_m = m;
1091 	rxd->rx_desc->drbp =
1092 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1093 	rxd->rx_desc->drlen = htole16(
1094 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1095 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1096 		(u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1097 		rxd->rx_dmamap->dm_segs[0].ds_len));
1098 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1099 
1100 	return (0);
1101 }
1102 
1103 static void
1104 vte_rxeof(struct vte_softc *sc)
1105 {
1106 	struct ifnet *ifp;
1107 	struct vte_rxdesc *rxd;
1108 	struct mbuf *m;
1109 	uint16_t status, total_len;
1110 	int cons, prog;
1111 
1112 	bus_dmamap_sync(sc->vte_dmatag,
1113 	    sc->vte_cdata.vte_rx_ring_map, 0,
1114 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1115 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1116 	cons = sc->vte_cdata.vte_rx_cons;
1117 	ifp = &sc->vte_if;
1118 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1119 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1120 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1121 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1122 		status = le16toh(rxd->rx_desc->drst);
1123 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1124 			cons, rxd, rxd->rx_m, status,
1125 			VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1126 		if ((status & VTE_DRST_RX_OWN) != 0)
1127 			break;
1128 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1129 		m = rxd->rx_m;
1130 		if ((status & VTE_DRST_RX_OK) == 0) {
1131 			/* Discard errored frame. */
1132 			rxd->rx_desc->drlen =
1133 			    htole16(MCLBYTES - sizeof(uint32_t));
1134 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1135 			continue;
1136 		}
1137 		if (vte_newbuf(sc, rxd) != 0) {
1138 			DPRINTF(("vte_rxeof newbuf failed\n"));
1139 			if_statinc(ifp, if_ierrors);
1140 			rxd->rx_desc->drlen =
1141 			    htole16(MCLBYTES - sizeof(uint32_t));
1142 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1143 			continue;
1144 		}
1145 
1146 		/*
1147 		 * It seems there is no way to strip FCS bytes.
1148 		 */
1149 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1150 		m_set_rcvif(m, ifp);
1151 		if_percpuq_enqueue(ifp->if_percpuq, m);
1152 	}
1153 
1154 	if (prog > 0) {
1155 		/* Update the consumer index. */
1156 		sc->vte_cdata.vte_rx_cons = cons;
1157 		/*
1158 		 * Sync updated RX descriptors such that controller see
1159 		 * modified RX buffer addresses.
1160 		 */
1161 		bus_dmamap_sync(sc->vte_dmatag,
1162 		    sc->vte_cdata.vte_rx_ring_map, 0,
1163 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1164 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1165 #ifdef notyet
1166 		/*
1167 		 * Update residue counter.  Controller does not
1168 		 * keep track of number of available RX descriptors
1169 		 * such that driver should have to update VTE_MRDCR
1170 		 * to make controller know how many free RX
1171 		 * descriptors were added to controller.  This is
1172 		 * a similar mechanism used in VIA velocity
1173 		 * controllers and it indicates controller just
1174 		 * polls OWN bit of current RX descriptor pointer.
1175 		 * A couple of severe issues were seen on sample
1176 		 * board where the controller continuously emits TX
1177 		 * pause frames once RX pause threshold crossed.
1178 		 * Once triggered it never recovered form that
1179 		 * state, I couldn't find a way to make it back to
1180 		 * work at least.  This issue effectively
1181 		 * disconnected the system from network.  Also, the
1182 		 * controller used 00:00:00:00:00:00 as source
1183 		 * station address of TX pause frame. Probably this
1184 		 * is one of reason why vendor recommends not to
1185 		 * enable flow control on R6040 controller.
1186 		 */
1187 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1188 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1189 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1190 #endif
1191 	rnd_add_uint32(&sc->rnd_source, prog);
1192 	}
1193 }
1194 
1195 static void
1196 vte_tick(void *arg)
1197 {
1198 	struct vte_softc *sc;
1199 	int s = splnet();
1200 
1201 	sc = (struct vte_softc *)arg;
1202 
1203 	mii_tick(&sc->vte_mii);
1204 	vte_stats_update(sc);
1205 	vte_txeof(sc);
1206 	vte_ifwatchdog(&sc->vte_if);
1207 	callout_schedule(&sc->vte_tick_ch, hz);
1208 	splx(s);
1209 }
1210 
1211 static void
1212 vte_reset(struct vte_softc *sc)
1213 {
1214 	uint16_t mcr, mdcsc;
1215 	int i;
1216 
1217 	mdcsc = CSR_READ_2(sc, VTE_MDCSC);
1218 	mcr = CSR_READ_2(sc, VTE_MCR1);
1219 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1220 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1221 		DELAY(10);
1222 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1223 			break;
1224 	}
1225 	if (i == 0)
1226 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1227 	/*
1228 	 * Follow the guide of vendor recommended way to reset MAC.
1229 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1230 	 * not reliable so manually reset internal state machine.
1231 	 */
1232 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1233 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1234 	DELAY(5000);
1235 
1236 	/*
1237 	 * On some SoCs (like Vortex86DX3) MDC speed control register value
1238 	 * needs to be restored to original value instead of default one,
1239 	 * otherwise some PHY registers may fail to be read.
1240 	 */
1241 	if (mdcsc != MDCSC_DEFAULT)
1242 		CSR_WRITE_2(sc, VTE_MDCSC, mdcsc);
1243 }
1244 
1245 
1246 static int
1247 vte_init(struct ifnet *ifp)
1248 {
1249 	struct vte_softc *sc = ifp->if_softc;
1250 	bus_addr_t paddr;
1251 	uint8_t eaddr[ETHER_ADDR_LEN];
1252 	int s, error;
1253 
1254 	s = splnet();
1255 	/*
1256 	 * Cancel any pending I/O.
1257 	 */
1258 	vte_stop(ifp, 1);
1259 	/*
1260 	 * Reset the chip to a known state.
1261 	 */
1262 	vte_reset(sc);
1263 
1264 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1265 		splx(s);
1266 		return 0;
1267 	}
1268 
1269 	/* Initialize RX descriptors. */
1270 	if (vte_init_rx_ring(sc) != 0) {
1271 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1272 		vte_stop(ifp, 1);
1273 		splx(s);
1274 		return ENOMEM;
1275 	}
1276 	if (vte_init_tx_ring(sc) != 0) {
1277 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1278 		vte_stop(ifp, 1);
1279 		splx(s);
1280 		return ENOMEM;
1281 	}
1282 
1283 	/*
1284 	 * Reprogram the station address.  Controller supports up
1285 	 * to 4 different station addresses so driver programs the
1286 	 * first station address as its own ethernet address and
1287 	 * configure the remaining three addresses as perfect
1288 	 * multicast addresses.
1289 	 */
1290 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1291 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1292 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1293 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1294 
1295 	/* Set TX descriptor base addresses. */
1296 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1297 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1298 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1299 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1300 
1301 	/* Set RX descriptor base addresses. */
1302 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1303 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1304 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1305 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1306 	/*
1307 	 * Initialize RX descriptor residue counter and set RX
1308 	 * pause threshold to 20% of available RX descriptors.
1309 	 * See comments on vte_rxeof() for details on flow control
1310 	 * issues.
1311 	 */
1312 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1313 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1314 
1315 	/*
1316 	 * Always use maximum frame size that controller can
1317 	 * support.  Otherwise received frames that has longer
1318 	 * frame length than vte(4) MTU would be silently dropped
1319 	 * in controller.  This would break path-MTU discovery as
1320 	 * sender wouldn't get any responses from receiver. The
1321 	 * RX buffer size should be multiple of 4.
1322 	 * Note, jumbo frames are silently ignored by controller
1323 	 * and even MAC counters do not detect them.
1324 	 */
1325 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1326 
1327 	/* Configure FIFO. */
1328 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1329 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1330 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1331 
1332 	/*
1333 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1334 	 * control configuration is done after detecting a valid
1335 	 * link.  Note, we don't generate early interrupt here
1336 	 * as well since FreeBSD does not have interrupt latency
1337 	 * problems like Windows.
1338 	 */
1339 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1340 	/*
1341 	 * We manually keep track of PHY status changes to
1342 	 * configure resolved duplex and flow control since only
1343 	 * duplex configuration can be automatically reflected to
1344 	 * MCR0.
1345 	 */
1346 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1347 	    MCR1_EXCESS_COL_RETRY_16);
1348 
1349 	/* Initialize RX filter. */
1350 	vte_rxfilter(sc);
1351 
1352 	/* Disable TX/RX interrupt moderation control. */
1353 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1354 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1355 
1356 	/* Enable MAC event counter interrupts. */
1357 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1358 	/* Clear MAC statistics. */
1359 	vte_stats_clear(sc);
1360 
1361 	/* Acknowledge all pending interrupts and clear it. */
1362 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1363 	CSR_WRITE_2(sc, VTE_MISR, 0);
1364 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1365 		CSR_READ_2(sc, VTE_MISR)));
1366 
1367 	sc->vte_flags &= ~VTE_FLAG_LINK;
1368 	ifp->if_flags |= IFF_RUNNING;
1369 	ifp->if_flags &= ~IFF_OACTIVE;
1370 
1371 	/* calling mii_mediachg will call back vte_start_mac() */
1372 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1373 		error = 0;
1374 	else if (error != 0) {
1375 		aprint_error_dev(sc->vte_dev, "could not set media\n");
1376 		splx(s);
1377 		return error;
1378 	}
1379 
1380 	callout_schedule(&sc->vte_tick_ch, hz);
1381 
1382 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1383 		CSR_READ_2(sc, VTE_MISR)));
1384 	splx(s);
1385 	return 0;
1386 }
1387 
1388 static void
1389 vte_stop(struct ifnet *ifp, int disable)
1390 {
1391 	struct vte_softc *sc = ifp->if_softc;
1392 	struct vte_txdesc *txd;
1393 	struct vte_rxdesc *rxd;
1394 	int i;
1395 
1396 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1397 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1398 		return;
1399 	/*
1400 	 * Mark the interface down and cancel the watchdog timer.
1401 	 */
1402 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1403 	sc->vte_flags &= ~VTE_FLAG_LINK;
1404 	callout_stop(&sc->vte_tick_ch);
1405 	sc->vte_watchdog_timer = 0;
1406 	vte_stats_update(sc);
1407 	/* Disable interrupts. */
1408 	CSR_WRITE_2(sc, VTE_MIER, 0);
1409 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1410 	/* Stop RX/TX MACs. */
1411 	vte_stop_mac(sc);
1412 	/* Clear interrupts. */
1413 	CSR_READ_2(sc, VTE_MISR);
1414 	/*
1415 	 * Free TX/RX mbufs still in the queues.
1416 	 */
1417 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1418 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1419 		if (rxd->rx_m != NULL) {
1420 			bus_dmamap_sync(sc->vte_dmatag,
1421 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1422 			    BUS_DMASYNC_POSTREAD);
1423 			bus_dmamap_unload(sc->vte_dmatag,
1424 			    rxd->rx_dmamap);
1425 			m_freem(rxd->rx_m);
1426 			rxd->rx_m = NULL;
1427 		}
1428 	}
1429 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1430 		txd = &sc->vte_cdata.vte_txdesc[i];
1431 		if (txd->tx_m != NULL) {
1432 			bus_dmamap_sync(sc->vte_dmatag,
1433 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1434 			    BUS_DMASYNC_POSTWRITE);
1435 			bus_dmamap_unload(sc->vte_dmatag,
1436 			    txd->tx_dmamap);
1437 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1438 				m_freem(txd->tx_m);
1439 			txd->tx_m = NULL;
1440 			txd->tx_flags &= ~VTE_TXMBUF;
1441 		}
1442 	}
1443 	/* Free TX mbuf pools used for deep copy. */
1444 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1445 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1446 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1447 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1448 		}
1449 	}
1450 }
1451 
1452 static void
1453 vte_start_mac(struct vte_softc *sc)
1454 {
1455 	struct ifnet *ifp = &sc->vte_if;
1456 	uint16_t mcr;
1457 	int i;
1458 
1459 	/* Enable RX/TX MACs. */
1460 	mcr = CSR_READ_2(sc, VTE_MCR0);
1461 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1462 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
1463 	    (ifp->if_flags & IFF_RUNNING) != 0) {
1464 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1465 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1466 		for (i = VTE_TIMEOUT; i > 0; i--) {
1467 			mcr = CSR_READ_2(sc, VTE_MCR0);
1468 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1469 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1470 				break;
1471 			DELAY(10);
1472 		}
1473 		if (i == 0)
1474 			aprint_error_dev(sc->vte_dev,
1475 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1476 	}
1477 	vte_rxfilter(sc);
1478 }
1479 
1480 static void
1481 vte_stop_mac(struct vte_softc *sc)
1482 {
1483 	uint16_t mcr;
1484 	int i;
1485 
1486 	/* Disable RX/TX MACs. */
1487 	mcr = CSR_READ_2(sc, VTE_MCR0);
1488 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1489 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1490 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1491 		for (i = VTE_TIMEOUT; i > 0; i--) {
1492 			mcr = CSR_READ_2(sc, VTE_MCR0);
1493 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1494 				break;
1495 			DELAY(10);
1496 		}
1497 		if (i == 0)
1498 			aprint_error_dev(sc->vte_dev,
1499 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1500 	}
1501 }
1502 
1503 static int
1504 vte_init_tx_ring(struct vte_softc *sc)
1505 {
1506 	struct vte_tx_desc *desc;
1507 	struct vte_txdesc *txd;
1508 	bus_addr_t addr;
1509 	int i;
1510 
1511 	sc->vte_cdata.vte_tx_prod = 0;
1512 	sc->vte_cdata.vte_tx_cons = 0;
1513 	sc->vte_cdata.vte_tx_cnt = 0;
1514 
1515 	/* Pre-allocate TX mbufs for deep copy. */
1516 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1517 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1518 		    MT_DATA, M_PKTHDR);
1519 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1520 			return (ENOBUFS);
1521 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1522 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1523 	}
1524 	desc = sc->vte_cdata.vte_tx_ring;
1525 	bzero(desc, VTE_TX_RING_SZ);
1526 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1527 		txd = &sc->vte_cdata.vte_txdesc[i];
1528 		txd->tx_m = NULL;
1529 		if (i != VTE_TX_RING_CNT - 1)
1530 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1531 			    sizeof(struct vte_tx_desc) * (i + 1);
1532 		else
1533 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1534 			    sizeof(struct vte_tx_desc) * 0;
1535 		desc = &sc->vte_cdata.vte_tx_ring[i];
1536 		desc->dtnp = htole32(addr);
1537 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1538 		txd->tx_desc = desc;
1539 	}
1540 
1541 	bus_dmamap_sync(sc->vte_dmatag,
1542 	    sc->vte_cdata.vte_tx_ring_map, 0,
1543 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1544 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1545 	return (0);
1546 }
1547 
1548 static int
1549 vte_init_rx_ring(struct vte_softc *sc)
1550 {
1551 	struct vte_rx_desc *desc;
1552 	struct vte_rxdesc *rxd;
1553 	bus_addr_t addr;
1554 	int i;
1555 
1556 	sc->vte_cdata.vte_rx_cons = 0;
1557 	desc = sc->vte_cdata.vte_rx_ring;
1558 	bzero(desc, VTE_RX_RING_SZ);
1559 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1560 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1561 		rxd->rx_m = NULL;
1562 		if (i != VTE_RX_RING_CNT - 1)
1563 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1564 			    + sizeof(struct vte_rx_desc) * (i + 1);
1565 		else
1566 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1567 			    + sizeof(struct vte_rx_desc) * 0;
1568 		desc = &sc->vte_cdata.vte_rx_ring[i];
1569 		desc->drnp = htole32(addr);
1570 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1571 		rxd->rx_desc = desc;
1572 		if (vte_newbuf(sc, rxd) != 0)
1573 			return (ENOBUFS);
1574 	}
1575 
1576 	bus_dmamap_sync(sc->vte_dmatag,
1577 	    sc->vte_cdata.vte_rx_ring_map, 0,
1578 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1579 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1580 
1581 	return (0);
1582 }
1583 
1584 static void
1585 vte_rxfilter(struct vte_softc *sc)
1586 {
1587 	struct ethercom *ec = &sc->vte_ec;
1588 	struct ether_multistep step;
1589 	struct ether_multi *enm;
1590 	struct ifnet *ifp;
1591 	uint8_t *eaddr;
1592 	uint32_t crc;
1593 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1594 	uint16_t mchash[4], mcr;
1595 	int i, nperf;
1596 
1597 	ifp = &sc->vte_if;
1598 
1599 	DPRINTF(("vte_rxfilter\n"));
1600 	memset(mchash, 0, sizeof(mchash));
1601 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1602 		rxfilt_perf[i][0] = 0xFFFF;
1603 		rxfilt_perf[i][1] = 0xFFFF;
1604 		rxfilt_perf[i][2] = 0xFFFF;
1605 	}
1606 
1607 	mcr = CSR_READ_2(sc, VTE_MCR0);
1608 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1609 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1610 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1611 		mcr |= MCR0_BROADCAST_DIS;
1612 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1613 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1614 			mcr |= MCR0_PROMISC;
1615 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1616 			mcr |= MCR0_MULTICAST;
1617 		mchash[0] = 0xFFFF;
1618 		mchash[1] = 0xFFFF;
1619 		mchash[2] = 0xFFFF;
1620 		mchash[3] = 0xFFFF;
1621 		goto chipit;
1622 	}
1623 
1624 	ETHER_LOCK(ec);
1625 	ETHER_FIRST_MULTI(step, ec, enm);
1626 	nperf = 0;
1627 	while (enm != NULL) {
1628 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)
1629 		    != 0) {
1630 			sc->vte_if.if_flags |= IFF_ALLMULTI;
1631 			mcr |= MCR0_MULTICAST;
1632 			mchash[0] = 0xFFFF;
1633 			mchash[1] = 0xFFFF;
1634 			mchash[2] = 0xFFFF;
1635 			mchash[3] = 0xFFFF;
1636 			ETHER_UNLOCK(ec);
1637 			goto chipit;
1638 		}
1639 		/*
1640 		 * Program the first 3 multicast groups into
1641 		 * the perfect filter.  For all others, use the
1642 		 * hash table.
1643 		 */
1644 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
1645 			eaddr = enm->enm_addrlo;
1646 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1647 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1648 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1649 			nperf++;
1650 		} else {
1651 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1652 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1653 		}
1654 		ETHER_NEXT_MULTI(step, enm);
1655 	}
1656 	ETHER_UNLOCK(ec);
1657 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1658 	    mchash[3] != 0)
1659 		mcr |= MCR0_MULTICAST;
1660 
1661 chipit:
1662 	/* Program multicast hash table. */
1663 	DPRINTF(("chipit write multicast\n"));
1664 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1665 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1666 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1667 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1668 	/* Program perfect filter table. */
1669 	DPRINTF(("chipit write perfect filter\n"));
1670 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1671 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1672 		    rxfilt_perf[i][0]);
1673 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1674 		    rxfilt_perf[i][1]);
1675 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1676 		    rxfilt_perf[i][2]);
1677 	}
1678 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
1679 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1680 	DPRINTF(("chipit read mcro\n"));
1681 	CSR_READ_2(sc, VTE_MCR0);
1682 	DPRINTF(("chipit done\n"));
1683 }
1684 
1685 /*
1686  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1687  * set up in vte_pci_attach()
1688  */
1689 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1690 {
1691 	int rc;
1692 	const struct sysctlnode *node;
1693 
1694 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1695 	    0, CTLTYPE_NODE, "vte",
1696 	    SYSCTL_DESCR("vte interface controls"),
1697 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1698 		goto err;
1699 	}
1700 
1701 	vte_root_num = node->sysctl_num;
1702 	return;
1703 
1704 err:
1705 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1706 }
1707 
1708 static int
1709 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1710 {
1711 	int error, t;
1712 	struct sysctlnode node;
1713 	struct vte_softc *sc;
1714 
1715 	node = *rnode;
1716 	sc = node.sysctl_data;
1717 	t = sc->vte_int_rx_mod;
1718 	node.sysctl_data = &t;
1719 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1720 	if (error || newp == NULL)
1721 		return error;
1722 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1723 		return EINVAL;
1724 
1725 	sc->vte_int_rx_mod = t;
1726 	vte_miibus_statchg(&sc->vte_if);
1727 	return 0;
1728 }
1729 
1730 static int
1731 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1732 {
1733 	int error, t;
1734 	struct sysctlnode node;
1735 	struct vte_softc *sc;
1736 
1737 	node = *rnode;
1738 	sc = node.sysctl_data;
1739 	t = sc->vte_int_tx_mod;
1740 	node.sysctl_data = &t;
1741 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1742 	if (error || newp == NULL)
1743 		return error;
1744 
1745 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1746 		return EINVAL;
1747 	sc->vte_int_tx_mod = t;
1748 	vte_miibus_statchg(&sc->vte_if);
1749 	return 0;
1750 }
1751