xref: /netbsd-src/sys/dev/pci/if_vr.c (revision eb961d0e02b7a46a9acfa877b02df48df6637278)
1 /*	$NetBSD: if_vr.c,v 1.75 2005/12/11 12:22:50 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1997, 1998
42  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Bill Paul.
55  * 4. Neither the name of the author nor the names of any co-contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69  * THE POSSIBILITY OF SUCH DAMAGE.
70  *
71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72  */
73 
74 /*
75  * VIA Rhine fast ethernet PCI NIC driver
76  *
77  * Supports various network adapters based on the VIA Rhine
78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
79  * Datasheets are available at http://www.via.com.tw.
80  *
81  * Written by Bill Paul <wpaul@ctr.columbia.edu>
82  * Electrical Engineering Department
83  * Columbia University, New York City
84  */
85 
86 /*
87  * The VIA Rhine controllers are similar in some respects to the
88  * the DEC tulip chips, except less complicated. The controller
89  * uses an MII bus and an external physical layer interface. The
90  * receiver has a one entry perfect filter and a 64-bit hash table
91  * multicast filter. Transmit and receive descriptors are similar
92  * to the tulip.
93  *
94  * The Rhine has a serious flaw in its transmit DMA mechanism:
95  * transmit buffers must be longword aligned. Unfortunately,
96  * the kernel doesn't guarantee that mbufs will be filled in starting
97  * at longword boundaries, so we have to do a buffer copy before
98  * transmission.
99  *
100  * Apparently, the receive DMA mechanism also has the same flaw.  This
101  * means that on systems with struct alignment requirements, incoming
102  * frames must be copied to a new buffer which shifts the data forward
103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
104  */
105 
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.75 2005/12/11 12:22:50 christos Exp $");
108 
109 #include "rnd.h"
110 
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/callout.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/device.h>
120 
121 #if NRND > 0
122 #include <sys/rnd.h>
123 #endif
124 
125 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
126 
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_media.h>
131 #include <net/if_ether.h>
132 
133 #include "bpfilter.h"
134 #if NBPFILTER > 0
135 #include <net/bpf.h>
136 #endif
137 
138 #include <machine/bus.h>
139 #include <machine/intr.h>
140 #include <machine/endian.h>
141 
142 #include <dev/mii/mii.h>
143 #include <dev/mii/miivar.h>
144 #include <dev/mii/mii_bitbang.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149 
150 #include <dev/pci/if_vrreg.h>
151 
152 #define	VR_USEIOSPACE
153 
154 /*
155  * Various supported device vendors/types and their names.
156  */
157 static struct vr_type {
158 	pci_vendor_id_t		vr_vid;
159 	pci_product_id_t	vr_did;
160 	const char		*vr_name;
161 } vr_devs[] = {
162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
163 		"VIA VT3043 (Rhine) 10/100" },
164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
165 		"VIA VT6102 (Rhine II) 10/100" },
166 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
167 		"VIA VT6105 (Rhine III) 10/100" },
168 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
169 		"VIA VT86C100A (Rhine-II) 10/100" },
170 	{ 0, 0, NULL }
171 };
172 
173 /*
174  * Transmit descriptor list size.
175  */
176 #define	VR_NTXDESC		64
177 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
178 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
179 
180 /*
181  * Receive descriptor list size.
182  */
183 #define	VR_NRXDESC		64
184 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
185 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
186 
187 /*
188  * Control data structres that are DMA'd to the Rhine chip.  We allocate
189  * them in a single clump that maps to a single DMA segment to make several
190  * things easier.
191  *
192  * Note that since we always copy outgoing packets to aligned transmit
193  * buffers, we can reduce the transmit descriptors to one per packet.
194  */
195 struct vr_control_data {
196 	struct vr_desc		vr_txdescs[VR_NTXDESC];
197 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
198 };
199 
200 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
201 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
202 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
203 
204 /*
205  * Software state of transmit and receive descriptors.
206  */
207 struct vr_descsoft {
208 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
209 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
210 };
211 
212 struct vr_softc {
213 	struct device		vr_dev;		/* generic device glue */
214 	void			*vr_ih;		/* interrupt cookie */
215 	void			*vr_ats;	/* shutdown hook */
216 	bus_space_tag_t		vr_bst;		/* bus space tag */
217 	bus_space_handle_t	vr_bsh;		/* bus space handle */
218 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
219 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
220 	struct ethercom		vr_ec;		/* Ethernet common info */
221 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
222 	struct mii_data		vr_mii;		/* MII/media info */
223 
224 	u_int8_t		vr_revid;	/* Rhine chip revision */
225 
226 	struct callout		vr_tick_ch;	/* tick callout */
227 
228 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
229 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
235 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct vr_control_data	*vr_control_data;
241 
242 	int	vr_txpending;		/* number of TX requests pending */
243 	int	vr_txdirty;		/* first dirty TX descriptor */
244 	int	vr_txlast;		/* last used TX descriptor */
245 
246 	int	vr_rxptr;		/* next ready RX descriptor */
247 
248 #if NRND > 0
249 	rndsource_element_t rnd_source;	/* random source */
250 #endif
251 };
252 
253 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
254 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
255 
256 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
257 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
258 
259 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
260 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
261 
262 #define	VR_CDTXSYNC(sc, x, ops)						\
263 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
264 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
265 
266 #define	VR_CDRXSYNC(sc, x, ops)						\
267 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
268 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
269 
270 /*
271  * Note we rely on MCLBYTES being a power of two below.
272  */
273 #define	VR_INIT_RXDESC(sc, i)						\
274 do {									\
275 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
276 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
277 									\
278 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
279 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
280 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
281 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
282 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
283 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
284 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
285 } while (/* CONSTCOND */ 0)
286 
287 /*
288  * register space access macros
289  */
290 #define	CSR_WRITE_4(sc, reg, val)					\
291 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
292 #define	CSR_WRITE_2(sc, reg, val)					\
293 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
294 #define	CSR_WRITE_1(sc, reg, val)					\
295 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
296 
297 #define	CSR_READ_4(sc, reg)						\
298 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
299 #define	CSR_READ_2(sc, reg)						\
300 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
301 #define	CSR_READ_1(sc, reg)						\
302 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
303 
304 #define	VR_TIMEOUT		1000
305 
306 static int	vr_add_rxbuf(struct vr_softc *, int);
307 
308 static void	vr_rxeof(struct vr_softc *);
309 static void	vr_rxeoc(struct vr_softc *);
310 static void	vr_txeof(struct vr_softc *);
311 static int	vr_intr(void *);
312 static void	vr_start(struct ifnet *);
313 static int	vr_ioctl(struct ifnet *, u_long, caddr_t);
314 static int	vr_init(struct ifnet *);
315 static void	vr_stop(struct ifnet *, int);
316 static void	vr_rxdrain(struct vr_softc *);
317 static void	vr_watchdog(struct ifnet *);
318 static void	vr_tick(void *);
319 
320 static int	vr_ifmedia_upd(struct ifnet *);
321 static void	vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
322 
323 static int	vr_mii_readreg(struct device *, int, int);
324 static void	vr_mii_writereg(struct device *, int, int, int);
325 static void	vr_mii_statchg(struct device *);
326 
327 static void	vr_setmulti(struct vr_softc *);
328 static void	vr_reset(struct vr_softc *);
329 
330 int	vr_copy_small = 0;
331 
332 #define	VR_SETBIT(sc, reg, x)				\
333 	CSR_WRITE_1(sc, reg,				\
334 	    CSR_READ_1(sc, reg) | (x))
335 
336 #define	VR_CLRBIT(sc, reg, x)				\
337 	CSR_WRITE_1(sc, reg,				\
338 	    CSR_READ_1(sc, reg) & ~(x))
339 
340 #define	VR_SETBIT16(sc, reg, x)				\
341 	CSR_WRITE_2(sc, reg,				\
342 	    CSR_READ_2(sc, reg) | (x))
343 
344 #define	VR_CLRBIT16(sc, reg, x)				\
345 	CSR_WRITE_2(sc, reg,				\
346 	    CSR_READ_2(sc, reg) & ~(x))
347 
348 #define	VR_SETBIT32(sc, reg, x)				\
349 	CSR_WRITE_4(sc, reg,				\
350 	    CSR_READ_4(sc, reg) | (x))
351 
352 #define	VR_CLRBIT32(sc, reg, x)				\
353 	CSR_WRITE_4(sc, reg,				\
354 	    CSR_READ_4(sc, reg) & ~(x))
355 
356 /*
357  * MII bit-bang glue.
358  */
359 static u_int32_t vr_mii_bitbang_read(struct device *);
360 static void	vr_mii_bitbang_write(struct device *, u_int32_t);
361 
362 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
363 	vr_mii_bitbang_read,
364 	vr_mii_bitbang_write,
365 	{
366 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
367 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
368 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
369 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
370 		0,			/* MII_BIT_DIR_PHY_HOST */
371 	}
372 };
373 
374 static u_int32_t
375 vr_mii_bitbang_read(struct device *self)
376 {
377 	struct vr_softc *sc = (void *) self;
378 
379 	return (CSR_READ_1(sc, VR_MIICMD));
380 }
381 
382 static void
383 vr_mii_bitbang_write(struct device *self, u_int32_t val)
384 {
385 	struct vr_softc *sc = (void *) self;
386 
387 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
388 }
389 
390 /*
391  * Read an PHY register through the MII.
392  */
393 static int
394 vr_mii_readreg(struct device *self, int phy, int reg)
395 {
396 	struct vr_softc *sc = (void *) self;
397 
398 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
399 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
400 }
401 
402 /*
403  * Write to a PHY register through the MII.
404  */
405 static void
406 vr_mii_writereg(struct device *self, int phy, int reg, int val)
407 {
408 	struct vr_softc *sc = (void *) self;
409 
410 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
411 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
412 }
413 
414 static void
415 vr_mii_statchg(struct device *self)
416 {
417 	struct vr_softc *sc = (struct vr_softc *)self;
418 
419 	/*
420 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
421 	 * register, we first have to put the transmit and/or receive logic
422 	 * in the idle state.
423 	 */
424 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
425 
426 	if (sc->vr_mii.mii_media_active & IFM_FDX)
427 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
428 	else
429 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
430 
431 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
432 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
433 }
434 
435 #define	vr_calchash(addr) \
436 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
437 
438 /*
439  * Program the 64-bit multicast hash filter.
440  */
441 static void
442 vr_setmulti(struct vr_softc *sc)
443 {
444 	struct ifnet *ifp;
445 	int h = 0;
446 	u_int32_t hashes[2] = { 0, 0 };
447 	struct ether_multistep step;
448 	struct ether_multi *enm;
449 	int mcnt = 0;
450 	u_int8_t rxfilt;
451 
452 	ifp = &sc->vr_ec.ec_if;
453 
454 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
455 
456 	if (ifp->if_flags & IFF_PROMISC) {
457 allmulti:
458 		ifp->if_flags |= IFF_ALLMULTI;
459 		rxfilt |= VR_RXCFG_RX_MULTI;
460 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
461 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
462 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
463 		return;
464 	}
465 
466 	/* first, zot all the existing hash bits */
467 	CSR_WRITE_4(sc, VR_MAR0, 0);
468 	CSR_WRITE_4(sc, VR_MAR1, 0);
469 
470 	/* now program new ones */
471 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
472 	while (enm != NULL) {
473 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
474 		    ETHER_ADDR_LEN) != 0)
475 			goto allmulti;
476 
477 		h = vr_calchash(enm->enm_addrlo);
478 
479 		if (h < 32)
480 			hashes[0] |= (1 << h);
481 		else
482 			hashes[1] |= (1 << (h - 32));
483 		ETHER_NEXT_MULTI(step, enm);
484 		mcnt++;
485 	}
486 
487 	ifp->if_flags &= ~IFF_ALLMULTI;
488 
489 	if (mcnt)
490 		rxfilt |= VR_RXCFG_RX_MULTI;
491 	else
492 		rxfilt &= ~VR_RXCFG_RX_MULTI;
493 
494 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
495 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
496 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
497 }
498 
499 static void
500 vr_reset(struct vr_softc *sc)
501 {
502 	int i;
503 
504 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
505 
506 	for (i = 0; i < VR_TIMEOUT; i++) {
507 		DELAY(10);
508 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
509 			break;
510 	}
511 	if (i == VR_TIMEOUT) {
512 		if (sc->vr_revid < REV_ID_VT3065_A) {
513 			printf("%s: reset never completed!\n",
514 			    sc->vr_dev.dv_xname);
515 		} else {
516 			/* Use newer force reset command */
517 			printf("%s: using force reset command.\n",
518 			    sc->vr_dev.dv_xname);
519 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
520 		}
521 	}
522 
523 	/* Wait a little while for the chip to get its brains in order. */
524 	DELAY(1000);
525 }
526 
527 /*
528  * Initialize an RX descriptor and attach an MBUF cluster.
529  * Note: the length fields are only 11 bits wide, which means the
530  * largest size we can specify is 2047. This is important because
531  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
532  * overflow the field and make a mess.
533  */
534 static int
535 vr_add_rxbuf(struct vr_softc *sc, int i)
536 {
537 	struct vr_descsoft *ds = VR_DSRX(sc, i);
538 	struct mbuf *m_new;
539 	int error;
540 
541 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
542 	if (m_new == NULL)
543 		return (ENOBUFS);
544 
545 	MCLGET(m_new, M_DONTWAIT);
546 	if ((m_new->m_flags & M_EXT) == 0) {
547 		m_freem(m_new);
548 		return (ENOBUFS);
549 	}
550 
551 	if (ds->ds_mbuf != NULL)
552 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
553 
554 	ds->ds_mbuf = m_new;
555 
556 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
557 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
558 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
559 	if (error) {
560 		printf("%s: unable to load rx DMA map %d, error = %d\n",
561 		    sc->vr_dev.dv_xname, i, error);
562 		panic("vr_add_rxbuf");		/* XXX */
563 	}
564 
565 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
566 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
567 
568 	VR_INIT_RXDESC(sc, i);
569 
570 	return (0);
571 }
572 
573 /*
574  * A frame has been uploaded: pass the resulting mbuf chain up to
575  * the higher level protocols.
576  */
577 static void
578 vr_rxeof(struct vr_softc *sc)
579 {
580 	struct mbuf *m;
581 	struct ifnet *ifp;
582 	struct vr_desc *d;
583 	struct vr_descsoft *ds;
584 	int i, total_len;
585 	u_int32_t rxstat;
586 
587 	ifp = &sc->vr_ec.ec_if;
588 
589 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
590 		d = VR_CDRX(sc, i);
591 		ds = VR_DSRX(sc, i);
592 
593 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
594 
595 		rxstat = le32toh(d->vr_status);
596 
597 		if (rxstat & VR_RXSTAT_OWN) {
598 			/*
599 			 * We have processed all of the receive buffers.
600 			 */
601 			break;
602 		}
603 
604 		/*
605 		 * If an error occurs, update stats, clear the
606 		 * status word and leave the mbuf cluster in place:
607 		 * it should simply get re-used next time this descriptor
608 		 * comes up in the ring.
609 		 */
610 		if (rxstat & VR_RXSTAT_RXERR) {
611 			const char *errstr;
612 
613 			ifp->if_ierrors++;
614 			switch (rxstat & 0x000000FF) {
615 			case VR_RXSTAT_CRCERR:
616 				errstr = "crc error";
617 				break;
618 			case VR_RXSTAT_FRAMEALIGNERR:
619 				errstr = "frame alignment error";
620 				break;
621 			case VR_RXSTAT_FIFOOFLOW:
622 				errstr = "FIFO overflow";
623 				break;
624 			case VR_RXSTAT_GIANT:
625 				errstr = "received giant packet";
626 				break;
627 			case VR_RXSTAT_RUNT:
628 				errstr = "received runt packet";
629 				break;
630 			case VR_RXSTAT_BUSERR:
631 				errstr = "system bus error";
632 				break;
633 			case VR_RXSTAT_BUFFERR:
634 				errstr = "rx buffer error";
635 				break;
636 			default:
637 				errstr = "unknown rx error";
638 				break;
639 			}
640 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
641 			    errstr);
642 
643 			VR_INIT_RXDESC(sc, i);
644 
645 			continue;
646 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
647 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
648 			/*
649 			 * This driver expects to receive whole packets every
650 			 * time.  In case we receive a fragment that is not
651 			 * a complete packet, we discard it.
652 			 */
653 			ifp->if_ierrors++;
654 
655 			printf("%s: receive error: incomplete frame; "
656 			       "size = %d, status = 0x%x\n",
657 			       sc->vr_dev.dv_xname,
658 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
659 
660 			VR_INIT_RXDESC(sc, i);
661 
662 			continue;
663 		}
664 
665 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
666 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
667 
668 		/* No errors; receive the packet. */
669 		total_len = VR_RXBYTES(le32toh(d->vr_status));
670 #ifdef DIAGNOSTIC
671 		if (total_len == 0) {
672 			/*
673 			 * If we receive a zero-length packet, we probably
674 			 * missed to handle an error condition above.
675 			 * Discard it to avoid a later crash.
676 			 */
677 			ifp->if_ierrors++;
678 
679 			printf("%s: receive error: zero-length packet; "
680 			       "status = 0x%x\n",
681 			       sc->vr_dev.dv_xname, rxstat);
682 
683 			VR_INIT_RXDESC(sc, i);
684 
685 			continue;
686 		}
687 #endif
688 
689 		/*
690 		 * The Rhine chip includes the CRC with every packet.
691 		 * Trim it off here.
692 		 */
693 		total_len -= ETHER_CRC_LEN;
694 
695 #ifdef __NO_STRICT_ALIGNMENT
696 		/*
697 		 * If the packet is small enough to fit in a
698 		 * single header mbuf, allocate one and copy
699 		 * the data into it.  This greatly reduces
700 		 * memory consumption when we receive lots
701 		 * of small packets.
702 		 *
703 		 * Otherwise, we add a new buffer to the receive
704 		 * chain.  If this fails, we drop the packet and
705 		 * recycle the old buffer.
706 		 */
707 		if (vr_copy_small != 0 && total_len <= MHLEN) {
708 			MGETHDR(m, M_DONTWAIT, MT_DATA);
709 			if (m == NULL)
710 				goto dropit;
711 			memcpy(mtod(m, caddr_t),
712 			    mtod(ds->ds_mbuf, caddr_t), total_len);
713 			VR_INIT_RXDESC(sc, i);
714 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
715 			    ds->ds_dmamap->dm_mapsize,
716 			    BUS_DMASYNC_PREREAD);
717 		} else {
718 			m = ds->ds_mbuf;
719 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
720  dropit:
721 				ifp->if_ierrors++;
722 				VR_INIT_RXDESC(sc, i);
723 				bus_dmamap_sync(sc->vr_dmat,
724 				    ds->ds_dmamap, 0,
725 				    ds->ds_dmamap->dm_mapsize,
726 				    BUS_DMASYNC_PREREAD);
727 				continue;
728 			}
729 		}
730 #else
731 		/*
732 		 * The Rhine's packet buffers must be 4-byte aligned.
733 		 * But this means that the data after the Ethernet header
734 		 * is misaligned.  We must allocate a new buffer and
735 		 * copy the data, shifted forward 2 bytes.
736 		 */
737 		MGETHDR(m, M_DONTWAIT, MT_DATA);
738 		if (m == NULL) {
739  dropit:
740 			ifp->if_ierrors++;
741 			VR_INIT_RXDESC(sc, i);
742 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
743 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
744 			continue;
745 		}
746 		if (total_len > (MHLEN - 2)) {
747 			MCLGET(m, M_DONTWAIT);
748 			if ((m->m_flags & M_EXT) == 0) {
749 				m_freem(m);
750 				goto dropit;
751 			}
752 		}
753 		m->m_data += 2;
754 
755 		/*
756 		 * Note that we use clusters for incoming frames, so the
757 		 * buffer is virtually contiguous.
758 		 */
759 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
760 		    total_len);
761 
762 		/* Allow the receive descriptor to continue using its mbuf. */
763 		VR_INIT_RXDESC(sc, i);
764 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
765 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
766 #endif /* __NO_STRICT_ALIGNMENT */
767 
768 		ifp->if_ipackets++;
769 		m->m_pkthdr.rcvif = ifp;
770 		m->m_pkthdr.len = m->m_len = total_len;
771 #if NBPFILTER > 0
772 		/*
773 		 * Handle BPF listeners. Let the BPF user see the packet, but
774 		 * don't pass it up to the ether_input() layer unless it's
775 		 * a broadcast packet, multicast packet, matches our ethernet
776 		 * address or the interface is in promiscuous mode.
777 		 */
778 		if (ifp->if_bpf)
779 			bpf_mtap(ifp->if_bpf, m);
780 #endif
781 		/* Pass it on. */
782 		(*ifp->if_input)(ifp, m);
783 	}
784 
785 	/* Update the receive pointer. */
786 	sc->vr_rxptr = i;
787 }
788 
789 void
790 vr_rxeoc(struct vr_softc *sc)
791 {
792 
793 	vr_rxeof(sc);
794 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
795 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
796 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
797 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
798 }
799 
800 /*
801  * A frame was downloaded to the chip. It's safe for us to clean up
802  * the list buffers.
803  */
804 static void
805 vr_txeof(struct vr_softc *sc)
806 {
807 	struct ifnet *ifp = &sc->vr_ec.ec_if;
808 	struct vr_desc *d;
809 	struct vr_descsoft *ds;
810 	u_int32_t txstat;
811 	int i;
812 
813 	ifp->if_flags &= ~IFF_OACTIVE;
814 
815 	/*
816 	 * Go through our tx list and free mbufs for those
817 	 * frames that have been transmitted.
818 	 */
819 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
820 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
821 		d = VR_CDTX(sc, i);
822 		ds = VR_DSTX(sc, i);
823 
824 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
825 
826 		txstat = le32toh(d->vr_status);
827 		if (txstat & VR_TXSTAT_OWN)
828 			break;
829 
830 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
831 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
832 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
833 		m_freem(ds->ds_mbuf);
834 		ds->ds_mbuf = NULL;
835 
836 		if (txstat & VR_TXSTAT_ERRSUM) {
837 			ifp->if_oerrors++;
838 			if (txstat & VR_TXSTAT_DEFER)
839 				ifp->if_collisions++;
840 			if (txstat & VR_TXSTAT_LATECOLL)
841 				ifp->if_collisions++;
842 		}
843 
844 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
845 		ifp->if_opackets++;
846 	}
847 
848 	/* Update the dirty transmit buffer pointer. */
849 	sc->vr_txdirty = i;
850 
851 	/*
852 	 * Cancel the watchdog timer if there are no pending
853 	 * transmissions.
854 	 */
855 	if (sc->vr_txpending == 0)
856 		ifp->if_timer = 0;
857 }
858 
859 static int
860 vr_intr(void *arg)
861 {
862 	struct vr_softc *sc;
863 	struct ifnet *ifp;
864 	u_int16_t status;
865 	int handled = 0, dotx = 0;
866 
867 	sc = arg;
868 	ifp = &sc->vr_ec.ec_if;
869 
870 	/* Suppress unwanted interrupts. */
871 	if ((ifp->if_flags & IFF_UP) == 0) {
872 		vr_stop(ifp, 1);
873 		return (0);
874 	}
875 
876 	/* Disable interrupts. */
877 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
878 
879 	for (;;) {
880 		status = CSR_READ_2(sc, VR_ISR);
881 		if (status)
882 			CSR_WRITE_2(sc, VR_ISR, status);
883 
884 		if ((status & VR_INTRS) == 0)
885 			break;
886 
887 		handled = 1;
888 
889 #if NRND > 0
890 		if (RND_ENABLED(&sc->rnd_source))
891 			rnd_add_uint32(&sc->rnd_source, status);
892 #endif
893 
894 		if (status & VR_ISR_RX_OK)
895 			vr_rxeof(sc);
896 
897 		if (status &
898 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
899 		     VR_ISR_RX_DROPPED))
900 			vr_rxeoc(sc);
901 
902 		if (status & VR_ISR_TX_OK) {
903 			dotx = 1;
904 			vr_txeof(sc);
905 		}
906 
907 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
908 			if (status & VR_ISR_TX_UNDERRUN)
909 				printf("%s: transmit underrun\n",
910 				    sc->vr_dev.dv_xname);
911 			if (status & VR_ISR_TX_ABRT)
912 				printf("%s: transmit aborted\n",
913 				    sc->vr_dev.dv_xname);
914 			ifp->if_oerrors++;
915 			dotx = 1;
916 			vr_txeof(sc);
917 			if (sc->vr_txpending) {
918 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
919 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
920 			}
921 			/*
922 			 * Unfortunately many cards get stuck after
923 			 * aborted transmits, so we reset them.
924 			 */
925 			if (status & VR_ISR_TX_ABRT) {
926 				printf("%s: restarting\n", sc->vr_dev.dv_xname);
927 				dotx = 0;
928 				(void) vr_init(ifp);
929 			}
930 		}
931 
932 		if (status & VR_ISR_BUSERR) {
933 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
934 			/* vr_init() calls vr_start() */
935 			dotx = 0;
936 			(void) vr_init(ifp);
937 		}
938 	}
939 
940 	/* Re-enable interrupts. */
941 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
942 
943 	if (dotx)
944 		vr_start(ifp);
945 
946 	return (handled);
947 }
948 
949 /*
950  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
951  * to the mbuf data regions directly in the transmit lists. We also save a
952  * copy of the pointers since the transmit list fragment pointers are
953  * physical addresses.
954  */
955 static void
956 vr_start(struct ifnet *ifp)
957 {
958 	struct vr_softc *sc = ifp->if_softc;
959 	struct mbuf *m0, *m;
960 	struct vr_desc *d;
961 	struct vr_descsoft *ds;
962 	int error, firsttx, nexttx, opending;
963 
964 	/*
965 	 * Remember the previous txpending and the first transmit
966 	 * descriptor we use.
967 	 */
968 	opending = sc->vr_txpending;
969 	firsttx = VR_NEXTTX(sc->vr_txlast);
970 
971 	/*
972 	 * Loop through the send queue, setting up transmit descriptors
973 	 * until we drain the queue, or use up all available transmit
974 	 * descriptors.
975 	 */
976 	while (sc->vr_txpending < VR_NTXDESC) {
977 		/*
978 		 * Grab a packet off the queue.
979 		 */
980 		IFQ_POLL(&ifp->if_snd, m0);
981 		if (m0 == NULL)
982 			break;
983 		m = NULL;
984 
985 		/*
986 		 * Get the next available transmit descriptor.
987 		 */
988 		nexttx = VR_NEXTTX(sc->vr_txlast);
989 		d = VR_CDTX(sc, nexttx);
990 		ds = VR_DSTX(sc, nexttx);
991 
992 		/*
993 		 * Load the DMA map.  If this fails, the packet didn't
994 		 * fit in one DMA segment, and we need to copy.  Note,
995 		 * the packet must also be aligned.
996 		 * if the packet is too small, copy it too, so we're sure
997 		 * we have enough room for the pad buffer.
998 		 */
999 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1000 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1001 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1002 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1003 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1004 			if (m == NULL) {
1005 				printf("%s: unable to allocate Tx mbuf\n",
1006 				    sc->vr_dev.dv_xname);
1007 				break;
1008 			}
1009 			if (m0->m_pkthdr.len > MHLEN) {
1010 				MCLGET(m, M_DONTWAIT);
1011 				if ((m->m_flags & M_EXT) == 0) {
1012 					printf("%s: unable to allocate Tx "
1013 					    "cluster\n", sc->vr_dev.dv_xname);
1014 					m_freem(m);
1015 					break;
1016 				}
1017 			}
1018 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1019 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1020 			/*
1021 			 * The Rhine doesn't auto-pad, so we have to do this
1022 			 * ourselves.
1023 			 */
1024 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1025 				memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
1026 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1027 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1028 			}
1029 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1030 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1031 			if (error) {
1032 				m_freem(m);
1033 				printf("%s: unable to load Tx buffer, "
1034 				    "error = %d\n", sc->vr_dev.dv_xname, error);
1035 				break;
1036 			}
1037 		}
1038 
1039 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1040 		if (m != NULL) {
1041 			m_freem(m0);
1042 			m0 = m;
1043 		}
1044 
1045 		/* Sync the DMA map. */
1046 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1047 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1048 
1049 		/*
1050 		 * Store a pointer to the packet so we can free it later.
1051 		 */
1052 		ds->ds_mbuf = m0;
1053 
1054 #if NBPFILTER > 0
1055 		/*
1056 		 * If there's a BPF listener, bounce a copy of this frame
1057 		 * to him.
1058 		 */
1059 		if (ifp->if_bpf)
1060 			bpf_mtap(ifp->if_bpf, m0);
1061 #endif
1062 
1063 		/*
1064 		 * Fill in the transmit descriptor.
1065 		 */
1066 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1067 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1068 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1069 
1070 		/*
1071 		 * If this is the first descriptor we're enqueuing,
1072 		 * don't give it to the Rhine yet.  That could cause
1073 		 * a race condition.  We'll do it below.
1074 		 */
1075 		if (nexttx == firsttx)
1076 			d->vr_status = 0;
1077 		else
1078 			d->vr_status = htole32(VR_TXSTAT_OWN);
1079 
1080 		VR_CDTXSYNC(sc, nexttx,
1081 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1082 
1083 		/* Advance the tx pointer. */
1084 		sc->vr_txpending++;
1085 		sc->vr_txlast = nexttx;
1086 	}
1087 
1088 	if (sc->vr_txpending == VR_NTXDESC) {
1089 		/* No more slots left; notify upper layer. */
1090 		ifp->if_flags |= IFF_OACTIVE;
1091 	}
1092 
1093 	if (sc->vr_txpending != opending) {
1094 		/*
1095 		 * We enqueued packets.  If the transmitter was idle,
1096 		 * reset the txdirty pointer.
1097 		 */
1098 		if (opending == 0)
1099 			sc->vr_txdirty = firsttx;
1100 
1101 		/*
1102 		 * Cause a transmit interrupt to happen on the
1103 		 * last packet we enqueued.
1104 		 */
1105 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1106 		VR_CDTXSYNC(sc, sc->vr_txlast,
1107 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1108 
1109 		/*
1110 		 * The entire packet chain is set up.  Give the
1111 		 * first descriptor to the Rhine now.
1112 		 */
1113 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1114 		VR_CDTXSYNC(sc, firsttx,
1115 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1116 
1117 		/* Start the transmitter. */
1118 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1119 
1120 		/* Set the watchdog timer in case the chip flakes out. */
1121 		ifp->if_timer = 5;
1122 	}
1123 }
1124 
1125 /*
1126  * Initialize the interface.  Must be called at splnet.
1127  */
1128 static int
1129 vr_init(struct ifnet *ifp)
1130 {
1131 	struct vr_softc *sc = ifp->if_softc;
1132 	struct vr_desc *d;
1133 	struct vr_descsoft *ds;
1134 	int i, error = 0;
1135 
1136 	/* Cancel pending I/O. */
1137 	vr_stop(ifp, 0);
1138 
1139 	/* Reset the Rhine to a known state. */
1140 	vr_reset(sc);
1141 
1142 	/* set DMA length in BCR0 and BCR1 */
1143 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1144 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1145 
1146 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1147 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1148 
1149 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1150 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1151 
1152 	/* set DMA threshold length in RXCFG and TXCFG */
1153 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1154 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1155 
1156 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1157 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1158 
1159 	/*
1160 	 * Initialize the transmit descriptor ring.  txlast is initialized
1161 	 * to the end of the list so that it will wrap around to the first
1162 	 * descriptor when the first packet is transmitted.
1163 	 */
1164 	for (i = 0; i < VR_NTXDESC; i++) {
1165 		d = VR_CDTX(sc, i);
1166 		memset(d, 0, sizeof(struct vr_desc));
1167 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1168 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1169 	}
1170 	sc->vr_txpending = 0;
1171 	sc->vr_txdirty = 0;
1172 	sc->vr_txlast = VR_NTXDESC - 1;
1173 
1174 	/*
1175 	 * Initialize the receive descriptor ring.
1176 	 */
1177 	for (i = 0; i < VR_NRXDESC; i++) {
1178 		ds = VR_DSRX(sc, i);
1179 		if (ds->ds_mbuf == NULL) {
1180 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1181 				printf("%s: unable to allocate or map rx "
1182 				    "buffer %d, error = %d\n",
1183 				    sc->vr_dev.dv_xname, i, error);
1184 				/*
1185 				 * XXX Should attempt to run with fewer receive
1186 				 * XXX buffers instead of just failing.
1187 				 */
1188 				vr_rxdrain(sc);
1189 				goto out;
1190 			}
1191 		} else
1192 			VR_INIT_RXDESC(sc, i);
1193 	}
1194 	sc->vr_rxptr = 0;
1195 
1196 	/* If we want promiscuous mode, set the allframes bit. */
1197 	if (ifp->if_flags & IFF_PROMISC)
1198 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1199 	else
1200 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1201 
1202 	/* Set capture broadcast bit to capture broadcast frames. */
1203 	if (ifp->if_flags & IFF_BROADCAST)
1204 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1205 	else
1206 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1207 
1208 	/* Program the multicast filter, if necessary. */
1209 	vr_setmulti(sc);
1210 
1211 	/* Give the transmit and receive rings to the Rhine. */
1212 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1213 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1214 
1215 	/* Set current media. */
1216 	mii_mediachg(&sc->vr_mii);
1217 
1218 	/* Enable receiver and transmitter. */
1219 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1220 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1221 				    VR_CMD_RX_GO);
1222 
1223 	/* Enable interrupts. */
1224 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1225 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1226 
1227 	ifp->if_flags |= IFF_RUNNING;
1228 	ifp->if_flags &= ~IFF_OACTIVE;
1229 
1230 	/* Start one second timer. */
1231 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1232 
1233 	/* Attempt to start output on the interface. */
1234 	vr_start(ifp);
1235 
1236  out:
1237 	if (error)
1238 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1239 	return (error);
1240 }
1241 
1242 /*
1243  * Set media options.
1244  */
1245 static int
1246 vr_ifmedia_upd(struct ifnet *ifp)
1247 {
1248 	struct vr_softc *sc = ifp->if_softc;
1249 
1250 	if (ifp->if_flags & IFF_UP)
1251 		mii_mediachg(&sc->vr_mii);
1252 	return (0);
1253 }
1254 
1255 /*
1256  * Report current media status.
1257  */
1258 static void
1259 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1260 {
1261 	struct vr_softc *sc = ifp->if_softc;
1262 
1263 	mii_pollstat(&sc->vr_mii);
1264 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
1265 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
1266 }
1267 
1268 static int
1269 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1270 {
1271 	struct vr_softc *sc = ifp->if_softc;
1272 	struct ifreq *ifr = (struct ifreq *)data;
1273 	int s, error = 0;
1274 
1275 	s = splnet();
1276 
1277 	switch (command) {
1278 	case SIOCGIFMEDIA:
1279 	case SIOCSIFMEDIA:
1280 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1281 		break;
1282 
1283 	default:
1284 		error = ether_ioctl(ifp, command, data);
1285 		if (error == ENETRESET) {
1286 			/*
1287 			 * Multicast list has changed; set the hardware filter
1288 			 * accordingly.
1289 			 */
1290 			if (ifp->if_flags & IFF_RUNNING)
1291 				vr_setmulti(sc);
1292 			error = 0;
1293 		}
1294 		break;
1295 	}
1296 
1297 	splx(s);
1298 	return (error);
1299 }
1300 
1301 static void
1302 vr_watchdog(struct ifnet *ifp)
1303 {
1304 	struct vr_softc *sc = ifp->if_softc;
1305 
1306 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1307 	ifp->if_oerrors++;
1308 
1309 	(void) vr_init(ifp);
1310 }
1311 
1312 /*
1313  * One second timer, used to tick MII.
1314  */
1315 static void
1316 vr_tick(void *arg)
1317 {
1318 	struct vr_softc *sc = arg;
1319 	int s;
1320 
1321 	s = splnet();
1322 	mii_tick(&sc->vr_mii);
1323 	splx(s);
1324 
1325 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1326 }
1327 
1328 /*
1329  * Drain the receive queue.
1330  */
1331 static void
1332 vr_rxdrain(struct vr_softc *sc)
1333 {
1334 	struct vr_descsoft *ds;
1335 	int i;
1336 
1337 	for (i = 0; i < VR_NRXDESC; i++) {
1338 		ds = VR_DSRX(sc, i);
1339 		if (ds->ds_mbuf != NULL) {
1340 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1341 			m_freem(ds->ds_mbuf);
1342 			ds->ds_mbuf = NULL;
1343 		}
1344 	}
1345 }
1346 
1347 /*
1348  * Stop the adapter and free any mbufs allocated to the
1349  * transmit lists.
1350  */
1351 static void
1352 vr_stop(struct ifnet *ifp, int disable)
1353 {
1354 	struct vr_softc *sc = ifp->if_softc;
1355 	struct vr_descsoft *ds;
1356 	int i;
1357 
1358 	/* Cancel one second timer. */
1359 	callout_stop(&sc->vr_tick_ch);
1360 
1361 	/* Down the MII. */
1362 	mii_down(&sc->vr_mii);
1363 
1364 	ifp = &sc->vr_ec.ec_if;
1365 	ifp->if_timer = 0;
1366 
1367 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1368 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1369 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1370 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1371 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1372 
1373 	/*
1374 	 * Release any queued transmit buffers.
1375 	 */
1376 	for (i = 0; i < VR_NTXDESC; i++) {
1377 		ds = VR_DSTX(sc, i);
1378 		if (ds->ds_mbuf != NULL) {
1379 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1380 			m_freem(ds->ds_mbuf);
1381 			ds->ds_mbuf = NULL;
1382 		}
1383 	}
1384 
1385 	if (disable)
1386 		vr_rxdrain(sc);
1387 
1388 	/*
1389 	 * Mark the interface down and cancel the watchdog timer.
1390 	 */
1391 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1392 	ifp->if_timer = 0;
1393 }
1394 
1395 static int	vr_probe(struct device *, struct cfdata *, void *);
1396 static void	vr_attach(struct device *, struct device *, void *);
1397 static void	vr_shutdown(void *);
1398 
1399 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1400     vr_probe, vr_attach, NULL, NULL);
1401 
1402 static struct vr_type *
1403 vr_lookup(struct pci_attach_args *pa)
1404 {
1405 	struct vr_type *vrt;
1406 
1407 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1408 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1409 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1410 			return (vrt);
1411 	}
1412 	return (NULL);
1413 }
1414 
1415 static int
1416 vr_probe(struct device *parent, struct cfdata *match, void *aux)
1417 {
1418 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1419 
1420 	if (vr_lookup(pa) != NULL)
1421 		return (1);
1422 
1423 	return (0);
1424 }
1425 
1426 /*
1427  * Stop all chip I/O so that the kernel's probe routines don't
1428  * get confused by errant DMAs when rebooting.
1429  */
1430 static void
1431 vr_shutdown(void *arg)
1432 {
1433 	struct vr_softc *sc = (struct vr_softc *)arg;
1434 
1435 	vr_stop(&sc->vr_ec.ec_if, 1);
1436 }
1437 
1438 /*
1439  * Attach the interface. Allocate softc structures, do ifmedia
1440  * setup and ethernet/BPF attach.
1441  */
1442 static void
1443 vr_attach(struct device *parent, struct device *self, void *aux)
1444 {
1445 	struct vr_softc *sc = (struct vr_softc *) self;
1446 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1447 	bus_dma_segment_t seg;
1448 	struct vr_type *vrt;
1449 	u_int32_t pmreg, reg;
1450 	struct ifnet *ifp;
1451 	u_char eaddr[ETHER_ADDR_LEN];
1452 	int i, rseg, error;
1453 
1454 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1455 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1456 
1457 	callout_init(&sc->vr_tick_ch);
1458 
1459 	vrt = vr_lookup(pa);
1460 	if (vrt == NULL) {
1461 		printf("\n");
1462 		panic("vr_attach: impossible");
1463 	}
1464 
1465 	printf(": %s Ethernet\n", vrt->vr_name);
1466 
1467 	/*
1468 	 * Handle power management nonsense.
1469 	 */
1470 
1471 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1472 	    PCI_CAP_PWRMGMT, &pmreg, 0)) {
1473 		reg = PCI_CONF_READ(pmreg + PCI_PMCSR);
1474 		if ((reg & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_STATE_D0) {
1475 			u_int32_t iobase, membase, irq;
1476 
1477 			/* Save important PCI config data. */
1478 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
1479 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
1480 			irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1481 
1482 			/* Reset the power state. */
1483 			printf("%s: chip is in D%d power mode "
1484 			    "-- setting to D0\n",
1485 			    sc->vr_dev.dv_xname, reg & PCI_PMCSR_STATE_MASK);
1486 			reg = (reg & ~PCI_PMCSR_STATE_MASK) |
1487 			    PCI_PMCSR_STATE_D0;
1488 			PCI_CONF_WRITE(pmreg + PCI_PMCSR, reg);
1489 
1490 			/* Restore PCI config data. */
1491 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1492 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1493 			PCI_CONF_WRITE(PCI_INTERRUPT_REG, irq);
1494 		}
1495 	}
1496 
1497 	/* Make sure bus mastering is enabled. */
1498 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1499 	reg |= PCI_COMMAND_MASTER_ENABLE;
1500 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1501 
1502 	/* Get revision */
1503 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1504 
1505 	/*
1506 	 * Map control/status registers.
1507 	 */
1508 	{
1509 		bus_space_tag_t iot, memt;
1510 		bus_space_handle_t ioh, memh;
1511 		int ioh_valid, memh_valid;
1512 		pci_intr_handle_t intrhandle;
1513 		const char *intrstr;
1514 
1515 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1516 			PCI_MAPREG_TYPE_IO, 0,
1517 			&iot, &ioh, NULL, NULL) == 0);
1518 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1519 			PCI_MAPREG_TYPE_MEM |
1520 			PCI_MAPREG_MEM_TYPE_32BIT,
1521 			0, &memt, &memh, NULL, NULL) == 0);
1522 #if defined(VR_USEIOSPACE)
1523 		if (ioh_valid) {
1524 			sc->vr_bst = iot;
1525 			sc->vr_bsh = ioh;
1526 		} else if (memh_valid) {
1527 			sc->vr_bst = memt;
1528 			sc->vr_bsh = memh;
1529 		}
1530 #else
1531 		if (memh_valid) {
1532 			sc->vr_bst = memt;
1533 			sc->vr_bsh = memh;
1534 		} else if (ioh_valid) {
1535 			sc->vr_bst = iot;
1536 			sc->vr_bsh = ioh;
1537 		}
1538 #endif
1539 		else {
1540 			printf(": unable to map device registers\n");
1541 			return;
1542 		}
1543 
1544 		/* Allocate interrupt */
1545 		if (pci_intr_map(pa, &intrhandle)) {
1546 			printf("%s: couldn't map interrupt\n",
1547 				sc->vr_dev.dv_xname);
1548 			return;
1549 		}
1550 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1551 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1552 						vr_intr, sc);
1553 		if (sc->vr_ih == NULL) {
1554 			printf("%s: couldn't establish interrupt",
1555 				sc->vr_dev.dv_xname);
1556 			if (intrstr != NULL)
1557 				printf(" at %s", intrstr);
1558 			printf("\n");
1559 		}
1560 		printf("%s: interrupting at %s\n",
1561 			sc->vr_dev.dv_xname, intrstr);
1562 	}
1563 
1564 	/*
1565 	 * Windows may put the chip in suspend mode when it
1566 	 * shuts down. Be sure to kick it in the head to wake it
1567 	 * up again.
1568 	 */
1569 	VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1570 
1571 	/* Reset the adapter. */
1572 	vr_reset(sc);
1573 
1574 	/*
1575 	 * Get station address. The way the Rhine chips work,
1576 	 * you're not allowed to directly access the EEPROM once
1577 	 * they've been programmed a special way. Consequently,
1578 	 * we need to read the node address from the PAR0 and PAR1
1579 	 * registers.
1580 	 *
1581 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1582 	 *         of the *whole* EEPROM, not just the MAC address. This is
1583 	 *         pretty pointless since the chip does this automatically
1584 	 *         at powerup/reset.
1585 	 *         I suspect the same thing applies to the other Rhine
1586 	 *         variants, but in the absence of a data sheet for those
1587 	 *         (and the lack of anyone else noticing the problems this
1588 	 *         causes) I'm going to retain the old behaviour for the
1589 	 *         other parts.
1590 	 */
1591 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1592 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102) {
1593 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1594 		DELAY(200);
1595 	}
1596 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1597 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1598 
1599 	/*
1600 	 * A Rhine chip was detected. Inform the world.
1601 	 */
1602 	printf("%s: Ethernet address: %s\n",
1603 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1604 
1605 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1606 
1607 	sc->vr_dmat = pa->pa_dmat;
1608 
1609 	/*
1610 	 * Allocate the control data structures, and create and load
1611 	 * the DMA map for it.
1612 	 */
1613 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1614 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1615 	    0)) != 0) {
1616 		printf("%s: unable to allocate control data, error = %d\n",
1617 		    sc->vr_dev.dv_xname, error);
1618 		goto fail_0;
1619 	}
1620 
1621 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1622 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1623 	    BUS_DMA_COHERENT)) != 0) {
1624 		printf("%s: unable to map control data, error = %d\n",
1625 		    sc->vr_dev.dv_xname, error);
1626 		goto fail_1;
1627 	}
1628 
1629 	if ((error = bus_dmamap_create(sc->vr_dmat,
1630 	    sizeof(struct vr_control_data), 1,
1631 	    sizeof(struct vr_control_data), 0, 0,
1632 	    &sc->vr_cddmamap)) != 0) {
1633 		printf("%s: unable to create control data DMA map, "
1634 		    "error = %d\n", sc->vr_dev.dv_xname, error);
1635 		goto fail_2;
1636 	}
1637 
1638 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1639 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1640 	    0)) != 0) {
1641 		printf("%s: unable to load control data DMA map, error = %d\n",
1642 		    sc->vr_dev.dv_xname, error);
1643 		goto fail_3;
1644 	}
1645 
1646 	/*
1647 	 * Create the transmit buffer DMA maps.
1648 	 */
1649 	for (i = 0; i < VR_NTXDESC; i++) {
1650 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1651 		    1, MCLBYTES, 0, 0,
1652 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1653 			printf("%s: unable to create tx DMA map %d, "
1654 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1655 			goto fail_4;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * Create the receive buffer DMA maps.
1661 	 */
1662 	for (i = 0; i < VR_NRXDESC; i++) {
1663 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1664 		    MCLBYTES, 0, 0,
1665 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1666 			printf("%s: unable to create rx DMA map %d, "
1667 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1668 			goto fail_5;
1669 		}
1670 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1671 	}
1672 
1673 	ifp = &sc->vr_ec.ec_if;
1674 	ifp->if_softc = sc;
1675 	ifp->if_mtu = ETHERMTU;
1676 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1677 	ifp->if_ioctl = vr_ioctl;
1678 	ifp->if_start = vr_start;
1679 	ifp->if_watchdog = vr_watchdog;
1680 	ifp->if_init = vr_init;
1681 	ifp->if_stop = vr_stop;
1682 	IFQ_SET_READY(&ifp->if_snd);
1683 
1684 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1685 
1686 	/*
1687 	 * Initialize MII/media info.
1688 	 */
1689 	sc->vr_mii.mii_ifp = ifp;
1690 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1691 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1692 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1693 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1694 		vr_ifmedia_sts);
1695 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1696 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1697 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1698 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1699 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1700 	} else
1701 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1702 
1703 	/*
1704 	 * Call MI attach routines.
1705 	 */
1706 	if_attach(ifp);
1707 	ether_ifattach(ifp, sc->vr_enaddr);
1708 #if NRND > 0
1709 	rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
1710 	    RND_TYPE_NET, 0);
1711 #endif
1712 
1713 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1714 	if (sc->vr_ats == NULL)
1715 		printf("%s: warning: couldn't establish shutdown hook\n",
1716 			sc->vr_dev.dv_xname);
1717 	return;
1718 
1719  fail_5:
1720 	for (i = 0; i < VR_NRXDESC; i++) {
1721 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1722 			bus_dmamap_destroy(sc->vr_dmat,
1723 			    sc->vr_rxsoft[i].ds_dmamap);
1724 	}
1725  fail_4:
1726 	for (i = 0; i < VR_NTXDESC; i++) {
1727 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1728 			bus_dmamap_destroy(sc->vr_dmat,
1729 			    sc->vr_txsoft[i].ds_dmamap);
1730 	}
1731 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1732  fail_3:
1733 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1734  fail_2:
1735 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1736 	    sizeof(struct vr_control_data));
1737  fail_1:
1738 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1739  fail_0:
1740 	return;
1741 }
1742