xref: /netbsd-src/sys/dev/pci/if_vr.c (revision de4fa6c51a9708fc05f88b618fa6fad87c9508ec)
1 /*	$NetBSD: if_vr.c,v 1.97 2009/08/23 16:11:48 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1997, 1998
35  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by Bill Paul.
48  * 4. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62  * THE POSSIBILITY OF SUCH DAMAGE.
63  *
64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65  */
66 
67 /*
68  * VIA Rhine fast ethernet PCI NIC driver
69  *
70  * Supports various network adapters based on the VIA Rhine
71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
72  * Datasheets are available at http://www.via.com.tw.
73  *
74  * Written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The VIA Rhine controllers are similar in some respects to the
81  * the DEC tulip chips, except less complicated. The controller
82  * uses an MII bus and an external physical layer interface. The
83  * receiver has a one entry perfect filter and a 64-bit hash table
84  * multicast filter. Transmit and receive descriptors are similar
85  * to the tulip.
86  *
87  * The Rhine has a serious flaw in its transmit DMA mechanism:
88  * transmit buffers must be longword aligned. Unfortunately,
89  * the kernel doesn't guarantee that mbufs will be filled in starting
90  * at longword boundaries, so we have to do a buffer copy before
91  * transmission.
92  *
93  * Apparently, the receive DMA mechanism also has the same flaw.  This
94  * means that on systems with struct alignment requirements, incoming
95  * frames must be copied to a new buffer which shifts the data forward
96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
97  */
98 
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.97 2009/08/23 16:11:48 jmcneill Exp $");
101 
102 #include "rnd.h"
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113 
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117 
118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
119 
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125 
126 #include "bpfilter.h"
127 #if NBPFILTER > 0
128 #include <net/bpf.h>
129 #endif
130 
131 #include <sys/bus.h>
132 #include <sys/intr.h>
133 #include <machine/endian.h>
134 
135 #include <dev/mii/mii.h>
136 #include <dev/mii/miivar.h>
137 #include <dev/mii/mii_bitbang.h>
138 
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 #include <dev/pci/pcidevs.h>
142 
143 #include <dev/pci/if_vrreg.h>
144 
145 #define	VR_USEIOSPACE
146 
147 /*
148  * Various supported device vendors/types and their names.
149  */
150 static const struct vr_type {
151 	pci_vendor_id_t		vr_vid;
152 	pci_product_id_t	vr_did;
153 } vr_devs[] = {
154 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
155 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
156 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
157 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
158 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
159 };
160 
161 /*
162  * Transmit descriptor list size.
163  */
164 #define	VR_NTXDESC		64
165 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
166 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
167 
168 /*
169  * Receive descriptor list size.
170  */
171 #define	VR_NRXDESC		64
172 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
173 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
174 
175 /*
176  * Control data structres that are DMA'd to the Rhine chip.  We allocate
177  * them in a single clump that maps to a single DMA segment to make several
178  * things easier.
179  *
180  * Note that since we always copy outgoing packets to aligned transmit
181  * buffers, we can reduce the transmit descriptors to one per packet.
182  */
183 struct vr_control_data {
184 	struct vr_desc		vr_txdescs[VR_NTXDESC];
185 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
186 };
187 
188 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
189 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
190 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
191 
192 /*
193  * Software state of transmit and receive descriptors.
194  */
195 struct vr_descsoft {
196 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
197 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
198 };
199 
200 struct vr_softc {
201 	device_t		vr_dev;
202 	void			*vr_ih;		/* interrupt cookie */
203 	void			*vr_ats;	/* shutdown hook */
204 	bus_space_tag_t		vr_bst;		/* bus space tag */
205 	bus_space_handle_t	vr_bsh;		/* bus space handle */
206 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
207 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
208 	pcitag_t		vr_tag;		/* PCI tag */
209 	struct ethercom		vr_ec;		/* Ethernet common info */
210 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
211 	struct mii_data		vr_mii;		/* MII/media info */
212 
213 	uint8_t			vr_revid;	/* Rhine chip revision */
214 
215 	callout_t		vr_tick_ch;	/* tick callout */
216 
217 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
218 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
219 
220 	/*
221 	 * Software state for transmit and receive descriptors.
222 	 */
223 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
224 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
225 
226 	/*
227 	 * Control data structures.
228 	 */
229 	struct vr_control_data	*vr_control_data;
230 
231 	int	vr_txpending;		/* number of TX requests pending */
232 	int	vr_txdirty;		/* first dirty TX descriptor */
233 	int	vr_txlast;		/* last used TX descriptor */
234 
235 	int	vr_rxptr;		/* next ready RX descriptor */
236 
237 	uint32_t	vr_save_iobase;
238 	uint32_t	vr_save_membase;
239 	uint32_t	vr_save_irq;
240 
241 #if NRND > 0
242 	rndsource_element_t rnd_source;	/* random source */
243 #endif
244 };
245 
246 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
247 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
248 
249 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
250 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
251 
252 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
253 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
254 
255 #define	VR_CDTXSYNC(sc, x, ops)						\
256 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
257 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
258 
259 #define	VR_CDRXSYNC(sc, x, ops)						\
260 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
261 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
262 
263 /*
264  * Note we rely on MCLBYTES being a power of two below.
265  */
266 #define	VR_INIT_RXDESC(sc, i)						\
267 do {									\
268 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
269 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
270 									\
271 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
272 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
273 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
274 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
275 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
276 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
277 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
278 } while (/* CONSTCOND */ 0)
279 
280 /*
281  * register space access macros
282  */
283 #define	CSR_WRITE_4(sc, reg, val)					\
284 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
285 #define	CSR_WRITE_2(sc, reg, val)					\
286 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
287 #define	CSR_WRITE_1(sc, reg, val)					\
288 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
289 
290 #define	CSR_READ_4(sc, reg)						\
291 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
292 #define	CSR_READ_2(sc, reg)						\
293 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
294 #define	CSR_READ_1(sc, reg)						\
295 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
296 
297 #define	VR_TIMEOUT		1000
298 
299 static int	vr_add_rxbuf(struct vr_softc *, int);
300 
301 static void	vr_rxeof(struct vr_softc *);
302 static void	vr_rxeoc(struct vr_softc *);
303 static void	vr_txeof(struct vr_softc *);
304 static int	vr_intr(void *);
305 static void	vr_start(struct ifnet *);
306 static int	vr_ioctl(struct ifnet *, u_long, void *);
307 static int	vr_init(struct ifnet *);
308 static void	vr_stop(struct ifnet *, int);
309 static void	vr_rxdrain(struct vr_softc *);
310 static void	vr_watchdog(struct ifnet *);
311 static void	vr_tick(void *);
312 
313 static int	vr_mii_readreg(device_t, int, int);
314 static void	vr_mii_writereg(device_t, int, int, int);
315 static void	vr_mii_statchg(device_t);
316 
317 static void	vr_setmulti(struct vr_softc *);
318 static void	vr_reset(struct vr_softc *);
319 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
320     pcireg_t);
321 
322 int	vr_copy_small = 0;
323 
324 #define	VR_SETBIT(sc, reg, x)				\
325 	CSR_WRITE_1(sc, reg,				\
326 	    CSR_READ_1(sc, reg) | (x))
327 
328 #define	VR_CLRBIT(sc, reg, x)				\
329 	CSR_WRITE_1(sc, reg,				\
330 	    CSR_READ_1(sc, reg) & ~(x))
331 
332 #define	VR_SETBIT16(sc, reg, x)				\
333 	CSR_WRITE_2(sc, reg,				\
334 	    CSR_READ_2(sc, reg) | (x))
335 
336 #define	VR_CLRBIT16(sc, reg, x)				\
337 	CSR_WRITE_2(sc, reg,				\
338 	    CSR_READ_2(sc, reg) & ~(x))
339 
340 #define	VR_SETBIT32(sc, reg, x)				\
341 	CSR_WRITE_4(sc, reg,				\
342 	    CSR_READ_4(sc, reg) | (x))
343 
344 #define	VR_CLRBIT32(sc, reg, x)				\
345 	CSR_WRITE_4(sc, reg,				\
346 	    CSR_READ_4(sc, reg) & ~(x))
347 
348 /*
349  * MII bit-bang glue.
350  */
351 static uint32_t vr_mii_bitbang_read(device_t);
352 static void	vr_mii_bitbang_write(device_t, uint32_t);
353 
354 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
355 	vr_mii_bitbang_read,
356 	vr_mii_bitbang_write,
357 	{
358 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
359 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
360 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
361 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
362 		0,			/* MII_BIT_DIR_PHY_HOST */
363 	}
364 };
365 
366 static uint32_t
367 vr_mii_bitbang_read(device_t self)
368 {
369 	struct vr_softc *sc = device_private(self);
370 
371 	return (CSR_READ_1(sc, VR_MIICMD));
372 }
373 
374 static void
375 vr_mii_bitbang_write(device_t self, uint32_t val)
376 {
377 	struct vr_softc *sc = device_private(self);
378 
379 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
380 }
381 
382 /*
383  * Read an PHY register through the MII.
384  */
385 static int
386 vr_mii_readreg(device_t self, int phy, int reg)
387 {
388 	struct vr_softc *sc = device_private(self);
389 
390 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
391 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
392 }
393 
394 /*
395  * Write to a PHY register through the MII.
396  */
397 static void
398 vr_mii_writereg(device_t self, int phy, int reg, int val)
399 {
400 	struct vr_softc *sc = device_private(self);
401 
402 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
403 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
404 }
405 
406 static void
407 vr_mii_statchg(device_t self)
408 {
409 	struct vr_softc *sc = device_private(self);
410 
411 	/*
412 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
413 	 * register, we first have to put the transmit and/or receive logic
414 	 * in the idle state.
415 	 */
416 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
417 
418 	if (sc->vr_mii.mii_media_active & IFM_FDX)
419 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
420 	else
421 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
422 
423 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
424 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
425 }
426 
427 #define	vr_calchash(addr) \
428 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
429 
430 /*
431  * Program the 64-bit multicast hash filter.
432  */
433 static void
434 vr_setmulti(struct vr_softc *sc)
435 {
436 	struct ifnet *ifp;
437 	int h = 0;
438 	uint32_t hashes[2] = { 0, 0 };
439 	struct ether_multistep step;
440 	struct ether_multi *enm;
441 	int mcnt = 0;
442 	uint8_t rxfilt;
443 
444 	ifp = &sc->vr_ec.ec_if;
445 
446 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
447 
448 	if (ifp->if_flags & IFF_PROMISC) {
449 allmulti:
450 		ifp->if_flags |= IFF_ALLMULTI;
451 		rxfilt |= VR_RXCFG_RX_MULTI;
452 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
453 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
454 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
455 		return;
456 	}
457 
458 	/* first, zot all the existing hash bits */
459 	CSR_WRITE_4(sc, VR_MAR0, 0);
460 	CSR_WRITE_4(sc, VR_MAR1, 0);
461 
462 	/* now program new ones */
463 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
464 	while (enm != NULL) {
465 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
466 		    ETHER_ADDR_LEN) != 0)
467 			goto allmulti;
468 
469 		h = vr_calchash(enm->enm_addrlo);
470 
471 		if (h < 32)
472 			hashes[0] |= (1 << h);
473 		else
474 			hashes[1] |= (1 << (h - 32));
475 		ETHER_NEXT_MULTI(step, enm);
476 		mcnt++;
477 	}
478 
479 	ifp->if_flags &= ~IFF_ALLMULTI;
480 
481 	if (mcnt)
482 		rxfilt |= VR_RXCFG_RX_MULTI;
483 	else
484 		rxfilt &= ~VR_RXCFG_RX_MULTI;
485 
486 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
487 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
488 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
489 }
490 
491 static void
492 vr_reset(struct vr_softc *sc)
493 {
494 	int i;
495 
496 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
497 
498 	for (i = 0; i < VR_TIMEOUT; i++) {
499 		DELAY(10);
500 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
501 			break;
502 	}
503 	if (i == VR_TIMEOUT) {
504 		if (sc->vr_revid < REV_ID_VT3065_A) {
505 			printf("%s: reset never completed!\n",
506 			    device_xname(sc->vr_dev));
507 		} else {
508 			/* Use newer force reset command */
509 			printf("%s: using force reset command.\n",
510 			    device_xname(sc->vr_dev));
511 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
512 		}
513 	}
514 
515 	/* Wait a little while for the chip to get its brains in order. */
516 	DELAY(1000);
517 }
518 
519 /*
520  * Initialize an RX descriptor and attach an MBUF cluster.
521  * Note: the length fields are only 11 bits wide, which means the
522  * largest size we can specify is 2047. This is important because
523  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
524  * overflow the field and make a mess.
525  */
526 static int
527 vr_add_rxbuf(struct vr_softc *sc, int i)
528 {
529 	struct vr_descsoft *ds = VR_DSRX(sc, i);
530 	struct mbuf *m_new;
531 	int error;
532 
533 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
534 	if (m_new == NULL)
535 		return (ENOBUFS);
536 
537 	MCLGET(m_new, M_DONTWAIT);
538 	if ((m_new->m_flags & M_EXT) == 0) {
539 		m_freem(m_new);
540 		return (ENOBUFS);
541 	}
542 
543 	if (ds->ds_mbuf != NULL)
544 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
545 
546 	ds->ds_mbuf = m_new;
547 
548 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
549 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
550 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
551 	if (error) {
552 		aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
553 		    i, error);
554 		panic("vr_add_rxbuf");		/* XXX */
555 	}
556 
557 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
558 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
559 
560 	VR_INIT_RXDESC(sc, i);
561 
562 	return (0);
563 }
564 
565 /*
566  * A frame has been uploaded: pass the resulting mbuf chain up to
567  * the higher level protocols.
568  */
569 static void
570 vr_rxeof(struct vr_softc *sc)
571 {
572 	struct mbuf *m;
573 	struct ifnet *ifp;
574 	struct vr_desc *d;
575 	struct vr_descsoft *ds;
576 	int i, total_len;
577 	uint32_t rxstat;
578 
579 	ifp = &sc->vr_ec.ec_if;
580 
581 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
582 		d = VR_CDRX(sc, i);
583 		ds = VR_DSRX(sc, i);
584 
585 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
586 
587 		rxstat = le32toh(d->vr_status);
588 
589 		if (rxstat & VR_RXSTAT_OWN) {
590 			/*
591 			 * We have processed all of the receive buffers.
592 			 */
593 			break;
594 		}
595 
596 		/*
597 		 * If an error occurs, update stats, clear the
598 		 * status word and leave the mbuf cluster in place:
599 		 * it should simply get re-used next time this descriptor
600 		 * comes up in the ring.
601 		 */
602 		if (rxstat & VR_RXSTAT_RXERR) {
603 			const char *errstr;
604 
605 			ifp->if_ierrors++;
606 			switch (rxstat & 0x000000FF) {
607 			case VR_RXSTAT_CRCERR:
608 				errstr = "crc error";
609 				break;
610 			case VR_RXSTAT_FRAMEALIGNERR:
611 				errstr = "frame alignment error";
612 				break;
613 			case VR_RXSTAT_FIFOOFLOW:
614 				errstr = "FIFO overflow";
615 				break;
616 			case VR_RXSTAT_GIANT:
617 				errstr = "received giant packet";
618 				break;
619 			case VR_RXSTAT_RUNT:
620 				errstr = "received runt packet";
621 				break;
622 			case VR_RXSTAT_BUSERR:
623 				errstr = "system bus error";
624 				break;
625 			case VR_RXSTAT_BUFFERR:
626 				errstr = "rx buffer error";
627 				break;
628 			default:
629 				errstr = "unknown rx error";
630 				break;
631 			}
632 			printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
633 			    errstr);
634 
635 			VR_INIT_RXDESC(sc, i);
636 
637 			continue;
638 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
639 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
640 			/*
641 			 * This driver expects to receive whole packets every
642 			 * time.  In case we receive a fragment that is not
643 			 * a complete packet, we discard it.
644 			 */
645 			ifp->if_ierrors++;
646 
647 			printf("%s: receive error: incomplete frame; "
648 			       "size = %d, status = 0x%x\n",
649 			       device_xname(sc->vr_dev),
650 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
651 
652 			VR_INIT_RXDESC(sc, i);
653 
654 			continue;
655 		}
656 
657 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
658 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
659 
660 		/* No errors; receive the packet. */
661 		total_len = VR_RXBYTES(le32toh(d->vr_status));
662 #ifdef DIAGNOSTIC
663 		if (total_len == 0) {
664 			/*
665 			 * If we receive a zero-length packet, we probably
666 			 * missed to handle an error condition above.
667 			 * Discard it to avoid a later crash.
668 			 */
669 			ifp->if_ierrors++;
670 
671 			printf("%s: receive error: zero-length packet; "
672 			       "status = 0x%x\n",
673 			       device_xname(sc->vr_dev), rxstat);
674 
675 			VR_INIT_RXDESC(sc, i);
676 
677 			continue;
678 		}
679 #endif
680 
681 		/*
682 		 * The Rhine chip includes the CRC with every packet.
683 		 * Trim it off here.
684 		 */
685 		total_len -= ETHER_CRC_LEN;
686 
687 #ifdef __NO_STRICT_ALIGNMENT
688 		/*
689 		 * If the packet is small enough to fit in a
690 		 * single header mbuf, allocate one and copy
691 		 * the data into it.  This greatly reduces
692 		 * memory consumption when we receive lots
693 		 * of small packets.
694 		 *
695 		 * Otherwise, we add a new buffer to the receive
696 		 * chain.  If this fails, we drop the packet and
697 		 * recycle the old buffer.
698 		 */
699 		if (vr_copy_small != 0 && total_len <= MHLEN) {
700 			MGETHDR(m, M_DONTWAIT, MT_DATA);
701 			if (m == NULL)
702 				goto dropit;
703 			memcpy(mtod(m, void *),
704 			    mtod(ds->ds_mbuf, void *), total_len);
705 			VR_INIT_RXDESC(sc, i);
706 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
707 			    ds->ds_dmamap->dm_mapsize,
708 			    BUS_DMASYNC_PREREAD);
709 		} else {
710 			m = ds->ds_mbuf;
711 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
712  dropit:
713 				ifp->if_ierrors++;
714 				VR_INIT_RXDESC(sc, i);
715 				bus_dmamap_sync(sc->vr_dmat,
716 				    ds->ds_dmamap, 0,
717 				    ds->ds_dmamap->dm_mapsize,
718 				    BUS_DMASYNC_PREREAD);
719 				continue;
720 			}
721 		}
722 #else
723 		/*
724 		 * The Rhine's packet buffers must be 4-byte aligned.
725 		 * But this means that the data after the Ethernet header
726 		 * is misaligned.  We must allocate a new buffer and
727 		 * copy the data, shifted forward 2 bytes.
728 		 */
729 		MGETHDR(m, M_DONTWAIT, MT_DATA);
730 		if (m == NULL) {
731  dropit:
732 			ifp->if_ierrors++;
733 			VR_INIT_RXDESC(sc, i);
734 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
735 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
736 			continue;
737 		}
738 		if (total_len > (MHLEN - 2)) {
739 			MCLGET(m, M_DONTWAIT);
740 			if ((m->m_flags & M_EXT) == 0) {
741 				m_freem(m);
742 				goto dropit;
743 			}
744 		}
745 		m->m_data += 2;
746 
747 		/*
748 		 * Note that we use clusters for incoming frames, so the
749 		 * buffer is virtually contiguous.
750 		 */
751 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
752 		    total_len);
753 
754 		/* Allow the receive descriptor to continue using its mbuf. */
755 		VR_INIT_RXDESC(sc, i);
756 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
757 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
758 #endif /* __NO_STRICT_ALIGNMENT */
759 
760 		ifp->if_ipackets++;
761 		m->m_pkthdr.rcvif = ifp;
762 		m->m_pkthdr.len = m->m_len = total_len;
763 #if NBPFILTER > 0
764 		/*
765 		 * Handle BPF listeners. Let the BPF user see the packet, but
766 		 * don't pass it up to the ether_input() layer unless it's
767 		 * a broadcast packet, multicast packet, matches our ethernet
768 		 * address or the interface is in promiscuous mode.
769 		 */
770 		if (ifp->if_bpf)
771 			bpf_mtap(ifp->if_bpf, m);
772 #endif
773 		/* Pass it on. */
774 		(*ifp->if_input)(ifp, m);
775 	}
776 
777 	/* Update the receive pointer. */
778 	sc->vr_rxptr = i;
779 }
780 
781 void
782 vr_rxeoc(struct vr_softc *sc)
783 {
784 	struct ifnet *ifp;
785 	int i;
786 
787 	ifp = &sc->vr_ec.ec_if;
788 
789 	ifp->if_ierrors++;
790 
791 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
792 	for (i = 0; i < VR_TIMEOUT; i++) {
793 		DELAY(10);
794 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
795 			break;
796 	}
797 	if (i == VR_TIMEOUT) {
798 		/* XXX need reset? */
799 		printf("%s: RX shutdown never complete\n",
800 		    device_xname(sc->vr_dev));
801 	}
802 
803 	vr_rxeof(sc);
804 
805 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
806 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
807 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
808 }
809 
810 /*
811  * A frame was downloaded to the chip. It's safe for us to clean up
812  * the list buffers.
813  */
814 static void
815 vr_txeof(struct vr_softc *sc)
816 {
817 	struct ifnet *ifp = &sc->vr_ec.ec_if;
818 	struct vr_desc *d;
819 	struct vr_descsoft *ds;
820 	uint32_t txstat;
821 	int i, j;
822 
823 	ifp->if_flags &= ~IFF_OACTIVE;
824 
825 	/*
826 	 * Go through our tx list and free mbufs for those
827 	 * frames that have been transmitted.
828 	 */
829 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
830 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
831 		d = VR_CDTX(sc, i);
832 		ds = VR_DSTX(sc, i);
833 
834 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
835 
836 		txstat = le32toh(d->vr_status);
837 
838 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
839 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
840 			for (j = 0; j < VR_TIMEOUT; j++) {
841 				DELAY(10);
842 				if ((CSR_READ_2(sc, VR_COMMAND) &
843 				    VR_CMD_TX_ON) == 0)
844 					break;
845 			}
846 			if (j == VR_TIMEOUT) {
847 				/* XXX need reset? */
848 				printf("%s: TX shutdown never complete\n",
849 				    device_xname(sc->vr_dev));
850 			}
851 			d->vr_status = htole32(VR_TXSTAT_OWN);
852 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
853 			break;
854 		}
855 
856 		if (txstat & VR_TXSTAT_OWN)
857 			break;
858 
859 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
860 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
861 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
862 		m_freem(ds->ds_mbuf);
863 		ds->ds_mbuf = NULL;
864 
865 		if (txstat & VR_TXSTAT_ERRSUM) {
866 			ifp->if_oerrors++;
867 			if (txstat & VR_TXSTAT_DEFER)
868 				ifp->if_collisions++;
869 			if (txstat & VR_TXSTAT_LATECOLL)
870 				ifp->if_collisions++;
871 		}
872 
873 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
874 		ifp->if_opackets++;
875 	}
876 
877 	/* Update the dirty transmit buffer pointer. */
878 	sc->vr_txdirty = i;
879 
880 	/*
881 	 * Cancel the watchdog timer if there are no pending
882 	 * transmissions.
883 	 */
884 	if (sc->vr_txpending == 0)
885 		ifp->if_timer = 0;
886 }
887 
888 static int
889 vr_intr(void *arg)
890 {
891 	struct vr_softc *sc;
892 	struct ifnet *ifp;
893 	uint16_t status;
894 	int handled = 0, dotx = 0;
895 
896 	sc = arg;
897 	ifp = &sc->vr_ec.ec_if;
898 
899 	/* Suppress unwanted interrupts. */
900 	if ((ifp->if_flags & IFF_UP) == 0) {
901 		vr_stop(ifp, 1);
902 		return (0);
903 	}
904 
905 	/* Disable interrupts. */
906 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
907 
908 	for (;;) {
909 		status = CSR_READ_2(sc, VR_ISR);
910 		if (status)
911 			CSR_WRITE_2(sc, VR_ISR, status);
912 
913 		if ((status & VR_INTRS) == 0)
914 			break;
915 
916 		handled = 1;
917 
918 #if NRND > 0
919 		if (RND_ENABLED(&sc->rnd_source))
920 			rnd_add_uint32(&sc->rnd_source, status);
921 #endif
922 
923 		if (status & VR_ISR_RX_OK)
924 			vr_rxeof(sc);
925 
926 		if (status & VR_ISR_RX_DROPPED) {
927 			printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
928 			ifp->if_ierrors++;
929 		}
930 
931 		if (status &
932 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
933 			vr_rxeoc(sc);
934 
935 
936 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
937 			if (status & VR_ISR_BUSERR)
938 				printf("%s: PCI bus error\n",
939 				    device_xname(sc->vr_dev));
940 			if (status & VR_ISR_TX_UNDERRUN)
941 				printf("%s: transmit underrun\n",
942 				    device_xname(sc->vr_dev));
943 			/* vr_init() calls vr_start() */
944 			dotx = 0;
945 			(void)vr_init(ifp);
946 
947 		}
948 
949 		if (status & VR_ISR_TX_OK) {
950 			dotx = 1;
951 			vr_txeof(sc);
952 		}
953 
954 		if (status &
955 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
956 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
957 				printf("%s: transmit aborted\n",
958 				    device_xname(sc->vr_dev));
959 			if (status & VR_ISR_TX_UDFI)
960 				printf("%s: transmit underflow\n",
961 				    device_xname(sc->vr_dev));
962 			ifp->if_oerrors++;
963 			dotx = 1;
964 			vr_txeof(sc);
965 			if (sc->vr_txpending) {
966 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
967 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
968 			}
969 		}
970 	}
971 
972 	/* Re-enable interrupts. */
973 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
974 
975 	if (dotx)
976 		vr_start(ifp);
977 
978 	return (handled);
979 }
980 
981 /*
982  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
983  * to the mbuf data regions directly in the transmit lists. We also save a
984  * copy of the pointers since the transmit list fragment pointers are
985  * physical addresses.
986  */
987 static void
988 vr_start(struct ifnet *ifp)
989 {
990 	struct vr_softc *sc = ifp->if_softc;
991 	struct mbuf *m0, *m;
992 	struct vr_desc *d;
993 	struct vr_descsoft *ds;
994 	int error, firsttx, nexttx, opending;
995 
996 	/*
997 	 * Remember the previous txpending and the first transmit
998 	 * descriptor we use.
999 	 */
1000 	opending = sc->vr_txpending;
1001 	firsttx = VR_NEXTTX(sc->vr_txlast);
1002 
1003 	/*
1004 	 * Loop through the send queue, setting up transmit descriptors
1005 	 * until we drain the queue, or use up all available transmit
1006 	 * descriptors.
1007 	 */
1008 	while (sc->vr_txpending < VR_NTXDESC) {
1009 		/*
1010 		 * Grab a packet off the queue.
1011 		 */
1012 		IFQ_POLL(&ifp->if_snd, m0);
1013 		if (m0 == NULL)
1014 			break;
1015 		m = NULL;
1016 
1017 		/*
1018 		 * Get the next available transmit descriptor.
1019 		 */
1020 		nexttx = VR_NEXTTX(sc->vr_txlast);
1021 		d = VR_CDTX(sc, nexttx);
1022 		ds = VR_DSTX(sc, nexttx);
1023 
1024 		/*
1025 		 * Load the DMA map.  If this fails, the packet didn't
1026 		 * fit in one DMA segment, and we need to copy.  Note,
1027 		 * the packet must also be aligned.
1028 		 * if the packet is too small, copy it too, so we're sure
1029 		 * we have enough room for the pad buffer.
1030 		 */
1031 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1032 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1033 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1034 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1035 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1036 			if (m == NULL) {
1037 				printf("%s: unable to allocate Tx mbuf\n",
1038 				    device_xname(sc->vr_dev));
1039 				break;
1040 			}
1041 			if (m0->m_pkthdr.len > MHLEN) {
1042 				MCLGET(m, M_DONTWAIT);
1043 				if ((m->m_flags & M_EXT) == 0) {
1044 					printf("%s: unable to allocate Tx "
1045 					    "cluster\n", device_xname(sc->vr_dev));
1046 					m_freem(m);
1047 					break;
1048 				}
1049 			}
1050 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1051 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1052 			/*
1053 			 * The Rhine doesn't auto-pad, so we have to do this
1054 			 * ourselves.
1055 			 */
1056 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1057 				memset(mtod(m, char *) + m0->m_pkthdr.len,
1058 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1059 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1060 			}
1061 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1062 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1063 			if (error) {
1064 				m_freem(m);
1065 				printf("%s: unable to load Tx buffer, "
1066 				    "error = %d\n", device_xname(sc->vr_dev), error);
1067 				break;
1068 			}
1069 		}
1070 
1071 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1072 		if (m != NULL) {
1073 			m_freem(m0);
1074 			m0 = m;
1075 		}
1076 
1077 		/* Sync the DMA map. */
1078 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1079 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1080 
1081 		/*
1082 		 * Store a pointer to the packet so we can free it later.
1083 		 */
1084 		ds->ds_mbuf = m0;
1085 
1086 #if NBPFILTER > 0
1087 		/*
1088 		 * If there's a BPF listener, bounce a copy of this frame
1089 		 * to him.
1090 		 */
1091 		if (ifp->if_bpf)
1092 			bpf_mtap(ifp->if_bpf, m0);
1093 #endif
1094 
1095 		/*
1096 		 * Fill in the transmit descriptor.
1097 		 */
1098 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1099 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1100 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1101 
1102 		/*
1103 		 * If this is the first descriptor we're enqueuing,
1104 		 * don't give it to the Rhine yet.  That could cause
1105 		 * a race condition.  We'll do it below.
1106 		 */
1107 		if (nexttx == firsttx)
1108 			d->vr_status = 0;
1109 		else
1110 			d->vr_status = htole32(VR_TXSTAT_OWN);
1111 
1112 		VR_CDTXSYNC(sc, nexttx,
1113 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1114 
1115 		/* Advance the tx pointer. */
1116 		sc->vr_txpending++;
1117 		sc->vr_txlast = nexttx;
1118 	}
1119 
1120 	if (sc->vr_txpending == VR_NTXDESC) {
1121 		/* No more slots left; notify upper layer. */
1122 		ifp->if_flags |= IFF_OACTIVE;
1123 	}
1124 
1125 	if (sc->vr_txpending != opending) {
1126 		/*
1127 		 * We enqueued packets.  If the transmitter was idle,
1128 		 * reset the txdirty pointer.
1129 		 */
1130 		if (opending == 0)
1131 			sc->vr_txdirty = firsttx;
1132 
1133 		/*
1134 		 * Cause a transmit interrupt to happen on the
1135 		 * last packet we enqueued.
1136 		 */
1137 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1138 		VR_CDTXSYNC(sc, sc->vr_txlast,
1139 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1140 
1141 		/*
1142 		 * The entire packet chain is set up.  Give the
1143 		 * first descriptor to the Rhine now.
1144 		 */
1145 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1146 		VR_CDTXSYNC(sc, firsttx,
1147 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1148 
1149 		/* Start the transmitter. */
1150 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1151 
1152 		/* Set the watchdog timer in case the chip flakes out. */
1153 		ifp->if_timer = 5;
1154 	}
1155 }
1156 
1157 /*
1158  * Initialize the interface.  Must be called at splnet.
1159  */
1160 static int
1161 vr_init(struct ifnet *ifp)
1162 {
1163 	struct vr_softc *sc = ifp->if_softc;
1164 	struct vr_desc *d;
1165 	struct vr_descsoft *ds;
1166 	int i, error = 0;
1167 
1168 	/* Cancel pending I/O. */
1169 	vr_stop(ifp, 0);
1170 
1171 	/* Reset the Rhine to a known state. */
1172 	vr_reset(sc);
1173 
1174 	/* set DMA length in BCR0 and BCR1 */
1175 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1176 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1177 
1178 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1179 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1180 
1181 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1182 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1183 
1184 	/* set DMA threshold length in RXCFG and TXCFG */
1185 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1186 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1187 
1188 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1189 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1190 
1191 	/*
1192 	 * Initialize the transmit descriptor ring.  txlast is initialized
1193 	 * to the end of the list so that it will wrap around to the first
1194 	 * descriptor when the first packet is transmitted.
1195 	 */
1196 	for (i = 0; i < VR_NTXDESC; i++) {
1197 		d = VR_CDTX(sc, i);
1198 		memset(d, 0, sizeof(struct vr_desc));
1199 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1200 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1201 	}
1202 	sc->vr_txpending = 0;
1203 	sc->vr_txdirty = 0;
1204 	sc->vr_txlast = VR_NTXDESC - 1;
1205 
1206 	/*
1207 	 * Initialize the receive descriptor ring.
1208 	 */
1209 	for (i = 0; i < VR_NRXDESC; i++) {
1210 		ds = VR_DSRX(sc, i);
1211 		if (ds->ds_mbuf == NULL) {
1212 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1213 				printf("%s: unable to allocate or map rx "
1214 				    "buffer %d, error = %d\n",
1215 				    device_xname(sc->vr_dev), i, error);
1216 				/*
1217 				 * XXX Should attempt to run with fewer receive
1218 				 * XXX buffers instead of just failing.
1219 				 */
1220 				vr_rxdrain(sc);
1221 				goto out;
1222 			}
1223 		} else
1224 			VR_INIT_RXDESC(sc, i);
1225 	}
1226 	sc->vr_rxptr = 0;
1227 
1228 	/* If we want promiscuous mode, set the allframes bit. */
1229 	if (ifp->if_flags & IFF_PROMISC)
1230 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1231 	else
1232 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1233 
1234 	/* Set capture broadcast bit to capture broadcast frames. */
1235 	if (ifp->if_flags & IFF_BROADCAST)
1236 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1237 	else
1238 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1239 
1240 	/* Program the multicast filter, if necessary. */
1241 	vr_setmulti(sc);
1242 
1243 	/* Give the transmit and receive rings to the Rhine. */
1244 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1245 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1246 
1247 	/* Set current media. */
1248 	if ((error = ether_mediachange(ifp)) != 0)
1249 		goto out;
1250 
1251 	/* Enable receiver and transmitter. */
1252 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1253 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1254 				    VR_CMD_RX_GO);
1255 
1256 	/* Enable interrupts. */
1257 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1258 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1259 
1260 	ifp->if_flags |= IFF_RUNNING;
1261 	ifp->if_flags &= ~IFF_OACTIVE;
1262 
1263 	/* Start one second timer. */
1264 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1265 
1266 	/* Attempt to start output on the interface. */
1267 	vr_start(ifp);
1268 
1269  out:
1270 	if (error)
1271 		printf("%s: interface not running\n", device_xname(sc->vr_dev));
1272 	return (error);
1273 }
1274 
1275 static int
1276 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1277 {
1278 	struct vr_softc *sc = ifp->if_softc;
1279 	int s, error = 0;
1280 
1281 	s = splnet();
1282 
1283 	error = ether_ioctl(ifp, command, data);
1284 	if (error == ENETRESET) {
1285 		/*
1286 		 * Multicast list has changed; set the hardware filter
1287 		 * accordingly.
1288 		 */
1289 		if (ifp->if_flags & IFF_RUNNING)
1290 			vr_setmulti(sc);
1291 		error = 0;
1292 	}
1293 
1294 	splx(s);
1295 	return (error);
1296 }
1297 
1298 static void
1299 vr_watchdog(struct ifnet *ifp)
1300 {
1301 	struct vr_softc *sc = ifp->if_softc;
1302 
1303 	printf("%s: device timeout\n", device_xname(sc->vr_dev));
1304 	ifp->if_oerrors++;
1305 
1306 	(void) vr_init(ifp);
1307 }
1308 
1309 /*
1310  * One second timer, used to tick MII.
1311  */
1312 static void
1313 vr_tick(void *arg)
1314 {
1315 	struct vr_softc *sc = arg;
1316 	int s;
1317 
1318 	s = splnet();
1319 	mii_tick(&sc->vr_mii);
1320 	splx(s);
1321 
1322 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1323 }
1324 
1325 /*
1326  * Drain the receive queue.
1327  */
1328 static void
1329 vr_rxdrain(struct vr_softc *sc)
1330 {
1331 	struct vr_descsoft *ds;
1332 	int i;
1333 
1334 	for (i = 0; i < VR_NRXDESC; i++) {
1335 		ds = VR_DSRX(sc, i);
1336 		if (ds->ds_mbuf != NULL) {
1337 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1338 			m_freem(ds->ds_mbuf);
1339 			ds->ds_mbuf = NULL;
1340 		}
1341 	}
1342 }
1343 
1344 /*
1345  * Stop the adapter and free any mbufs allocated to the
1346  * transmit lists.
1347  */
1348 static void
1349 vr_stop(struct ifnet *ifp, int disable)
1350 {
1351 	struct vr_softc *sc = ifp->if_softc;
1352 	struct vr_descsoft *ds;
1353 	int i;
1354 
1355 	/* Cancel one second timer. */
1356 	callout_stop(&sc->vr_tick_ch);
1357 
1358 	/* Down the MII. */
1359 	mii_down(&sc->vr_mii);
1360 
1361 	ifp = &sc->vr_ec.ec_if;
1362 	ifp->if_timer = 0;
1363 
1364 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1365 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1366 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1367 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1368 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1369 
1370 	/*
1371 	 * Release any queued transmit buffers.
1372 	 */
1373 	for (i = 0; i < VR_NTXDESC; i++) {
1374 		ds = VR_DSTX(sc, i);
1375 		if (ds->ds_mbuf != NULL) {
1376 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1377 			m_freem(ds->ds_mbuf);
1378 			ds->ds_mbuf = NULL;
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * Mark the interface down and cancel the watchdog timer.
1384 	 */
1385 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1386 	ifp->if_timer = 0;
1387 
1388 	if (disable)
1389 		vr_rxdrain(sc);
1390 }
1391 
1392 static int	vr_probe(device_t, cfdata_t, void *);
1393 static void	vr_attach(device_t, device_t, void *);
1394 static void	vr_shutdown(void *);
1395 
1396 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1397     vr_probe, vr_attach, NULL, NULL);
1398 
1399 static const struct vr_type *
1400 vr_lookup(struct pci_attach_args *pa)
1401 {
1402 	const struct vr_type *vrt;
1403 	int i;
1404 
1405 	for (i = 0; i < __arraycount(vr_devs); i++) {
1406 		vrt = &vr_devs[i];
1407 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1408 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1409 			return (vrt);
1410 	}
1411 	return (NULL);
1412 }
1413 
1414 static int
1415 vr_probe(device_t parent, cfdata_t match, void *aux)
1416 {
1417 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1418 
1419 	if (vr_lookup(pa) != NULL)
1420 		return (1);
1421 
1422 	return (0);
1423 }
1424 
1425 /*
1426  * Stop all chip I/O so that the kernel's probe routines don't
1427  * get confused by errant DMAs when rebooting.
1428  */
1429 static void
1430 vr_shutdown(void *arg)
1431 {
1432 	struct vr_softc *sc = (struct vr_softc *)arg;
1433 
1434 	vr_stop(&sc->vr_ec.ec_if, 1);
1435 }
1436 
1437 /*
1438  * Attach the interface. Allocate softc structures, do ifmedia
1439  * setup and ethernet/BPF attach.
1440  */
1441 static void
1442 vr_attach(device_t parent, device_t self, void *aux)
1443 {
1444 	struct vr_softc *sc = device_private(self);
1445 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1446 	bus_dma_segment_t seg;
1447 	uint32_t reg;
1448 	struct ifnet *ifp;
1449 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
1450 	int i, rseg, error;
1451 	char devinfo[256];
1452 
1453 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1454 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1455 
1456 	sc->vr_dev = self;
1457 	sc->vr_pc = pa->pa_pc;
1458 	sc->vr_tag = pa->pa_tag;
1459 	callout_init(&sc->vr_tick_ch, 0);
1460 
1461 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1462 	aprint_naive("\n");
1463 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1464 	    PCI_REVISION(pa->pa_class));
1465 
1466 	/*
1467 	 * Handle power management nonsense.
1468 	 */
1469 
1470 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1471 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1472 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1473 
1474 	/* power up chip */
1475 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1476 	    vr_restore_state)) && error != EOPNOTSUPP) {
1477 		aprint_error_dev(self, "cannot activate %d\n",
1478 		    error);
1479 		return;
1480 	}
1481 
1482 	/* Make sure bus mastering is enabled. */
1483 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1484 	reg |= PCI_COMMAND_MASTER_ENABLE;
1485 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1486 
1487 	/* Get revision */
1488 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1489 
1490 	/*
1491 	 * Map control/status registers.
1492 	 */
1493 	{
1494 		bus_space_tag_t iot, memt;
1495 		bus_space_handle_t ioh, memh;
1496 		int ioh_valid, memh_valid;
1497 		pci_intr_handle_t intrhandle;
1498 		const char *intrstr;
1499 
1500 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1501 			PCI_MAPREG_TYPE_IO, 0,
1502 			&iot, &ioh, NULL, NULL) == 0);
1503 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1504 			PCI_MAPREG_TYPE_MEM |
1505 			PCI_MAPREG_MEM_TYPE_32BIT,
1506 			0, &memt, &memh, NULL, NULL) == 0);
1507 #if defined(VR_USEIOSPACE)
1508 		if (ioh_valid) {
1509 			sc->vr_bst = iot;
1510 			sc->vr_bsh = ioh;
1511 		} else if (memh_valid) {
1512 			sc->vr_bst = memt;
1513 			sc->vr_bsh = memh;
1514 		}
1515 #else
1516 		if (memh_valid) {
1517 			sc->vr_bst = memt;
1518 			sc->vr_bsh = memh;
1519 		} else if (ioh_valid) {
1520 			sc->vr_bst = iot;
1521 			sc->vr_bsh = ioh;
1522 		}
1523 #endif
1524 		else {
1525 			printf(": unable to map device registers\n");
1526 			return;
1527 		}
1528 
1529 		/* Allocate interrupt */
1530 		if (pci_intr_map(pa, &intrhandle)) {
1531 			aprint_error_dev(self, "couldn't map interrupt\n");
1532 			return;
1533 		}
1534 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1535 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1536 						vr_intr, sc);
1537 		if (sc->vr_ih == NULL) {
1538 			aprint_error_dev(self, "couldn't establish interrupt");
1539 			if (intrstr != NULL)
1540 				printf(" at %s", intrstr);
1541 			printf("\n");
1542 		}
1543 		printf("%s: interrupting at %s\n",
1544 			device_xname(self), intrstr);
1545 	}
1546 
1547 	/*
1548 	 * Windows may put the chip in suspend mode when it
1549 	 * shuts down. Be sure to kick it in the head to wake it
1550 	 * up again.
1551 	 *
1552 	 * Don't touch this register on VT3043 since it causes
1553 	 * kernel MCHK trap on macppc.
1554 	 * (Note some VT86C100A chip returns a product ID of VT3043)
1555 	 */
1556 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1557 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1558 
1559 	/* Reset the adapter. */
1560 	vr_reset(sc);
1561 
1562 	/*
1563 	 * Get station address. The way the Rhine chips work,
1564 	 * you're not allowed to directly access the EEPROM once
1565 	 * they've been programmed a special way. Consequently,
1566 	 * we need to read the node address from the PAR0 and PAR1
1567 	 * registers.
1568 	 *
1569 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1570 	 *         of the *whole* EEPROM, not just the MAC address. This is
1571 	 *         pretty pointless since the chip does this automatically
1572 	 *         at powerup/reset.
1573 	 *         I suspect the same thing applies to the other Rhine
1574 	 *         variants, but in the absence of a data sheet for those
1575 	 *         (and the lack of anyone else noticing the problems this
1576 	 *         causes) I'm going to retain the old behaviour for the
1577 	 *         other parts.
1578 	 *         In some cases, the chip really does startup without having
1579 	 *         read the EEPROM (kern/34812). To handle this case, we force
1580 	 *         a reload if we see an all-zeroes MAC address.
1581 	 */
1582 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1583 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1584 
1585 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1586 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1587 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1588 		DELAY(200);
1589 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1590 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1591 	}
1592 
1593 	/*
1594 	 * A Rhine chip was detected. Inform the world.
1595 	 */
1596 	printf("%s: Ethernet address: %s\n",
1597 		device_xname(self), ether_sprintf(eaddr));
1598 
1599 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1600 
1601 	sc->vr_dmat = pa->pa_dmat;
1602 
1603 	/*
1604 	 * Allocate the control data structures, and create and load
1605 	 * the DMA map for it.
1606 	 */
1607 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1608 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1609 	    0)) != 0) {
1610 		aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1611 		goto fail_0;
1612 	}
1613 
1614 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1615 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1616 	    BUS_DMA_COHERENT)) != 0) {
1617 		aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1618 		goto fail_1;
1619 	}
1620 
1621 	if ((error = bus_dmamap_create(sc->vr_dmat,
1622 	    sizeof(struct vr_control_data), 1,
1623 	    sizeof(struct vr_control_data), 0, 0,
1624 	    &sc->vr_cddmamap)) != 0) {
1625 		aprint_error_dev(self, "unable to create control data DMA map, "
1626 		    "error = %d\n", error);
1627 		goto fail_2;
1628 	}
1629 
1630 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1631 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1632 	    0)) != 0) {
1633 		aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1634 		    error);
1635 		goto fail_3;
1636 	}
1637 
1638 	/*
1639 	 * Create the transmit buffer DMA maps.
1640 	 */
1641 	for (i = 0; i < VR_NTXDESC; i++) {
1642 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1643 		    1, MCLBYTES, 0, 0,
1644 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1645 			aprint_error_dev(self, "unable to create tx DMA map %d, "
1646 			    "error = %d\n", i, error);
1647 			goto fail_4;
1648 		}
1649 	}
1650 
1651 	/*
1652 	 * Create the receive buffer DMA maps.
1653 	 */
1654 	for (i = 0; i < VR_NRXDESC; i++) {
1655 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1656 		    MCLBYTES, 0, 0,
1657 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1658 			aprint_error_dev(self, "unable to create rx DMA map %d, "
1659 			    "error = %d\n", i, error);
1660 			goto fail_5;
1661 		}
1662 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1663 	}
1664 
1665 	ifp = &sc->vr_ec.ec_if;
1666 	ifp->if_softc = sc;
1667 	ifp->if_mtu = ETHERMTU;
1668 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1669 	ifp->if_ioctl = vr_ioctl;
1670 	ifp->if_start = vr_start;
1671 	ifp->if_watchdog = vr_watchdog;
1672 	ifp->if_init = vr_init;
1673 	ifp->if_stop = vr_stop;
1674 	IFQ_SET_READY(&ifp->if_snd);
1675 
1676 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1677 
1678 	/*
1679 	 * Initialize MII/media info.
1680 	 */
1681 	sc->vr_mii.mii_ifp = ifp;
1682 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1683 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1684 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1685 
1686 	sc->vr_ec.ec_mii = &sc->vr_mii;
1687 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1688 		ether_mediastatus);
1689 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1690 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1691 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1692 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1693 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1694 	} else
1695 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1696 
1697 	/*
1698 	 * Call MI attach routines.
1699 	 */
1700 	if_attach(ifp);
1701 	ether_ifattach(ifp, sc->vr_enaddr);
1702 #if NRND > 0
1703 	rnd_attach_source(&sc->rnd_source, device_xname(self),
1704 	    RND_TYPE_NET, 0);
1705 #endif
1706 
1707 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1708 	if (sc->vr_ats == NULL)
1709 		aprint_error_dev(self, "warning: couldn't establish shutdown hook\n");
1710 	return;
1711 
1712  fail_5:
1713 	for (i = 0; i < VR_NRXDESC; i++) {
1714 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1715 			bus_dmamap_destroy(sc->vr_dmat,
1716 			    sc->vr_rxsoft[i].ds_dmamap);
1717 	}
1718  fail_4:
1719 	for (i = 0; i < VR_NTXDESC; i++) {
1720 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1721 			bus_dmamap_destroy(sc->vr_dmat,
1722 			    sc->vr_txsoft[i].ds_dmamap);
1723 	}
1724 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1725  fail_3:
1726 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1727  fail_2:
1728 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1729 	    sizeof(struct vr_control_data));
1730  fail_1:
1731 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1732  fail_0:
1733 	return;
1734 }
1735 
1736 static int
1737 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1738     pcireg_t state)
1739 {
1740 	struct vr_softc *sc = device_private(self);
1741 	int error;
1742 
1743 	if (state == PCI_PMCSR_STATE_D0)
1744 		return 0;
1745 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1746 		return error;
1747 
1748 	/* Restore PCI config data. */
1749 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1750 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1751 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1752 	return 0;
1753 }
1754